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Abstract

Outlier detection has been studied extensively in data mining. However, as the emergence

of huge data sets in real-life applications nowadays, outlier detection faces a series of new

challenges. Many traditional outlier detection techniques do not work well in such an

environment. Therefore, developing up-to-date outlier detection methods becomes urgent

tasks.

In this thesis, we propose several new methods for detecting different kinds of outliers in

high-dimensional data sets from two different perspectives, namely, detecting the outlying

aspects of a data object and detecting outlying data objects of a data set. Specifically,

for detecting the outlying aspects of a data object, we propose the problems of mining

outlying aspects and mining contrast subspaces; for detecting outlying data objects of a

data set, we propose the problems of mining contextual outliers and mining Markov blanket

based outliers. We develop efficient and scalable algorithms to tackle the computational

challenges. We also conduct comprehensive empirical studies on real and synthetic data sets

to verify the effectiveness of the proposed outlier detection techniques and the efficiency of

our algorithms.

Keywords: outlier detection; outlying aspects detection; outlier interpretation
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Chapter 1

Introduction

An outlier is a data object that is signicantly different from the rest of the data objects in

a data set. Hawkins [53] provided a formal definition as following:

“An outlier is an observation which deviates so much from the other observations as to

arouse suspicions that it was generated by a different mechanism.”

Outlier detection is the process of identifying data objects, which are drastically different

from the rest of the data set. It is an important data mining task with broad applications,

such as credit card fraud detection [18, 19], insurance claim fraud detection [109, 124],

medical diagnosis [28, 97], image processing [30, 94], intrusion detection [73, 103], and event

detection [26, 59].

Outlier detection has been studied extensively in the data mining research community.

However, as the emergence of huge data sets in real-life practice nowadays, outlier detection

faces a series of new challenges. Many traditional outlier detection methods do not work

well in such an environment. Therefore, developing up-to-date outlier detection methods

becomes urgent tasks. In this thesis, we aim at developing new outlier detection methods,

which try to tackle some of the new challenges, specifically, dimensionality and under-

standability.

• Dimensionality. How to find meaningful subspaces for outlier detection? Real-

life data sets often have many dimensions, which may lead to a huge number of

subspaces. Detecting outliers in every subspace is ineffective and inefficient mainly

because of three reasons. First, in high-dimensional subspaces, data becomes sparse;

and the similarities among data objects in full space become indistinguishable. The

1



2 CHAPTER 1. INTRODUCTION

true outliers are often covered up by the noises generated by the high dimensionality.

Second, in order to assist business users to effectively analyze outliers, it is helpful

to avoid reporting outliers from meaningless subspaces. Third, brute force methods,

such as testing all data objects in all possible subspaces, are not feasible when a data

set has a huge number of subspaces.

• Understandability. Understanding why the detected objects are outliers is

important to business users. Outliers usually conveying useful information regarding

different properties of the underlying data sets. Such information can help business

users to propose suitable action plans for the outliers. In order to facilitate the un-

derstandability of outliers, an outlier detection method needs to provide justifications

of the detection, such as the contexts of the outliers.

1.1 Motivation

Our study propose four different outlier detection methods from two different perspectives,

detecting the outlying aspects of a data object and detecting outlying data objects of a data

set. In some application scenarios, using the appropriate outlier detection perspective can

provide useful information.

Example 1.1. (Mining outlying aspects and outliers in healthcare applications).

Despite the tremendous improvements in healthcare practice and systems nowadays, having

sustainable healthcare is still one of the most important and urgent issues. From the

individual point of view, healthcare is important to every one, even for those who are

currently in good health. No one wants to get sick, but every one will get sick at some point

of his life. From the global point of view, healthcare has a notable impact on a country’s

economy. According to the well-known Canadian Institute for Health Information, the total

spending on healthcare in Canada in 2013 was projected to exceed $211 billion, or $5, 988

per person.

Healthcare has many outlier detection applications. In this example, we consider four

different application scenarios from two different perspectives, identifying outlying aspects of

individuals (Scenario 1 and Scenario 2) and detecting outliers under different circumstances

(Scenario 3 and Scenario 4).
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Scenario 1. Identifying Most Important Factors in Medical Treatment. Assume

you are a medical doctor having many patients diagnosed with cardiovascular diseases.

When facing a particular patient, you may want to know the most outlying (or dangerous)

aspects of the patient, though the patient may not be top ranked on those aspects or on

any other among all patients. After some analysis, you notice that the patient’s glycemic

aspect, which includes triglyceride (“TG”) value: 420 mg/dL and low-density lipoprotein

(“LDL”) value: 185 mg/dL, is outlying most. Reducing the risk factor values in glycemic

aspect is very important to this patient. Based on the previous analysis, you probably

make a treatment plan focusing on improving the patient’s current glycemic status, which

includes medicines such as Statins and Fibrates, and suggestions of reducing the amount of

“bad” fat in his diet and exercising more.

The scenario illustrated in the above example is different from traditional outlier

detection. Specifically, instead of searching for outliers from a data set, here we are given

a query object and want to find the outlying aspects whereby the object is most unusual.

The query object itself may or may not be an outlier in the full space or in any specific

subspaces. In this problem, we are not interested in other individual outliers or inliers.

The outlying aspect finding questions cannot be answered by the existing outlier detection

methods directly.

In Chapter 3, we will explore the novel and interesting problem of finding outlying

aspects of a query object on multidimensional numeric data. We systematically developed

a model and a heuristic method.

Scenario 2. Reduce Misdiagnosis by Providing Useful Information. The

occurrence of medical errors, such as diagnostic error, is a serious problem. Tehrani et

al. [100] pointed out that about 28.6% of the paid malpractice medical claims in US had

been misdiagnosed.

Imagine you are a medical doctor facing a patient having symptoms of being overweight,

short of breath, and some others. You want to check the patient on two specic possible

diseases: coronary artery disease and adiposity. Please note that clogged arteries are among

the top-5 most commonly misdiagnosed diseases [29]. You have a set of reference samples

of both diseases. Then, you may naturally ask “In what aspect is this patient most similar

to cases of coronary artery disease and, at the same time, dissimilar to adiposity?”

The above scenario cannot be addressed well using an existing data mining method, and

thus suggests a novel data mining problem. In a multidimensional data set of two classes,
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given a query object and a target class, we want to find the subspace where the query object

is most likely to belong to the target class against the other class. We call such a subspace

a contrast subspace since it contrasts the likelihood of the query object in the target class

against the other class.

In Chapter 4, we will study the interesting problem of mining contrast subspaces to

discover the aspects that a query object most similar to a class and dissimilar to the other

class. A heuristic method with embedded pruning techniques is developed.

Scenario 3. Detect Fraud Suspects in Health Insurance. Fraud detection is an

important task for business analysts in health insurance industry. According to the

Canadian Health Care Anti-Fraud Association, about 2% to 10% of Canadian’s healthcare

spending is lost to fraud every year [42].

Suppose you are a business analyst in the auditing department of a health insurance

company. Your job is to identify frauds. You may not only want to find out all fraud

suspects, but also the insightful reasons about why these people are suspicious. Par-

ticularly, for a small group of fraud suspects, you may want to know in what aspects they

share similarity with the majority of normal patients; and in what aspects they deviate

dramatically from the normal patients.

A concrete example is: “Among the patients who consume narcotic drugs in the Greater

Vancouver area, a small group of 10 patients purchasing narcotic drugs from more than 60

different pharmacies is an outlier group, comparing to a reference group of 3000 patients

buying narcotic drugs from fewer than 5 different pharmacies.” The 10 patients in the

outlier group have a high probability to submit fraud claims to the insurance company.

Since among the patients who take narcotic drugs in the Greater Vancouver area, this small

group of people have a very different purchase pattern from the majority.

In Chapter 5, we will we develop a notion of contextual outliers to solve the previous

scenario. We systematically develop a model, including a concise representation, for

contextual outlier analysis, and devise a detection algorithm that leverages the state-of-

the-art data cube computation techniques.

Scenario 4. Discover Diseases and Related Factors in Medical Diagnosis. Assume

you are a medical doctor having a set of patients’ medical records. Each record contains

many different features of a patient, such as the patient’s age, weight, skin humidity, blood

type, work place, lab test results, symptoms, and diagnosis history.
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In order to find out patients who have serious illness and the possible causes of the illness,

you may want to identify some patients who are very different from the others in a certain

feature and its causal features. For example, a leukemia patient is usually very different

from the others in features related to blood, such as complete blood count, blood chemistry

tests, and bleeding and clotting factors. Other features such as “age” and “skin humidity”

may be irrelevant for detecting this type of outlier, but are relevant for discovering the

abnormal patients with the “dehydration” status.

In Chapter 6, we will explore the problem of detecting Markov blanket based outliers.

Particularly, we develop a model to first select meaningful subspaces using Markov blanket.

And then, the model will detect, characterize, and summarize outliers in the selected

subspaces.

Example 1.1 demonstrates the great needs of detecting meaningful outlying aspects and

outliers in practice. Traditional outlier detection techniques do not work well here. It is

not only because of infamous “curse of dimensionality”, which reveals that the distances

between all pairs of data objects are similar in high-dimensional spaces [15], but also because

of the lack of contexts for the detected outliers. In real-life applications, a business analyst

may want to see not only the outliers detected, but also the possible contexts about the

outliers.

Besides the application scenarios mentioned in Example 1.1, detecting outlying aspects

and outliers have many other applications, such as intrusion detection and image processing.

1.2 Challenges and Contributions

While being useful in many real-life applications, detecting meaningful outlying aspects and

outliers pose special challenges.

• How to model the outlying aspects of a data object? Scenario 1 and Scenario 2 in

Example 1.1 illustrate two different applications in mining outlying aspects of a data

object. They not only show the great practical value of mining outlying aspects, but

also raises a fundamental question: how can we formulate the outlying aspects of a

data object that capture the most outstanding characteristics of the data object and

suit application needs?

In particular, we need to consider the following two aspects. First, how to quantify
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the outlyingness of an object in a subspace? Second, how to compare the outlyingness

of an object in different subspaces?

• How to model meaningful outliers in multidimensional data sets? As shown in

Scenario 3 and Scenario 4 of Example 1.1, context is an important component in outlier

detection. Outliers usually convey useful information regarding different properties

of the underlying data set. Proper contextual information of the outliers can help a

business analyst to better understand and investigate individual outliers and propose

action plans suitable for such outliers.

Therefore, we need to tackle two problems in developing meaningful outliers in multi-

dimensional data sets. First, how to model outliers according to different application

interests? Second, how to find contexts best manifesting the outlyingness of the

detected outliers?

• How to explore the exponential number of subspaces in a multidimensional data set ef-

ficiently? Given a data set with n attributes, there are 2n−1 non-empty subspaces. A

brute force method, which examines subspaces one by one, incurs heavy computational

cost when the dimensionality is high. For example, on a data set of 100 dimensions,

2100− 1 = 1.27× 1030 subspaces have to be examined, which is unfortunately compu-

tationally prohibitive using the state-of-the-art technology.

Thus, it is important to develop effective techniques, which can efficiently process the

exponential number of subspaces of a multidimensional data set.

In this thesis, we propose several new methods for detecting different kinds of outliers

in multidimensional data sets. In particular, we make the following contributions.

• We formulate the problem of detecting outlying aspects of a data object in both

unsupervised data sets and supervised data sets. And we develop models to address

the two application scenarios in Example 1.1, respectively.

In particular, for unsupervised data sets, we use the rank of the probability density of

an object in a subspace to measure the outlyingness of the object in the subspace. For

supervised data sets, we use the ratio of the likelihood of a query object in the target

class against that in the other class as the outlyingness measure, which is essentially

the Bayes factor [64] on the query object.
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• For detecting meaningful outliers in multidimensional data sets, we develop two outlier

detection methods to tackle the application Scenario 3 and Scenario 4 of Example 1.1.

Specifically, we propose the problems of mining contextual outlier and mining Markov

blanket based outlier.

We argue that the contextual information of an outlier is an important component

in the outlier detection process. Thus, we integrate the task of identifying proper

context information for outliers in both of the proposed methods.

• We develop a series of heuristic techniques to improve the efficiency of all methods

proposed in this thesis. These techniques can be categorized into two categories:

subspace pruning techniques and object pruning techniques.

Particularly, subspace pruning techniques are developed for the purpose of processing

as fewer candidate subspaces as possible; while object pruning techniques are

developed for the purpose of calculating as fewer candidate data objects in a subspace

as possible.

Table 1.1 summarizes the four new outlier detection problems, their challenges, and our

contributions presented in this thesis.
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Table 1.1: A summary of problems, challenges, and contributions.
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1.3 Organization of the Thesis

The rest of the thesis is organized as follows.

• In Chapter 2, we review the related work and explain how they are related to and

different from this thesis.

• In Chapter 3, we propose a novel problem of mining outlying aspects on numeric

data, which finds the subspaces best manifesting the unusualness of a specified query

object, using the other objects as the background in comparing different subspaces.

This problem is related to, but critically different from traditional outlier detection.

Specifically, instead of searching for outliers from a data set, here we are given a query

object and want to find the outlying aspects whereby the object is most unusual. The

query object itself may or may not be an outlier in the full space or in any specific

subspaces.

• In Chapter 4, we study the problem of mining contrast subspaces on numeric data.

In a multidimensional data set of two classes, given a query object and a target class,

we want to find the subspace where the query object is most likely to belong to the

target class against the other class. While there are many existing studies on outlier

detection and contrast mining, they focus on collective patterns that are shared by

many cases of the target class. The contrast subspace mining problem addressed here

is different. It focuses on one query object and finds the customized contrast subspace.

This problem is a supervised version of the problem we proposed in Chapter 3.

• In Chapter 5, we propose the framework of detecting contextual outliers on categorical

data. A notion of contextual outliers is introduced to model the context of an outlier.

Intuitively, a contextual outlier is a small group of objects that share strong similarity

with a signicantly larger reference group of objects on some attributes, but deviate

dramatically on some other attributes. We presented a detection algorithm leveraging

the state-of-the-art data cube computation techniques.

• In Chapter 6, we propose the frame work of detecting Markov blanket based outliers

on categorical data. Given a data set, we regard the Markov blanket of each dimension

and the dimension itself as a Markov blanket subspace. Markov blanket based outliers

are outlying data objects, which are detected from the Markov blanket subspaces. The
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experimental results using synthetic and real-world data validate the effectiveness,

efficiency and scalability of the proposed model.

• In Chapter 7, we conclude the thesis and discuss the future works.



Chapter 2

Related Work

Outlier analysis is a well studied subject in data mining. Several recent surveys on the

topic [1, 4, 24, 57, 78, 79, 92, 125, 126] as well as dedicated chapters in classical data mining

textbooks [50] provide thorough treatments.

In this chapter, we review the existing studies related to this thesis. First, we review

some of the state-of-art methods on traditional outlier detection. Then, we review the

recent studies on subspace outlier detection. Last, we discuss the related work on each of

the proposed problems in this thesis.

2.1 Traditional Outlier Detection Method

Given a set of data objects, traditional outlier detection focuses on finding outlier objects

that are significantly different from the rest of the data set in the full attribute space.

A number of outlier detection methods have been proposed. We categorize them

into three categories according to how outliers are defined, namely, statistical methods,

proximity-based methods, and clustering-based methods.

2.1.1 Statistical methods

Statistical methods [38, 41, 61, 104, 123] assume that data objects in a given data set are

generated by a certain statistical model. Outliers are data objects that significantly deviate

from the statistical model. Statistical methods usually contain two steps. First, assume

(or train) a distribution (or a probabilistic) model based on the given data set. Then, test

11
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if a data object is significantly deviating from the assumed (or trained) model. If yes, the

tested data object is an outlier. Based on whether the assumption of data distribution is

made or not, statistical methods can be categorized into two categories, namely, parametric

method and non-parametric method.

Parametric methods [45, 104, 106, 123] assume data is generated by certain distribution

(or probabilistic) models. For example, in early 1930s, Shewhart [104] proposed to apply

a simple outlier detection technique to the quality control process. Particularly, he first

assumed that all data objects were following the Gaussian distribution. Then, any data

object that is more than 3σ distance away from the mean µ is an outlier, where σ is the

standard deviation of the Gaussian distribution.

Later, mixture probabilistic models [45, 123] are used to deal with more complex forms

of data distribution. For instance, Yang et al. [123] proposed to use the Expectation-

Maximization (EM) algorithm [33] to fit a Gaussian Mixture Model (GMM) with Gaussians

centered at each data object to a given data set. Each mixture proportion represents the

degree of a data object being a cluster center. The outlier score of each data object is defined

as a weighted sum of the mixture proportions with weights representing the similarities to

other data objects. The smaller the outlier score of a data object, the more likely it is an

outlier.

Non-parametric methods [56, 61, 88] do not assume any priori data distribution (or

probabilistic) models. For example, Javitz and Valdes [61] proposed a histograms based

method for intrusion detection. Histograms were constructed to represent the profile of

normal behaviors. A testing behavior is a potential intrusion if it does not fall into any of

the bins in the constructed histograms.

Besides the histograms technique, kernel function is another popular technique used

under this theme. For instance, Palpanas et al. [88] proposed a framework to detect

outliers in a sensor network. In essence, they used kernel density estimator [102] to

estimate the expected distribution of normal values generated by a sensor at a certain

time. Epanechnikov kernel was adopted. Given a time t, an observed value is outlying if it

does not fall into a certain range of the values in the expected distribution. A sensor is an

outlier if it generated more than n such outlying values within a certain time period.

The effectiveness of statistical methods heavily rely on whether the given data set fits

the chosen statistical model or not.
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2.1.2 Proximity-based methods

Proximity-based methods [20, 27, 66, 96, 108] assume that outliers are data objects

isolated from the rest of the data set. In other words, the proximity of an outlier object to

its neighbors is very different from that of a normal object. Based on the choice of proximity

measurements, proximity-based methods can be further divided into two categories, namely,

density-based methods and distance-based methods.

Density-based methods [20, 27, 108] assume that the density or relative density around

an outlier object is substantially different from that around its neighbors. For instance,

Breunig et al. [20] proposed the famous Local Outlier Factor (LOF ) algorithm. The basic

idea of LOF is to use the relative density of a data object against its neighbors as the

indicator of the outlyingness degree of the data object. Specifically, given a data object p

and the number of data objects in the local neighborhood of a data object MinPts, the

reachability distance of p with respect to data object o, denoted by reach-distMinPts(p,o),

is the maximum value between the distance from p to its farthest neighbor in p’s MinPts-

neighborhood and the distance from p to o. The local reachability density of p is defined

as

lrdMinPts(p) = 1/
(∑o∈MinPts(p) reach-distMinPts(p,o)

|NMinPts(p)|
)
,

where |NMinPts(p)| is the number of data objects falling into p’s MinPts-neighborhood.

And the LOF of p in a given data set is defined as

LOFMinPts(p) =

∑
o∈MinPts(p)

lrdMinPts(o)

lrdMinPts(p)

|NMinPts(p)|
.

A data object is likely to be an outlier if it has a LOF score that is significantly greater

than 1.

Subsequently, many density-based outlier detection techniques have been developed

based on the idea of LOF. For instance, Chiu and Fu [27] proposed a method named

GridLOF. GridLOF uses a simple grid-based technique to prune non-outlier objects, such

that the computation of LOF for all data objects can be avoided. Another interesting

variant of LOF is the connectivity-based outlier factor (COF ) proposed by Tang et al. [108],

which aims to improve the effectiveness of LOF when a potential outlier has similar local

neighborhood density as that of its neighbors.

Distance-based methods [9, 14, 46, 66, 96, 120] assume that data objects which are far

away from their neighbors have high probabilities to be outliers. Knorr and Ng [66] firstly
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introduced the notion of distance-based outlier [1]. Given a radius ε and a percentage p, a

data object o is a outlier if at least p% of all other data objects have a distance to o greater

than ε.

Later, this distance-based outlier notion [66] has been extended based on the distance of

a data object to its kth nearest neighbor, which is known as the nearest neighbour (k-NN)

method. For example, given a data set, Ramaswamy et al. [96] considered data objects with

the top-k highest Dks as outliers. The Dk of a data object o is the distance between o and its

kth nearest neighbor. The distance between two data objects can be measured by different

distance metrics, such as manhattan distance, euclidean distance, and so on. In this paper,

the authors use the square of the euclidean distance instead of the euclidean distance itself,

for the sake of reducing computational costs. Angiulli and Pizzuti [9] provided another way

of defining the k-NN distance based outliers. Specifically, the outlier score of a data object

o is defined as the sum of the distances from o to all its k nearest neighbors. The outliers

are data objects with top-k highest outliers scores. Many methods [14, 46, 120] have been

developed to improve the efficiency of the distance-based outlier detection methods.

The effectiveness of proximity-based methods highly depend on the proximity measure

adopted.

2.1.3 Clustering-based Methods

Clustering-based methods identify three different cases of outliers: (1) outliers are data

objects that do not belong to any cluster; (2) outliers are data objects which are far away

from their closest cluster centroid; (3) outliers are data objects that belong to very small

and distant clusters.

Methods for detecting data objects that do not belong to any cluster. Clustering

algorithms [39, 37, 48] that do not require every data object belonging to at least one

cluster can be naturally applied here. Take the well known DBSCAN algorithm proposed

by Ester et al. [39] as an example. Given a neighborhood radius ε and the minimum

number of data objects contained in the neighborhood MinPts, DBSCAN check the ε-

neighborhood for each data object. If a data object o has more than MinPts objects in

its ε-neighborhood, a new cluster is formed, and o is the core of this cluster. All data

object in o’s ε-neighborhood are added to this cluster, as well as their own ε-neighborhood

only if the ε-neighborhood also have more than MinPts objects. The cluster grows when

no more core object can be found. Then, a new unvisited data object will be chosen to
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repeat the previous process. The whole clustering will stop when no more new object can

be added into any cluster. As a result, data objects that do not belong to any cluster can

be considered as outliers.

Methods to tackle the second and third cases often have two phases, namely, the

clustering phase and the testing phase. In the clustering phase, clustering algorithms such

as k-means [76] or DBSCAN [39], are applied to identify clusters or dense regions. The

testing phase computes the outlyingness scores for data objects. Assume o is an arbitrary

data object in a given data set. People usually consider the following three aspects when

designing the outlyingness score: (1) the fitness of o for the clusters identified in clustering

phase; (2) the sizes of the clusters that o belongs to; (3) the distances between the clusters

that o belongs to and the other clusters.

Methods for detecting data objects which are far away from their closest cluster centroid.

Many methods [12, 71, 95] designed for intrusion detection are under this assumption.

Barbará et al. [12] proposed a bootstrap outlier detection method by considering the

similarity between data points and the clusters in a training data set. The authors rst

separated normal data from abnormal data in the training data set by frequent itemsets

based method. Then, normal data in the training data set were clustered into groups. Last,

testing whether a data point is an outlier with respect to the clusters from the previous

step.

Methods for detecting data objects that belong to very small and distant clusters. Various

methods [54, 63, 87] proposed under this theme. For example, Jiang et al. [63] proposed a

two-step clustering process to detect outliers belonging to very small and distant clusters.

In the first step, a modified k-means algorithm is applied to find clusters. This algorithm

uses a heuristic that a new data object is the center of a new cluster if it is far away from

the centers of all existing clusters. The modified k-means algorithm produces clusters in

a coarse way by allowing the number of clusters to be greater than k. Note that k is the

number of cluster set by the user. In the second step, each cluster is represented by its center

node; and a minimum spanning tree (MST) is constructed based on the distance between

every two nodes. The longest edge of the MST is removed; and the MST is replaced by the

two newly obtained subtrees. We can repeat the process of removing the longest edges of

the subtrees until k subtrees have been obtained. Outliers are data objects that belong to

the clusters in the smallest subtree.

The effectiveness of clustering-based methods highly depends on whether the used
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clustering algorithms can capture the true clustering structure of normal objects or not.

2.2 Subspace Outlier Detection Methods

Data sets from real life often have very high dimensionalities. Due to the curse of di-

mensionality, measurements designed to calculate the differences between an object and

the other objects, such as distance and probability density, become meaningless in the full

space [16]. Thus, many conventional outlier detection techniques may not work well in such

situation. Identifying outliers in various subspaces becomes a possible approach to solve

practical outlier detection problems like this.

Given a set of high dimensional data objects, subspace outlier detection techniques aim

to identify outlier objects, which are drastically deviating from the majority in some selected

subspaces.

Most studies in subspace outlier detection have two major components, subspace

selection and outlyingness measurement design. Many subspace selection methods have

been proposed based on the different assumptions of meaningful subspaces. For example,

Keller et al. [65] and Böhm et al. [17] selected subspaces with high contrast by statistical

approaches. Another example is that Kriegel et al. [68] explored the outlyingness of a

data object in a subspace made up by its nearest neighbors. Similar to the traditional

outlier detection, various outlyingness measurements are designed for different purposes. For

instance, Müller et al. [81] designed the outlier score of a data object based on the size and

the dimensionality of the corresponding reference cluster. Some studies [17, 65, 85] directly

adopted the existing outlyingness measurement from the traditional outlier detection.

For example, Kriegel et al. [67] introduced SOD, a method to detect data objects that

do not fit well into their axis-parallel subspaces. Given a data object o, the axis-parallel

subspace of o is a subspace spanned by o’s reference points. The reference points of o are

modeled as a set of data objects, each of which shares at least n of its k-nearest neighbors

with that of o. Note that n and k are two user input parameters. n is the minimum number

of nearest neighbors that a reference point and o have in common; and k is the number of

nearest neighbors that a data object needs to consider. The outlier score of o is designed

based on two elements: (1) the distance between o and the mean values of the reference

points in each dimension; (2) the variance of reference points in each dimension.

Müller et al. [83] proposed the OUTRES approach. OUTRES aims to assess the
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contribution of some selected subspaces where an object deviates from its neighborhood

(modeled as the closest cluster). The selected subspaces are chosen to provide a large

contrast between the object and its immediate neighborhood (modeled as a set of objects

within a specified radius. The chosen radius is subspace dependent). For a chosen object,

OUTRES computes an aggregate outlier score that incorporates only the contribution of

subspaces where the object has significantly low density (more than two standard deviations

from the mean). The challenge of calibrating density measures in different subspaces is

tackled by using an adaptive neighborhood which grows according to the number of features

in the subspace.

The effectiveness of techniques in subspace outlier detection depend on both the quality

of the selected subspaces and the fitness of the adopted outlyingness measurements.

2.3 Related Work to the Proposed Problems

In this section, we review the related work for each of the proposed problems, and briefly

point out their relationships to our studies and the significant differences.

2.3.1 Mining Outlying Subspaces

The mining outlying subspaces problem is mainly related to the existing work on outlying

property detection and subspace outlier detection. In this section, we review the previous

studies and show the signicant differences.

Outlying Property Detection

Given a data set, outlying property detection problem discovers the properties, which

distinguish an outlier from the normal data objects in the data set. To the best of our

knowledge, [7, 8, 80] are the only studies on finding explanation of outlying aspects, and

are most relevant to our problem of mining outlying subspaces.

Given a multidimensional categorical database and an outlier, Angiulli et al. [7] found

the top-k subsets of attributes (i.e., subspaces) from which the outlier receives the highest

outlyingness scores. The outlyingness score for a given object in a subspace is calculated

based on the frequency of the value that the outlier takes in the subspace. It tries to find

subspaces E and S such that the outlier is frequent in one and much less frequent than
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expected in the other. Searching all such rules is computationally costly. To reduce the

cost within a manageable scope, the method takes two parameters, σ and θ, to constrain

the frequencies of the given object in subspaces E and S, respectively. Therefore, if a

query object is not outlying compared to the other objects, no outlying properties may be

detected. Angiulli et al. [8] provide a version of numeric data for this problem.

Micenková et al. [80] proposed a method to find a subspace as possible explanations for

a detected outlier. Particularly, given a data set and an outlier, this method sampled a

subset of the original data based on the outlier for classification. Subset feature selection

methods were used to select candidate explanation subspaces. Classification accuracy was

used to measure the outlierness of a data object. A candidate subspace where the outlier

has the highest outlierness score will be selected as the explanation subspace.

How is our work different? There are several essential differences between [7, 8] and

this study. First, the problems in [7, 8] find contextual rule based explanations, while our

method returns individual subspaces where the query object is mostly outlying comparing

to the other subspaces. The meaning of the two types of explanation is fundamentally

different. Second, Angiulli et al. [7] focuses on categorical data, and our method targets

on numeric data. Although [8] considers numeric data, its mining target is substantially

different from this work. Specifically, given a set of objects O in a multi-dimensional space

D and a query object q ∈ O, [8] finds the pairs (E, d) satisfying E ⊆ D and d ∈ D\E, such

that there exists a subset O′ ⊆ O, including q, in which objects are similar on E (referred to

as explanation), while q is essentially different from the other objects in O′ on d (referred to

as property). Besides one-dimensional attributes, our method can find outlying subspaces

with arbitrary dimensionality.

Micenková et al. [80] is also very different from our study. First, they require a detected

outlier to be the input query; while we do not. Second, their method only finds one subspace;

while our method finds top-k subspaces. Third, they use the classification accuracy to

measure the outlierness; while we use density rank as outlierness measure.

Subspace Outlier Detection

Subspace outlier detection aims to detect data objects, which are drastically deviating from

the majority in some subspaces. Detailed literature review can be found in Section 2.2.

How is our work different? The problem settings of outlying subspaces mining and

subspace outlier detection are different. In outlying subspaces mining, we focus on the
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following question. Given a query object o in a multidimensional numeric data set O, in

which subspace is o most outlying? Note that the query itself may or may not be an outlier.

Recently, some subspaces outlier detection studies attempt to use the selected subspaces

as explanations to demonstrate the outlying properties of outliers. The explanations may

be a byproduct of outlier detection. For example, Böhm et al. [17] and Keller et al. [65]

proposed statistical approaches CMI and HiCS to select subspaces for a multidimensional

database, where there may exist outliers with high deviations. Both CMI and HiCS are

fundamentally different from our method. They choose highly contrasting subspaces for

all possible outliers in a data set, while our method chooses subspaces based on the query

object. Kriegel et al. [67] introduced SOD, a method to detect outliers in axis-parallel

subspaces. There are two major differences between SOD and our work. First, SOD is still

an outlier detection method, and the hyperplane is a byproduct of the detection process. Our

method does not detect outliers at all. Second, the models to identify the outlying subspaces

in the two methods are very different. When calculating the outlyingness score, SOD only

considers the nearest neighbors as references in the full space. Our method considers all

objects in the database and their relationship with the query object in subspaces.

Other Data Mining Techniques

To some extent, outlyingness is related to uniqueness and uniqueness mining. Paravastu et

al. [90] discovered the feature-value combinations that make a particular record unique.

Their task formulation is reminiscent of infrequent itemset mining, and uses a level-wise

Apriori enumeration strategy [3]. It needs a discretization step. Our method is native for

continuous data.

Our method uses probability density to measure outlying degree in a subspace. There

are a few density-based outlier detection methods, such as [20, 69, 55, 2]. Our method is

inherently different from those, since we do not find outlier objects at all.

2.3.2 Mining Contrast Subspaces

The problem of mining contrast subspaces is related to the existing work on contrast mining,

subspace outlier detection and typicality queries. We briefly review previous works and show

the difference in the following.
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Contrast mining

Contrast mining discovers patterns and models that manifest drastic differences between

datasets. Dong and Bailey [35] presented a comprehensive review of contrast mining,

together with a range of real-life applications. Some of the best known types of contrast

patterns include emerging patterns [36], contrast sets [13] and subgroups [119]. Although

their definitions vary, the mining methods share many similarities [86].

How is our work different? Contrast pattern mining identifies patterns by considering

all objects of all classes in the complete pattern space. Orthogonally, contrast subspace

mining focuses on one object, and identifies subspaces where a query object demonstrates

the strongest overall similarity to one class against the other. These two mining problems

are fundamentally different. To the best of our knowledge, the contrast subspace mining

problem has not been systematically explored in the data mining literature. Though Chen

and Dong [25] presented a contrast-pattern length based algorithm to detection global

outliers, their problem setting is different from ours.

Subspace Outlier Detection

As reviewed in Section 2.2, subspace outlier detection discovers objects that significantly

deviate from the majority in some subspaces.

How is our work different? In contrast subspace mining, the query object may or may

not be an outlier. We are trying to find the top-k subspaces, in which a query object is the

most typical in the current class and is very unlikely to occur in other classes.

Some recent studies find subspaces that may contain substantial outliers. Keller et

al. [65] and Böhm et al. [17] proposed statistical approaches HiCS and CMI to select

subspaces for a multidimensional database, where there may exist outliers with high

deviations. Both HiCS and CMI differ from our method. Technically, they choose subspaces

for all outliers in a given database, while our method chooses the most contrasting subspaces

for a query object. In HiCS and CMI, contrast refers to the differences between the as-

sumptions on whether the subspaces are mutually independent or not. In our work, contrast

is defined as the differences of the likelihoods that a query belongs to the given class or not.
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Typicality Queries

Given a data set and a query object, typicality queries focus on the problem of finding the

most typical data objects according to the query. Hua et al. [58] introduced a novel top-k

typicality query, which ranks objects according to their typicality in a data set or a class of

objects. Density estimation based methods are used to calculate the typicality of a query

object with respect to a set of data objects. Cai et al. [21] proposed a method that adopted

concepts from human cognition, to answer the top-k typicality queries. The typicality of

an object with respect to a set of data objects was calculated based on the similarity and

support of the object with respect to the set of data objects.

How is our work different? The problem settings are different. Works in typicality

query [58, 21] aim to find the most typical data objects according to the query object;

in contrast subspace mining, we find the most contrasting subspaces for a query object.

Although both [58] and our work use density estimation methods to calculate the

typicality/likelihood of a query object with respect to a set of data objects, typicality

queries [58] do not consider subspaces.

2.3.3 Mining Contextual Outliers

In this section, we briefly review the previous works on contextual outlier detection, rule-

based outlier detection and some other data mining techniques related to the proposed

contextual outlier detection problem. We show the relationships and differences between

the existing works and the proposed problem.

Contextual Outlier Detection

Given a set of data objects, contextual outlier detection focuses on finding outlier objects

under some specific circumstances. A contextual outlier usually associates with a set of

contextual attributes and a set of behavioral attributes. Contextual attributes define the

context of the outliers; while behavioral attributes are used to determine outliers. For

example, “a temperature of 30◦C in winter in Vancouver” is an outlier. “winter” and

“Vancouver” are the contextual attributes; and “a temperature of 30◦C” is the behavioral

attribute. Contextual outliers are also known as conditional outliers [107].

Song et al. [107] proposed the notion of conditional outliers to model the outliers

manifested by a set of behavioral attributes (e.g. temperature) conditionally depending
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on a set of contextual attributes (e.g. longitude and latitude). The behavioral attributes

and the contextual attributes are pre-defined.

Li et al. [116] introduced a hypergraph-based outlier detection test (HOT ) to identify

outliers and their contexts. Given a dataset and a minimum support threshold, a hypergraph

is built based on the frequent itemsets in the dataset. Particularly, a vertex is a data object;

and a hyperedge denotes a group of objects containing frequent itemsets. A deviation score

has been designed to calculate the outlyingness of a data object in a certain attribute with

respect to a hyperedge. Given a deviation threshold θ, a data object o is an outlier in

attribute A with respect to a hyperedge he, if the deviation score of o in A with respect to

he is lower than θ.

There are a few other contextual outlier detection studies, which detection outliers and

their corresponding contexts from different angles. For example, Valko et al. [111] detected

conditional anomalies using a training set of labeled examples with possible label noise.

And Wang and Davidson [114] used random walks to find context and outliers.

How is our work different? The contextual outlier mining problem proposed in this

thesis is different from the existing studies in problem settings and solutions. For example,

in [107], both the behavioral attributes and the contextual attributes have to be predefined;

in contrast, our method can automatically identify these attributes. Take HOT [116] as

another example. There are two major differences between HOT and our method. First,

the detected outliers are very different. Outliers detected by HOT are single data objects

(vertexes). Outliers detected by our methods are group-by tuples (hyperedges). Second,

outlying attributes are different. An outlying attribute detected by HOT only contains one

attribute; while an outlying subspace detected by our method can have several attributes.

Thus, the problem and the framework proposed by our work are more general than the ones

proposed by HOT.

Rule-based Outlier Detection

Rule-based outlier detection learns rules, which can represent the normal behaviors of a given

data set. A data object is an outlier if it does not follow any of the learned rule. There

are a number of methods [41, 23, 77, 84, 117] using rules in outlier detection. A contextual

outlier (r, o) identified in our method can be written as a pair of rules: cond(r, o)⇒ avs(r)−
cond(r, o) for the reference group, and cond(r, o)⇒ avs(o)−cond(r, o) for the outlier group.

How is our work different? Our method differs from the existing methods in several
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important aspects. First, most of the existing rule-based methods focus on detecting

individual outliers, and may not be able to identify outlier groups and measure the out-

lyingness accordingly. Second, many existing rule-based methods use rules to model only

the normal objects or strong associations. Outliers are individual objects that do not follow

those rules. Those methods do not model and analyze context explicitly. Lastly, many

existing methods, such as [31, 74, 117], set strict constraints on the size of the rules or the

aggregate groups to be considered, such as a very small number of items/attributes allowed

in a rule or only the parents and their sibling groups.

Other Data Mining Techniques

Our study is also related to the previous work on emerging pattern mining ([36] and the

consequent studies) and contrast mining (see [34] and the references there). Conceptually,

mining contextual outliers can be regarded as mining the non-redundant set of emerging

patterns in all possible subspaces and under all possible shared AVSs as the constraints.

Chen and Dong [25] provided an emerging pattern length based outlier detection method,

but it is limited to global outliers. To the best of our knowledge the contextual outlier

detection problem has not been systematically explored in the emerging/contrast pattern

mining area.

More broadly, our study uses related concepts and techniques in data cube

computation [47, 16] and formal concept analysis [44]. However, to the best of our

knowledge, no previous study systematically integrates the techniques to tackle the

contextual outlier detection problem.

2.3.4 Mining Markov Blanket Based Outliers

The problem of mining Markov blanket based outliers is related to the existing work on

subspace outlier detection and Bayesian network based outlier detection. We briefly review

previous works and show the difference in the following

Subspace Outlier Detection

As mentioned before, a brief literature review of subspace outlier detection can be found in

Section 2.2.
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How is our work different? We adopt a novel subspace search approach for the subspace

selection, which can significantly reduce the computational cost in subspace selection.

Most existing subspace outlier detection algorithms have prohibitive computational

costs in subspace selection. For example, some state-of-the-art subspace outlier detection

algorithms, such as OUTRES [83], HiCS [65] and CMI [17], employ an Apriori-style

subspace search scheme. Given a data set with n attributes, an Apriori-style subspace

search scheme has 2n−1 possible candidate subspaces, and thus incurs very expensive com-

putational cost. Recently, Nguyen et al. [85] proposed the 4S algorithm to mitigate the

problem of exponential runtime. Instead of a levelwise subspace search strategy, the 4S

algorithm computes the correlation of each pair of dimensions and transforms the top K

pairs with the largest correlations to an undirected correlation graph. Then, 4S performs a

direct mining of correlated subspaces in the graph. The 4S algorithm still needs to explore

an exponentially large number of candidate subspaces.

We use the concept of Markov blankets in Bayesian networks for the subspace selection.

Particulary, given a data set with n attributes, we find outliers from only n subspaces

selected by a Markov blanket based method, instead of 2n − 1 arbitrary subspaces.

Bayesian Network Based Outlier Detection

Bayesian network based outlier detection usually builds a Bayesian network [93] over a

full feature space first. And then, for a testing data object, it uses the learned Bayesian

network to estimate the posterior probability of being an outlier for the testing data object.

A number of works in outlier detection use this method, such as [10, 22, 118].

For example, Wong et al. [118] proposed a Bayesian network based outlier detection

technique for the disease outbreak detection. Given a database with Emergency Department

(or “ED” for short) records, all attributes are divided into two groups by domain experts,

namely, environmental set and indicator set. Environmental set is a group of attributes,

which can form the trends of disease outbreaks. The rest attributes are put into the

indicator set. The Bayesian network, which is used to represent the baseline distribution,

is conditioned on forming relation only between attributes belonging to environmental set

to attributes in the indicator set. The distribution of the testing data is compared against

the baseline distribution to identify outlying patterns that may cause disease outbreaks.

How is our work different? Our method detects subspace outlier, which is different from

most of the existing works in Bayesian networks outlier detection. Methods in most existing
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Bayesian networks outlier detection search outliers in a single space of given attributes, and

are unable to detect outliers hidden in subspaces.



Chapter 3

Mining Outlying Aspects

When we are investigating an object in a data set, which itself may or may not be an outlier,

can we identify unusual (i.e., outlying) aspects of the object?

In this chapter, we identify the novel problem of mining outlying aspects on numeric

data. Given a query object o in a multidimensional numeric data set O, in which subspace

is o most outlying? Technically, we use the rank of the probability density of an object in

a subspace to measure the outlyingness of the object in the subspace. A minimal subspace

where the query object is ranked the best is an outlying aspect. Computing the outlying

aspects of a query object is far from trivial. A näıve method has to calculate the probability

densities of all objects and rank them in every subspace, which is very costly when the

dimensionality is high. We systematically develop a heuristic method that is capable of

searching data sets with tens of dimensions efficiently. Our empirical study using both real

data and synthetic data demonstrates that our method is effective and efficient.

3.1 Motivation

In many application scenarios, a user may wish to investigate a specific object, in particular,

the aspects where the object is most unusual compared to the rest of the data. In addition to

the application Scenario 1 of the Example 1.1, there are quite a few interesting applications

of outlying aspects mining in practice.

For example, when a commentator mentions an NBA player, the commentator may want

to name the most distinguishing features of the player, though the player may not be top

ranked on those aspects or on any others among all players. Take the technical statistics of

26
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the 220 guards on assist, personal foul and points/game in the NBA Season 2012-2013 as an

example (Figure 3.1), an answer for Joe Johnson may be “the most distinguishing feature of

Joe Johnson is his scoring ability with respect to his performance on personal foul”. Note we

collect the NBA Season 2012-2013 statistics from http://sports.yahoo.com/nba/stats.
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Figure 3.1: Performance of NBA guards on assist, personal foul and points/game in the
2012-2013 Season (the solid circle (•) represents Joe Johnson)

As another example, when evaluating an applicant to a university program, who herself

/himself may not necessarily be outstanding among all applicants, one may want to know

the strength or weakness of the applicant, such as “the student’s strength is the combination

of GPA and volunteer experience, ranking her/him in the top 15% using these combined

http://sports.yahoo.com/nba/stats
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aspects”. Moreover, in an insurance company, a fraud analyst may collect the information

about various aspects of a claim, and wonder in which aspects the claim is most unusual.

Furthermore, in commercial promotion, when designing an effective advertisement, it may

be useful for marketers to know the most distinctive set of features characterizing the

product. Similar examples can easily be found in other analytics applications.

The questions illustrated in the above examples are different from traditional outlier

detection. Specifically, instead of searching for outliers from a data set, here we are given

a query object and want to find the outlying aspects whereby the object is most unusual.

The query object itself may or may not be an outlier in the full space or in any specific

subspaces. In this problem, we are not interested in other individual outliers or inliers.

The outlying aspect finding questions cannot be answered by the existing outlier detection

methods directly.

We emphasize that investigating specific objects is a common practice in anomaly and

fraud detection and analysis. Specifying query objects is an effective way to explicitly

express analysts’ background knowledge about data. Moreover, finding outlying aspects

extends and generalizes the popular exercise of checking a suspect of anomaly or fraud.

Currently, more often than not an analyst has to check the features of an outlying object

one by one to find outlying features, but still cannot identify combinations of features where

the object is unusual.

We address several technical challenges and make solid contributions on several fronts.

First, we identify and formulate the problem of outlying aspect mining on numeric data.

Although [7, 8] recently studied detecting outlying properties of exceptional objects, their

methods find contextual rule based explanations. We discuss the differences between our

model and theirs in detail in Section 2.3.1 in Chapter 2. As illustrated, outlying aspect

mining has immediate applications in data analytics practice.

Second, how can we compare the outlyingness of an object in different subspaces? While

comparing the outlyingness of different objects in the same subspace is well studied and

straightforward, comparing outlyingness of the same object in different subspaces is subtle,

since different subspaces may have different scales and distribution characteristics. We

propose a simple yet principled approach. In a subspace, we rank all objects in the ascending

order of probability density. A smaller probability density and thus a better rank indicates

that the query object is more outlying in the subspace. Then, we compare the rank statistics

of the query object in different subspaces, and return the subspaces of the best rank as
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the outlying aspects of the query object. To avoid redundancy, we only report minimal

subspaces. That is, if a query object is ranked the same in subspaces S and S′ such that

S is a proper subspace of S′ (i.e., S ⊂ S′), then S′ is not reported since S is more general.

Our model can be extended to many outlyingness measures other than probability density,

which we leave for future work.

Third, how can we compute the outlying aspects fast, particularly on high dimensional

data sets? A näıve method using the definition of outlying aspects directly has to calculate

the probability densities of all objects and rank them in every subspace. This method

incurs heavy cost when the dimensionality is high. On a data set of 100 dimensions,

2100 − 1 ≈ 1.27 × 1030 subspaces have to be examined, which is unfortunately compu-

tationally prohibitive using the state-of-the-art technology. To tackle the problem, we sys-

tematically develop a heuristic method that is capable of searching data sets with dozens of

dimensions efficiently. Specifically, we develop pruning techniques that can avoid computing

the probability densities of many objects in many subspaces. These effective pruning

techniques enable our method to mine outlying aspects on data sets with tens of dimensions,

as demonstrated later in our experiments.

Last, to evaluate outlying aspect mining, we conduct an extensive empirical study on

both real and synthetic data sets. We illustrate the characteristics of discovered outlying

aspects, and justify the value of outlying aspect mining. Moreover, we examine the ef-

fectiveness of our pruning techniques and the efficiency of our methods.

The rest of the chapter is organized as follows. We formulate the problem of outlying

aspect mining Section 3.2. In Section 3.3, We recall the basics of kernel density estimation,

which is used to estimate the probability density of objects, and present the framework of

our method OAMiner (for Outlying Aspect Miner). In Section 3.4, we discuss the critical

techniques in OAMiner. We report a systematic empirical study in Section 3.5, and conclude

the chapter in Section 3.6.

3.2 Problem Definition

Let D = {D1, . . . , Dd} be a d-dimensional space, where the domain of Di is R, the set of

real numbers. A subspace S ⊆ D (S 6= ∅) is a subset of D. We also call D the full space.

Consider a set O of n objects in space D. For an object o ∈ O, denote by o.Di the value

of o in dimension Di (1 ≤ i ≤ d). For a subspace S = {Di1 , . . . , Dil} ⊆ D, the projection of
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o in S is oS = (o.Di1 , . . . , o.Dil). The dimensionality of S, denoted by |S|, is the number of

dimensions in S.

In a subspace S ⊆ D, we assume that we can define a measure of outlyingness degree

OutDeg(·) such that for each object o ∈ O, OutDeg(o) measures the outlyingness of o.

Without loss of generality, we assume that the lower the outlyingness degree OutDeg(o),

the more outlying the object o.

In this study, we assume the generative model. That is, the set of objects O are generated

(i.e., sampled) from an often unknown probability distribution. Thus, we can use the

probability density of an object o, denoted by f(o), as the outlyingness degree. The smaller

the value of f(o), the more outlying the object o. We discuss how to estimate the probability

densities in Section 3.3.1.

How can we compare the outlyingness of an object in different subspaces? Unfortunately,

we cannot compare the outlyingness degree or probability density values directly, since the

outlyingness degree and the probability density values depend on the properties of specific

subspaces, such as their scales. For example, it is well known that probability density tends

to be low in subspaces of higher dimensionality, since such subspaces often have a larger

“volume” and thus are sparser.

To tackle this issue, we propose to use rank statistics. Specifically, in a subspace S, we

rank all objects in O in their outlyingness degree ascending order. For an object o ∈ O, we

denote by

rankS(o) = |{o′ | o′ ∈ O,OutDeg(o′) < OutDeg(o)}|+ 1 (3.1)

the outlyingness rank of o in subspace S. The smaller the rank value, the more outlying

the object is comparing to the other objects in O in subspace S. We can compare the

outlyingness of an object o in two subspaces S1 and S2 using rankS1(o) and rankS2(o).

Object o is more outlying in the subspace where it has the smaller rank. Apparently, in

Equation 3.1, for objects with the same outlyingness degree (probability density value),

their outlyingness ranks are the same.

Suppose for object o there are two subspaces S and S′ such that S ⊂ S′ and

rankS(o) = rankS′(o). Since S is more general than S′, S is more significant in manifesting

the outlyingness of o at the rank of rankS(o) relative to the other objects in the data set.

Therefore, S′ is redundant given S in terms of outlying aspects. Note that we use rank

statistics instead of the absolute outlyingness degree values to compare the outlyingness of

an object in different subspaces.
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Rank statistics allows us to compare outlyingness in different subspaces, which is an

advantage. At the same time, in high dimensional subspaces where the probability density

values of objects are very small, comparing the ranks may not be reliable, since the subtle

differences in probability density values may be due to noise or sensitivity to parameter

settings in the density estimation. Ranking such objects may be misleading. Moreover,

more often than not, users do not want to see high dimensional subspaces as answers,

since high dimensional subspaces are hard to understand. Thus, we assume a maximum

dimensionality threshold ` > 0, and consider only subspaces whose dimensionality are not

greater than `. Please note that the problem cannot be solved using a minimum density

threshold, since the density values are space and dimensionality sensitive, as explained

before.

Based on the above discussion, we formalize the problem as follows.

Definition 3.1 (Problem definition). Given a set of objects O in a multidimensional space

D, a query object q ∈ O and a maximum dimensionality threshold 0 < ` ≤ |D|, a subspace

S ⊆ D (0 < |S| ≤ `) is called a minimal outlying subspace of q if

1. (Rank minimality) there does not exist another subspace S′ ⊆ D (S′ 6= ∅), such that

rankS′(q) < rankS(q); and

2. (Subspace minimality) there does not exist another subspace S′′ ⊂ S such that

rankS′′(q) = rankS(q).

The problem of outlying aspect mining is to find the minimal outlying subspaces of

q.

Apparently, given a query object q, there exists at least one, and may be more than one

minimal outlying subspace.

3.3 The Framework

In this section, we first review the essentials of kernel density estimation techniques. Then,

we present the framework of our OAMiner method.
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3.3.1 Kernel Density Estimation

We use kernel density estimation [102, 105] to estimate the probability density given a set

of objects O. Given a random sample {o1, o2, . . . , on} drawn from some distribution with

an unknown probability density f in space R, the probability density f at a point o ∈ R
can be estimated by

f̂h(o) =
1

n

n∑
i=1

Kh(o− oi) =
1

nh

n∑
i=1

K

(
o− oi
h

)
where K(·) is a kernel, and h is a smoothing parameter called the bandwidth. A widely

adopted approach to estimate the bandwidth is Silverman’s rule of thumb [105], which

suggests h = 1.06σn−
1
5 , σ being the standard deviation of the sample. To further reduce

the sensitivity to outliers, in this work, we use a better rule of thumb [51] and set

h = 1.06 min{σ, R

1.34
}n−

1
5 (3.2)

where R = X[0.75n] − X[0.25n], and X[0.25n] and X[0.75n], respectively, are the first and the

third quartiles.

For the d-dimensional case (d ≥ 2), o = (o.D1, . . . , o.Dd)
T , and oi = (oi.D1, . . . , oi.Dd)

T

(1 ≤ i ≤ n). Then, the probability density of f at point o ∈ Rd can be estimated by

f̂H(o) =
1

n

n∑
i=1

KH(o− oi)

where H is a bandwidth matrix.

The product kernel, which consists of the product of one-dimensional kernels, is a good

choice for multivariate kernel density estimator in practice [102, 52]. We have

f̂H(o) =
1

n
d∏
j=1

hDj

n∑
i=1


d∏
j=1

K

(
o.Dj − oi.Dj

hDj

) (3.3)

where hDi is the bandwidth of dimension Di (1 ≤ i ≤ d).

Note that the product kernel does not assume that the dimensions are independent.

Otherwise, the density estimation would be

f̂H(o) =

d∏
j=1

(
1

n · hDj

n∑
i=1

K

(
o.Dj − oi.Dj

hDj

))
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In this study, we adopt the Gaussian kernel, which has been popularly used. The

distance between two objects is measured by Euclidean distance. The kernel function is

K

(
o− oi
h

)
=

1√
2π
e−

(o−oi)
2

2h2 (3.4)

Note that other kernel functions and distance functions may be used in our framework.

Plugging Equation 3.4 into Equation 3.3, the density of a query object q ∈ O in subspace

S can be estimated as

f̂S(q) = f̂S(qS) =
1

n(2π)
|S|
2
∏
Di∈S

hDi

∑
o∈O

e
−
∑

Di∈S

(q.Di−o.Di)
2

2h2
Di (3.5)

Since we are interested in only the rank of q, that is, rankS(q), and

c =
1

n(2π)
|S|
2
∏
Di∈S

hDi

(3.6)

is a factor common to every object in subspace S and thus does not affect the ranking at

all, we can rewrite Equation 3.5 as

f̂S(q) ∼ f̃S(q) =
∑
o∈O

e
−
∑

Di∈S

(q.Di−o.Di)
2

2h2
Di (3.7)

where symbol “∼” means equivalence for ranking.

For the sake of clarity, we call f̃S(q) the quasi-density of q in S. Please note that, using

f̃S(q) instead of f̂S(q) not only simplifies the description, but also saves computational cost

for calculating rankS(q). We will illustrate the details in Section 3.4.

We can show an interesting property – invariance of ranking under linear transformation.

Proposition 3.1 (Invariance). Given a set of objects O in space S = {D1, . . . , Dd}, define

a linear transformation g(o) = (a1o.D1+b1, . . . , ado.Dd+bd) for any o ∈ O, where a1, . . . , ad

and b1, . . . , bd are real numbers. Let O′ = {g(o)|o ∈ O} be the transformed data set. For

any objects o1, o2 ∈ O such that f̃S(o1) > f̃S(o2) in O, f̃S(g(o1)) > f̃S(g(o2)) if the product

kernel is used and the bandwidths are set using Härdle’s rule of thumb (Equation 3.2).

Proof. For any dimension Di ∈ S (1 ≤ i ≤ d), the mean value of {o.Di | o ∈ O},
denoted by µi, is 1

|O|
∑
o∈O

o.Di, the standard deviation of {o.Di | o ∈ O}, denoted by σi,
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is
√

1
|O|
∑
o∈O

(o.Di − µi)2, and the bandwidth of Di (hi) is 1.06 min{σi, R
1.34}|O|

− 1
5 , where R

is the difference between the first and the third quartiles of O in Di.

We perform the linear transformation g(o).Di = aio.Di + bi for any o ∈ O. Then, the

mean value of {g(o).Di | o ∈ O} is 1
|O|
∑
o∈O

(aio.Di+bi) = aiµi+bi, and the standard deviation

of {g(o).Di | o ∈ O} is
√

1
|O|
∑
o∈O

(aio.Di + bi − aiµi − bi)2 = ai

√
1
|O|
∑
o∈O

(o.Di − µi)2 = aiσi.

Correspondingly, the bandwidth of Di is 1.06 min{aiσi, aiR1.34}|O|
− 1

5 after the linear trans-

formation. As the distance between two objects inDi is also enlarged by ai, the quasi-density

calculated by Equation 3.7 keeps unchanged. Thus, the ranking is invariant under linear

transformation.

Using quasi-density estimation (Equation 3.7), we can have a baseline algorithm for

computing the outlyingness rank in a subspace S, as shown in Algorithm 3.1. The baseline

method estimates the quasi-density of each object in a data set, and ranks them. Let the

total number of objects be n. In order to compute the quasi-density of every data object,

the baseline method essentially has to compute the distance between every pair of objects

in every dimension of S. Therefore, the time complexity is O(n2|S|) in each subspace S.

Algorithm 3.1 rankS(q) – baseline

Input: a set of objects O, query object q ∈ O, and subspace S
Output: rankS(q)
1: for each object o ∈ O do
2: compute f̃S(o) using Equation 3.7
3: end for
4: return rankS(q) = |{o | o ∈ O, f̃S(o) < f̃S(q)}|+ 1

3.3.2 The Framework of OAMiner

To reduce the computational cost, we present Algorithm 3.2, the framework of our method

OAMiner (for Outlying Aspect Miner).

First of all, OAMiner removes the dimensions where all values of objects are identical,

since no object is outlying in such dimensions. As a result, the standard deviations of all

dimensions involved for outlying aspect mining are greater than 0.

In order to ensure that OAMiner can find the most outlying subspaces, we have to

enumerate all possible subspaces in a systematic way. Here, we adopt the set enumeration
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Algorithm 3.2 The framework of OAMiner

Input: a set of objects O and query object q ∈ O
Output: the set of minimal outlying subspaces for q
1: initialize rbest ← |O| and Ans← ∅;
2: remove Di from D if the values of all objects in Di are identical;
3: compute rankDi(q) in each dimension Di ∈ D;
4: sort all dimensions in rankDi(q) ascending order;
5: for each subspace S searched by traversing the set enumeration tree in a depth-first

manner do
6: compute rankS(q);
7: if rankS(q) < rbest then
8: rbest ← rankS(q), Ans← {S};
9: end if

10: if rankS(q) = rbest and S is minimal then
11: Ans← Ans ∪ {S};
12: end if
13: if a subspace pruning condition is true then
14: prune all super-spaces of S
15: end if
16: end for
17: return Ans

tree approach [99], which has been popularly used in many data mining methods. Con-

ceptually, a set enumeration tree takes a total order on the set, the dimensions in the

context of our problem, and then enumerates all possible combinations systematically. For

example, Figure 3.2 shows a set enumeration tree that enumerates all subspaces of space

D = {D1, D2, D3, D4}.

{ }

{D1} {D2} {D3} {D4}

{D1, D2} {D1, D3} {D1, D4}

{D1, D2, D3}

{D1, D2, D3, D4}

{D1, D2, D4}

{D2, D3} {D2, D4} {D3, D4}

{D1, D3, D4} {D2, D3, D4}

Figure 3.2: A set enumeration tree.
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OAMiner searches subspaces by traversing the subspace enumeration tree in a depth-

first manner. Given a set of objects O, a query object q ∈ O, and a subspace S, if rankS(q) =

1, then every super-space of S cannot be a minimal outlying subspace and thus can be

pruned.

Pruning Rule 3.1. If rankS(q) = 1, according to the dimensionality minimality condition

in the problem definition (Definition 3.1), all super-spaces of S can be pruned.

In the case of rankS(q) > 1, OAMiner prunes subspaces according to the current best

rank of q in the search process. More details will be discussed in Section 3.4.3.

Heuristically, we want to find subspaces early where the query object q has a low rank, so

that the pruning techniques take better effect. Motivated by this observation, we compute

the outlyingness rank of q in each dimension Di, and order all dimensions in the ascending

order of rankDi(q).

In general, the outlyingness rank does not have any monotonicity with respect to

subspaces. That is, for subspaces S1 ⊂ S2, neither rankS1(q) ≤ rankS2(q) nor rankS1(q) ≥
rankS2(q) holds in general. Example 3.1 illustrates this situation with a toy data set.

Example 3.1. Given a set of objects O = {o1, o2, o3, o4} with 2 numeric attributes D1

and D2. The values of each object in O are listed in Table 3.1. Using Equation 3.7, we

estimate the quasi-density values of each object on different subspaces (Table 3.2). We can

see that f̃{D1}(o2) > f̃{D1}(o4) and f̃{D2}(o2) > f̃{D2}(o4), which indicate rank{D1}(o2) >

rank{D1}(o4) and rank{D2}(o2) > rank{D2}(o4). However, for subspace {D1, D2}, since

f̃{D1,D2}(o2) < f̃{D1,D2}(o4), rank{D1,D2}(o2) < rank{D1,D2}(o4).

object oi.D1 oi.D2

o1 14.23 1.5
o2 13.2 1.78
o3 13.16 2.31
o4 14.37 1.97

Table 3.1: A numeric data set example
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object f̃{D1}(oi) f̃{D2}(oi) f̃{D1,D2}(oi)

o1 2.229 1.832 1.305
o2 2.220 2.529 1.300
o3 2.187 1.626 1.185
o4 2.113 2.474 1.314

Table 3.2: Quasi-density values of objects in Table 3.1

To make the situation even more challenging, probability density itself does not have any

monotonicity with respect to subspaces. Given a query object q, and subspaces S1 ⊂ S2.

According to Equation 3.5, we have

f̂S1(q)

f̂S2(q)
=

∑
o∈O

e
−

∑
Di∈S1

(q.Di−o.Di)
2

2h2
Di

n(2π)
|S1|
2

∏
Di∈S1

hDi

/

∑
o∈O

e
−

∑
Di∈S2

(q.Di−o.Di)
2

2h2
Di

n(2π)
|S2|
2

∏
Di∈S2

hDi

= (2π)
|S2|−|S1|

2

∏
Di∈S2\S1

hDi

∑
o∈O

e
−

∑
Di∈S1

(q.Di−o.Di)
2

2h2
Di

∑
o∈O

e
−

∑
Di∈S2

(q.Di−o.Di)2

2h2
Di

Since S1 ⊂ S2,
∑
o∈O

e
−

∑
Di∈S1

(q.Di−o.Di)
2

2h2
Di /

∑
o∈O

e
−

∑
Di∈S2

(q.Di−o.Di)
2

2h2
Di ≥ 1 and (2π)

|S2|−|S1|
2 > 1.

However, in the case
∏

Di∈S2\S1

hDi < 1, there is no guarantee that
f̂S1 (q)

f̂S2 (q)
> 1 always holds.

Thus, neither f̂S1(q) ≤ f̂S2(q) nor f̂S1(q) ≥ f̂S2(q) holds in general.

3.4 Critical Techniques in OAMiner

In this section, we present a bounding-pruning-refining algorithm to efficiently compute the

outlyingness rank of an object in a subspace, and discuss the critical techniques to prune

subspaces.

Table 3.3 lists the frequently used notations in this Chapter.
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Notation Description

D a d-dimensional space

O a set of objects in space D

hDi the bandwidth of dimension Di

rankS(o) outlyingness rank of object o in subspace S

f̃S(o) quasi-density of object o in subspace S estimated by Equation 4.3

f̃O
′

S (o) the sum of quasi-density contributions of objects in set O′ to object o in subspace S

TN ε,o
S ε-tight neighborhood of object o in subspace S

LN ε,o
S ε-loose neighborhood of object o in subspace S

dcS(o, o′) the quasi-density contribution of object o′ to object o in subspace S

CompS(o) a set of objects where OAMiner can determine that their densities are less than the

density of o in subspace S and its super-spaces

Table 3.3: Summary of frequently used notations in Chapter 3.

3.4.1 Bounding Probability Density

In order to obtain the rank statistics about outlyingness, OAMiner has to compare the

density of the query object with the densities of other objects. To speed up density

estimation of objects, we observe that the contributions from remote objects to the density

of an object are very small, and the density of an object can be bounded. Technically, we can

derive upper and lower bounds of the probability density of an object using a neighborhood.

Again, we denote by f̃S(o) the quasi-density of object o in subspace S.

For the sake of clarity, we introduce two notations at first. Given objects o, o′ ∈ O, a

subspace S, and a subset O′ ⊆ O, we denote by dcS(o, o′) the quasi-density contribution of

o′ to o in S, and f̃O
′

S (o) the sum of quasi-density contributions of objects in O′ to o. That

is,

dcS(o, o′) = e
−
∑

Di∈S

(o.Di−o
′.Di)

2

2h2
Di

f̃O
′

S (o) =
∑
o′∈O′

e
−
∑

Di∈S

(o.Di−o
′.Di)

2

2h2
Di

To efficiently estimate the bounds of f̃S(o), we define two kinds of neighborhoods. For

an object o ∈ O, a subspace S, and {εDi | εDi > 0, Di ∈ S}, the ε-tight neighborhood of o in

S, denoted by TN ε,o
S , is {o′ ∈ O | ∀Di ∈ S, |o.Di − o′.Di| ≤ εDi}, the ε-loose neighborhood

of o in S, denoted by LN ε,o
S , is {o′ ∈ O | ∃Di ∈ S, |o.Di − o′.Di| ≤ εDi}. An object is called
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as an ε-tight (loose) neighbor if it is in the ε-tight (loose) neighborhood. We will illustrate

how to efficiently compute TN ε,o
S and LN ε,o

S in Section 3.4.2.

According to the definitions of TN ε,o
S and LN ε,o

S , we obtain the following properties.

Property 3.1. TN ε,o
S ⊆ LN

ε,o
S .

Property 3.2. TN ε,o
S = LN ε,o

S if |S| = 1.

Based on TN ε,o
S and LN ε,o

S , O can be divided into three disjoint subsets: TN ε,o
S , LN ε,o

S \
TN ε,o

S and O \LN ε,o
S . For any object o′ ∈ O, we obtain a lower bound and an upper bound

of dcS(o, o′) as follows.

Theorem 3.2 (Single quasi-density contribution bounds). Given an object o ∈ O, a

subspace S, and a set {εDi | εDi > 0, Di ∈ S}. Then, for any object o′ ∈ TN ε,o
S ,

dcεS ≤ dcS(o, o′) ≤ dcmaxS (o)

for any object o′ ∈ LN ε,o
S \ TN

ε,o
S ,

dcminS (o) ≤ dcS(o, o′) ≤ dcmaxS (o)

for any object o′ ∈ O \ LN ε,o
S ,

dcminS (o) ≤ dcS(o, o′) < dcεS

where

dcεS = e
−
∑

Di∈S

ε2Di
2h2
Di

dcmaxS (o) = e
−
∑

Di∈S

min
o′∈O

{|o.Di−o
′.Di|}

2

2h2
Di

dcminS (o) = e
−
∑

Di∈S

max
o′∈O

{|o.Di−o
′.Di|}

2

2h2
Di

Proof. (i) Given an object o′ ∈ TN ε,o
S , for any dimension Di ∈ S, min

o′′∈O
{|o.Di − o′′.Di|} ≤

|o.Di − o′.Di| ≤ εDi . Thus,

e
−
∑

Di∈S

ε2Di
2h2
Di ≤ e

−
∑

Di∈S

|o.Di−o
′.Di|

2

2h2
Di ≤ e

−
∑

Di∈S

min
o′′∈O

{|o.Di−o
′′.Di|}

2

2h2
Di .

That is, dcεS ≤ dcS(o, o′) ≤ dcmaxS (o).
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(ii) Given an object o′ ∈ LN ε,o
S \TN

ε,o
S , for any dimension Di ∈ S, min

o′′∈O
{|o.Di−o′′.Di|} ≤

|o.Di − o′.Di| ≤ max
o′′∈O
{|o.Di − o′′.Di|}. Thus,

e
−
∑

Di∈S

max
o′′∈O

{|o.Di−o
′′.Di|}

2

2h2
Di ≤ e

−
∑

Di∈S

|o.Di−o
′.Di|

2

2h2
Di ≤ e

−
∑

Di∈S

min
o′′∈O

{|o.Di−o
′′.Di|}

2

2h2
Di .

That is, dcminS (o) ≤ dcS(o, o′) ≤ dcmaxS (o).

(iii) Given an object o′ ∈ O \ LN ε,o
S , for any dimension Di ∈ S, εDi < |o.Di − o′.Di| ≤

max
o′′∈O
{|o.Di − o′′.Di|}. Thus,

e
−
∑

Di∈S

max
o′′∈O

{|o.Di−o
′′.Di|}

2

2h2
Di ≤ e

−
∑

Di∈S

|o.Di−o
′.Di|

2

2h2
Di < e

−
∑

Di∈S

ε2Di
2h2
Di .

That is, dcminS (o) ≤ dcS(o, o′) < dcεS .

Using the size of TN ε,o
S and LN ε,o

S , we obtain a lower bound and an upper bound of

f̃S(o) as follows.

Corollary 3.1 (Bounds by neighborhood size). For any object o ∈ O,

|TN ε,o
S | dc

ε
S + (|O| − |TN ε,o

S |) dc
min
S (o) ≤ f̃S(o)

f̃S(o) ≤ |LN ε,o
S | dc

max
S (o) + (|O| − |LN ε,o

S |) dc
ε
S

Proof. We divide O into three disjoint subsets TN ε,o
S , LN ε,o

S \ TN
ε,o
S and O \ LN ε,o

S . By

Theorem 3.2, for objects belonging to TN ε,o
S , we have

|TN ε,o
S | dc

ε
S ≤

∑
o′∈TNε,o

S

dcS(o, o′) ≤ |TN ε,o
S | dc

max
S (o)

For objects belonging to LN ε,o
S \ TN

ε,o
S , we have

(|LN ε,o
S | − |TN

ε,o
S |) dc

min
S (o) ≤

∑
o′∈LNε,o

S \TN
ε,o
S

dcS(o, o′) ≤ (|LN ε,o
S | − |TN

ε,o
S |) dc

max
S (o)

For objects belonging to O \ LN ε,o
S , we have

(|O| − |LN ε,o
S |) dc

min
S (o) ≤

∑
o′∈O\LNε,o

S

dcS(o, o′) < (|O| − |LN ε,o
S |) dc

ε
S
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As

f̃S(o) =
∑
o′∈O

dcS(o, o′) =
∑

o′∈TNε,o
S

dcS(o, o′) +
∑

o′∈LNε,o
S \TN

ε,o
S

dcS(o, o′) +
∑

o′∈O\LNε,o
S

dcS(o, o′),

Thus,

f̃S(o) ≥ |TN ε,o
S | dc

ε
S + (|LN ε,o

S | − |TN
ε,o
S |) dc

min
S (o) + (|O| − |LN ε,o

S |) dc
min
S (o)

= |TN ε,o
S | dc

ε
S + (|O| − |TN ε,o

S |) dc
min
S (o)

f̃S(o) ≤ |TN ε,o
S | dc

max
S (o) + (|LN ε,o

S | − |TN
ε,o
S |) dc

max
S (o) + (|O| − |LN ε,o

S |) dc
ε
S

= |LN ε,o
S | dc

max
S (o) + (|O| − |LN ε,o

S |) dc
ε
S

Moreover, if LN ε,o
S ⊂ O, i.e. O \ LN ε,o

S 6= ∅, then

f̃S(o) < |LN ε,o
S | dc

max
S (o) + (|O| − |LN ε,o

S |) dc
ε
S

Corollary 3.1 allows us to compute the quasi-density bounds of an object without

computing the quasi-density contributions of other objects to it.

Moreover, by Theorem 3.2, we can obtain following corollaries.

Corollary 3.2 (Bounds by ε-tight neighbors). For any object o ∈ O and O′ ⊆ TN ε,o
S ,

f̃O
′

S (o) + (|TN ε,o
S | − |O

′|) dcεS + (|O| − |TN ε,o
S |) dc

min
S (o) ≤ f̃S(o)

f̃S(o) ≤ f̃O′S (o) + (|LN ε,o
S | − |O

′|) dcmaxS (o) + (|O| − |LN ε,o
S |) dc

ε
S

Proof. Since O′ ⊆ TN ε,o
S , for objects belonging to O \ O′, we divide them into TN ε,o

S \ O′,
LN ε,o

S \ TN
ε,o
S and O \ LN ε,o

S . Then

f̃S(o) = f̃O
′

S (o) +
∑

o′∈TNε,o
S \O′

dcS(o, o′) +
∑

o′∈LNε,o
S \TN

ε,o
S

dcS(o, o′) +
∑

o′∈O\LNε,o
S

dcS(o, o′),

By Theorem 3.2, for objects belonging to TN ε,o
S \O′, we have

(|TN ε,o
S | − |O

′|) dcεS ≤
∑

o′∈TNε,o
S \O′

dcS(o, o′) ≤ (|TN ε,o
S | − |O

′|) dcmaxS (o)
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For objects belonging to LN ε,o
S \ TN

ε,o
S , we have

(|LN ε,o
S | − |TN

ε,o
S |) dc

min
S (o) ≤

∑
o′∈LNε,o

S \TN
ε,o
S

dcS(o, o′) ≤ (|LN ε,o
S | − |TN

ε,o
S |) dc

max
S (o)

For objects belonging to O \ LN ε,o
S , we have

(|O| − |LN ε,o
S |) dc

min
S (o) ≤

∑
o′∈O\LNε,o

S

dcS(o, o′) < (|O| − |LN ε,o
S |) dc

ε
S

Thus,

f̃S(o) ≥ f̃O
′

S (o) + (|TN ε,o
S | − |O

′|) dcεS + (|LN ε,o
S | − |TN

ε,o
S |) dc

min
S (o) + (|O| − |LN ε,o

S |) dc
min
S (o)

= f̃O
′

S (o) + (|TN ε,o
S | − |O

′|) dcεS + (|O| − |TN ε,o
S |) dc

min
S (o)

f̃S(o) ≤ f̃O
′

S (o) + (|TN ε,o
S | − |O

′|) dcmaxS (o) + (|LN ε,o
S | − |TN

ε,o
S |) dc

max
S (o) + (|O| − |LN ε,o

S |) dc
ε
S

= f̃O
′

S (o) + (|LN ε,o
S | − |O

′|) dcmaxS (o) + (|O| − |LN ε,o
S |) dc

ε
S

Moreover, if LN ε,o
S ⊂ O, i.e. O \ LN ε,o

S 6= ∅, then

f̃S(o) < f̃O
′

S (o) + (|LN ε,o
S | − |O

′|) dcmaxS (o) + (|O| − |LN ε,o
S |) dc

ε
S

Corollary 3.3 (Bounds by ε-loose neighbors). For any object o ∈ O and TN ε,o
S ⊂ O′ ⊆

LN ε,o
S ,

f̃O
′

S (o) + (|O| − |O′|) dcminS (o) ≤ f̃S(o)

f̃S(o) < f̃O
′

S (o) + (|LN ε,o
S | − |O

′|) dcmaxS (o) + (|O| − |LN ε,o
S |) dc

ε
S

Proof. Since TN ε,o
S ⊂ O′ ⊆ LN ε,o

S , for objects belonging to O \ O′, we divide them into

LN ε,o
S \O′ and O \ LN ε,o

S . Then

f̃S(o) = f̃O
′

S (o) +
∑

o′∈LNε,o
S \O′

dcS(o, o′) +
∑

o′∈O\LNε,o
S

dcS(o, o′),

By Theorem 3.2, for objects belonging to LN ε,o
S \O′, we have

(|LN ε,o
S | − |O

′|) dcminS (o) ≤
∑

o′∈LNε,o
S \TN

ε,o
S

dcS(o, o′) ≤ (|LN ε,o
S | − |O

′|) dcmaxS (o)
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For objects belonging to O \ LN ε,o
S , we have

(|O| − |LN ε,o
S |) dc

min
S (o) ≤

∑
o′∈O\LNε,o

S

dcS(o, o′) < (|O| − |LN ε,o
S |) dc

ε
S

Thus,

f̃S(o) ≥ f̃O
′

S (o) + (|LN ε,o
S | − |O

′|) dcminS (o) + (|O| − |LN ε,o
S |) dc

min
S (o)

= f̃O
′

S (o) + (|O| − |O′|) dcminS (o)

f̃S(o) ≤ f̃O
′

S (o) + (|LN ε,o
S | − |O

′|) dcmaxS (o) + (|O| − |LN ε,o
S |) dc

ε
S

Moreover, if LN ε,o
S ⊂ O, i.e. O \ LN ε,o

S 6= ∅, then

f̃S(o) < f̃O
′

S (o) + (|LN ε,o
S | − |O

′|) dcmaxS (o) + (|O| − |LN ε,o
S |) dc

ε
S

Corollary 3.4 (Bounds by a supper set of ε-loose neighbors). For any object o ∈ O and

LN ε,o
S ⊂ O′ ⊆ O,

f̃O
′

S (o) + (|O| − |O′|) dcminS (o) ≤ f̃S(o)

f̃S(o) ≤ f̃O′S (o) + (|O| − |O′|) dcεS

Proof. Since LN ε,o
S ⊂ O′ ⊆ O, Then

f̃S(o) = f̃O
′

S (o) +
∑

o′∈O\O′
dcS(o, o′),

By Theorem 3.2, for objects belonging to O \O′, we have

(|LN ε,o
S | − |O

′|) dcminS (o) ≤
∑

o′∈O\O′
dcS(o, o′) ≤ (|O| − |O′|) dcεS

Thus,

f̃S(o) ≥ f̃O′S (o) + (|O| − |O′|) dcminS (o)

f̃S(o) ≤ f̃O′S (o) + (|O| − |O′|) dcεS
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Since the density of o is the sum of the density contributions of all objects in O, and the

density contribution decreases with the distance, OAMiner first computes the quasi-density

contributions from the objects in TN ε,o
S , then from the objects in LN ε,o

S \ TN
ε,o
S , and last

from the objects in O \ LN ε,o
S .

By computing the bounds of f̃S(o), OAMiner takes a bounding-pruning-refining method,

shown in Algorithm 3.3, to efficiently perform density comparison in subspace S. Initially,

OAMiner estimates the quasi-density of query object q, which is denoted by f̃S(q). Then, for

an object o, OAMiner firstly computes the bounds of f̃S(o) by the sizes of TN ε,o
S and LN ε,o

S

(Corollary 3.1), and compares the bounds with f̃S(q) (Steps 1-8). If f̃S(q) is smaller than the

lower bounds or greater than the upper bound, then we have f̃S(q) < f̃S(o) or f̃S(q) > f̃S(o).

That is, the relationship between f̃S(q) and f̃S(o) is determined. Thus, Algorithm 3.3 stops.

Otherwise, OAMiner updates the lower and upper bounds of f̃S(o) by involving the quasi-

density contributions of objects in TN ε,o
S (Steps 10-20), in LN ε,o

S \TN
ε,o
S (Steps 21-31), and

in O \ LN ε,o
S (Steps 32-42) one by one, and repeatedly compares the updated bounds with

f̃S(q), until the relationship between f̃S(q) and f̃S(o) is fully determined.
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Algorithm 3.3 Density comparison

Input: quasi-density of the query object f̃S(q), object o ∈ O, subspace S, the ε-tight
neighborhood of o TN ε,o

S , and the ε-loose neighborhood of o LN ε,o
S .

Output: a boolean value indicating f̃S(o) < f̃S(q) is true or not.
1: L← the lower bound of f̃S(o) computed by Corollary 3.1; // bounding
2: if L > f̃S(q) then
3: return false; // pruning
4: end if
5: U ← the upper bound of f̃S(o) computed by Corollary 3.1; // bounding
6: if U < f̃S(q) then
7: return true; // pruning
8: end if
9: O′ ← ∅; f̃O′S (o)← 0;

10: for each o′ ∈ TN ε,o
S do

11: f̃O
′

S (o)← f̃O
′

S (o) + dcS(o, o′); O′ ← O′ ∪ {o′}; // refining
12: L← the lower bound of f̃S(o) computed by Corollary 3.2; // bounding
13: if L > f̃S(q) then
14: return false; // pruning
15: end if
16: U ← the upper bound of f̃S(o) computed by Corollary 3.2; // bounding
17: if U < f̃S(q) then
18: return true; // pruning
19: end if
20: end for
21: for each o′ ∈ LN ε,o

S \ TN
ε,o
S do

22: f̃O
′

S (o)← f̃O
′

S (o) + dcS(o, o′); O′ ← O′ ∪ {o′}; // refining
23: L← the lower bound of f̃S(o) computed by Corollary 3.3; // bounding
24: if L > f̃S(q) then
25: return false; // pruning
26: end if
27: U ← the upper bound of f̃S(o) computed by Corollary 3.3; // bounding
28: if U < f̃S(q) then
29: return true; // pruning
30: end if
31: end for
32: for each o′ ∈ O \ LN ε,o

S do

33: f̃O
′

S (o)← f̃O
′

S (o) + dcS(o, o′); O′ ← O′ ∪ {o′}; // refining
34: L← the lower bound of f̃S(o) computed by Corollary 3.4; // bounding
35: if L > f̃S(q) then
36: return false; // pruning
37: end if
38: U ← the upper bound of f̃S(o) computed by Corollary 3.4; // bounding
39: if U < f̃S(q) then
40: return true; // pruning
41: end if
42: end for
43: return false;
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In OAMiner, the neighborhood distance in dimension Di, denoted by εDi , is defined as

ασDi , where σDi is the standard deviation in dimension Di, and α is a parameter. Our

experiments show that α is not sensitive, and can be set in the range of 0.8 ∼ 1.2, by which

OAMiner runs efficiently. It is still an open question about how to set the best neighborhood

distance for bounding — this is a future research problem. Theorem 3.3 guarantees that

no matter how to set the neighborhood distance, the ranking results keep unchanged.

Theorem 3.3. Given an object o ∈ O, and a subspace S, for any neighborhood distances

ε1 and ε2, rankε1S (o) = rankε2S (o), where rankε1S (o) (rankε2S (o)) is the outlyingness rank of

o in S computed using ε1 (ε2).

Proof. We prove by contradiction.

Given a set of objects O, a subspace S, two neighborhood distances ε1 and ε2. Let q ∈ O
be the query object. For an object o ∈ O, denote by Lε1 the lower bound of f̃S(o) estimated

by ε1, Uε2 the upper bound of f̃S(o) estimated by ε2.

Assume that f̃S(q) < Lε1 and f̃S(q) > Uε2 .

As Lε1 is a lower bound of f̃S(o), and Uε2 is an upper bound of f̃S(o), so that Lε1 <

f̃S(o) < Uε2 . Then, we have f̃S(q) < Lε1 < f̃S(o) and f̃S(o) < Uε2 < f̃S(q). Consequently,

f̃S(o) < f̃S(q) < f̃S(o). A contradiction.

Thus, rankε1S (q) = |{o ∈ O | f̃S(o) < f̃S(q)}|+ 1 = rankε2S (q).

3.4.2 Efficiently Estimating Density Bounds

In this subsection, we present strategies in Algorithm 3.3 that efficiently estimate the lower

and upper bounds of quasi-density.

Consider a candidate subspace S ⊆ D, and an object o ∈ O. To estimate lower and

upper bounds of f̃S(o), OAMiner has to compute TN ε,o
S , LN ε,o

S , dcεS , dcminS (o), dcmaxS (o)

and dcS(o, o′) , where o′ ∈ O.

In the case |S| = 1, we compute TN ε,o
S , dcεS , dcminS (o), dcmaxS (o) and dcS(o, o′) based

on their definitions directly. As pointed out in Section 3.4.1, TN ε,o
S = LN ε,o

S in this

case. Moreover, the density contribution is symmetrical, so that the computational cost

for dcS(o′, o) can be saved if dcS(o, o′) is available.

Please recall that OAMiner searches subspaces by traversing the subspace enumeration

tree in a depth-first manner. For a subspace S satisfying |S| ≥ 2, denote by par(S) the
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parent subspace of S. Suppose S \ par(S) = D′ (|D′| = 1). Then, we have

TN ε,o
S = TN ε,o

par(S) ∩ TN
ε,o
D′ (3.8)

LN ε,o
S = LN ε,o

par(S) ∪ LN
ε,o
D′ (3.9)

dcεS = e
−
∑

Di∈S

ε2Di
2h2
Di = e

−(
∑

Di∈par(S)

ε2Di
2h2
Di

+
ε2
D′

2h2
D′

)

= dcεpar(S) · dc
ε
D′ (3.10)

dcminS (o) = e
−(

∑
Di∈par(S)

max
o′∈O

{|o.Di−o
′.Di|}

2

2h2
Di

+
max
o′∈O

{|o.D′−o′.D′|}2

2h2
D′

)

= dcminS\par(S)(o) · dc
min
D′ (o) (3.11)

dcmaxS (o) = e
−(

∑
Di∈par(S)

min
o′∈O

{|o.Di−o
′.Di|}

2

2h2
Di

+
min
o′∈O

{|o.D′−o′.D′|}2

2h2
D′

)

= dcmaxS\par(S)(o) · dc
max
D′ (o) (3.12)

dcS(o, o′) = e
−
∑

Di∈S

(o.Di−o
′.Di)

2

2h2
Di = e

−(
∑

Di∈par(S)

(o.Di−o
′.Di)

2

2h2
Di

+
(o.D′−o′.D′)2

2h2
D′

)

= dcpar(S)(o, o
′) · dcD′(o, o′) (3.13)

Thus, it is efficient for OAMiner to estimate the bounds of f̃S(o) using par(S) and

S \ par(s).

3.4.3 Subspace Pruning

Recall that OAMiner searches subspaces by traversing the subspace enumeration tree in a

depth-first manner. During the search process, let S1 be the set of subspaces that OAMiner

has searched, and S2 the set of subspaces that OAMiner has not searched yet. Clearly,

|S1 ∪ S2| = 2|D| − 1. Given a query object q, let rbest = min
S∈S1
{rankS(q)} be the best rank

that q has achieved so far. We can use rbest to prune some subspaces not searched yet.

Specifically, for a subspace S ∈ S2, once we can determine that rankS(q) > rbest, then S

cannot be an outlying aspect, and thus can be pruned.

Observation 3.1. When subspace S is met in a depth-first search of the subspace set

enumeration tree, let rbest be the best rank of q in all the subspaces searched so far. Given

object q with rankS(q) ≥ 1, if for every proper super-space S′ ⊃ S, rankS′(q) > rbest, then

all proper super-spaces of S can be pruned.

For the case that rankS(q) = 1, all super-spaces of S can be pruned directly due to the
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dimensionality minimality condition in the problem definition (Pruning Rule 3.1). Thus,

we only consider the case rankS(q) > 1 here.

To implement Observation 3.1, in a subspace S where rankS(q) > 1, we check whether

there are at least rbest objects that are ranked better than q in every super-space of S. If so,

all the super-spaces of S can be pruned. Please note that the condition OAMiner checks is

sufficient, but not necessary.

Recall that the common factor c (Equation 3.6) does not affect the outlyingness

rank. For simplicity, OAMiner computes the quasi-density f̃S(o) (Equation 3.7) instead

of probability density f̂S(o) (Equation 3.5) for ranking. Then, we have the following

monotonicity of f̃S(o) with respect to subspaces.

Lemma 3.1. Consider a set of objects O, and two subspaces S and S′ satisfying S′ ⊃ S.

Let Di ∈ S′ \ S. If the standard deviation of O in Di is greater than 0, then for any object

o ∈ O, f̃S(o) > f̃S′(o).

Proof. Consider Di ∈ S′ \ S, for any object o′ ∈ O, we have (o.Di−o′.Di)2
2h2Di

≥ 0. Since the

standard deviation of O in Di is greater than 0, there exists at least one object o′′ ∈ O,

such that (o.Di−o′′.Di)2
2h2Di

> 0, that is, e
− (o.Di−o

′′.Di)
2

2h2
Di < 1. Thus,

f̃S(o) =
∑
o′∈O

e
−
∑

Di∈S

(o.Di−o
′.Di)

2

2h2
Di

>
∑
o′∈O

e
−
( ∑
Di∈S

(o.Di−o
′.Di)

2

2h2
Di

+
∑

Di∈S′\S

(o.Di−o
′.Di)

2

2h2
Di

)
= f̃S′(o)

Recall that OAMiner removes the dimensions with standard deviation 0 in the pre-

processing step (Step 2 in Algorithm 3.2). Thus, the standard deviation of any dimension

Di ∈ S′ \ S is greater than 0.

OAMiner sorts all dimensions in D in the ascending order of rankDi(q) (Di ∈ D),

and traverses the subspace set enumeration tree in the depth-first manner. Denote by R

the ascending order of rankDi(q). For a subspace S = {Di1 , ..., Dim}, listing in R, let

R(S) = {Dj | Dj is behind Dim in R}. By Lemma 3.1, for any subspace S′ such that

S ⊂ S′ ⊆ S ∪ R(S), the minimum quasi-density of q, denoted by f̃minsup(S)(q), is f̃S∪R(S)(q).
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An object o ∈ O is called a competitor of q in S if f̃S(o) < f̃minsup(S)(q). The set of competitors

of q in S is denoted by CompS(q). Clearly, for any o ∈ CompS(q), by Lemma 3.1 we have

f̃S′(o) < f̃S(o) < f̃minsup(S)(q) ≤ f̃S′(q). Thus, rankS′(o) < rankS′(q). Moreover, we have the

following property of CompS(q).

Property 3.3. Given a query object q and a subspace S, for any subspace S′ such that

S ⊂ S′, CompS(q) ⊆ CompS′(q).

Proof. Since S ⊂ S′, by Lemma 3.1, for any o ∈ CompS(q),

f̃S′(o) < f̃S(o) < f̃minsup(S)(q).

Since f̃minsup(S)(q) ≤ f̃
min
sup(S′)(q), we have

f̃S′(o) < f̃S(o) < f̃minsup(S)(q) ≤ f̃
min
sup(S′)(q).

Thus, o ∈ CompS′(q). That is, CompS(q) ⊆ CompS′(q).

Correspondingly, OAMiner performs subspace pruning based on the number of

competitors.

Pruning Rule 3.2. When S is met in a depth-first search of the subspace set enumeration

tree, let rbest be the best rank of q in all the subspaces searched so far. If there are at least

rbest competitors of q in S, i.e., |CompS(q)| ≥ rbest, then all proper super-spaces of S can

be pruned.

Next, we discuss how to compute f̃minsup(S)(q) when the maximum dimensionality threshold

of an outlying aspect, `, is less than |S| + |R(S)|. In this situation, |S| < |S′| ≤ ` <

|S|+ |R(S)|. Clearly, it is unsuitable to use f̃S∪R(S)(q) as f̃minsup(S)(q). Intuitively, we can set

f̃minsup(S)(q) to min{f̃S′(q) | |S′| = `, S ⊂ S′ ⊂ S ∪ R(S)}. However, the computational cost

may be high, since the number of candidates is
(|R(S)|
`−|S|

)
. Alternatively, we suggest a method

to efficiently compute f̃minsup(S)(q), which uses a lower bound of f̃S′(q).

For object o′, the quasi-density contribution of o′ to q in S, denoted by f̃S(q, o′), is

e
−
∑

Di∈S

(q.Di−o
′.Di)

2

2h2
Di . Let R(S, o′) be the set of (`− |S|) dimensions in R(S) with the largest

values of
|q.Dj−o′.Dj |

hDj
(Dj ∈ R(S)). Then, the minimum quasi-density contribution of o′

to q in S′ (S ⊂ S′) is f̃S∪R(S,o′)(q, o
′). Since f̃S′(q) =

∑
o′∈O

f̃S′(q, o
′), we have f̃minsup(S)(q) =∑

o′∈O
f̃S∪R(S,o′)(q, o

′) ≤ f̃S′(q).
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Please note that if we compare f̃minsup(S)(q) with the quasi-density values of all objects in

O, the computational cost for density estimation is considerably high. Especially, when the

size of O is large, for the sake of efficiency, we make a tradeoff between subspace pruning and

object pruning. Specifically, when we are searching a subspace S, we care more about the

relationship between rankS(q) and rbest than the completeness of CompS(q). We terminate

the search of S as long as we can determine rankS(q) > rbest, no matter CompS(q) is

complete or not.

Algorithm 3.4 gives the pseudo-code of computing outlyingness rank and pruning

subspaces in OAMiner. Theorem 3.4 guarantees that Algorithm 3.4 can find all minimal

outlying subspaces.

Algorithm 3.4 rankS(q) – OAMiner

Input: query object q ∈ O, subspace S, the set of competitors of q discovered in the
parent-subspace of S Comp (Comp is empty if |S| = 1), and the best rank of q in the
subspaces searched so far rbest

Output: rankS(q)
1: compute f̃S(q) using Equation 3.7;
2: rankS(q)← |Comp|+ 1;
3: for each object o ∈ O \ Comp do
4: if f̃S(o) < f̃S(q) then
5: rankS(q)← rankS(q) + 1;
6: if f̃S(o) < f̃minsup(S)(q) then

7: Comp← Comp ∪ {o};
8: if |Comp| = rbest then
9: prune super-spaces of S and return; // pruning rule 3.2

10: end if
11: end if
12: if rankS(q) > rbest then
13: return;
14: end if
15: end if
16: end for
17: return rankS(q);

Theorem 3.4 (Completeness of OAMiner). Given a set of objects O in a multi-dimensional

space D, a query object q ∈ O and a maximum dimensionality threshold 0 < ` ≤ |D|,
OAMiner finds all minimal outlying subspaces of q.

Proof. We prove by contradiction.
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Let Ans be the set of minimal outlying subspaces of q found by OAMiner, rbest the

best rank. Assume that subspace S /∈ Ans satisfying S ⊆ D and 0 < |S| ≤ ` is a minimal

outlying subspace of q.

Recall that OAMiner searches subspaces by traversing the subspace enumeration tree

in a depth-first manner. As S /∈ Ans, S is pruned by Pruning Rule 3.1 or Pruning Rule 3.2.

In the case that S is pruned by Pruning Rule 3.1, S is not minimal. A contradiction;

In the case that S is pruned by Pruning Rule 3.2, then there exist a subspace S′, such

that S′ is a parent of S in the subspace enumeration tree and CompS′(q) ≥ rbest. By the

property of competitors, we have CompS′(q) ⊆ CompS(q). Correspondingly, rankS(q) ≥
|CompS(q)| ≥ |CompS′(q)| ≥ rbest. A contradiction.

3.5 Empirical Evaluation

In this section, we report a systematic empirical study using several real data sets and

synthetic data sets to verify the effectiveness and efficiency of our method. All experiments

were conducted on a PC with an Intel Core i7-3770 3.40 GHz CPU and 8 GB main memory,

running the Windows 7 operating system. The algorithms were implemented in Java and

compiled by JDK 7. Since it may likely be too hard for the user to understand the meaning

of subspaces with dimensionality more than 5, we set ` = 5 and α = 1.0 as default in

OAMiner.

3.5.1 Mining Outlying Aspects on Real Data Sets

NBA coaches, sport agents, and commentators may want to know in which aspects a player

is most unusual. Using this application scenario as a case study, we first investigate the

outlying aspects of all NBA guards, forwards and centers in the 2012-2013 Season. We

collect the technical statistics on 20 numerical attributes from http://sports.yahoo.com/

nba/stats. Table 3.4 shows the names of dimensions. The statistics for centers on 3-points

(items 6, 7 and 8) are removed since the statistics for most centers are 0. Besides, we apply

OAMiner to several real world data sets from the UCI repository [11]. In our experiments,

we remove non-numerical attributes and all instances containing missing values. Table 3.5

shows the data characteristics.

For each data set, we take each record as a query object q, and apply OAMiner to

http://sports.yahoo.com/nba/stats
http://sports.yahoo.com/nba/stats
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1: Game played 6: 3-Points (M) 11: Free throw (Pct) 16: Turnover
2: Minutes 7: 3-Points (A) 12: Rebounds (Off) 17: Steal
3: Field goal (M) 8: 3-Points (Pct) 13: Rebounds (Def) 18: Block
4: Field goal (A) 9: Free throw (M) 14: Rebounds (Tot) 19: Personal foul
5: Field goal (Pct) 10: Free throw (A) 15: Assist 20: Points/game

Table 3.4: The 20 technical statistics

Data set # objects # attributes

Guards 220 20
Forwards 160 20
Centers 46 17

Breast cancer 194 33
Climate model 540 18
Concrete slump 103 10

Parkinsons 195 22
Wine 178 13

Table 3.5: Data set characteristics

discover the outlying aspects of q. Figure 3.3 shows the distributions of the best out-

lyingness ranks of objects on the data sets. Surprisingly, the best outlyingness ranks of

most objects are small, that is, most objects are ranked very good in outlyingness in some

subspaces. For example, 90 guards (40.9%), 81 forwards (50.6%) and 32 centers (69.6%)

have an outlyingness rank of 5 or better. Most players have some subspaces where they

are substantially different from the others. The observation justifies the need for outlying

aspect mining.

Figure 3.4 shows the distributions of the number of the minimal outlying subspaces

where the objects achieve the best outlyingness rank on the data sets. For most objects,

the number of outlying aspects is small, which is also surprising. As shown in Figure 3.4(a),

150 (68.2%) objects in Guards have only 1 outlying aspect. This indicates that most objects

can be distinguished from the others using a small number of factors.
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Figure 3.3: Distributions of outlyingness ranks (` = 5)
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Figure 3.4: Distributions of total number of outlying aspects (` = 5)
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Table 3.6 summarizes the mining results of OAMiner on real data sets when ` = 4, 5, 6,

respectively. Not surprisingly, the smallest values of outlyingness rank, number of outlying

aspects, dimensionality are 1. With larger value of `, the average outlyingness rank

decreases, while the average number of outlying aspects and the average dimensionality

increase. In addition, we can see that more outlying aspects with a higher dimensionality

can be found on data sets with more attributes and more instances. For example, the

average number of outlying aspects discovered from Breast cancer is the largest.

Data set `
Outlyingness rank # of outlying aspects Dimensionality

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

Guards
4 1 72 13.94 1 49 2.02 1 4 2.79
5 1 72 13.70 1 111 3.05 1 5 3.68
6 1 72 13.50 1 359 5.67 1 6 4.83

Forwards
4 1 48 8.79 1 40 2.24 1 4 2.77
5 1 47 8.54 1 41 2.37 1 5 3.13
6 1 46 8.43 1 71 2.93 1 6 3.77

Centers
4 1 13 3.70 1 15 3.28 1 4 2.74
5 1 13 3.57 1 15 3.65 1 5 3.08
6 1 13 3.54 1 18 3.61 1 6 3.23

Breast
cancer

4 1 70 8.04 1 232 9.57 1 4 3.47
5 1 62 7.74 1 2478 43.37 1 5 4.67
6 1 56 7.57 1 11681 243.10 1 6 5.77

Climate
model

4 1 33 1.97 1 30 4.57 1 4 3.65
5 1 15 1.45 1 78 10.18 1 5 4.43
6 1 15 1.28 1 149 16.97 1 6 5.07

Concrete
slump

4 1 27 4.67 1 8 1.56 1 4 2.38
5 1 24 4.44 1 8 1.64 1 5 2.59
6 1 24 4.41 1 8 1.65 1 6 2.66

Parkinsons
4 1 74 12.13 1 156 4.20 1 4 3.25
5 1 74 11.51 1 400 7.63 1 5 4.09
6 1 74 11.33 1 889 14.30 1 6 5.01

Wine
4 1 37 7.65 1 26 1.49 1 4 2.66
5 1 37 7.47 1 26 1.59 1 5 2.96
6 1 37 7.46 1 26 1.66 1 6 3.09

Table 3.6: Sensitivity of OAMiner ’s effectiveness w.r.t. parameter `
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3.5.2 Outlying Aspects Discovery on Synthetic Data Sets

[65] provided a collection of synthetic data sets, each consisting 1000 data objects. Each

data set contains some subspace outliers, which deviate from all clusters in at least one 2-5

dimensional subspace. As stated in [65], an object can be an outlier in multiple subspaces

independently. We perform test on the data sets of 10, 20, 30, 40, 50 dimensions, and

denote the data sets by Synth 10D, Synth 20D, Synth 30D, Synth 40D, Synth 50D,

respectively.

For an outlier q in a data set, let S be the ground truth about outlying subspace of

q. Please note that S may not be an outlying aspect of q if there exists another outlier

more outlying than q in S, since OAMiner finds the subspaces whereby the query object is

most outlying. To verify the effectiveness of OAMiner using the known ground truth about

outlying subspaces, in the case of multiple implanted outliers in S, we keep q and remove

the other outliers, and take q as the query object. Since q is the only implanted strong

outlier in subspace S, OAMiner is expected to find the ground truth outlying subspace S

where q takes rank 1 in outlyingness, that is, rankS(q) = 1.

We divide the mining results of OAMiner into the following 3 cases:

• Case 1: only the ground truth outlying subspace is discovered by OAMiner with

outlyingness rank 1.

• Case 2: besides the ground truth outlying subspace, OAMiner finds other outlying

aspects with outlyingness rank 1.

• Case 3: instead of the ground truth outlying subspace, OAMiner finds a subset of the

ground truth as an outlying aspect with outlyingness rank 1.

Table 3.7 lists the mining results on Synth 10D. (Note that the object ids and dimension

ids in Tables 3.7 and 3.8 are consistent with the original data sets in [65].) For all outliers

(query objects), outlying aspects with outlyingness rank 1 are discovered. Moreover, we

can see that for objects 183, 315, 577, 704, 754, 765 and 975, OAMiner finds not only

the ground truth outlying subspace, but also some other outlying subspaces (Case 2). For

object 245, the outlying aspect discovered by OAMiner is a subset of the ground truth

outlying subspace (Case 3). For the other 11 objects, the outlying aspects discovered by

OAMiner are identical with the ground truth outlying subspaces (Case 1).
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Query object
Ground truth

outlying subspace
Outlying aspect with
outlyingness rank 1

Description

172 {8, 9} {8, 9} Case 1
183 {0, 1} {0, 1}, {0, 6, 8} Case 2
184 {6, 7} {6, 7} Case 1
207 {0, 1} {0, 1} Case 1
220 {2, 3, 4, 5} {2, 3, 4, 5} Case 1
245 {2, 3, 4, 5} {2, 5} Case 3
315 {0, 1}, {6, 7} {0, 1}, {6, 7}, {3, 4}, {3, 5, 9}, {4, 6, 9} Case 2
323 {8, 9} {8, 9} Case 1
477 {0, 1} {0, 1} Case 1
510 {0, 1} {0, 1} Case 1
577 {2, 3, 4, 5} {2, 3, 4, 5}, {0, 3, 7} Case 2
654 {2, 3, 4, 5} {2, 3, 4, 5} Case 1
704 {8, 9} {8, 9}, {0, 2, 3, 4} Case 2
723 {2, 3, 4, 5} {2, 3, 4, 5} Case 1
754 {6, 7} {6, 7}, {2, 4, 8}, {2, 6, 8}, {4, 6, 8} Case 2
765 {6, 7} {6, 7}, {1, 4, 6}, {3, 4, 5, 6} Case 2
781 {6, 7} {6, 7} Case 1
824 {8, 9} {8, 9} Case 1
975 {8, 9} {8, 9}, {2, 5, 9}, {5, 6, 8}, {2, 3, 5, 8} Case 2

Table 3.7: Outlying aspects on Synth 10D
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Figure 3.5: Outlying aspects for objects 245 and 315 in Synth 10D
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To further demonstrate the effectiveness of OAMiner, for object 245 in Case 2, we

illustrate the outlying aspect {2, 5} in Figure 3.5(a), and for object 315 in Case 3, we

illustrate the outlying aspect {3, 4} in Figure 3.5(b). Visually, the objects show outlying

characteristics in the corresponding outlying aspects.

Table 3.8 summarizes the mining results of OAMiner on the synthetic data sets of 10,

20, 30, 40, 50 dimensions. As OAMiner finds all subspaces in which the outlyingness rank

of the query object are the minimum, we can see that the number of Case 2 increases with

higher dimensionality. In other words, more outlying aspects can be found on data sets

with more attributes. Please note that this observation is consistent with the experimental

observations in real data sets (Section 3.5.1). In addition, the number of Case 3 increases

a bit, since OAMiner applies the dimensionality minimality condition to outlying aspect

mining.

Data set # of outliers # of Case 1 # of Case 2 # of Case 3

Synth 10D 19 11 7 1

Synth 20D 25 1 23 1

Synth 30D 44 0 40 4

Synth 40D 53 0 52 1

Synth 50D 68 0 65 3

Table 3.8: Statistics on the mining results of OAMiner on synthetic data sets

3.5.3 Outlying Aspects Discovery on NBA Data Sets

As a real case study, we verified the usefulness of outlying aspect mining by analyzing the

outlying aspects of some NBA players.

Please note that “outlying” is different from “outstanding”. A player receives a good

outlyingness rank in a subspace if very few other players are close to him in the subspace,

regardless of whether the performance is “good” or not. Table 3.9 lists 10 guards who have

the largest number of rank-1 outlying aspects, where the dimensions are represented by

their serial numbers in Table 3.4. Note that Table 3.9 only lists the outlying aspects whose

dimensionality are not greater than 3.

In Table 3.9, the first several players are not well-known. Their low outlyingness ranks

arise due to no other players having similar statistics. For example, Quentin Richardson,

who has 18 outlying aspects, just played one game in which he played very well at rebounds,
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Name Outlying aspects (` = 3)

Quentin Richardson {1}, {12}, {14}, {2, 17}, {3, 4}, {3, 13}, {4, 17},
{5, 8}, {5, 11}, {5, 13}, {13, 17}, {13, 20}, {2, 3, 16},
{2, 4, 5}, {2, 5, 6}, {2, 5, 7}, {2, 5, 9}, {4, 5, 7}

Will Conroy {2, 5}, {5, 8}, {5, 11}, {5, 12}, {5, 13}, {5, 14},
{5, 16}, {4, 5, 6}, {4, 5, 9}, {4, 5, 10}, {4, 5, 7},
{4, 5, 19}, {5, 6, 7}, {5, 7, 9}

Brandon Rush {5}, {1, 19}, {2, 19}, {17, 19}
Ricky Rubio {3, 17}, {7, 17}, {16, 17}, {17, 20}
Rajon Rondo {15}, {16}, {1, 17}, {1, 2, 20}

Scott Machado {19}, {2, 16}, {5, 8, 18}
Kobe Bryant {3}, {4}, {20}

Jamal Crawford {19, 20}, {4, 19}, {2, 3, 19}
James Harden {9}, {10}
Stephen Curry {6}, {7}

Table 3.9: The guards having the most rank-1 outlying aspects

but poor at field goal. Will Conroy played four games and his performance on shooting is

poor. Brandon Rush played two games, and his number of personal fouls is large. Ricky

Rubio performs well at stealing. Rajon Rondo’s ability to assist is impressive, but his

statistics for turnover is large. Scott Machado did not make any personal foul in the six

games he played. The last four players in Table 3.9 are famous. Their overall performance

on every aspect is much better than most of the other guards. For example, Kobe Bryant

is a great scorer, Jamal Crawford’s personal fouls are very low, James Harden is excellent

at the free throw, and Stephen Curry leads in 3-points scoring.

Please note that different objects may share some outlying aspects with the same out-

lyingness rank. For example, both Quentin Richardson and Will Conroy are ranked number

1 in {5, 8}. There are two reasons for this situation. First, the values of objects are identical

in these subspaces. Second, the difference between the outlyingness degrees is so tiny that

it is beyond the precision of the program.

Table 3.10 lists the guards who have poor outlyingness ranks overall (i.e. there are not

any subspaces where they are ranked particularly well). Their performance statistics is in

the middle of the road, and do not have any obvious shortcomings. They may be important

to be included in a team as “the sixth man”, even though they are not star performers.

As mentioned in Section 2.3.1 of Chapter 2, subspace outlier detection is fundamentally

different from outlying aspect mining, since subspace outlier detection finds contrast
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Outlyingness rank Name Outlying aspects

72 Terrence Ross {11}
70 E’Twaun Moore {18}
69 C.J. Watson {8, 12, 13, 14, 18}
61 Jerryd Bayless {2, 3, 4, 19, 20}
58 Nando De Colo {1, 2}, {3, 4, 5, 11, 20}
56 Alec Burks {2, 9, 10, 11}
55 Rodrigue Beaubois {1, 2, 8, 11, 15}
52 Marco Belinelli {9, 10, 12}
49 Aaron Brooks {2, 3, 5, 7, 16}
48 Nick Young {1, 3, 16, 18, 20}

Table 3.10: The guards having poor ranks in outlying aspects

Position Name rankHL rankSOD rankS (# of outlying aspects)

guard
Quentin Richardson 1 1 1 (54)

Kobe Bryant 1 9 1 (3)
Brandon Roy 32 1 1 (4)

forward
Carmelo Anthony 1 5 1 (26)

Kevin Love 3 1 1 (41)

center
Dwight Howard 1 2 1 (15)
Andrew Bogut 10 1 1 (9)

Table 3.11: The outlyingness ranks of players ranked top in HiCS or SOD

subspaces for all possible outliers. However, we can make use of the results of subspace

outlier ranking to verify to some extent our discovered outlying aspects. Specifically, we

look at the objects that are ranked the best by either HiCS [65] or SOD [67], and check

their outlyingness ranks. As HiCS randomly selects subspace slices, we run it 3 times in-

dependently on each data set with the default parameters. The parameter for the number

of nearest neighbors in both LOF and SOD was varied across 5, 10 and 20, and the best

ranks were reported. In SOD [67], the parameter l specifying the size of the reference sets

cannot be larger than the number of nearest neighbors. We set it to the number of nearest

neighbors. For a given object, we denote by rankHL and rankSOD the ranks computed by

HiCS and by SOD, respectively. We denote by rankS the outlyingness rank computed by

OAMiner. Table 3.11 shows the results. The results clearly show that every player ranked

top in either HiCS or SOD has some outlying subspaces where he is ranked number 1. The

results of outlying aspect mining are consistent with those of subspace outlier ranking. At

the same time, we notice that the rankings of HiCS and SOD are not always consistent

with each other, such as for Kobe Bryant, Brandon Roy and Andrew Bogut.
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3.5.4 Efficiency

To the best of our knowledge, there is no other method tackling the exact same problem

as OAMiner. Therefore, we only evaluate the efficiency of OAMiner and its variations.

Specifically, we implemented the baseline method (Algorithm 3.1 with Pruning Rule 3.1).

Recall that OAMiner uses both upper and lower bounds of quasi-density to speed up the

computation of outlyingness ranks. To evaluate the efficiency of our techniques for quasi-

density comparison, we implemented a version OAMiner -part that does not use bounds in

quasi-density estimation and strategies presented in Section 3.4.2. Moreover, we implement

the full version OAMiner -full that uses all techniques.

Once again, we used a synthetic data set from [65]. The dimensionality of the data set

is 50, and the data set consists of 1000 data points. We randomly chose 10 data points

(non-outliers) from the data set as query objects, and reported the average runtime. Again,

we set ` = 5 for all three methods and α = 1.0 for OAMiner -full by default.

Figure 3.6 shows the runtime with respect to data set size. The runtime is plotted

using the logarithmic scale. The baseline method is time consuming, which is consistent

with our analysis. Our pruning techniques can achieve a roughly linear runtime in practice.

Both versions of OAMiner are substantially faster than the baseline method. Moreover,

OAMiner -full is more efficient than OAMiner -part.
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Figure 3.6: Runtime w.r.t. data set size.

Figure 3.7 shows the runtime with respect to dimensionality. The runtime is also

plotted using the logarithmic scale. As dimensionality increases, the runtime increases
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exponentially. However, our heuristic pruning techniques speed up the search in practice.

Again, OAMiner -full is more efficient than OAMiner -part.
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Figure 3.7: Runtime w.r.t. data set dimensionality.

Figure 3.8 shows the runtime with respect to maximum dimensionality threshold (`).

The runtime is plotted using the logarithmic scale, too. As ` increases, more subspaces

will be enumerated. Correspondingly, the runtime increases. Once more, both versions

of OAMiner are considerably faster than the baseline method, and OAMiner -full is more

efficient than OAMiner -part.
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Figure 3.8: Runtime w.r.t. `.
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Figure 3.6, Figure 3.7 and Figure 3.8 show the necessity of our pruning techniques. Even

when ` is a relatively small constant, exhaustive search (the baseline method) is extremely

time consuming due to the expensive computational costs of the quasi-density estimation

for data objects.

We also notice that the runtime of OAMiner is related with the outlyingness rank of

the query object. Figure 3.9 shows the runtime with respect to outlyingness rank on each

real data set. Not surprisingly, the objects with large outlyingness rank cost more runtime,

since OAMiner prunes subspaces based on the rank of the query object by either Pruning

Rule 3.1 or Pruning Rule 3.2.
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Figure 3.9: Runtime w.r.t. outlyingness rank
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Last, we test the sensitivity of the parameter α for bounding quasi-density. We vary the

parameter α, which sets the ε-neighborhood distance. Table 3.12 lists the average runtime

of OAMiner for a query object on each real data set. The runtime of OAMiner is not

sensitive to α in general. Experimentally, the shortest runtime of OAMiner (bold values in

Table 3.12) happens when α is in [0.8, 1.2].

Data set
Average runtime (sec)

α = 0.6 α = 0.8 α = 1.0 α = 1.2 α = 1.4

Guards 4.459 4.234 4.213 4.303 4.315

Forwards 2.810 2.519 2.424 2.418 2.413

Centers 0.260 0.234 0.216 0.212 0.220

Breast cancer 58.476 58.228 57.927 57.613 57.982

Climate model 6.334 6.268 6.339 6.253 6.410

Concrete slump 0.047 0.044 0.044 0.045 0.045

Parkinsons 6.164 6.154 6.083 6.218 6.243

Wine 0.351 0.341 0.339 0.344 0.350

Table 3.12: Average runtime of OAMiner w.r.t parameter α

3.6 Conclusions

In this chapter, we studied the novel and interesting problem of finding outlying aspects of

a query object on multidimensional numeric data. We systematically developed a model

and a heuristic method. Using both real and synthetic data sets, we verified that mining

outlying aspects is interesting and useful. Moreover, our experiments show that our outlying

aspect mining method is effective and efficient.



Chapter 4

Mining Contrast Subspaces

In this chapter, we tackle the novel problem of mining contrast subspaces.

Given a set of multidimensional objects in two classes C+ and C− and a query object o,

we want to find the top-k subspaces that maximize the ratio of likelihood of o in C+ against

that in C−. Such subspaces are very useful for characterizing an object and explaining

how it differs between two classes. We demonstrate that this problem has important ap-

plications, and, at the same time, is very challenging, being MAX SNP-hard. We present

CSMiner, a mining method that uses kernel density estimation in conjunction with various

pruning techniques. We experimentally investigate the performance of CSMiner on a range

of datasets, evaluating its efficiency, effectiveness and stability and demonstrating it is sub-

stantially faster than a baseline method.

4.1 Motivation

Mining contrast subspaces is an interesting problem with important applications.

Besides the application Scenario 2 of the Example 1.1, another example is, when an

analyst in an insurance company is investigating a suspicious claim, she may want to

compare this suspicious case against samples of frauds and normal claims. A useful question

to ask is “In what aspects is this suspicious case most similar to fraudulent cases and different

from normal claims?”. In other words, finding the contrast subspaces for the suspicious

claim is informative for the analyst and serves as a useful input for deeper exploration.

While there are many existing studies on outlier detection and contrast mining, they

focus on collective patterns that are shared by many cases of the target class. The contrast

66
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subspace mining problem addressed here is different. It focuses on one query object and finds

the customized contrast subspaces. This critical difference makes the problem formulation,

the suitable applications, and the mining methods rather different.

To tackle the problem of mining contrast subspaces, we need to address several technical

challenges.

First, we need to have a simple yet informative contrast measure to quantify the

similarity between the query object and the target class and the difference between the

query object and the other class. In this chapter, we use the ratio of the likelihood of the

query object in the target class against that in the other class as the contrast measure.

This is essentially the Bayes factor on the query object, and comes with a well recognized

explanation [62].

Second, the problem of mining contrast subspaces is computationally challenging.

Exhaustive search, which enumerates every non-empty subspace and computes the contrast

measure, is very costly on data sets with a non-trivial dimensionality. We show that the

problem of contrast subspace mining is MAX SNP-hard, and thus does not allow polynomial

time approximation methods unless P=NP. Therefore, the only hope is to develop heuristics

that may work well in practice.

Third, one might attempt a brute-force method to tackle the contrast mining problem.

One major obstacle preventing effective pruning is that the contrast measure does not

have any monotonicity with respect to the subspace-superspace relationship. To tackle the

problem, we develop pruning techniques based on bounds of likelihood and contrast ratio.

Our experimental results on real data sets clearly verify the effectiveness, stability and

efficiency of our method.

The rest of this chapter is organized as follows. In Section 4.2, we formalize the problem,

and analyze it theoretically. We present a heuristic method in Section 4.3, and evaluate

our method empirically using real data sets in Section 4.4. We summarize the chapter in

Section 4.5.

4.2 Problem Formulation and Analysis

In this section, we first formulate the problem. Then, we recall the basics of kernel

density estimation for estimating the probability density of objects. Last, we investigate

the complexity of the problem.
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4.2.1 Problem Definition

Let D = {D1, . . . , Dd} be a d-dimensional space, where the domain of Di is R, the set of

real numbers. A subspace S ⊆ D (S 6= ∅) is a subset of D. We also call D the full space.

Consider an object o in space D. We denote by o.Di the value of o in dimension

Di (1 ≤ i ≤ d). For a subspace S = {Di1 , . . . , Dil} ⊆ D, the projection of o in S is

oS = (o.Di1 , . . . , o.Dil). For a set of objects O = {oj | 1 ≤ j ≤ n}, the projection of O in S

is OS = {oSj | oj ∈ O, 1 ≤ j ≤ n}.

Given a set of objects O, we assume a latent distribution Z that generates the objects

in O. For a query object q, denote by LD(q | Z) the likelihood of q being generated by

Z in full space D. The posterior probability of q given O, denoted by LD(q | O), can be

estimated by LD(q | Z). For a non-empty subspace S (S ⊆ D, S 6= ∅), denote by ZS the

projection of Z in S. The subspace likelihood of object q with respect to Z in S, denoted

by LS(q | Z), can be used to estimate the posterior probability of object q given O in S,

denoted by LS(q | O).

In this study, we assume that the objects in O belong to two classes, C+ and C−,

exclusively in full space D. Thus, O = O+ ∪O− and O+ ∩O− = ∅, where O+ and O− are

the subsets of objects of O belonging to C+ and C−, respectively. Given a query object q,

we are interested in how likely q belongs to C+ and does not belong to C−. To measure

these two factors comprehensively, we define the likelihood contrast as LC(q) = LD(q|O+)
LD(q|O−) .

Generally, given a set of observations Q, the plausibility of two models M1 and M2

can be assessed by the Bayes factor K = Pr(Q|M1)
Pr(Q|M2) . Likelihood contrast is essentially the

Bayes factor of object q as the observation. In other words, we can regard O+ and O−

as representing two models, and we need to choose one of them based on query object q.

Consequently, the ratio of likelihoods indicates the plausibility of model represented by O+

against that by O−. Jeffreys [62] gave a scale for interpretation of Bayes factor. When

LC(q) is in the ranges of < 1, 1 to 3, 3 to 10, 10 to 30, 30 to 100, and over 100, respectively,

the strength of the evidence is negative, barely worth mentioning, substantial, strong, very

strong, and decisive.

We can extend likelihood contrast to subspaces. For a non-empty subspace S ⊆ D, we

define the likelihood contrast in the subspace as LCS(q) = LS(q|O+)
LS(q|O−) . To avoid triviality in

subspaces where LS(q | O+) is very small, we introduce a minimum likelihood threshold

δ > 0, and consider only the subspaces S where LS(q | O+) ≥ δ. The number of likelihood
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contrast subspaces will be reduced with larger δ.

Now, we formally define the problem. Given a multidimensional data set O in full

space D, a query object q, a minimum likelihood threshold δ > 0, and a parameter k > 0,

the problem of mining contrast subspaces is to find the top-k subspaces S ordered by the

subspace likelihood contrast LCS(q) subject to LS(q | O+) ≥ δ.

Table 4.1 lists the frequently used notations in this chapter.

Notation Description

D = {D1, . . . , Dd} a d-dimensional space

S a subspace, S ⊆ D (S 6= ∅)
O a set of objects in space D

o.Di the value of data object o in dimension Di(1 ≤ i ≤ d)

q a query object

LS(q | O) the subspace likelihood of object q with respect to O in S

O+ (or O−) objects that belong to class C+ (or C−)

LCS(q) the subspace likelihood contrast of object q with respect to O in

subspace S, LCS(q) = LS(q|O+)
LS(q|O−)

f̂S(q,O) the density of a query object q in subspace S

hS the bandwidth of subspace S

distS(q, o) the distance between objects q and o in subspace S

Table 4.1: Summary of frequently used notations in Chapter 4

4.2.2 Kernel Density Estimation

We can use kernel density estimation to estimate the likelihood LS(q | O). Given a

set of objects O, we denote by f̂S(q,O) the density of a query object q in subspace S.

Following [105], the general formula for multivariate kernel density estimation with kernel

K and bandwidth parameter hS in subspace S is defined as follows

f̂S(q,O) = f̂S(qS , O) =
1

|O|h|S|S

∑
o∈O

K{ 1

hS
(q − o)} (4.1)

Choosing K to be a radially symmetric unimodal probability density function, in this
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study, we adopt the Gaussian kernel

K(x) =
1

(2π)|S|/2
e−

1
2
xT x (4.2)

which is natural and widely used in density estimation. Note that if it was not unimodal,

then there could be multiple peaks at different distances from the query, which is counter to

intuition. Similarly, we have no basis for preferring any direction over another, so symmetry

is natural. This is a common requirement for kernel density functions [102, 105].

This then leads to

f̂S(q,O) = f̂S(qS , O) =
1

|O|(
√

2πhS)|S|

∑
o∈O

e
−distS(q,o)2

2hS
2

where distS(q, o)2 =
∑
Di∈S

(q.Di − o.Di)
2.

Silverman [105] suggested that the optimal bandwidth value for smoothing normally

distributed data with unit variance is hS opt = A(K)|O|−1/(|S|+4), where A(K) = {4/(|S|+
2)}1/(|S|+4) for the Gaussian kernel.

As the kernel is radially symmetric and the data is not normalized in subspaces, we can

use a single scale parameter σS in subspace S and set hS = σS · hS opt. As Silverman [105]

suggested, a reasonable choice for σS is the root of the average marginal variance in S.

Using kernel density estimation, we can estimate LS(q | O) as

LS(q | O) = f̂S(q,O) =
1

|O|(
√

2πhS)|S|

∑
o∈O

e
−distS(q,o)2

2hS
2 (4.3)

Correspondingly, the likelihood contrast of object q in subspace S is given by

LCS(q,O+, O−) =
f̂S(q,O+)

f̂S(q,O−)
=
|O−|
|O+|

·
(
hS−
hS+

)|S|
·

∑
o∈O+

e

−distS(q,o)2

2hS+
2

∑
o∈O−

e

−distS(q,o)2

2hS−
2

(4.4)

We often omit O+ and O− and write LCS(q) if O+ and O− are clear from context.

4.2.3 Complexity Analysis

Before developing any algorithms to tackle the contrast subspace mining problem, let us first

investigate its complexity. We will show that the contrast subspace mining problem is MAX
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SNP-hard by constructing a linear-reduction (L-reduction for short) from the emerging

pattern mining problem [36], which was been shown to be MAX SNP-hard [113]. The

L-reduction linearly preserves approximability features of the original problem after the

transformation, thus the name “linear reduction”.

To make the discussion self-contained, a brief description of the emerging pattern mining

problem is given as follows. Let D′ = {D′1, D′2, . . . , D′d} denote a set of d items. A

transaction o′i is represented by a binary vector of length d whose element o′ij = 1 if item

D′j is present, and 0 otherwise. A pattern S′ is a subset of items in D′. A transaction o′i

satisfies S′ if o′ij = 1, ∀D′j ∈ S′. A transaction database O′ is a set of transactions. Let

SatO′(S
′) denote the set of transactions in O′ satisfying S′.

Definition 4.1 (Emerging Pattern Mining (EP)). Given two transaction databases O′+

and O′−, find the pattern S′ such that the cost function cEP(S′) = |SatO′+(S′)| is maximized

subject to the feasibility condition |SatO′−(S′)| = 0.

We consider the following simplified version of the contrast subspace mining problem,

where the bandwidth parameters hS+ and hS− for all subspaces are set to the same value

h.

Definition 4.2 (Contrast Subspace Mining (CS)). Given {q,O+, O−} where q is the query

and O+ and O− are the two classes, find the subspace S maximizing the cost function

cCS(S, q) =
∑
o∈O+

exp

(
−distS(q, o)2

2h2

)
/
∑
o∈O−

exp

(
−distS(q, o)2

2h2

)

(which is equivalent to the likelihood contrast, up to a constant multiplicative factor |O−||O+|).

In addition, we define the complete contrast subspace mining problem as follows:

Definition 4.3 (Complete Contrast Subspace Mining (Complete-CS)). Given {O+, O−}
find the subspace S such that the cost function

c(S) = max
oi∈O+

cCS(S, q = oi)

is maximized.

It can be seen that Complete-CS can be solved by solving at most |O+|CS sub-problems

corresponding to unique data points in O+. We will now prove that Complete-CS is MAX

SNP-hard, via the following reduction from the emerging pattern mining problem.
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Reduction 1. The EP→ Complete-CS reduction:

• For each item D′i, set up a corresponding dimension Di.

• For each transaction o′i ∈ O′+, insert 2 copies of o′i into O+.

• For each transaction o′i ∈ O′−, insert 2|O′+| identical data points o′i into O−.

• Insert 1 item (a numeric vector) with all 1’s into O−.

• Let h be an arbitrary user-specified bandwidth parameter, replace each occurrence of

the 0 value in O = O+ ∪O− with a unique value in the set {2γh, 3γh, 4γh . . .} where

γ is some fixed large constant.

• Replace each occurrence of the value 1 in O with γh where γ is the same as the one

used above.

This transformation can be done in O(|O+||O−|) time. An example illustrating the

transformation is given in Table 4.2.

Database Transactions O+ O−

O′+

[0, 1, 1, 0]
[2γh, 1γh, 1γh, 3γh]
[4γh, 1γh, 1γh, 5γh]

[0, 1, 0, 0]
[6γh, 1γh, 7γh, 8γh]

[9γh, 1γh, 10γh, 11γh]

O′−

[1, 1, 0, 0]
[1γh, 1γh, 12γh, 13γh]
[1γh, 1γh, 14γh, 15γh]
[1γh, 1γh, 16γh, 17γh]
[1γh, 1γh, 18γh, 19γh]

[0, 0, 0, 1]
[20γh, 21γh, 22γh, 1γh]
[23γh, 24γh, 25γh, 1γh]
[26γh, 27γh, 28γh, 1γh]
[29γh, 30γh, 31γh, 1γh]

[1γh, 1γh, 1γh, 1γh]

Table 4.2: An example transformation from a transaction database to a numeric dataset
according to the EP→ Complete-CS reduction

Theorem 4.1. The reduction EP→ Complete-CS defined above is an L-reduction, denoted

by EP→L Complete-CS.

For completeness, the formal definition of the L-reduction [89] is given as follows:
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Definition 4.4 (L-Reduction). Let Π1 and Π2 be two optimization problems. We say that

Π1 L-reduces to Π2 if there are two polynomial time algorithms f, g and constants α, β > 0

such that, for any instance I of Π1, f(I) forms an instance of Π2 and

c.1 OPT (f(I)) ≤ αOPT (I) where OPT (.) denotes the optimal value of the respective

optimization problem.

c.2 Given any solution s of f(I), algorithm g produces a solution g(s) of I satisfying

|cΠ1(g(s))−OPT (I)| ≤ β|cΠ2(s)−OPT (f(I))|, where cΠi(.) denotes the cost function

of the corresponding optimization problem.

Proof. First, we note that for any bandwidth value h, we can set γ to a large value such

that exp
(
−distS(q,o)2

2h2

)
can be arbitrarily close to 0 for all q ∈ O such that qS 6= oS . The

cost function for CS can be computed as

cCS(S, q) =

∑
o∈O+

exp
(
−distS(q,o)2

2h2

)
∑

o∈O− exp
(
−distS(q,o)2

2h2

) =
|OS,q+ |+ ε+(S, q)

|OS,q− |+ ε−(S, q)
(4.5)

where OS,q denotes the set of data points in O having values identical to q in the subspace

S, and

ε+(S, q) =
∑

o∈O+\OS,q+

exp

(
−distS(q, o)2

2h2

)
,

ε−(S, q) =
∑

o∈O−\OS,q−

exp

(
−distS(q, o)2

2h2

)
.

Let M > 1 be the maximum integer value such that Mγh is a value occurring in O (e.g.

M = 31 in the example in Table 4.2). Then |S|γ2h2 < distS(q, o)2 < M2|S|γ2h2 for all

o ∈ O+ ∪O−. Thus

(|O+| − |OS,q+ |) exp
(
−|S|γ2M2

)
< ε+(S, q) < (|O+| − |OS,q+ |) exp

(
−|S|γ2

)
� 1

and similarly

(|O−| − |OS,q− |) exp
(
−|S|γ2M2

)
< ε−(S, q) < (|O−| − |OS,q− |) exp

(
−|S|γ2

)
� 1

Note that limγ→∞ ε+(S, q) = 0 and limγ→∞ ε−(S, q) = 0. Now, it can be seen that:
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• If a pattern S′ is an emerging pattern, then by construction at least one object q ∈ O+

must have |OS,q+ | ≥ 2 and |OS,q− | = 1. This is because S′ only appears in O′+, and

for each transaction o′i ∈ O′+, we have inserted 2 copies of o′i into O+. On the other

hand, S′ does not appear in O′− and the only object having values identical to q in

the subspace S is the object containing all γh’s. Therefore,

cCS(S, q) =
|OS,q+ |+ ε+(S, q)

|OS,q− |+ ε−(S, q)
≥ 2 + ε+(S, q)

1 + ε−(S, q)
> 1 (4.6)

• If a pattern S′ is not an emerging pattern, then by construction all objects q ∈ O+

must have |OS,q− | ≥ |O
S,q
+ |+ 1 > |OS,q+ |. Therefore,

cCS(S, q) =
|OS,q+ |+ ε+(S, q)

|OS,q− |+ ε−(S, q)
< 1 (4.7)

With these observations, we are ready to prove the main complexity result. We need to

verify that the reduction EP→ Complete-CS satisfies the two conditions (c1) and (c2) of

the L-reduction.

c.1 For any instance I of EP, if S′ is the most frequent emerging pattern with cEP(S′) =

|SatO′+(S′)| and |SatO′−(S′)| = 0, then the corresponding optimal S solution for

Complete-CS must have a cost value of

c(S) =
2|SatO′+(S′)|+ ε+(S, q)

1 + ε−(S, q)
' 2|SatO′+(S′)| = 2cEP(S′) (4.8)

where q is any data point in O+ corresponding to the transaction containing pattern

S′. This is because for each transaction o′i containing S′ in O′+, we have inserted 2

copies of o′i into O+. The ‘1’ in the denominator is due to the object containing all

γh in O−. Thus condition 1 is satisfied with α = 2 when γ is sufficiently large.

c.2 For any solution S of Complete-CS, if c(S) = λ ≥ 2 then the corresponding pattern

S′ constructed from S will be an emerging pattern. Further, let [λ] be the nearest

integer to λ. Then [λ] must be even, and [λ]/2 will be the cost of the corresponding

EP problem. Let λ∗ denote the optimal cost of Complete-CS, then∣∣∣∣ [λ]

2
− [λ∗]

2

∣∣∣∣ =
1

2
|[λ]− [λ∗]| ' 1

2
|λ− λ∗| ≤ |λ− λ∗| (4.9)

Thus condition 2 is satisfied with β = 1.
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Since EP→L Complete-CS, if there exists a polynomial time approximation algorithm

for Complete-CS with performance guarantee 1 − ε, then there exists a polynomial time

approximation algorithm for EP with performance guarantee 1 − αβε. Since EP is MAX

SNP-hard, it follows that Complete-CS must also be MAX SNP-hard.

Last, we draw the connection between Complete-CS and CS.

Theorem 4.2. If there exists a polynomial time approximation scheme (PTAS) for CS

then there must also be a PTAS for Complete-CS.

Proof. This is straightforward, as Complete-CS can be solved by a series of |O+| CS

problems.

Unless P=NP, there exists no PTAS for Complete-CS, implying no PTAS for CS.

The above theoretical result indicates that the problem of mining contrast subspaces is

even hard to approximate – it is impossible (unless P=NP) to design a good approximation

algorithm. In the rest of the paper, we turn to practical heuristic methods.

4.3 Mining Methods

In this section, we first describe a baseline method that examines every possible non-empty

subspace. Then, we present the design of our method CSMiner (for Contrast Subspace

Miner) which employs smarter strategies for search.

4.3.1 A Baseline Method

A baseline naive method enumerates all possible non-empty spaces S and calculates the

exact values of both LS(q | O+) and LS(q | O−), since both LS(q | O+) and LS(q |
O−) are not monotonic with respect to the subspace-superspace relationship. Then, it

returns the top-k subspaces S with the largest LCS(q) values. To ensure the completeness

and efficiency of subspace enumeration, the baseline method traverses the set enumeration

tree [99] of subspaces in a depth-first manner. A set enumeration tree takes a total order

on a set, the set of dimensions in our problem, and enumerates all possible subsets in the

lexicographical order. Figure 4.1 shows a set enumeration tree that enumerates all subspaces

of D = {D1, D2, D3, D4}.
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{D1}

{}

{D1,D3} {D1,D4} {D2,D3} {D2,D4} {D3,D4}

{D2} {D4}{D3}

{D1,D2,D3} {D1,D2,D4}

{D1,D2,D3,D4}

{D2,D3,D4}{D1,D3,D4}

{D1,D2}

Figure 4.1: A set enumeration tree.

Using Equations 4.3 and 4.4, the baseline algorithm, shown in Algorithm 4.1, computes

the likelihood contrast for every subspace where LS(q | O+) ≥ δ, and returns the top-k

subspaces. The time complexity is O(2|D| · (|O+|+ |O−|)).

Algorithm 4.1 The baseline algorithm

Input: q: query object, O+: objects belonging to C+, O−: objects belonging to C−, δ:
likelihood threshold, k: positive integer

Output: k subspaces with the highest likelihood contrast
1: let Ans be the current top-k list of subspaces, initialize Ans as k null subspaces

associated with likelihood contrast 0
2: traverse the subspace set enumeration tree in a depth-first search manner
3: for each subspace S do
4: compute σS+, σS−, hopt;
5: compute LS(q | O+) and LS(q | O−) using Equation 4.3;

6: if LS(q | O+) ≥ δ and ∃S′ ∈ Ans s.t. LS(q|O+)
LS(q|O−) > LCS′(q) then

7: insert S into Ans and remove S′ from Ans;
8: end if
9: end for

10: return Ans;

4.3.2 The Framework of CSMiner

LS(q | O+) is not monotonic in subspaces. To prune subspaces using the minimum likelihood

threshold δ, we develop an upper bound of LS(q | O+). We sort all the dimensions in their

standard deviation descending order. Let S be the set of descendants of S in the subspace
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set enumeration tree using the standard deviation descending order. Define

L∗S(q | O+) =
1

|O+|(
√

2πσ′minh
′
opt min)τ

∑
o∈O+

e

−distS(q,o)2

2(σSh
′
opt max)

2
(4.10)

where σ′min = min{σS′ | S′ ∈ S}, h′opt min = min{hS′ opt | S′ ∈ S}, h′opt max = max{hS′ opt |
S′ ∈ S}, and

τ =

{
|S| if

√
2πσ′minh

′
opt min ≥ 1

max{|S′| | S′ ∈ S} if
√

2πσ′minh
′
opt min < 1

We have the following result.

Theorem 4.3 (Monotonic Density Bound). For a query object q, a set of objects O, and

subspaces S1, S2 such that S1 is an ancestor of S2 in the subspace set enumeration tree in

which dimensions in full space D are sorted by their standard deviation descending order,

it is true that L∗S1
(q | O) ≥ LS2(q | O).

Proof. Let S be the set of descendants of S1 in the subspace set enumeration tree using

the standard deviation descending order in O. We define σ′min = min{σS′ | S′ ∈ S},
h′opt min = min{hS′ opt | S′ ∈ S}, h′opt max = max{hS′ opt | S′ ∈ S}, and

τ =

{
|S1| if

√
2πσ′minh

′
opt min ≥ 1

max{|S′| | S′ ∈ S} if
√

2πσ′minh
′
opt min < 1

(Note that the computing of σ′min, h′opt min, and h′opt max has linear complexity. As

introduced in Section 4.2.2, σS′ is the root of the average marginal variance in S′ and

hS′ opt depends on the values of |O| and |S′|. Let S′′ ∈ S such that for any subspace

S′ ∈ S, S′ ⊆ S′′. Recall that the dimensions in the set enumeration tree are sorted by the

standard deviation descending order, then, σ′min can be obtained by checking dimensions in

S′′ \S1 one by one in the standard deviation ascending order. Moreover, h′opt min (h′opt max)

can be obtained by comparing hS′ opt with different values of |S′| ∈ [|S1| + 1, |S′′|].) As

S2 ∈ S, we have 1 ≤ |S1| < |S2| ≤ max{|S′| | S′ ∈ S}, and σS1 ≥ σS2 ≥ σ′min. Then,

σS2hS2 opt ≥ σ′minh′opt min. Thus,

(
√

2πσS2hS2 opt)
|S2| > (

√
2πσ′minh

′
opt min)τ

Moreover, for o ∈ O, distS1(q, o) ≤ distS2(q, o). Correspondingly,

−distS2(q, o)2

2(σS2hS2 opt)
2
≤ −distS1(q, o)2

2(σS1h
′
opt max)2
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By Equation 4.3,

LS2(q | O) =
1

|O|(
√

2πσS2hS2 opt)
|S2|

∑
o∈O

e

−distS2 (q,o)2

2(σS2
hS2 opt

)2

≤ 1

|O|(
√

2πσ′minh
′
opt min)τ

∑
o∈O

e

−distS1 (q,o)2

2(σS1
h′opt max)

2

= L∗S1
(q | O)

Using Theorem 4.3, in addition to LS(q | O+) and LS(q | O−), we also compute L∗S(q |
O+) for each subspace S. We are now in a position to state a pruning rule based on this

theorem.

Pruning Rule 4.1. Given a minimum likelihood threshold δ, if L∗S(q | O+) < δ in a

subspace S, all superspaces of S can be pruned.

Note that by using depth-first search, the distance between two objects in a super-space

can be computed incrementally from the distance among the objects in a subspace. Given

two objects q and o, let subspace S′ = S ∪ {Di}. We have distS′(q, o)
2 = distS(q, o)2 +

(q.Di − o.Di)
2.

Algorithm 4.2 shows the pseudo code of the framework of CSMiner. Similar to the

baseline method (Algorithm 4.1), CSMiner conducts a depth-first search on the subspace

set enumeration tree. For a candidate subspace S, CSMiner calculates L∗S(q | O+) using

Equation 4.10. If L∗S(q | O+) is less than the minimum likelihood threshold, all superspaces

of S can be pruned by Theorem 4.3. Due to the hardness of the problem shown in

Section 4.2.3 and the heuristic nature of this method, the time complexity of CSMiner

is O(2|D| · (|O+|+ |O−|)), the same as the exhaustive baseline method. However, as shown

by our empirical study, CSMiner is substantially faster than the baseline method.

As stated in Algorithm 4.2, CSMiner starts with reading q, O+ and O−. For a candidate

subspace S, CSMiner stores σS+, σS−, σ′min, hopt, h
′
opt min, and h′opt max to compute L∗S(q |

O+), and LCS(q). As CSMiner traverses the subspace set enumeration tree in a depth-

first manner and finds top-k subspaces with the highest likelihood contrast, CSMiner only

stores the likelihood contrast information of k candidate subspaces. The space complexity

of CSMiner is O(|O+|+ |O−|+ k). Observe that k ≤ 2|D| (D representing the full space).
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Algorithm 4.2 CSMiner(q,O+, O−, δ, k)

Input: q: query object, O+: objects belonging to C+, O−: objects belonging to C−, δ:
likelihood threshold, k: positive integer

Output: k subspaces with the highest likelihood contrast
1: let Ans be the current top-k list of subspaces, initialize Ans as k null subspaces

associated with likelihood contrast 0
2: traverse the subspace set enumeration tree in a depth-first search manner
3: for each subspace S do
4: compute σS+, σS−, σ′min, hopt, h

′
opt min, and h′opt max;

5: compute L∗S(q | O+) using Equation 4.10;
6: if L∗S(q | O+) < δ then
7: prune all descendants of S and go to Step 2; // Pruning Rule 4.1
8: else
9: compute LS(q | O+) and LS(q | O−) using Equation 4.3;

10: if LS(q | O+) ≥ δ and ∃S′ ∈ Ans s.t. LS(q|O+)
LS(q|O−) > LCS′(q) then

11: insert S into Ans and remove S′ from Ans;
12: end if
13: end if
14: end for
15: return Ans;

4.3.3 A Bounding-Pruning-Refining Method

For a query object q and a set of objects O, the likelihood LS(q | O), computed by

Equation 4.3, is the sum of density contributions of objects in O to q in subspace S. In

Gaussian kernel estimation, given object o ∈ O, the contribution from o to LS(q | O) is

1
|O|(
√

2πhS)|S|
e
−distS(q,o)2

2hS
2 . We observe that the contribution of o decays exponentially as the

distance between q and o increases, and LS(q | O) can be bounded.

For a query object q and a set of objects O, the ε-neighborhood (ε > 0) of q in

subspace S is N ε
S(q) = {o ∈ O | distS(q, o) ≤ ε}. We can divide LS(q | O) into two

parts, that is, LS(q | O) = LNε
S
(q | O) + LrestS (q | O). The first part is contributed by

the objects in the ε-neighborhood, that is, LNε
S
(q | O) = 1

|O|(
√

2πhS)|S|

∑
o∈Nε

S(q)

e
−distS(q,o)2

2hS
2 ,

and the second part is by the objects outside the ε-neighborhood, that is, LrestS (q | O) =

1
|O|(
√

2πhS)|S|

∑
o∈O\Nε

S(q)

e
−distS(q,o)2

2hS
2 .

Let distS(q | O) be the maximum distance between q and all objects in O in subspace
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S. We have,

|O| − |N ε
S(q)|

|O|(
√

2πhS)|S|
· e−

distS(q,O)2

2hS
2 ≤ LrestS (q | O) ≤

|O| − |N ε
S(q)|

|O|(
√

2πhS)|S|
· e−

ε2

2hS
2

Example 4.1. Figure 4.2 illustrates an example of a ε-neighborhood of object q with

respect to object set O in a 2-dimensional subspace S. From Figure 4.2, we can see that

N ε
S(q) = {o1, o2, o3, o4, o5}, and distS(q | O) = distS(q, o10).

o
1

o
2

o
3

o
4

o
5

o
6

o
7

o
8

o
9

o
10

Figure 4.2: An example of an ε-neighborhood in a 2-dimensional subspace (within the

dashed circle)

Using the above, an upper bound of L∗S(q | O+) using ε-neighborhood, denoted by

L∗εS (q | O+), is

L∗εS (q | O+) =

∑
o∈Nε

S(q)

e

−distS(q,o)2

2(σSh
′
opt max)

2
+ (|O+| − |N ε

S(q)|)e
− ε2

2(σSh
′
opt max)

2

|O+|(
√

2πσ′minh
′
opt min)τ

(4.11)

where, the meanings of σ′min, h′opt min, h′opt max, and τ are the same as those in Equation 4.10.

Pruning Rule 4.2. Given a minimum likelihood threshold δ, if L∗εS (q | O+) < δ in a

subspace S, all superspaces of S can be pruned.

Moreover, using the ε-neighborhood, we have the following upper and lower bounds of

LS(q | O).

Theorem 4.4 (Bounds). For a query object q, a set of objects O and ε ≥ 0,

LLεS(q | O) ≤ LS(q | O) ≤ ULεS(q | O)
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where

LLεS(q | O) =
1

|O|(
√

2πhS)|S|

 ∑
o∈Nε

S(q)

e
−distS(q,o)2

2hS
2 + (|O| − |N ε

S(q)|)e−
distS(q,O)2

2hS
2


and

ULεS(q | O) =
1

|O|(
√

2πhS)|S|

 ∑
o∈Nε

S(q)

e
−distS(q,o)2

2hS
2 + (|O| − |N ε

S(q)|)e−
ε2

2hS
2


Proof. For any object o ∈ O \N ε

S(q), ε2 ≤ distS(q, o)2 ≤ distS(q,O)
2
. Then,

e
− ε2

2hS
2 ≥ e

−distS(q,o)2

2hS
2 ≥ e−

distS(q,O)2

2hS
2

Thus,

(|O| − |N ε
S(q)|)e−

ε2

2hS
2 ≥ (|O| − |N ε

S(q)|)e
−distS(q,o)2

2hS
2 ≥ (|O| − |N ε

S(q)|)e−
distS(q,O)2

2hS
2

Correspondingly,

LLεS(q | O) ≤ LS(q | O) ≤ ULεS(q | O)

We obtain an upper bound of LCS(q) based on Theorem 4.4 and Equation 4.4.

Corollary 4.1 (Likelihood Contrast Upper Bound). For a query object q, a set of objects

O+, a set of objects O−, and ε ≥ 0, LCS(q) ≤ ULεS(q|O+)

LLεS(q|O−) .

Proof. By Theorem 4.4, we have LS(q | O+) ≤ ULεS(q | O+) and LS(q | O−) ≥ LLεS(q | O−).

Then,

LCS(q) =
LS(q | O+)

LS(q | O−)
≤
ULεS(q | O+)

LS(q | O−)
≤
ULεS(q | O+)

LLεS(q | O−)

Using Corollary 4.1, we have the following.

Pruning Rule 4.3. For a subspace S, if there are at least k subspaces whose likelihood

contrast are greater than ULSε (q|O+)
LLSε (q|O−)

, then S cannot be a top-k subspace of the largest

likelihood contrast.
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We implement the bounding-pruning-refining method in CSMiner to compute bounds of

likelihood and contrast ratio. We call this version CSMiner -BPR. For a candidate subspace

S, CSMiner -BPR calculates ULεS(q | O+), LLεS(q | O−) and L∗εS (q | O+) using the ε-

neighborhood. If ULεS(q | O+) is less than the minimum likelihood threshold (δ), CSMiner -

BPR checks whether it is true that L∗εS (q | O+) < δ (Pruning Rule 4.2) or L∗S(q | O+) < δ

(Pruning Rule 4.1). Otherwise, CSMiner -BPR checks whether the likelihood contrasts of

the current top-k subspaces are larger than the upper bound of LCS(q) (= ULSε (q|O+)
LLSε (q|O−)

). If

not, CSMiner -BPR refines L∗S(q | O+), LS(q | O+) and LS(q | O−) by involving objects that

are out of the ε-neighborhood. S will be added into the current top-k list if L∗S(q | O+) ≥ δ
and the ratio of LS(q | O+) to LS(q | O−) is larger than one of the current top-k ones. Note

that the computational cost for L∗S(q | O+) can be high, especially, when the size of O+

is large. Thus for efficiency, we employ a tradeoff between Pruning Rule 4.1 and Pruning

Rule 4.3. Specifically, when we are searching a subspace S, once we can determine that

S cannot be a top-k contrast subspace, then we terminate the search of S immediately.

Therefore, CSMiner -BPR accelerates CSMiner by avoiding the cost for computing the

likelihood contributions of objects outside the ε-neighborhood to q when L∗S(q | O+) < δ

(Pruning Rule 4.2) or ULSε (q|O+)
LLSε (q|O−)

< δ (Pruning Rule 4.3).

Computing ε-neighborhood is critical in CSMiner -BPR. The distance between objects

increases when dimensionality increases. Thus, the value of ε should not be fixed. The

standard deviation expresses the variability of a set of data. For subspace S, we set ε =√
α ·

∑
Di∈S

(σ2
Di

+ + σ2
Di
−) (α ≥ 0), where σ2

Di
+ and σ2

Di
− are the marginal variances of O+

and O−, respectively, on dimension Di (Di ∈ S), and α is a system defined parameter.

Our experiments show that α can be set in the range of 0.8 ∼ 1.2, and is not sensitive.

Algorithm 4.3 provides the pseudo-code of CSMiner -BPR. Theorem 4.5 guarantees that no

matter how the neighborhood distance (ε) is varied, the mining result of CSMiner -BPR is

unchanged.

Theorem 4.5. Given data set O, query object q, minimum likelihood threshold δ, and

parameter k, for any neighborhood distances ε1 and ε2, CSε1(q | O) = CSε2(q | O), where

CSε1(q | O) (CSε2(q | O)) is the set of contrast subspaces discovered by CSMiner-BPR

using ε1 (ε2).

Proof. We prove by contradiction.

Assume that subspace S ∈ CSε1(q | O) but S 6∈ CSε2(q | O). As S ∈ CSε1(q | O), we
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Algorithm 4.3 CSMiner -BPR(q,O+, O−, δ, k, α)

Input: q: a query object, O+: the set of objects belonging to C+, O−: the set of objects belonging
to C−, δ: a likelihood threshold, k: positive integer, α: neighborhood parameter

Output: k subspaces with the highest likelihood contrast
1: let Ans be the current top-k list of subspaces, initialize Ans as k null subspaces associated with

likelihood contrast 0
2: for each subspace S in the subspace set enumeration tree, searched in the depth-first manner

do
3: compute ε, σS+, σS−, σ′min, hopt, h

′
opt min, and h′opt max;

4: N ε
S(q)+ ← ∅; N ε

S(q)− ← ∅; distS(q | O−)← 0;
5: for each object o ∈ O+ ∪O− do
6: distS(q, o)2 ← distSp(q, o)2 + (q.D′ − o.D′)2; // Sp(= S ∪ {D′}) is the parent of S.
7: if o ∈ O+ and distS(q, o) < ε then
8: N ε

S(q)+ ← N ε
S(q)+ ∪ {o};

9: end if
10: if o ∈ O− then
11: if distS(q, o) < ε then
12: N ε

S(q)+ ← N ε
S(q)+ ∪ {o};

13: end if
14: if distS(q | O−) < distS(q, o) then
15: distS(q | O−)← distS(q, o);
16: end if
17: end if
18: end for
19: compute ULεS(q | O+), LLεS(q | O−) and L∗εS (q | O+); // bounding
20: if ULεS(q | O+) < δ then
21: if L∗εS (q | O+) < δ then
22: prune all descendants of S and go to Step 2; // Pruning Rule 4.2
23: end if
24: compute L∗S(q | O+);
25: if L∗S(q | O+) < δ then
26: prune all descendants of S and go to Step 2; // Pruning Rule 4.1
27: end if
28: else
29: if ∃S′ ∈ Ans s.t.

ULεS(q|O+)
LLεS(q|O−)

≥ LCS′(q) then

30: compute L∗S(q | O+) using Equation 4.10; // refining
31: if L∗S(q | O+) < δ then
32: prune all descendants of S and go to Step 2; // Pruning Rule 4.1
33: else
34: compute LS(q | O+) and LS(q | O−) using Equation 4.3; // refining

35: if LS(q | O+) ≥ δ and ∃S′ ∈ Ans s.t. LS(q|O+)
LS(q|O−) > LCS′(q) then

36: insert S into Ans and remove S′ from Ans;
37: end if
38: end if
39: end if
40: end if
41: end for
42: return Ans;
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have (?) LS(q | O+) ≥ δ. On the other hand, S′ 6∈ CSε2(q | O) means that (i) L∗ε2S (q |
O+) < δ, or (ii) ∃S′ ∈ CSε2(q | O) such that S′ 6∈ CSε1(q | O) and

UL
ε1
S (q|O+)

LL
ε1
S (q|O−)

< LCS′(q).

For case (i), as LS(q | O+) ≤ L∗S(q | O+) ≤ L∗ε2S (q | O+), we have LS(q | O+) < δ,

contradicting (?). For case (ii), as LCS(q) ≤ UL
ε1
S (q|O+)

LL
ε1
S (q|O−)

, we have LCS(q) < LCS′(q),

contradicting S′ 6∈ CSε1(q | O).

Corollary 4.2. Given data set O, query object q, minimum likelihood threshold δ, and

parameter k, the mining result of CSMiner-BPR, no matter what the value of parameter α

is, the output is the same as that of CSMiner.

Proof. For subspace S, suppose ε, computed by parameter α, is not less than distS(q | O).

We have N ε
S(q) = ∅. Correspondingly, ULεS(q | O+) = LS(q | O+), LLεS(q | O−) =

LS(q | O−), and L∗εS (q | O+) = L∗S(q | O+). Then the execution flow of CSMiner -

BPR (Algorithm 4.3) is the same as that of CSMiner (Algorithm 4.2). Furthermore, by

Theorem 4.5, the mining result of CSMiner -BPR is unchanged no matter what the value

of neighborhood distance is.

4.4 Empirical Evaluation

In this section, we report a systematic empirical study using real data sets to verify the ef-

fectiveness and efficiency of CSMiner (CSMiner -BPR). In general, we study how sensitive

are our methods to the running parameters, such as δ, k, and α, in terms of discovered

contrast subspaces and running time; and how sensitive are our methods to different

bandwidth values and kernel function, in terms of the similarity of mining results. All

experiments were conducted on a PC computer with an Intel Core i7-3770 3.40 GHz CPU,

and 8 GB main memory, running Windows 7 operating system. All algorithms were im-

plemented in Java and compiled by JDK 7. We set δ = 0.001, k = 10 and, α = 0.8 as

defaults in our experiments.

4.4.1 Effectiveness

We use 6 real data sets from the UCI machine learning repository [11]. We remove non-

numerical attributes and all instances containing missing values. Table 4.3 shows the data

characteristics.
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Data set # objects # attributes # classes

Breast Cancer Wisconsin (BCW) 683 9 2

Climate Model Simulation Crashes (CMSC) 540 18 2

Glass Identification (Glass) 214 9 2

Pima Indians Diabetes (PID) 768 8 2

Waveform 5000 21 3

Wine 178 13 3

Table 4.3: Data set characteristics

As shown in Table 4.3, BCW, Glass, PID and Wine are typical small data sets which

contain hundreds of objects with around 10 numerical attributes. The objects in BCW,

Glass and PID are divided into 2 classes, respectively, while the objects in Wine are divided

into 3 classes. Compared with BCW, Glass, PID and Wine, CMSC and Waveform contain

more numerical attributes. We note that CMSC is an unbalanced data set, in which the

number of objects in the two classes are 46 and 494, respectively. Among all selected data

sets, Waveform containing 5000 objects is the largest one with the highest dimensionality.

For each data set, we take each record as a query object q, and all records except q

belonging to the same class as q forming the set O1, and records belonging to the other

classes forming the set O2. Using CSMiner, we compute for each record (1) the inlying

contrast subspace taking O1 as O+ and O2 as O−, and (2) the outlying contrast subspace

taking O2 as O+ and O1 as O−. In this experiment, we only compute the top-1 subspace.

For clarity, we denote the likelihood contrasts of inlying contrast subspace by LCinS (q) and

those of outlying contrast subspace by LCoutS (q). The minimum likelihood threshold (δ) is

set to 0.001.

Tables 4.4 ∼ 4.9 list the joint distributions of LCinS (q) and LCoutS (q) in each data set.

Consider that the query object has the same class label as objects in O1 in the original

data set. Thus, it is expected that, for most objects, LCinS (q) are larger than LCoutS (q).

However, interestingly a good portion of objects have strong outlying contrast subspaces.

For example, in CMSC, more than 40% of the objects have outlying contrast subspaces

satisfying LCoutS (q) ≥ 103. Moreover, we can see that, except PID, a non-trivial number

of objects in each data set have both strong inlying and outlying contrast subspaces (e.g.,

LCinS (q) ≥ 104 and LCoutS (q) ≥ 102).
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LCoutS (q)

< 1 [1,3) [3,10) [10, 102) ≥ 102 Total

L
C
in S

(q
)

< 104 0 3 0 7 23 33

[104, 105) 7 4 2 4 7 24

[105, 106) 21 21 5 8 9 64

[106, 107) 184 33 5 4 9 235

≥ 107 121 31 74 66 35 327

Total 333 92 86 89 83 683

Table 4.4: Distribution of LCS(q) in BCW (δ = 0.001, k = 1)

LCoutS (q)

[10, 102) [102, 103) [103, 104) [104, 105) ≥ 105 Total

L
C
in S

(q
)

< 103 1 11 12 2 0 26

[103, 104) 6 35 47 6 6 100

[104, 105) 10 46 44 8 2 110

[105, 106) 11 40 32 8 2 93

≥ 106 39 110 50 11 1 211

Total 67 242 185 35 11 540

Table 4.5: Distribution of LCS(q) in CMSC (δ = 0.001, k = 1)

LCoutS (q)

< 1 [1,3) [3,10) [10, 102) ≥ 102 Total

L
C
in S

(q
)

< 102 0 0 0 1 7 8

[102, 103) 2 8 4 4 7 25

[103, 104) 28 91 6 4 5 134

[104, 105) 1 4 0 0 3 8

≥ 105 0 1 0 30 8 39

Total 31 104 10 39 30 214

Table 4.6: Distribution of LCS(q) in Glass (δ = 0.001, k = 1)
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LCoutS (q)

< 1 [1,3) [3,10) [10, 30) ≥ 30 Total

L
C
in S

(q
)

< 1 0 0 1 0 0 1

[1, 3) 2 241 62 8 2 315

[3, 10) 36 328 31 3 0 398

[10, 30) 23 23 2 0 0 48

≥ 30 3 3 0 0 0 6

Total 64 595 96 11 2 768

Table 4.7: Distribution of LCS(q) in PID (δ = 0.001, k = 1)

LCoutS (q)

[1, 3) [3,10) [10, 102) [102, 103) ≥ 103 Total

L
C
in S

(q
)

< 10 0 24 34 8 2 68

[10, 102) 204 676 772 190 71 1913

[102, 103) 471 1049 981 228 56 2785

[103, 104) 53 103 67 4 4 231

≥ 104 0 2 1 0 0 3

Total 728 1854 1855 430 133 5000

Table 4.8: Distribution of LCS(q) in Waveform (δ = 0.001, k = 1)

LCoutS (q)

< 1 [1,3) [3,10) [10, 102) ≥ 102 Total

L
C
in S

(q
)

< 103 0 13 8 7 5 33

[103, 104) 1 18 11 4 0 34

[104, 105) 2 23 12 5 2 44

[105, 106) 3 7 5 1 0 16

≥ 106 7 20 16 4 4 51

Total 13 81 52 21 11 178

Table 4.9: Distribution of LCS(q) in Wine (δ = 0.001, k = 1)
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Figures 4.3 and Figure 4.4 show the distributions of dimensionality of top-1 inlying and

outlying contrast subspaces with different minimum likelihood thresholds (δ), respectively.

The dimensionality distribution is an interesting feature characterizing a data set. For

example, in most cases the contrast subspaces tend to have low dimensionality. However,

in CMSC and Wine, the inlying contrast subspaces tend to have high dimensionality.

Moreover, we can see that with the decrease of δ, the number of subspaces with higher

dimensionality is typically increased.
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(a) BCW (b) CMSC

(c) Glass (d) PID

(e) Waveform (f) Wine

Figure 4.3: Dimensionality distributions of top inlying contrast subspaces (k = 1)
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(a) BCW (b) CMSC

(c) Glass (d) PID

(e) Waveform (f) Wine

Figure 4.4: Dimensionality distributions of top outlying contrast subspaces (k = 1)
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4.4.2 Efficiency

To the best of our knowledge, there is no previous method tackling the exact same

mining problem. Therefore, we evaluate the efficiency of CSMiner and its variations.

Specifically, we implemented the baseline method (Algorithm 4.1). To evaluate the efficiency

of our pruning techniques for contrast subspace mining, we also implemented CSMiner

(Algorithm 4.2), and CSMiner -BPR (Algorithm 4.3) using the bounding-pruning-refining

method.

We report the results on the Waveform data set only, since it is the largest one with the

highest dimensionality. We randomly select 100 records from Waveform as query objects,

and report the average runtime. The results on the other data sets follow similar trends.

Figure 4.5 shows the runtime with respect to the minimum likelihood threshold δ.A

logarithmic scale has been used for the runtime to better demonstrate the difference in the

behavior between CSMiner and the baseline. The baseline performs exhaustive subspace

search and thus its runtime is unchanged across different δ values. For CSMiner and

CSMiner -BPR, as δ decreases, their runtime increase exponentially. However, the heuristic

pruning techniques implemented in CSMiner and CSMiner -BPR accelerate the search sub-

stantially in practice. Moreover, CSMiner -BPR is slightly more efficient than CSMiner.
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Figure 4.5: Scalability test w.r.t δ(k = 10, α = 0.8)

Figure 4.6 shows the runtime with respect to the data set size, which is measured by the

number of objects. Again, the runtime is plotted using the logarithmic scale. We can see
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that our pruning techniques can achieve a roughly linear runtime in practice. Both CSMiner

and CSMiner -BPR are considerably faster than the baseline method, and CSMiner -BPR

is slightly more efficient than CSMiner.
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Figure 4.6: Scalability test w.r.t data set size (k = 10, δ = 0.01, α = 0.8)

Figure 4.7 shows the runtime with respect to the dimensionality of the data set. The

runtime is also plotted using the logarithmic scale. As dimensionality increases, more

candidate subspaces are generated. Correspondingly, the runtime increases exponentially.

However, our heuristic pruning techniques implemented in CSMiner and CSMiner -BPR

speed up the search in practice. Moreover, CSMiner -BPR is faster than CSMiner.
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Figure 4.7: Scalability test w.r.t dimensionality (k = 10, δ = 0.01, α = 0.8)
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CSMiner -BPR employs a user defined parameter α to define the ε-neighborhood.

Table 4.10 lists the average runtime of CSMiner -BPR for a query object with respect

to α on each real data set. The runtime of CSMiner -BPR is not sensitive to α in general.

Experimentally, the shortest runtime of CSMiner -BPR happens when α is in [0.6, 1.0].

Data set
Average runtime (millisecond)

α = 0.6 α = 0.8 α = 1.0 α = 1.2 α = 1.4

BCW 20.97 20.14 17.76 16.32 15.59

CMSC 11446.2 11643.5 12915.1 14125.0 15210.2

Glass 16.13 15.83 15.62 15.69 15.76

PID 4.21 4.17 4.23 4.25 4.29

Waveform 6807.1 7102.3 7506.7 7874.7 8183.7

Wine 18.51 18.16 18.42 18.69 19.12

Table 4.10: Average runtime of CSMiner -BPR w.r.t α (k = 10, δ = 0.01)

Figure 4.8 illustrates the relative runtime of CSMiner -BPR with respect to k on each

real data set, showing that CSMiner -BPR is linearly scalable with respect to k. Note that

we show relative performance in Figure 4.8 so that the scalability of CSMiner -BPR with

respect to k on different data sets can be compared in one figure. The absolute performance

of CSMiner -BPR with k = 10, δ = 0.01 and α = 0.8 can be found in Table 4.10.
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Figure 4.8: Relative runtime of CSMiner -BPR w.r.t k (δ = 0.01, α = 0.8)
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4.4.3 Sensitivity to the Bandwidth

To test the sensitivity of the top-k contrast subspaces with respect to the bandwidth value,

we begin by defining the similarity measure for two lists of top-k contrast subspaces.

For any two subspaces S1 and S2, we measure the similarity between S1 and S2 by the

Jaccard similarity coefficient, denoted by Jaccard(S1, S2) = |S1∩S2|
|S1∪S2| .

Given a positive integer r, let Pr be the set of all permutations of the set {i | 1 ≤ i ≤ r}.
Correspondingly, |Pr| = r!. For permutation P ∈ Pr, we denote the j-th (1 ≤ j ≤ r)

element in P by P [j]. For example, by writing each permutation as a tuple, we have P3 =

{(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}. Suppose P = (2, 3, 1), then P [2] = 3.

To the best of our knowledge, there is no previous work on measuring the similarity

between two ranked lists of subspaces. Given two ranked lists of top-k contrast subspaces

`1 and `2, without loss of generality, we follow the definition of average overlap [115] (also

named as average accuracy [121], or intersection metric [40]), which derives the similarity

measure by averaging the overlaps of two ranked lists at each rank, to measure the similarity

between `1 and `2. In addition, in consideration of the fact that each subspace in a list is a

set of dimensions, we introduce the Jaccard similarity coefficient into the overlap calculation.

Specifically, let `1[i] be the element (subspace) at rank i (1 ≤ i ≤ k) in list `1. The agreement

of lists `1 and `2 at rank r (1 ≤ r ≤ k), Agr(`1, `2, r), is

Agr(`1, `2, r) =
1

r
max{

r∑
i=1

Jaccard(`1[P1[i]], `2[P2[i]]) | P1, P2 ∈ Pr}

Then, the similarity between `1 and `2, denoted by Sim(`1, `2), is

Sim(`1, `2) =
1

k

k∑
r=1

Agr(`1, `2, r) (4.12)

Clearly, 0 ≤ Sim(`1, `2) ≤ 1. The larger the value of Sim(`1, `2), the more similar `1 and

`2 are.

Given a set of objects O, and a query object q, to find top-k contrast subspaces for q

with respect to O by CSMiner (Algorithm 4.2), as discussed in Section 4.2.2, we first fix

the bandwidth value hS = σS · hS opt, and use the Gaussian kernel function to estimate the

subspace likelihood of q with respect to O in subspace S. We then vary the bandwidth

value from 0.6hS to 1.4hS for density estimation in S. Let `hS be the top-k contrast

subspaces computed using the default bandwidth value hS , and `
h̃S

be the top-k contrast
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subspaces computed using other bandwidth values. For each object q ∈ O, we discover

top inlying contrast subspaces and top outlying contrast subspaces of q by CSMiner using

different bandwidth values. Figure 4.9 illustrates the average value of Sim(`hS , `h̃S
) of

inlying contrast subspaces with respect to k, and Figure 4.10 illustrates the average value of

Sim(`hS , `h̃S
) of outlying contrast subspaces with respect to k. From the results, we can see

that the contrast subspaces computed using different bandwidth values are similar in most

data sets. As expected, using a bandwidth whose value is closer to h causes less difference.

Moreover, we observe that with increasing k, the value of Sim(`hS , `h̃S
) slightly increases.
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(e) Waveform
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Figure 4.9: The similarity scores of inlying contrast subspaces using different bandwidth

values with respect to k (δ = 0.001)
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Figure 4.10: The similarity scores of outlying contrast subspaces using different bandwidth

values with respect to k (δ = 0.001)
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4.4.4 Comparison with Epanechnikov Kernel

Besides Gaussian kernel (Equation 4.2), another possible kernel for multivariate kernel

density estimation is the multivariate Epanechnikov kernel

Ke(x) =

{
1
2cd
−1(d+ 2)(1− xTx) if xTx < 1

0 otherwise

where cd is the volume of the unit d-dimensional sphere, and can be expressed by making

use of the Gamma function. It is,

cd =
πd/2

Γ(1 + d/2)
=

{
πd/2/(d/2)! if d ≥ 0 is even

πbd/2c2dd/2e/d!! if d ≥ 0 is odd

where d!! is the double factorial.

Plugging Ke(x) into Equation 4.1, the density of a query object q with respect to a set

of objects O in subspace S can be estimated as

f̂S(q,O) =
1

|O|h|S|S

∑
o∈O∧ distS(q,o)2

h2
S

<1

(
1

2
c|S|
−1(|S|+ 2)(1− distS(q, o)2

h2
S

)

)
(4.13)

where hS is the bandwidth for subspace S.

Similar to calculating the bandwidth using Gaussian kernel in Section 4.2.2, we calculate

hS as follows.

hS = σS · hS opt

As Silverman suggested [105], σS is a single scale parameter that equals to the root of the

average marginal variance in S, and hS opt is the optimal bandwidth value which equals to

A(K)|O|−1/(|S|+4), where A(K) = {8c|S|−1(|S| + 4)(2
√
π)|S|}1/(|S|+4) for the Epanechnikov

kernel.

We implemented CSMiner (Algorithm 4.2) using the Epanechnikov kernel for contrast

subspace mining as follows. Given a subspace S, let S be the set of descendants of S in

the subspace set enumeration tree using the standard deviation descending order. Then,

LS(q | O+) and LS(q | O−) can be computed by Equation 4.13, and L∗S(q | O+) =

1

|O|(σ′minh′opt min)τ

∑
o∈O∧ distS(q,o)2

(σSh
′
opt max)

2<1

(
1

2
cminS

−1
(dmaxS + 2)(1− distS(q, o)2

(σSh′opt max)2
)

)



4.4. EMPIRICAL EVALUATION 99

where dmaxS = max{|S′| | S′ ∈ S}, cminS = min{cd | |S| < d ≤ dmaxS }, and the meaning of

σ′min, h′opt min, h′opt max, τ are the same as those in Equation 4.10.

Technically, the Epanechnikov kernel could also be implemented using the CSMiner -

BPR approach (Algorithm 4.3). However, the performance improvement by the bounding-

pruning-refining method would be less significant. The reason lies in the fact that on the one

hand, different from using the Gaussian kernel that each object o has a non-zero likelihood

contribution to the query object q, the contribution of o satisfying distS(q,o)2

h2S
≥ 1 is 0 (by

the definition) to q when uses the Epanechnikov kernel. On the other hand, computing the

neighborhood requires additional computational overhead.

Note that when using the Epanechnikov kernel, f̂S(q,O−) = 0 if for any object

o ∈ O−, distS(q,o)2

h2S
< 1. Correspondingly, LCS(q) = f̂S(q,O+)

f̂S(q,O−)
= +∞. Given data set

O (composed by O+ and O−), we denote by O+∞
E the set of objects whose maximum

likelihood contrast, computed using the Epanechnikov kernel, is infinity. That is, O+∞
E =

{o ∈ O | ∃S s.t. LCS(o) = +∞}.
Let `G be the top-k contrast subspaces computed using the Gaussian kernel, and `E

be the top-k contrast subspaces computed using the Epanechnikov kernel. For each object

q ∈ O, we discover the top-10 inlying contrast subspaces and the top-10 outlying contrast

subspaces of q using the Gaussian kernel and the Epanechnikov kernel, respectively, and

compute Sim(`G, `E) in each data set. For subspaces whose likelihood contrast values are

infinity (LCS(q) = +∞), we sort them by f̂S(q,O+) in descending order. Table 4.11 and

Table 4.12 list the minimum, maximum and average values of Sim(`G, `E), as well as the

ratio of |O+∞
E | to |O|.

Data set O
Sim(`G, `E) |O+∞

E |
|O|Min Max Avg

BCW 0.168 0.980 0.539 590/683 = 0.864

CMSC 0.066 0.826 0.391 540/540 = 1.0

Glass 0.242 0.984 0.814 76/214 = 0.355

PID 0.620 1.0 0.924 1/768 = 0.001

Waveform 0.189 0.981 0.690 2532/5000 = 0.506

Wine 0.159 0.993 0.670 145/178 = 0.815

Table 4.11: Similarity between top-10 inlying contrast subspaces using different kernel

functions in data set O (δ = 0.001)
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Data set O
Sim(`G, `E) |O+∞

E |
|O|Min Max Avg

BCW 0.239 1.0 0.916 67/683 = 0.098
CMSC 0.174 0.926 0.614 540/540 = 1.0
Glass 0.358 1.0 0.906 16/214 = 0.075
PID 0.655 1.0 0.938 1/768 = 0.001

Waveform 0.364 0.998 0.820 894/5000 = 0.179
Wine 0.209 1.0 0.804 40/178 = 0.225

Table 4.12: Similarity between top-10 outlying contrast subspaces using different kernel
functions in data set O (δ = 0.001)

From the results, shown in Tables 4.11 and 4.12, we can see that the value of Sim(`G, `E)

is related to
|O+∞
E |
|O| . Specifically, the smaller the value of

|O+∞
E |
|O| the more similar `G and `E

are. For example, when mining inlying contrast subspaces (Table 4.11), the values of
|O+∞
E |
|O|

in BCW, CMSC, Waveform and Wine are larger than 0.5, which is larger than the values

of
|O+∞
E |
|O| in PID and Glass, while the values of Sim(`G, `E) are lower in BCW, CMSC,

Waveform and Wine than those values in PID and Glass. When mining outlying contrast

subspaces (Table 4.12), we note that the values of
|O+∞
E |
|O| are less than 0.1 in BCW, Glass

and PID, while the values of Sim(`G, `E) in these data sets are over 0.9.

Furthermore, we compute Sim(`G, `E) in O \ O+∞
E for each data set except CMSC,

because for CMSC, O \ O+∞
E = ∅. From the results shown in Table 4.13 (inlying contrast

subspace mining) and Table 4.14 (outlying contrast subspace mining), we can see that `G

is more similar to `E without considering the objects whose maximum likelihood contrast

is infinity.

Data set O \O+∞
E

Sim(`G, `E)
|O \O+∞

E |
Min Max Avg

BCW 0.643 0.980 0.922 93

Glass 0.720 0.984 0.929 138

PID 0.620 1.0 0.924 767

Waveform 0.324 0.981 0.754 2468

Wine 0.527 0.988 0.904 33

Table 4.13: Similarity between top-10 inlying contrast subspaces using different kernel

functions in data set O \O+∞
E (δ = 0.001)
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Data set O \O+∞
E

Sim(`G, `E) |O \O+∞
E |

Min Max Avg

BCW 0.561 1.0 0.934 616
Glass 0.629 1.0 0.925 198
PID 0.655 1.0 0.938 767

Waveform 0.437 0.998 0.836 4106
Wine 0.482 1.0 0.863 138

Table 4.14: Similarity between top-10 outlying contrast subspaces using different kernel
functions in data set O \O+∞

E (δ = 0.001)

4.5 Conclusions

In this chapter, we studied the novel and interesting problem of mining contrast subspaces

to discover the aspects in which a query object is most similar to a class and dissimilar

to another class. We demonstrated theoretically that the problem is very challenging and

is MAX-SNP hard. We presented a heuristic method based on pruning rules and upper

and lower bounds of likelihood and likelihood contrast. Our experiments on real data sets

clearly show that our method improves contrast subspace mining substantially compared

to the baseline method.



Chapter 5

Mining Contextual Outliers

The interpretability of outliers, that is, explaining in what ways and to what extent an

object is an outlier, is a critical issue in outlier detection.

In this chapter, we develop a notion of contextual outliers on categorical data. In-

tuitively, a contextual outlier is a small group of objects that share strong similarity with a

significantly larger reference group of objects on some attributes, but deviate dramatically

on some other attributes. An example is: “Among computer science senior undergraduate

students at university X, a small group of 3 students not enrolled in the data structure

course is an outlier against the reference group of 128 students enrolled in the course.” We

systematically develop a model, including a concise representation, for contextual outlier

analysis, and devise a detection algorithm that leverages the state-of-the-art data cube

computation techniques. We conduct extensive experiments to evaluate our approach.

5.1 Motivation

More often than not, an analyst may want to see not only the outliers detected, but also

insightful explanations about the outliers. Particularly, an analyst may want to know, for

an outlier, a reference group of objects which the outlier deviates from in some aspects and

shares similarity with in some other aspects, and a set of features manifesting the outlier’s

unusual/deviating behavior, the outlier degree, and the other similar outliers sharing the

same context. Such contextual information can help an analyst to better understand and

investigate individual outliers and propose action plans suitable for such outliers.

In addition to the application Scenario 3 of the Example 1.1, we provide one more

102
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example in the following. Figure 5.1 shows a contextual outlier found from a data set

containing all the 958 possible board configurations at the end of tic-tac-toe games. (For

details on this data set, see Section 5.5.) Here, “x” and “o” mark positions occupied by the

x and o players respectively, “b” marks positions not occupied by any player, and “∗” is a

wildcard matching any value among “x”, “o”, and “b”.

(a) An outlier group
cover: 2

b ∗ b

∗ x ∗

b ∗ o

(b) A reference group
cover: 35

x ∗ o

∗ ∗ ∗

o ∗ o

(c) Outlier instance c1

b x b

o x x

b o o

(d) Outlier instance c2

b o b

x x b

b x o

Figure 5.1: A contextual outlier in the tic-tac-toe data set.

Figure 5.1(c) and Figure 5.1(d) show two rare situations, where 3 of the 4 corners are

not occupied by any players at the end of the games. These two rare situations can be

summarized into an outlier group using wildcard symbol “∗”, as shown in Figure 5.1(a). To

manifest the outlier, Figure 5.1(b) shows a reference group where “x” occupies the left-top

corner and “o” the other three corners. The reference group and the outlier group share the

common feature that the right-bottom corner is taken by “o”. The reference group, which

is matched by 35 configurations, is dramatically more popular than the outlier group, which

is matched by only two configurations.

The patterns of the outlier and reference groups suggest that it may be a good strategy

to occupy as many corners in the game, since 33 out of the 35 configurations matching

Figure 5.1(b) are won by “o”.

The outlier group and the reference group cannot be found by the existing outlier
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detection methods. To the best of our knowledge, even though an existing outlier detection

method can detect the outlier group, it cannot find the reference group that clearly manifests

the outliers.

We argue that the contextual information about outliers should be an integral

component in the outlier detection process. Unfortunately, most of the existing outlier

detection methods do not provide rich and detailed contextual information for outlier

analysis.

In this chapter, we tackle the problem of contextual outlier detection on categorical

data, and we do so by making three main contributions. First, we develop a notion of

multidimensional contextual outliers to model the context of an outlier. Intuitively, a

contextual outlier is a small group of objects that share similarity, on some attributes, with

a significantly larger reference group of objects, but deviate dramatically on some other

attributes. An example is: “Among the computer science senior undergraduate students at

University X, a small group of 3 students not enrolled in the data structure course is an

outlier against the reference group of 128 students enrolled in the course.”

In contextual outlier detection, we identify not only the outliers, but also their associated

contextual information including (1) comparing to what reference group of objects the

detected object(s) is/are an outlier; (2) the attributes defining the unusual behavior of

the outlier(s) compared against the reference group; (3) the population of similar outliers

sharing the same context; and (4) the outlier degree, which measures the population ratio

between the reference normal group and the outlier group.

Second, there may exist many contextual outliers in a data set, and some of them can be

very similar or even “equivalent” to each other. It is clearly important to identify and reduce

redundancy among outliers in order to assist users to effectively analyze the outliers. We

develop an approach to systematically identify redundant contextual outliers and propose

a concise representation of contextual outliers.

Third, we design a simple, yet effective algorithm that leverages the state-of-the-art data

cube computation techniques. The focus of our method is to find outliers together with their

contextual information. We conduct extensive experiments to evaluate the feasibility and

usefulness of our approach.

The rest of the chapter is organized as follows. We propose the notion of contextual

outliers in Section 5.2, and give a general analysis of the collection of contextual outliers

in Section 5.3. We develop a contextual outlier detection algorithm in Section 5.4. We
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evaluate our approach in Section 5.5. We conclude the chapter in Section 5.6.

5.2 Contextual Outliers

In this study, we consider outlier detection on multidimensional categorical data.

Specifically, we consider a base table T (D1, . . . , Dd), where D1, . . . , Dd are categorical

attributes with finite domains. We assume that each object is represented by a tuple in the

base table and is associated with an identifier tid, which is used as a reference to the object

only, and does not carry any other meaning. For an object t ∈ T , let t.Di and t.tid denote

the value of t on attribute Di (1 ≤ i ≤ d) and the identifier of t respectively.

A subspace is a subset of attributes. In order to summarize a group of objects, we add a

wildcard meta-symbol ∗ to the domain of every attribute Di (1 ≤ i ≤ d). Symbol ∗ matches

any possible values in the domain. A group-by tuple (or group for short) is a tuple

g = (g.D1, . . . , g.Dd) such that g.Di takes either a value in the domain of Di or meta-symbol

∗. The cover of g is the set of objects in T matching g, that is, cov(g) = {t ∈ T | t.Di =

g.Di for all i such that (1 ≤ i ≤ d&g.Di 6= ∗)}. The set space(g) = {Di | 1 ≤ i ≤ d, g.Di 6=
∗} is called the subspace of g, and the set avs(g) = {Di = g.Di | 1 ≤ i ≤ d, g.Di 6= ∗}
is called the non-∗ attribute-value set (AVS for short) of group g. For an AVS V ,

we overload the operator space(·) by defining space(V ) = {Di | Di occurs in V }. Thus,

space(avs(g)) = space(g) always holds.

For two distinct groups g1 and g2, g1 is an ancestor of g2, and g2 a descendant of g1,

denoted by g1 � g2, if avs(g1) ⊂ avs(g2), that is, for every attribute Di (1 ≤ i ≤ n) such

that g1.Di 6= ∗, we have g1.Di = g2.Di. We write g1 � g2 if g1 � g2 or g1 = g2.

c-id City Type Branch Package
C1 L1 T1 B1 Gold
C2 L1 T1 B1 Silver
C3 L1 T1 B1 Gold
C4 L1 T1 B2 None
C5 L2 T2 B1 Silver
C6 L1 T2 B1 Gold

Table 5.1: A table T of a set of customers.

Property 5.1 (Monotonicity). For two groups g1 and g2 such that g1 � g2, cov(g1) ⊇
cov(g2).
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Example 5.1. Consider the base table T in Table 5.1, which contains the cities, customer-

types, home-branches, and service packages of some investment service customers. For

group g = (L1, T1, ∗, ∗), cov(g) = {C1, C2, C3, C4}, space(g) = {city, type}, and avs(g) =

{city = L1, type = T1}.
Let g′ = (L1, T1, B1, ∗). Then, g is an ancestor of g′ and g′ a descendant of g, that is,

g � g′. Moreover, cov(g′) = {C1, C2, C3} ⊂ cov(g).

We are now ready to define contextual outliers. Intuitively, for a group of outlier objects,

the contextual information consists of a group of reference objects that manifest the outlier

group in a subspace. The comparison of the two groups in population size is also included.

Definition 5.1 (Contextual outlier). Let T be a base table, and gr, go be two groups such

that space(gr) = space(go) 6= ∅. Given an outlier degree threshold ∆ > 1, the pair

(gr, go) is a contextual outlier if the outlier degree deg(gr, go) = |cov(gr)|
|cov(go)| ≥ ∆. We call

gr the reference group, go the outlier group, out(gr, go) = space(gr)−space(cond(gr, go))

the outlier subspace, and cond(gr, go) = avs(gr)∩avs(go) the shared AVS. It is possible

that cond(gr, go) is empty.

The shared AVS cond(gr, go) provides a context subspace for the outlier analysis about

go. The objects in groups go and gr belong to the same context subspace, that is, they take

the same values on those attributes that occur in cond(gr, go). If cond(gr, go) = ∅, gr and go

do not share any common features. In such a special case, go is a global outlier that is small

in population and different from a large reference group gr in space space(go) = space(gr).

The reference group gr indicates the normal or dominating objects to which go is

compared. The outlier group go and the outlier subspace out(gr, go) indicate the outlier

objects cov(go) and the attributes that manifest the deviation of go from gr. The outlier

degree measures how exceptional the group go is when compared to gr. The larger the

outlier degree is, the more outlying go is.

Example 5.2. In T (Table 5.1), let the outlier degree threshold be ∆ = 2. Then,

(gr, go) = ((L1, T1, B1, ∗), (L1, T1, B2, ∗)) is a contextual outlier, where (L1, T1, B1, ∗) is

the reference group, {city = L1, type = T1} is the shared AVS, (L1, T1, B2, ∗) is the outlier

group, {branch} is the outlier subspace, and the outlier degree is deg(gr, go) = 3.

One object may be an outlier in more than one context. For example, customer C4 is

an outlier in the above context and ((∗, T1, ∗,Gold), (∗, T1, ∗,None)).
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Using only an outlier degree threshold may lead to many contextual outliers, since many

groups of very small cover size, such as 1, may be identified as outliers. We will address

this issue in Section 5.3.3.

The definitions and frequently used notations are summarized in Table 5.2.
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Notation Description

T (D1, . . . , Dd) A base table, where D1, . . . , Dd are

categorical attributes with finite domains.

∗ A widecard meta-symbol, matches any

possible values in a domain.

g(= (g.D1, . . . , g.Dd)) A group-by tuple (or group for short), g.Di

takes either a value in the domain of Di or

meta-symbol ∗.
cov(g) The cover of g, the set of objects in T

matching g, that is, cov(g) = {t ∈ T | t.Di =

g.Di for all i such that (1 ≤ i ≤ d&g.Di 6=
∗)}.

space(g) The subspace of g, space(g) = {Di | 1 ≤ i ≤
d, g.Di 6= ∗}.

avs(g) The non-∗ attribute-value set (AVS for short)

of g, avs(g) = {Di = g.Di | 1 ≤ i ≤ d, g.Di 6=
∗}.

g1 � g2 g1 is an ancestor of g2, and g2 a descendant

of g1, if avs(g1) ⊂ avs(g2).

(gr, go) A contextual outlier, where gr is the reference

group and go is the outlier group.

deg(gr, go) The outlier degree of contextual outlier

(gr, go), deg(gr, go) = |cov(gr)|
|cov(go)| .

∆ The outlier degree threshold.

cond(gr, go)(= avs(gr) ∩ avs(go)) The shared AVS of contextual outlier (gr, go).

out(gr, go)(= space(gr)− space(cond(gr, go))) The outlier subspace of contextual outlier

(gr, go).

α(gr, go) The significance of a contextual outlier

(gr, go) (Definition 5.6).

Φ(g1, g2) The assembly of an ordered pair (g1, g2)

(Definition 5.7).

Table 5.2: Summary of definitions and frequently used notations in Chapter 5.
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5.3 Contextual Outlier Analysis

Enumerating all possible contextual outliers in a base table is ineffective due to three reasons.

First, some contextual outliers are highly similar and even equivalent to each other. Outlier

detection is often followed by business actions, which are expensive to perform. Including

redundant outliers may lead to unnecessary extra cost in the “analysis and actions” process

and may also overwhelm users. Second, it is informative and important to analyze the

relationships among outliers. The contextual outliers in a data set may not be independent

of each other. A systematic analysis of the relationships among outliers may, for example,

support business decisions based on the relationships among a collection of outliers, instead

of on individual outliers only. Third, as mentioned at the end of Section 5.2, using an

outlier degree threshold alone may lead to many insignificant contextual outliers, which

may overwhelm users in practice. In this section, we conduct contextual outlier analysis to

address the above three aspects.

5.3.1 Redundancy Removal Using Closures

We immediately observe the following:

Lemma 5.1 (Non-closure attributes). For two contextual outliers (gr1 , go1) and (gr2 , go2)

in a base table T , if gr1 � gr2, go1 � go2, cov(gr1) = cov(gr2), and cov(go1) = cov(go2), then

deg(gr1 , go1) = deg(gr2 , go2).

In the two contextual outliers (gr1 , go1) and (gr2 , go2) in Lemma 5.1, the two groups gr1

and gr2 capture the same set of objects. Hence (gr1 , go1) is redundant given (gr2 , go2) or

vice versa. Since gr1 � gr2 , gr2 contains some extra attributes in addition to those in gr1 .

Hence gr2 is more informative and descriptive than gr1 as a reference group. It is better to

include (gr2 , go2) for outlier analysis.

Definition 5.2 (Closure group/outlier). Given a base table T , a group g is a closure group

if for any descendant group g′ ≺ g, cov(g′) ⊂ cov(g). (gr, go) is called a closure outlier

if there does not exist another contextual outlier (gr′ , go′) such that gr′ ≺ gr, go′ ≺ go,

cov(gr) = cov(gr′), and cov(go) = cov(go′).

Example 5.3 (Closure group/outlier). In table T (Table 5.1), for contextual outliers

gu1 = ((∗, T1, B1, ∗), (∗, T1, B2, ∗)) and gu2 = ((L1, T1, B1, ∗), (L1, T1, B2, ∗)), since
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cov((∗, T1, B1, ∗)) = cov((L1, T1, B1, ∗)) and cov((∗, T1, B2, ∗)) = cov((L1, T1, B2, ∗)), gu1
is redundant given gu2 . The reference group in gu2 is a closure one. It can be verified that

gu2 is a closure outlier.

We now establish a relationship between closure groups and closure outliers.

Theorem 5.1 (Closure group/outlier). Contextual outlier (gr, go) is a closure outlier if and

only if either gr or go is a closure group.

Proof. (If) There are two cases. In the first case, gr is a closure group. Then, there does not

exist (gr′ , go′) such that gr′ ≺ gr and cov(gr) = cov(gr′). In the second case, go is a closure

group. Then, there does not exist (gr′ , go′) such that go′ ≺ go and cov(go) = cov(go′). In

both cases, (gr, go) satisfies the definition of closure outliers.

(Only-if) We prove by contradiction. Assume that (gr, go) is a closure outlier, but

neither gr nor go is a closure group. Then, there exist gr′ and go′ such that gr′ ≺ gr,

go′ ≺ go, cov(gr) = cov(gr′) and cov(go) = cov(go′). This contradicts the assumption that

(gr, go) is a closure outlier.

We can generalize the idea of closure outliers to reduce redundancy further.

Example 5.4. Consider T (Table 5.1) and the outlier degree threshold ∆ = 3. C4 is in two

contextual outliers, gu1 = ((L1, ∗, B1, ∗), (L1, ∗, B2, ∗)) with deg(gu1) = 4, and gu2 = ((L1,

T1, B1, ∗), (L1, T1, B2, ∗)) with deg(gu2) = 3. Comparing to gu1 , the reference group in gu2

is more specific and thus is closer to the outlier group and more informative.

We generalize the observation in Example 5.4 and introduce the notion of tight outlier,

which is essentially an outlier and its most specific reference group.

Definition 5.3 (Tight outlier). Let T be a base table and (gr, go) a contextual outlier with

respect to outlier degree threshold ∆. We call (gr, go) a tight outlier if there does not

exist another outlier (gr′ , go′) with respect to threshold ∆ such that gr � gr′ and cov(go) =

cov(go′).

Corollary 5.1. A tight outlier is a closure outlier.

As shown in Example 5.4, not every closure outlier is tight.
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5.3.2 Relationships among Outliers

An outlier group may have more than one reference group in the same outlier space.

Consider two contextual outliers (gr1 , go) and (gr2 , go) such that space(gr1) = space(gr2),

cond(gr1 , go) = cond(gr2 , go). The two outliers have the same outlier subspace, since

out(gr1 , go) = space(gr1) − space(cond(gr1 , go)) = space(gr2) − space(cond(gr2 , go)) =

out(gr2 , go). If |cov(gr1)| > |cov(gr2)|, gr1 is a stronger reference group than gr2 and go

deviates more from gr1 than from gr2 . Thus, (gr2 , go) is redundant given (gr1 , go). In words,

we only need to report the reference group that an outlier deviates most. This is modeled

in the following notion of strong outliers.

Definition 5.4 (Strong outlier). A contextual outlier (gr, go) is a strong outlier if there

does not exist another outlier (gr′ , go′) such that space(gr) = space(gr′), cond(gr, go) =

cond(gr′ , go′), cov(go) = cov(go′), and |cov(gr′)| > |cov(gr)|.

Example 5.5 (Strong outlier). For T (Table 5.1) and the outlier degree threshold ∆ = 2,

consider contextual outliers gu1 = ((∗, ∗, ∗,Gold), (∗, ∗, ∗,None)) with deg(u1) = 3, and

gu2 = ((∗, ∗, ∗, Silver), (∗, ∗, ∗,None)) with deg(gu2) = 2. u1 is stronger than gu2 in outlier

degree, and they have the same shared AVS. gu2 is redundant given gu1 . In fact, gu1 is a

strong outlier.

A group of objects may appear in multiple strong and tight contextual outliers, such

as C4 in T (Table 5.1). To comprehensively understand an outlier group, we can group all

contextual outliers together with respect to the same set of outlier objects.

Definition 5.5 (Contextual outlier group). Given an outlier degree threshold ∆ > 1, a

set of contextual outliers {(gr1 , go1), . . . , (grl , gol)} is called a contextual outlier group if

(1) (gr1 , go1), . . . , (grl , gol) are all strong and tight contextual outliers; (2) cov(go1) = · · · =
cov(gol); and (3) there does not exist a proper superset of contextual outliers satisfying

the above two requirements. We denote by Context∆(go) the contextual outlier group

{(gr1 , go1), . . . , (grl , gol)} such that cov(go1) = · · · = cov(gol) = go.

The (geometric) average degree of a contextual outlier group Context∆(go) =

{(gr1 , go1), . . . , (grl , gol)} is deg(go,∆) = l

√∏l
i=1 deg(gri , goi). In particular, when l = 0,

we have deg(go,∆) = 1.

We use the geometric average degree instead of the arithmetic average to aggregate the

outlierness of an outlier group in multiple contexts because the contexts in general may
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not be completely independent. The geometric average prefers outlier groups whose outlier

degrees in multiple contexts are more balanced against those that are extremely outlying in

only a small number of contexts, but not the others. Of course other aggregate functions

might also be adopted.

5.3.3 Finding Significant Outliers

As mentioned earlier, using only an outlier degree threshold may lead to many contextual

outliers, since many groups of very small cover size and with a small difference from large

reference groups, such as on one attribute, may be identified as outliers. To tackle the

problem and avoid overwhelming users by many insignificant outliers, we need to test the

statistical significance of contextual outliers. In other words, we use statistical test to avoid

reporting groups that are caused by random noise.

Intuitively, we use the global distribution in the base table as the background distribution

by ignoring the tuples taking the same values with the reference group, and measure the

statistical significance of the outlier group. For global outliers, we assume the uniform

distribution as the background.

Definition 5.6 (Outlier significance). Let (gr, go) be a contextual outlier in a base table

T . The background distribution of (gr, go) in subspace out(gr, go) is the distribution of

tuples in T − {t ∈ T | t.D = gr.D,∀D ∈ out(gr, go)}, if cond(gr, go) 6= ∅, and the uniform

distribution, otherwise.

The significance of a contextual outlier (gr, go), denoted by α(gr, go), is the p-value of

the null hypothesis H0: go has been generated from the tuples in cov(cond(gr, go))− cov(gr)

according to the background distribution in space out(gr, go).

In the above definition, cov(cond(gr, go))−cov(gr) is the set of tuples matching reference

group gr in subspace cond(gr, go) but not in subspace out(gr, go). The smaller the p-value

α(gr, go) is, the more significant the outlier is. The following shows the details of significance

calculation.

Consider a contextual outlier (gr, go). Let pgo be the probability of AVS avs(go)−avs(gr)
in the background distribution. If the background distribution is uniform, then

pgo =
1∏

D∈space(out(gr,go))(|D| − 1)
.
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Let m = |T − {t ∈ T | t.D = gr.D,∀D ∈ out(gr, go)}| be the number of tuples matching

r in subspace cond(gr, go), but not in subspace out(gr, go). Then, we have

α(gr, go) =
m∑

i=|cov(go)|

pigo(1− pgo)
m−i

Example 5.6 (Outlier significance). Given T (Table 5.1), an outlier degree threshold ∆ =

3, and a significance threshold s = 0.01. We perform the outlier significance test on a strong

and tight contextual outlier, gu1 = ((L1, ∗, B1, Gold), (L1, ∗, B2, None)) with deg(gu1) = 3

and out(gr, go) = {Branch, Package}.
According to the previous discussion, we have pgo = 1

(|Branch|−1)(|Package|−1) =
1

(2−1)(3−1) = 1
2 , m = 6− 3 = 3, i = 1, and thus α(gr, go) = (1

2)1(1
2)2 + (1

2)2(1
2)1 + (1

2)3(1
2)0 =

3
8 = 0.375. Since α(gr, go) > s, gu1 is not a significant contextual outlier here.

Based on the above discussion, we can define the problem of contextual outlier detection

as, given a base table T , an outlier degree threshold ∆ > 1, and a significance threshold

s > 0, find all strong and tight context outliers (gr, go) such that α(gr, go) < s.

5.4 Detection Algorithms

In this section, we develop an algorithm for contextual outlier detection. We observe that

group-bys are essential units in both data cube computation and contextual outlier analysis,

so we can exploit state-of-the-art data cube techniques in detecting contextual outliers.

Our method is inspired by Theorem 5.1. Since every closure contextual outlier must have

either the reference group or the outlier group as a closure group, we can find all closure

groups in the base table first, and then use the closure groups to assemble contextual

outliers.

Finding closure groups and closure patterns has been well studied in frequent pattern

mining [91, 112] and data cube computation [72]. Given a base table T , we can adopt a

state-of-the-art algorithm, such as the DFS algorithm in [72], to find all closure groups.

Therefore, hereafter, we focus on how to use closure groups to assemble contextual outliers.

We define the following assembly operation to extract the common attributes in two

closure groups.

Definition 5.7 (Assembly). Given two closure groups g1 and g2 on a base table T , the

assembly of the ordered pair (g1, g2), denoted by Φ(g1, g2) = (g′1, g
′
2), is the ordered pair of
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groups such that for every attribute D ∈ space(g1) ∩ space(g2), g′1.D = g1.D and g′2.D =

g2.D; for any other attribute B ∈ (T − space(g1) ∩ space(g2)), g′1.B = g′2.B = ∗. We call

g′1 and g′2 the reference group and the outlier group of the assembly, respectively.

Example 5.7 (Assembly). In T in Table 5.1, for closure groups g1 = (L1, T1, B1, ∗) and

g2 = (∗, T2, B1, ∗), the assembly of the ordered pair Φ(g1, g2) = ((∗, T1, B1, ∗), (∗, T2, B1, ∗)).

It is easy to verify the following, which shows that contextual outliers are fixpoints for

Φ.

Corollary 5.2. For any contextual outlier (gr, go), Φ(gr, go) = (gr, go).

Since the assembly operator takes an ordered pair of closure groups as the input

and produces an ordered pair as the output, in general, Φ(g1, g2) 6= Φ(g2, g1). Instead,

the reference (outlier) group of the assembly Φ(g1, g2) is the outlier (reference) group of

Φ(g2, g1). The assembly operation has the following nice property.

Corollary 5.3. For every tight and strong contextual outlier (gr, go), there exists a unique

ordered pair of closure groups (gr′ , go′) such that Φ(gr′ , go′) = (gr, go), cov(gr) = cov(gr′),

and cov(go) = cov(go′).

Proof. According to Theorem 5.1, either gr or go must be a closure group. Without loss

of generality, let us assume gr is a closure group, and thus let gr′ = gr. If go is not a

closure group, there exists a unique closure group go′ such that cov(go) = cov(go′) and

space(go) ⊆ space(go′). Therefore, Φ(gr′ , go′) = Φ(gr, go′) = Φ(gr, go). Using Corollary 5.2,

we have Φ(gr′ , go′) = Φ(gr, go) = (gr, go).

Corollary 5.3 enables us to assemble closure groups into contextual outliers.

Algorithm 5.1 presents the pseudocode of our detection method, COD (for Contextual

Outlier Detection), which is explained in detail as follows.

For each closure group go, we consider all the other closure groups gr such that Φ(gr, go)

is a contextual outlier. Obviously, |cov(go)| cannot be larger than l
∆ , where l is the largest

cover size among all closure groups (calculated in Line 1). For each of such closure groups

go, we iterate over all the other closure groups gr such that |cov(gr)| ≥ ∆|cov(go)| and

α(gr, go) passes the significance threshold (the inner loop, Lines 5-11). To facilitate the
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Algorithm 5.1 COD : the contextual outlier detection algorithm.

Require: G: the complete set of closure groups; ∆: the outlier degree threshold; and s:
the significance threshold

Ensure: the set of tight and strong contextual outliers
1: let l = maxg∈G{|cov(g)|};
2: let CO be the set of contextual outliers; set CO = ∅;
3: for each closure group go such that |cov(go)| ≤ l

∆ do
4: create a set L of tight and strong contextual outliers, set L = ∅;
5: for each closure group gr such that (1) |cov(gr)| ≥ ∆|cov(go)|; (2) space(gr) ⊆
space(go) or space(gr) ⊇ space(go); and (3) α(gr, go) ≤ s do

6: let (gr′ , go′) = Φ(gr, go);
7: if cov(gr) = cov(gr′) and cov(go) = cov(go′) and there is no outlier in L that is

stronger or tighter than Φ(gr, go) and α(Φ(gr, go)) ≤ s then
8: insert Φ(gr, go) into L;
9: remove from L any outliers that Φ(gr, go) is stronger or tighter than;

10: end if
11: end for
12: CO = CO ∪ L;
13: end for
14: return CO;

access of closure groups according to their cover size, we sort all the closure groups in cover

size ascending order.

For a pair of closure groups (gr, go), we compute the assembly Φ(gr, go) = (gr′ , go′). We

only consider the contextual outliers Φ(gr, go) = (gr′ , go′) such that cov(gr) = cov(gr′) and

cov(go) = cov(go′). Otherwise, the outlier will be considered by some other closure groups

according to Corollary 5.3 (the first two conditions in Line 7). If Φ(gr, go) is strong and tight

given the other contextual outliers using go as the outlier group (the second last condition

in Line 7), and is statistically significant (that is, the significance is less than or equal to

the significance threshold) (the last condition in Line 7), then we keep Φ(gr, go) (Line 8),

and use it to remove those contextual outliers found before that are not as strong or tight

as Φ(gr, go) (Line 9).

After the inner loop, all contextual outliers using go as the outlier group are computed,

and the tight and strong ones are kept in L. Those tight and strong outliers are moved

to CO for outputting later. The iteration continues until all closure groups that may be

outlier groups are examined.

COD checks every pair of closure groups (gr, go) such that |cov(gr)|
|cov(go)| ≥ ∆. The correctness
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follows with Corollary 5.3. Moreover, the algorithm is cubic in time with respect to the

number of closure groups in T , that is, |G| in the algorithm. The problem of computing

closure groups in a table is #P-complete by a polynomial reduction from the #P-complete

problem of frequent maximal pattern mining [122]. COD is overall pseudo-polynomial.

5.5 Experimental Results

In this section, we report our empirical evaluation of COD using both real-world and

synthetic data sets. All experiments were conducted on a PC computer with an Intel Core

Duo E8400 3.0 GHz CPU and 4 GB main memory, running Microsoft Windows 7 operating

system. The algorithms were implemented in C++ using Microsoft Visual Studio 2010.

We cannot identify any existing method that solves the exact same problem. The focus

of our method is to find outliers with contextual information. Consequently, this paper does

not intend to compete with the existing methods with respect to outlier detection accuracy

or recall. We do compare our method with LOF [20] in Section 5.5.2.

5.5.1 Results on Real Data Sets

We use categorical data sets from the UCI repository [43]. We report the results on six data

sets: adult, mushroom-sc, solar-flare, tic-tac-toe, credit-approval, and hayes-roth. Some

statistics of the data sets are summarized in Table 5.3. Note that data set mushroom-sc is

made from the data set mushroom. We select all attributes related to mushrooms’ shape

and color in our experiments. For the credit-approval and adult data sets, we keep the

categorical attributes, and remove the numerical attributes. We also remove the records

that having missing values in the selected data sets.

Data Set # of objects # of attributes # of closure groups QC time (s)

Adult 30,162 8 73,282 28.678

Mushroom-sc 8,124 8 6,265 1.879

Solar-flare 1,389 10 7,770 2.136

Tic-tac-toe 958 9 42,711 12.903

Credit-approval 690 8 5,707 1.446

Hayes-roth 160 4 277 0.047

Note: QC time refers to the time used to find all closure groups, that is, |G| in algorithm 5.1.

Table 5.3: The statistics of the data sets.
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COD takes two parameters, the outlier degree threshold ∆ and the significance threshold

s. We report the results with respect to different combinations of ∆ and s values for

each data set. We evaluate COD in four aspects: outlier case studies, outlier analysis

effectiveness (redundancy reduction and significance filtering), efficiency, and scalability on

dimensionality.

Case Studies

We demonstrate the effectiveness of context outlier detection using case studies on the data

sets tic-tac-toe, hayes-roth and mushroom-sc.

An Example on Tic-tac-toe: The tic-tac-toe data set is composed of all the 958 possible

board configurations at the end of tic-tac-toe games. It is assumed that “x” plays first and

then “o” plays. There are 9 attributes, each corresponding to one tic-tac-toe square. An

attribute takes “x” if the corresponding square is occupied by x, “o” if occupied by o, and

“b” if blank.

Figures 5.1(a) and 5.1(b) show a contextual outlier group and a reference group, re-

spectively. The outlier degree of this contextual outlier is 17.5 and the significance is

2.76× 10−12. This outlier corresponds to an end-of-game board where most of the corners

(3 out of 4) are not occupied by any players. This is a rare occurrence, since occupying

corner squares is a common winning strategy in tic-tac-toe games. The only two such

configurations are c1 and c2, shown in Figures 5.1(c) and 5.1(d), respectively.

An Example on Hayes-roth: The hayes-roth data set records the information about

160 people on four attributes [6, 43]. The first attribute, hobby, takes values uniformly

at random [43] and we thus ignore it in our analysis, that is, all groups take value ∗ on

the attribute. The description for the other three attributes are adopted from [6]: the

second attribute, age, takes values in {30, 40, 50, gr > 0} (the meaning of value “gr > 0”

is unspecified in [6]); attribute education takes values in {junior-high, high-school, trade-

school, college}; and the last attribute, marital-status, takes values in {single, married,

divorced, widowed}. Table 5.4 shows some interesting contextual outliers with respect to

∆ = 5 and s = 10−8. For the sake of simplicity, in Table 5.4, we categorize the significance

score of a contextual outlier s′ into three significance levels, low(1 ≤ s
s′ < 10), medium

(10 ≤ s
s′ < 102) and high ( ss′ ≥ 102).
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Outlier-id Reference group gr Outlier group go deg(gr, go) = |cov(gr)|
|cov(go)|

Significance
level

c1 (∗, ∗, high-school, single) (∗, ∗, high-school, divorced) 5.7 = 34/6 high

c2 (∗, ∗, high-school, single) (∗, ∗, trade-school, single) 5.7 = 34/6 high

c3 (∗, ∗, high-school, single) (∗, ∗, high-school, widowed) 8.5 = 34/4 medium

c4 (∗, ∗, trade-school, married) (∗, ∗, trade-school, widowed) 8.0 = 16/2 low
c5 (∗, ∗, junior-high, divorced) (∗, ∗, college, divorced) 8.0 = 16/2 low
c6 (∗, 40, junior-high, ∗) (∗, 40, college, ∗) 8.5 = 34/4 medium
c7 (∗, 40, junior-high, ∗) (∗, 40, trade-school, ∗) 5.7 = 34/6 high
c8 (∗, 40, junior-high, ∗) (∗, 50, junior-high, ∗) 5.7 = 34/6 high

c9 (∗, 50, high-school, ∗) (∗, 50, college, ∗) 8.0 = 16/2 low
c10 (∗, 30, ∗, married) (∗, 30, ∗, widowed) 8.5 = 34/4 medium

Table 5.4: Some contextual outliers on data set hayes-roth (∆ = 5, s = 10−8). The
underlined attributes indicate the shared AVSs.

In Table 5.4, outliers c1 and c2 share the same reference group. The reference group

consists of 34 people whose marital-status is “single” and who have high-school degrees.

Outlier group c1 is a collection of 6 “divorced” college graduates and outlier group c2 is

a collection of 6 “single” trade school graduates. Outlier c5 is interesting: among people

who are divorced, those who are college graduates are outliers compared to those with high

school degrees. c9 shows that, among people who are 50-years old, the 2 with college degrees

are outliers compared to the 16 with high school degrees. Another interesting outlier is c10:

in the age group of 30, the 4 people widowed are outliers compared to the 34 people married.

Please note that, in the whole data set, there are 59 of high-school, 59 of junior-school, 29

of trade-school and 13 of college graduates. Given ∆ = 5, those of trade-school and college

graduates are not outliers comparing to those of high-school and junior-school. The outliers

can only be explained well using the contextual information.

An Example on Mushroom-sc: The mushroom-sc data set is made from data set

mushroom [43]. We select all attributes that related to mushrooms’ shape and color

in our experiment. The mushroom-sc data set contains 8, 124 individual mushroom

records on 8 attributes. The attributes that we selected are (cap-shape, stalk-shape, cap-

color, gill-color, stalk-color-above-ring, stalk-color-below-ring, veil-color, spore-print-color).

Please refer to [43] for the detailed value description of each attribute. Table 5.5 shows

some interesting contextual outliers with respect to ∆ = 50 and s = 10−3. Similar

as the example on Hayes-roth data set, for the sake of simplicity, in Table 5.5, we
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Outlier-id Contextual Outlier deg(gr, go) = |cov(gr)|
|cov(go)|

Significance
level

c1
gr: (∗, ∗, ∗, ∗, White, White, White, ∗)

55.0 = 3520
64 high

go: (∗, Enlarging, ∗, White, White, Brown, White, White)

c2
gr: (Convex, ∗, ∗, ∗, ∗, White, White, ∗)

63.3 = 2024
32 high

go: (Convex, Enlarging, ∗, ∗, ∗, Red, White, White)

c3
gr: (Convex, ∗, ∗, ∗, ∗, ∗, White, Brown)

62.5 = 1000
16 high

go: (Sunken, Enlarging, ∗, ∗, White, White, White, Brown)

c4
gr: (∗, Tapering, ∗, Buff , ∗, White, White, White)

54.0 = 864
16 high

go: (∗, Tapering, ∗, Brown, White, White, White, Purple)

c5
gr: (Convex, Tapering, ∗, ∗, White, White, White, ∗)

54.0 = 816
16 high

go: (Convex, Enlarging, ∗, ∗, red, White, White, White)

Table 5.5: Some contextual outliers on data set mushroom-sc (∆ = 50, s = 10−3). The
underlined attributes indicate the shared AVSs.

also categorize the significance score of a contextual outlier s′ into three significance

levels, low(1 ≤ s
s′ < 10), medium (10 ≤ s

s′ < 102) and high ( ss′ ≥ 102).

Figure 5.2: Names for the Parts of a Mushroom

Figure 5.2 shows the popular names

used for different parts of a mushroom. In

Table 5.5, outlier c1 shows that, among

the mushrooms that are white in the

stalk above ring and the veil, the 64

mushrooms that are brown in the stalk

below ring are outliers, compared to the

3,520 mushrooms that are white in the

stalk below ring. Outlier c2 tells us that,

among the mushrooms that are white in

the veil, brown in the spore print, and

have convex caps, a small group of 32

mushrooms that are red in the stalk below

ring are outliers, compared to a large group of 2,204 mushroom that are white in the stalk

below ring. Outlier c4 is interesting: among the mushrooms that are white in both the stalk

below ring and the veil, and have tapering stalks, the 16 mushrooms that are brown in the

gill and purple in the spore print are outliers, compared to the 864 mushrooms that are buff

in the gill and white in the spore print.
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Effectiveness of Redundancy Reduction and Significance Filtering

To evaluate the effectiveness of the outlier analysis techniques developed in Section 5.3, in

addition to COD, we consider two simplified versions, COD− and BOD. Both of them work

the same as COD except for the following changes. COD− does not apply the significance

test for contextual outliers. BOD does not apply either the redundancy removal techniques

or the significance test.

Figure 5.3 plots the number of contextual outliers and the number of outlier objects

with respect to different ∆ values. An object is called an outlier if it is contained in the

outlier group of a context outlier. We set s = 10−4 and s = 10−5 respectively in COD.

No contextual outliers exist when ∆ ≥ 50 in the tic-tac-toe data set and when ∆ ≥ 20 in

the hayes-roth data set. COD outputs much less contextual outliers than COD− and BOD

in all cases. The number of outlier objects is small, and decreases roughly linearly as ∆

increases. One object may be contained in multiple contextual outliers. Multiple contextual

outliers containing the same outlier object identify how the outlier object deviates from the

majority in different subspaces.
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Figure 5.3: The number of contextual outliers / outlier objects w.r.t different ∆. The y-axis
(# of contextual outliers / outlier objects) is in logarithmic scale.
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Table 5.6 shows the number of outlier objects, outlier groups and contextual outliers with

respect to different significance threshold s in COD. As expected, the lower the significance

threshold, the less outliers are reported. Moreover, the number of outlier groups is much

smaller than that of contextual outliers. This shows that outlier groups are a concise

summarization of contextual outliers.

Adult Mushroom-
sc

Solar-
flare

Tic-
tac-toe

Credit-
approval

Hayes-
roth

s Item name ∆ =
2000

∆ = 60 ∆ =
150

∆ = 30 ∆ = 70 ∆ = 15

10−3
# of out. obj. 1,831 346 161 222 72 12
# of out. grp. 2,429 676 212 222 98 6
# of cont. out. 5,823 6,659 896 664 488 6

10−5
# of out. obj. 1,807 346 124 55 34 12
# of out. grp. 2,399 676 170 55 48 6
# of cont. out. 5,686 6,658 487 104 167 6

10−7
# of out. obj. 1,388 346 113 46 27 12
# of out. grp. 1,745 676 134 46 27 6
# of cont. out. 2,882 6,571 304 84 62 6

10−9
# of out. obj. 1,314 346 107 42 22 12
# of out. grp. 1,506 672 118 42 14 6
# of cont. out. 2,213 5,872 255 76 24 6

Table 5.6: The number of contextual outliers w.r.t. significance threshold.

Efficiency

Figure 5.4 compares the runtime of COD, COD− and BOD on the four real data sets

with respect to various ∆ thresholds. The closure group computation time is reported in

Table 5.3, and is not included in Figure 5.4.

The runtime of BOD is the least among the three methods. COD− takes a very small

amount of extra time on top of BOD to identify tight and strong outliers. COD uses extra

time on top of COD− to test the statistical significance. When ∆ is small, the number of

contextual outliers is large, and thus COD and COD− need more extra runtime. When ∆

increases, the runtime difference between these three methods decreases quickly. In practice,

∆ should not be set to a small value, since one often likes to find outliers that deviate from

significantly larger trends. We notice that different setting of significance threshold s does

not affect the runtime of COD in a noticeable way.
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Figure 5.4: The runtime of COD, COD− and BOD on the six real data sets (s = 10−3 in
COD).
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Scalability on Dimensionality

We test the scalability of COD with respect to dimensionality on the real data sets. We keep

the first k attributes and vary k from 2 to the dimensionality of the data sets. We report the

results on two data sets, adult and solar-flare, which have the largest number of tuples and

the highest dimensionality, respectively, among the six real data sets. Figure 5.5 shows the

number of outlier objects with respect to dimensionality; and Figure 5.6 shows the runtime

with respect to dimensionality. Both the number of outlier objects and runtime increase

when the dimensionality increases, since spaces of higher dimensionality can accommodate

more outliers.
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Figure 5.5: The number of outliers of COD with respect to dimensionality.
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Figure 5.6: The runtime of COD with respect to dimensionality (s = 10−3).
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Scalability on Number of Tuples

We also test the scalability of COD with respect to number of tuples on the real data sets.

Similar to Section 5.5.1, we report the results on two real data sets, adult and solar-flare.

In adult data set, we keep the first k tuples and vary k from 7500 to the number of tuples

of the data set. Similarly, in solar-flare data set, we keep the first k tuples as well and vary

k from 350 to the number of tuples of the data set. Figure 5.7 shows the number of outlier

objects with respect to number of tuples; and Figure 5.8 shows the runtime with respect

to number of tuples. Both the number of outlier objects and runtime increase when the

number of tuples increases, since more tuples can accommodate more outliers.
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Figure 5.7: The number of outliers of COD with respect to number of tuples.
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Figure 5.8: The runtime of COD with respect to number of tuples (s = 10−3).
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5.5.2 Results on Synthetic Data Sets

In order to test the accuracy of COD, we use synthetic data sets, since most real data sets

do not have the complete ground-truth information. We also use synthetic data sets to test

the scalability of COD.

Given the outlier degree threshold ∆ > 0, the number of subspace outliers ms, the

number of global outlier mg, the dimensionality d, the cardinality c, and the number of

tuples in the data set, we generate a synthetic data set in three steps. First, we generate

ms subspace outliers (including the reference groups and the outlier groups) satisfying

the outlier degree threshold requirement. For an outlier, the shared AVS and the outlier

subspace are chosen randomly. Second, we generate mg global outliers (including the

reference groups and the outlier groups) in the same manner. Again, the outlier subspaces

are chosen randomly. Last, we inject independent and uniformly distributed data to fulfill

the requirement on number of tuples. A synthetic data set generated as such carries the

ground truth on contextual outliers. In our experiments, we fix ∆ = 50, ms = 850,

mg = 150, d = 10, c = 100. By default, the number of tuples is set to 1 million.

Methods & Precision Recall

threshold setting Avg. Std. Avg. Std.

COD(∆ = 50, s = 10−7) 78.63% 10.77% 100% 0

LOF (MinPtsLB = 10,MinPtsUB = 100) 68.59% 11.59% 73% 13.04%

Table 5.7: The precision & recall of COD, and comparison with LOF.

Table 5.7 shows the precision of COD. We repeat the experiments 10 times on 10

synthetic data sets generated independently using the same parameters, and report the

average and the standard deviation of the precision and recall. The results show that our

method always detects all outliers in the ground-truth (100% recall). At the same time,

COD has a good precision. Please note that, although we implant the seed outliers in the

synthetic data set as the ground-truth, the noise injected in the synthetic data set may lead

to some outliers that are not included in the ground-truth.

In Table 5.7, we also compare our method COD with LOF [20] using the implementation

in Weka [49] and Hamming distance as the distance measure. The parameters MinPtsLB

and MinPtsUB are set according to the suggestions in [20]. COD outperforms LOF on

the synthetic data sets in both accuracy and recall. Please note that LOF cannot provide
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contextual information for outliers, and is not designed specifically for contextual outlier

detection. In fact, we cannot identify any existing method that solves the exact same

problem.

Figure 5.9 tests the scalability of COD with respect to the number of tuples in the

database. We generate data sets of different sizes, from 100 thousand to 1 million tuples.

We keep the other parameters the same. Again, for each configuration, we repeat the

experiment 10 times, and report results in the figure. The results clearly shows that COD

is scalable with respect to database size.
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Figure 5.9: The scalability of COD on synthetic data sets w.r.t. number of tuples

5.6 Conclusions

In this chapter, we proposed a framework for contextual outlier detection. Our focus was

to improve the interpretability of outliers. In particular, we argued that the context of an

outlier should include a shared AVS, a reference group, an outlier group, and an outlier

degree measure. Moreover, we developed a concise representation for contextual outliers

and presented a detection algorithm leveraging the state-of-the-art data cube computation

techniques.

The proposed contextual outlier concept can be very useful in real world applications.

First, outlier detection tools can be developed based on this concept. The results returned

by such tools can provide the analysts answers to three questions at one time. (1) What
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are the outliers? Answered by the outlier groups. (2) How outlying the identified outliers

are? Answered by the outlier degree. (3) What makes the identified outliers outlying?

Answered by the reference group, the shared AVS and the outlier subspace. Second, some

existing outlier detection tools can improve the interpretability of their results by adopting

the ideas, such as the shared AVS, the outlier subspace and the reference group, in the

proposed contextual outlier concept.



Chapter 6

Mining Markov Blanket Based

Outliers

Mining outliers in subspaces is an important task. It is challenging to select meaningful

subspaces for outlier detection and assess outliers in different subspaces.

In this chapter, to address the above challenge, we propose a Markov blanket based

method. Built on the concept of Markov blankets in Bayesian networks, we can find outliers

from only d Markov blanket subspaces (d is the dimensionality) instead of 2d − 1 non-

empty subspaces. By learning a local Bayesian network for a Markov blanket subspace,

we derive an outlier score measure based on joint probabilities of Bayesian networks, and

then propose the MiCOM algorithm to mine subspaces and outliers simultaneously. Our

experimental results using synthetic and real-world data validate the effectiveness, efficiency

and scalability of our MiCOM algorithm in comparison with the state-of-the-art subspace

outlier detection methods.

6.1 Motivation

In many scenarios, a data object is described by a large number of attributes. Traditional

outlier detection models attempt to detect the deviation of outliers with respect to the full

attribute space, and thus fail to deal with the situation where only a subset of relevant

attributes (a subspace) provides the meaningful information for each object while the

remaining attributes are irrelevant for this object [20, 65, 82]. For instance, the attributes

like “smoking” and “coughing” are relevant for detecting the abnormal patients with a lung

129
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disease. Other attributes such as “age” and “skin humidity” may be irrelevant for the

detection of this type of outlier, but are relevant for discovering the abnormal patients with

the “dehydration” status.

To tackle this problem, mining outliers in subspaces has been explored [20, 82]. The

key challenge on subspace outlier detection is how to select subsets of relevant attributes

(subspaces). In general, given d attributes, there are 2d − 1 non-empty subspaces. Most of

the state-of-the-art subspace outlier detection algorithms, such as OUTRES [82], HiCS [65]

and CMI [17], employ an Apriori-style subspace search scheme, and thus incur very

expensive or even prohibitive cost on high-dimensional data. And then, the challenge is

that, given two outliers in two different subspaces, how we can assess and compare their

outlyingness.

To tackle the challenges, in this chapter, we propose a Markov blanket based method to

select meaningful subspaces for outlier detection. The concept of Markov blankets was first

introduced by Pearl [93] in Bayesian networks. In Bayesian networks, for any attribute X,

its Markov blanket is composed of those attributes that have the highest correlation with

X, and thus makes X independent of the remaining attributes. Therefore, an attribute and

its Markov blanket form a natural subspace for outlier detection. For instance, in health

surveillance data, only the attributes in the Markov blanket of “dehydration”, such as “age”

and “skin humidity” that are highly correlated with “dehydration”, provide the meaningful

information for detecting the abnormal “dehydration” status. The remaining attributes not

in the Markov blanket of “dehydration” are irrelevant to“dehydration”.

Our main idea of Markov blanket based outlier detection is as follows. Assuming a

data set O of d attributes, we regard the Markov blanket of an attribute and the attribute

itself as the Markov blanket subspace and identify d Markov blanket subspaces. Then, by

learning d local Bayesian networks independently over those Markov blanket subspaces, we

derive an outlyingness measure based on the joint probabilities of the Bayesian networks to

assess outliers in multiple subspaces. We make the following contributions.

1. We use Markov blanket to dramatically reduce the number of candidate subspaces

from 2d − 1 possible subspaces to d Markov blanket subspaces.

2. To detect outliers in Markov blanket subspaces, we propose three greedy strategies

to learn d local Bayesian networks on Markov blanket subspaces, and then derive an

outlyingness measure over multiple subspaces based on the joint probabilities of local
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Bayesian networks.

3. We propose the MiCOM algorithm to simultaneously mine subspaces and outliers.

4. Our experimental results using synthetic and real-world data validate the effectiveness,

efficiency and scalability of our MiCOM algorithm in comparison with the state-of-

the-art subspace outlier detection methods.

The rest of the chapter is organized as follows. Section 6.2 proposes the Markov

blanket subspaces. Section 6.3 develops our MiCOM algorithm. Section 6.4 reports our

experimental results on synthetic and real-world data. Finally, Section 6.5 concludes the

paper.

6.2 Markov Blankets for Subspace Discovery

6.2.1 Preliminaries

The concept of Markov blankets was first introduced by Pearl [93] in Bayesian networks. We

first review Bayesian networks and then Markov blankets in detail. Then, we justify why

Markov blankets can be used in subspace outlier detection. Hereafter, the terms “variable”

and “attribute” will be used interchangeably.

Given a training data set O = {o1, o2, · · · , on} containing n training instances, D is

defined on the set of dimensions D = {D1, D2, · · · , Dd} where d is the dimensionality.

Let P be a joint probability distribution of a set of random variables D via a directed

acyclic graph G. We call the triplet 〈D,G,P 〉 a Bayesian network if 〈D,G,P 〉 satisfies

the Markov condition: every variable is independent of any subset of its non-descendant

variables conditioned on its parents in G [93]. A simple Bayesian network of Lung Cancer

as an example is shown in Figure 6.1.
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Figure 6.1: Example of a Bayesian network [75]

With the Markov condition, a Bayesian network encodes the joint probability P over

a set of variables D and decomposes it into a product of the conditional probability dis-

tributions over each variable given its parents in G. Assuming Pa(Di) is the set of parents

of Di(1 ≤ i ≤ d) in G, the joint probability P is

P (D1, D2, · · · , Dd) =

d∏
i=1

P (Di|Pa(Di))

.

Definition 6.1 (Faithfulness). [93] A Bayesian network 〈D,G,P 〉 is said to satisfy the

faithfulness condition if and only if every conditional independence entailed by G is also

present in P .

Theorem 6.1. [93] If a Bayesian network satisfies the faithfulness condition, then the

Markov blanket of a variable X in the Bayesian network is the set of children, parents, and

spouses of X.

6.2.2 Markov Blanket Subspaces

In subspace ouliter detection, the existing studies showed that outliers only appear in

correlated subspaces [82]. The challenge is that the number of candidate subspaces for
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possible correlated subspaces is exponentially large. To tackle this challenge, we propose

the concept of Markov blanket subspaces for efficient selection of correlated subspaces.

In a Bayesian network, for any attribute X, its Markov blanket satisfies the following

property.

Property 6.1. [5] In a Bayesian network 〈D,G,P 〉, if a subset MB(X) ⊆ D − {X} is a

Markov blanket of X, then the following holds

DVKL(P (X|MB(X))| | P (X|D)) = 0

, where DVKL is the Kullback-Leibler (KL) divergence [70] between the estimated distribution

P (X|MB(X)) and the true distribution P (X|D), given by

DVKL(p||q) =
∑
f∈D

p(f)log
p(f)

q(f)

.

From Property 6.1, we can see that, given an attribute X, its Markov blanket renders

X to be statistically independent from all the remaining attributes in a Bayesian network.

Therefore, only the attributes in the Markov blanket of X are highly correlated with X,

and provide the meaningful information to X. The remaining attributes are irrelevant to

X.

For instance, in Figure 6.1, only the attributes in the Markov blanket of “Lung cancer”

provide the meaningful information for detecting the abnormal patients with a lung cancer

disease, while the remaining attributes not in this Markov blanket are irrelevant to“Lung

cancer”. Furthermore, according to [5], for any attribute, its Markov blanket is unique in a

faithful Bayesian network.

Property 6.2. [5] If a Bayesian network satisfies the faithfulness condition, then the

Markov blanket of each attribute is unique.

Accordingly, in Bayesian networks, an attribute and its Markov blanket form a natural

subspace that makes this attribute independent of the remaining attributes.

Definition 6.2 (Markov blanket subspaces). A Markov blankt subspace consists of an

attribute and its Markov blanket.
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Given a data set O with d attributes, it is natural for us to consider d Markov blanket

subspaces as candidate subspaces for outlier detection. Interestingly, to efficiently select

meaningful subspaces from 2d− 1 possible subspaces, Müller et al. [82, 65, 17] proposed the

concept of high contrast subspaces. In the following, we analyze the connections between

Markov blanket subspaces and high contrast subspaces.

Given a subspace s ⊂ D and ∀Di ∈ s, a high contrast subspace is measured by comparing

conditional probability density P (Di|s − {Di}) to the corresponding marginal probability

density P (Di) [65]. In contrast, if a subspace s is an uncorrelated one, it satisfies the

following equation

P (D1, D2, · · · , D|s|) =

|s|∏
i=1

P (Di).

For an uncorrelated subspace s, the joint probability density P (D1, D2, ..., D|s|) is equal

to the product of the marginal probability of each attribute in s, and thus the contrast

between the marginal density P (Di) and its corresponding conditional probability density

P (Di|s− {Di}) is equal to 1, that is,

∀Di ∈ s, P (Di)/P (Di|s− {Di}) = 1.

Accordingly, an uncorrelated subspace is not a high contrast subspace, and does not

contain any meaningful outliers [82, 65]. A high contrast subspace is only the subspace

that shows high dependencies between attributes in this subspace. Using the correlation of

dimensions in a subspace as an objective function for computing subspace contrasts, if a

subspace s is a candidate of high contrast subspace, it should satisfy the following equation

∃Di ∈ s, P (Di)/P (Di|s− {Di}) > 1.

The number of candidates of high contrast subspaces is exponentially large. Furthermore,

to find high contrast subspaces, in any subspace s, we need to search for condition sets from

2|s| attribute sets for each attribute Di ∈ s to compute the contrast between its conditional

probability densities and its marginal densities. It is very computationally costly or even

prohibitive.

With the discussion above, we can get the observation that for any attribute Di ∈
D(1 ≤ i ≤ d), its Markov blanket MB(Di) is the minimum condition set that makes the

Markov blanket subspace, {Di}∪MB(Di), be a high contrast subspace. The explanation is

that attributes in MB(Di) are highly correlated with Di, then P (Di)/P (Di|MB(Di)) > 1



6.3. MINING OUTLIERS IN MARKOV BLANKET SUBSPACES 135

holds. So the Markov blanket subspace, {Di} ∪ MB(Di), is a high contrast subspace.

Assuming ∀s ⊂ D, MB(Di) ⊂ s, according to Property 6.1, we get P (Di)/P (Di|s) =

P (Di)/P (Di|MB(Di)). Thus, the MB(Di) is the minimum condition set that makes

P (Di)/P (Di|MB(Di)) > 1 hold.

The observation illustrates that for any attribute Di ∈ D(1 ≤ i ≤ d), its Markov

blanket not only provides the meaningful information to Di, but also forms a minimum size

of condition set for computing the marginal density P (Di) and the conditional probability

density P (Di|MB(Di)). Accordingly, we can exactly use the d Markov blanket subspaces

as the candidates of high contrast subspaces for outlier detection instead of enumerating

2d − 1 possible subspaces.

Table 6.1 lists the frequently used notations in this chapter.

Notation Description

D = {D1, . . . , Dd} a d-dimensional space

O = {o1, o2, · · · , on} a training data set with n training instances

X an arbitrary attribute, X = Di(1 ≤ i ≤ d) ∈ D
P a joint probability distribution

G a directed acyclic graph

s a subspace, s ⊂ D and ∀Di ∈ s
Pa(Di) the set of parents of Di(1 ≤ i ≤ d) in G

MB(X) a Markov blanket subspace with respect to attribute X

Table 6.1: Summary of frequently used notations in Chapter 6

6.3 Mining Outliers in Markov Blanket Subspaces

Figure 6.2 gives an overview of our proposed framework for outlier mining in Markov blanket

subspaces with the key steps as follows.

1. Learn Markov blanket subspaces and construct a local Bayesian network in a Markov

blanket subspace;

2. Derive a comparable outlierness measure over multiple subspaces;

3. Mine and characterize outliers in Markov blanket subspaces.
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Discover MB subspaces 

Learn Bayesian networks for 

each MB subspace 

Mine outliers 

in MB subspaces 

Characterize outliers 

D = {D1, ..., Dd}

MB(D1) MB(D2) MB(Di) MB(Dd)... ...

... ...

Figure 6.2: Framework of mining outliers in Markov blanket subspaces

6.3.1 Learning Bayesian Networks in Subspaces

We present three greedy strategies to learn a local Bayesian network in a Markov blanket

subspace for outlier detection. Firstly, we employ the state-of-the-art MMMB methods

to discover Markov blankets for each attribute (details in [5]). The MMMB algorithm

identifies parents and children of a target attribute as the first step, and then discovers the

spouses of the target attribute. Secondly, with the discovered Markov blankets, we learn a

local Bayesian network for each Markov blanket subspace through the phases of structure

learning and parameter learning.

Structure learning. We present a greedy method to learn a local Bayesian network

structure in a Markov blanket subspace with the following strategies.

Strategy 1 : if A ∈ MB(X), X ∈ PC(A) and PC(A) − {X} is not empty, then add an

edge in G : X → A, or A→ B,B ∈ {PC(A)− {X}}.
Since the directions of spouses of X, the children of both the spouses and X, and X

can be determined in the Markov blanket discovery phase, due to a well-known V-structure

[93]: A → C ← B. In this V-structure, A and B is initially independent, but will become
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Figure 6.3: Examples of two Bayesian networks in Markov blanket subspaces

dependent when conditioned on C.

Strategy 2 : if PC(A)− {X} is empty, our method only considers adding an edge A →
X, or X → A,A ∈MB(X).

Strategy 3 : Assume DAG(X) is the directed acyclic graph learned from the Markov

blanket subspace of X, andDAG(A) is to the Markov blanket subspace of A. If A ∈ PC(X),

X ∈ PC(A), and edge A → X exists in DAG(X), then the edge A → X should be in

DAG(A).

Strategy 3 keeps the directions between attributes be consistent. This is the key step for

us to use Bayesian network inference to mine outliers in Markov blanket subspaces. If the

directions between attributes are consistent in each local Bayesian network, then the joint

probability for each attribute can be kept consistent. For example, in Figure 6.3, we can

get two local Bayesian networks for “Lung-cancer” and ”Smoking”. In the two Bayesian

networks, the directions between “Lung-cancer” and “Smoking” should be consistent.

Based on the score and our greedy search strategies, the structure learning problem can

be formally expressed as follows: given a complete training data set of instances O, find a

DAG G∗ such that

G∗ = arg max
G∈Gn

g(G : O)

where g(G : O) is the scoring function measuring the degree of fitness of any candidate G

to the data set, and Gn is the family of all the DAGs defined on O. To find a Bayesian

network to maximize the scoring function, we employ the Bayesian Dirichlet scoring function
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proposed in [32].

gBD(G : O) = log(p(G)) +
n∑
i=1

 qi∑
j=1

[
log(

Γ(ηij)

Γ(Nij + ηij)
) +

ri∑
k=1

log(
Γ(Nijk + ηijk)

Γ(ηijk)
)

]
where log(p(G)) is the log-likelihood function, the values ηijk are the hyperparameters for

the Dirichlet prior distributions of the parameters given the network structure, qi is the

number of states of the Cartesian product of Di’s parents, ri is the number of states of Di,

ηij =
∑ri

k=1 ηijk · Γ(.) is the Gamma function, Γ(c) =
∫∞

0 e−uuc−1du.

The likelihood is a function of the parameters which is proportional to the probability

of the observed data, and log(p(O|G)) is defined as follows while D
(m)
i is the mth instance

of attribute Di.

logp(O|G) =
∑n

m=1 logp(D
(m)|θ)

=
∑n

m=1

∑d
i=1 logp(D

(m)
i |D

(m)
πi , θi)

Parameter learning. We estimate parameters for Bayesian networks using maximum

likelihood estimation. Given a data set O and the structure of a Bayesian network G, the

maximum likelihood estimation aims to choose parameters θ that satisfy

L(θ∗ : O|G) = Maxθ∈ΘL(θ : O|G)

The parameter Θ is defined as a hypothesis space, a set of all parameters Θ ∈ [0, 1]. With

the Markov property of Bayesian networks, L(Θ : O) can be decomposed as follows.

L(θ : O|G) =
∏
i

Li(θDi|PaDi
: O|G)

where the local likelihood function for Di is:

L(θDi|PaDi
: O) =

∏
j

P (Dj
i |Pa

j
Di

: θDi|PaDi
)

With the structure of Bayesian network G and the data set O, L(θ : O|G) is reduced

to estimating θijk = P (Di = j|Pa(Di) = k), that is, the maximum likelihood estimates

are simply the observed frequency estimates θ̂ijk = nijk/nij ,where nijk is the number of

occurrences in the training set of the kth state of Di with the jth state of its parents, and

nij is the sum of nijk over all k.

To deal with the situation nijk = 0, we use the Dirichlet prior. Then, θ̂ijk can be written

as follows.

θ̂ijk =
nijk + αDi,PaDi
nij + αPaDi
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where αDi,PaDi = α · P (Di, PaDi), P (Di, PaDi) = 1
|Di|·|PaDi |

, and α =
∑

Di,PaDi
αDi,PaDi .

|Di| is the number of values that Di takes, and |PaDi | is the number of (joint) values of the

parents of Di.

6.3.2 Mining and Characterizing Outliers

Score function: Using Bayesian networks to model Markov blanket subspaces, it is natural

to use joint probabilities of those Bayesian networks as outlyingness scores to measure the

abnormality of data objects. The low scored instances are treated as potential outliers.

With d Bayesian networks over Markov blanket subspaces, given a data object, we get d

scores for this data object. How can we summarize a score for the data object from the d

scores?

To tackle this problem, we first define a score measure for a data object on each Markov

blanket subspace. With d Markov blanket subspaces, their corresponding Bayesian networks

are defined as BN = (BN1, BN2, ..., BNd). We define the outlyingness score for a data

object oi on BNi(1 ≤ i ≤ d) as follows.

Score(oi : BNi) =
∏

Xi∈BNi

P (Xi|Pa(Xi : BNi))

With d scores, a straightforward idea is to select the minimum score for a data object.

However, it is not effective for identifying interesting outliers. There are two situations

accounting for low scored instances.

1. Low prior probability of an attribute leads to low conditional probability. The

outliers in this situation can be detected in one-dimensional subspace by the exisitng

methods [98, 66, 20] without difficulty. Users may not be insterested in this type of

oulites since they might already know the existence of those outliers.

2. An attribute has a high prior probability, but it has a low posterior probability. The

outliers in the condition may hidden in subspaces with more than one dimensions.

The detection of this type of outliers will provide much meaningful information to

users.

We focus on discovering outliers in the second condition above. According to Score(oi :

BNi), if P (Dj) has high prior probability and P (Dj |Pa(Dj)) may get a low conditional

probability, and then P (Dj) and P (Dj |Pa(Dj)) have a strong contrast. A large contrast
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indicates that the corresponding data object may be a potential outlier. Based on this idea,

we define the contrast between P (Dj) and P (Dj |Pa(Dj)) as a score for a Markov blanket

subspace as follows.

SR(BNi) = arg max
Dj∈BNi

P (Dj)/P (Dj |Pa(Dj))

With SR(BNi), we define the outlyingness score for a data object oj as follows.

Outlierscore(oj) = max
BNi∈BN

SR(BNi)

Outlier Detecting and Characterizing: With Outlierscore(oj), we sort the top

k data objects as potential outliers. Meanwhile, for a given outlier, we characterize this

outlier using the Markov blanket subspaces that maximize Outlierscore(oj). Based on the

discussion above, we give the MiCOM algorithm for mining and characterizing outliers in

Markov blanket subspaces as follows.
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Algorithm 6.1 The MiCOM Algorithm

1: Input O = {D1, D2, · · · , Dd}
2: // Identify Markov blanket (MB) subspaces

3: for i = 1 to d do
4: MB(i) = MMMB(Di)
5: end for
6: // Learn a local Bayesian network on a MB subspace

7: for i = 1 to d do
8: Learn the structure of BN∗i on MB(i) with the proposed three strategies such that

BN∗i = arg max
BNi∈Gn

gBD(BNi : O)

9: Learn parameters for BNi

10: end for
11: // Mine outliers over multiple Bayesian networks

12: // Assume n test instances

13: for i = 1 to n do
14: for p = 1 to d do
15:

SR(BNp) = arg max
Dj∈BNp

P (Dj)/P (Dj |Pa(Dj))

16: characterizing attribute={Dj , Pa(Dj)}
17: end for
18: Outlierscore(Oi) = maxBNp∈BN SR(BNp)
19: end for
20: Output top-k data objects with highest scores as potential outliers;
21: Characterize outliers with the sets of characterizing attribute
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6.3.3 Pruning Markov blanket subspaces

With d attributes, clearly, according to Property 6.2, we get d Markov blanket subspaces.

Assuming ξ is the number of attributes without parents and β is the number of attributes

that have no child but have only one parent, and δ = d − ξ − β, the upper bound of the

number of Markov blanket subspaces is given as follows.

Theorem 6.2. With the dimensionality D = {D1, D2, · · · , Dd}, the number of Markov

blanket subspaces γ satisfies

γ 6 δ

Proof. 1. Assuming a Bayesian network BNi is built from the Markov blanket of Di,

Dj ∈ BNi, and F is a child of Di, if Di has no parent, the posterior probability of

Di is P (Di). Assuming BNF is built from the Markov blanket of F , by the following

score function, we can get SR(BNF ) ≥ SR(BNi).

SR(BNi) = arg max
Dj∈BNi

P (Dj)/P (Dj |Pa(Dj))

Thus, the Markov blanket subspace of Di can be pruned.

2. Assuming Di has no child and has only one parent F , then the posterior probability

of P (Di) computed in BNi is the same as this posterior probability computed in

BNF . Assuming F has parents, if SR(BNF ) > SR(BNi), clearly, the Markov blanket

subspace of Di can be pruned; if SR(BNF ) ≤ SR(BNi), the Markov blanket subspace

of Di can also be pruned, since the Markov blanket subspace of Di only includes Di

and F .

For example, in Fig. 6.1, The Markov blanket subspaces corresponding to “anxiety”,

“peer pressure”, and “yellow fingers” can be pruned due to the existence of the Markov

blanket subspace of “smoking”.

6.4 Experiment results

To evaluate the quality of our approach, we compare MiCOM with the state-of-the-art

subspace outlier mining methods: the HiCS [65] and 4S S [85] algorithms, and a full-space
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Bayesian network outlier mining algorithm (BNOM for short) [10] using synthetic and real-

world data. For the 4S S algorithm, k is set to d log n where d is the dimensionality and

n is the number of data objects. For HiCS, the number of statistical tests m chooses the

default value 50. The test statistic size α and the candidate cutoff parameter are set to 0.1

and 400, respectively. For the BNOM method, we use the MMHC algorithm for structure

learning of Bayesian networks (due to its superperformance in learning Bayesian networks

over thousands of attributes.) [110]. For our MiCOM algorithm, we use the Bayesian

network toolbox, which can be downloaded at https://code.google.com/p/bnt/, to learn

structures and parameters of Bayesian networks.

6.4.1 Experiments on synthetic data

In order to evaluate the proposed method, we design synthetic data sets of different sizes

and dimensionality. Each data set contains subspace clusters with dimensionality varying

from 2 to 6 and we generate 15-30 outliers deviating from these clusters.

To evaluate the detection quality of MiCOM, we compare it with HiCS, 4S S, and

BNOM using the precision metric and recall metric. If a synthetic data has k true outliers,

then for each algorithm, we select top-k data objects with the highest outlyingness scores

as potential outliers. The precision metric is defined as the ratio of the number of true

outliers in those top-k data objects against the number of true outliers of this data set. For

the recall metric, we select the top-5 and top-15 data objects with the highest outlyingness

scores from a synthetic data set, respectively. Then, the recall metric is the ratio of the

number of true outliers in those top-k (k = 5 or 15) data objects against the value k.

We design data sets of a fixed size of 1000 objects in dimensionality ranging from 20

to 200. For each dimensionality setting, we generate 10 data sets and calculate average

precision and average recall for each algorithm.

Figure 6.4 shows the average precision of each algorithm, and Figure 6.5 and Figure 6.6

give the average recall. MiCOM outperforms HiCS, 4S S and BNOM. MiCOM is able to

deal with high dimensional data and shows high precision and high recall. We can observe

that MiCOM and the other three algorithms almost achieve the same precision on data sets

of low dimensionality. As dimensionality increases, MiCOM achieves higher precision and

higher recall than the other three methods. As for the recall metric on the top-5 objects

based on outlyingness scores, MiCOM is able to assign higher outlyness scores to potential

outliers than the other three algorithms. This can make MiCOM rank outliers in the top

https://code.google.com/p/bnt/
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list of data objects based on outlyingness scores.
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Figure 6.4: Precision of MiCOM against its rivals
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Figure 6.5: Recall of MiCOM against its rivals using Top 5 data objects based on outlierness

scores
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Figure 6.6: Recall of MiCOM against its rivals using Top 15 data objects based on

outlierness scores

The explanation is that, for HiCS, its parameter of candidate cutoff limits the number

of candidates in the bottom-up subspace processing, and then affects the quality of HiCS.

We set the parameter to 400 in our experiments. In data sets of low dimensionality, by

selecting the top 400 highest contrast subspaces, HiCS can achieve high precision. But

with the increasing dimensionality, it is hard to select a descent candidate cutoff parameter

to guarantee the quality of HiCS.

For 4S S, it uses the parameter k (k pairs of attributes with the largest correlations) to

balance its precision and running time. So with increasing dimensionality, it is also hard to

set a proper value of k for 4S S. With respect to BNOM, as the dimensionality increases,

the joint probabilities between data objects will become more and more similar. Therefore,

BNOM shows performance degradation under high dimensionality.

In addition to the precision measure, Figure 6.7 shows the running time of MiCOM,

HiCS, 4S S, and BNOM with increasing dimensionality (the running time for both subspace

search and outlier detection). MiCOM is the fastest algorithm while HiCS is the slowest

one among all the algorithm evaluated.
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Figure 6.7: Running time of MiCOM against its rivals

In order to testing the scalability in high dimensionality, we compare the scalability of

MiCOM against the other three algorithms using data sets in different sizes. In Figure 6.8,

the dimensionality is fixed at 40 and the size of data sets varies from 1,000 to 10,000. We

observe that the MiCOM algorithm is still the fastest algorithm. As the number of data

objects increases, the running time of HiCS becomes very high. The BOMB algorithm is

also very efficient since it uses MMHC [110], which is an efficient Bayesian network structure

learning algorithm scalable to thousands of attributes.
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Figure 6.8: Running time of MiCOM against HiCS and BNOM using various data sizes
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Figure 6.9 illustrates the running time of MiCOM and 4S S on high-dimensional and

large-scale data. In Figure 6.9 (a), the number of data object is fixed at 1,000; and in

Figure 6.9 (b), the dimensionality is set to 40. We observe that both MiCOM and 4S S

are scalable to high dimensionality or large-scale data sizes, while MiCOM is more efficient

than 4S S.

0

100

200

300

400

500

600

700

800

Number of attributes

R
u

n
n

in
g

 t
im

e
 (

se
co

n
d

s)

 

 

4S−S
MiCOM

20000 40000 60000 80000 100000
0

50

100

150

200

250

Number of data objects

R
u

n
n

in
g

 t
im

e
 (

se
co

n
d

s)

 

 

4S−S
MiCOM

100 200 400 600 800 1000

(a) Runtime w.r.t. number of attributes. (b) Runtime w.r.t. number of data objects.

Figure 6.9: The scalability of MiCOM against 4S-S

In summary, with Markov blanket subspaces, MiCOM achieves higher precision and

lower running time than HiCS, 4S S, and BNOM. Moreover, different from HiCS and

4S S, MiCOM does not require additional parameters to balance its quality and running

time.

6.4.2 Experiments on real-world data

We choose the real-world zoo data set from the UCI machine learning repository [11]. The

zoo data set includes 16 predictive attributes. In Table 6.2, MiCOM finds 9 outliers from

the zoo data set and charaterizes those outliers with the attributes in the corresponding

Markov blanket subspaces. The results are ranked by their outlierness scores as shown in

the third column. For example, for the mammal animal of platypus, in Markov blanket
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subspace of attribute “eggs”, “eggs=yes, milk=yes” is an outlying aspect. However, HiCS,

4S S, and BNOM do not clearly address which subspaces characterize discovered outliers.

Outlier Outlier Characterizing Outlier Score

seal hair = yes, feathers = no, milk = yes, legs = 0 402.6

platypus egg = yes, milk = yes 93.96

crab breathes = no, legs = 4 89.2

scorpion egg = no, milk = no, toothed = no 64.74

clam aquatic = no, breathes = no 51.6

sealion fins = yes, legs = 2 50.2

frog venomous = yes, legs = 4 31.2

octopus backbone = no, catsize = yes 30.1

seasnake egg = no, milk = no, toothed = yes 19.5

Table 6.2: Nine outliers discovered in the zoo data set

To further evaluate MiCOM, 4S S, HiCS, and BNOM, Figure 6.10 gives the discovered

true positive outliers using top-5, top-10, top-15, and top-20 data objects based on

outlierness scores. We can see that MiCOM outperforms HiCS and BNOM.
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Figure 6.10: The number of the identified true positive outliers using top-k data objects
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6.5 Conclusion

In this chapter, to tackle the challenge of subspace outlier detection, we propose a Markov

blanket based method to dramatically reduce the number of subspaces from 2d− 1 possible

subspaces to d Markov blanket subspaces (d is the dimensionality). To detect outliers

in Markov blanket subspaces, we propose the MiCOM algorithm to mine subspaces and

outliers simultaneously. Using synthetic and real-world data, our experimental results show

that our MiCOM algorithm outperforms the state-of-the-art subspace outlier detection

methods in terms of effectiveness, efficiency, and scalability.



Chapter 7

Conclusions

Outlier detection is an important data mining task with many critical applications, such as

medical diagnosis, fraud detection, and intrusion detection. As the emergence of huge data

sets in real-life applications nowadays, outlier detection faces a series of new challenges.

In this thesis, we tackle the new challenges in dimensionality and understandability. In

particular, we develop four new outlier detection methods from two perspectives, detecting

the outlying aspects of a data object and detecting outlying data objects of a data set.

We show that the proposed techniques are useful in different outlier detection application

scenarios.

In this chapter, we first summarize the thesis, and then discuss a few interesting future

research directions.

7.1 Summary of the Thesis

In this thesis, we study the problem of outlier detection to tackle the challenges in di-

mensionality and understandability. Specifically, we propose four novel outlier detection

methods for different application purposes; and we make the following contributions.

• We identify two different levels of outlyingness for data objects in multidimensional

data sets, namely, outlying aspects and outliers.

– Outlying aspects: the most outlying subspaces of a given data object.

– Outliers: the most outlying data objects of a given data set.

150
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• For detecting outlying aspects, we formulate this problem in both unsupervised and

supervised numeric data sets. And we develop two models to address two different

kinds of applications, namely, outlying aspects and contrast subspaces.

– Outlying aspects: given a data set and a query object, the problem of mining

outlying aspects finds the subspaces best manifesting the unusualness of the

specified query object, using the other objects as the background in comparing

different subspaces. The query object itself may or may not be an outlier in the

full space or in any specific subspaces.

We use the rank of the probability density of an object in a subspace to measure

the outlyingness of the object in the subspace. A minimal subspace where the

query object is ranked the best is an outlying aspect. We systematically develop

a heuristic method that is capable of searching data sets with tens of dimensions

efficiently.

– Contrast subspaces: in a multidimensional data set of two classes, given a query

object and a target class, the problem of mining contrast subspaces finds the

subspace where the query object is most likely to belong to the target class

against the other class. This problem is a supervised version of the mining

outlying aspects problem.

We demonstrate theoretically that the problem is very challenging and is MAX-

SNP hard. We present CSMiner, a mining method that uses kernel density

estimation in conjunction with various pruning techniques, such as upper and

lower bounds of likelihood and likelihood contrast.

• For detecting outliers, we develop two novel methods to detecting and characterizing

two different kinds of outliers in multidimensional data sets, namely, contextual

outliers and Markov blanket based outlier.

– Contextual outliers: intuitively, a contextual outlier is a small group of objects

that share strong similarity with a signicantly larger reference group of objects

on some attributes, but deviate dramatically on some other attributes.

We systematically develop a model, including a concise representation, for

contextual outlier analysis, and devise a detection algorithm that leverages the

state-of-the-art data cube computation techniques.
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– Markov blanket based outlier: given a data set, we regard the Markov blanket of

each dimension and the dimension itself as a Markov blanket subspace. Markov

blanket based outliers are outlying data objects, which are detected from the

Markov blanket subspaces.

We propose a Markov blanket based method. Built on the concept of Markov

blankets in Bayesian networks, we can find outliers from only n Markov blanket

subspaces (n is the dimensionality) instead of 2n − 1 non-empty subspaces. By

learning a local Bayesian network for a Markov blanket subspace, we derive an

outlier score measure based on joint probabilities of Bayesian networks, and then

propose the MiCOM algorithm to mine subspaces and outliers simultaneously.

7.2 Future Research

It is interesting to extend the outlier detection models and techniques developed in this

thesis to other related outlier detection problems. Some of them are listed below.

• Outlying aspects: in Chapter 3, we study the problem of mining outlying aspects on

numeric data. There are several interesting issues that deserve research effort in the

future. First, to further examine the quality of outlying aspects, we can compute

a statistical confidence interval on the rank via bootstrap sampling, and select the

subspace with tighter confidence interval on the rank. Second, since OAMiner ranks

the query object among all the objects by their probability densities estimated by a

Gaussian kernel , it is interesting to consider using other kernel functions or outlierness

degree measures proposed by outlier detection methods, such as SOD [67] and

LOF [20]. Third, OAMiner discovers outlying aspects for a given object. Obviously

selecting appropriate query points requires domain knowledge. Selecting appropriate

background data sets for contrast against the query point also requires background

knowledge. It is interesting to explore strategies for incorporating domain knowledge

into outlying aspect mining. In practice, it may be the case that a user may want

to study a set of objects. In addition, the current version of our method is capable

of searching data sets with tens of dimensions. We may explore parallel computation

approaches to improve the capability of OAMiner with data sets having hundreds,

thousands, or even more dimensions; and extend OAMiner for mixed data containing

both numerical and non-numerical values. Finally, it is also interesting to further
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characterize different types of outlying aspects, such as maximal outlying aspects, and

investigate how to measure the interpretability and the interestingness of an outlying

aspect.

• Contrast subspaces: in Chapter 4, we work on the problem of mining contrast

subspaces on numeric data. There are several interesting problems for future work.

First, how to use contrast subspaces to characterize a given data set? Some features

derived from contrast subspaces, such as the distribution of likelihood contrast and

the dimensionality distribution of inlying/outlying contrast subspaces, can be used as

interesting features to describe a data set. Second, how to use the contrast subspaces

to improve the accuracy of supervised learning methods? For example, the concept

of contrast subspaces can be used in the process of feature selection. Third, it is

interesting to extend CSMiner for complex data sets, such as data sets with both

nominal and numerical values and data sets with history records. Finally, it is

important to explore parallel computation approaches to improve the efficiency of

CSMiner.

• Contextual outliers: in Chapter 5, we propose the frame work of detecting contextual

outliers on categorical data. There are several important and interesting problems for

future work. For example, we mentioned the concept of outlier groups (Definition 5.5).

From the user’s point of view, it would be interesting to develop efficient and pay-

as-you-go methods to compute a ranked list of outlier groups. This would also help

to eliminate the need for setting an outlier degree threshold. As another example, it

would be interesting to explore the correlation among outlier groups, reference groups

and contexts more generally. This may lead to valuable insights into the inherent

characteristics of high dimensional data. Last but not least, developing more efficient

and scalable algorithms for contextual outlier detection is another challenge for future

study.

• Markov blanket based outlier: in Chapter 6, we study the subspace outlier detection

problem on categorical data by using Markov blanket based techniques. As future

study, it is interesting to consider the sampling problem of a data set by using the

Markov blanket based techniques developed in this chapter. Particularly, given a large

data set, how can we choose the smallest number of data objects, which can reserve
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the characteristics of the original data set as much as possible? This problem can be

considered as the opposite problem of outlier detection problem in Chapter 6.
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