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Abstract 

My thesis addresses several issues of importance to probability education, presented in 
four separate studies. 

The first study attends to definitions and examples of probability offered through 
resources and produced by undergraduate students. The findings suggest that the 
everyday notion of probability predates and dominates students’ conception of 
mathematical probability and point out the important role learner-generated examples 
play in identifying the scope of learners’ understanding of probability. The second study 
examines the distinction between mathematical and everyday aspects of zero-probable 
and one-probable (extreme) events as featured in a variety of resources and as 
exemplified by prospective secondary school teachers. Moreover, different types of 
probability apparent from examples are identified and discussed. The results suggest 
that the participants use a range of subjective, theoretical, and logical approaches to 
construct probability examples in everyday and mathematical contexts. The results 
identified the need for a clear distinction between the notions of ‘zero-probable’ and 
‘impossible’ in probability instruction and call for pedagogical attention to this issue. 

The third study provides an overview of some of the ways in which randomness is 
defined in mathematics. The study examines and interprets undergraduate students’ 
examples, definitions, and ideas related to randomness by analyzing the participants’ 
written responses, verbal communications, and gestures. The findings were strongly 
related to those of previous research. The gesture analysis further identified some 
aspects of randomness that were less apparent in participants’ verbal responses.   

The fourth study examines undergraduate students’ arguments concerning the 
probability of a fixed and unknown event. The goal of the study was to identify ambiguity 
caused by the interaction between everyday and mathematical probability in participants’ 
responses. The findings suggest that reflective tasks in which students are asked to 
examine and reflect on opposing probability arguments may help learners to reconcile 
some conflicting probability ideas. 

Overall, my research provides enhanced understanding of how participants perceived 
probability related ideas, as evident in their examples, definitions and gestures. Based 
on the results of my research, I present ideas and tasks for instructional implementation 
aimed at provoking discussion about different interpretations of probability and 
strengthening student understanding.  
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Chapter 1.  
 
Introduction 

It is strange that the summary of a lifetime of work on the theory of X 
should begin by declaring that X does not exist, but so begins de Finetti’s 
Theory of Probability.  
  Robert F. Nau (2001, p. 89) 

Bruno de Finetti’s theory of probability (19741) begins with the thought provoking 

statement: Probability Does Not Exist. What he means is that probability does not exist 

in an objective universal sense. Alternatively, he believes, probability exists in a 

subjective sense, in the form of personal betting odds derived from a given set of 

information available to a person. His radical work was done in response to the then 

accepted strict frequentist paradigm that believed in a true objective probability of events 

in relation to infinite trials of controlled experiments.  The dispute between objective and 

subjective probability was heated after the works of Ramsey and de Finetti. Later on, 

Savage, Jeffreys, and Lindley joined forces and devised a formal structure to a 

probability approach, today referred to as Bayesian or subjective probability.  Although 

these works were written between 1930 and 1950, the grounds for the dispute were laid 

as early as the emergence of probability. 

At the dawn of probability in the 17th century, probability was defined based on 

the notion of equiprobable events underpinned by the principle of indifference. The 

principle states that if we have no reason to think one alternative is more likely than 

another, then they should be assigned an equal probability. The question that was raised 

instantly was in what ways should this indifference be evaluated or decided upon? 

1 de Finetti’s original works are in Italian and French, written between 1930 and 1937. According 
to (Gillies, 2000),  were not influential in English speaking countries until they were discovered 
by L. J. Savage, who edited some of his works for publication in 1951.  
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Consider a standard two-sided coin. It is possible to toss it for a while and form an 

opinion about the indifference of one side to the other. It is also possible to obtain 

technical information about the making of the coin such as the homogeneity of the metal 

alloy, the preciseness of the mold, or the temperature consistency of the surrounding 

while cooling down. Another approach is to settle for a uniform state of ignorance and 

take equiprobability of the two faces as a prior fact about the coin and adjust it only in 

light of new evidence. Both of these pathways have been pursued and have resulted in 

different probability perspectives.  

The issues surrounding probability is echoed in probability education. Probability 

and statistics were added to North American curricula only in the twentieth century. 

According to Scheaffer and Jacobbe (2014), the earliest efforts to include statistics in a 

junior high school curriculum were made around 1920. A stronger push was made in the 

1940s and 50s because of the expanded uses of statistics in sciences and social 

sciences. Not much progress was made during the 1960s and the70s with regard to the 

school curriculum. But the statistics community was laying remarkable groundwork for 

the future by emphasizing a shift of attention from theory to data analysis: “Building on 

data analysis as the core focus, the 1980s and 1990s saw great progress in the 

development of programs and materials in [school] statistics” (Scheaffer & Jacobbe, 

2014, p. 2). It was only in the 1980’s that some real progress in statistics education was 

made, beginning with NCTM’s Agenda for Action: Recommendations for School 

Mathematics. This document included “numerous references to statistical topics 

including gathering, organizing and interpreting information, drawing and testing 

inferences from data and communicating results” (Scheaffer & Jacobbe, 2014, p. 6).  

I am not trying to review the history of probability education; I am merely pointing 

out that probability and statistics not only emerged late in mathematics but also in 

mathematics education. The ambiguous nature of probability, different schools of 

thought developed around it and the multitude of interpretations of probability may all be 

factors that could account for the late entry of probability into mathematics education (for 

example, Hacking (2006), Chernoff (2008), Konold (2002)).  
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Over two decades after a stable probability curriculum was in place (in the United 

States), Jones, Langrall and Mooney published a chapter in the Second Handbook of 

Research on Mathematics Teaching and Learning (Jones, Langrall, & Mooney, 2007). 

Their synthesis of worldwide K-12 curricula suggested that classical (theoretical and 

frequentist) approaches to probability were the big ideas found in mathematics education 

and the presence of subjective probability in curricula was abysmal. This sparked my 

interest and led me to inquire into whether the post-secondary curriculum followed the 

same suit. 

This thesis contributes to the study of the state of probability education in post-

secondary education. The scope of this thesis is limited to investigating a few ideas such 

as: types of probability, the interplay or the tension between everyday probability and 

mathematical probability and the applicability of probability. I examine undergraduate 

students’ perception of the probabilistic perspectives that are implemented in general-

audience-level probability education.   

Rather than writing a traditional dissertation, I have chosen the less frequently 

threaded pathway in writing a thesis: the paper style. I present my work in the form of a 

set of papers that are connected by common themes and trends.  

Instead of single-purpose chapters addressing methodology, data analysis and 

other components of the research undertaking, my thesis is comprised of four 

independent studies. Each paper focuses on a moderately important aspect of 

undergraduate students’ perception of probability. However, in the end, as a whole, they 

enhance and complement the common threads running along all four studies. Each 

study is written in a paper format and contains the relevant literature review, theoretical 

considerations, data analysis, and so on. In order to avoid redundancy, I have presented 

the references at the end.  

In this chapter I introduce myself, my interest in the subject, how I developed 

interest in my research questions, and my journey that resulted in the studies presented 

in this thesis. 
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1.1. Educational Background 

I hold a BSc and MSc in pure mathematics. I am currently a full-time faculty 

member at British Columbia Institute of Technology (BCIT), Vancouver, teaching 

mathematics and statistics courses, including: Technical Mathematics for Architectural 

and Building Engineering Technology, Statistics for Biomedical Engineering Technology 

and Calculus for Chemical and Environmental Technology. Back in my home country, 

Iran, I taught mathematics at middle school, high school, and post-secondary, teaching 

subjects including Algebra, Calculus, Discrete Mathematics and Geometry. I started my 

PhD studies in Mathematics Education at Simon Fraser University (SFU) in 2009. Since 

then, I have taught a number of teacher preparation courses and general undergraduate 

audience courses for both the Department of Mathematics and the Faculty of Education 

at SFU. 

I wish to share with the reader a brief account of my own probability education 

since it has shaped my understanding of the field and my interests in probability. In my 

pre-doctorate academic life I had encountered probability in high school, in the 

undergraduate program, and briefly in my Master’s program.  

In Iran, during the time I was a student, we would not learn about any variation of 

chance or probability before grade 11, a practice that changed only very recently. In Iran, 

the curriculum is centralized. In other words, the learning outcomes are decided upon by 

a group of mathematicians and mathematics educators. They write textbooks that cover 

those outcomes. The textbooks are sent to all schools across the country. They are 

taught at the same pace and order everywhere.  

In a conversation I had with one of the people participating in curriculum 

development in the Iranian ministry of education I found out that the late appearance of 

probability in our schooling system is partly due to interpretations of Piaget’s stages of 

cognitive development. In Piaget and Inhelder (1975), the authors linked the 

development of probabilistic thinking to maturation in proportional reasoning and 

operational thinking. In Piaget’s theory, the acquisition of formal thinking that he deemed 

essential to developing probability-related strategies is associated only with the third 
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stage of development. This is the stage where the child can link different concrete 

operational systems and apply them to different concrete objects.  

This was interpreted as a call for keeping probability out of the curriculum until 

well into the mid-high school years. This is the time by which students have become 

accustomed to working with abstract structures endowed with certain properties and 

rules (Boolean algebra, trigonometry and vector spaces are examples of such 

structures).   

Probability is then introduced through an abstract approach: there is the notion of 

random experiment, a universe of discourse, a sample space and certain subsets known 

as events.  Finally, the probability of events is calculated through enumeration and 

combinatorial methods. Games of chance, collections of objects and standard 

randomizers are used to provide contexts for examples and problems.   

In recent years, a major change was made to the Iranian probability curriculum. It 

now starts at lower grades and early concepts of probability are taught in elementary 

school.  

During my undergraduate studies in mathematics, I took two courses in 

probability and statistics. In the first course, a wide range of topics including discrete and 

continuous random variables, well-known probability distributions, constructing 

confidence intervals, hypothesis testing and analysis of variance were covered. But very 

little or no reflection was done on what all this was based on or, for example, under what 

assumptions the whole hypothesis testing machinery was operating. The sequel course 

to the introductory probability was packed with Beta and Gamma functions, the special 

cases (such as Poisson, or normal distributions), and the limit behaviour of those 

distributions. We spent so much time on integration and momentum calculations that the 

course lost touch with probability and, in retrospect, I remember it as another integral 

calculus course. I finished the program without hearing about different schools of 

probability or how the discipline emerged in the seventeenth century, dividing 

mathematicians and philosophers into various schools of thought right from the 

beginning. 
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I took a measure theory course during my master’s program, where probability 

theory was revisited and expanded upon. A measure-theoretic approach to probability 

unifies the discrete and the continuous cases, while providing analogous concepts for 

the familiar notions of expected value and independence. Different problems are only 

distinguishable by what measure to use on which sets. The notion of sigma field on a 

sample space endowed with a unit measure, although very abstract, is a powerful idea. 

The problem of calculating the probability of an event becomes equivalent to calculating 

a set measure. This approach helped me resolve two of my unsolved probability 

dilemmas. The first dilemma arises in situations where the set of desired outcomes is 

countably infinite and the sample space is infinite but not countable. Picking a random 

whole number ℤ from the set of real numbers (ℝ) is an example of this situation. Since 

the early days in my undergraduate program, I knew that the probability of this event is 

zero. This is because whole numbers are of a smaller cardinality compared to real 

numbers. The probability in question would be equivalent to dividing ℵ𝟎𝟎 by ℵ𝟏𝟏 , which I 

approximated to be zero, since I thought of the latter as a considerably greater infinity 

than the former. The measure theory course once and for all clarified that there is a 

consistent and objective way of measuring sets and if both sets ℤ and ℝ are measured 

with the same measure, the former will have a zero measure (exactly zero, and not by 

means of approximation) while the latter will have a non-zero measure. Another dilemma 

I had always wondered about was to determine the probability of certain subsets of the 

set of natural numbers (ℕ). Consider these examples: the probability of picking: 

A. a multiple of 7 from ℕ 

B. a prime number 

C. a perfect square 

D. a number with an odd number of digits in its binary expansion. 

 What all these examples have in common is that the set of desirable outcomes 

is countable and in one-to-one correspondence with ℕ. Therefore, the cardinal number 

of the sample space is equal to the cardinal number of the desirable outcomes, which 

makes all of the above-mentioned probabilities equal to one (from a weak theoretical 

perspective). Our intuition of the numbers would suggest otherwise and so does a well-

implemented measure-theoretic approach. Intuitively, we know that every 7th number is a 

multiple of seven, therefore the probability of randomly picking a multiple of seven 
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should be 1/7. With regard to examples B and C, we may not have a clear idea of what 

the probability in question is, but we are confident it is not 1. That is because prime 

numbers and perfect squares are harder to come by for larger values of n. For example 

D, an intuitive answer could be ½ since there is no reason for the number of digits to be 

biased towards even or odd values. A measure-theoretic investigation of these 

examples, leads to developing interesting ideas such as natural density (Nathanson, 

2000), a powerful tool in probabilistic number theory (Tenenbaum, 1995). The natural 

density of multiples of m is equal to 1/m, which results in probability 1/7 for example A.  

the natural density of prime numbers less than or equal to n is given by 𝟏𝟏
𝐥𝐥𝐥𝐥𝒏𝒏

, a value that 

tends to zero for large values of n, hence making probability in example B equal to zero. 

The natural density calculation for the set of perfect squares results in zero, making the 

event of picking a perfect square number impossible. Finally, it can be shown that as 

simple as example D seems, it fails the measure-theoretic approach. The upper and 

lower natural densities don’t converge to the same value, therefore the probability of 

picking a number with an odd number of digits in its binary expansion cannot be 

calculated. This example points out that not all sets are measurable and thus some 

probabilities cannot be assigned in an axiomatically consistent way. As seen from the 

four examples discussed here, the measure approach made some probability 

calculations possible in situations where the cardinality ideas did not have much to offer.  

From the above account of my probability education, one can see that it is 

severely limited to classical probability and to mathematical contexts. If I were asked to 

give an example of probability of an event, or a probabilistic situation, it wouldn’t cross 

my mind to give an example of a belief type of probability related to everyday life such 

as: ‘the sun will come up tomorrow’ or ‘I will die someday’. I was also completely 

unfamiliar with the notions of subjective probability and the Bayesian school of thought 

on probability, and with the philosophical issues around probability, and the years of 

struggle mathematicians and probability theorists went through in order to formally 

define randomness and to axiomatize probability.   
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1.2. Research interest in probability education 

I developed interest in probability education through three sources: teaching 

probability, learning about other teachers’ (mostly prospective teachers’) views of 

teaching probability, and readings in the history of probability.  

When I started my PhD studies in mathematics education, I taught an 

undergraduate mathematics education course for students in the arts and humanities 

programs. This course covered basic material from number theory and probability. 

Through marking the quizzes and assignments of this course, I came to know about the 

challenges my students faced with probability problems. I noticed that the overall level of 

their performance in other concepts was considerably higher and they demonstrated 

more skill and ease in handling those concepts, complicated though they were. This 

made me notice my own lack of understanding of the body of knowledge around the 

notion of probability.  

For three years I had the chance to work with pre-service teachers taking 

professional development courses at Simon Fraser University. Each year I asked them 

to fill out a survey questionnaire and tell me about their mathematical background. One 

question I asked them was what subjects in mathematics they thought were the most 

challenging to teach and why. The comments consistently pointed out that most 

prospective teachers perceived of teaching probability as a difficult task. They found it 

both a complicated subject and a difficult one to teach. Some prospective teachers 

mentioned that as students they found probability to be a confusing subject, in which it is 

easy to be tricked and it is not obvious why certain ways of calculation are correct. It was 

also mentioned that probability is a difficult concept to teach because students must use 

abstract and logical reasoning in uncertain and unknown situations.  

During my PhD studies, I came across historical and philosophical works on the 

creation of probability. Gillies (2000), Hacking (2006), Stigler (1990) and Sheynin 

(1977) are among the sources I found most interesting. As stated earlier, unlike many 

other mathematical concepts that are more than centuries old, probability is a relatively 
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new area; it rose late and among controversy. Although existent in earlier works in some 

form and shape, the official birth of probability is usually ascribed to the 1660s.  

Since the very early days, probability has been multi-faceted, “on one side it is 

statistical, concerning itself with stochastic laws of chance processes, on the other side it 

is epistemological, dedicated to assessing reasonable degrees of belief in propositions 

quite devoid of statistical background” (Hacking, 2006, p. 12). Hacking argues that this 

duality resulted from a transformation upon two different conceptual structures: 

knowledge and opinion. One stemmed from evidence of testimony and authority, the 

other from evidence of things, where one thing points beyond itself. He clarifies the 

point: “an opinion was probable if it was approved by authority, or at least well testified 

to. [... after the Renaissance] a new kind of testimony was accepted: the testimony of 

nature [...]. A proposition was now probable if there was evidence for it. [...] Probability 

was communicated by what we should call law-like regularities and frequencies” (p. 44). 

The evidence of things ultimately formed the basis for what we call classical or 

theoretical probability. The other type, the evidence of authority and testimony, is the 

core idea of what we may call subjective probability, according to which “probability is 

made of judgment” (Jeffrey, 2004, p. XI). The tension between the two probability 

constructs was never resolved. Although in our time the debate is no longer hot (and 

perhaps alive), discussions of credible interval versus confidence interval, hypothesis 

testing versus Bayesian inference, and textbook insistence on very specifically worded 

ways of interpreting confidence intervals (Foster, 2014) remain reminiscent of the long-

fought battle.  

1.3. My Thesis Journey 

By now the reader knows that I developed an interest in learning more probability 

and talking to people about probability early in my PhD studies. I wish to continue with 

giving a brief account of the path I took to finally find the focus of my research and to 

form the research questions presented in my studies.  

My research wanderings can be categorized into three phases:  
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Phase one consisted of tasks and problems that I found interesting, challenging, 

and to some extent counter-intuitive, most of which I did not know how to solve at the 

time. They were typically probability problems involving potentially infinite trials of simple 

experiments. For example, I collected interview data on a one-dimensional integer 

random walk where a drunk person is randomly moving to the right or left, each time by 

one unit on the number line and the probability of reaching a certain number is to be 

calculated (as a great reference on this problem I suggest Feller (1968)).  Another 

example would be my attempts to study learners’ interactions with the infinite monkey 

theorem: a monkey is punching letters at random on a typewriter; we want to know what 

the probability of him typing something meaningful is (in some versions of the problem, 

including Feller (1968), the monkey is to type the entire play of Hamlet).  

The list of examples I tried to use for data collection in this period goes on, but 

what they all have in common is the structure of the task and the general response to it. 

These tasks address the issue of dealing with possibly infinite trials (possibly because 

the drunk man may reach the designated point, and the monkey may punch what we are 

looking for against all odds, in finite time, thus the process is not necessarily endless, at 

least not by logical necessity).  

The responses I got were very similar. At first, the respondents would assess the 

probability in question to be very small, next to zero, and upon more reflection the 

response would change to 1 (probability=1) since, to quote one respondent, “the 

processes can go on forever, so anything can happen”. In this phase of my research, I 

got a good amount of individual testimonials to Kolmogorov’s zero-one law from the 

respondents, a law that states the probability of tail events can only be zero or one, and 

that was all I could make of the data.   

During the second phase of my wanderings, I focused on tasks that involved 

infinity. At the time, I worked with prospective secondary school teachers and I 

presented them with questions regarding choosing numbers from the real number line or 

the set of all natural numbers. Questions such as: calculate the probability of randomly 

picking a multiple of five, a perfect square, or a prime number from the set of natural 

numbers.  
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The responses I got were more interesting and divided than the first phase and 

they usually stirred discussion afterwards. I found that questions like these were great 

teaching tools; they tapped into learners’ knowledge of number systems, as well as their 

understanding of number relations such as factors, multiples and patterns.  

Although the tasks and results turned promising with potential for research into 

respondents’ interaction with infinity-related probability problems, my attention was 

diverted to something that frequently came up in discussions of the tasks. Several 

prospective teachers would say something like: “if I am asked to pick a number, I always 

pick 7; so for me the probability of picking a prime number is very high, like 100%. Also I 

have heard that many people would pick 5 or 7; so these have higher probabilities”. 

Another interesting response: “I think smaller numbers have a higher chance of being 

picked because people tend to think of smaller numbers”.  

The notion of everyday context versus mathematical context came up frequently 

too, as exemplified in this response: “usually when we are asked to think of a number we 

are told what the number is between, for example, I might ask someone to think of a 

number between 1 and 10, it is never open-ended”. Another person stated that, “when in 

prize draws and the like we pick numbers, there are only a given number of them, how 

can one imagine an actual situation where the number of possibilities is infinite?”  

I found these points very interesting because they referred to what I now call the 

distinction between everyday and mathematical probability and the notion of personal 

versus theoretical probability. 

Another observation I made during this phase was that the conventionally correct 

answer (zero, in the case of picking prime and perfect square problems, see page 6) did 

not come up very often. Some respondents would state that the probability in question is 

“very small” (instead of zero); I thought this aversion towards zero may be due to the 

tension they felt towards assigning zero probability to something that is evidently 

logically possible (picking a prime number or a perfect square number). Since the 

respondents did not seem to view the prime number or perfect square number picking 

events as zero-probable, I thought to ask for their examples of zero-probable events. 

This task turned out to be an entry point to my third phase of research wanderings. This 
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phase of my research is reported in the current thesis, although not in actual 

chronological order. After I examined the responses to learner-generated examples of 

zero-probability events, I made another discovery. A great number of examples were 

from everyday contexts: “the Sun will not rise tomorrow” and “a coin lands on edge”, and 

“rolling a 7 with a standard die” among the frequently repeated ones. They were 

examples that many probability theorists would not even consider to be appropriate 

subject matter of probability. For instance, Feller (1968) makes it clear that “there is no 

room in our probability system for speculations concerning the probability that the sun 

will rise tomorrow” and “in analyzing a coin-tossing game we are not concerned with the 

accidental circumstances of an actual experiment” [such as the coin landing on edge as 

a result of resting on a corner] (p.4). In my view these were not examples of probability 

situations, since they do not represent a repeated sequence of identical experiments, 

nor can one formulate them into a desired outcome of a sample space made up of 

equiprobable events. Even the example of rolling 7 with a standard die did not make 

perfect sense to me; clearly it is impossible to roll 7, because there is no 7 printed on 

any of the faces. But how does one actually calculate this probability since {7} is not a 

subset of sample space {1,2,3,4,5,6}? This sparked my interest in examining students’ 

notions of the applicability of probability to different contexts including real-life ones and 

also what they have in mind when referring to random phenomena in general. I 

conducted classroom discussions on whether or not certain types of problems constitute 

appropriate subject matter of probability and what types of probability arguments are 

needed to determine, calculate, or assign probabilities to those occurrences. These 

discussions informed me of distinct views of probability and randomness apparent in 

students’ responses and ultimately led me to my research questions and data collection 

(I collected data from another group of students, since I was looking for original 

responses). 

1.4. Probability: is it as mathematical as the rest of 
mathematics? 

Before I present the structure of the thesis and an overview of the contents, I 

wish to share with reader a note on the state of probability education. Arguably, under 
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the research in mathematics education umbrella, probability education is under-

represented and it is not as ubiquitous as other mathematical concepts. In the words of 

the editors of the recent collected work on probability education, Chernoff and Sriraman 

(2014) “research investigating probabilistic thinking exists, currently, on the fringe of 

mathematics education” (p. XVII). Moreover, it is mostly populated by task-specific 

research targeted towards early elementary years and it gets scarcer for the higher age 

groups.  I suggest that this phenomenon to some extent mirrors (or possibly is affected 

by) the state of probability in the field of mathematics. There has always been a tension 

between mathematicians and probability theorists about whether or not probability theory 

is some lesser form of mathematics. In many universities, the department of 

mathematics engages in studies related to pure and applied mathematics, while the 

department of statistics is involved with all matters of probability. Also in the Bourbaki 

project, probability was not included. The project was initiated and developed by 

mathematicians that “knew what counted as mathematics: they could tell mathematics 

when they saw it” (Hacking, 2014, p. 56). They may have thought it is implicitly covered 

in other areas such as integration and measure theory. Probability theorists, including 

the French ones, never agreed.  

I add to the argument above a personal encounter with a prominent mathematics 

educator, initially trained as a mathematician. The story of this encounter reinforces my 

point about how the ambiguity (perceived or inherent) in probability may result in 

reluctance towards research in probability education. This mathematics education 

researcher was kind enough to engage in a helpful conversation with me about my 

research interests. After some suggestions on possible directions, he said that he has 

never been interested in research in probability education since he has always been 

doubtful of probability theory. He mentioned that in his undergraduate days in a 

probability theory course, it befuddled him that there are more than one ways to look at 

and solve a probability problem and not all of them result in the same answer. He 

referred to a specific classroom experience where the instructor solved a complicated 

problem and found the answer, and everything seemed correct. Then a student 

suggested something, upon which the instructor recalculated the probability and came 

up with a different answer, it seemed correct too, and no one could tell which one was 

the right answer.  
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It is very common to have more than one solution to a mathematics problem, but 

they always (at least in popular view) come to the same final answer, and if not, there 

has been some mistake somewhere. It seemed to him that finding those “mistakes” is 

very hard with some probability problems and even with solutions that work, the results 

are often counterintuitive. I could really relate to what he said since I have had my own 

share of confusing moments with probability problems; the big offenders through high 

school being the problems where the order did or did not matter and I had to leave it to 

chance to make the right decision. It didn’t get any better in post-secondary courses 

either. Here I present, for the amusement of reader, two examples of multi-solution and 

counter-intuitive problems that I have come across in my probability education: 

1. Problem of randomly inscribed triangle: it can be proven2 that if three random 

points are chosen on a given circle, the probability of the three points forming a right 

triangle is zero. The same applies to equilateral triangle, and a triangle with angles 45o, 

65o, 70o. The argument can be extended to show the probability of randomly chosen 

points forming a triangle with interior angles α, β, ϒ is zero for any α, β, and ϒ. A result 

that is extremely counter-intuitive and confusing, since after all some triangle is being 

formed.  

2. Problem of random chord (Bertrand’s Paradox): what is the probability that a 

random chord of a circle is longer than a side of an equilateral triangle inscribed into a 

circle?  

Several interpretations and solutions to this problem are given, all of which are 

valid arguments made within the proper probability theory laws. However, one results in 

1/2, another in 1/3, and another in 1/4 (see Ghahramani (2005, p. 264), or Wikipedia 

page on Bertrand’s Paradox for more details).  

The laboured point I want to make is that probability is a mathematical model that 

is sensitive to initial information, assumptions, and interpretations of the situation. I do 

2 Say we are randomly choosing three points on the circle. Given the first point A, there are only 
two fixed points B, C on the circle that could make an equilateral triangle while there are 
infinitely many possibilities for the second and third points (only one of which is desirable). This 
makes the probability of having an equilateral triangle equal to zero. 
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not see it as a weakness, as much as a call for extra need to be aware of how the 

mechanism works and what is the scope of applicability of probabilistic methods. 

Furthermore, probability methods are so far the best tools we have when it comes to 

dealing with uncertain phenomena. Probability methods are refined, revised, and made 

more efficient over time. A good teaching practice of a subject like this should ideally 

make an effort to disambiguate probabilistic concepts and methods by addressing in a 

dynamic fashion both the epistemological and technical changes taking place in this 

field.   

1.5. The current thesis: what is in it? 

I present four stand-alone studies written in paper format. I attend to the 

meanings and examples of probability in the first study, examples of extreme probability 

and the type of probability reasoning in the second study, definitions and examples of 

randomness in the third and, finally, possible conflicts and alignments of different 

approaches to probability in the last study. The common theme that runs through and 

brings together my entire work is an attempt to study and understand two seemingly 

separate notions of probability: the everyday and the mathematical. I try to elaborate on 

distinctive features of the two, as well as on common features. Also I try to examine 

learners’ senses of the applicability of probability to mathematical and everyday 

contexts. 

In all studies, the participants are students enrolled in post-secondary 

mathematics education courses at Simon Fraser University. Some are prospective 

teachers, and some are undergraduate students in liberal arts or social studies 

programs.  

In the first study, I examine definitions and examples of probability from two 

points of view: through teaching and learning resources in probability education and 

through the undergraduate students’ perspectives.  The research questions in this study 

are formulated based on a model developed by Batanaro and Diaz (2007)  where five 

interrelated components are proposed to analyze various meanings of probability. The 

model suggests making a distinction among institutional meanings of probability, those 
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appearing in textbooks and taught in classrooms, and personal meanings of probability, 

that is, the students’ perceptions of probability. Thus, examining students’ definitions of 

probability is suggested as a key component to analyzing probability understanding. 

The research questions pertaining to this study are: 

•  What features of probability are emphasized in students’ 
definition/descriptions of probability? 

•  What features of probability are emphasized in students’ examples of 
probability? 

In the second paper, I investigate through their examples, the learners’ notions of 

extreme events: those with probability zero or one. Research suggests that learning 

about binary opposites takes place early; therefore, events with probability zero or one 

are a good starting point for teaching probability. Another reason I find extreme events of 

research interest is that the terms impossible and certain are frequently used to refer to 

events with probability zero or one. This creates a tension between the two notions of 

probability zero, as in never happening, and probability zero, as a matter of definitional 

necessity (same with certain and probability one). To the best of my knowledge, 

research in probability education has not addressed this distinction and the conflict 

resulted from the two notions in situations where probability zero is assigned to events 

that are not logically impossible and conceivably could happen. Similar to the first paper, 

I examine definitions and examples of impossible and certain events through some 

educational resources, followed by studying learner-generated examples of extreme 

events. The research questions are: 

•  What aspects of probability (mathematical or everyday) are featured in the 
participants’ examples of extreme events? 

•  What probability perspectives are involved in the participants’ examples of 
extreme events?  

The analysis of data is framed by the two theoretical considerations, Barwell’s 

discursive model, and types of probability. The discursive model outlines the features of 

a mathematical discourse including specialist use of vocabulary and symbols, the 

specific syntax such as the way proofs and definitions are formulated, and social 

conventions, which makes it a favorable model to analyze participants’ examples of 

extreme events. 
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The third study has been published as a book chapter in Chernoff and Sriraman 

(2014). It has a slightly different approach and tone since it is co-authored by Rina 

Zazkis and Nathalie Sinclair.  In this work, we first provide an overview of some of the 

ways in which randomness is defined in mathematics—these aspects of randomness 

help structure our analysis of learners’ uses and descriptions of it. We adopt both 

discourse analysis and gesture analysis to interpret and probe into understandings of 

randomness. This study addresses the following research questions. 

• How do learners exemplify random phenomena and what features of 
randomness are present in their examples? 

• How do learners communicate ideas of randomness through a broad 
multimodal discourse? 

We classify learner-generated examples of randomness into certain types as a 

result of which we can address the aspects of randomness that are present in both 

mathematical randomness and student randomness and those that are missing. In a 

clinical interview setting, we ask the participants to define and exemplify randomness, 

both in mathematical and everyday contexts and elaborate on why they think of those as 

random. Gesture analysis suggests that participants hold separate views of 

mathematical randomness and everyday randomness.  

Prior research has not drawn attention to the ways in which learners are aware of 

differences among the ways the word ‘random’ is used in each context or to the 

distinctions learners attribute to each type of usage. Our study finds that although the 

notion of randomness is central to the study of probability and statistics, it is rarely 

explicitly explained. We suggest that teachers (and teaching materials) should attend 

more explicitly to learners’ discourse on randomness and, in particular, to learners’ 

everyday uses of the word. 

In the last study, I invited participants to comment on a problem that addresses 

two of the old issues debated by subjective (Bayesian) and objective (classical) schools 

of probability: the problem of single events and the problem of past events. I propose 

that probability is an ambiguous concept since it is developed from two seemingly 

disjoint ideas, one that believes in objective reality about the uncertainties of the outer 
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world and the other that tries to obtain a subjective measure of personal tendencies and 

beliefs about uncertain phenomenon.  

Each of these practices is considered valid and self-consistent by some 

statisticians and practitioners. However, the teaching of probability is to a great extent 

dominated by the objective paradigm, which creates conflicts and tensions when 

juxtaposed with learners’ personal probabilities. My goal was to identify the instances of 

ambiguity in participants’ responses and to find out if the ambiguity in probability can be 

exploited to enrich learners’ understanding of probability and to create a unified concept 

of probability that accommodates both subjective and theoretical aspects of their 

probability conceptions. 

1.6. The themes and threads  

Although the studies presented in this thesis stand alone and are disjoint, as well 

as pursuing different goals, these common themes recur in all, sometimes more 

explicitly than others: 

• Distinction between personal, everyday, and mathematical (institutional) 
meaning of probability-related terms and concepts such as probability, event, 
impossible, certain, and random.  

• The conflicts between probability defined on finite sample spaces and 
probability on infinite sample spaces.  

• The importance of inviting students to create examples of probabilistic 
concepts both as a research tool and as a learning activity. 

• The importance of teaching probability as a modelling tool which has some 
limitations, a specific scope of applications, and certain underlying 
assumptions. Also, learners benefit from knowing that there is more than one 
valid (and useful) way of constructing probabilistic models.  

My research has given me an opportunity to learn more about probability, but 

more importantly, it has earned me awareness about what educators and textbooks 

often take for granted. I suggest that in any transition from one mode of thinking to the 

other, it helps the learners to pause and reflect on the nature of the transition, to discuss 

what properties are changed and what features stay the same. For example, in the 

transition from the everyday meanings of probability to its mathematical meanings, or 
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from finite sample spaces to infinite sample spaces, some of the concepts (such as 

event, random, and probability) acquire new meanings and some objects will assume 

new properties. It is a worthwhile effort to discuss and draw attention to these new 

meanings and new properties. What I am hoping to offer in this thesis is enough 

evidence to support my suggestions along with adequate discussion of transitional 

moments in learning probability. 
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Chapter 2.  
 
Undergraduate Students’ Definitions and Examples 
of Probability 

Extended attention to probability and statistics in school curriculum has resulted 

in renewed interest in these topics in mathematics education research. Despite the 

growing number of studies that explore understanding of probability concepts among 

students of different ages, the research on undergraduate students’ knowledge and 

beliefs related to probability is still rather limited. My research aims to address this 

deficiency and looks into undergraduate students’ definitions and examples of 

probability. 

2.1. Introduction to the origins of probability 

Probability is among the recent branches of mathematics. Unlike geometry or 

algebra, the laws of probability do not go back to ancient Greece or Indo-Arab 

mathematical cultures. It was only in the mid-seventeenth century that the systematic 

study of laws of chance became available and fashionable to the mathematicians and 

philosophers of the time. Uncertainty, lack of information about certain situations, and 

ignorance has troubled the people of olden days (as it does today). At all times, efforts 

have been made to deal with uncertainty and incompleteness of information. Examples 

of such efforts are: summoning the witnesses to testify to the possible facts, cross 

examining various evidences and witnesses to decide if they are trustworthy, and 

consulting the authorities. But it was not until the works of Pascal and Fermat that 

probability received attention from mathematicians. 

Gambling and games of chance played a notable role in attracting 

mathematicians’ attention to the discipline of probability. In the early sixteenth century, 
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gambling had grown to a full-size entertainment and as early as 1509, many books and 

pamphlets on the subject of gambling were around (Bellhouse, 1993). There also existed 

a published literature of cheating (which employs the notions of equal chances and 

advantageous situations) in the games of chance that was known both to the 

participants of the gambling practice and to a few of the mathematicians of the time, 

such as Cardano (Tijms, 2007). Some of these works provide evidence that gamblers in 

the sixteenth century had a rough concept of probability and also various notions of 

equality and inequality in play had been around. The important opportunity that gambling 

and games of chance provided to the mathematicians was to provide models, under 

which, fairly complicated and challenging combinatorial problems could be set. It is 

reputed that a French gambler named Chevalier de Mère presented Fermat with the 

problem of points, a problem of dividing the stakes when the game is untimely 

interrupted. Fermat is said to have communicated with Pascal about this problem and 

through their correspondences, a first configuration of an axiomatic probability emerged. 

According to Garber and Zabell (1979), the influence of Chevalier de Mère on Pascal 

and Fermat, both prestigious mathematicians, who both worked on the problems from 

games of chance, generated interest in the subject among mathematicians. 

At any rate, the dawn of the seventeenth century marked the beginning of 

modernity both in society and science and the influence of scientific communities as well 

as academic correspondence was expanded during this century, which gave birth to the 

calculus of probability (Sheynin, 1977).   

During the eighteenth and nineteenth centuries, the techniques of modern 

mathematical statistics began to be laid down, all on the foundations of earlier work on 

probability and chance. Despite these efforts, probability theory became a respectable 

mathematical field of study only in early 1930. Prior to the notable works of Kolmogorov, 

von Mises, Chaitin and Weiner, who made efforts to rigorously define probability and 

randomness in mathematical terms, the study of probability was treated with scepticism 

by some mathematicians due to the lack of rigorous definitions of notions such as 

“independent events”, and “randomness”. Mathematicians weren’t the only sceptics; 

arguably one of the closest fields of science to probability is statistics. We often hear the 

two terms next to each other and they are taught in K-12 under the umbrella of Data 

21 



 

analysis. It was not the case all the time. Ross (2009) gives an account of how 

statisticians of early nineteenth century were content to let the data speak for itself, and 

were not concerned with sampling and sampling-based inference. As a result, 

probabilistic inference from samples to a population was almost unknown in nineteenth 

century social statistics.  

 Even to date, doubts are held as to the value and effectiveness of probabilistic 

models, perhaps in part because they are treated in most teaching and learning 

environments as a confusing subject, founded on seemingly shaky grounds.  

2.2. The meaning of probability: 

In the mathematical context, there are two main interpretations of the notion: 

probability as a branch of mathematics, often used as short-hand for probability theory, 

and probability as related to a particular event.  Here I focus on the latter, the probability 

of an event. 

The meaning of probability (as in probability of an event) is not uniformly shared 

even among the people who are involved in probability related practices or those who 

have an educational background in probability theory. One possible meaning for 

probability is to consider it as the frequency of occurrence, as a fraction or percentage of 

the occurrence of a desired outcome over a long run of identical experiments. This 

interpretation is practical in some situations. For example, when a production line runs 

smoothly for months with no disruption or change of procedures, the ratio of the number 

of defective pieces relative to the total number of produced pieces provides a probability 

estimate for the expected reliability of the production line. We may make statements 

such as: ‘the probability of a defective piece produced by this line is 1%’, by this we 

typically mean that roughly 1% of all productions are defective.  

While there are many situations involving uncertainty (most notable among them 

are experiments dealing with coins, dice, spinners, bag of balls and other such 

randomizers), in which the frequency interpretation is appropriate, there are other 

situations in which it is not. Consider, for example, a scholar who asserts that a specific 
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work of Shakespeare (such as Hamlet) is actually written by another person, with 

probability 80%. Such an assertion conveys information, but not about frequencies at 

which this event has happened since the event is a one-time event that occurred in the 

past. This is an expression of the scholar’s personal degree of belief arrived at based on 

the available evidence; a type of probability that is of a subjective nature and is based on 

personally-held beliefs, and can be used to explain the choices and actions of a rational 

person. Yet another approach to probability is possible, a probability based on 

examining the physical features of an object (a six-sided die, for example) and arriving at 

a conclusion that the shape is perfectly symmetrical and homogenous, the weight is 

distributed evenly, and no evidence was found that one side will have a greater chance 

of facing up. This process results in distinguishing N equiprobable outcomes with a 

probability of 1/N assigned to each. This type of probability, which is assigned based on 

deductive reasoning on what can occur in a probability experiment, is called theoretical 

probability or a priori probability (please note that it is different from prior probability in 

Bayesian methods).  

2.2.1. Mathematical probability and natural language probability 

Variability in definitions and approaches to probability is not the only important 

issue with probability. Another important consideration, which pertains to many 

mathematical terms including probability, is that probability and its nomenclature are 

used both in common language and in mathematics. A discussion of various lexical 

ambiguities apparent to some mathematical terms could be found in Durkine and Shire’s 

Language in Mathematical Education (Durkin & Shire, 1991). We make a number of 

probability-related statements every day that do not necessarily map onto their 

mathematical counterparts. For example when a friend is telling a rather odd story, we 

might express our surprise (and sympathy) by saying: “no way, it’s impossible!” What we 

actually mean is “the chances of this happening to you are very small”. In mathematical 

probability, the term impossible means that the probability of the event is zero. Based on 

our everyday experience, we would agree that “the sun will rise tomorrow” has 100% 
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probability, however, it may not be easy to prove it from a mathematical3 view. Obviously 

since the sun has risen on Earthlings now for millions of consecutive mornings without a 

miss, the probability that it won’t rise tomorrow is staggeringly low. However, there are a 

number of factors (not all of them accounted for and even known), such as a sudden 

explosion of the Sun, or an unforeseen impact from a stray celestial object, that might 

end the life of Sun any day.  

In conversational language we describe our thoughts as random when we are 

thinking about something unrelated to our main line of thoughts. We may say, “Oh, that 

was random”, when something unexpected (least expected sometimes) happens. In 

mathematics a random selection means a selection that gives every object an equal 

chance of being selected and thus any of the outcomes are expected as much as the 

others. A random sequence of numbers is not one that we did not expect to happen; it is 

a sequence of numbers that is generated based on a rule that cannot be described in a 

length shorter than the sequence itself.  

This discrepancy between mathematical and conversational use of probability 

terms both facilitates and hinders students’ understanding of probability. Research in 

probability education suggests that long before their formal introduction to probability, 

students have dealt with many situations involving uncertainty and they have developed 

a certain probability vocabulary that is comprehended by other language users in 

everyday situations. Thus, the classroom experience of probability is nested into this 

web of meanings; unfortunately some do not fit well, causing serious misunderstandings, 

confusions and other communication impediments (Konold, 2002). 

This overlap between the mathematical terms and everyday language makes it 

important to define the probability related terms properly.  

3 Laplace has argued that, if we observe the Sun rising every morning for n-1 days, then we can 
infer that the probability that it will not rise the next morning is 1/n, because, out of n days, it 
has risen on n-1, so only 1 day is left for it not to rise. Thus the probability of the Sun rising on 
day n is (n-1)/n. So: the probability of Sun rising on day 2 is: ½ the probability of the Sun rising 
on day 3 is 2/3 and so on. Therefore the probability of Sun rising on all days (2,3,...,n) is: 1/2 
×2/3 ×… ×(n-1)/n which amounts to 1/n. Therefore for very large values of n, the probability of 
the Sun rising on all days is technically zero (Stewart 2009). 
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2.3. Definitions of probability through teaching resources: 

It is an interesting task to look up the definition of probability in various probability 

and statistics textbooks. The definitions are varied in both the level of mathematical 

sophistication and in how they incorporate different approaches and views to 

mathematical modeling of probability. I have examined three kinds of resources, looking 

for formal or informal definitions of probability:  

• teacher education textbooks and resources 

• tertiary level probability and statistics textbooks 

• online resources.  

The goal of examining various resources was to provide illustrative examples of 

probability definitions, rather than a comprehensive overview. 

2.3.1. Teacher preparation textbooks and resources: 

The resources examined in this part are: 

A.1. NCTM principles and Standards 

A.2. Integrated resource packages on K-12 British Columbia curriculum 

A.3. Elementary and middle school mathematics (van de Walle, Folk, 
Karp, & Bay-Williams, 2011) 

A.4. Mathematics for elementary teachers (Beckmann, 2007) 

A.5. Reconceptualizing mathematics for elementary school teachers 
(Sowder, Sowder, & Nickerson, 2010) 

A.6. Using and understanding mathematics, a quantitative reasoning 
approach (Bennett & Briggs, 2010) 

A.7. Teaching secondary mathematics (Posamentier, Smith, & 
Stepelman, 2009) . 

A.1. NCTM Principles and Standards 

In a chapter on Data Analysis and Probability, the document addresses 

probability saying: “a subject in its own right, probability is connected to other areas of 

mathematics, especially number and geometry. Ideas from probability serve as a 

foundation to the collection, description, and interpretation of data” (p. 47). Then the 

25 



 

authors proceed to address the concepts to be taught at each grade level along with the 

depth to which the teachers are recommended to cover the concepts. For example, it is 

recommended that students of pre-K to 2 receive an informal treatment of probability 

and learn the probabilistic terms such as: unlikely and probably. In grades 3-5 students 

are to consider chance ideas through experiments involving known theoretical outcomes 

such as coin flips, or dice rolls. The list of suggested learning outcomes and 

recommended ideas to be employed by teachers is offered, but a definition of probability 

is not given. 

A.2. BC provincial curriculum document 

In British Columbia’s mathematics IRPs (integrated resource packages), chance 

is described as a communication tool which addresses the “predictability of the 

occurrence of an outcome” (IRP, p. 14) and mathematical probability is defined as a tool 

that describes “the degree of uncertainty more accurately” (IRP, p. 14). Here both 

probability theory and probability of an event are referred to. The former mention is more 

general and potentially addresses all that is involved in making predictions about an 

outcome and the latter is the specific measure of uncertainty, the probability of an event.  

The prescribed learning outcomes section of the same document for grade 6 

probability and data analysis suggests that the students should be able to “demonstrate 

an understanding of probability by identifying all possible outcomes of a probability 

experiment, differentiating between experimental and theoretical probability, determining 

the theoretical probability of outcomes in a probability experiment, comparing 

experimental results with the theoretical probability for an experiment” (p. 42). The other 

description of probability I could find within the IRP’s document comes from grade 9 

recommended learning outcomes: the students need to “demonstrate an understanding 

of the role of probability in society, explain, using examples, how decisions based on 

probability may be a combination of theoretical probability, experimental probability, and 

subjective judgment” (p. 86). No definitions of these terms are given in the document.  
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A.3. Elementary and Middle School Mathematics: 

Where the authors lay the big ideas of the whole probability chapter, they say: 

“The probability of an event occurring is a number between 0 and 1. It is a measure of 

the chance that the given event will occur [...] The relative frequency of outcomes of an 

event (from experiments) can be used as an estimate of the exact probability of an event 

[...] For some events, the exact probability can be determined by an analysis of the event 

itself. A probability determined in this manner is called a theoretical probability” (van de 

Walle, Folk, Karp, & Bay-Williams, 2011, p. 473). The probability portrayed here is 

objective and there are two approaches to finding that true probability: frequentist and 

theoretical, while an experimental probability is an estimate of the true frequentist 

probability. Although it is specified that theoretical probability works only for certain types 

of events, the connection to frequentist probability is not made and it is not clear that if 

both methods are applicable, which one is preferable and whether they result in the 

same probability.  

A.4. Mathematics for elementary teachers: 

 In (Beckmann, 2007) we have the definition “the probability of a given outcome 

is a number quantifying how likely that outcome is. The probability of a given outcome is 

the fraction or percentage of times that outcome should occur in the ideal world [...] 

probabilities are always between 0 and 1, or equivalently, when they are given as 

percentages, between 0% and 100%” (p. 828). 

In the pages following the definition, the book elaborates on properties of 

probability and addresses principles that determine probabilities. Among those principles 

are:  

•  If two outcomes of an experiment or situation are equally likely, then their 
probabilities are equal.  

•  If an experiment is performed many times, then the fraction of times that a 
given outcome occurs is likely to be close to the probability of that outcome 
occurring. The greater the number of times the experiment is performed, the 
more likely it is that the fraction of times a given outcome occurs is close to the 
probability of that outcome occurring. 
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A.5. Reconceptualizing Mathematics for elementary school teachers: 

 In this book, probability is defined as a feature of an event: “An event is an 

outcome or a set of outcomes of a designated type. The probability of an event is the 

fraction of the times the event will occur when some process is repeated a large number 

of times” (Sowder, Sowder, & Nickerson, 2010, p. 610). This approach is later 

supplemented by a possibility of skipping the repeated experiments if some theory of the 

likelihoods arisen by situation is at hand: “A probability that can be arrived at by 

knowledge based on a theory of what is likely to occur in a situation, such as when a fair 

coin is tossed, is a theoretical probability” (p. 617). 

A.6. Using and understanding mathematics, a quantitative reasoning approach: 

 In Bennett and Briggs (2010)  three types of probability are identified and 

defined: 

A theoretical probability is based on a model in which all outcomes are 
equally likely. It is determined by dividing the number of ways an event 
can occur by the total number of possible outcomes. 

An empirical probability is based on observations or experiments. It is the 
relative frequency of the event of the interest. 

A subjective probability is an estimate based on experience or intuition 
(p.435).  

A.7. Teaching Secondary Mathematics 

 A definition of probability or properties of probability is not mentioned throughout 

the book. The term probability appears in a couple of enrichment tasks such as the 

birthday problem, the expected number of games of baseball to be played given the 

odds of national games over a time period, and the net premium of life insurance 

problems (Posamentier, Smith, & Stepelman, 2009, p. 278). In the latter activity, the 

author explains that the probability that an 18-year old person will die in next year could 

be determined by:  

Number of 18 − year olds dying during the year 
Number of alive 18 − year − olds at the start of the year
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The book presents a statement of the law of large numbers, indicating that with a 

large number of experiments the ratio of success to the number of trials gets very close 

to the theoretical probability. A definition of probability could not be found.  

2.3.2. Tertiary level probability and statistics textbooks 

The textbooks chosen for this part of the study are neither a representative 

sample of all of the textbooks written on the subject of probability and statistics nor 

indicate any ranking among such books. They are chosen since (to my knowledge) they 

are commonly used in college and university elementary statistics courses. Also 

because in my own probability education I have come across a measure-theoretic 

approach to probability, I have included an advanced probability book that employs a 

measure-theoretic method. The textbooks used in this section are: 

B.1. Statistical models (Freund, Wilson, & Mohr, 2010).   

B.2. Intro stats (de Veaux, Velleman, & Bock, 2012). 

B.3. Elementary statistics (Triola, 2011). 

B.4. Introductory statistics (Ross, Introductory Statistics, 2010). 

B.5. Introduction to probabilities (Bertekas & Tsitsklis, 2000). 

B.6. A Basic course in probability theory (Bhattacharya & Waymire, 
2007). 

B.1. Statistical Models 

The authors attend to the definition of probability early in the book. It is defined 

as: “the relative frequency of each category, a number that gives the chance or 

probability of getting an observation from each category in a random draw” (Freund, 

Wilson, & Mohr, 2010, p. 13). 

B.2. Intro Stats 

 In De Veaux, Velleman and Bock (2012) probability is described as one of the 

main contributions of mathematics to statistics. Probability is introduced first through the 

relative frequency, the number of times event A occurs over the total number of trials. 

The convergent value of relative frequency is called the empirical probability of event A 
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given that the experiment involving the event is repeated a large number of times. The 

book continues on with two more definitions of probability:  

 “for events that are made up of several equally likely outcomes, we just count all 

the outcomes that the event contains. The probability of the event is:  

P(A) = # outcomes in A
# of possible outcomes

” (p. 393). 

A third type of probability is introduced next: “We use the language of probability 

in everyday speech to express a degree of uncertainty about your final grade in a given 

course basing it on how comfortable you’re feeling in the course or on your midterm 

grade, and not based on long-run behaviour. We call this third kind of probability a 

subjective or personal probability” (p. 394). 

B.3. Elementary statistics 

Triola (2011) gives three definitions of probability all at once: 

“1) Relative Frequency approximation of probability: Conduct (or observe) 
a procedure, and count the number of times that event A actually 
happens. Based on these actual results, P(A) is approximated as follows: 
P(A)=(number of times A occurred)/(number of times the procedure was 
repeated). 

2) Classical approach to probability: assume that a given procedure has n 
different simple events and that each of these simple events has an equal 
chance of occurring. If event A can occur in s of these n ways, then 
P(A)=s/n 

3) Subjective probabilities P(A), the probability of event A, is estimated by 
using knowledge of the relevant circumstances” (p. 139 and p. 140). 

B.4. Introductory Statistics 

In Ross (2010) some big-picture ideas are presented first: “understanding 

probability is essential to be able to draw conclusions from data. The totality of 

assumptions necessary to make about the chances of obtaining different data values is 

referred to as a probability model for the data” (p. 5). Later on, probability is defined as: 

“a commonly used term that relates to the chance that a particular event will occur when 
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some experiment is performed” (p. 169). The author returns to probability elsewhere and 

states that: “It is an empirical fact that if an experiment is continually repeated under the 

same condition, then, for any event A, the proportion of times that the outcome is 

contained in A approaches some value as the number of repetitions increase. [...] It is 

this long-run proportion or relative frequency that we often have in mind when we speak 

of the probability of an event” (p.176). 

B.5. Introduction to Probabilities 

This book (an MIT lecture notes series) delivers advanced material on probability 

to an audience of electrical and computer engineering students at MIT. Probability is 

defined in this book as a set function satisfying certain properties: 

“A probability function assigns to a set A of possible outcomes (also called an 

event) a nonnegative number P(A) (called the probability of A) that encodes our 

knowledge or belief about the collective “likelihood” of the elements of A. The probability 

law must also satisfy certain properties such as countable additivity (𝑃𝑃(⋃ 𝐴𝐴𝑖𝑖) =𝑖𝑖

∑ 𝑃𝑃(𝐴𝐴𝑖𝑖) 𝑖𝑖 ) for a countable number of disjoint events,  and normality (P(sample space)=1)” 

(p. 6).  

B.6. A Basic course in probability theory 

The book presents yet another approach to probability that is comprehensible 

only by means of advanced mathematical concepts.  

A measure-theoretic definition of probability appears on the very first page: 

“A probability space is a triple (Ω, F, P), where Ω is a nonempty set, F is a σ-field 

of subsets of Ω, and P is a finite measure on the measurable space (Ω, F) with P(Ω)=1. 

The measure P is referred to as a probability. Ω represents the set of all possible 

outcomes (intuitively speaking), and Ω is referred to as the sample space and the 

elements in Ω as possible outcomes”. 
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The authors state that a measure-theoretic framework is essential to 

understanding the works of Kolmogorov which were done in response to David Hilbert’s 

sixth problem (a pledge to axiomatize those branches of physics in which mathematics is 

prevalent, a list topped by probability theory) and resulted in a systematic approach to 

probability theory as a mathematical discipline.  

2.3.3. Online resources 

The two online resourses used to study the definitions of probability are 

C.1 Wikipedia (Wikipedia Probability Page, 2014) 

C.2 Wolfram Alpha (Wolfram Alpha Probability Page, 2014) 

C.1. Wikipedia 

Wikipedia is not considered a valid and reliable reference for research purposes 

since anyone can edit and modify its entries, however, for two reasons I include the 

probability definition from Wikipedia here: 

First, based on my personal experience, the mathematical body of Wikipedia is to 

a great extent reliable and solid. As a user, I have rarely come across incorrect 

mathematical definitions, examples, or propositions over my six years of using 

Wikipedia.  

Second, it is one of the resources students refer to when in need of help. When 

looking up the term probability online, Google search engine often puts the Wikipedia 

page on top of search results. 

Wikipedia defines probability as a measure of the likeness that an event will 

occur, quoting Webster’s definition of probability. Then it classifies probability from the 

point of view of objectivists and subjectivists. 

An objectivist would assign probability based on some objective or physical state 

of affairs. Frequency-based probability and propensity probability are mentioned as two 

popular versions of the objective probability. Frequency-based probability is based on 

the relative frequency in the long run of identical iterations of the experiment. Propensity 
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probability thinks of probability as a physical propensity, or dispositions, or tendency of a 

situation to an outcome of a certain kind. Propensity probability is distinguished from 

frequency probability since the former considers each experiment strongly related to a 

certain set of generating conditions; when we repeat an experiment, we are performing 

another experiment with a similar (but not identical) set of generating conditions.   

The subjective probability on the other hand is assigned as a degree of belief that 

could be identified based on individuals’ betting behaviour, the price at which one would 

buy or sell a bet under a given set of conditions.  

C.2. Wolfram Alpha 

The other online resource I have turned to, looking for definitions of probability is 

Wolfram Alpha computational knowledge engine. Released in 2009 by a team of 

computer scientists and experts in science, mathematics, and engineering, the website 

provides specific and case-based (as opposed to links to other websites or online 

documents) answers to computational queries. For instance, it responds to the question 

of probability of 32 coin flips by providing a graph of the probability density function (see 

Figure 2-1), the probabilities of all heads, all tails, half heads-half tail events, and the 

expected number of heads. 

 
Figure 2-1 The probability distribution of the number of heads in 35 flipped coins. 

I have found Wolfram Alpha a great resource to look up theorems and properties 

related to mathematical concepts. It should be noted that since it is a computational 

engine (as opposed to an online encyclopedia), the response to a query about a 

mathematical concept usually doesn’t contain a conventional definition of the concept. 
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Alternatively, the term in question is identified through visuals, examples, and related 

concepts. I looked into probability search results knowing that a formal definition will not 

be returned, instead I was interested to know what representations, examples, and 

probability problems students will see if they search the word probability in Wolfram 

Alpha. 

It turns out that Wolfram Alpha has amazing capabilities in assisting the client 

with probability related queries at various levels of difficulty. To name a few, it can 

generate a 1000-step random walk in 2D and 3D, calculate the birthday probability (in a 

room with n people, what is the probability of getting at least two people with the same 

birthday), determine probabilities involving coins, dice, and cards, and provides the 

reader with table of odds from the major lotteries (lotto max and 649). Moreover it 

produces the probability values (the probability that the random variable X varies 

between (a, b) from the known probability distributions including Normal, Poisson, 

Binomial, exponential, Beta, and Gamma distributions.  

2.4. Discussion of probability definitions in resources 

In this section I address two issues and discuss each. The first is the lack of 

definitions of probability of an event within resources. I do not mean to say that the 

majority of resources do not offer any definitions of probability (as in probability of an 

event); what I am pointing out is that some resources do not do that. Consider another 

mathematical notion such as a group, function, or derivative. It is safe to say that the 

occurrence of definitions of these notions in introductory level resources is quite higher 

than the occurrence of a definition of probability in similar resources.  Next I tend to the 

diversity of the types of probability as depicted by definitions given in resources.  

The different views and approaches to probability through the resources cited 

previously are summarized in Table 2-1. As seen from the table, definitions of probability 

through resources are dominated by frequentist and theoretical approaches. Also, very 

few resources talk about probability as a theory, a model, or a mathematical tool that 

solves certain types of problems. 
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Table 2-1 Summary of Different Views 

Resource Theoretical 
Probability 

Frequency 
Probability 

Subjective 
Probability 

Measure-
theoretic 
approach 

Probability 
as a 

theory 

Properties 
(laws) of 

probability 
A.1. NCTM 
principles  and 
standards 

      

A.2. BC 
curriculum 
documents 

      

A.3. Van de Walle 
et all 
Elementary and 
Middle School 
Mathematics 

      

A.4. Beckman 
Elementary and 
Middle School 
Mathematics 

      

A.5. Sowder et all 
Reconceptualizing 
Mathematics for 
elementary school 

      

A.6. Bennett and 
Briggs 
Using and 
understanding 
mathematics, a 
quantitative 
reasoning 
approach 

      

A.7. Posamentier 
Teaching 
Secondary 
Mathematics 

       

B.1. Freund and 
Mohr 
Statistical Models 

      

B.2. De Veaux et 
all 
Intro stats 

      
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Resource Theoretical 
Probability 

Frequency 
Probability 

Subjective 
Probability 

Measure-
theoretic 
approach 

Probability 
as a 

theory 

Properties 
(laws) of 

probability 
B.3. Triola 
Elementary 
statistics 

      

B.4. Ross 
Introductory 
Statistics 

      

B.5. Bertekas 
Introduction to 
Probabilities 

      

B.6. Bhattacharya 
A Basic course in 
probability Theory 

      

C.1. Wikipedia       
C.2. Wolfram 
Alpha       

2.4.1. Lack of definitions of probability from the resources 

In most of the resources I used for this study, the importance of probability as 

instructional subject matter is emphasized. More often than not examples of the 

applications of probability in various life encounters are given. However, as indicated in 

the table, some resources do not give a clear definition of probability (although they go 

over a wide range of concepts related to probability). I also came across resources that 

acknowledge how challenging of a task it is to give a concise definition of probability that 

could be used for practical purposes and, at the same time, holds up to the standards of 

a mathematical definition and for this reason suggest to treat probability just in the same 

way geometers treat the notion of point. For example, Feller (1968) in his introduction to 

probability theory and its applications suggests that: 

 We shall no more attempt to explain the true meaning of probability than 
the modern physicist dwells on the real meaning of mass and energy or 
the geometer discusses the nature of a point. Instead, we shall prove 
theorems and show how they are applied. (p. 3) 

 I suggest three reasons for the lack of definitions of probability in textbooks. The 

first reason is the everydayness of the term probability. Since it is a term used in normal 
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language it is treated as a commonly known concept. The second reason is that 

probability is a difficult concept to precisely define since it has always been subject to 

philosophical controversy, a situation mathematicians are known to be reluctant to get 

involved in. Byers (2007) points out: “the business of mathematicians is the doing of 

mathematics and not reflecting on the subject of what it is that they do” (p. 25). Similar 

thoughts are offered by mathematician Gowers (2002) . He advocates abstract methods 

in mathematics and maintains that by applying abstract methods, philosophical 

dilemmas such as what a number really is, or how can something exist and yet be 

nothing (referring to zero) will disappear.  He suggests that the abstract method can be 

encapsulated in the slogan: “a mathematical object is what it does” (p. 16). He contends 

that asking questions on what a certain mathematical object is, would be similar to 

asking what a black king in a chess game is. It is a question to be sidestepped and 

attention must be directed to the rules pertaining to the movements of the black king 

instead.  

A third reason for the absence of a clear definition of probability in the mentioned 

books is that since the term probability is used both as probability of an event and as the 

name of a field. Traditionally textbooks do not give definitions of such terms. For 

example, an Algebra book does not begin with the definition of Algebra and a Geometry 

book is not expected to define Geometry. True though it is to some extent, we should 

note that Geometry for instance is the study of properties and invariants of shapes and 

space whereas probability as a field is about laws of defining and calculating 

probabilities of events. Perhaps it is a bit unfortunate that the same term is used to 

describe both the whole study of random phenomena and mathematical approaches to 

quantify uncertainty (probability as a field) and the numeric measure of uncertainty 

(probability of an event).  

2.4.2. Types of probability as offered by the resources 

From the definitions reviewed in Table 2-1, it seems that the theoretical and 

frequentist view of probability are the predominant definition in resources. Some of the 

resources however, explicitly define “three types of probability” (A6 and B3 for instance): 

theoretical probability, frequency probability, and subjective probability.  
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The formal measure-theoretic and set theoretic definitions of probability given in 

B5 and B6 do not address the meaning of probability, however if applied to finite sample 

spaces, those definitions come down to saying: probabilities are numbers between 0 and 

1 such that if two events cannot occur simultaneously, the probability of either of them 

occurring is the sum of the probabilities of each. The measure induced on the sigma field 

once applied to finite sample spaces would reduce to simple counting measure (the 

number of desired outcome divided by the number of events in sample space), due to 

this, the measure-theoretic and set theoretic definitions could be categorized with 

theoretical probability definitions.  

The definition of theoretical probability is one of the two definitions most 

frequently emphasized through the resources. Enumerating the desired versus possible 

outcomes seems a straightforward and accessible tool to almost everyone and in finite 

situations could work just fine. However, the notion of equiprobability of the outcomes 

has always presented a challenge to this approach. There is supposed to be a finite 

number of possible outcomes. They are judged “equipossible” and hence 

“equiprobable”. In Laplace’s terms, “there is no reason to think the occurrence of one of 

them would be more likely than that of any other” (von Plato, 1994, p. 5). The absolute 

symmetries of theoretical probability are really hard to come by in the real world. 

Statistical data show that the real dice and coins are not fair and having a boy is not 

equiprobable to having a girl. The frequentist approach to probability is also challenged 

by so many similar considerations. For instance, the premise of a frequentist approach 

to probability is to have access to infinitely many (or a very large number) of identical 

experiments and a guarantee that the relative frequency of the desired event will 

demonstrate a convergent behaviour.  

 Research in probability education suggests that when teaching probability, all 

different aspects of it should be considered and interrelated, as students find difficulties 

in each of these components (Batanaro & Diaz, 2007).  In the same way, the different 

meanings of probability should be progressively taken into account. I end this section by 

a quote that I think best summarizes this discussion: 

The ways in which probabilities are used, in statistical inference and 
elsewhere, are varied, and they are always open to criticism.  We should 
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guard, however, against the idea that a correct understanding of 
probability can tell us which of these applications are correct and which 
are misguided.  It is easy to become a strict frequentist—or a strict 
Bayesian—and to denounce the stumbling practical efforts of statisticians 
of a different persuasion.  But our students deserve a fair look at all the 
applications of probability. (Shafer, 1992, p. 18) 

Given the state of probability definition through teaching and learning resources, 

it is interesting to examine the meanings the students assign to probability and to see to 

what extent the institutional and personal meanings of probability are aligned or 

contrasted. The terms institutional and personal are adopted from Batanero and Diaz  

(2007), elaborated further upon later in this paper. The institutional meaning refers to a 

collective meaning of a concept as described and communicated by widely used 

resources including (but not limited to) textbooks. Whereas the personal meanings of a 

concept are the meanings individuals form and perceive of the concept as a result of 

their experience with the concept in everyday life and/or classroom settings. In order to 

examine the students’ personal meanings of probability, I have invited a group of 

undergraduate students to describe and give examples of probability.  

In the following sections, the participants of the study are introduced, the 

theoretical model is discussed, and the task and research questions are presented 

followed by analysis of data and discussion.  

2.5. The participants  

The participants of this study are a group of thirty-three liberal art and social 

sciences students. At the time of the study, they were enrolled in a course Mathematical 

Experience: Numbers and Beyond offered by the Faculty of Education at Simon Fraser 

University. The mathematical background of this group of students is not generally very 

strong. Typically the highest level of mathematics the students have taken before is 

MATH 190, Principles of Mathematics for Elementary Teachers, or grade12 

mathematics. In the personal information survey participants were asked to fill at the 

start of the term, many of them described themselves as “not very confident with 
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mathematics” and mathematics as being “not their best subject”. The students usually 

take this course for two reasons: some take it as a “Q-course”4 to fulfill the quantitative 

requirements of their program; some others plan to become teachers and take this 

course to fulfill the entry into the teacher education program requirement of completing 

“at least 2 education courses”. 

The goal of the course is to explore a variety of mathematical topics related to 

numbers in order to increase the mathematical literacy of those students, and to 

increase their capabilities for quantitative reasoning and understanding of numbers in 

particular. During this course students spend six weeks on concepts from basic number 

theory, including modular arithmetic, pigeonhole principle, Pascal’s triangle, and 

Fibonacci numbers. They also spend two to three weeks on rational numbers, irrational 

numbers, ideas about counting infinite sets, and one-to-one correspondence between 

sets; subsequently they are introduced to countable infinite sets versus uncountable 

sets. The last three weeks of this course are spent on probability. The students review 

the theoretical definition of probability of an event (number of desired outcomes/total 

number of possible outcomes), and are expected to solve the usual dice and coin 

probability problems. Through hands-on activities using physical and virtual 

manipulatives, they explore the experimental probability and apply it to problems, such 

as the Monty Hall problem and the birthday problem. The focus of instruction in the 

probability part of the course has been to bring together the experimental probability and 

theoretical probability. The probability problems mentioned above are approached both 

experimentally and theoretically.  

2.6. Theoretical Model 

There is an extensive body of research around probability. Some of the research 

I am familiar with is problem-specific, addressing conflicts and challenges encountered 

through famous problems such as Monty-Hall problem. Other researches I have read 

4 Courses with "Q" designation are designed to assist students in developing quantitative 
(numerical, geometric) or formal (deductive, probabilistic) reasoning, and to develop skills in 
practical problem solving, critical evaluation, or analysis. 
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are concept specific, for example addressing the notion of independent events and 

conditional probability. There is also a great deal of research done on probabilistic 

misconceptions, biases, and fallacies: Shaughnessy (1981), Konold, Pollatsek, Well, 

Lohmeier, and Lipson (1993) , Tversky and Kahneman (1974), and Tversky and 

Kahneman (1983). Research into learners’ explicit definitions and examples of 

probability is harder to come by. It is also fair to say that the vast majority of research in 

probability education is conducted around the K-12 age group. Very little work is done 

with regard to examining undergraduate students’ understanding of probability and 

probabilistic notions. In looking for a theory that has been developed and applied to 

learners’ of higher age groups, I came across a five-component model by Batanero and 

Diaz (2007). This model is developed as part of a systemic research program for 

mathematics education at the University of Granada, Spain, and is applied in different 

works of research in statistics education. Batanero and Diaz (2007) propose five 

interrelated components of a model to analyze various meanings of probability. Their 

model suggests that a well-rounded understanding of a concept (probability specifically), 

should include five elements: 

1) Knowledge of the field of problems from which the concepts has 
emerged, in the case of probability, students should learn about 
games of chance since problems related to chance games were 
used to develop the first ideas of probability. 

2) The representations of the concepts: the probability notation, 
percentages, fractions, frequency tables, and density graphs are 
among the representations of probability. 

3) The procedures and algorithms to deal with the problem; in case of 
basic probability, these procedures are simple counting or using 
combinatorial tools to calculate the probability of an event. 

4) The definitions of the concept. These will include the properties and 
relationships to other concepts, such as different definitions of 
probability, the numeric properties of it (positivity, additivity, and so 
on), the relationship between probability and frequency and 
expectation. 

5) The arguments and proofs we use to convince others of the validity 
of our solutions. 

In order to refer to these components I have come up with these shorthand 

phrases for each (not mentioned in the original work): knowledge of the field, 

representations, algorithms, definitions, and arguments. 
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This model is used to decide on the task employed for data collection in this 

study, and also for the initial analysis of the responses. Based on the results of the initial 

analysis, additional theoretical considerations have been called upon for a more in-depth 

analysis of the data. I will describe these later in the paper. 

2.7. The task 

The participants were asked to provide written responses to the following 

question:  

“What is probability? Give an example of the probability of an event.” 

Enough time and writing space was given and the responses were collected 

anonymously. 

2.7.1. Some considerations about the task  

The task is guided by the five-component model. However, some changes to the 

original model are made and only parts of it suitable for this study are adopted. The first 

component of this model (knowledge of the field), informed me as the teacher to engage 

students in probability problems related to games of chance. The students were 

introduced to problems that famously played an important part in the development of 

probability. With regard to the representation, algorithm, and argument components of 

the model, due to the basic level of the course and the short period of the time allotted to 

the probability, studying algorithms and arguments was not feasible. The definition 

component of the model seemed a more helpful tool to address students’ concepts of 

probability. As discussed in earlier sections of this paper, definitions of probability are not 

as commonly available through textbooks as, for example, the definition of function or 

limit. Due to presence of the word probability in everyday language, the meaning of the 

term is often taken as known. While understanding a concept is not reduced to the 

students’ ability to define the word, it is nevertheless important to find out what meanings 

students assign to concepts. Batanero and Diaz suggest looking into students’ 
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“definitions” of probability (the fourth component of the model). That requires asking the 

respondents to “define” the term probability.  

In mathematics, definitions are rigorous and precise, and the task of defining a 

term is managed only as a result of the long-term interaction of the person with the 

concept at hand and concepts related to it. A definition is a final product of a process of 

inclusion and exclusion of properties as different aspects of a concept are examined and 

experienced. Students outside of mathematical fields of study are not usually familiar 

with the requirements of a mathematical definition and if asked to define a term they are 

likely to try to give a set of properties and features they associate with the concept. 

Thus, instead of asking for a definition, I asked the participants of the study to describe 

what probability is and to give an example of the probability of an event. The question in 

the task is deliberately vague and open to interpretation. For instance the question 

doesn’t ask respondents to describe mathematical probability, nor does it ask to 

describe the probability of an event.  

2.8. Research questions 

The research questions pertaining to this study aim at examining how 

undergraduate students describe probability, in particular: 

• What features of probability appear in students’ definitions/descriptions of 
probability? 

• What features of probability appear in students’ examples of probability?  

2.9. Participants’ description of probability 

As stated earlier, Batanero and Diaz (2007) distinguish between the personal 

and institutional meanings of probability to differentiate between the meaning that has 

been proposed for a given concept (probability in this case) fixed by a specific institution 

(the meaning proposed by the textbook, or the teacher), and the meaning given to the 

concept by each particular person in the institution. 

43 



 

I considered making such distinction when analyzing participants’ responses to the 

task.  

2.9.1. Personal versus institutional probability 

My initial analysis of responses attempted to distinguish between the institutional 

versus personal meanings of probability. It is not easy or possible to draw a clear line 

between personal meaning(s) the respondents assign to probability and the ones they 

write down due to their formal probability education. One difficulty is the diversity in the 

background knowledge of the participants of the study. They have been educated in 

various educational systems, with difference in curriculum. For instance, not all of them 

have been educated in British Columbia, not even in Canada. They might have 

institutional meanings in mind that the researcher could simply take as personal because 

they are not shared with the researchers’ institutional meaning of probability.  

I dealt with this problem by limiting the institutional meaning of probability to that 

mentioned in the textbook used for the course in which the participants are enrolled. The 

Heart of Mathematics (Burger & Starbird, 2010) is used as the textbook. It defines 

probability as a two-fold concept and offers two definitions of probability: 

1) Theoretical probability of event E occurring 

= number of different outcomes in E
total number of equally likely outcomes

 

2) Relative frequency of an outcome 

= number of times that  outcome occurred
total number of times the experiment was repeated

 

(p. 586). 
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I found seven responses that to some extent had the same definition structure as 

the theoretical probability definition mentioned in the textbook. One response that 

roughly resembles that of the textbook states that5: 

 

This definition to some extent adheres to a theoretical view of probability and 

expresses it as a fraction. The other six responses describe probability as a fraction, 

which in the outset aligns the respondents’ concept of probability with that of the 

textbook. Responses with no reference to the number of outcomes (desired or possible) 

or number of experiments performed, had to be deemed personal since they were 

worded different than the textbook and also did not refer to any of the two different 

possible ways to define probability (as done in the textbook). The data suggest that most 

students tend to offer their own description of probability rather than the textbook 

definition. In search for aspects of probability that fall within the students’ definitions, I 

looked at the data for a second time. In this round, by using two components of the 

model I looked for representations, manifestations, metaphors, and mathematical 

primitives. I use the term mathematical primitives, or in short primitives, to refer to 

concepts that are not defined in terms of previously defined concepts, they are usually 

understood and motivated by an appeal to everyday experience and intuition.  

From the data it seems that the respondents used terms such as chance, 

likelihood, ratio, fraction, percentage, possibility, and odds to communicate their notions 

of probability. Table 2-2 summarizes the terms that the respondents used to define or 

describe probability: 

 

 

5 The excerpt is visually enhanced by writing over it. 
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Table 2-2 The frequency of the key words in definitions 

 Definitions 
Fraction or ratio 7 
Percentage 6 
Likelihood 7 
Chance 17 
Mathematics 3 
Possibility 1 
Odds 2 

In the first round of data analysis only seven responses were counted as 

mathematical since I was looking for a fraction style definition that was similar to the 

definition given in the textbook. The second round of analysis brought to my attention the 

mathematical terms that were used in seemingly personal definitions. Therefore I 

categorized more cases as mathematical. The results are presented in Table 2-3. 

Table 2-3 Types of probability from data 

Mathematical (institutional) probability n=11 Everyday (personal) probability (n=22) 

Probability as a 
fractions (n=7) 

Probability as a percent 
(n=6) 

Probability as chance (n=17)  
or likelihood (n=7) 

As a field of study, probability is a mathematical approach to impart structure and 

order to our vague or incomplete knowledge of random phenomena in a way that 

enables us to quantify certain aspects of the variation characteristic to the probabilistic 

matter at hand in order to make decisions based on our knowledge of the situation and 

the modelling capabilities of the underlying theory. 

As a more specific mathematical object however, the probability of an event has 

certain mathematical features. For instance, it is a non-negative number, and it is less 

than or equal to one; it is additive over disjoint events and multiplicative over 

independent events. I tried to extract from the data the features of probability, either 

proposed as a defining feature, or just as a property. 
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In some of the probability definitions obtained from such data, the relation 

between the numeric probability and the likelihood of the event was described as a 

defining feature of probability: 

“Probability is the chances that an event will happen or not happen expressed as 

a fraction or percentage. The closer this is to 100% (1), the more likely it is. The closer 

this is to zero, the less likely it is to happen”. 

In this definition, probability is viewed as a tool to quantify an intuitively 

understood notion of likelihood, in the same way the red liquid in thermometer quantifies 

and determines the temperature. However, it is not clear how this number-likelihood 

correspondence works how the probability is calculated. 

Probability as percentage 

Theoretical probability is often defined and calculated as a fraction, it is possible 

to convert any fraction to percentage but except for fractions such as ½, ¾ , that have 

well known percentage equivalents, the theoretical probability is expressed in fraction 

form. Similarly, the probability of an event calculated via an experimental approach can 

be expressed both as a fraction and percentage. When virtual manipulatives are used, 

the experimental probability is typically obtained and expressed as a decimal number 

that is usually reported and referred to as a percentage. That is because most soft wares 

available for such purposes (for example, the manipulatives available at the National 

Library of Virtual Manipulatives and the software Tinkerplots) calculate the probability as 

a percentage.  

Moreover, students learn about percentages early in grade 5 or 6. They use them 

frequently in the context of discount, tax, tip, and expressing their degree of belief in 

some event. Students learn to use percentages to refer to chance events before they are 

introduced to mathematical probability and the colloquial use of probability is often in the 

context of a percentage. 

The participants of this study spent some time with the Excel randomizer function 

and calculated the experimental probability involved in a couple of simple tasks. As 
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Excel could be used as a calculator, as well as a sheet to record the results, students 

calculated and recorded the ratio of desirable outcomes to the total number of iterations 

of the experiment in the same document. The result of such calculation is returned in a 

decimal form or a percentage (depending on cell formatting).  

Either due to their early, pre-instruction ideas of probability or due to their recent 

experience with probabilities that are calculated as percentages, the respondents of this 

study, in six cases, defined probability as being the percentage of an event. Here are 

two examples of describing probability as a percentage from the data: 

“Probability is a percentage that either something happens or not” 

“Probability is the percentage that you have to get a certain outcome”. 

Although cast in terms of a percentage, the second definition uses the idea of an 

outcome, which seems more like the mathematical probability. The first seems more 

associated with everyday events. Drawing a line between mathematical and everyday 

probability is difficult and perhaps cannot be done objectively. Identifying mathematical 

terms in responses and using them as inclusion criteria helps the matter to some extent 

but as seen from the two responses above, it is not a clear cut.  

Probability as fraction 

As stated before, a fraction is one of the common forms of expressing probability 

in both theoretical and experimental approaches. The review of resources indicates that 

where theoretical or frequentist probability is defined, it is in a form of a fraction (except 

for the measure-theoretic approach). 

Seven participants identified probability as a fraction either by using the word 

fraction or by writing a fraction: 
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(In my count of types of probabilities, this response is counted both as a fraction 

and percentage). Another example (seen earlier) in which the probability is clearly 

defined as a fraction is:  

 

Again, though both involving fractions, the second seems more mathematical in that it 
talks about outcomes. 

2.9.2. Everyday meanings of probability as described by 
participants 

Words related to probability are ubiquitously used in everyday language among 

English speakers. Young kids learn to use words such as chance, random, probably, 

sure, unlikely, impossible, and probably before they come to school. The high 

occurrence of the word “chance” in participants’ description of probability is noticeable 

and is attended to here. 

Probability as chance 

Lakoff and Johnson, in Metaphors We Live By (Lakoff & Johnson, 2003), suggest 

that our conceptual system is largely metaphorical, and the way we think, and what we 

experience, is pretty much a matter of metaphor. They suggest that since 

communication is based on the same conceptual system that we use in thinking and 

acting, language is an important source of evidence for what the system is like. 

Lakoff and Johnson (2003) use chance and games of chance as basic 

metaphors through which other concepts are described and understood. For example, 

they give instances of how life is metaphorically referred to as a game of chance or a 

gambling situation, used in expressions such as “I’ll take my chances”, “The odds are 

against me,” “He’s holding all of the aces” “Play your cards right and you can do it”. 

These chance metaphors are so commonly and frequently used that they have become 
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fixed-form expressions, and although these phrases are instances of life viewed as a 

game of chance, they are used to speak of life in a normal, everyday manner.  

The word chance in everyday language is used to describe or to refer to a vast 

number of situations: chance could be used to refer to a possibility that something will 

happen, an opportunity that occurs without prior expectation, any occurrence of events 

in a manner that is not entirely deterministic, or a sequence of events that are not related 

in a causal way or caused by the same common reason in an obvious way. The word 

chance is also used to indicate lack of information about a situation or lack of a logical 

design.  

The participants of this study made frequent use of the word chance to describe 

and define probability. In twenty two of the total thirty three responses, probability is 

defined as the chance or likelihood of an event (or “something” as seen below).  

 

In this response, the need for defining “chance” is not felt and it is referred to as a 

commonly understood notion. However, since probability is directly equated to chance 

with no additional conditions or specifics it is not clear if the respondent considers 

probability just as a fancy word for chance or if probability is in some ways different than 

of chance. 

 

In this response, chance and probability are not used in an interchangeable way. 

It is stated that probability is the number of chances, hence once the notion chance is 

quantified or enumerated, it is called probability. 

Unlike in Lakoff and Johnson’s “Life is chance”, in which life is likened to chance 

games, I do not think the participants have used chance as a metaphor for probability. 
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According to Low (1988, p. 126), a metaphor is a reclassification that involves “treating X 

as if it were, in some ways, Y”. The participants of this study define the probability as the 

chance and not resembling chance in a metaphoric way. They use the everyday notion 

of chance, which they are familiar with to describe the more technical and field specific 

term probability. That being said, the repeated use of the phrase “probability is the 

chance” in respondents’ definitions suggests that chance is a commonly understood 

conceptual notion, and perhaps, a primitive idea that is already available to the learners 

without need for further clarification, and they conceptualize probabilistic notions by 

lining them up with their prior experience with chance.  

2.10.  Participants’ examples of probability  

Including a request for examples in the task was almost arbitrary and 

coincidental rather than an informed theory-based decision. In Batanero and Diaz’s 

model there is no specific attention to learners’ examples of a concept. The model 

emphasizes the importance of looking into students’ definitions of probability, the thought 

processes available to the students when working on probability tasks, and how 

probability related notions are connected to other mathematical concepts. But examples 

of probability and how important it is to look into the students’ examples of probability is 

left out. After the first round of analysis of examples it was evident that there is a need 

for a more in-depth analysis since the examples not only complemented and enriched 

the definitions but also added a new perspective on participants’ notions of probability.  

Therefore I present some additional theoretical considerations to elaborate on my 

analysis of the data. 

2.10.1. Additional Theoretical Considerations 

The framework used to analyze the data is a tool for analyzing personal or 

collective example spaces adopted from Zazkis and Leikin’s (2008) work on 

exemplifying definitions. Zazkis and Leikin analyzed learner generated examples of 

definitions of a square. They invited the participants to generate as many examples as 

possible of definitions of a square; they analyzed the responses using three lenses:  

accessibility and correctness, richness, and generality. In accessibility and correctness 
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category, they considered whether examples satisfy the conditions of the task and 

whether they are generated with ease or struggle. They also considered the 

mathematical correctness and attended to the logical structure of the definition and 

minimality. In the richness category, they considered whether the examples vary in type 

and structure, and whether they are situated in a particular context or drawn from a 

variety of contexts. For example, a definition that attends to properties of a square other 

than sides and angles was considered rich.  In the generality category, Zazkis and Leikin 

considered whether the examples are general or specific.  

Those categories are slightly modified for the purpose of this study. Zazkis and 

Leikin had 155 learner-generated examples to work with. Each of their respondents had 

generated several examples, which made it possible to address the diversity and variety 

of the example context. In my study, each person generated a maximum of one 

example, which made the investigation of richness category impractical. Also, since the 

examples I received were preceded by definitions of probability, it seemed appropriate to 

look into how individual definitions and examples of probability are linked. Hence, I have 

analyzed the examples from three perspectives:  correctness, generality, and relation of 

examples to the provided definitions/description.  

2.10.2. Data 

Analysis of the examples suggests that some of the respondents had a hard time 

coming up with an example of the probability of an event. The research suggests that 

generating examples of a concept is far from a trivial task. Zazkis and Leikin point out 

that the task of generating examples of a concept can be quite a complicated task in 

which the student experiences dimensions of possible variations associated with the 

defining features of the concept in question.  From the thirty-three responses collected, 

only twenty-four examples were obtained. Nine students did not provide any examples. 
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2.10.3. Analysis of data 

The data was collected anonymously therefore I could not follow up with the 

students who did not write an example. The analysis of the examples is conducted 

based on the twenty-four examples I received.  

Correctness of examples 

Correctness of the examples are determined based on these criteria: the 

probabilities are given as numbers (as opposed to described as higher or lower) and 

correctly assigned (based on laws of probability). Here is an example of a correct 

example from the data:  

 

 This response highlights some important properties of probability such as its 

reliance on the conditions under which the experiment is performed, the number of 

repetitions, and the number of outcomes in each repetition: “each time I try my prob. of 

getting ‘heads’ stays the same” relates to both the frequency and theoretical definitions 

of probability at the same time since the probability presented in this example is both 

obtained over repeated trials and has the aspect of constancy to it. 

Another example of correct probability examples from data is:  

 

A total of 10 examples were considered as mathematically correct, by which I 

mean the event in question was clearly described and the probability assigned to the 

event was conventionally correct. The correctness of the other 14 examples could not be 

verified mostly due to one of the two reasons: either the probability in question was not 

calculated or the event in question was too general and henceforth the probability could 
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not be assigned properly. In examples where the probability was not calculated the 

probability was sometimes described as “high”, or “small” as in the following: 

 

Here is another example6: 

 

Some other examples in this category (perhaps due to misreading the task) 

provide an example of an event and a probability related question with regard to that 

event but make no comments on the probability in question.  

 

Some of the examples in this group only contain a probabilistic situation and no 

specific event or probabilities: 

 

Generality of examples 

Generality is often a valuable feature to encounter in student solutions, 

definitions, examples, and explanations of why certain things work and why they do not. 

However it should be treated with care since if not accompanied with the required 

specifics of a notion (definitions or examples) it may indicate lack of adequate 

knowledge about the concept. For instance, as stated in Zazkis and Leikin (2008), if a 

6 The excerpt is visually enhanced by writing over it. 
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student defines square as a shape with four sides, the definition, although a general one, 

does not include the essential features of a square and therefore is not completely 

correct. In probability examples students tend to assume a lot and do not verbalize the 

specific setting to their intended probabilistic situation and event. Such examples are too 

general since the specifics such as the conditions or assumptions under which the 

probability is assigned are missing. For example a response from data states that: 

“The probability that it rains today is 80%” 

The specifics of assigning an 80% probability to the event of rain are not 

mentioned. We don’t know why it is so, nor do we know what is exactly meant by rain. 

Does any precipitation that lasts more than one minute count or should it be for a 

minimum of 2 millimeters? Such examples could be converted to specific and 

mathematically correct examples of probability if they were accompanied with the 

conditions surrounding the experiment. For example, if the example above is worded as: 

the chances of rain on a specific day in a specific city with a certain weather history while 

having knowledge of weather for the past couple of days is estimated to be 80%, the 

validity of the probability could be verified since we are presented with the required 

information to build a probability model around the random experiment. The point here is 

that examples like this cannot be deemed incorrect since they are subject to personal 

inferences upon the person’s historical memory of the weather. However, without the 

background information this type of examples is categorized as too general and their 

correctness is not verifiable. Another example states that 

“There is a very low probability of 1/100000 to win Bingo”  

Once again it is not specified how this number (1/100000) is reached at, since 

the idea of winning is not defined by the respondent. For instance, one may ask if getting 

three numbers right is winning. 

In categorizing the examples into general versus specific, I noticed that the 

context of the examples relates to the specificity of the examples. The examples 

obtained from the data represented both situations from everyday life and from 

mathematics. 
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Five examples were about weather forecast and lifestyle choices (coffee or tea), 

fifteen examples involved coin flipping, dice rolling, or card game playing, and four 

examples involved picking random numbers or objects. The examples from everyday life 

tended to be more general in the sense that the specific underlying assumptions or 

conditions are not made known as shown before. The examples involving picking 

numbers and gaming situations (coins, dice, etc.) proved to be more specific:  

 

Also it is noticeable that in examples involving games of chance, more accurate 

language is used. Here is an example from the data: 

“Probability of rolling a 4 on a standard die is 1/6” 

It is specific about the type of die (standard) and the outcome. Another example 

states that: 

“The chances of me getting heads when I flip a coin is ½, and each time I try, the 

probability of getting heads stays the same” 

Some examples only refer to the outcome without referring to the probabilistic 

situation or the process involved.  
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Relation of examples to definitions 

When definitions of probability together with examples of probability given by 

each student are tabulated, it is possible to consider the match or mismatch between 

definitions and examples, to see if the example given actually satisfies the definition, if 

they follow the same logic, and if they both have the same mathematical structure to 

them. From Table 2-4 it is apparent that examples are more mathematical since more 

fractions and percentages are used to generate examples of probability compared to 

definitions of probability.  

Table 2-4 Keywords used in definitions and examples of probability 

 Definitions Examples 
Fraction or ratio 7 11 
Percentage 6 11 
Likelihood 7 0 
Chance 17 5 
Mathematics 3 0 
Possibility 1 0 
Odds 1 0 

Compared to definitions, it is noticeable that examples are better worded, more 

specific, and more mathematically structured. There are instances of good definitions 

followed by equally good examples obtained from the data—though not very many of 

them. Here is an example (repeated in part from earlier): 

 

 And another one: 
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 A larger number of students that had difficulty in producing a definition gave 

examples that showed a better understanding of probability. The probability definitions 

offered by this group of students typically are general and vague. One might think that 

based on a definition like this, the student’s knowledge of probability must be very 

limited. The examples, however, show that the student – although not capable of 

elaborating on the properties and features of probability – is familiar with the concept 

and its defining features. Here is an example: 

 

“A mathematical reasoning for chance”, however correct, is not laying out any of 

the characteristics of probability. This description of probability pertains to probability 

theory (the discipline) and does not specify what types of “reasoning” probability theory 

will employ to make sense of chance. The example given after the definition, on the 

other hand, involves an experiment with three presumably equally likely outcomes. Note 

that the response above puts three small objects inside a rather large space to create an 

equally likely situation, and assigns a numeric probability to the event of one of the 

objects pulled out.  

Also the mathematical notion used (if any) in example construction tends to 

match that of the definition. For instance all of the students that have introduced 

probability as a percentage also gave example of probability in percentage form:  
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“Probability is a percentage that either something happens or not. Example: 98% 

probability of rain forecast for tonight”. 

Another such example from data: 

 “Probability is a percentage representation of possible outcomes. If I roll three 

dice there is 100% chance that I’ll get a total between 2 and 19”.  

An example that makes use of fractions both in definition and the example part of 

the task:  

“Probability can often be represented as a fraction, for example there is a one in 

three chance of winning a game”. 

2.11. Discussion and Conclusions 

This study primarily aimed at looking into features of probability appearing in 

students’ definition of probability and features of probability appearing in examples of 

probability. To answer the first research question I should first mention that mathematical 

probability (as in probability of an event) has three essential features, regardless of the 

type of approach, and some additional properties. The defining features are: 

1) It is a number and it is between zero and one inclusive 

2) The probabilities of empty set and the set of all events (sample 
space) are zero and one respectively. 

3) The probability of a countable union of disjoint sets is equal to the 
sum of individual probabilities.  The additional properties include the 
inclusion-exclusion law, product rule for independent events, 
complementary events, and Bayes’ formula for conditional 
probabilities. 

The analysis of data suggests that the first defining feature is a well understood 

property of probability and it serves as a shared basis for participants’ perception of 

mathematical probability.  
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Of note, the second and third features, although essential in mathematical 

definition of probability, were not mentioned in participants’ definitions. These features 

were not directly sought by the task; therefore the fact that they did not make it to the 

participants’ definitions of probability indicates that they are not perceived as essential 

and indispensable to the definition.  

Also, in the data, there is neither a mention of different definitions of probability 

(frequentist, theoretical, and subjective probability), nor a deliberately made distinction 

on everyday versus mathematical probability. To participants of this study, the two terms 

probability and chance are closely linked and they are both used to make sense of non-

deterministic states of events.  This may indicate that the respondents consider 

mathematical probability well aligned with the everyday probability and consider both as 

an unambiguous well-defined concept.  

Answering the second question of this research, the features appearing in 

examples of probability are found to be similar to those in definitions. The examples are 

more elaborated and more specific; therefore the numeric aspects of probability are 

highlighted in examples. 

Also, analysis of the examples suggests that the everyday notion of probability 

predates and predominates students’ conception of mathematical probability. As 

evidenced by the examples from the data, the respondents apply probability to real life 

occurrences as well as games of chance and mathematical situations. They tend to align 

probability with chance even though probability is a more technical and a less 

colloquially used term and that probability is a mathematical construct to quantify certain 

aspects of chance and random phenomena. 

Analysis of student-generated examples of probability suggests that generating 

examples is a complicated task that makes available to the researcher some new 

aspects and features of students’ awareness of the concept. If students’ understanding 

of probability could metaphorically be likened to an ever changing picture that is partly 

visible to the teacher, the participants’ examples of probability is what clears up the 

picture and reveals larger parts of the image viewed previously in light of their definitions 

of probability. The juxtaposition of examples with definitions of probability can inform 
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both the learner and the instructor of the aspects of the concept that may not be inferred 

upon solely by means of definitions. For instance some participants that seemed to have 

no difficulty giving a definition of probability were not able to give an example of the 

probability of an event. The difficulty the student encounters with the example generation 

part of the task, informs her of the limitations of her understanding of the concept. On the 

other hand, a student who struggles with putting a concise and comprehensive definition 

together and thus is portraying a poor understanding of probability may find it easier to 

exemplify the defining features of the concept in an example and hence score higher on 

probabilistic understanding scale. 

From the discussion above I suggest that the model developed by Batanero and 

Diaz could be extended by adding an inquiry into students’ examples of probability. As 

per the discussion, when asked to provide examples of a concept, students will have to 

extend their reach for the properties of the concept and its association with other 

concepts at a greater depth that adds dimension to their understanding of the concept. 

Also generating examples of a concept facilitates the move from general and vague to 

specific and precise and thus can complement students’ definitions and descriptions of a 

concept.  

2.12.  Directions for future research  

The examples obtained in this study represent finite situations only. That is to say 

the number of possible outcomes and the number of repetitions of the experiment are 

both finite. Infinity appears neither in the construction of the sample space nor in the 

number of samples required to be taken. Considering that the respondents have had 

little experience with infinity, it is well expected, nevertheless, it seems an interesting 

possible research direction to take: to see if a more mathematically advanced group of 

respondents would make use of infinity involved situations with their examples of 

probability. Also within several examples of probability provided in response to the task, 

50% probability made the most appearance and very few examples were close to the 

endpoints of a probability continuum; that is to say, there were very few examples with 

100% probability and no examples of zero probability.  Thus another interesting 
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investigation could be to look into examples of specific extreme probabilities: zero and 

one.  
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Chapter 3.  
 
How impossible is the impossible? 

3.1.  Introduction  

In this paper I examine prospective secondary school teachers’ understanding of 

extreme probabilities (zero or one probabilities) through their examples. I discuss the 

ambiguity arising from everyday notions of probability and mathematical probability and 

use extreme events (events with probability zero or one) to elaborate on this matter. The 

examples are used to draw conclusions about how an everyday notion of probability is 

aligned or is in conflict with mathematical probability. In this study, prospective teachers 

from a diverse educational background were asked to provide examples of probabilistic 

situations. The participants were asked to provide examples of 100% probability events 

and examples of zero probability events. Within the data, I looked for what makes an 

event impossible, and why an event is perceived as certain. 

3.2. About extreme events 

I present some textbook terminologies and examples related to extreme 

probabilities, then discuss why extreme probabilities are of special research interest to 

me. 

Extreme events are those with probability zero or one. The word impossible may 

seem an apt choice for events with zero probability of happening since this is the word 

used in everyday English language to refer to the lowest degree of plausibility. However, 

for reasons discussed below, in the context of mathematical probability it may mean 

something different. To avoid the confusion, I refer to an event E with probability P(E)=0 

as a zero-probable event. Likewise, I refer to an event E with P(E)=1 as a one-probable 
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event. The two notions of zero-probable and impossible do not completely coincide and 

various words such as almost impossible, improbable, implausible, highly unlikely, and 

unusual are used to address different aspects of zero-probable. In this study, I 

investigate both ends of extreme probabilities; however, at times the focus is on the 

zero-probable end more than the other. That is because zero-probable and one-

probable events are complementary events, the opposite ends of probability continuum, 

and thus are very similar in properties.  Due to this duality, once the zero-probable is 

discussed, the reader is able to draw similar conclusions about one-probable events.  

As a first step, I need to make a distinction between several everyday concepts 

and their mathematical counterparts. To this end, I present both everyday and 

mathematical definitions of impossible and certain.  

3.2.1. Everyday impossible/certain 

 The first three meanings given for the word impossible from the Merriam 

Webster online dictionary are: “unable to be done or to happen, not possible, very 

difficult”. Collins’ online dictionary defines impossible as: “incapable of being done, 

undertaken, or experienced, incapable of occurring or happening, absurd or 

inconceivable; unreasonable”. The word carries various levels of meaning from not being 

able to happen, something that defies reason and sense, to something that is very 

difficult. Using the word impossible to express the degree of excitement about an 

occurrence (which has occurred and thus is not technically impossible) is not 

uncommon.  

The dictionary meaning for the two terms sure and certain are:  

Sure: confident in what one thinks or knows; having no doubt that one is right. 

Certain, convinced, definite. 

Certain: known for sure; established beyond doubt, unquestionable, indubitable, 

and undeniable.  
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3.2.2.  Mathematical impossible/certain: 

In probability texts, an impossible event is usually defined as an event that can 

never happen and, subsequently, as an event that will have zero probability of 

happening. Likewise, an event is sure or certain (I keep using both words sure and 

certain since there is no consensus within the textbooks I have come across about which 

word to use) when we have reason to believe that it will certainly happen and thus 

P(A)=1. It is also one of the axioms of probability that the probability of the sample space 

is equal to one, therefore the sample space is sure to happen. 

I wish to emphasize that in mathematics an impossible event is not defined as an 

event with zero probability (same with sure events and probability one); the fact that 

impossible events can never occur is an a priori assessment of their likelihood, which 

results in assigning probability zero to them.  

Thus, although there is considerable overlap between the notions of impossible 

and zero-probable, the two are not congruent. For example, it is impossible to roll a 

seven with a standard die, thus the probability of rolling a seven is zero. But the 

probability of picking a rational number from the set of all real numbers is zero without 

the event being conceptually impossible. As with the two examples, an event has to be 

zero-probable if it is impossible, but an event can be zero-probable without being 

impossible. This distinction is not always emphasized or even made in mathematical 

textbooks, which may result in an interchangeable use of the two terms. Personally, as 

an ESL learner, I came across the word impossible in the context of mathematical 

probability before encountering the word in everyday context. Consequently, I used to 

think the term impossible meant zero-probable.  

I present here a couple of textbook definitions of impossible events and the way 

the books have handled the subtle difference between impossible and zero-probable. I 

only mention the textbooks that do attend to the task of defining the terms impossible 

and/or certain events. 
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3.2.3. Definitions of impossible and certain events in probability 
textbooks 

I present examples from two groups of probability textbooks: (1) books that have 

carefully made a distinction between impossible events and zero-probable events, and 

(2) books that have mixed the two up.   

The first group.  One of the texts in the first group is Elementary Statistics 

(Triola, 2011). Although the book does not explicitly discuss the difference between 

zero-probable and impossible, it introduces both concepts. The first instances of 

impossible and certain are presented in this example: “It is an impossible event for 

Thanksgiving to be on a Wednesday. And it is certain for Thanksgiving to be on 

Thursday. That is because Thanksgiving falls [by definition] on the fourth Thursday in 

November” (p.144). The book adds that, “when an event is impossible, we say that its 

probability is zero. When an event is certain to occur, we say its probability is 1” (p. 148). 

Two more examples of such events are mentioned in the same chapter: “It is impossible 

to get five aces when selecting cards from a shuffled deck. When randomly selecting a 

day of the week, you are certain to select a day containing the letter y” (p. 151). Triola 

continues: “When an event is impossible, the probability is zero”. This approach 

suggests that before we can assign zero probability or probability one to an event we 

should come to consensus of some sort on the impossibility or certainty of the event in a 

subjective way. 

A textbook that has made a clear distinction between zero-probable and 

impossible is Statistical Mathematics (Aitken, 1947).  The book tries to overcome the 

ambiguity by limiting definitions of impossible and certain to finite sample spaces in order 

to resolve the issue of zero-probable-but-conceptually-possible events. It offers: “If the 

number of events in sample space is finite and if event E must inevitably happen in all of 

the n ways, then p=1 [probability of E] and E is certain, while q=0 [probability of the 

complementary event] and E is impossible” (p. 13). Aitken adds that if the sample space 

is infinite such as “when the system results in events expressible by a continuous 

variable, we must not suppose that p=1 implies certainty, or p=0 impossibility. For 

example, if a point is taken on a line segment, the chance of a particular point P being 

taken is 0; but some point is taken, and so the point P cannot be regarded as 
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impossible” (p. 14). The book suggests using the term “almost impossible” for events 

with probability zero that are not conceivably impossible.  

DeGroot and Schervish, in Probability and Statistics (2012), introduce impossible 

as an empty set and prove as a result of the three axioms of probability that the 

probability of an empty set (impossible event) is zero. They emphasise that although the 

probability of an impossible event is zero, but “probability zero does not mean 

impossible” (p. 20). 

Some textbooks not only acknowledge this ambiguity but also try to address and 

clarify the issue by proposing terminologies for various types of zero-probable events. 

Here are two examples: 

• In the book Measure Theory and Probability (Adams & Guillemin, 1996) the 
terms impossible, implausible, and improbable are distinguished as: 

• In a probability space (Ω,ℱ, 𝜇𝜇), where Ω denotes the sample space, ℱ the σ-
algebra containing events closed under countably many set operations, and 𝜇𝜇 
the probability measure 𝜇𝜇: ℱ ⟶ [0,1] 

o An event A⊆ Ω is impossible if A=∅ 

o An event A⊆ Ω is implausible if A∉ℱ 

o An event A⊆ Ω is improbable if 𝜇𝜇∗(𝐴𝐴) = 0, where 𝜇𝜇∗ is the outer measure 

In basic terms, if the event contains no outcomes or no intersection with the 

sample space it is called impossible; if the event is not part of the sigma-field (i.e. cannot 

be expressed as finite union and/or intersection of events in sample space), it is called 

implausible and if it is zero-measurable it is called improbable. 

A similar approach is commonly adopted in measure theory textbooks; they use 

the terms almost certain (sure) and almost impossible for events that are zero- or one-

probable events, but are not impossible in the sense they could never happen. In 

measure theory the term almost everywhere (a.e) is a commonly used term to indicate a 

property that holds true everywhere except for a zero measure set (Halmos, 1974). In 

some probability theory and model theory textbooks, the same notion has been applied 

to make a distinction between probability zero and something that never happens (see 

Stroock (2011), for example). Similarly, it could be used to differentiate between an 
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event that has a probability one and the event that always happens. For example, 

imagine that a needle is dropped to the floor in a room with a square floor. Due to gravity 

there is a guarantee that the tip of the needle will land on some point on the floor. No 

other alternative is imaginable. If a line (of infinitesimally small thickness) is drawn on the 

floor, the needle will almost never land on the line.  Probability calculation will assign 

zero to the likelihood of such an event since the measure of the points on the line 

compared to the measure of the points on the floor is zero, however this event is not 

logically impossible.  

The second group. Here I present examples of resources that use the word 

impossible to refer to all kinds of events with probability zero and the words certain or 

sure to refer to events with probability one. 

Ask Doctor Math, a popular mathematics forum supported by University of 

Drexel, responded to a question about statistical impossibility by stating that: “An event 

is impossible when its probability is zero”  (Math Forum- Ask Dr Math, 2007) .  

 Sowder, Sowder, and Nickerson (2010), in Reconceptualizing mathematics, 

define impossible events as: “the probability of an impossible event is zero” which is a 

fair statement, but elsewhere they ask the reader to verify if a given event is impossible. 

To this end the question suggests to determine if the probability is zero:  

 “Is it impossible? That is to say is probability zero?” [chapter 27, p. 22] 

The authors of Elementary and middle school mathematics advise teachers to 

introduce probability via the probability continuum, a line segment drawn on the board 

with impossible and certain on the two ends, which later maps into zero to 1 

probabilities. The overlap between impossible-certain and zero-one probabilities is 

implied (van de Walle, Folk, Karp, & Bay-Williams, 2011).  

From the examples above, it may seem that this is a problem found only in 

elementary-level books or those written for teacher education purposes.  However, it is 

not uncommon to encounter the same issue in more advanced probability books. For 

example, in Probability and Statistics, the Science of Uncertainty (Evans & Rosenthal, 

2010), an undergraduate level textbook, a probability measure is introduced as satisfying 
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the three axioms of non-negativity, unit property, and countable additivity. Then it is 

stated that: “The first of these probabilities says that we shall measure all probabilities on 

a scale from 0 to 1, where 0 means impossible and 1 (or 100%) means certain” (p. 5). 

3.2.4. Extreme events from different probability perspectives 

Here I present a more in-depth discussion of extreme events and how different 

approaches to probability result in different understandings of zero probable events. I 

look into the types of events that are dubbed extreme in each of the three well-known 

approaches to probability: subjective, theoretical, and frequentist. Chernoff and 

Sriraman’s (2014) edited book on probability education research points out frequently 

that these three conceptions of probability dominate teaching and learning of random 

and stochastic phenomena. Most probability researchers and practitioners agree on the 

theoretical and frequentist notions, but the subjective probability has a more diverse 

range of meaning. It may refer to informal, naïve, and sometimes incorrect notions of 

probability  (Jones, Langrall, & Mooney, 2007) or it may refer to a sophisticated 

axiomatic approach to probability developed in the early twentieth century that quantifies 

an individual’s degree of belief in the truth of propositions  (Jeffrey, 2004) conjoined with 

alternative tools and approaches commonly known as Bayesian models (Lindley, 2014). 

Chernoff (2008) suggests distinguishing between the two meanings by referring to the 

former as personal probability and the latter as subjective probability. In this study, I use 

the term subjective probability for all of the types of probabilistic inferences derived 

based on personal tendencies and degrees of beliefs at all levels since the same idea is 

behind both, rising from basic, crude, and qualitative to advanced, specific, and 

quantified. In making this choice, I draw an analogy with the use of the same name, 

geometry, to refer to all levels of it from the kindergarten-level study of shapes, to the 

research level study of the invariants of shapes in complicated spaces.  

 Extreme events in subjective probability 

In subjective probability an event A is zero-probable if a rational person (based 

on sound deductions drawn from valid premises) holds firm beliefs that event A will 

never happen. For instance, if a person believes that they never win the lottery, the 
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probability of winning the lottery is subjectively zero, and hence the event of winning the 

prize is considered impossible. A subjectively certain event is an event that a person has 

maximum degree of belief in its occurrence. Not winning the lottery would be an example 

of a certain event for the person above. 

In Understanding Uncertainty (Lindley, 2014), the author states that: “almost all 

thinking people agree that you should not have probability 0 or 1 for any event, other 

than one demonstrable by logic, like 2 x 2 = 4”, (p. 91). The rule that denies probabilities 

of 1 or 0 is called Cromwell’s rule, named after Oliver Cromwell’s appeal to the Church 

of Scotland to “think it possible you may be mistaken [for assuming that their actions are 

driven by the Word of God]” (ibid, p.91). The Rule demands that you should not assign 

probabilities of 1 to any event that is not demonstrable by logic to be necessarily true, 

and never to assign probability 0 to any event, unless it can be logically shown to be 

false. From a Bayesian perspective (the mainstream school of subjective probability), if 

the a priori probability of an event (P(A)) is perceived to be zero, it cancels the effect of 

all of the evidences, meaning that the posterior probability of A, conditioned to any 

evidence B, P(A|B) will be zero based on Bayes’ formula: P(A|B) = (P(B|A).P(A))
P(B)

. It means 

that if someone holds firm beliefs on the impossibility of an event, no amount of evidence 

or discussion will make a change in their prior. For example, let A be the event that John 

has committed the crime and B be the event that the fingerprint found on the crime 

scene matches his. If the prior probability of A is believed to be zero, that is, if John is 

firmly believed to be innocent of the crime, even a 100% fingerprint match (the evidence) 

will not change the posterior probability (𝑃𝑃(𝐴𝐴|𝐵𝐵)) of John being the guilty party since:  

𝑃𝑃(𝐴𝐴|𝐵𝐵) =
𝑃𝑃(𝐵𝐵|𝐴𝐴) × 0

𝑃𝑃(𝐵𝐵)
= 0 

 Extreme events in frequentist probability 

The frequentist and theoretical view offer very little to supplement our 

understanding of extreme events.  In the frequentist view, probabilities are the stabilized 

asymptotic frequency of events as the number of independent trials tends to infinity. In 

this view the probability is defined as number of desirable occurences
number of trials

  when the number of 
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trials is very large. This adds to the ambiguity of extreme events even more so: consider 

event E with P(E)=0. Exact zero is only obtained when the numerator is zero; while 

approximate zero is obtained when an event happens so infrequently that the numerator 

is dominated by the denominator. Thus, nearly impossible events could be mixed up with 

zero-probable events. In theory, since the denominator is infinity, the numerator can be 

any fixed real number, which leads to getting probability zero even for events that are 

conceivably far from being implausible. In practice, an infinite number of trials is not 

feasible and we bring to our probability calculation the notion of significant figures and 

whether the probability is close enough to zero or not. For example, the event of getting 

all heads in the experiment of flipping a fair coin 500 times, has a theoretical probability 

of (1
2
)500, which is equal to 3.0549E-151, a number that is expressed as “zero” for any 

degree of precision below 150 decimal digits, a good enough approximation of zero for 

all practical purposes. So in a frequentist approach, we may get events with probability 

zero that are not logically impossible. 

In frequency-based probability, an event A is sure to happen if the relative 

frequency of its occurrence is either equal to one (something that consistently happens 

all the time), or very close to one. Another way to obtain sure events in frequency 

method is to ensure the ratio of success to total is approximately 1, within reasonable 

significant figures. For example, the event of “not getting 500 heads” in 500 flips of a fair 

coin has a probability of one, accurate to 151 significant figures.  

 Extreme events in theoretical probability 

In theoretical probability, which is based on dividing the sample space into 

equally likely events and counting the number of elements in event A, an event A is 

zero-probable if it contains no elements; in other words, its intersection with the sample 

space is the null set. For example, if a fair standard die is rolled, the event of rolling a 7 

is impossible since no subset of the sample space contains 7. In experiments with 

discrete finite sample spaces, such as the die rolling example, a zero-probable event is 

equivalent to an event that is logically impossible. In other words, the set-up of the 

experiment defies the event. For instance, a fair standard die conventionally bears the 

numbers between one and six, therefore rolling a 7 is impossible. Contrariwise, in 
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situations involving infinite sample spaces, it is possible to construct examples of an 

event that has a theoretical probability of zero, but the event is far from being impossible 

in its everyday sense. For example, in the experiment of picking random numbers from 

the set of all natural numbers, the event of picking a prime number is zero-probable, 

since if one starts counting the prime numbers starting from 1 and up, and calculates the 

prevalence ratio of the prime numbers, the probability converges to zero since the gap 

between two consecutive prime numbers grows arbitrarily7. Arguably, picking a prime 

number is not logically impossible and most people would consider it a low-probable 

event. 

 In theoretical probability, P(A)=1 only if the event has the same measure as the 

sample space, be it a simple counting measure or a Borel measure on subsets of ℛ𝑛𝑛. 

That is, in discrete finite sample spaces, a sure event is reduced to the sample space 

itself. For instance, in an experiment of rolling a standard fair die, the only event with 

100% chance of happening is: to role any number between 1 and 6, inclusive; in other 

words, the only sure event is the sample space itself. If the sample space includes an 

infinite number of events, it is possible to identify events with 100% probability of 

occurring without having to enlist all of the possible outcomes. For instance, in the 

experiment of picking a random number from the set of all real numbers, the event of 

picking an irrational number has a 100% probability.  

3.2.5. On the importance of extreme events 

I wish to state briefly why I have chosen extreme events as the subject of my study. I 

present two reasons: the mathematical complexity of extreme events and the 

educational significance of extreme events. 

Mathematical importance of extreme probabilities 

Extreme probabilities are mathematically appealing and elusive at the same time. 

They create additional complexity to the probability estimation methods and techniques. 

7 For every 𝑛𝑛 > 1, 𝑛𝑛! + 2, 𝑛𝑛! + 3, . . . 𝑛𝑛! + 𝑛𝑛 are all composite numbers. 
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Every computer simulation method has limitations and problems when the probability 

sought after is around the extremes. For example, the central limit theorem allows for a 

binomial distribution to be approximated by the normal distribution when np and n(1-p) 

are both greater than 5, even if the sample size is rather small. For very extreme 

probabilities, though, a sample size of 30 or more may still be inadequate and the 

approximation works at its worst when the sample proportion is exactly zero or exactly 

one. Most probabilistic models are reasonably valid when extreme probabilities are 

carefully avoided (consider naïve Bayes classifiers for instance); fixes and patches are 

needed to modify the model in order to work with very low or very high probabilities 

(Lagrange correction for naïve Bayes classifiers). But extreme probabilities do not just 

cause trouble to probabilistic models; they also have very interesting properties. One of 

the brilliant (and counter-intuitive) properties of extreme probabilities is captured in 

Kolmogorov’s zero-one law stating that specific events known as tail events will either 

almost surely happen or almost surely8 not happen. One consequence of this law is that 

in infinite sequences of independent trials (such as coin flipping) any pattern or specific 

outcome (alternating heads for example) cannot have probabilities other than zero or 

one (Stroock, 2011). 

Educational importance of extreme probabilities 

My second reason for investigating extreme probabilities is that from an 

educational perspective, distinguishing between the binary opposites of certain-uncertain 

and possible-impossible is often located at the very introductory phases of probability 

education. Egan (1997) states that the use of binary oppositions provides an initial grasp 

of phenomena since they are abstract, affective, and they can expand understanding to 

anything that can be organized in terms of their basic affective concepts. More specific 

to probability education, van de Walle, Folk, Karp, and Bay-Williams (2011) suggest that 

young children come to class with all sorts of bewildering ideas of probability, and “to 

change these early misconceptions, a good place to begin is with a focus on possible 

and not possible and later impossible, possible, certain” (p. 474). Through observations 

over a two-year time period of children’s thinking in probability contexts, the research 

8 The word almost here is used in measure-theoretic sense, see page 64. 

73 

 



 

reported by Jones, Langrall, Thornton, and Mogill (1997), and Jones, Thornton, Langrall, 

Mooney, Perry, and Putt (2000) describes a framework that identifies four important 

probabilistic constructs and describes how young children think in each of those 

probabilistic situations. The four levels are associated with subjective thinking, 

transitional between subjective and naïve quantitative thinking, use of informal 

quantitative thinking and finally numerical thinking. One of the findings of these studies is 

that all of the participants of the study were able to recognize every instance of certain 

and impossible events, even when they consistently used subjective judgments to 

decide on these. It appears that recognition of certain and impossible events are the 

starting point for probabilistic thinking.  Thus extreme probabilities correspond to the type 

of events that the learners are familiar with since the very early grades and they 

potentially serve as a basis or a platform for the quantitative probability in later grades. 

Due to the reasons discussed above, I consider extreme events to be significant 

for research. Based on my experience with teaching probability, the zero-probable or 

one-probable events are a source of confusion and conflict between the everyday and 

mathematical probability. They have considerable overlap with what we perceive of as 

impossible or certain events and when students encounter zero-probable examples that 

are not logically impossible it creates discomfort and confusion.  

3.3. Participants of the study 

Participants were 30 pre-service secondary school teachers enrolled in a 

mathematics education course at Simon Fraser University, a methods course on 

teaching secondary mathematics. This course is offered (recommended but not 

required) for prospective teachers that are considering teaching secondary mathematics. 

Typically students that take this course are confident with their mathematical skills and 

have taken at least one post-secondary mathematics course. Sixteen of the participants 

had backgrounds in mathematics, physics, chemistry and engineering, ten came from 

biology and health studies background, and four had degrees in history and English 

language. Most of them had taken an introductory probability and statistics course 

before participating in this study. I chose this group of students as my participants 

because of their relatively strong mathematical background, as well as their availability.  
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3.4. Methodology 

In this study, I have used learner-generated examples of extreme events to draw 

on the mathematicalness or everydayness of the probability-related concepts present in 

their examples.  

 Watson and Mason (2005) view examples as “illustrations of concepts and 

principles” (p. 3). They consider learner-generated examples (LGEs) – an approach in 

which learners are asked to provide examples of mathematical objects under given 

constrains – as a powerful pedagogical tool, through which learners enhance their 

understanding of the concepts involved. They also introduce the construct of example 

space as collections of examples that fulfil a specific function, and distinguish among 

several kinds of example spaces.  Of particular interest in this study are personal 

example spaces, triggered by a task as well as by recent or past experience. When 

invited to construct their own examples, learners both extend and enrich their personal 

example spaces, but also reveal something of the sophistication of their awareness of 

the concept or technique (Bills, Dreyfus, Mason, Tsamir, Watson, & Zaslavsky, 2006) . In 

accord with this observation, Zazkis and Leikin (2008) suggest that LGEs provide a 

valuable research tool as they expose learner’s ideas related to the objects under 

construction and examples generated by students mirror their understanding of 

particular mathematical concepts.  

Mason (2011), in an analysis of the phenomenology of example construction, 

suggests that some important aspects of the process of mathematical example 

construction are: feeling a strong tendency to combine the simplest possible with 

maximum generality, constructing lots of examples and tinkering with examples to 

modify them so that they meet some particular constraint, experiencing dimension of 

possible variation and range of permissible change associated with the examples 

constructed. Through this process, one explores deeper aspects of the notion, and 

attention is drawn to the playful aspects of example construction and the ways of 

tinkering with a basic construction that might be of help for future use. Vinner (2011)  

finds the role of examples in everyday and mathematical thinking to be very crucial. 

Unlike in mathematics in which the concept formation is aided by definitions, examples 
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and proofs, in everyday thinking, examples are the only tool by which we can form and 

verify concepts and conjectures. Even in mathematics there are important notions such 

as “proof” that have no agreed upon definitions and the students are supposed to 

acquire the concept of proof by the many examples they are exposed to. 

 Zazkis and Leikin (2008) suggest that the task of constructing examples of 

mathematical concepts can be quite a complex task for students and teachers. However 

research results find it a well worth effort since: 

• The example generating task provides a window into learner’s mind through 
which significant aspects of conceptualization could be observed  (Mason, 
2011);  

• The example generating task raises the students’ awareness of features of 
examples that can change and of the range where they can vary  (Mason, 
2011); 

• The processes involved in constructing examples are rich and complex 
(Antonini, 2011). 

3.5. Research Questions 

This study addresses the following research questions: 

• What aspects of probability (mathematical or everyday) are featured in the 
participants’ examples of extreme events? 

• What probability perspectives are involved in the participants’ examples of 
extreme events? 

3.6. The task 

The participants of the study were asked to respond in writing to the task 

presented in the following table. Ample writing space and time was given.  
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Table 3-1 The task 

Please give an example of an event for the following probability categories. 
Briefly note your reasoning. 

Probability is exactly one (100%). 
 

Probability is very close to 100% but not 100% 
 

Probability is exactly zero.  
 

Probability is very close to zero but not zero. 
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3.7. Theoretical considerations, the language of 
mathematics 

Here I attend to theoretical considerations related to the challenges that arose 

from everyday language versus mathematical language. A discussion of mathematical 

language is presented first, and then the problem of how to make a distinction between 

mathematical versus everyday language is addressed. The theoretical framework most 

relevant to this study is presented next. 

3.7.1. Mathematical language 

Is mathematics a language? Most linguists would not consider it to be so. 

Linguist Halliday (1978) prefers to speak of the mathematics ‘register’, which refers to 

ways in which the main language (English for example) is used in a specific 

mathematical context. Although the term ‘register’ has been taken up in the research 

literature (for example, Pimm (1987) writes extensively about aspects of mathematical 

register), the term ‘mathematical language’ is in use too. After all, language is a 

commonly used metaphor to describe and refer to mathematics: it is often said that 

mathematics is a language and a universal one too. However, as with any other 

metaphor, it is not to be taken too literally. For example, Keith Devlin's The Language of 

Mathematics (Devlin, 2000) is not about a collection of words and syntax rules. The book 

discusses how people from different cultures and different times can understand each 

other’s mathematics due to the shared experience of patterns. People understand each 

other and this understanding is an aspect of language. In this study, I use the term 

mathematical language to refer to the meanings intended or triggered by using 

mainstream English words in a mathematical and academic (within classroom) context. 

3.7.2. Everyday language versus mathematical language 

The interplay between everyday language and the mathematical language in a 

classroom has been of research interest in mathematics education (Pimm, 1987), 

(Moschkovich, 2002), (Moschkovich, 2003), (Morgan, 1998), (Barwell, 2013).  
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In the course of developing vocabulary, children experience many aspects and 

usages of a given word. They are called upon to use language for a variety of new 

purposes and to use familiar terms in less familiar and quite specialized contexts. This is 

the source of some learning difficulties, especially when the old meaning and the new 

meaning are related in some ways, but not quite the same. Research has shown that 

when familiar terms are exploited by a subject (such as mathematics) to mean a different 

notion or meaning, this creates difficulties for students. For example Durkin and Shire 

(1991) indicate that the language that children encounter in both mathematical and 

musical education is associated with learning problems in those areas of curriculum. 

Pimm (1987) suggests that the appropriation of everyday language within the 

mathematical register may be a source of confusion for students. A word like “difference” 

(as the quality of not being the same), for example, has a wider everyday meaning than 

the more specific word “difference” in mathematics (as the result of subtraction). Kim, 

Sfard, and Ferrini-Mundy (2005) investigate how Korean students, who do not have an 

everyday meaning for infinity, differ from English speaking students. The latter group 

uses the “infinity” and “infinite” in both colloquial and mathematical context while the 

former only encounter the concept infinity in mathematical context. Their findings 

suggest that colloquial discourse has an impact on mathematical discourse. There is a 

degree of overlap between colloquial everyday language and mathematical language. 

Probability and related terms such as event, impossible, certain and sample space are 

examples of concepts that have meaning in both everyday and mathematical registers. 

These terms refer to meanings different from their everyday meanings, when used in a 

mathematical context.  

3.7.3. Barwell’s discursive model 

The model used in this study to make the everyday versus mathematical 

distinction is adopted from Barwell’s works (Barwell, 2005), (Barwell, 2003), (Barwell, 

2013). He offers two models of the nature of mathematics and mathematical language: 

the formal model and the discursive model. The former sees meaning as fixed and 

relating to everyday language with no problem, the latter sees meaning as situated in 

and by interaction. In a discussion of the nature of mathematical discourse, he suggests 

a number of distinctive features, some of which are particular to mathematics 
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classrooms. Those features are briefly reviewed here. A mathematical discourse is 

recognized by the following features: 

• It has a specialist mathematical vocabulary which includes:  

o Technical terms specific to mathematics, such as: quotient, equilateral, 
hypotenuse 

o Specialist use of general terms, such as: line, continuous 

o Mathematical use of everyday terms for unrelated ideas, such as: 
expression, difference, function 

• It involves using specialist syntax, the use of words such as and, or, if and 
only if to define mathematical relationship 

• It involves the use of mathematical symbols such as numerals, variables, 
integral sign 

• It includes specialized ways of talking such as proofs or definitions 

• It includes a social dimension, for example the particular ways in which the 
word problems are to be interpreted. 

Barwell has used the features listed above to analyze a radio talk in which two 

mathematicians give an account of Poincaré’s conjecture to non-mathematicians. Since 

the program is broadcast for a general audience, the mathematicians employed 

everyday terms and used them to convey mathematical ideas. In my study, the features 

of mathematical discourse are used to develop a tool for distinguishing between 

everyday probability and mathematical probability. I found Barwell’s discursive model 

particularly helpful for my study since it outlined some distinctive features of 

mathematical discourse. However, since Barwell’s model is not specific to probability, 

interpretations and adaptations were needed for the purpose of this study, the specifics 

of which are discussed below. 

Interpreting Barwell’s mathematical discursive features 

Sorting out the examples into every day and mathematical is not an easy task 

since mathematical probability involves specialized use of everyday terms. In order to do 

this to some extent, I have used features of Barwell’s discursive model. My 

interpretations of Barwell’s discursive features are presented in table below.  
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Table 3-2 Interpreting Barwell’s framework in the context of probability 

Features of mathematical 
discourse Barwell’s examples (general) My interpretation (specific to 

probability) 

Specialist mathematical 
vocabulary 

quotient, equilateral, 
hypotenuse, line, continuous, 
expression 

sample space, event, frequency, 
occurrence, outcome, tends to 
infinity, limit 

Specialist syntax to define 
mathematical relationship and, or, therefore Not applicable to my analysis 

Use of mathematical symbols numerals, variables, integral sign 
variables, numbers, percent sign, 
fractions, P(A), ∞ 
 

Use of mathematics classroom 
conventions 

the particular ways in which the 
word problems are to be 
interpreted 
 

using examples common to 
classroom examples of 
probability  
 

I needed to break down the above categorical features into more specific rules to 

apply to each example. The first three features I found easy to interpret and identify in 

the data. So, I focus on aspects of probability that has to do with mathematics classroom 

conventions. 

Mathematics classroom conventions 

The most essential feature from the discursive model to my analysis of data 

proved to be the social dimensions of mathematics classroom, by which Barwell means 

the specific ways the word problems are to be interpreted. It can also include the 

assumptions associated with these interpretations, and an expected understanding of 

properties of an object in mathematical context. For instance, the students are assumed 

to know what the teacher really means when she draws an imperfect line on the board 

and refers to it as a straight line. It is to be interpreted as a perfectly straight, infinitely 

thin, and infinitely long line. Other examples of social dimensions of mathematics are the 

possibilities offered by the abstraction inherent to some mathematical problems. 

Mathematical abstraction enables us to focus on one feature without having to be 

concerned about how and if it can be achieved. For instance, in a mathematics problem 

it is acceptable to talk about “a pile of 1000 blue shirts” (example from data), focusing on 

the number of identical shirts without worrying about where to put these shirts and how 

81 



 

we got a thousand of them on our hands and why they are all blue. Same with “rolling a 

die 10000 times”; it is a mathematically appropriate thought experiment which doesn’t 

have the limitations that everyday life has. 

In the course of data analysis, the social conventions of mathematics classroom 

posed both opportunities and problems to my analysis of examples. One challenging 

aspect is that teachers and resources often use examples that have both every day and 

mathematical elements, since they are meant to make sense to the audience. With 

examples like these, it is difficult to distinguish everyday versus mathematical aspects. 

Consider a coin flipping situation: it can be both an everyday and a mathematical notion. 

It is mathematical because games of chance serve as birth grounds for mathematical 

probability; moreover, making use of coin flip problems is common practice in 

mathematics classroom. Thus, the grouping tool used in this study places the coin-

flipping example closer towards the mathematical probability. However, it is important to 

note that when referred to in a classroom context, extra assumptions are often made 

about randomizers such as coin or dice. Unlike in everyday situations, a mathematical 

die is assumed to be rolled on an infinite plane with no edges, so falling off the table is 

not a possible outcome of rolling a mathematical die. A mathematical coin not only has 

two equiprobable sides, but also has no edge since it is infinitely thin. Therefore landing 

on an edge is not a possible outcome with a mathematical coin. “A drawer full of socks” 

is a reality, “a drawer with one million socks” in it, not so much (examples from the data). 

“Picking a blue marble from a bag of five blue and one red marbles”, although a 

frequently used instructional example, could be envisaged in an everyday context, “a 

bag of n-1 blue and one red marbles” presents a more mathematical context. 

Based on the discussion above along with Barwell’s discursive model, I arrived at 

four grouping rules (see section 3.8.1) 

3.8. Results of the first round of data analysis 

A total of thirty responses were collected. Each respondent was asked to provide 

four examples (one for each category). Some of the respondents didn’t provide all four, 

which brought the total number of examples down to 114. Two rounds of data analysis 
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were conducted. The first round sorted the examples based on the everydayness or 

mathematicalness of the example. They were arranged into three groups: M only, E 

only, and M∩E, where M is the set of mathematical probability examples, E is the set of 

everyday probability examples, and M∩E is the set of examples that have both 

mathematical and everyday features. In the second round, the examples were examined 

based on the type of probability featured in them. They were sorted into three groups: 

Logical impossibility/certainty, Theoretical probability, and Subjective probability. 

3.8.1. Grouping tool 

In order to sort the examples into M, E or M∩E, I have filled out the chart below 

for each example from the data.  

Table 3-3 Grouping Tool 

Example 
ID 

Specialist 
mathematical 
vocabulary 

Specialist 
syntax 

Use of 
mathematical 

symbols 
Use of social conventions 
of mathematics classroom Grouping 

      

This chart allows for a closer look into the mathematical features (if any) 

presented in each example and helps with the sorting task to some extent. However, 

after filling the chart for each data instance I realized that not all features are as 

significant and informative as others. More specifically, use of numbers is too common to 

all examples to be indicative of either every day or mathematical probability. The 

specialist syntax didn’t show up frequently enough in the data to be a meaningful 

indicator either. Based on the discussion presented in section 3.7.3, I came up with 

these grouping rules: 

• Examples featuring randomizers common to probability teaching such as bags 
of objects, deck of cards, coins, dice are grouped as E∩M.  

• If affordances of mathematical abstraction such as possibility of handling large 
number of objects, large number of repetitions are tapped into, then the 
example is grouped as mathematical (M).  

• If the number of objects or repetitions is denoted by a variable (n) as opposed 
to a fixed number, the example is deemed more mathematical than every 
day. 
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• Any example that cannot be grouped as E∩M or M is deemed every day. 

I present a quantitative summary and examples of each type from the data in 

what follows. 

3.8.2. Quantitative Summary  

As mentioned before, a total of thirty responses to the Task were collected. The 

Task invited each respondent to provide four examples, which could have resulted in 

120 examples. However six examples were missing, which brings down the total to 114 

examples. Of these, 48 were both everyday and mathematical, 47 had more everyday 

features than mathematical ones and nineteen had enough mathematical features to 

make the mathematical list. The results are summarized in a Venn diagram depicted in 

Figure 3-1. 

 
Figure 3-1 Every day and Mathematical Probability 

The ellipse on the left of the Venn diagram represents the everyday examples 

(E). The ellipse on the right (M) is to represent the set of mathematical examples. The 

overlap region (E∩M) contains examples that are categorized as both every day and 

mathematical. To refer to examples that have more mathematical features than every 

day, in other words those that are only in M and not in the overlap, I use the set notation 

M-E; similarly, E-M is the set of examples with more everyday features than 

mathematical. 
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3.8.3. Examples from the data 

Here I present illustrative examples from each category.  

Purely everyday (E-M) examples include situations involving weather, the state of 

the universe, life and death, personal preferences, facts and conventions. 

“In a girls’ soccer team, the probability that there are boys on the 
team is exactly zero” (24-3)9. 

The probability that “we’ll get hungry at some point in the day” is 
exactly one (28-1). 

The probability that “it will rain tomorrow” is nearly one (29-2). 

The probability of “snow in August” is nearly zero because it is “highly 
unlikely but could happen” (27-4). 

Purely mathematical (M-E) examples include somewhat structured and well-

defined situations involving picking a number or object or certain outcomes of 

randomizers. 

“Choosing an even number when selecting from numbers that are 
divisible by 2” is an exactly-one-probable event (4-1). 

The probability of “choosing an odd number when selecting from 
numbers that are divisible by 2” is exactly zero (4-3). 

The probability of “picking 3 red balls from a giant bin filled with 
millions of red balls and only one blue ball” is nearly one (17-2). 

The probability of “tossing a coin infinite times and getting all heads” is 
nearly zero (6-4). 

The examples that are listed under both mathematical and every day (E∩M) 

commonly stemmed from games of chance situation without the extra mathematical 

features of infinite repetitions or a very large number of objects. 

“Picking 3 red balls from a bin that has 2 red balls and 2 blue balls” is 
an exactly-zero-probable event (17-3). 

9 (24-3) refers to the third example given by respondent number 24. 
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 “In a bag of one blue marble P(grabbing a blue marble)” is exactly 
one (1-1). 

 “Flipping at least one tail after 50 attempts with a standard coin” is 
nearly-one-probable (16-2). 

The probability of “winning the lottery” is nearly zero, because “chance 
of winning 649 is so small yet possible” (16-4). 

3.9. Discussion of findings in the first round of analysis 

The analysis of data suggests that the everyday meaning of probability is more 

prevalent in prospective teachers’ examples of probability. Also their examples are 

greatly influenced by the instructional examples (those commonly used to teach 

probability) and textbook examples such as coins, dice and random draws.  

Numbers, percentages and fractions were present in both every day and 

mathematical probability examples across all four groups of exactly-one, nearly-one, 

exactly- zero and nearly-zero probable events. Situations involving infinity or very large 

number of objects or trials, on the other hand, made an appearance only in examples of 

nearly-zero and nearly-one probability.  

Barwell’s model proved to be useful in distinguishing discursive aspects of 

probability in everyday and mathematical contexts, the most informative feature being 

the social aspects of mathematics. However, there is a considerable 40% overlap that 

could not be further elaborated on. In the process of data analysis, I encountered 

examples that are either presented in incorrect probability category, or presented in 

multiple probability categories; in lack of better word, I call these examples inconsistent 

examples. This issue is observed in all categories (mathematical, every day and overlap 

between mathematical and every day). “The Sun rises tomorrow” (13-2, 29-1), and “we 

will die at some point” (16-1, 25-1, 27-2) are everyday examples set forth by some 

participants as exactly-one-probable and by others as nearly-one-probable events. 

Similarly, “Flipping a coin and getting heads or tails” (9-1, 11-2, 21-1, 23-2) example was 

presented by different people as either exactly-one-probable or as nearly-one-probable.  
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Within purely mathematical group (M-E), although I could not find an example 

presented in more than one probability categories, there were plenty of examples in 

which the assigned probability was conventionally incorrect. For instance, the probability 

of “flipping a die infinitely many times and getting straight 6’s” (24-4) was assessed to be 

nearly zero and not exactly zero. However, a conventional probability calculation results 

in probability exactly zero for this event. Instances like this suggested that I look for ways 

to further analyze the probability framework that the respondents had in mind when 

generating examples of extreme events. This, I attended to via a second round of data 

analysis.  

The second research question of this study calls for examining the types of 

probability involved in example construction. This type of analysis helps distinguish 

between non-discursive features of examples that are currently grouped together (every 

day or mathematical), and enables me to elaborate on the 40% overlap and on the issue 

of inconsistent examples. Thus I present further theoretical considerations and a second 

round of analysis to examine the examples based on the probability approach, and/or 

the type of probability reasoning presented as justification.  

3.10. Further theoretical considerations: Types of probability 

As mentioned in earlier sections, there are multiple approaches to probability. 

Probability has been regarded by early and modern developers and practitioners as 

ranging from being a way of expressing one’s personal degree of belief and tendency in 

uncertain situations, to being a rigorous, objective mathematical model to quantify and 

make predictions about probabilistic situations. There is no commonly agreed-upon way 

of categorizing different types of probabilities.  

A review and discussion of dominant philosophical interpretations of probability in 

mathematics education could be found in Chernoff (2008) and Batanero and Diaz 

(2007). 
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I examined the data to identify what type of probability approach may have 

influenced the responses.  Initially I focused on the three major types of probability 

identified in the literature: 

1. Theoretical approach where probability is expressed as the ratio of the number 
of favourable outcomes over the total number of possible outcomes 

2. Frequentist approach where probability is the limit of the relative frequency with 
which an event occurs in independent repeated trials 

3. Subjective approach where probability is assigned based on personal degree 
of belief in a certain occurrence given the evidence 

For reasons explained below, I decided upon an alternate way of categorizing the 

types of probabilities and arrived at the following categories: 

 

1. Logical impossibility/certainty, stemmed from: 

• Definitions 

• Known facts 

• Sample space 

2. Theoretical probability 
3. Subjective probability 

3.11. Second round of data analysis 

In this round of data analysis I have investigated the reason behind probabilities 

assigned to examples. I have tried to consider the perceptual underpinning of zero-or-

one probability as depicted from the data. 

3.11.1. Quantitative Summary 

In Table 3-4 the number of examples for each type of probability reasoning is 

given.  
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Table 3-4 Quantitative summary of types of probability 

 Exactly 
one 

Nearly 
one 

Exactly 
zero 

Nearly 
zero 

Total 

 
Logical 

impossibility/certainty 
Stemmed from  

Definitions 4 0 3 0 7 

Known facts 2 0 4 0 6 

Sample 
space 

16 0 18 0 34 

Theoretical probability 0 15 0 16 31 

Subjective probability 8 12 5 11 36 

From Table 3-4 it is clear that logical impossibility/certainty is where the most of 

exactly-zero-probable and exactly-one-probable examples stem from, while theoretical 

probability harbours the most potential for generating nearly-zero-probable and nearly-

one-probable examples. Subjective probability type of reasoning seems to be almost 

equally distributed within the four groups of examples.   

3.12. Analysis tool, the inclusion criteria 

I wish to share with the reader the criteria for assigning examples to the chosen 

categories. In particular, I describe what exactly is meant by each of the categories listed 

above and what types of examples from the data are included. In addition, I address the 

question that most likely arises when attending to the probability approaches (theoretical 

and subjective) mentioned above: Why is there no mention of frequentist probability? 

3.12.1.  Logical impossibility/certainty 

In the first category, the logical impossibility/certainty, examples are included that 

are: 

1. Either not accompanied by any explanation, or the justification offered by the 
respondent denotes the logical impossibility of the event or the impossibility of 
anything else happening 
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2. Commonly considered a logical consequence of definitions, the way certain things 
are made, social conventions, laws of physics, facts that are known to most people, 
and things that are set and no longer subject to change within reasonable accuracy. 

For instance, in “If my friend is a bachelor, the probability is 100% that he is 

unmarried. This is because logically a bachelor cannot be married” (2-1), the definition of 

the word bachelor is called upon to create a deliberate logical certainty: if bachelor, then 

unmarried. This is clearly a logical-definition type. 

The probability “that I will start floating off the ground while standing on the 

surface of the Earth” is exactly zero (13-3), due to the gravity of Earth. Laws of physics 

have become part of the shared human understanding and knowledge base of how 

things work, they are relied on as sources of certainty since most people believe them to 

be proven facts, examined and scrutinized by the scholars, and not merely opinions.  

Another example from the data states that “If today is Tuesday, P(tomorrow 

being Tuesday)=0” (2-3). It is a social convention for the day following Tuesday to be 

called Wednesday (and not Tuesday again), and thus Tuesday followed by Tuesday is a 

logical impossibility. 

The above-mentioned examples clearly belong to the logical 

impossibility/certainty group. Now I attend to the more problematic examples in this 

category, the ones categorized as sample space group. In this category I have included 

examples of events that do not belong to the sample space of the proposed experiment 

(probability=0), or examples of events that include the entire sample space 

(probability=1). For instance, “rolling a 7 with a standard die”, “obtaining a black diamond 

in a standard deck of cards”, “getting a sum of at least two after rolling two fair dice” are 

examples of this type, to name a few. 

For the purpose of the discussion of the types of probability brought about in 

these examples, I focus on one example from this group; the argument can be extended 

to the other ones as well. Consider the “rolling a 7 with a standard die” example (3-3, 6-

3, 12-3, 14-3 and 23-3). It is hard to identify the type of probability that allows for such 

probability assignment. It is certainly zero-probable because it is against common logic 

to expect something that wasn’t there before (number 7 on a die) to show up out of 
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nowhere and to expect that the die conjures up surprise numbers each time it is rolled.  

This is the clear part. What is unclear is whether there is a theoretical way to assign 

probability zero to this event. In theoretical probability, the sample space S is comprised 

of equally likely events that will cover all of the possible outcomes of a probabilistic 

situation. The probability of an event A is then assigned by 𝑃𝑃(𝐴𝐴) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠 𝐴𝐴
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠 𝑆𝑆

 in 

which the measure could be simply the counting measure (the number of elements in 

each set) or any other measure. But what is an event? When rolling a standard die, is 

rolling a 7 an event? An event is usually defined as a collection of outcomes or results of 

an experiment, and it is regarded to be a subset of sample space since the sample 

space contains all outcomes and results of an experiment (see Triola (2011), p.139, 

Burger and Starbird (2010), p. 585, and Freund, Wilson, and Mohr (2010), p. 72 for 

definition of event). Thus, the empty set and the sample space are events. In our 

example, S={1,2,3,4,5,6} and A={7}, which makes A not a subset of S, and thus not an 

event (at least technically). This is not just the case with rolling a number that is not 

printed on the die; consider for example rolling a die and the die turning into a bird. Is 

this an event? It sure is not a subset of S. In both of these examples the described 

situations are not subsets of the sample space; therefore they are not events, strictly 

speaking. In probabilistic situations, where the sample space is a finite set, no non-

empty subset of it can be zero-probable (otherwise, the probability of the sample space 

will have to be zero). Therefore the sample space cannot contain any zero-probable 

events (except for the empty set). 

 It is not the goal of this study to explore the problematic aspects of sample 

space; the interested reader may refer to Chernoff and Zazkis (2010). My aim is to 

address the types of probabilities accessible to the participants of study when generating 

examples of extreme events. The laboured point I am trying to make is that the 

conventional theoretical probability doesn’t provide a well-defined, conflict-free platform 

for generating zero-probable events, and thus the prevalent mindset from which this type 

of examples are stemming is more likely to be the logical impossibility/certainty. Also 

supporting my argument is that although the participants were asked to show their 

reasoning, nowhere in the data did I see an explanation like: the probability of rolling a 7 

with a die is zero because it is 0/6.  Due to these two reasons I have listed this example 

along with logical impossibility/certainty as opposed to theoretical probability. 
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3.12.2. Theoretical probability 

In the second group I have included examples that are accompanied by a 

probability calculation relevant to a theoretical approach or the examples that I thought 

of as common to teaching and learning theoretical probability. Such examples involve 

picking objects or numbers, dice rolling, coin flipping, and lottery: 

 “Out of n balls n-1 are green, 1 is red. As n tends to infinity 
probability of green is almost 100%” (7-2) 

 Probability of “Randomly picking the number 1 from number line” is 
nearly zero because it is “one out of infinite” (21-4) 

In these examples the set of favourable outcomes is clearly distinguished from 

the set of all possible outcomes and the number of each set is often mentioned.  

3.12.3. Subjective probability 

In the third group I have listed examples of probability that could not be classified 

as logical impossibility/certainty or theoretical probability. The distinctive feature of this 

group of examples is that the probability assigned to them can’t be explained in terms of 

a logical relation, be it a definition or proven facts or the set of all possible outcomes of 

an event. Also it is reasonable to say that not everyone will feel the same about the 

probability of those events. Also they are either too general or too personal. Here is an 

example: the probability of “getting stuck in traffic on the Port Mann Bridge” is 100% (8-

1). True though it may be for the particular person that happens to cross the bridge on 

weekdays at a specific time, there is no generally agreed-upon reason to believe so. The 

probability “that in five minutes it will continue to rain” is almost 100% (18-2), the validity 

of this claim can’t be verified since it is neither a matter of definition, nor related to 

theoretical probability. However, it makes a perfect fit for the subjective category since it 

is rooted in the person’s experience about rain in Vancouver. This person has reason to 

believe that once rain is observed in Vancouver, it is almost certain to last for the next 

five minutes.  
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3.12.4. Frequentist probability, why is it not on the list? 

Although there were examples that involved long sequences of coin flipping and 

die rolling, I did not categorize them under a frequentist approach. Consider the example 

“tossing a coin infinite times and getting all heads” (6-4), which is presented as a nearly-

zero-probable event. The notion of infinite rolls resonates with the way frequency-based 

probabilities are assigned, but there is a difference. The event in question is not getting a 

6, it is getting infinite straight 6’s. The asymptotic ratio of 6’s showing up in a hypothetical 

sequence of infinite rolls of a fair die once observed and documented by a patient 

probability enthusiast can be used as a basis to assign a frequentist probability to the 

event of rolling a 6 on a fair die. The probability of rolling infinitely many straight 6’s is a 

different story: in a frequentist approach, one needs to get the probability of rolling a 6 

from an infinite die rolling process and to apply laws of probability (which is the common 

ground for both theoretical and frequentist approaches) in order to calculate the 

probability of rolling infinite straight 6’s. The justification given by the respondent did not 

bring these up; therefore I tend to think of the above example in the context of theoretical 

probability. Of note, there are two ways to calculate the theoretical probability of the 

event in question. One way is to calculate the probability of rolling a 6 through a sample 

space approach and to apply laws of probability which results in 𝑃𝑃 = (1
6
)∞. Another way 

is to consider the infinite sequences that may be obtained from infinite die rolling and 

count the number of desirable outcomes, count the total number of possible outcomes, 

and divide. In this case the number of desired outcome is 1 (straight 6’s) and the number 

of all possible outcomes is infinite (6∞) which results in 𝑃𝑃 = 1
6∞

. 

3.13. Results of second round of data analysis  

The motive for the second round of data analysis was the difficulty I encountered 

with particular examples from the data as to their everydayness or mathematicalness. 

The second round of analysis suggests above all that drawing a line between 

mathematical versus everyday probability is not always possible since they share 

common logical grounds. 
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3.13.1. Combined Quantitative Summary  

 
Figure 3-2 Quantitative summary of types of probability cross everyday-

mathematical 

As shown in Figure 3-2, forty eight (34 + 14) examples have both mathematical 

and everyday features. Of these, 70% are due to logical underpinnings of both 

probabilities. 

Before further discussion of the findings I share with the reader examples of each 

category. The examples presented earlier, are revisited here along with the type of 

probability identified in each. 

Purely everyday examples (E-M) 

Logical Impossibility: 

 “In a girls’ soccer team, the probability that there are boys on the team is 
exactly zero” (24-3). 

Subjective:  

The probability that “we’ll get hungry at some point in the day” is exactly 
one (28-1). 

The probability that “it will rain tomorrow” is nearly one (29-2). 

The probability of “snow in August” is nearly zero because it is “highly 
unlikely but could happen” (27-4). 
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Purely mathematical example (M-E) 

Logical impossibility/certainty: 

 “Choosing an even number when selecting from numbers that are 
divisible by 2” is an exactly-one-probable event (4-1). 

The probability of “choosing an odd number when selecting from numbers 
that are divisible by 2” is exactly zero (4-3). 

Theoretical: 

 The probability of “picking 3 red balls from a giant bin filled with millions 
of red balls and only one blue ball” is nearly one (17-2). 

The probability of “tossing a coin infinite times and getting all heads” is 
nearly zero (6-4). 

Overlap between mathematical and everyday  

Logical impossibility/certainty: 

“Picking 3 red balls from a bin that has 2 red balls and 2 blue balls” is an 
exactly-zero-probable event (17-3). 

 “In a bag of one blue marble P(grabbing a blue marble)” is exactly one 
(1-1). 

Theoretical: 

“Flipping at least one tail after 50 attempts with a standard coin” is nearly-
one-probable (16-2). 

Subjective: 

The probability of “winning the lottery” is nearly zero, because “chance of 
winning 649 is so small yet possible” (16-4). 

3.13.2. On the placement of the examples 

I address in this section the issue of inconsistent examples, the ones that are 

either placed inappropriately or placed in different probability categories by different 

participants. For example, a coin landing on its edge was considered as an exactly-zero 

probable event by some participants and a nearly-zero-probable event by others. In what 
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follows I attend separately to everyday, mathematical, and overlap (E∩M) groups among 

these examples. 

Inconsistent examples in everyday category 

Examples such as “the Sun will rise tomorrow” and “We will die at some point” 

are presented in data both as exactly-one-probable and nearly-one-probable. The 

analysis of types of probability shows that these arguments are made on a subjective 

basis and thus rooted in personal tendencies and beliefs. On one hand, these two 

examples seem to be the common denominator of all human experience so far; if we 

have learned anything as a species it should be that the sun will rise tomorrow and we 

will die at some point. On the other hand, the more we learn about how things (the solar 

system and our body) work and the more sci-fi movies we watch, the more open we are 

to considering alternatives. On this note, Lindley (2014) states that there is no such thing 

as uncertainty, it is only personal uncertainties. That is to say, each person, based on 

their past experience, knowledge and beliefs, holds various degrees of uncertainty 

towards an event.  New information, even fictitious information, shapes and changes the 

way we think about uncertain situation. The sunrise and death examples show that even 

at extremes, where one expects absolute certainty or impossibility, personal beliefs and 

tendencies divide people, which brings us to the issue of examples that are worded and 

presented mathematically but different probabilities are assigned to them. 

Inconsistent examples in the E∩M category 

An example that was frequently mentioned in the data as nearly-zero probable, 

exactly-one probable, and nearly-one-probable is the example of “a coin landing [or not 

landing] on its edge” (3-1, 9-1, 21-1, 4-4, 6-2, 11-2, 23-2, 23-4). This example and its 

variants showed up in the data eight times. A mathematical coin is Platonic (Chernoff, 

2011), it has zero edge thickness, and perfect homogeneity. The conventionally correct 

probability of a coin landing on its edge is exactly zero, and the probability of otherwise 

happening (the coin landing on either side) is exactly one. Three people (3-1, 9-1, 21-1) 

assigned probability zero to this example, although their reasoning is unknown. The 

correct answer may have been obtained due to considering the Platonic nature of the 

coin or it may be the result of their everyday experience with an actual coin (called 
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contextual coin (Chernoff, 2011)) since a coin landing on its edge may not happen in 

one’s life time. Unlike the correct responses, the incorrect ones do reveal something of 

the respondents’ view of probability. In all incorrect responses a possibility, small though 

it may be, is left for the event of coin landing on its edge. When teachers refer to coin 

tossing situations in probability classrooms, even though physical manipulatives are 

made use of, the assumption is to consider an infinitely thin, uniformly designed 

equiprobable coin, which is repeatedly tossed with identical initial conditions (throws) on 

an infinite plane. My point is that of the two Platonic and contextual coins, only the latter 

may conceivably land on its edge. This is what is portrayed in the above-mentioned 

examples and the notion of a Platonic (mathematical) coin is overshadowed by a 

contextual (everyday) one. 

Inconsistent examples in the mathematical category  

There were seven such examples, all categorized as mathematical and 

theoretical: 

a.  “Out of n balls n-1 are green, 1 is red. As n tends to infinity probability of red 

is almost [and not exactly] 0%” (7-4) 

b. “Picking the number 5 randomly from the numbers ranged from [1, ∞)” is a 

nearly-zero-probable event (14-4) 

c. “Randomly picking the number 1 from number line” is a nearly-zero-probable 

event (21-4) 

d.  “Getting heads ∞-1 times when tossing coin ∞ times” is a nearly-one-

probable event (10-2) 

e.  “Getting heads only once when tossing coin ∞ times” is a nearly-zero-

probable event (10-4) 

f. The probability of “doing something infinite times such as rolling a dice and 

getting all 6’s” is nearly zero (24-2). 

g. Probability of “tossing a coin infinite times and getting all heads” is almost 

zero, because “it is still possible” (6-4) 

These examples have two things in common; first, they all involve infinity, either 

as the number of possible outcomes (a, b, c) or as the number of repetitions of an 
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experiment (d, e, f, g). Second, the probabilities are incorrectly assigned. Conventional 

probability calculation will result in exactly one for example (d) and exactly zero for the 

rest. Although all of these examples interestingly display problematic aspects of the 

calculus of infinity, of particular interest to this study is the last example. With the other 

examples, I can only speculate why the respondents think the way they think, with the 

last example though, we have an explanation. The “it is possible” part doesn’t explain 

why the probability is nearly zero as much as it explains why the probability is not exactly 

zero: because it is possible. Here I present two arguments pertaining to these examples. 

1) The hesitation to assign exactly zero to the events above may be ensued from 

the strong association between impossible and zero-probable. If the distinction is not 

clearly made (as discussed in earlier sections), it is easy to take zero-probable for 

impossible. One may think that if the probability of picking number 5 from the set of real 

numbers is exactly zero that would mean the event is impossible. But since picking 

number 5 is not a logical impossibility, and we are open to accept its possibility of 

occurrence, therefore the probability cannot be exactly zero.  

2) In the last example given above, it is deemed possible to get all heads in an 

infinite sequence of coin flips. I for one find it hard to think about possibility divorced from 

mathematical probability in an infinity-involved situation. Should I be asked, my only tool 

to speak for possibility or any other degree of plausibility of infinity-involved events is the 

cold rigorous mathematical probability. That is because I have no prior experience with 

infinite coin toss and what seems or does not seem logical to happen. From this 

argument it seems that the respondents’ notions of coin tossing and die rolling even 

when employed in mathematical sense may be to a great extent framed by the everyday 

corresponding notions. 

3.14. Summary, Pedagogical Implications and Final remarks 

With respect to everydayness versus mathematicalness of respondents’ 

probabilistic notions of extreme events, examples of exactly-zero and exactly-one-

probable events display the large extent to which prospective teachers’ notion of 

probability is framed by the everyday notions. When generating nearly-zero and nearly-
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one-probable examples, the respondents made more use of mathematical features, 

which resulted in more mathematically worded examples. However, further analysis 

suggested that some of those mathematically worded examples originate from and are 

driven by an everyday frame of mind. In regard to the types of probabilities presented in 

examples from the data, a very large number of examples produced by the participants 

were stemmed from subjective considerations related to everyday life. This stands in 

discord with the fact that the teaching of probability is dominated by theoretical 

probability approach. 

The results of this study point to the need to reconsider several aspects of 

probability education. For instance a discussion of when, to what types of problems, and 

under what assumptions the mathematical probability applies and how it works 

compared to our everyday notion of probability should be an essential part of probability 

“chapter” in mathematics classroom. 

Also a clear distinction has to be made between zero-probable versus 

colloquially impossible events, recognizing that the two notions coincide only for finite 

sample spaces. 

A broader understanding of probability for teachers is also called for. For 

instance, the common definitions of sample space and event, even when mentioned and 

discussed, may lead to inconsistencies with regard to impossible events as described in 

this study (recall the confusion about whether rolling a seven with a die, or a coin landing 

on an edge is an “event”). An extended view of probability in which the theoretical 

probability is situated within the subjective probability offers a resolution. When a 

random experience takes place the set of all conceivable outcomes should be 

distinguished from the set of all possible outcomes, we may call the former Universe of 

discourse, and the latter sample set. All of the logically impossible occurrences get 

probability zero assigned to them on an a-priori basis, and not via theoretical probability. 

The sample set is comprised of all logically possible outcomes, part of which can be 

decomposed into equally probable simple events. This part is what we refer to as the 

sample space and the probability of any event is calculated in conjunction with sample 

space.  
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This study has also shed some light on the state of ambiguity of probability and 

its applicability displayed in prospective teachers’ examples of extreme events. As a 

learner of probability I find some notions of probability in need of further clarification. 

Above all, time is to be spent on probability as a mathematical model, the type of 

problems that could be handled, and the scope of results that can be expected. As 

mathematician (Gowers, 2002) suggests, in order to obtain a working mathematical 

model, we need to decide on specific problems we want to solve, make simplifying 

assumptions that brings the focus on to the important aspects of the problem we want to 

solve, decide what level of accuracy we need, and try to achieve it as simply as possible. 

In the end there are always limitations to what the model can or cannot do. This applies 

more so to mathematical probability since it has so many common grounds with the 

everyday experience of learners. A learner of probability could benefit from explicitly 

knowing what type of events or uncertain situations are subject matter of probability and 

how the products of probability are to be interpreted and used.  
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Chapter 4.  
 
“It is very, very random because it doesn’t happen 
very often”: Examining learners’ discourse on 
randomness10 

4.1. Introduction 

The notion of randomness is central to the study of probability and statistics and 

it presents a challenge to students of all ages. However, it is usually not defined in 

textbooks and curriculum documents, as if the meaning of randomness should be 

captured intuitively. In fact, the word “random” does get used in everyday language, but 

not always in the same way that it is used in mathematics. Even in mathematics, the 

notion of randomness has been a challenging one—not only did it emerge relatively 

recently in the history of mathematics, it has also undergone various attempts to be 

adequately defined. Given the importance of randomness in the study of probability and 

its complexity as a concept, our goal in this chapter is to better understand the ways 

learners use and talk about it.  

In this chapter, we first provide an overview of some of the ways in which 

randomness is defined in mathematics—these aspects of randomness will help structure 

our analysis of learners’ uses and descriptions of it. We then provide a brief overview of 

the research in mathematics education and highlight the main resources that learners 

use to explain randomness. Following this, we present two empirical studies involving 

prospective teachers and undergraduate students, each aimed at further probing 

understandings of randomness using different methodological approaches.  

10 This study is a collaboration with Rina Zazkis and Nathalie Sinclair and is published as a book 
chapter: (Jolfaee, Zazkis, & Sinclair, 2014) 
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4.2. Randomness in mathematics 

Randomness (and probability theory more generally) is a human construct 

created to deal with unexplained variation. We use probability theory to model and 

describe phenomena in the world for which there is a lack of deterministic knowledge of 

the situation, assuming that they had been randomly generated. Thus, what probability is 

can only be explained by randomness, and what randomness is can only be modeled by 

means of probability. The notion of probability is heavily based on the concept of a 

random event and statistical inference is based on the distribution of random samples. 

Often we assume that the concept of randomness is obvious but, in fact, even today, 

experts hold distinctly different views of it. 

The study of random sequences was revived in the field of mathematics when it 

became clear that new ideas from set theory and computer programming could be used 

to characterize the complexity of sequences. Von Mises in 1952 based his study of 

random sequence on the intuitive idea that a sequence is considered to be random if we 

are convinced of the impossibility of forecasting the sequence in order to win in a game 

of chance. This notion of randomness (called by von Mises the impossibility of a 

gambling system) is closely and fundamentally tied to the notion of independence. On 

the other hand, the inability to gamble successfully encapsulates an intuitively-desirable 

property of a random sequence: its unpredictability.  

Later, in 1966, von Mises suggested that a random sequence does not exhibit 

any exceptional regularity effectively testable by any possible statistical test. This 

approach is similar to Kolmogorov and Chaitin’s (Li & Vitany, 2008) vision of a random 

sequence as a highly irregular or complex sequence (also called algorithmically 

incompressible or irreducible) that the sequence cannot be reproduced from a set of 

instructions that is shorter than the sequence itself. For example the following sequence 

of 1’s and 0’s—1010101010101010101010...—is not random because there exists a 

short description for it: write down 10 infinitely many times. It is noteworthy that this 

definition relies heavily on language (ordinary or computer-based) and testing methods.  

 In Durand, Kanovei, Uspenski, and Vereshchagin (2003) it is found rather 

surprising that algorithms are involved in defining random sequences, since probability 
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theory does not use the notion of algorithm at all, and proposed more general definitions 

based only on set theory. One of the nuances their work brings into the definition of 

randomness is the notion of typicalness according to which a random sequence is a 

typical representative of the class of all sequences. In order to be a typical 

representative, it is required to have no specific features distinguishing the sequence 

from the general population of the sequences.  

In contemporary mathematics, the word ‘random’ is mostly used to describe the 

output of unpredictable physical processes (Wolfram Alpha Probability Page, 2014). 

These physical processes are very familiar and include flipping coins and throwing dice. 

The randomness that is obtained from computer-generation is often called 

pseudorandom, in part because someone knows the rules of the system that produces 

the numbers. As such, the very notion of random is intimately tied to the machines that 

are used to produce individual events (like the result of a flipped coin or the digit 

between 0 and 9). In addition to unpredictability, the term ‘random’ usually means 

random with respect to a uniform distribution. Other distributions are also possible, and 

this relation of randomness to a particular distribution is what enables the theoretical 

probabilities that can predict the outcomes of a large number of random events. Without 

the notion of distribution, one is left simply with unpredictability, which can be found in 

many everyday situations (like the weather).  

In contrast to these more complex definitions, Bennett (1998) proposed a more 

practical definition of randomness (of a sequence): a sequence is random either by 

virtue of how many and which statistical tests it satisfies (of which there are many) or by 

the virtue of the length of the algorithm necessary to describe it (this latter is known as 

Chaitin-Kolmogorov’s definition (Li & Vitany, 2008)). According to Wolfram (2002) this 

latter characterization (the incompressibility of data) is the most valid definition, showing 

remarkable consistency. It has also been proven that this definition covers a large 

number of the known statistical tests in effect. By the early 1990s, it had thus become 

accepted as the appropriate definition of randomness (of a sequence). 

One drawback of these definitions is that they emphasize process (the machines 

and/or tests that are used to create/test) as opposed to structure. In contrast, in 
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Structure and Randomness (Tao, 2008) the mathematician Terrence Tao describes sets 

of objects as random if there is no recursiveness of the information between these set of 

objects. He compares the notion of pseudorandomness with that of structure to 

distinguish between sets of objects. Structured objects, on the one hand, are those with 

a high degree of predictability and algebraic structure, for example the set A = {…-5, -3, -

1, 1, 3, 5…} is structured since if some integer n is known to belong to A, one knows a 

lot about whether n+1, n-1, etc. will also belong to A. On the other hand, a set of 

pseudorandom objects is highly unpredictable and lacks any algebraic structure. For 

example, consider flipping a coin for each integer number and defining a set B to be the 

set of integers for which the coin flip results in heads; in such a set B, no element 

conveys information whatsoever about the relation of n+1, n+2, etc. with respect to B. 

While this definition of randomness does not explicitly mention an underlying distribution, 

it does underscore the relation (or lack thereof) elements of a set have with each other.  

Coming from a mathematical modeling point of view, Tao (2008)  has studied 

and produced many different examples of randomness (trying to create random 

sequences is an important part of trying to understand and describe randomness in 

mathematics). He has proposed three different types of randomness: (1) the first type 

arises from not knowing the rules of a system (whether the rules are inaccessible or non-

existing); (2) the second type arises from a chaotic system, a system which is sensitive 

to the initial conditions; (3) the third type is known as a stochastic process, where there 

is some kind of external environmental component whose essentially uncountable 

agents (external noise) continually affect the system with their actions. These categories 

of randomness are interesting in that they relate more closely to everyday 

understandings of randomness, as we demonstrate below. 

There is no agreed-upon definition of randomness that can provide necessary 

and sufficient conditions for all the kinds of randomness in finite or infinite sequences 

and sets. Even when considering the most famous examples of random sequences of 

numbers, namely decimal digits of π, we know that its first thirty million digits are very 

uniformly distributed and its first billion digits pass the “diehard tests” (an old standard for 

testing random number generators (Marsaglia, 2005)), which means that the sequence 

is random in the same sense that the outcome of a fair die is random (known range, 
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unpredictability of the outcomes and uniform distribution). However, the same sequence 

of numbers doesn’t qualify as random according to Kolmogorov-Chaitin’s criteria, since 

there exists a method that describes the sequence in a much shorter length than the 

sequence itself (Bailey, Borwein, & Plouffe, 1997a), (Bailey, Borwein, & Plouffe, 1997b). 

Despite these definition issues, the educational research suggests that people’s difficulty 

with randomness lies mainly in their inability to generate and/or recognize examples of 

randomness. Of course, if they knew the definition, they might not have this difficulty. 

But, as we show in the next section, people often talk about random behaviours and 

properties in ways that diverge from the mathematically-accepted discourse.  

4.3. Randomness in mathematics education 

The psychologists Kahneman and Tversky (1972) discussed perceptions of 

randomness with respect to sequences of coin flips. They suggested that people’s 

intuitive notions of randomness are characterised by two general properties: irregularity 

(absence of systematic patterns in the order of outcomes as well as in their distribution) 

and local representativeness (similarity of a sample to the population). They pointed out 

that local representativeness is a belief that the law of large numbers applies to small 

numbers as well and wrote that this belief “underlies erroneous intuitions about 

randomness which are manifest in a wide variety of contexts” (p. 36).  

According to Kahneman and Tversky’s own description, “random–appearing 

sequences are those whose verbal description is longest” (1972, p. 38). By this, the 

authors refer to the fact that in dictating a long sequence of outcomes one would 

necessarily use some shortcuts, such as “4 Heads” or “repeat 3 times Tails-Heads.” 

However, short runs and frequent switches—that characterize apparent randomness—

minimize the opportunities for shortcuts in verbal descriptions. Therefore, apparent 

randomness was seen as “a form of complexity of structure” (ibid. p. 38). This is 

consistent with Kolmogorov and Chaitin’s view described above ( (Li & Vitany, 2008); 

(Vitanyi, 1994)).  

Researchers in mathematics education continued the tradition, started by 

psychologists, of using sequences of binary outcomes to make inferences about 
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people’s conceptions of randomness. For example, Falk and Konold (1998) investigated 

the subjective aspects of randomness through tasks in which people were asked to 

simulate a series of outcomes of a typical random process such as tossing a coin 

(known as a generating task) or rating the degree of randomness of several sequences 

(known as perception tasks). Their findings indicate that perceived randomness has 

several subjective aspects that are more directly reflected in perception tasks “since 

people might find it difficult to express in generation what they can recognize in 

perception” (p. 653).   

In continuing the investigation of perception tasks, Batanero and Serrano (1999) 

studied perceptions of randomness of secondary school students, ages 14 and 17, n = 

277. They presented students with eight items, four involving random sequences and 

four involving random 2-dimensinal distributions. Specifically, the students were 

shown four sequences of Heads and Tails of length 40, and asked to guess which were 

made up and which were generated by actual toss of a coin. Further, the participants 

were presented with a 2-dimentilonal 4x4 grid, in which results of the "counters" game 

were recorded (this game involves placing sixteen counters numbered 1-16 in a bag, 

choosing a counter, marking its number in a corresponding cell of the grid and returning 

the counter to the bag, then repeating sixteen times). The participants were asked which 

grids were the result of an actual game and which, in their opinion, were made up. Their 

arguments for deciding which results appeared random were recorded and analyzed. 

Unpredictability and irregularity were the main arguments in support of randomness. 

This research reveals complexities in the meaning of randomness and it also shows that 

some students' arguments are in accord with the interpretations attributed to 

randomness throughout history, such as lack of known cause.  

Using computer-based activities, Pratt and Noss (2002) observed 10-11 old 

children using four separable resources for articulating randomness: unsteerability, 

irregularity, unpredictability, and fairness. While the last three components were 

mentioned above, unsteerability, the first component, was described as personal inability 

to influence the outcomes. Further, children often combined unpredictability with 

unsteerability, where “unpredictability was usually seen as the outcome of uncontrolled 

input” (p. 464). Moreover, children used these resources interchangeably where different 
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settings initially triggered different resources. Pratt and Noss suggested that intuitive 

notions of randomness had features analogous to di Sessa’s (1993) phenomenological 

primitives (that is, “multitudinous, small pieces of knowledge that are self-evident, not 

needing justification and weakly connected” (p. 466)).  

Researchers appear to agree that the setting and context significantly influences 

learners’ decision making in probabilistic situations (e.g., Chernoff and Zazkis (2010); 

Fischbein and Schnarch (1997)). However, the notion of randomness was investigated 

in studies where the context was constructed by researchers. What happens when 

learners produce their own contexts? In order to answer this question, we designed two 

empirical studies in which we could analyse learners’ perceptions of randomness where 

the context is not predetermined.  

4.4. Learners’ discourse on randomness 

In order to study learners’ discourse on randomness, we conducted two separate 

empirical studies, each based on different aspects of mathematical knowing. The first 

draws on Watson and Mason’s (2005) suggestions that knowing a particular 

mathematical concept involves being able to generate a wide variety of examples of the 

concept, rather than, or in addition to, the ability to provide a definition or description of 

the concept. Zazkis & Leikin (2008) suggest that learner-generated examples serve not 

only as a pedagogical tool, as advocated by Watson and Mason (2005), but also as an 

appropriate research lens to investigate participants’ conceptions of mathematical 

notions. Thus, our first research question attempts to find out how learners exemplify 

random phenomena and what features of randomness are present in their examples.  

Our second study draws on the recent theories of multimodality, which assert 

that mathematical thinking involves the use of a wide range of modes of expression, 

including language but also gestures, diagrams, tone of voice, etc. (Arzarello, Paopa, 

Robutti, & Sabena, 2009). Given the important connections between gestures and 

abstract thinking we are particularly interested in the kinds of gestures learners use to 

express their ideas of randomness. Based on Sinclair and Gol Tabaghi’s (2010) study of 

mathematicians’ use of gesture, we anticipate that learners’ gestures might 
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communicate some of the temporal and imagistic aspects of randomness that can be 

difficult to express in words. Thus, our second research seeks to find out how learners 

communicate ideas of randomness through a broad multimodal discourse.   

4.4.1. Study 1: Exemplifying randomness 

In this section we consider examples of randomness generated by prospective 

secondary school mathematics teachers. From 40 participants, we collected 38 different 

examples. We note with some surprise that only six examples had mathematical context, 

that is, were related on situation that can be seen as conventional mathematical in the 

discussion of probability. By “mathematical context” we refer to examples in which the 

theoretical probability of the exemplified random event can be calculated, such as: 

• When playing with a standard pack of 52 playing cards, what is the probability of 

getting a "King of Hearts" if I choose a card at random? 

Though there was no specific request that examples had to be related to a 

mathematical context we find the paucity of such examples rather surprising given that 

the data was collected from the population of mathematics teachers in a mathematics-

related course. Our further surprise is that most of the mathematical examples (5 out of 

6) related to card games or gambling. We speculate that this is because the participants 

understood or experienced the effects of such randomness on the desired outcome.  

In what follows, we examine the examples generated by participants first using 

Tsonis’ (2008) tripartite model and then by using the characteristics of randomness 

described by Pratt and Noss (2002). We then discuss features evident in our examples 

that differ from those in the literature.  

4.5. Types of randomness according to Tsonis 

According to Tsonis (2008), randomness of first type arises from not knowing the 

rules of a system either in the case of non-existence of such rules, or of the inability to 

access such rules because of irreversible programs or procedures that have inhibited us 

from getting access to those rules. The following are illustrative examples of this kind of 
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randomness from our data: 

• Babies being born with autism 

• It will rain tomorrow 

While there are scientific explanations for the causes of these phenomena 

(autism, rain), not knowing the explanations resulted in perception of randomness.  

Randomness of the second type arises from a chaotic system, a system which 

remembers its initial conditions and the evolution of the system is dependent on those, in 

other words the system is very sensitive to the initial conditions only if we had infinite 

precision and infinite power we will be able to predict such systems accurately. “Rolling 

snake eyes on a craps table” (an example from our data) is a perfect fit for this category 

since from a very precise mathematical standpoint it is possible to propose a mechanical 

model that describe a fair die and build its motion equations and take into account 

reasonably all of the parameters that matter such as the speed and angle at the tossing 

point (with a finite accuracy), the viscosity of air, the gravity at the place of experiment, 

the mass distribution of the coin, the elasticity factors of the table (or the ground at which 

the coin hits) and eventually show that the outcome of the two dice is uniquely 

predictable (Strzalko, Grabski, Perlikowski, Stefaneski, & Kapitaniak, 2009). At the same 

time rolling two dice several times is completely random due to the impossibility of 

controlling initial conditions when rolled by human, which makes the randomness 

inherent to dice rolling examples the randomness of second type. On a less pedantic 

level, this category can include examples in which the unpredictability of the situation is 

closely related to the idea that small changes in the initial conditions can produce big 

differences in the outcome. For example: 

• A meteor landing on your house 

• An earthquake occurring in Vancouver 

We find in examples of this kind the perception of a chaotic system, where the 

outcome is unpredictable.  

Randomness of the third type, in which there is some kind of external 

environmental component whose essentially uncountable agents (external noise) 
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continually affect the system with their actions. For instance, consider the time a specific 

person (Sarah) spends in a shopping mall each time: we reasonably understand how the 

shopping enterprise takes place so it is not randomness of the first type, there are no 

initial conditions that the system is super sensitive therefore it is not randomness of the 

second type, the thing is that Sarah’s shopping time depends on several environmental 

(the number is not known) factors such as how many stores are having sales, what are 

the line ups like in the stores that she shops and whether she runs into a friend and etc. 

Either of these factors could be considered as simple and rather deterministic systems 

but the collective behavior of many interacting systems may be very complicated. In 

terms of our data, this category includes examples in which the main causes and rules 

are known but the variability or unpredictability arises from the exposure of those rules to 

external agents. For example: 

• someone will miss our next class; 

• leaves falling off the tree when it is not autumn. 

A note on fitting examples into Tsonis’ model. When trying to categorize examples 

provided by the participants by the types of randomness in Tsonis’ model, one important 

aspect of probabilistic thinking drew our attention: different people with different 

backgrounds and knowledge find things random at different levels for different reasons. 

Consider the “babies born with autism” example. At one level this may illustrate 

randomness of the first type, since the causes of autism (the rules of the system) and 

why some babies are born with or without it are unknown to a person with no 

background in biology. At another level, for a person who is aware that autism has a 

strong genetic basis, and can be explained by rare combinations of common genetic 

variants, randomness of the second type seems a better fit. Yet again, the same 

example could be considered as randomness of the third type for someone who knows 

more about the technicalities of mutation (that mutation could be caused by external 

agents such as radiation, viruses and some chemicals). Given the ambiguity involved in 

this categorisation, we considered what could be gained by attending to different 

attributes of randomness.  
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4.6. Features of randomness according to Pratt and Noss.  

The resource of fairness identified by Pratt and Noss (2002) was the only one not 

present in our data. However, we provide examples of each of the other three attributes: 

 Unsteerability. 

• It is sunny in Ottawa on Canada Day 

• It will rain tomorrow 

• A tsunami being triggered by an earthquake 

Some examples in this category related to weather conditions and involved the 

inability to influence the outcome. 

 Irregularity.  

• A particular bus will stall or break down in any given hour of service. 

• Someone will miss our next class 

• Getting caught talking/texting on your cell phone while driving 

• Giving flowers to your wife when it is not valentines, birthday, or an anniversary 

The feature of regularity is usually described in terms of sequence outcomes that 

have no apparent pattern, rather than in terms of a single event. However, in these 

examples, the sequencing is implied by a routine, such as taking a bus to school daily, 

attending the class, texting while driving and not getting caught, acknowledging certain 

dates with flowers. Here irregularity can be seen as a deviation from the routine.  

 Unpredictability.  

• Dying in an airplane accident 

• Being struck by lightning 

• Getting a royal flush in poker 

A large number of examples attended to events that are unpredictable, with a 

frequent reference to accidents or natural disasters.  

Though we attempted to choose examples that best illustrate each of the 
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features, it is important to note possible overlaps. The event of a particular bus breaking 

down is unsteerable (by the participants) as well as irregular and unpredictable. The 

same consideration applies to getting a royal flush in the game of poker.  

A notable feature of the generated examples, which does not appear in the 

definitions of mathematicians or in the mathematics education literature, is the relative 

rarity of the described random phenomena. This is related both to events with “known” 

theoretical probability, such as getting a royal flush, and to perceived random events, 

which are rare based on statistical occurrences, such as earthquakes and being struck 

by lightning. Theoretically, getting a particular card from a deck of cards has the same 

features of randomness as getting “heads” when flipping a coin. However, examples like 

the latter were not present in this pile.  

A feature related to relative rarity of the event was that of accident or disaster: 

the examples mentioned earthquakes, tsunami, being struck by lightning, airplane crush, 

or dying of a rare disease. Only three examples referred to “lucky” events: a desirable 

hand in a card game (2) and finding money on the ground.  No one mentioned winning a 

lottery. Further, pushing rarity to the extreme, three examples described events that 

under normal conditions would be considered impossible: 

• being able to win a marathon with no training 

• walking on a crack in tiles when your stride length is some constant 

• achieving a “perfect” high-five in a massive crowd of people 

The connection between randomness and low probability, either calculated or 

perceived, should be investigated further as it was not featured in prior research.  

4.6.1. Study 2: Discussing randomness with interviewer 

 In the data presented above, there was no opportunity to ask students for further 

clarifications—for example, we were not able to ask them why their given examples were 

random. As pointed out above, many of their examples are subject to multiple 

interpretations; for example, what notion of randomness does this response entail “forest 

fires caused by lightning”? Is it the time that is considered random or the location of the 
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next forest that will be on fire by lightning? Would it be non-random if the forest fire was 

caused by other reasons?  

In order to probe in more depth into learners’ discourse of randomness, we 

conducted several clinical interviews with undergraduate students, three of which are 

analyzed in this section. In the interviews, the participants were initially asked to define 

randomness and give examples and non-examples of random phenomena. Then, they 

were asked to explain why they considered those examples random. They were also 

asked to comment on the differences, if any, between everyday randomness and 

mathematical randomness. At the end of the interview, they were asked whether they 

could give examples of situations that are more random (or less random) than their 

previous examples. The interviews were video recorded so that both speech and 

gestures were captured and then transcribed.  

In the analysis of the interviews, we focus on the participants’ different ways of 

communicating randomness. We highlight features of the randomness that have arisen 

both in the literature review and in Study 1. We attend closely to the participants’ non-

verbal ways of communicating about randomness, with particular emphasis on their use 

of gestures. 

Kevin: What’s predictable for you may not be predictable for me. Kevin is a 

prospective teacher with background in biology. When prompted for examples of random 

events, Kevin responded offering the following two examples: “sneezing for persons 

without allergies” and “blinking for some people perhaps.” In the following exchange, 

Kevin associates things that have a higher probability of happening as being less 

random: 

I5: Ok, so for people with higher probability of sneezing, would then 
sneezing be more random for these people or less random? 

K6: I would say less random. 

I7: So you are saying that the higher the probability, the less random 
it is? 

K8: Yes, I would say so. 
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Consequently, low probability is associated with the relative rarity of the event. 

Further, he offers the seeing of meteors as another example of random events, this time 

alluding to his inability to predict such an event:  

K10: I guess may be from my perspective, of seeing meteors. If 
someone that has the science calculates how much stuff is in the air 
and how much of the sky you can see and probably can figure out the 
probability, but to me it would be pretty random.  

When asked directly whether “seeing a meteor is random because it is rare and it 

happens only few times in one’s lifetime,” Kevin emphasizes less the predictability of the 

meteor passing in the sky than the unpredictability of the geographic and temporal 

location of the seer. 

K12: No it is the timing, because you can’t really predict when are you 
seeing it. There is a lot of meteors out there and they do cross the 
hemisphere just you need to be there at the right place at the right 
time. You can’t predict when are you going to see it. 

The interview next asked Kevin to “give an examples of an ordinary English 

language use of the word random.” Kevin explicitly associates random with 

unpredictability, but also evokes its unexpectedness. 
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K14: I think the way it is used in common 
English, the way I use it is unpredictable11 
(Figure 4-1 gesture). For example when I 
see someone that I don’t expect to see I 
would say that was random. Maybe if I had 
thought about it I would figure out 
something in terms of probability or 
something but in everyday usage if you are 
not thinking about how often you see 
something and you see it, makes it all 
random.  

Figure 4-1 The open palms 
gesture. 

In his description Kevin also associated the everyday use of the word random 

with that of ignorance, which can be seen both in terms of “not thinking” but also in the 

gesture used when he says “unpredictable.” When describing the meaning of “random” 

in the phrase ‘random guy,’ Kevin evokes the typicalness sense of random, referring 

several times to “average person”: 

K16: I guess when I use the term random guy it is to describe 
someone that I don’t know. An average person (Figure 4-1 gesture), 
someone that is not overly tall or really short, and nothing that sticks 
out. That would be average (Figure 4-1 gesture) and someone that me 
and the person I’m talking to don’t know. So if I’m talking to my friend 
and I say a random guy I could say an average person (Figure 4-1 
gesture) instead.  

  

11 We will underline words that are accompanied by gestures and describe in parentheses the 
gesture made.  
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A slightly different meaning emerges when Kevin describes “random thoughts,” 

which he sees as deviating from the usual:  

K20: I think in that situation 
random would be the thought that 
wouldn’t follow the preceding. If I 
am thinking about eating, eating, 
eating and something comes to my 
mind completely different (Figure 
4-2 gesture) probably it would be 
random in that situation. 

 
Figure 4-2 Left arm moving to the far left of 

body. 

His gesture evokes the idea that the random thought is not in line with the 

preceding thought, being out of the ordinary. Finally, when asked about whether he 

thinks that “absolutely everything is random” or that “nothing is random,” Kevin evokes a 

sense of randomness related to lack of structure.  

K22: I lean more toward deterministic, if you could crunch all 
numbers, then you would probably figure out the probability of 
something happen, I mean given that all of the variables and stuff are 
known. 

Though he never talks specifically about mathematical probability, Kevin’s sense 

of the specific uses of random in everyday language refer to unexpectedness (seeing 

someone), typicalness (random guy) and relative rarity (random thought). More 

generally, he speaks of randomness primarily in terms of unpredictability, but also in 

terms of ignorance and lack of structure. The more things are predictable, the less they 

are random. Moreover, predictability is a subjective notion (things will be random to him 

if he can’t predict the outcome, even if others can).  

Samantha: The more the number of possible outcomes, the more it’s random. 

Samantha is an undergraduate student majoring in Health Sciences. Samantha was 

initially reluctant to provide an example of random: 

S2: Something unexpected, out of ordinary. Right? Random in what 
context? Like any? 
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When told that she could describe any context, she asks whether we are talking 

about the “mathematical context” (gesturing with both hands to the left side of her body) 

or “randomness in life situations” (gesturing with both hands to the right side of her 

body). The interviewer asks for both. Samantha responds as follows: 

S6: Um, I think, um, in a way they 
are too similar as to the meaning 
of random, like what I said random 
means unexpected (Figure 4-3 
gesture) and the outcome you 
can’t predict (moves hands to left 
like before when talking about the 
mathematical context) whether it 
is mathematics or whether it is life 
situation. 

 
Figure 4-3 Left hand moving from up to 

down enclosing/ drawing a 
closed box type space in 
front of her. 

The word “predict” seems to be associated for her with the mathematical context, 

given the gesture. She describes random in terms of unexpectedness and 

unpredictability.  

When prompted again for examples in both contexts, Samantha pauses for a 

long time and then asks for help. The interviewer invites her to “think of a sentence in 

which you would use the word random.” When again no answer is given, the interviewer 

proposes she describes what is meant by “random guy” and “random thought.” 

S11: Oh I see, I would use the word random like I am walking in a 
mall and somebody approaches me and says something completely 
out of ordinary, just he doesn’t know me, I don’t know him, and he 
asks me something that I don’t know the answer to it and I never 
expected him to ask me, that would be completely random.  

Here Samantha alludes to the lack of structure aspect of random, particular in 

terms of the expectations. What sticks out in this example is that the lack of relevance 

between different pieces of the set of objects/actions described is what makes it random. 

She also alludes to the lack of structure in her description of random thoughts: 
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S13: I have those all the times 
actually, I think about random things 
(palms parallel, moving right, left, 
right) when I’m on the skytrain, like 
how my thoughts just travel (Figure 
4-4 gesture) from one thing to another 
thing but I can’t, or I don’t plan these 
thoughts. That happens all the times 
(Figure 4-5 gesture) when I’m on a 
train. Because I have one whole hour 
(Figure 4-5 gesture) to think about 
anything (Figure 4-5 gesture) and I 
don’t plan for what I’m going to think 
about (Figure 4-5 gesture) for example 
I think about trees (Figure 4-5 gesture) 
and then from trees I randomly jump 
on my textbook (Figure 4-4 gesture) 
and from my textbook randomly 
moving to what am I going to eat for 
dinner. Does that work? 

 
Figure 4-4 Both hands drawing moving 

arcs 

 
Figure 4-5 Fingers open hand moves 

away from body 

The interviewer prompts Samantha for a mathematical example of random, to 

which Samantha responds that she took only one mathematics course in university and 

in that course “we didn’t talk about randomness, we talked about probability but we 

never talked about if it means random.” The interviewer asks whether she could consider 

the outcome of the roll of a die as random. When she concurs, the interviewer asks what 

makes it random. 

S19: It’s unpredictable, you have a 
set of possibilities (Figure 4-6 
gesture) in this case, six different 
possibilities, but each of those 
possibilities are unexpected and 
unpredictable (hands still holding 
the container making beat 
gestures at the borders of the 
container), so each role would be 
random, I guess. Ok, for example 
say playing roulette, that would be 
a game that is random because 
every time the person spins the 
ball it is random, the number that 
the ball will land on is random 
(Figure 4-6 gesture).   

 

 

 
Figure 4-6 Hands enclose a container. 
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Samantha speaks again of unpredictability and unexpectedness. But she also 

emphasizes the way in which randomness is related to having a fixed range of 

possibilities, which she expresses as well through her container gesture. 

The interview then prompts Samantha for “examples of life that are non-random.” 

S21: Non-random would probably be 
like let’s say I’m going to school, all of 
the events that occur as I’m going to 
school are not random (Fig. 4.7 
gesture). Because they are planned 
(Figure 4-7 gesture). I would get on 
the skytrain (Figure 4-7 gesture) and 
then I would get on the bus (Figure 
4-7 gesture) and I would get into my 
class (Figure 4-7 gesture), like all 
these events are planned (Figure 4-7 
gesture) they are predictable (Figure 
4-7 gesture with both hands). 

 
Figure 4-7 Fingers tight, hand moving 

from up to down, as if putting 
a stop to a moving thing. 

 

Here Samantha contrasts randomness with things that are planned and 

predictable. Her repeated gestures evoke also structure and control, which resonates 

with the unsteerability notion of the randomness. The interviewer then asked Samantha 

to give examples of “events with 100% probability of happening.” 

S25: I think it happens with my drawer of socks, because I have a 
drawer of socks that are all white because I am very organized so I 
put all of my white socks in one drawer and all of my coloured socks 
are in another drawer (gesturing a container first to the right and then 
to the left) so 100% of the time that I go to my white sock drawer, 
100% of the time I will pull out a pair of white socks.  

I26: Do you see any randomness in this 
experiment of socks drawer? 

S27: There could be, there could be the 
possibility that my mother put the wrong sock 
in the wrong drawer  (Figure 4-8 gesture) 
and then I might have a chance of pulling 
black socks from the white sock drawer 
(Figure 4-8 gesture).  

 
Figure 4-8 Palm up hand 

moving slightly away 
from body.  
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The interviewer expresses some surprise at the idea that Samantha just puts her 

hand in and grabs what comes out, to which Samantha responds as follows, using the 

idea of random as rare, contrasting it with typicalness.  

S29: (laughs), yes. Well I mean when I look at my white sock drawer 
it is random to see a black sock, it’s not supposed to be there. If there 
is, that would be random. 

At this point, the interview asked Samantha about whether there are things that 

are more or less random. After a long pause, the interview mentioned the rolling a die 

situation and asked whether there was “another experiment that is more or less random 

than this one?” 

S32: I think if there was 
more dice, more than one, 
um, actually it doesn’t work, 
umm, let’s say if there is 
five dice instead of one, the 
outcome would be different 
(Figure 4-8 gesture)? Not 
sure. It would be more 
unpredictable (Figure 4.8 
gesture)? The outcomes are 
larger (Figure 4-9 gesture) 
versus one die when we 
have six outcomes than if 
we put more die (Figure 4-9 
gesture) it would be 12, 36 
and so on, so that would be 
more random vs. less 
random, maybe? 

 
 
 

 
Figure 4-9 Both hands enclosing a long container. 

 

In contrast to Kevin, who associated the amount of randomness with the 

predictability, Samantha associates the range of possible outcomes with randomness. 

Her gestures indicate the size of the sample space; the bigger the size, the more the 

situation is random—this kind of thinking is similar to the ‘the more X, the more Y’ 

intuition, described by Stavy and Tirosh (2000). Moreover, a large sample space is also 

connected to a relative rarity of each particular event, assuming even distribution.  

In order to further inspect Samantha’s understanding of random, the interviewer 

asks her to comment on whether HTHTHT is a less probable event compared to other 
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outcomes since it has a pattern in it and it is not very likely that a coin produces a 

pattern.  

S34: I think that I agree, because when you flip a coin it is 50-50 each 
time either this or that, it is not like the coin will land straight on the 
edge, so I don’t think that there is too much randomness in flipping a 
coin. 

When asked whether she thinks that a die has more randomness in it since it has 

six sides, Samantha responds “Yes more randomness if we increase the number of 

dice.” Although Samantha seems unsure about describing and exemplifying 

randomness, she certainly associates it with being about unpredictability and lack of 

structure and, in comparing it with non-random, with unsteerability. But she also 

contrasts it with typicalness. Further, situations are more random the more possible 

outcomes they have, which is connected to relative rarity. Samantha talks about both 

random and non-random situations in terms of a range of outcomes; but random events 

are different because the outcomes can be different.  

Tyler: Maybe you can predict it but you can’t accurately predict it. Tyler is an 

undergraduate student majoring in mechanical engineering. He is first asked for 

examples of random things.  

T2: Sure, I suppose everything has a degree of randomness to it. 
What seat you choose on a bus, what time you head for you know 
(Figure 4-10 gesture) school in the morning, how much milk I pour 
(gesturing the pouring of milk) in this coffee, it has elements of 
randomness to it and of course the obvious ones: playing dice or cards 
or you know (Figure 4-10 gesture) any sort of video games, RPG’s 
specifically when you are attacking (right hand makes small quick 
pushes back and forth in front of his face) these little random things 
(points with whole hand to what looks like an ascending set of stairs 
with the hand is holding a small object). Even when I’m sipping a 
coffee the amount of coffee I’m sipping is random because it is not the 
same every time. 
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Figure 4-10 As if throwing something to the back. 

Tyler’s sense of randomness relates here, especially when he talks about the 

sipping of coffee, to variability. When the interviewer asks Tyler to explain why “not being 

the same every time” is an example of random, Tyler explains that it comes down to a 

matter of “belief” since there are “two views on how this world works” (the deterministic 

and the non-deterministic). In the former world, he explains: 

T4: [I]f you know all the information about the system you could 
accurately predict it; meaning it wouldn’t be random at all, however 
(Figure 4-11 gesture) in our world it doesn’t really work that way 
because when you get really really close down like to quantum level to 
the atoms […] it is impossible to know the position of atom as well as 
its direction and velocity and momentum […] at the same time […] it is 
going to have some level of randomness to it. 

 

Figure 4-11 Gesture space moves to his right side of the body as he speaks about 
real world. 

Tyler continues on to explain how the way a drop of water will fall on your hand 

“is random because depending on how deep it sits on your hand on the molecular level, 

it might go the other way.” At the quantum level, he describes the behavior of the “is 

unpredictable,” and asks “and so how can the system as a whole be completely 

predictable?” Later, he continues on to describe the way in which “when I’m taking a sip 
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of my coffee there is randomness (hand palm open loosely falls down to his lap) to it and 

it is almost impossible to say how much exactly.” 

Up until now, Tyler’s sense of randomness is related to unpredictability, but his 

talk about the quantum level also involves a level of sense ignorance since operations 

there are unknowable. The interviewer then asked for other examples of randomness 

and he talks about the exact layout of the table in the room and where a garbage can is 

placed, saying that “Everything I believe has a degree of randomness to it even if the 

tiny tiny degree.” He then returns to the idea of variability. 

Consider M&M’s in a bag. M&M’s are supposed to be made of the same shape 

(Figure 4-12 gesture) but if you look at each of them you see that one has a little lump to 

it, other has a distortion to it and however they are manufactured the same way but still 

there is some degrees of variation (left hand moving from elbow up to down, with wrist 

rotating as if drawing) between each one. 

 
Figure 4-12 Fingers enclosing a round shape. 

The interview prompts Tyler to talk about the use of the word random in common 

language, mentioning in particular “random thoughts” and “random guy.” For the latter, 

he describes a random guy as being “out of the normal” and “going against the crowd.” 

He elaborates that the use of the word ‘random’ in natural speech is: 
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T10: […] a little different than its 
actual meaning, they just mean 
different, weird and out of ordinary 
whereas random by definition 
means unpredictable or means this 
many (             Figure 4-13 
gesture) and it is going to be one 
of them (        Figure 4-14 
gesture) but we don’t know which 
until you choose. And again about 
the random thoughts I think the 
way they use it in speech it doesn’t 
pertain to what they are doing at 
the moment. If you are playing 
soccer and you think about your 
mathematics homework it is 
random because it doesn’t deal 
with what you are doing at the 
time. 

 
Figure 4-13 Both hands enclosing a 

container.  

 
Figure 4-14 Moving right hand toward the 

left and covering the previously 
indicated set of things.  

In describing unpredictable, Tyler refers, with speech and gesture to the range of 

possibilities an event can have and to the randomness being linked to the fact that the 

outcome is not known (until it is chosen). But both examples of non-mathematical uses 

of the word ‘random’ relate to lack of structure. Tyler also joins Samantha in describing 

the everyday use of randomness in terms of not being typical. This is different from 

Kevin, who associated randomness with typicality.  

The interviewer further prompts Tyler on his definition of probability in terms of 

unpredictability. Tyler elaborates in more mathematical terms, referring to random 

events, probability and certainty: 

T12: I guess you can predict random events (             Figure 4-13 
gesture but with palms face down) but you can’t say which one for 
certain it is before it happens. If something is random you don’t know 
exactly what is going to happen maybe you can predict it but you can’t 
accurately predict it, like with 100% certainty. We can say it is going 
to be probably one of these ten things (repeating above gesture), 
randomly one of them (        Figure 4-14 gesture). So, it could equally 
be either one (vertical hand movements that partitions the set) or I 
suppose it doesn’t necessarily mean equally but depending on wording 
I suppose it is implied sometimes?  

124 



 

I13: I don’t know, let me ask you this, you said that randomness 
means not 100% certain, can we come up with examples of 
randomness with very very high probability, not 100% though? 

T14:  Sure, like the probability of flipping heads with a coin for 100 
times in a row, it is possible; but it is very very random because it 
doesn’t happen very often. 

The interviewer asks whether this probability is low and Tyler responds “Yes, 

what I mean is the probability of this not happening. 99.9% is probability of it not 

happening.” He continues on to say the event is “very rare but it still might happen, it is 

random and if it did happen I would say it is very random.” This is the most evident 

example of connecting randomness to the relative rarity of an event.  

On gestures that accompany randomness. The sources of randomness identified by 

the interviewees are similar to, though somewhat more diverse than, those of the 

examplification data. For example both emphasize unpredictability as a defining feature 

of randomness. The gestures used by the participants further underscore the way in 

which the unpredictability features strongly in their discourse of randomness. The hands 

wide open, palm up gesture co-occurs with the word random and seems to communicate 

a lack of control over the situation, or a lack of knowledge.  

Another noticeable aspect of the interviewees’ discourse on randomness relates 

to their strong distinction (expressed through gestures—hands moving to one side, and 

then to the other; pointing to one side or the other) between everyday randomness and 

mathematical randomness. Prior research has not drawn attention to the ways in which 

learners are aware of differences between the way the word ‘random’ is used in each 

context or to the distinctions learners attribute to each type of usage. Further, by 

specifically exploring everyday uses of the word random, we were able to see how the 

everyday discourse is used in trying to participate in the mathematical discourse so that 

ideas such as typicality and relative rarity, which are relevant to everyday use, also 

come to be relevant to mathematical use. 

Finally, two of the interviewees made a container-like gesture in several 

instances when referring to the possible events or outcomes of a phenomenon. Although 

not explicit in their speech, the gesture suggests that the participants think of the 
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possible outcomes as belonging to a closed, finite set. This seems particular relevant to 

the discourse of mathematical randomness in the sense that one needs information 

about the distribution of the possible outcomes in order to say something about whether 

a particular sequence is random. We suggest that this gesture might be helpful to evoke 

in a didactical situation. 

4.7. Concluding remarks 

The notion of randomness is central to the study of probability and statistics. 

However, it is rarely explicitly explained, despite the continued efforts of mathematicians 

to produce a rigorous definition. Samantha’s comment seems to illustrate the issue: “we 

didn’t talk about randomness, we talked about probability but we never talked about if it 

means random.” Researchers in mathematics education have identified some intuitively-

constructed features of randomness. However, most studies relied on students 

considering sequences of outcomes of events, focusing on binary outcomes, such as a 

coin toss. Our research broadens these approaches, moving away from the context 

constructed by researchers towards examples and descriptions provided by participants. 

We focused on (1) how adult learners (prospective secondary school teachers and 

undergraduate students) exemplify random phenomena and what features of 

randomness are present in their examples, and (2) how learners communicate ideas of 

randomness through a broad multimodal discourse.  

We first attempted to categorize participants’ written examples of randomness 

using the three types suggested by Tsonis’ (2008) model. We found that such 

classification significantly depends on participants’ personal knowledge and experience, 

rather than on the described event. We then attempted to classify participants’ examples 

using features of randomness identified by Pratt and Noss (2002). We noted that many 

examples illustrate more than one feature, as there is a significant overlap among 

unpredictability, unsteerability and irregularity. While these features help characterise 

participants’ intuitions, they do not provide sufficient information on how the notion of 

randomness is used by learners. As such, we extended our study through the use of 

clinical interviewers in which participants’ phrasing and gestures could be analyzed.    
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The following attributes of randomness were featured in participants’ responses, 

extending and refining the list previously compiled by Pratt and Noss (2002): 

unpredictability, unsteerability, unexpectedness, lack of structure, variability, ignorance, 

typicalness, and relative rarity. The most common gesture that accompanied the 

discussion of randomness was that of open hands with palms up, which often 

communicates in a daily conversations the “I don’t know” phrase.  It was strongly related 

to the features of unpredictability and ignorance in participants’ talk, which were 

prominent in this group of participants. Unexpectedness, lack of structure, and variability 

are related to the feature of irregularity, previously identified by Pratt and Noss (2002). 

However, the notion of relative rarity was not mentioned in prior research, but 

appeared repeatedly both in the interviewers and in the examples provided in writing. 

That is, events that have low probability of occurring were considered by our participants 

as random. This was the case both for mathematical randomness and for randomness in 

everyday usage of the word. Further, the idea of relative rarity, which can be seen as 

contradicting the idea of typicality, actually appears to co-exist with it. It all depends on 

the attributes that are associated with randomness.   

Based on our findings, we suggest that teachers (and teaching materials) attend 

more explicitly to learners’ discourse on randomness and, in particular, to learners’ 

everyday uses of the word. These can be compared and contrasted with different 

definitions of randomness available in the mathematics discourse. It seems that the 

notion of randomness that is related to the passing of certain statistical tests might be 

the most distinct from learners’ discourse on randomness—this very pragmatic view of 

randomness seems particularly amenable to learning situations involving computer-

based technologies.  
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Chapter 5.  
 
Fixed, but Unknown; Undergraduate Students’ 
Notions of Probability of Single, Past Events 

5.1. Introduction 

What is the probability of a fixed but unknown past event? This question reflects 

on two of the old issues debated by subjective (Bayesian) and objective (classical) 

schools of probability: the problem of single events and the problem of past events. This 

study will examine undergraduate liberal arts students’ answers to the question of 

probability of a fixed and unknown event. I suggest that reflective tasks where the 

students are asked to examine and reflect on two opposing probability arguments offer a 

new space for learners to reconcile some conflicting probability ideas. To situate my 

study and my task I start by discussing the notion of ambiguity in mathematics. In 

particular, I suggest that probability is an ambiguous notion for learners; this ambiguity is 

best witnessed in different subjective and objective interpretations of probabilistic 

problems. I then turn to the particulars of a small study in which the issues were 

explored.  

5.2. Ambiguity 

Mathematics is commonly viewed as a precise discipline, where painstaking 

efforts are made to define terms in a rigorous and clear manner. The last thing we 

expect from a mathematical notion is being ambiguous. Any possibility of more than one 

interpretation for a mathematical expression seems to arise from sloppy use of language 

rather than any uncertainty in the mathematical ideas, or is it the case really?  
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  Mathematician Bill Byers (2007) believes that this cannot be further from truth. 

He sustains that mathematics is an ambiguous subject by nature and the ambiguity is 

where all the new thoughts and creative ideas come from. Defining ambiguity in such a 

way that it essentially doesn’t lose practical usefulness is a tricky task since arguably 

any word can be ambiguous. Byres’ definition of ambiguity is adopted from a definition of 

creativity offered by Arthur Koestler (notable author and journalist). He swaps the word 

“creativity” in Koestler’s definition with “ambiguity” and defines ambiguity as: “ambiguity 

involves a single situation or idea that is perceived in two self-consistent but mutually 

incompatible frames of reference” (p. 28). He suggests that the resolution of the conflict 

results in creation of ideas that link the two; these new ideas in turn generate a deeper 

understanding of the concept itself as well as other related mathematical ideas.  

  Byers’ definition makes ambiguity distinct from hazy vagueness resulting from 

unclear communication. For instance, he discusses the ambiguity in square root of 2: 

“Square root of two existed for Greeks as a concrete geometric object, but problematic 

when considered as an arithmetic object” (p. 35).  This was due to restricted view of 

numbers at the time: numbers represented geometric magnitudes, and any two 

geometric lengths were believed to be commensurable. A conflict resulted when 

incommensurability of the diagonal of a square with the side length of the square was 

proven. After this, a more general doctrine of proportionality was developed. This 

development opened the window for proofs involving incommensurable lengths (Book V 

of Euclid’s Elements for example). This, in turn, resulted in a deeper understanding of 

the notion of numbers as fractional numbers (rational) and non-fractional ones 

(irrational). 

5.2.1. Ambiguity in mathematics education 

Gray and Tall (1994) present instances of ambiguities students have to deal with 

in mathematics classrooms. Those ambiguities involve the mathematical symbol used 

for both the process and product. For example, 4 + 5 is used both for the product of the 

concept of addition (in this case, 9) and for the process of adding (as in counting all). 

Another example is how the equation of a function f(x) simultaneously tells us how to 
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calculate the function for a given value x, it also presents the function value for a general 

value x. 

Barwell (2005) proposes that since meaning-making in mathematics is a 

discursive and social process, ambiguity can be seen as a resource for doing 

mathematics and for learning the language of mathematics.  

Grosholz (2007) suggests that once distinct representations of a concept are 

compared and contrasted, it often results in generating new knowledge. She calls this a 

productive ambiguity. Foster (2011) offers instances of productive ambiguity in 

mathematics classroom: 

An ambiguity is not the same as an error, a paradox, a contradiction, an 
absurdity or a fallacy. An ambiguity derives from a significant degree of 
uncertainty, caused by a lack of specification regarding a particular 
feature or an unstated assumption, paradigm or frame of reference. This 
results in an ability to see the same situation in more than one way. (p. 3) 

He identifies four types of mathematical ambiguity: 

• Symbolic ambiguity such as × being used both for the product of two real 
numbers and the product of two vectors 

• Multiple-solution ambiguity, such as with inequalities (e.g., x > 7, but how 
much greater?) 

• Paradigmatic ambiguity, such as children perceiving thin plastic objects either 
as idealized two-dimensional shapes or as three-dimensional objects of very 
slight thickness  

• Definitional ambiguity, such as the word radius being used to represent the 
line segment itself or its length. 

 In my view, probability involves at least two types of these ambiguities: 

definitional ambiguity, and paradigmatic ambiguity. The term probability is used to refer 

both to the name of branch of mathematics (that quantifies uncertain phenomenon) and 

as the specific numeric measure of uncertainty calculated or assigned to each event. 

Also probability is perceived both as a manifestation of physical tendencies of an object 

(as in two-facedness of a coin) and as a person’s state of mind and belief about the 

physical phenomenon (such as our belief in fairness of the coin). 
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5.2.2. Ambiguity in probability 

Ambiguities are to do with assumptions and perspectives, and probability has 

notoriously been the subject of controversies and interpretations. Following the definition 

of ambiguity by Byres, I argue that the two major takes on probability are separately self-

consistent but in tension and conflict with each other.  

The classical approach (a name commonly used to refer to both frequentist and 

theoretical approach) looks at how procedures perform over all possible random 

samples; the probabilities relate to the procedure and not to the particular instances or 

samples. The numeric features of population (called parameters) are fixed but unknown. 

So, probability statements cannot be made about them. Instead since the parameters 

are considered to be parameters of the sampling distribution, probability statements can 

be made about the statistics (estimates of the parameters obtained from a sample). 

Such statements are converted into confidence statements, which are used in 

hypothesis testing.  

  The other approach, known as Bayesian probability (or subjective probability) 

applies the laws of probability directly to the instance (as opposed to the process); the 

probabilities are obtained subject to a person’s knowledge. Since we are uncertain about 

the true parameters, they are considered to be random; this allows for direct inferences 

about the parameters. The probability statements are interpreted as degree of belief. 

The beliefs are revised after getting new data (see Bolstad (2007)  for a detailed 

comparison between classical and Bayesian methods). 

Practitioners of each method claim advantages over the other and at times they 

deem the other approach as misguided and flawed. 

 At any rate, both classical and Bayesian approaches have to deal with certain 

flaws, internal contradictions, or conflicts. Two instances of such ambiguities in 

probability are the problem of single-case probability and the problem of past event 

probability. I present a discussion of the two problems and examine them from 

subjective and objective probability perspectives.   Following the discussion, I introduce 
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the study along with analysis of participants’ responses to two arguments on probability 

of a single past event. 

5.3. The problem of single-case probability 

The classical frequency-based probability is based on the notion of repeatable 

experiments and the limit behaviour of the resulting sequence. In many applications of 

probability we need to quantify our uncertainty about a phenomenon that is not subject 

to such setting. That is to say it cannot be repeated infinitely many times, or even a large 

number of times either because they are past events or because of the unrepeatable 

nature of them. Some examples are: the 2000 US presidential election, Kennedy 

assassination, and possible death of planet Earth due to collision with a wandering star 

(examples from Gillies (2000)).  

  From a classical perspective the probability of a fair coin showing heads is one-

half since it is interpreted in the context of infinite coin flip trials, the probability that a 

specific coin shows heads in a specific flip is not relevant unless relativized12 to the class 

of infinite coin tosses. Unlike the classical approach, a subjective approach to probability 

allows probability to be assigned to single instances, because subjective probability is 

the relation between a person’s degree of belief, a relation between knowledge, 

evidence, and the external phenomenon.   

Gillies (2000) addresses this issue at length: the example he uses to illuminate 

the problem of single-case probability is the question of what is the probability that a 40-

year-old English man named Tom lives for another year. This question cannot be 

answered from a classical (theoretical and frequentist) point of view, unless Tom is 

considered an instance of the family of all 40-year old English men. As an instance of 

this category, the frequency of success (living for another year) could be obtained from 

the historical data and the relevant life expectancy estimates could be calculated. The 

issue is that Tom can be relativized to more than one category: there is the probability-

12Gillies uses the term “Relativizing” as relating a single instance to a class consisting of large 
number of identical independent instances similar to the one singled out.   
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qua-40-year old male, the probability-qua-heavy smoker, the probability as being from a 

family of heavy smokers that have lived past 80 years, and the probability of the 

conjunctions: being a 40-year old heavy smoker English man, a male smoker, English 

male from a family of long living people and so on. Also we never get to the bottom of 

the list of the characteristics that relativizes Tom, for example he may be the only one in 

his family that plays football twice a week. Moreover, the frequency data in all these 

categories may not be available. Gillies sums up this discussion suggesting that with 

single events, probabilities “will nearly always fail to be fully objective because there will 

in most cases be a doubt about the way we should classify the event, and this will 

introduce a subjective element into the singular probability” (p. 120).  

5.4. The problem of probability of past events 

Is probability only about predicting future outcomes of a probabilistic situation or 

does it offer help with uncertainties about events in the past? Can we assign probability 

to events that occurred in the past, and if so, how these probabilities should be 

interpreted? 

For example, a historian may wonder about the chances that the two princes in 

the tower of London were actually murdered on order by Richard III. A crime enthusiast 

or an investigator may want to calculate the chances that a certain suspect was the 

infamous Zodiac killer. Or we may want to know the odds of certain mutations scientists 

suggest having occurred six million years ago have actually occurred then. Can these 

probabilities be assigned and interpreted from a theoretical or frequentist point of view? 

In these examples the outcomes of these events are fixed; they either are one way or 

the other. The physical world no longer offers changes around these events; tendencies 

and propensities of the factors do not matter anymore, the dice have fallen. Any 

statement of probability will be about a relationship between a person and the world 

about which the statements are being made. 
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5.5. Undergraduate students’ notion of single past events 

Today’s probability practitioners employ methods and approaches to probabilities 

that are sometimes a mixture of opposing ideas. The practice of teaching probability 

both in K-12 and post-secondary education has not responded to this change aptly. 

While a small number of probability and statistics textbooks try to bring together some of 

the useful aspects of classical and subjective probability, teaching and learning of 

probability is dominated by the classical view. None or very little class time is spent on 

historical highlights of probability development, the difference in subjective and objective 

probabilities, underlying assumptions, limitations, and what is offered by each 

probabilistic approach. 

 In spite of this, my aim is to examine, from undergraduate students’ point of 

view, two sides of an argument where two probabilities are assigned to a single 

occurrence. Also of interest point to this study is to look into how learners resolve the 

ambiguity, once they encounter conflicting probability situations.   

5.6. Participants 

Data were collected from a class of undergraduate students enrolled in a 

mathematics education course in a Canadian university. This course is one of the core 

requirements of the liberal arts and social studies programs. The participants’ 

mathematical background is moderately weak; they have not taken post-secondary 

courses in probability and statistics. This course explores various aspects of numbers 

such as prime numbers, modular arithmetic, irrational numbers, infinity, and probability. 

The class spends three to four weeks on probability, covering topics including: 

theoretical probability, experimental probability, calculating probability of compound 

events, and conditional probability.  At the end of the probability chapter, the students 

were given the task of this study. The task presents two arguments about the probability 

of a coin flip event. The participants are asked to take side with the argument they find 

valid and express their thoughts.  
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5.7. The task 

A group of students are asked to decide on the probability of the following 

event: A fair coin is flipped and covered so we cannot see the outcome.  

What is the probability of having flipped “Heads”? 

The responses of two students to this question are presented here: 

 Thelma: 

The probability of the coin showing 

“Heads” is 50%. It is a fair coin and 

each of these possibilities has the 

same chance of happening. 

 Louise: 

The probability of this coin 

showing “Heads” is either 1 or 0, 

because it is flipped, and therefore 

fixed. It is not going to change now. 

So the probability is unknown, but it 

is not 50-50 anymore. 

 

 

Which argument do you agree with? Clearly circle: 

Thelma                        Louise                     Neither 

What do you find in favor of your chosen argument(s)? Explain. 

What is wrong with the other argument(s)? Explain. 
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The task of this study underwent several trials and changes before its current 

version. The first round I started with asking the participants (not the same group of 

undergraduate students participating in the current study) to calculate the probability that 

a flipped and covered coin (so that we are unaware of the outcome) has actually landed 

heads up. However, the participants’ responses were brief and one-sided. To most of 

them the probability in question was 50-50 and the reasons (if given) were in regard to 

the fairness of the coin and had very little to the flipped and covered situation. The 

responses I got helped me phrase the two arguments of the current task. The second 

time (reported in this study) I presented both conflicting arguments and asked my next 

group of participants to take sides with an argument and explain why. The forced 

decision-making was deliberately included to avoid inconclusive responses, such as 

agreeing with both arguments. 

This task is simple enough for the respondents; it requires no calculation, 

background knowledge, or formula. Both arguments presented in the task make sense 

and each has a point. Also the problem is about a single flip and it had already landed, 

therefore it addresses both single-case and past event issues. As mentioned earlier, the 

class where I collected data had spent a couple of weeks on probability and covered 

simple and compound probability calculation, enumeration techniques, and experimental 

probability. However issues of single events and past events were not discussed in the 

class, which the participants were taking at the time of data collection.  

5.8. Analysis of the task 

It is said that the future will resemble the past in some respect. Thus a classical 

statistician would make use of the recorded historical frequency of a coin in probability 

assessments about the future behaviour. This argument can be flipped around and said 

since we have reason to believe in fairness of the coin at the time of the flip the 

probabilities have been 50-50. But the moment the outcome is settled, the space of 

possibilities has diminished to either {H} or {T}, depending on the actual outcome, the 

probability of having ruled Heads is therefore zero or one.  Hence, a classical response 

to this question may be either Thelma (concerning a point in time just before the flip) or 

Louise (right after the coin is settled).  
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  A subjective response however is more likely to be Thelma only, since 

subjective probabilities change only in light of new information. As long as new 

information is not obtained, the experiment is not finished.  I have come across three 

different but equally interesting opinions about this problem in the literature: Foster 

(2014) in his discussion of unnecessary ambiguities in textbook-recommended 

formulation of the interpretation of confidence intervals13 refers to this task and resolves 

the ambiguity by suggesting: 

Whether it [the flipped but covered coin] is heads or tails it is fixed and cannot be 

changed, yet because we lack knowledge we say that the probability of heads is 

0.5, because we know that 50% of the time it will be heads. (p. 31)  

He compares this “fixed but unknown” situation to that of Schrodinger’s cat and 

concludes since the population mean is fixed but unknown, we may express our 

knowledge of it in a probabilistic way similar to the coin situation. This argument is well 

aligned with Bayesian methods of probability calculation where “every probability is 

conditional, at least to the knowledge base” (Lindley, 2014, p. 51); the prior probability of 

an event is only changed when new information is received on the situation and unless 

the coin is uncovered, the probability distribution stays the same as before.  

 Although at the time of reading Foster’s argument I found it reasonable, I 

questioned the way it was presented as a commonly agreed upon fact: “yet because we 

lack knowledge we say the probability [...]” (p. 31). It is taking for granted that not 

everyone considers probability to be about what we know or do not know. A great deal of 

controversies around probability concerns whether it is an objective feature of the 

phenomenon addressing the physical aspects of the probabilistic situation or is it a 

temporal feature of our perception of the phenomenon and the knowledge we possess 

about it at any given time. 

13 Certain Probability and Statistics textbooks insist on very specific wording in interpreting the 
meaning of a constructed confidence interval for the population mean. The recommended 
formulation is: if the procedure involved in the construction of confidence interval is repeated for 
a large number of times in 95% of the times the constructed confidence interval will contain the 
population mean. This emphasis is made to avoid interpretations such as: I am 95% confident 
that the constructed interval will contain the population mean, or in 95% of times population 
mean will fall within the constructed interval.  
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 Notable author on decision theory Sven Hanson (2010) writes in the very first 

sentence on his discussion of past events: “the probability that a fair coin tossed 

yesterday landed heads is either 0 or 1” (p. 207). He suggests to use the term past 

probabilities to refer to such events. He makes a distinction between probabilities and 

our estimates of them and argues that in the cases similar to the covered coin, the 

discovery of results will only change our estimate of the chances (of showing Heads) 

and not the chances.  

  Both the above mentioned authors see it fit to assign probability to the coin flip 

event and acknowledge that the probabilities one way or the other are related to our 

ignorance of the outcome. Another way of responding to this task is to exclude it from 

what could be considered as the subject matter of probability. A strictly frequentist point 

of view declares all single-case probabilities irrelevant. Thus both arguments are invalid 

on the grounds of the event not satisfying the requirements of a mathematical probability 

setting. For example, Sowder, Sowder, and Nickerson (2010) dismiss problems that lack 

certain probabilistic features such as repeatability and general ignorance (as opposed to 

personal ignorance). They suggest that uncertain situations and probabilistic situations 

are not necessarily the same and are to be treated differently when it comes to 

probability calculation. For example, they offer, in a room without window it is uncertain 

that it is raining or not; but this is not a question of probability (because it is actually one 

or the other). By the same token probabilities of past events could not be determined on 

a mathematical basis since they are not repeatable and their outcome is already fixed, 

regardless of our ignorance of those outcomes.  

5.9. Analysis of data 

I collected twenty-five undergraduate students’ responses to this problem in 

questionnaire format. As stated in the task, the respondents were given both arguments 

and they were invited to comment on the validity of each. They could have also chosen 

the “neither” option and propose a different argument.   

The responses obtained from the questionnaire data are summarized in table 

below. 
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Table 5-1 Quantitative summary of responses 

In favor of Thelma’s argument 10 

In favor of Louise’s argument 12 

Neither 3 

The responses choosing neither 

One of the three respondents that chose ‘neither’ did not propose a counter-

argument. The only explanation he offered is that both arguments are valid and he 

cannot decide on one. The other two respondents in this group questioned both 

probabilities suggested by Thelma and Louise and made interesting points. One 

respondent has appealed to the unknown factors affecting the flip of the coin to reject 

both probabilities: 

“Which side starts may make a difference, so does the force and how many 

spins”.  

This response aligns with the problem of single-case events. The respondent 

does not relativize the coin (although mentioned in the task to be a fair coin) with the 

class of all fair coins flipped under identical circumstances. The other respondent 

questions the single-case probability problem in a frequentist sense: 

“In order to find a probability of a coin being heads or not the coin would have to 

be flipped say 100 times and deduce the frequency of heads according to the 

results”. 

The responses in favour of Louise 

Responses in favour of Louise’s argument, consistently emphasized that the 

probability would have been 50-50 if the coin was not yet flipped, but not after the event 

already happened. One person elaborates on this point: “... because there are no longer 

Possible Outcomes, but an Actual Outcome, We cannot be sure if it is zero or one, but it 

is definitely one of the two”. Another respondent highlights the fact that, “The coin is not 

going to change when you uncover it. It is already determined, just unknown to us”. It 
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seems to me that this group of respondents felt very strongly about the argument they 

were making. Their responses were unusually loaded with underlined or capitalized 

words as shown in this reproduced sample: 

“The coin is already flipped, so whichever side it landed on has ALREADY 

HAPPENED. There is no chance of it being one way or the other now because 

the action is completed- it is simply either Heads (1) or Tails (0)”. 

The factors pointed out by this group of respondents can be summarized as: 

• Stability of the coin which results in one possible outcome.  

• The coin being covered has no impact on the outcome and thus on the 
probability. 

• When there are no possibilities for variation, the probability has to be either 
zero or one. 

• Our ignorance doesn’t make a difference in the probability of the coin having 
landed on Heads. 

  Based on these points it seems that to this group of participants, probability is 

an objective feature of the coin, what Hacking (2006) refers to as: aleatory, the 

probability that is governed by physical phenomenon.  Probability is viewed by these 

participants as a statement about the coin, the emphasis is put on the fact that the coin 

has landed on one side and therefore any middle-value probability is rejected. As shown 

from the above-mentioned excerpts, probability one and zero entail the coin showing 

Heads and Tails respectively. Several responses point out that since the coin is flipped; 

the outcome is either one or the other and not both. This evokes thought about the state 

of possibilities before the flip is settled. I suggest that at any time (before the flip and 

after), the coin can assume only one of the landing outcomes and not both. Therefore 

Louise’s argument, which declares the probability to be either zero or one, offers no 

clearer state of mind about the situation. For instance if someone is to gamble on the 

outcome of the covered coin and wants to know the odds, it will serve no purpose if he is 

told that the probability is either zero or one.  
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The responses favoring Thelma 

The responses that favor Thelma’s argument can be divided into two groups: in 

one group respondents write at length to explain the reason for a fair coin producing 50-

50 odds, they explain the notion of fairness, equiprobability, and sample space of a coin 

flip. The part of the task that states the coin is flipped and covered doesn’t seem to 

matter to this group of respondents. 

 The responses in the other group offer a richer perspective; these respondents 

make several references to personal aspects of probability and draw links to what “we 

know”, or “don’t know”: 

“I find I am in favour of Thelma’s opinion because since we do not know the 

result of the flip the probability of it being heads is 50%”. 

 Another response explains why what we know matters: 

 “The probability to guess what the coin has flipped is 50%”.  

What is notable about this response is that it pictures probability as a numerical 

tool that helps us make educated guesses about the uncertain events. The notion of 

guessers is echoed by another response from the data: 

“Even though the result of the flip has already been decided, we as guessers can 

still say that there are 2 different options for the coin to show”. 

 Another response that clarifies and supports the same point and adds human 

criteria to the notion of random experiment offers: 

“Because of the fact that we have not observed the coin thus the outcome has 

not been recorded. This means the experiment is still incomplete, therefore the 

chances of heads/tails are still 50-50”. 

  What I notice in this group of responses is that although the reasoning initiates 

from a classical perspective as they all acknowledge that for a fair coin the probability of 
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showing Heads is 50%, but the task manages to draw their attention to how the objective 

chance is embedded in our subjective probability assignments. 

5.10. Discussion 

Ambiguity is commonly considered as failure in communication. Research in 

mathematics education suggests that ambiguity is necessary for ideas to move forward 

because it creates instability in what is known that allows the formation of new 

knowledge. Gray and Tall (1994) suggest that as much as mathematicians abhor 

ambiguity and try to stand clear of it, but the ambiguity in interpreting mathematical 

symbolism is at the root of successful mathematical thinking. Barwell (2003) has pointed 

out that “once some degree of ambiguity is constructed a space opens up for the 

students to explore [...]” (p. 4).  

  In this study, some of the participants develop and acknowledge the 

coexistence of an objective and a subjective interpretation of probability in an example; 

on one hand, the probability is a notion that addresses physicality of the coin, on the 

other hand, the subjective view that is about what “we know as the guesser”. This 

broadened concept of probability in which physical probabilities are embedded inside a 

domain of subjective considerations, accommodates for routine probability calculations 

involving standard randomizers such as coin or dice. Moreover, it allows for probability 

estimates conditioned on a personal knowledge base when the physical aspects of 

variability could not be accessed. This study suggests that deviating from the typical 

probability calculation tasks and engaging students in assessing the validity of conflicting 

or opposing arguments on probability calculation provides students with new 

perspectives on probability, where they can enrich and expand their understanding of 

probability.  
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Chapter 6.  
 
Summary and Conclusions 

This thesis is comprised of four stand-alone studies. The first three studies 

examine learners’ definitions, descriptions, and examples of probability, extreme events, 

and randomness. In these studies, I have initially attended to the institutional meanings 

of these notions as reflected in textbooks and teaching resources. Next, I have collected 

and analyzed undergraduate students’ descriptions and examples of these concepts.  

The last study focuses on one of the ambiguities inherent to probability calculation.  In 

situations where the uncertainty resulting from physical phenomenon and the uncertainty 

arising from our lack of knowledge about the phenomena do not align, it is often unclear 

whether a probability can be assigned to a certain outcome or not. In order to address 

this ambiguity, I examined undergraduate students’ responses to two different 

probabilities assigned to a fixed but unknown event. 

In this chapter I present a summary of findings of the four studies. I then address 

my research contributions, implications, and limitations. In the end I offer some thoughts 

and considerations for further research. 

6.1. Summary of results 

The first study, Undergraduate Students’ Definitions and Examples of Probability, 

examines institutional and personal definitions, descriptions, and examples of 

probability. A review of definitions offered by textbooks and other resources suggests 

that most post-secondary and teacher education resources fall under one of these two 

descriptions: they either assume an existing understanding of probability or they offer a 

limited view of probability. The first group of resources do not give a definition of 
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probability and, more importantly, do not talk about probability as a mathematical model, 

nor do they describe how it operates, when it is applicable, when it is used best and 

what types of problems it cannot solve. The resources that do write about and around 

probability tend to consider probability to be an objective fact about the uncertainties of 

the physical world (such as a coin) and thus, prescribe a theoretical and/or frequentist 

approach to probability. In most resources (those that attend to definitions of probability), 

subjective probability, either as in an axiomatic approach to probability or as in 

subjective aspects of theoretical and frequentist probability are not considered or 

acknowledged.  

In the empirical part of this study, a group of undergraduate students enrolled in 

liberal arts programs were asked to describe and exemplify probability. The research 

questions pertaining to this study aimed at examining how undergraduate students 

describe probability, in particular: 

• What features of probability appear in students’ definition/descriptions of 
probability? 

• What features of probability appear in students’ examples of probability?  

The analysis of the data suggests that very few mathematical features are 

apparent in participants’ definitions of probability and that a mathematical notion of 

probability is formed, conjoined and sometimes overshadowed by the everyday use of 

probability. Also, looking into definitions and descriptions provided by students brings to 

attention that it can be very difficult for students to formulate a definition of a concept. It 

seems that an easier task is to provide examples of a concept. In comparison with 

definitions, there were more mathematical features of probability presented in the 

participants’ examples. This highlights the importance of looking into learner-generated 

examples of a concept coupled with definitions since the examples reveal aspects of the 

concept not displayed in definitions. This feature (investigating examples of a concept) is 

not mentioned or emphasized in the Batanero-Diaz (2007) model of essential 

components in understanding probability.  In light of the results of this study, their model 

could be extended by adding learner-generated examples as an essential element for 

investigating understanding of probability.   
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The second study, “How Impossible Is the Impossible?”, explores secondary 

school prospective teachers’ notions of probability through their examples of extreme 

events. The paper reviews the institutional definitions and examples of zero-or-one 

probable events and the commonly used terminologies to refer to such events, i.e., 

impossible and certain. The review suggests that extreme events have educational and 

mathematical importance and that most textbooks and resources offer definitions and 

examples of zero-or-one probable events and the terms impossible and certain. The 

more interesting finding of this review is that although zero-probable and impossible are 

synonymous terms when the sample space is finite (likewise with one-probable and 

certain), they point to different events and even different notions when the sample space 

is infinite. This distinction is less frequently acknowledged or highlighted in resources. 

Learners, too, often miss this distinction and make a one-to-one mapping between 

impossible and certain, on the one hand, and zero-probable and one-probable, on the 

other. This mapping may result in conflicts when the calculated probability and the 

perceived probability of an event do not match. The conflict is likely to happen due to 

overlap between everyday and mathematical meanings of the terms probability, 

impossible, and certain. In this study, a group of prospective secondary school teachers 

were asked to give examples of four events where the probabilities are: exactly one, 

nearly one, exactly zero, and nearly zero. The study addressed the following research 

questions: 

• What aspects of probability (mathematical or everyday) are featured in the 
participants’ examples of extreme events? 

• What probability perspectives are involved in the participants’ examples of 
extreme events? 

In order to analyze the data, Barwell’s (2003, 2005, 2013) discursive model was 

adopted. The features of the model relevant to this study were selected and modified, 

and were used to categorize the responses into everyday and mathematical. To further 

explain the observations made from the data as well as the mismatch between 

mathematical probability and perceived probability of an event, a second round of data 

analysis was conducted. This time the data was examined based on the type of 

probability represented in the examples. 

145 



 

The combined result of the analyses suggests that the participants use a range 

of subjective, theoretical, and logical approaches to construct probability examples in 

everyday and mathematical contexts. The logically impossible-or-certain probability 

serves as the basis and common ground for mathematical and everyday probability. 

Also, the purely everyday examples are more subjective and the mathematical examples 

have more theoretical features. The results highlighted the existing confusion between 

various approaches to probability among the participants. Furthermore, the results 

identified the need for a clear distinction between zero-probable and impossible in 

probability instruction and called for a pedagogical attention to this issue. 

The third study, “It is very, very random because it doesn’t happen very often”: 

Examining learners’ discourse on randomness”, examines prospective secondary school 

teachers’ descriptions and examples of randomness. Similar to the first and second 

studies, a review of definitions and examples of the terms random and randomness from 

a mathematical point of view is presented. As was the case for the first study on 

definitions and examples related to probability, the majority of the frequently used 

resources, such as undergraduate probability and statistics textbooks and teacher 

education textbooks, do not offer explicit definition of the term “random”. However, this 

time the absence of definition is not simply due to taking things for granted. We14 

reached for a wider range of resources (Terence Tao’s blog, journal articles, and books 

on the subject of randomness for example). Our review revealed that even within the 

mathematical domain, there is no single agreed upon definition of randomness. As a 

result of mathematicians’ efforts to provide a rigorous definition, several approaches, 

methods, and tests for identifying and creating randomness have been developed—and 

this work is ongoing.  

This study addressed the following research questions: 

• How do learners exemplify random phenomena and what features of 
randomness are present in their examples? 

• How do learners communicate ideas of randomness through a broad 
multimodal discourse? 

14 The third study was co-authored with Rina Zazkis and Nathalie Sinclair 
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The data presented in this paper were collected in two rounds via questionnaires 

and interviews. In the first round participants were asked to give examples of random 

phenomenon. Later, through one-on-one interviews, the participants were asked to 

elaborate on mathematical randomness versus everyday randomness. Building on the 

work of Tsonis (2008) and of Pratt and Noss (2002), we classified participants’ examples 

based on the type of randomness featured in each example. Some of our findings were 

strongly related to the findings of previous research; for instance, as cited in prior 

research, unpredictability, unsteerability, unexpectedness, lack of structure, variability, 

ignorance, and typicalness were among common features of examples from our data. 

We added to this list the notion of relative rarity that appeared repeatedly both in the 

interviewers and in the examples provided in writing. In both mathematical and everyday 

contexts, participants of the study associated rarity with randomness.  

 In second part of this study, we interviewed the participants and analyzed their 

gestures along with their verbal communications. It was a different approach and 

enabled us to identify some aspects of randomness that either didn’t come up or were 

only implicit in participants’ verbal responses.  For example, it was revealed that the 

participants distinguish between mathematical randomness and everyday randomness. 

Some of the participants kept the gesture space on different sides of their body when 

talking about each of those randomness types the entire time. The main sources of 

randomness apparent from participants’ gestures include typicalness (evident in the 

same gesture with every reference  to “average”), variability (evident in coffee sipping 

gesture and quick hand movement from left to right representing a range of values or 

possibility), and unpredictability (evident in hands away from body gestures when talking 

about randomness). For some of the participants randomness was contrasted with 

control (stopping gestures when talking about planned activities), or structure (making 

container and divider gestures). Compared to examples of randomness, the sources of 

randomness identified by the interviewees are similar to, though somewhat more diverse 

than those of the exemplification data. For example, both emphasize unpredictability as 

a defining feature of randomness. The gestures used by the participants further 

underscore the way in which the unpredictability features strongly in their discourse of 

randomness. For example, two of the interviewees made a container-like gesture in 

several instances when referring to the possible events or outcomes of a phenomenon. 
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This gesture was followed by a divider gesture, referring to possibilities within the 

sample space. Although not explicit in their speech, the gesture suggests that the 

participants think of the possible outcomes as belonging to a closed, finite set and the 

larger the container is, the more random the outcomes will be (they gestured to a larger 

box when talking about a more random situation). 

Based on our findings, we suggest that teachers (and teaching materials) should 

attend more explicitly to mathematical and everyday meanings of randomness and, in 

particular, to learners’ everyday uses of the word. Our study suggests that there are 

similarities between mathematical definitions and everyday notions of randomness (such 

as typicalness and lack of structure) that could be exploited to enhance a richer 

understanding of randomness. But we also found that the notion of mathematical 

randomness defined through passing certain statistical tests might be the most distinct 

notion of randomness from learners’ discourse on randomness, that is to say this never 

was pointed at by examples or participants’ verbal and non-verbal communications. This 

very pragmatic view of randomness seems particularly amenable to learning situations 

involving computer-based technologies. With the easy access to computers these days, 

learners of all ages can be guided through investigative methods of determining if and to 

what degree a given sequence of numbers (or a sequence of patterns) stands the 

randomness tests.   

In the last study, “Fixed, but Unknown; Undergraduate Students’ Notions of 

Probability of Single, Past Events”, undergraduate students were invited to take sides on 

a subjective versus objective debate by assessing the validity of two arguments 

presented in the task. Through the problem of flipped but covered coin, I presented to 

the participants of the study two reasonably valid arguments, one pertaining to the 

physical world where the coin is flipped, and one to our knowledge. My goal was to 

examine how learners resolve the ambiguity, once they encounter conflicting probability 

situations.   

Frequentist probability is only defined under well-defined conditions such as 

repeatable identical experiments conducted a very large number of times, thus it does 

not apply to single events. Theoretical probability is based on careful examination of how 
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the set of desirable outcomes weighs against possible outcomes. This method, similar to 

the frequentist approach, works best when the long run tendencies are investigated. For 

a single, past event where the wave of possibilities has faded and the only remaining 

uncertainty stems from our personal knowledge of matters, none of these approaches 

really apply. In subjective probability (also known as Bayesian probability) every 

probability is conditional, at least to a knowledge base if not to other conditions. It makes 

sense to determine the probability of a single or past event since the probability captures 

the person’s knowledge relation with the physical world via taking into account his 

beliefs, information, observations, new evidence, and so on. A subjective probability 

calculated based on rational beliefs and logical deductions produces similar results to 

the other two methods (frequentist and theoretical) in the long run, but certainly has a 

wider range of applicability and more compatibility with learners’ personal notions of 

probability. My research proposition was that probability is an ambiguous concept and 

learners’ everyday notions of probability can be at conflict with mathematical probability. 

I also proposed that students can resolve the conflict and accommodate for both notions 

of probability by nesting mathematical probability into the everyday domain.  

The analysis of responses suggested that undergraduate students who 

responded to the task of this study were strongly divided, manifesting the ambiguity in 

probability. Also it was revealed that the respondents have a limited view of probability 

(strictly theoretical or strictly everyday). However, during the course of engagement with 

the task, some students were able to reflect on both aspects of probability and offer an 

explanation that accounted for both mathematical and everyday aspects. In light of this 

finding, this study suggests that deviating from the typical probability calculation tasks 

and engaging students in assessing the validity of conflicting or opposing arguments on 

probability calculation (reflective tasks) provides students with new perspectives on 

probability, where they can enrich and expand their understanding of probability. 

Taken together, the four studies contribute to the ongoing research in probability 

education on several arenas. They provide enhanced understanding of how participants 

perceive probability-related ideas, as evident in their examples, definitions and gestures. 

They highlight subtleties and ambiguities in interpreting probability-related concepts and 

probabilistic events. Furthermore they emphasize the necessity and present ideas for a 

149 



 

different pedagogical implementation, which acknowledges a variety of approaches to 

probability. Implications for teaching are elaborated upon in section 6.3.   

6.2. Limitations and challenges  

Once, I heard from a veteran researcher in education that a thesis is the least 

important work a researcher produces, because real research needs resources and 

connections and a student has no or very limited amount of them. Although this may be 

truer for bigger projects, it is still true for my small undertaking presented in this thesis. 

 To find willing and qualified participants has been consistently a challenge for 

me. The questionnaire data is often collected from a class that a friendly colleague or I 

have been teaching at the time, and the subjects for the interviews are found only after 

many rounds of emails, personal presentations, and several bags of cookies. This has 

some implications for my data. For example, my interview participants are not randomly 

chosen; they volunteered either out of pure sympathy, or because they saw value in 

“donating their time for science” (as Tyler mentioned to me). They were not 

mathematics-averse and didn’t turn away from talking about mathematics (as many 

would do!). Therefore, the interview data I collected (reported on in chapter four) relates 

to a population of mathematically confident undergraduate students. Another challenge 

related to the interview data was presented by the gesture analysis. We had to make 

several exchanges of ideas through several rounds of watching the recordings in order 

to collectively decide about which gestures to address and how to interpret them. Even 

so, our interpretations are subjective and inevitably framed by what we were looking for. 

The questionnaire data were collected from several undergraduate and teacher 

training classes in the faculty of education at SFU. The participants were approached by 

the researcher during the class time and were asked to fill the questionnaire if they were 

willing to participate in research and the responses were collected anonymously. This 

method of data collection has limited my sample to students enrolled in mathematics 

education courses. Typically, these students have a weak mathematical background and 

they are re-learning the K-12 concepts including probability. Another limitation is posed 

by use of questionnaires. On the bright side, this method results in higher participation 
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rate and data that includes written responses which are sometimes ideal for analysis 

purposes. The respondents get a chance to work on the task at their own pace without 

being pressured by the social conventions of a conversation (as present in interview 

situations) or being interrupted by the researcher. However, with questionnaire data 

collected as described above, I wasn’t able to follow up with the responses or to have 

the respondents clarify or elaborate on the interesting or unclear points.  

A different type of challenge I faced was lack of appropriate theories (more 

accurately said, my lack of success with coming across such theories) relevant to 

examining definitions and examples of probabilistic notions. Research attempts had 

been made to understand learners’ probabilistic thinking (the term statistical thinking is 

more commonly used in the literature), but has failed to develop a grand model of modes 

of thinking specific to uncertain situations, (a model similar to modes of thinking in linear 

algebra (Sierpinska, 2000) for example). I wasn’t able to find an all-encompassing model 

that identifies and characterizes the features of probabilistic thinking, or a model that 

describes how learners learn probability (similar to van-Hiele’s model for learning 

geometry).  

6.3. Implications for teaching 

I have been a teacher of mathematics for the past 14 years. A great deal of my 

teaching time is spent on concepts from Algebra, Calculus, Geometry, and discrete 

mathematics, leaving a smaller portion for Probability and Statistics. As a high school 

teacher in Iran, I taught probability from a strictly theoretical point of view, focusing only 

on combinatorial methods needed to solve the complex numeration situations 

encountered in game-based probability problems. Being taught in the same manner 

myself, I considered probability to be an objective, factual feature of the event in 

question. Even my perception of the Law of large numbers, which I learned about in 

undergraduate studies, was that it is a thought experiment where infinite trials of a 

Bernoulli experiment produces a success rate asymptotically close to the predicted rate. 

Over the course of my PhD studies I learned about research related to data-oriented 

approach where learners conduct experiments, collect data and study aspects of 

variability within the data (see Shaughnessy (1992, 2007), Konold (2002), and Konold 
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(2007)). Subsequently, I started following their advice and changed my teaching focus 

from calculating probability to investigating variability, predictability, and sense-making 

with these notions. I have learned to use TinkerPlots15 and R16 and I make use of the 

simulation, data exploration, and data presentation tools to teach the statistical concepts 

as much as I can fit into my classroom schedule. Another change I incorporated into my 

teaching, based on the results of my research is to include tasks where students are 

invited to reflect on arguments about probabilities, random variables, confidence 

intervals and their interpretations as a supplementary activity to the routine 

computational tasks.  

The findings of my studies suggest that teachers should be aware that learners’ 

conceptions of notions such as probability, event, impossible, and random are not 

always in sync with those of textbooks. More often than not learners’ notions are formed 

and overshadowed by the everyday counterparts of these concepts. Tasks that involve 

giving definitions and examples of a concept present opportunities to both teachers and 

learners to reflect on the scope of their knowledge and perhaps expand the range of 

variations and possibilities they see for a concept.  

Moreover, my findings suggest there is a need for attending to modeling aspects 

of probability. The modelling aspects of any mathematical construct (consider Euclidean 

geometry for example) once disclosed and discussed, can enable the learner to see the 

foundations (axioms) based on which the model is built. This approach (although 

probably impractical and discouraging for young learners), not only clarifies the blurry 

regions between everyday use of the notion and mathematical use of that notion, but 

also enhances learners’ understanding of the connections between various 

mathematical constructs (in the case of Euclidean geometry, if the parallel postulate is 

replaced with other ones, or the metric requirement is relaxed or modified, other types of 

geometry are obtained). As a result of attending to modelling aspects of probability in 

teaching practices, definitions and examples of probabilistic notions will receive the 

15 Tinkerplots is exploratory data analysis and modeling software designed for use by students in 
grades 4 through university.  

16 R is a strongly functional language and environment for statistical computing and graphics. It is 
widely used among statisticians and data miners.   
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proper attention. Furthermore, a model-based teaching portrays one type of probability 

(for example frequentist) as one possibility for devising models that deal with uncertain 

phenomenon. Therefore different models can be compared and contrasted and 

decisions can be made about the efficiency of each model with regard to certain types of 

problems. The prominent statistician George Box has famously said:  “all models are 

wrong, but some are useful”, he has also said in an introduction to statistical modelling: 

“What is it? Why and Where is it Useful?” This is the type of approach to teaching 

probabilistic modelling that I suggest teachers to pursue.  

6.4. Where to next? 

In a recent edited book on probabilistic thinking (Chernoff & Sriraman, 2014), 

several researchers have put forth a call for research investigating subjective probability 

that may move the field of mathematics education beyond frequentist and theoretical 

and into embracing a new interpretation of probability. Given the widespread popularity 

of Bayesian methods in fields such as machine learning, image processing, and natural 

language processing, which are integral parts of data analysis in health and ecommerce 

today, this seems to be the right curricular move. Since the teaching of probability is 

currently dominated by the frequentist and theoretical approaches17, some effort should 

be made by the mathematics education community to stir teaching probability in the new 

direction. Also with the advances of classroom technology, it is possible to simulate, 

17 I think there are two reasons for the dominance of frequentist approach in teaching probability. 
After the important works of leading frequentist statistician, Sir Ronald Fisher, in 1920’s that 
contributed to the development of methods such as hypothesis testing , analysis of variance 
(ANOVA), and deductive statistical inference, these methods were widely used (still are) in 
applied science and social sciences fields. I suggest that early textbooks on probability and 
statistics were written under the influence of such practices. Another reason I suggest for 
dominance of frequentist approaches in teaching practices is due to lack of access of 
educational institutes to technology. Bayesian methods are best applied when combined with 
powerful simulation methods. In frequentist approach we have to make assumptions about the 
distribution of data (in practice, more often than not, students don’t even get to see the data, 
and the so called “data” is usually assumed to follow certain distributions such as normal) and 
we are trying to make inferences about population parameters (such as mean, mean 
difference, variance and so on). In a Bayesian probability classroom, students wouldn’t be 
looking for point estimations (or interval estimations) of population parameters, instead, they 
would try to find the distribution that best describes population parameters. This cannot be 
efficiently done without actually working with data and using a computer simulation platform.  
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present (in multitude of ways), and manipulate data in real time in class. As a future 

direction for research, I am interested in exploring the probability notions formed through 

data-driven probability teaching. 

6.5. The Final Word 

Keith Devlin, in his introduction to the latest research in probability education 

edited book (Chernoff & Sriraman, 2014), writes that what he believes to be the most 

common probability misconception, the one that has the most significant implications, is 

that events have a unique probability. The belief in the objectivity of probability and how 

the true probability is an inherent feature of the event, he suggests, is a result of the way 

probability is taught through quasi-experimental, pedagogic scenarios (tossing coins, 

rolling dice, etc.). Probability should be understood “as a measure of our knowledge of 

the outcomes, [...] as a measure that applies not to the events in the real world, but to 

our information about that world at any given moment in time” (p. x). In light of the 

findings of my thesis I can only echo the same opinion as Devlin’s about what probability 

is, what should it be taken for, and how it should be taught. Although there is some value 

in controlled experimental approach, we need to make clear to learners that they are 

motivational activities and the actual applications of probability are in the context of a 

one-off event. The true power of probability, in Devlin’s words comes from “reflection on 

the nature of events in the world and what we can know about them based on the 

information at our disposal” (p. xiii).  
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