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Abstract

Many applications from fields such as mathematical physics, image processing, computer

vision and medical imaging require computation of maps between manifolds. A numerical

framework is introduced for solving variational problems and partial differential equations

that map from a source manifoldM to a target manifoldN . The numerics rely on the closest

point representations of M and N . Using the closest point representation produces simple

algorithms for handling complex surface geometries, since standard Cartesian numerical

methods can be used.

The framework is illustrated with harmonic maps and a straightforward algorithm is

given for this case. Harmonic maps are important in applications such as texture mapping,

brain image regularization and colour image denoising. Moreover, the harmonic mapping

energy is part of numerous energy functionals. The algorithm is justified theoretically and

shown to be first order accurate. It is implemented in two applications: removing noise

from texture maps and colour image enhancement.

Keywords: harmonic maps; closest point method; texture mapping; chroma

enhancement; brain mapping; manifold mapping
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“The desire to fly is an idea handed down to us by our ancestors who, in their grueling

travels across trackless lands in prehistoric times, looked enviously on the birds soaring

freely through space, at full speed, above all obstacles, on the infinite highway of the air.”
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Chapter 1

Introduction

The need to compute maps between a source manifold M and a target manifold N is

present in mathematical physics, image processing, computer vision and medical imaging.

In this thesis we are interested in maps between M and N that are defined by variational

problems and partial differential equations (PDEs). Our primary concern is solving PDEs

derived from the variational problems, i.e., Euler-Lagrange equations. The algorithms in-

troduced extend however to handle more general PDEs.

In mathematical physics these types of maps occur in the study of liquid crystals [77],

micromagnetic materials [48], biomembranes [78] and superconductors [14] (see [12] and

references within for more details). Applications in image processing and computer vision

arise in colour image enhancement by chromaticity diffusion [74], directional diffusion [73,76]

and texture mapping during shape transformations [30]. The field of medical imaging

contains applications such as brain image regularization [55] and brain mapping [68]. This

thesis introduces a numerical framework for solving variational problems and PDEs that

define maps between M and N .

There are many possible approaches to solve variational problems and PDEs posed

on a single manifold. One popular approach is to use a smooth coordinate system or

parameterization on the surface. There is however some difficulty in expressing differential

operators within this coordinate system. In general a substantial complication of the surface

PDE arises, usually involving non constant coefficients and additional derivative terms.

Possibly more detrimental are the artificial singularities introduced by some coordinate

systems, e.g., the stereographic projection. Parameterizations of the surface will almost

always cause distortions in either angles or some region of the surface [35].
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A second approach is to solve the PDE on a triangulated representation of the sur-

face. For certain classes of equations this technique is satisfactory. As a general approach,

however, there are numerous difficulties when using triangulated surfaces (see for exam-

ple [16, 17, 54]). The discretization of the variational problem or PDE on triangulated

surfaces is non-trivial. There is no general agreement on the approach to compute geomet-

ric primitives, such as tangents, normals, principal directions and curvatures. Furthermore,

the convergence of numerical methods on triangulated surfaces is less understood compared

to methods on Cartesian grids [40].

A more novel approach to solve variational problems and PDEs on a manifold is to embed

the problem in a higher dimensional space. For example, if the heat equation ut = ∆Su is

posed on the unit sphere, then we somehow embed the PDE in all of R3. This embedding

PDE is constructed in such a way that its solution, when restricted to the surface, is

the solution to the original surface PDE of interest. Note that even though the PDE

is embedded in all of R3, in practice one computes in a band surrounding the surface.

Hence the increase in dimension of the problem does not introduce a sizable difference in

the amount of computational work. The goal of an embedding approach is to allow for

the treatment of complex surface geometry while using standard numerical methods on

Cartesian grids. When using standard numerical methods on Cartesian grids one benefits

from well established convergence results, see for example [49].

Two main types of embedding methods have been developed: the closest point method

and the level set method. These embedding methods are based on two types of implicit

representations of manifolds. The level set method for variational problems and PDEs on

a single manifold was proposed by Bertalmı́o, Cheng, Osher and Sapiro in [16]. The level

set method represents the surface of interest as the zero level set of a higher dimensional

function. The surface PDE can then be embedded in this higher dimensional space, e.g., R3

for a 2-dimensional surface, and discretized using standard Cartesian numerical methods.

The level set method was also extended by Mémoli, Sapiro and Osher [54] to solve variational

problems and PDEs that define maps between manifoldsM and N . On the other hand, the

closest point method, first introduced by Ruuth and Merriman [61], implicitly represents

manifolds using closest point functions. It has been developed for surface PDEs posed on

a single manifold S. It is the goal of this thesis to present a numerical framework, using
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closest point representations, for solving variational problems and PDEs that define maps

between M and N .

Development of this framework using the closest point representation of M and N

instead of the level set representation is well warranted. The most obvious limitation of the

level set representation is that open surfaces with boundaries or objects of codimension two

or higher are not immediately accommodated. It is however, in principle, possible to use

multiple level set functions to represent the latter more general surfaces. Another limitation

occurs during the practical implementation of the level set method. One only ever computes

in a band surrounding the surface of interest instead of all of R3. For the level set method

artificial boundary conditions must be imposed on the edge of the band. The best approach

to construct these boundary conditions is not apparent. Consequently, a degradation of the

convergence order with the level set method is seen when banding is introduced, e.g., in

diffusive problems [40].

Two main features of the closest point method allow the above limitations of the level set

method to be overcome. The first is the use of a closest point representation of the manifold,

which automatically accommodates more general manifolds. Implementing the closest point

representation of the manifold also results in a simple embedding PDE, involving only

standard Cartesian derivatives. Secondly, instead of solving the embedding PDE for all

time, one solves the embedding PDE for one time step of the numerical scheme (or one

stage of a Runge-Kutta method). This allows the computation in the embedding space to

be constrained to a band around the surface without degrading the convergence order, since

artificial boundary conditions are not propagated for all time. One important advantage

when solving problems that map between manifolds M and N is the ability to represent

submanifolds with the closest point representation. A second level set function had to be

introduced to handle submanifolds when using the level set method [54].

This thesis is organized as follows. A review of the original closest point method for

surface PDEs on a single manifold is given next in Chapter 2. Chapter 3 introduces our

numerical framework for variational problems and PDEs that define maps betweenM and

N . The framework is illustrated using the example of harmonic maps, which is important

in many of the applications discussed above. Theoretical justification of the proposed

algorithm is also given in Chapter 3. The behaviour and performance of our method is shown

with numerical examples in Chapter 4. Convergence studies of the computation of identity
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maps verify first order convergence of the algorithm. Noisy texture maps between a plane

and different target manifolds N are denoised. Colour image denoising is also accomplished

using the framework introduced within. The thesis concludes with a discussion of possible

further work and applications in Chapter 5.
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Chapter 2

The Closest Point Method on One

Manifold

A main component of our general algorithm is the closest point method on a single

manifold. A review for explicit and implicit time-stepping discretizations of surface PDEs

is provided below. For more in-depth implementation details of the closest point method

see [51, 61]. The closest point method relies on two simple principles and the extension

of surface data using the closest point function. Implicit time-stepping requires a slight

modification to ensure stability. This modification is not drastic and is therefore attractive

when widely varying scales are present (e.g., for problems requiring adaptivity).

The closest point representation of manifolds is of great importance to the closest point

method. A closest point representation of the manifold S, in the embedding space Rd,

assumes that for every x ∈ Rd there exists a point cpS(x) ∈ S. That is, the closest point

cpS(x) to x in Euclidean distance. Definition 1 defines the closest point function of S, cpS .

Definition 1 Let x be some point in the embedding space Rd. Then,

cpS(x) = arg min
z∈S
‖x− z‖2

is the closest point function of the manifold S.

The point cpS(x) may be non unique; however, for a smooth manifold S it is unique if

x is within a narrow band around S [52, 57]. The closest point function cpS can then be

uniquely defined within the narrow band and is a map that takes points x ∈ Rd to points

cpS(x) ∈ S. The width of the band will depend on geometry of the manifold S, e.g., the size
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of its principal curvatures. Properties of the closest point function and calculus involving

cpS have been investigated further by März and Macdonald in [52]. They also extend the

definition of the closest point function to involve more general definitions of distance other

than ‖ · ‖2.

The closest point method is an embedding method: it extends the problem defined on

a surface S to the embedding space Rd surrounding it. A function extending the function

of surface data, u, is easily accomplished by composition with the closest point function.

That is, u(cpS(y)) is the closest point extension of u at the point y ∈ Rd. Note that u

represents a scalar function in this Chapter only; throughout the rest of the thesis u is a

vector-valued function representing a map from M to N . The extension step allows the

intrinsic surface gradient ∇S and surface divergence (∇S ·) operators to be replaced by the

“standard” gradient ∇ and divergence (∇·) via the following principles [61]:

Principle 1 Let v be any function on Rd that is constant along normal directions of S.

Then, at the surface, intrinsic gradients are equivalent to standard gradients, ∇Sv = ∇v.

Principle 2 Let v be any vector field on Rd that is tangent to S and tangent to all surfaces

displaced by a fixed distance from S. Then, at the surface, ∇S · v = ∇ · v.

Higher order derivatives can be handled by combining Principles 1 and 2 with exten-

sions into the embedding space. For example, consider approximating the Laplace-Beltrami

operator ∆Su = ∇S · (∇Su). If u is a function defined on S, then u(cpS) is constant along

normal directions of S and therefore ∇Su = ∇u(cpS) by Principle 1. Principle 2 indicates

that ∇S ·(∇Su) = ∇·(∇u(cpS)) since ∇Su is always tangent to the level sets of the distance

function of S. In this fashion a PDE of interest is embedded in the surrounding space Rd

and is written in terms of standard Cartesian derivatives.

To solve surface PDEs, a narrow computational domain, Ωc, surrounding S is chosen.

Initial surface data is extended onto Ωc using the closest point function. The explicit closest

point method for PDEs on a single manifold alternates between the following two steps:

• Use standard finite differences on a Cartesian mesh in Ωc to solve the embedded PDE

for one time step.

• Replace u by u(cpS) for all x ∈ Ωc. That is, extend the current solution on S to the

computational domain.
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Note that the closest point extension in the second step involves interpolation. Interpo-

lation is needed since cpS(x) is not necessarily a grid point in Ωc. Appropriate interpolation

order is therefore necessary to ensure the expected accuracy is achieved. We use barycen-

tric Lagrange interpolation [15] in a dimension-by-dimension fashion, which can be written

in matrix form. The finite differences are also written in matrix form and thus a matrix

system of ODEs is solved in the end. These matrices for finite differences and extending

the solution are discussed in Section 2.0.1.

The implicit closest point method is nearly identical except for a small modification to

ensure stability. To illustrate the difference, consider the PDE describing heat flow within

the surface S, ut = ∆Su. Using Principles 1 and 2 it was shown above that ∇S · (∇Su) =

∇ · (∇u(cpS)), so this heat equation can be written as
ut(x, t) = ∆u(cpS(x), t),

u(x, 0) = u0(cpS(x)),
(2.1)

where we have included the initial condition u0(cpS(x)), i.e., the extension of u0 onto Ωc.

Equation (2.1) is the embedding PDE and has the property that it agrees with the original

surface PDE at the surface.

Now for simplicity consider that S is a curve embedded in R2. Applying a second order

centred finite difference scheme to the Laplacian operator in (2.1) yields

∂u

∂t
=

1

∆x2

(
− 4u(cpS(x, y), t) + u(cpS(x+ ∆x, y), t) + u(cpS(x−∆x, y), t)

+ u(cpS(x, y + ∆x), t) + u(cpS(x, y −∆x), t)
)

+O(∆x2),

u(x, y, 0) = u0(cpS(x, y)),

(2.2)

where ∆x is the uniform grid spacing of Ωc. Note that (2.2) is not a full discretization since

it still involves continuous variables t, x and y. To finish the discretization in space one

approximates the solution u(x, y, t) at points {(xi, yj)} ∈ Ωc such that uij(t) ≈ u(xi, yj , t).

Discretizing (2.2) onto grid points {(xi, yj)} involves computing u(cpS(xi, yj), t). This is

where the interpolation step mentioned above is needed. One replaces u(cpS(xi, yj), t) by

a linear combination of the solution at nearby grid points to approximate uij(t).

The total discretization is then accomplished by discretizing in time. The explicit closest

point method uses some explicit time-stepping scheme and has no problem with stability.

On the other hand, with an implicit time-stepping method one must slightly modify (2.2)

7



because computations will become unstable [51]. The modification of (2.2) drops the re-

dundant closest point operators, which occur in the diagonal terms of the discretization, to

give

∂u

∂t
=

1

∆x2

(
− 4u(x, y, t) + u(cpS(x+ ∆x, y), t) + u(cpS(x−∆x, y), t)

+ u(cpS(x, y + ∆x), t) + u(cpS(x, y −∆x), t)
)

+O(∆x2),

u(x, y, 0) = u0(cpS(x, y)).

(2.3)

The closest point operator is redundant for the diagonal terms since the discretized PDE (2.3)

still agrees with the original PDE, ut = ∆Su, at the surface; cpS(x, y) = (x, y) for all

(x, y) ∈ S. It is shown in [51] that the discretization in (2.3) enjoys improved stability. The

matrix form of (2.3), given in Section 2.0.1, benefits further from being more diagonally

dominant. Also see [51] for a more general description of the implicit closest point method

and examples of other PDEs.

2.0.1 Heat equation on the unit circle

To provide a concrete understanding of the closest point method, implementation for

the heat equation on a circle is discussed. The choice of a computational domain Ωc in a

band around the surface S is described. The matrix form of the closest point method is

introduced in this section. Furthermore, implementations of the two alternating steps of

the closest point method are detailed.

Of course the first component one needs is a closest point function corresponding to S.

Here, for the unit circle S1, an analytic formula for the closest point function is simply

cpS(x) =
x

‖x‖2
. (2.4)

The embedding PDE is then found using Principles 1 and 2. This gives a PDE in Cartesian

coordinates of R2, since surface gradients are replaced by standard gradients in R2. The

embedding PDE for the heat equation on S1 is the same as (2.1), i.e., heat flow in R2.

Now one must choose the computational domain Ωc. A uniform square grid around S

could be chosen. For improved efficiency, however, a narrow band around S is desirable.

That is,

Ωc = {x : ‖x− cpS(x)‖2 ≤ λ},

8



where λ is the bandwidth. The bandwidth depends on the degree of the interpolating

polynomial p, the order of the PDE derivatives r, the order of the differencing scheme q and

the dimension of the embedding space d. It is shown in [61] that for second order centred

differences discretizing the Laplacian

λ =

√
(d− 1)

(
p+ 1

2

)2

+

(
1 +

p+ 1

2

)2

∆x.

Interpolation order depends on the derivative order r and differencing scheme order q.

The interpolation order should be large enough not to produce errors greater than the

differencing scheme, i.e., q + r or higher. In our numerical examples q = r = 2, so p = 3

is taken to acquire order 4 interpolation. Writing code using this narrow band around S

is simple. One first constructs a uniform square grid around S and then uses an indexing

array to access points within the band.

Consider now writing the interpolation, necessary to extend solution data onto Ωc,

in matrix form. Barycentric Lagrange interpolating polynomials of degree p use a linear

combination of values at p+1 neighbouring grid points in each dimension. The interpolation

stencil for some point on S1 is therefore a square consisting of (p+1)2 grid points. A discrete

ordered list of points L = {x1,x2, . . . ,xN} is constructed. The list L consists of all grid

points that can appear in the interpolation stencil for any point on S1. Note that the points

in L are an ordered list of the points that comprise Ωc, which are shown in Figure 2.1

as solid points. The open points in Figure 2.1 make up a second list of ordered points

G = {xN+1,xN+2, . . . ,xN+Ng}, which is disjoint from L. The Ng points in G are “ghost

points” that preside along the edge of the computational band. The points in G are needed

for the 5-point stencil of the Laplacian discretization, but are not propagated in time.

Now let the vector ~u ∈ RN denote the approximation to the solution u at all the points

in L. That is, the vector ~u has entries ui ≈ u(xi) for all xi ∈ L. Also let u(cpS(L)) ∈ RN and

u(cpS(G)) ∈ RNg denote vectors with components u(cpS(xi)) for xi ∈ L and u(cpS(xN+i))

for xN+i ∈ G, respectively. The closest point extension extends data on the surface S to

the computational domain by assigning a value of u(cpS(x)) to u(x). The extension step

can be accomplished by matrix multiplication with the extension matrix E.

Definition 2 Let ~u, u(cpS(L)) and u(cpS(G)) be defined as described above. Choose an

interpolation scheme that uses a linear combination of values at neighbouring grid points.

9



Figure 2.1: Example of a computational domain Ωc (indicated by •) in a band around the
unit circle S1. The ghost points in G (indicated by ◦) are also shown around the edge of
Ωc. Example stencils for barycentric Lagrange interpolation, with p = 3, at two points ♦
on S1 are shown in the shaded regions. Five point Laplacian stencils are also depicted for
two different points in Ωc.

Then the extension matrix is an (N +Ng)×N matrix operator E such that

u(cpS(L))

u(cpS(G))

 ≈ E~u =

E

.

The chosen interpolation scheme for u(cpS(xi)) determines the nonzero entries of the i-th

row of E. More explicitly, the components of E are

{E}ij =


wj if xj is in the interpolation stencil for cpS(xi),

0 otherwise,

where wj is the weight of grid point xj in the interpolation scheme for the point cpS(xi).

The explicit and implicit closest point methods can be written using the extension matrix

E. The two steps of the explicit closest point method are simply:

• Solve the embedding PDE for one time step of size ε, e.g., with forward Euler time

stepping ~wn+1 = ~un+ε∆h~u
n, where ∆h is an N×(N+Ng) matrix that approximates

the Laplacian operator in R3.

• Perform the closest point extension ~un+1 = E~wn+1.

10



Alternatively, writing the two steps together one has ~un+1 = E~un + ε∆hE~u
n.

For the implicit closest point method one must remove the redundant interpolation to

achieve stability. One instead splits the diagonal part of the matrix ∆h out before multi-

plying by the extension matrix E. That is, define a new stable version of the discretization

of the Laplacian operator as

M = stab(∆h,E) ≡ diag∆h + (∆h − diag∆h)E, (2.5)

or pictorially

M

=

diag △h

+

E

△h — diag △h

. (2.6)

Hence the spatial discretization for the implicit closest point method is ~ut = M~u. Using,

for example, backward Euler time stepping the complete discretization of the surface heat

equation is

~un+1 = ~un + εM~un+1.

11



Chapter 3

The Closest Point Method for Maps

Between Manifolds

In this chapter, we introduce our framework for solving variational problems and PDEs

that define maps between a source manifoldM and a target manifold N . To give a clear, ex-

plicit presentation, the method is developed for the case of harmonic maps. Harmonic maps

are important in many applications such as texture mapping [30], regularization of brain

images [55] and colour image enhancement [74]. Some properties of harmonic maps will

be discussed first. Section 3.1 and 3.2 then describe the numerical framework. Section 3.3

gives justification of the algorithm introduced in Section 3.2.

With most problems in mathematics there are two important questions one must first

ask: does a solution exist and is the solution unique? It is important to know the answers

to these two questions when using numerical methods for any problem. It is meaningless

to have a numerical method to “solve” a problem if the problem does not have a solution.

One may also be deceived if it is assumed that there is a unique solution and the numerical

method returns multiple solutions. There are however exceptions here since sometimes

numerics are used to prove the existence of solutions, e.g., in rigorous computing, or to give

insight on a problem.

Existence and uniqueness for harmonic maps is outside the scope of this thesis. The

question of regularity (or partial regularity) of solutions is also a difficult subject. There

has been substantial analysis of harmonic maps between manifolds. There are far too many

results to give a comprehensive summary here. We therefore only include references. Most

of the work has been done assuming the manifoldsM and N are Riemannian [21,23,27,32–
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34, 38, 43, 45, 62–65, 70–72]. There has however been some work involving other manifolds,

such as Kähler manifolds [22, 37] and Finsler manifolds [67]. Some good books that study

the subject of harmonic maps are [47,57,66].

We now give the definition of a harmonic map between two Riemannian manifolds M

and N of dimension m and l, respectively. Harmonic maps have the desirable property of

being smooth, since intuitively a map is harmonic when M is constrained to N in elastic

equilibrium. Denote the metric tensor ofM as (γαβ)α,β=1,...,m in local coordinates. Similarly

for N its metric tensor is (gij)i,j=1,...,l. The inverses of these metric tensors are denoted γαβ

and gij .

Definition 3 Harmonic maps u :M→N are the critical points of the Dirichlet energy

E[u] =

∫
M
e[u] dvM, (3.1)

where

e[u] =
1

2
|du|2 =

1

2

m∑
α,β=1

l∑
i,j=1

γαβ(x)gij(u(x))
∂ui

∂xα
∂uj

∂xβ
, (3.2)

is the energy density and dvM = (det γαβ)
1
2dx is the volume element of M.

The map u : M → N must be a C1 map so that e[u] is well-defined. Throughout

this thesis we will assume that u ∈ C1 unless otherwise stated. Furthermore, by the Nash

embedding theorem [58, 59] any Riemannian manifold N can be isometrically embedded

in a Euclidean space Rn. Thus throughout this thesis think of u = (u1, u2, . . . , un)T with

point-wise constraint u(x) ∈ N for any x ∈M.

The corresponding Euler-Lagrange equations of (3.1) are

∆Mu
k +

m∑
α,β=1

n∑
i,j=1

γαβΓkij(u)
∂ui

∂xα
∂uj

∂xβ
= 0, for k = 1, 2, . . . , n, (3.3)

where

Γkij =
1

2

n∑
l=1

gkl(gil,j + gjl,i − gij,l)

are the Christoffel symbols for the target manifold N with

gjl,i ≡
∂

∂ui
gjl.

Any map u satisfying the Euler-Lagrange equations (3.3) is a critical point of the har-

monic energy (3.1). Note that the energy (3.1) and its corresponding Euler-Lagrange equa-

tions (3.3) are given for explicit representations of M and N above. That is, everything
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has been defined in terms of local coordinates {xα}α=1,2,...,m onM and {ui}i=1,2,...,n on N .

The idea of the numerical framework here is to instead reformulate problems in terms of an

implicit representation using the closest point function. This idea is shown and discussed

further for harmonic maps in Section 3.1.

Instead of discussing the existence, uniqueness and regularity of harmonic maps we list

some special cases of harmonic maps. This is to give the reader some intuition for what a

harmonic map is. Three special cases are:

1. Consider dim(M) = 1, then harmonic maps give precisely the geodesics of N [32].

When dim(M) = 1 the Euler-Lagrange equations (3.3) become

ük +

n∑
i,j=1

Γkij(u)u̇iu̇j = 0, for k = 1, 2, . . . , n, (3.4)

which are the familiar Euler-Lagrange equations defining geodesics on N .

2. Take N = Rn and thus gij = δij . In this case the map u :M→N is harmonic if and

only if each component uk, k = 1, 2, . . . , n, is a harmonic function [66], i.e., ∆Mu
k = 0.

When N = Rn the Christoffel symbols are identically zero since ∂
∂ui
δjl = 0, which

reduces (3.3) to ∆Mu
k = 0 for k = 1, 2, . . . , n.

3. The identity map id :M→M of any Riemannian manifold is a harmonic map [47].

To make this apparent, we remark that the Laplace-Beltrami operator can be written

explicitly as

∆Mu
k =

m∑
α,β=1

γαβ

(
∂2uk

∂xα∂xβ
−

m∑
δ=1

Cδαβ
∂uk

∂xδ

)
,

where Cδαβ are the Christoffel symbols for the source manifold M. For the identity

map Cδαβ = Γkij and u(x) = x so ∂uk/∂xα = δkα. It is henceforth easy to check

that (3.3) is satisfied.

A physical intuition for harmonic maps, given by Eells and Lemaire [32], is possibly

more instructive. Denote the tension field of u by τ(u) = div(du) (see [32] for definition

of div). One can then imagine that the source manifold M is made of rubber and the

target manifold N is made of marble. The map u will constrain M to lie on N . For each

point x ∈ M, there is a vector τ(u(x)) = div(du(x)) that corresponds to the “tension” in

the rubber at the point u(x). The map u is harmonic if and only if τ(u(x)) = 0, for all
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x ∈ M. That is, u is harmonic if and only if u constrains the manifold M to N in elastic

equilibrium by minimizing (3.1).

Work on numerical methods for harmonic maps is more recent. Most numerical schemes

were developed for the special case of N = Sn−1, the unit hypersphere. A number of

algorithms for finding stable solutions of harmonic maps, into N = Sn−1, were originally

proposed in [24,25,29,50]. One of the first numerical algorithms that was proven to converge

in a continuous setting was introduced by Alouges in [7]. The latter algorithm was then

proven to converge in a finite element setting with acute triangles by Bartels [11]. Further

finite element methods have been developed for more difficult problems, e.g., [10] for p-

harmonic maps and [8] for the Landau-Lifschitz-Gilbert equation. A finite element method

for more general target manifolds has also been introduced by Bartels [13].

A different approach was taken by Vese and Osher [76] for p-harmonic maps with N =

Sn−1. Instead of using a finite element approach a parametric approach was taken. Their

method was successfully used to denoise colour images; however, it is restricted to N =

Sn−1. The work of Mémoli et al. [54] is the most similar to our approach illustrated next.

In our approach, the problem is embedded in the surrounding space using the closest point

representations of M and N . On the other hand, Mémoli et al. [54] embed the problem

in the surrounding space using level set representations. These embedding methods share

the advantage of working for general M and N . By adopting the closest point formulation

instead of the level set formulation, geometric flexibility is gained (the surfaces can be open

or closed and need not be oriented). Moreover, as will be seen in Section 3.2, our algorithm

is simpler and therefore more straightforward to implement.

3.1 The closest point method for Euler-Lagrange equations

of harmonic maps

AssumeM and N are Riemannian manifolds and u :M→N is a C1 map. The source

manifold M is of degree m and N is isometrically embedded in Rn. Denote the signed

distance functions of M and N as dM and dN [52], respectively. The signed distance

function dS(x) gives the Euclidean distance from x to the manifold S with a + or − sign

depending on which side of S the point x is located. The signed distance function has the

important property that ‖∇dS‖2 = 1. The energy (3.1) defining harmonic maps can be
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rewritten as [54,55]

E[u] =
1

2

∫
M
‖JdM

u ‖2F dvM, (3.5)

where ‖·‖F is the Frobenius norm and JdM
u is the Jacobian of u intrinsic toM. The intrinsic

Jacobian is JdM
u = JuΠ∇dM , where Π∇dM = I−∇dM∇dTM is the projection operator onto

the tangent space of M.

To motivate the definition (3.5) of the harmonic energy consider both M and N to

be Euclidean. For Euclidean M and N the metrics γαβ = K1δαβ and gij = K2δij are

proportional to the identity, for some constants K1,K2 ∈ R. The energy density (3.2)

simplifies to

e[u] =
K

2

m∑
α=1

n∑
i=1

(
∂ui

∂xα

)2

∝ ‖Ju‖2F .

Therefore the energy (3.1) for Euclidean M and N becomes

E[u] =
K

2

∫
M
‖Ju‖2F dvM.

The definition of the energy (3.5) for general M and N instead uses the intrinsic Jacobian

JdM
u . The constraint that u(x) ∈ N incorporates the general target manifold N .

Mémoli et al. [54] derived the Euler-Lagrange equations for (3.5) in terms of the level

set representation of N assuming M is flat and open. The same calculation is carried out

by Moser [57] in terms of the closest point representation of N . There the closest point

function is called the nearest point projection by Moser and is used to prove regularity

results of harmonic maps (see Chapter 3 of [57]). Moser shows that the Euler-Lagrange

equations corresponding to (3.5), assuming M is flat and open, are

∆u−
m∑
α=1

HcpN (u)

[
∂u

∂xα
,
∂u

∂xα

]
= 0, (3.6)

where the notation A[x,y] = (yTA1x,yTA2x, . . . ,yTAnx)T is used. The matrix HcpN (u)

denotes the Hessian of cpN (u), i.e., the Hessian of each component of cpN (u) is Hi
cpN (u)

for i = 1, 2, . . . , n.

The key identity that Moser derives is that the second fundamental form of N can be

written in terms of the Hessian of cpN . In local coordinates the same identity involves the

Christoffel symbols. Let Γ(u) = (Γ1
ij(u),Γ2

ij(u), . . . ,Γnij(u))T ; then for all u ∈ N and X,Y

in the tangent space, TuN , of N at the point u, we have

HcpN (u) [X,Y ] = −Γ(u) [X,Y ] . (3.7)
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Using (3.7) the Euler-Lagrange equations (3.3) for generalM and N can be wrote in terms

of cpN as

∆u(cpM(x))−
m∑

α,β=1

{ΠTuM}αβHcpN (u)

[
∂u

∂xα
,
∂u

∂xβ

]
= 0, (3.8)

where the correspondence γαβ = {ΠTuM}αβ from [54] is used.

A solution to (3.6) or (3.8) can be obtained by evolving the corresponding gradient

descent flow to steady state (cf. [54, 57]). The gradient descent flow is a PDE which in-

troduces an artificial time variable and evolves in the direction of maximal decrease of the

energy. Numerically one would discretize the gradient descent flow and evolve the solution

until some long time tf . For numerical examples in Chapter 4, we instead use a different

approach for harmonic maps between generalM and N . This simple algorithm is described

in Section 3.2, which is based on rewriting (3.8) in a different form.

3.1.1 Euler-Lagrange equations for liquid crystals

One can verify the Euler-Lagrange equations (3.6) by considering the case of liquid

crystals, i.e., M is a flat, open subset of Rm and N = Sn−1. Note that the closest point

function can be written as

cpS(y) = y − dS(y)∇dS(y). (3.9)

We must therefore compute ∇dN to construct cpN and then calculate the component-wise

Hessian of cpN . The signed distance function for the unit hypersphere is

dN (y) = ‖y‖2 − 1, for all y ∈ Rn, (3.10)

which gives ∇dN (y) = y/‖y‖2. Next, the gradient of the i-th component of cpN is

∇cpiN (y) = ∇yi −∇dN (y)
∂

∂yi
dN (y)− dN (y)∇

(
∂

∂yi
dN (y)

)
,

= ∇yi − yi y

‖y‖22
− (‖y‖2 − 1)

∇yi

‖y‖2
,

=
∇yi

‖y‖2
− yi y

‖y‖22
.

Through a similar calculation

{
Hi

cpN
(y)
}
jk

= 3
yiyjyk

‖y‖52
−
ykδij + yjδik + yiδjk

‖y‖32
. (3.11)
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The target manifold constraint that u ∈ Sn−1 simplifies (3.11) since ‖u‖2 = 1. Another

simplification that will be needed is an important identity to realize. One has that

0 = ∂dN (u(x))/∂xj = ∇dN (u(x)) · ∂u(x)/∂xj , (3.12)

which is due to the fact that dN (u(x)) = 0 for all x ∈M and thus ∂dN (u(x))/∂xj = 0.With

the signed distance function for the unit hypersphere we have ∇dN (u(x)) · ∂u(x)/∂xα =∑
j u

j(∂uj/∂xα). Carrying out the matrix-vector multiplication in (3.6) yields

∑
α

Hi
cpN (u)

[
∂u

∂xα
,
∂u

∂xα

]
=
∑
α

∑
j

∑
k

(
3uiujuk − ukδij − ujδik − uiδjk

) ∂uj
∂xα

∂uk

∂xα
,

= −
∑
α

∑
j

ui
(
∂uj

∂xα

)2

,

= −ui‖Ju‖2F .

Substituting into (3.6) gives the Euler-Lagrange equations for liquid crystals [77]

∆u + ‖Ju‖2Fu = 0.

3.1.2 Geodesic computation on implicit manifolds using harmonic maps

As mentioned at the start of this chapter, geodesics of the target manifold N satisfy the

Euler-Lagrange equations (3.3) for harmonic maps when dim(M) = 1. Geodesic maps ensue

when dim(M) = 1 because (3.3) simplifies to (3.4). The geodesics on manifolds given by

a closest point representation will therefore satisfy (3.6). That is, geodesics (parameterized

by arc-length) on N are the solution to

ük −
n∑

i,j=1

Hk
cpN (u)u̇

iu̇j = 0. (3.13)

This equation could be used to obtain geodesic curves on N , which is an important problem

that arises in numerous applications.

3.1.3 A note on general variational problems and partial differential equa-

tions

More general PDEs that map between manifolds can be embedded by rewriting all

intrinsic geometric quantities in terms of the appropriate closest point functions. This can
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be accomplished using Principles 1 and 2 for quantities on M combined with identities

in [57] for N , e.g., the identity (3.7) for the second fundamental form of N . It is difficult

to give steps to handle the most general of PDEs. One may need to derive new identities

besides the ones mentioned here. The general idea is however the same in all cases: rewrite

geometric quantities intrinsic to M and N in terms of cpM and cpN , respectively.

For a concrete example, consider what was done above for harmonic maps. When us-

ing an explicit representation of the manifolds (i.e., local coordinates) the Euler-Lagrange

equations for harmonic maps are given by (3.3). Using Principles 1 and 2 one can rewrite

∆Mu = ∆u(cpM). Then using the identity (3.7) one rewrites the Christoffel symbols

in (3.3): Γ(u)[∂xαu, ∂xβu] = −HcpN (u)[∂xαu, ∂xβu]. The final component to change from an

explicit manifold representation to an implicit one, is to associate the metric tensor on M

with the projection operator onto the tangent space of M, i.e., γαβ = {ΠTuM}αβ.

It is sometimes also possible to simplify the method by realizing a different form for

the PDE of interest. The next section gives details for the case of harmonic maps between

general manifoldsM and N . In this case the Euler-Lagrange equations (3.8) are equivalent

to ΠTuN (∆Mu) = 0.

3.2 Projections onto target manifold N

A numerical method for harmonic maps is realized by rewriting the Euler-Lagrange

equations (3.8), or equivalently (3.3), in a different form. The Euler-Lagrange equations are

rewritten as ΠTuN (∆Mu) = 0 [54], where ΠTyN is the projection operator at the point y

onto the tangent space of N . As mentioned in [66], the second term in (3.3) is by definition

(∆Mu)⊥, the normal component of ∆Mu. One therefore realizes that

0 = ∆Mu− (∆Mu)⊥ = (∆Mu)T,

where (∆Mu)T is the tangential component of ∆Mu. Hence ΠTuN (∆Mu) = 0.

When M is a flat, open manifold in Rm it is easy to see that the second term in (3.6)

is the normal component. First notice that for any Y ∈ TuN

ΠTuN (Y ) = Y.

19



It is shown in both [52,57] that the Jacobian of the closest point function is equal to ΠTuN

at the surface of N . Hence, one has that

JcpN (u)
∂u

∂xα
=

∂u

∂xα
.

Differentiating the above in the direction of ∂u
∂xα gives

HcpN (u)

[
∂u

∂xα
,
∂u

∂xα

]
+ JcpN (u)∆Mu = ∆Mu, (3.14)

as shown by Moser [57] during the derivation of (3.7). Now from (3.14) it is apparent that

HcpN (u)

[
∂u

∂xα
,
∂u

∂xα

]
= (∆Mu)⊥

since JcpN (u)∆Mu = ΠTuN (∆Mu) = (∆Mu)T.

The corresponding gradient descent flow is
∂u

∂t
= ΠTuN (∆Mu),

u(x, 0) = u0(x),

JdM
u n|∂M = 0,

(3.15)

where u0(x) is a given initial map. The Neumann boundary conditions are justified in

Appendix A of [54]. Our idea is to construct a numerical method for (3.15) by splitting the

evolution into two steps. First, evolve the gradient descent flow solely on M for one time

step of size ε to give ũ(x, t+ ε). That is, solve (3.15) while omitting ΠTuN . The second step

obtains the solution to (3.15), at time t+ε, by projecting ũ(x, t+ε) onto N using the closest

points of ũ(x, t+ ε) on N . The explicit steps are given in Algorithm 3.1. Note that because

Algorithm 3.1 Closest point method for harmonic maps

1. Using the closest point method for a single manifold solve
∂ũ

∂t
= ∆Mũ,

ũ(x, t) = u(x, t),

JdM
ũ n|∂M = 0,

(3.16)

for one time step of size ε.
2. Set u(x, t+ ε) = cpN (ũ(x, t+ ε)).

u(x, t) is the solution computed at the previous time step it satisfies dN (u(x, t)) = 0 and

cpN (u(x, t)) = u(x, t) for all x ∈M.
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Solving (3.15) by splitting the evolution into the two steps of Algorithm 3.1 is advan-

tageous because it eliminates the projection operator ΠTuN . This simplifies solving (3.15)

by reducing it to a PDE on a single surface M; now the PDE does not involve quantities

on bothM and N . A further benefit is efficiency due to not building a discrete form of the

projection operator ΠTuN at every time step. The PDE (3.16) is also more simple in form

compared to the PDE obtained from the level set approach of Mémoli et al. [54]. The level

set method’s PDE involves two projection operators Π∇φ and Π∇ψ, which can be written

in terms of the level set function φ and ψ representing M and N , respectively. These

projections operators are undesirable since they complicate the numerical stability of the

method.

This method can be applied to any PDE of the form

∂u

∂t
= ηΠTuN (F(x,u,JdM

u ,HdM
u , . . .)), (3.17)

where η ∈ R is a scalar. That is, our splitting approach in Algorithm 3.1 can solve PDEs

with intrinsic geometric terms on M that are projected onto the tangent space of N . In

this situation, one solves the PDE

∂ũ/∂t = ηF(x, ũ,JdM
ũ ,HdM

ũ , . . .)

for one time step with the closest point method for a single manifold (see Chapter 2).

This is followed by the projection step u(x, t + ε) = cpN (ũ(x, t + ε)). The algorithm for

solving (3.17) is given in Algorithm 3.2. It is shown in Section 3.3.2 that these two steps

Algorithm 3.2 Closest point method for ∂u/∂t = ηΠTuN (F)

1. Using the closest point method for a single manifold solve
∂ũ

∂t
= ηF(x, ũ,JdM

ũ ,HdM
ũ , . . .),

ũ(x, t) = u(x, t),

JdM
ũ n|∂M = 0,

for one time step of size ε.
2. Set u(x, t+ ε) = cpN (ũ(x, t+ ε)).

are equivalent to the original PDE (3.17) as ε→ 0.

A PDE that is a special case of (3.17) comes from the gradient descent flow for p-

harmonic maps.
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Definition 4 The critical points u :M→N of the energy

Ep[u] =

∫
M
ep[u]dvM, (3.18)

with 1 ≤ p <∞ and

ep[u] =
1

p
‖JdM

u ‖
p
F ,

are called p-harmonic maps.

There has been less work on the study of existence, uniqueness and regularity of p-harmonic

maps when p 6= 2. Some examples are works by Chen et al. [23] and Giaquinta et al. [38].

Chen et al. [23] take 1 < p < ∞ and assume that M is a compact Riemannian manifold

without boundary and N is the unit sphere Sn−1. The work of Giaquinta et al. [38] handles

the case p = 1 mapping onto N = S1.

The gradient descent flow for the Euler-Lagrange equations of (3.18), with 1 ≤ p <∞,

is [54] 

∂u

∂t
= p

1− 2
p ΠTuN

(
∇ ·
(

(ep[u])
1− 2

pJdM
u

))
,

u(x, 0) = u0(x),

JdM
u n|∂M = 0,

(3.19)

which can be handled using Algorithm 3.2. Note that the divergence of the matrix here

is defined as the divergence of each row of the matrix. Numerical implementation is more

involved for (3.19) and difficulties are expected to arise for p < 2 [76]. Numerical imple-

mentation with p = 1 for the application of colour image enhancement [74] is discussed in

Chapter 4. The colour image enhancement is achieved by diffusing the chromaticity of the

image, which is a map from M⊂ R2 to N = Sn−1.

3.2.1 Applications in medical imaging

There is immense use of maps between surfaces in medical imaging. The maps obtain a

correspondence between two surfaces to enable comparison. Initially, images are acquired

using one of a number of possible methods such as radiography, tomography, magnetic

resonance imaging (MRI), etc. The anatomical structure of interest in each image is then

segmented to produce a population of surfaces. A reference surface can be chosen at random

for comparison. A map from each surface in the population to the reference is created. The

map allows matching of functional and/or anatomical regions to the reference. Using the
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maps one can then describe specific subpopulations of the surfaces, measure their variability

and/or characterize structural differences [75].

The variability in shape and size of anatomical structures, and the convoluted nature of

some, cause numerical difficulties for classical surface matching methods such as the iterative

closest point method [18]. Therefore mappings that fall into this problem category are

conventionally handled using an intermediate parametrization to the plane (or the sphere).

That is, one assigns a 2D coordinate to each point on the surfaces by mapping to the plane

(or sphere) first. These 2D coordinates then allow for indirect mapping between the two

surfaces via mappings between planes (or spheres).

For closed surfaces the difficulty with intermediate parameterizations to the plane is that

one must artificially cut open the surface to flatten it. A standard approach for cutting

open surfaces is hard to establish with surfaces that have varying shapes and sizes. Another

disadvantage of intermediate parameterizations is that two surfaces will generally have

different parameterizations, leading to different coordinates systems. In this situation one

has to perform a warping procedure while enforcing anatomically meaningful constraints.

For more information see [68] and references within.

Shi et al. [68] overcome the difficulties due to an intermediate parametrization by aban-

doning this step completely. They introduce a direct surface mapping method for MRI

images of the brain cortex. The map is constructed by solving PDEs that define maps

between the source and target cortices using the level set approach of Mémoli et al. [54].

Instead one can apply the closest point method introduced above to the cortical mapping

problem. Numerical discretization schemes must however be developed to incorporate con-

straints of anatomical features. One anatomical constraint feature could be the curves that

follow the “valley” structure of the cortex, called sulcal curves. One approach to handle

sulcal curves is given in [68].

One could also use the same ideas for registering optic nerve head images. A method

which performs an intermediate parametrization to the sphere was introduced by Gibson

et al. [39]. The optic nerve head is not convoluted like the cortex (compare surfaces in

Figure 3.1). Algorithm 3.1 can therefore be immediately used to construct a harmonic

map between optic nerve head surfaces. That is, specialized numerical schemes to handle

structures similar to sulcal curves are not needed since the surface is not highly convoluted.
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Figure 3.1: Comparison of anatomical surfaces of the brain (left) and optic nerve head
(right). Notice the convoluted nature of the brain compared to the optic nerve head, which
is much smoother. Anatomical surface data courtesy of the Medical Image Analysis Lab at
Simon Fraser University.

It is also possible to include data fidelity terms with the harmonic energy to help enforce

anatomical features. Consider feature functions f1 : M → R on the source manifold and

f2 : N → R on the target manifold. A weight function w :M→ R can also be included for

further generality. The new energy we wish to minimize is now defined as

E[u] =
1

2

∫
M
‖JdM

u ‖2F dvM +
λ

2

∫
M
w(f1 − f2(u))2 dvM, (3.20)

where λ is a positive regularization parameter. The gradient descent flow corresponding

to (3.20) is given in [68] as

∂u

∂t
= ΠTuN (∆Mu) + λw(f1 − f2(u))∇N f2(u). (3.21)

The numerical solution of (3.21) can be computed using a time splitting scheme (a.k.a.

fractional step method) [49]. Time splitting is a simple idea similar to the evolution splitting

used in Section 3.2. Consider the PDE

∂v

∂t
= A(v) + B(v). (3.22)

Instead of solving (3.22) directly, one can split the PDE into subproblems ∂v/∂t = A(v)

and ∂v/∂t = B(v) and then combine their solutions. A first order time splitting scheme
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for (3.22) is 
v∗ = ΦA(v(x, t), ε),

v(x, t+ ε) = ΦB(v∗, ε),
(3.23)

where ΦA and ΦB are one step numerical methods, with step size ε, for subproblems A and

B, respectively.

To solve (3.21) take A(u) = ΠTuN (∆Mu) and B(u) = λw(f1 − f2(u))∇N f2(u). Algo-

rithm 3.1 can then be used as the one step method ΦA. To construct ΦB the closest point

method for a single manifold (see Chapter 2) can be used. Note that general theory for

higher order time splitting methods, e.g., second order Strang splitting, is presented in [44].

The first order method (3.23) is however sufficient for the numerical solution of (3.21) since

Algorithm 3.1 is only first order accurate (see Section 3.3.2).

3.3 Justification of the approach

Here we justify the two steps in Algorithms 3.1 and 3.2 used to solve (3.15) or (3.17),

respectively. The first result is that the solution from Algorithm 3.1 decreases the harmonic

energy (3.5) in the limit as ε → 0. The two steps in Algorithm 3.2 are also shown to be

equivalent to the original PDE (3.17) as ε→ 0. Taylor’s theorem will be needed for both of

these proofs. Both functions from R to Rn and functions from Rm to Rn will be expanded

using Taylor’s theorem.

It is necessary to introduce some notation for Taylor’s theorem. For two functions r and

s one has that r(y) = O(s(y)) as y → z if there exists positive constants M, δ ∈ R such

that

‖r‖ ≤M‖s‖, for ‖y − z‖ < δ.

Another piece of notation is used to generalize derivatives and the vector-matrix multipli-

cation needed for functions f : Rm → Rn. For vectors

h1 =


h1,1

h1,2

...

h1,m

 , h2 =


h2,1

h2,2

...

h2,m

 , · · · , hk =


hk,1

hk,2
...

hk,m

 ,

we write

f (k)[h2,h2, . . . ,hk] =

m∑
i1,i2,...,ik=1

∂kf

∂x1∂x2 · · · ∂xk
h1,i1h2,i2 · · ·hk,ik ,
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where the sum is over all sequences (i1, i2, . . . , ik), with ij ∈ {1, 2, . . . ,m}.

Taylor’s theorem for the more general case, f : Rm → Rn, is stated as [26]:

Theorem 1 Let A and B be normed vector spaces and O an open subset of A. Suppose

that x ∈ O and h ∈ A such that [x,x + h] ⊆ O. If f : O → B is a Ck+1 mapping, then

f(x + h) = f(x) + f (1)(x)[h] +
1

2!
f (2)(x)[h2] + · · ·+ 1

k!
f (k)(x)[hk] +O(‖h‖k+1), (3.24)

where [hk] denotes [h,h, . . . ,h] with h repeated k times. We call (3.24) the Taylor expansion

of f(x + h) about x.

Consider A = R and B = Rn, then (3.24) simplifies to

f(x+ h) = f(x) + h
df

dx
(x) +

h2

2!

d2f

dx2
(x) + · · ·+ hk

k!

dkf

dxk
(x) +O(|h|k+1). (3.25)

There is a final notational simplification that one should realize. When A = Rm and

B = Rn, the first derivative and second derivative terms in (3.24) are the Jacobian and

Hessian of f , respectively. One therefore has that

f (1)(x)[h] = Jf(x)h and f (2)(x)[h2] = Hf(x)[h,h]. (3.26)

With Taylor’s theorem introduced we are now ready to prove the justifications of Algo-

rithms 3.1 and 3.2.

3.3.1 Decrease of harmonic energy

We want to show that the solution computed by Algorithm 3.1, introduced in Section 3.2,

decreases the harmonic energy (3.5) as ε→ 0. This can be accomplished by showing that

d

dt
E[u(x, t)] = lim

ε→0

1

2ε

∫
M

(
‖JdM

u(x,t+ε)‖
2
F − ‖J

dM
u(x,t)‖

2
F

)
dvM ≤ 0. (3.27)

First Taylor expand ũ(x, t + ε) in t and substitute ∂tũ = ∆Mũ from Step 1 of Algo-

rithm 3.1 to give

ũ(x, t+ ε) = ũ(x, t) + ε∆Mũ(x, t) +O(ε2).

Note that the latter Taylor expansion is the special case (3.25) when A = R. Consequently,

the map u(x, t) must be assumed to be a C2 map. Also recall the closest point function
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can be expressed as in (3.9). The solution u(x, t+ ε) can then be written as

u(x, t+ ε) = cpN (ũ(x, t+ ε)),

= ũ(x, t+ ε)− dN

(
ũ(x, t+ ε)

)
∇dN

(
ũ(x, t+ ε)

)
,

= u(x, t) + ε∆Mu(x, t) +O(ε2)− dN

(
u(x, t) + ε∆Mu(x, t) +O(ε2)

)
×∇dN

(
u(x, t) + ε∆Mu(x, t) +O(ε2)

)
,

where we have also used ũ(x, t) = u(x, t) from Step 1 of Algorithm 3.1.

The columns of Ju(x,t+ε) are

∂u(x, t+ ε)

∂xj
=

(
∂u

∂xj
+ ε

∂(∆Mu)

∂xj
+O(ε2)

)
−
(
∇dN

(
u + ε∆Mu +O(ε2)

)
·
[
∂u

∂xj
+ ε

∂(∆Mu)

∂xj
+O(ε2)

])
×∇dN

(
u + ε∆Mu +O(ε2)

)
− dN

(
u + ε∆Mu +O(ε2)

)
×HdN (u+ε∆Mu+O(ε2))

(
∂u

∂xj
+ ε

∂(∆Mu)

∂xj
+O(ε2)

)
.

(3.28)

Note that we have dropped the dependence of u since all terms on the right hand side

are evaluated at (x, t). Ultimately we will take ε → 0, so the final term in (3.28) will

vanish since dN (u(x, t)) = 0. Note however that other terms involving ε can not be taken

to zero yet since we divide by ε in (3.27). Equation (3.28) is simplified further using the

identity (3.12), ∇dN (u(x, t)) ·∂u(x, t)/∂xj = 0. With these two simplifications the columns

of Ju(x,t+ε) become

∂u(x, t+ ε)

∂xj
=

∂u

∂xj
+ ε

∂(∆Mu)

∂xj
+O(ε2)− εµj(ε)∇dN

(
u + ε∆Mu +O(ε2)

)
, (3.29)

where we denote

µj(ε) ≡ ∇dN

(
u + ε∆Mu +O(ε2)

)
· ∂(∆Mu)

∂xj
,

to help simplify calculations below.

Now that we know Ju(x,t+ε) we can compute JdM
u(x,t+ε) since JdM

u(x,t+ε) = Ju(x,t+ε) −

Ju(x,t+ε)∇dM∇dTM. The components of Ju(x,t+ε)∇dM∇dTM are

{Ju(x,t+ε)∇dM∇dTM}ij =

m∑
k=1

{Ju(x,t+ε)}ik
∂dM
∂xk

∂dM
∂xj

,
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since {∇dM∇dTM}ij = (∂dM/∂xi)(∂dM/∂xj) and matrix multiplication with Ju(x,t+ε) is

written out in summation form. Hence the components of JdM
u(x,t+ε) are

{JdM
u(x,t+ε)}ij = {Ju(x,t+ε)}ij −

m∑
k=1

{Ju(x,t+ε)}ik
∂dM
∂xk

∂dM
∂xj

,

=

(
∂ui

∂xj
+ ε

∂(∆Mu
i)

∂xj
+O(ε2)− εµj(ε)

∂

∂xi
dN

(
u + ε∆Mu +O(ε2)

))
−

m∑
k=1

(
∂ui

∂xk
+ ε

∂(∆Mu
i)

∂xk
+O(ε2)

−εµk(ε)
∂

∂xi
dN

(
u + ε∆Mu +O(ε2)

)) ∂dM
∂xk

∂dM
∂xj

,

where we have used (3.29) to substitute for {Ju(x,t+ε)}ij . Analogously for JdM
u(x,t) we have

components

{JdM
u(x,t)}ij = {Ju(x,t)}ij −

m∑
k=1

{Ju(x,t)}ik
∂dM
∂xk

∂dM
∂xj

,

=
∂ui

∂xj
−

m∑
k=1

∂ui

∂xk

∂dM
∂xk

∂dM
∂xj

,

since the components of Ju(x,t) are simply {Ju(x,t)}ij = ∂ui/∂xj .

Now we need to compute both ‖JdM
u(x,t+ε)‖

2
F and ‖JdM

u(x,t)‖
2
F . The rest of this derivation

is quite tedious because the Frobenius norms of JdM
u(x,t+ε) and JdM

u(x,t) involve squaring the

entries of the latter two Jacobians. Starting with the more difficult Jacobian, we have

‖JdM
u(x,t+ε)‖

2
F =

m∑
i=1

m∑
j=1

|{JdM
u(x,t+ε)}ij |

2,

=
m∑
i=1

m∑
j=1

{(
∂ui

∂xj
+ ε

∂(∆Mu
i)

∂xj
+O(ε2)

−εµj(ε)
∂

∂xi
dN

(
u + ε∆Mu +O(ε2)

))2

+

(
m∑
k=1

[
∂ui

∂xk
+ ε

∂(∆Mu
i)

∂xk
+O(ε2)

−εµk(ε)
∂

∂xi
dN

(
u + ε∆Mu +O(ε2)

)] ∂dM
∂xk

∂dM
∂xj

)2

− 2

(
∂ui

∂xj
+ ε

∂(∆Mu)i

∂xj
+O(ε2)− εµj(ε)

∂

∂xi
dN

(
u + ε∆Mu +O(ε2)

))
×

m∑
k=1

(
∂ui

∂xk
+ ε

∂(∆Mu
i)

∂xk
+O(ε2)

−εµk(ε)
∂

∂xi
dN

(
u + ε∆Mu +O(ε2)

)) ∂dM
∂xk

∂dM
∂xj

}
.
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To expand the remaining squares we use the identity (a+b−c)2 = a2+2ab−2ac+b2−2bc+c2

and drop terms that are O(ε2), i.e., drop b2 − 2bc + c2. Further multiplying the last term

out and also dropping O(ε2) terms gives

‖JdM
u(x,t+ε)‖

2
F ≈

m∑
i=1

m∑
j=1

{(
∂ui

∂xj

)2

+ 2ε
∂ui

∂xj

∂(∆Mu
i)

∂xj
− 2εµj(ε)

∂ui

∂xj

∂

∂xi
dN

(
u + ε∆uM

)

+

(
m∑
k=1

∂ui

∂xk

∂dM
∂xk

∂dM
∂xj

)2

+ 2ε

(
m∑
k=1

∂ui

∂xk

∂dM
∂xk

∂dM
∂xj

)

×

(
m∑
l=1

∂(∆Mu
i)

∂xl

∂dM
∂xl

∂dM
∂xj

)
− 2ε

(
m∑
k=1

∂ui

∂xk

∂dM
∂xk

∂dM
∂xj

)

×

(
m∑
l=1

µl(ε)
∂

∂xi
dN

(
u + ε∆Mu

)∂dM
∂xl

∂dM
∂xj

)

− 2
∂ui

∂xj

m∑
k=1

(
∂ui

∂xk
+ ε

∂(∆Mu
i)

∂xk
− εµk(ε)

∂

∂xi
dN

(
u + ε∆Mu

)) ∂dM
∂xk

∂dM
∂xj

− 2ε
∂(∆Mu

i)

∂xj

(
m∑
k=1

∂ui

∂xk

∂dM
∂xk

∂dM
∂xj

)

+2εµj(ε)
∂

∂xi
dN

(
u + ε∆Mu

)( m∑
k=1

∂ui

∂xk

∂dM
∂xk

∂dM
∂xj

)}
.

The expansion of ‖JdM
u(x,t)‖

2
F is much simpler, viz.,

‖JdM
u(x,t)‖

2
F =

m∑
i=1

m∑
j=1

|{JdM
u(x,t)}ij |

2,

=

m∑
i=1

m∑
j=1


(
∂ui

∂xj

)2

+

(
m∑
k=1

∂ui

∂xk

∂dM
∂xk

∂dM
∂xj

)2

− 2
∂ui

∂xj

m∑
k=1

∂ui

∂xk

∂dM
∂xk

∂dM
∂xj

 .

Subtracting these two results for ‖JdM
u(x,t+ε)‖

2
F and ‖JdM

u(x,t)‖
2
F , dividing by 2ε and taking

ε→ 0 gives

lim
ε→0

1

2ε
(‖JdM

u(x,t+ε)‖
2
F − ‖J

dM
u(x,t)‖

2
F ) =

m∑
i=1

m∑
j=1

{
∂ui

∂xj

∂(∆Mu
i)

∂xj
− µj(0)

∂ui

∂xj

∂

∂xi
dN (u)

+

(
m∑
k=1

∂ui

∂xk

∂dM
∂xk

∂dM
∂xj

)(
m∑
l=1

[
∂(∆Mu

i)

∂xl
− µl(0)

∂

∂xi
dN (u)

]
∂dM
∂xl

∂dM
∂xj

)

− ∂ui

∂xj

m∑
k=1

(
∂(∆Mu

i)

∂xk
− µk(0)

∂

∂xi
dN (u)

)
∂dM
∂xk

∂dM
∂xj

−
(
∂(∆Mu

i)

∂xj
− µj(0)

∂

∂xi
dN (u)

)( m∑
k=1

∂ui

∂xk

∂dM
∂xk

∂dM
∂xj

)}
(3.30)
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One recognizes that

m∑
i=1

∂ui(x, t)

∂xj

∂

∂xi
dN (u(x, t)) =

∂u(x, t)

∂xj
· ∇dN (u(x, t)) = 0,

which simplifies numerous terms in (3.30) yielding

lim
ε→0

1

2ε
(‖JdM

u(x,t+ε)‖
2
F − ‖J

dM
u(x,t)‖

2
F ) =

m∑
i=1

m∑
j=1

∂ui

∂xj

∂(∆Mu
i)

∂xj
+

m∑
i=1

m∑
j=1

(
m∑
k=1

∂ui

∂xk

∂dM
∂xk

∂dM
∂xj

)(
m∑
l=1

∂(∆Mu
i)

∂xl

∂dM
∂xl

∂dM
∂xj

)

−
m∑
i=1

m∑
j=1

∂ui

∂xj

m∑
k=1

∂(∆Mu
i)

∂xk

∂dM
∂xk

∂dM
∂xj

−
m∑
i=1

m∑
j=1

∂(∆Mu
i)

∂xj

m∑
k=1

∂ui

∂xk

∂dM
∂xk

∂dM
∂xj

.

Swapping dummy indices j and k in the last term gives the second to last term so we have

lim
ε→0

1

2ε
(‖JdM

u(x,t+ε)‖
2
F − ‖J

dM
u(x,t)‖

2
F ) =

m∑
i=1

m∑
j=1

∂ui

∂xj

∂(∆Mu
i)

∂xj
+

m∑
i=1

m∑
j=1

(
m∑
k=1

∂ui

∂xk

∂dM
∂xk

∂dM
∂xj

)(
m∑
l=1

∂(∆Mu
i)

∂xl

∂dM
∂xl

∂dM
∂xj

)

− 2
m∑
i=1

m∑
j=1

m∑
k=1

∂ui

∂xj

∂(∆Mu
i)

∂xk

∂dM
∂xj

∂dM
∂xk

.

(3.31)

Notice now that

m∑
i=1

m∑
j=1

(
m∑
k=1

∂ui

∂xk

∂dM
∂xk

∂dM
∂xj

)(
m∑
l=1

∂

∂xl
(∆Mu

i)
∂dM
∂xl

∂dM
∂xj

)

=

m∑
i=1

(
m∑
k=1

∂ui

∂xk

∂dM
∂xk

)
∇dM ·

(
m∑
l=1

∂(∆Mu
i)

∂xl

∂dM
∂xl

)
∇dM,

=
m∑
i=1

m∑
k=1

m∑
l=1

∂ui

∂xk

∂(∆Mu
i)

∂xl

∂dM
∂xk

∂dM
∂xl
‖∇dM‖22,

which is the same as the last term in (3.31) because dM is a signed distance function so

‖∇dM‖22 = 1.

After much simplification we have obtained

lim
ε→0

1

2ε
(‖JdM

u(x,t+ε)‖
2
F − ‖J

dM
u(x,t)‖

2
F ) =

m∑
i=1

m∑
j=1

(
∂ui

∂xj

∂(∆Mu
i)

∂xj
−

m∑
k=1

∂ui

∂xk

∂(∆Mu
i)

∂xj

∂dM
∂xk

∂dM
∂xj

)
,

=
m∑
i=1

∇(∆Mu
i) · ∇Mui.

(3.32)
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The dot product form is realized by working in the opposite direction. Rewriting ∇Mui =

ΠTuN∇ui one has

∇Mui = ∇ui −∇dM∇dTM∇ui,

⇒ {∇Mui}j =
∂ui

∂xj
−

m∑
k=1

∂ui

∂xk

∂dM
∂xk

∂dM
∂xj

.

Hence

m∑
i=1

∇(∆Mu
i) · ∇Mui =

m∑
i=1

∇(∆Mu
i) ·
(
∇ui −∇dM∇dTM∇ui

)
=

m∑
i=1

m∑
j=1

∂(∆Mu
i)

∂xj

(
∂ui

∂xj
−

m∑
k=1

∂ui

∂xk

∂dM
∂xk

∂dM
∂xj

)
,

=
m∑
i=1

m∑
j=1

(
∂ui

∂xj

∂(∆Mu
i)

∂xj
−

m∑
k=1

∂ui

∂xk

∂(∆Mu
i)

∂xj

∂dM
∂xk

∂dM
∂xj

)
,

which matches (3.32).

A final identity is needed before we integrate and show that dE/dt ≤ 0. From an

application of the product rule, with scalar functions ψ and φ,

∇ · (φ∇Mψ) = ∇φ · ∇Mψ + φ(∇ · ∇Mψ).

Rearranging and recognizing that ∇·∇Mψ = ∇· (ΠTN∇ψ) is an implicit representation of

∆Mψ, we have

∇φ · ∇Mψ = ∇ · (φ∇Mψ)− φ(∆Mψ).

Substituting φ = ∆Mu
i and ψ = ui gives

∇(∆Mu
i) · ∇Mui = ∇ · ((∆Mui)∇Mui)− (∆Mu

i)2. (3.33)

Using (3.33) and integrating

d

dt
E[u(x, t)] = lim

ε→0

1

2ε

∫
M

(‖JdM
u(x,t+ε)‖

2
F − ‖J

dM
u(x,t)‖

2
F ) dvM,

=

∫
M

n∑
i=1

(
∇(∆Mu

i) · ∇ui
)
dvM,

=

n∑
i=1

∫
M

(
∇ · ((∆Mui)∇Mui)− (∆Mu

i)2
)
dvM.

=

n∑
i=1

∫
∂M

((∆Mu
i)∇Mui) · n dSM −

n∑
i=1

∫
M

(∆Mu
i)2 dvM.

The last step uses the divergence theorem [41] stated in Theorem 2 below, with n denoting

the outward normal to the surface M and dSM the area element on M.
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Theorem 2 Let M be a compact oriented m-dimensional manifold with boundary ∂M. If

G is a differentiable vector field defined in a neighbourhood of M then,∫
M
∇ ·GdvM =

∫
∂M

G · n dSM.

The divergence theorem is a special case of Stokes’ theorem [69].

Applying the Neumann boundary condition JdM
u n|∂M = 0 the boundary integral van-

ishes, since components of JdM
u n are ∇Mui ·n, for i = 1, 2, . . . n. We are therefore left with

the desired result,

d

dt
E[u(x, t)] = −

n∑
i=1

∫
M

(∆Mu
i)2,

= −
∫
M
‖∆Mu‖22 dvM ≤ 0.

3.3.2 Equivalence to projection onto target manifold N

We now show that the solution computed by Algorithm 3.2 (or 3.1) is equivalent to

the PDE (3.17) (or (3.15)) as ε → 0. The equivalence is shown for the more general case,

Algorithm 3.2, since Algorithm 3.1 is just the specific case when F = ∆Mu and η = 1.

Similar to the start of Section 3.3.1, first Taylor expand ũ(x, t + ε) and substitute

ηF(x, ũ,JdM
ũ , . . .) for ∂ũ/∂t to obtain

ũ(x, t+ ε) = ũ(x, t) + εηF(x, ũ(x, t),JdM
ũ(x,t), . . .) +O(ε2).

Taylor expanding above assumes that u(x, t) is a C2 map. The solution at time t + ε can

therefore be expressed as

u(x, t+ ε) = cpN (ũ(x, t) + εηF(x, ũ(x, t),JdM
ũ(x,t), . . .) +O(ε2)).

Now since cpN : Rn → Rn the general form of Theorem 1 must be used for its Taylor

expansion. Note that the simplified notation in (3.26) is used here. Taylor expanding cpN

we have

u(x, t+ ε) = cpN (ũ(x, t)) + JcpN (ũ(x,t))

(
εηF(x, ũ(x, t),JdM

ũ(x,t), . . .) +O(ε2)
)

+O(ε2),

= u(x, t) + εηJcpN (u(x,t))F(x,u(x, t),JdM
u(x,t), . . .) +O(ε2),
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since cpN (u(x, t)) = u(x, t) and ũ(x, t) = u(x, t). The assumption made when Taylor

expanding is that cpN is a C2 map.

It is shown by März et al. [52] that for any y ∈ S

JcpS(y) = I−∇dS(y)∇dS(y)T = ΠTyS . (3.34)

Using (3.34) in our previous expansion yields

u(x, t+ ε) = u(x, t) + εηΠTu(x,t)N (F(x,u(x, t),JdM
u(x,t), . . .)) +O(ε2).

Rearranging to obtain an approximation to the time derivative gives

u(x, t+ ε)− u(x, t)

ε
= ηΠTu(x,t)N (F(x,u(x, t),JdM

u(x,t), . . .)) +O(ε). (3.35)

Taking the limit as ε→ 0 completes the proof,

∂u

∂t
= ηΠTuN (F(x,u,JdM

u ,HdM
u , . . .)).

The truncation error involved when splitting the evolution (3.17) in Algorithm 3.2 is

first order. To see this define the truncation error as

τ =
∂û

∂t
− ηΠTu(x,t)N (F(x,u(x, t),JdM

u(x,t), . . .)), (3.36)

where ∂û/∂t is an approximation to ∂u/∂t. Here the approximation to ∂u/∂t is given

in (3.35) as

∂û/∂t = ηΠTu(x,t)N (F(x,u(x, t),JdM
u(x,t), . . .)) +O(ε).

Substituting ∂û/∂t into (3.36) gives a first order truncation error τ = O(ε). This is consis-

tent with the numerical convergence studies presented in Chapter 4.
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Chapter 4

Numerical Results

There are numerous areas of application of harmonic maps and general manifold map-

pings. Certain applications, such as direct cortical mapping [68], are primarily interested

in the values of the map u. Other applications are more visual. In this section we high-

light the behaviour and performance of our method with the computation of identity maps

and two other visual applications. First, convergence studies of identity maps for the unit

sphere, an ellipsoid and a torus are given. In Section 4.2 we denoise texture maps following

the idea from Mémoli, Sapiro and Osher [54]. We also perform colour image denoising via

chromaticity diffusion [74] in Section 4.3.

4.1 Identity maps

As mentioned in Chapter 3 the identity map u(x) = x is a harmonic map. Identity

maps are obviously not the most interesting application since M = N ; however, conver-

gence studies can be conducted since the exact harmonic map is known. Here we perform

convergence studies of identity maps for the unit sphere, an ellipsoid and a torus. Gaussian

noise is applied in each direction of R3 to points on N . The points are then projected back

onto N using cpN . In this manner an initial noisy map from M to N is created. Algo-

rithm 3.1 is used with this initial noisy map as u0 to compute the harmonic map from M

to N .

The addition of random noise produces slightly different convergence rates each time

Algorithm 3.1 is used. Tables 4.1-4.3 therefore show convergence rates averaged over 10

trials of the algorithm. The forward Euler method was used to discretize in time and
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∆x Error Conv. rate

0.1 1.89e− 02
0.05 9.90e− 03 0.9285
0.025 5.07e− 03 0.9658
0.0125 2.49e− 03 1.0252
0.00625 1.24e− 03 1.0070

Table 4.1: Convergence study for the computation of a unit sphere identity map with
Algorithm 3.1.

∆x Error Conv. rate

0.1 1.84e− 02
0.05 9.77e− 03 0.9139
0.025 4.92e− 03 0.9910
0.0125 2.52e− 03 0.9674
0.00625 1.23e− 03 1.0268

Table 4.2: Convergence study for the computation of an ellipsoid identity map using Algo-
rithm 3.1. The ellipsoid was constructed with minor axis of length 0.75 and major axis of
length 1.25.

second order centred finite differences were used for the Laplacian operator. The time

step size ∆t was set as ∆t = 0.1∆x2 to ensure stability. The error was taken to be the

average absolute error in the position of each point. That is, if the initial identity map was

comprised of N points

Error =
1

N

N∑
i=1

‖u(xi)− xi‖2.

All identity maps were computed using Algorithm 3.1 until time tf = 0.005. Tables 4.1-4.3

confirm the first order convergence of Algorithm 3.1.

∆x Error Conv. rate

0.1 1.93e− 02
0.05 9.90e− 03 0.9655
0.025 5.04e− 03 0.9744
0.0125 2.52e− 03 1.0019
0.00625 1.25e− 03 1.0101

Table 4.3: Convergence study of a torus identity map computation using Algorithm 3.1.
The torus was constructed with minor radius 0.4 and major radius 1.
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4.2 Diffusion of noisy texture maps

We now show the behaviour of Algorithm 3.1 by denoising a noisy texture map. The

texture map gives a means for visualization of the map u. To begin, a texture map T is

created using the ideas of Zigelman et al. [79]. The map T is inverted to yield a map

w(x) : D → N from the planar image domain D to the surface N .

A noisy map is created by adding a normally distributed random map r(x) : D → R3 to

w. The sum of r and w is generally not on N , so this summation is followed by a projection

step onto N . This gives a noisy map u0 : D → N from the image domain to the surface N

defined by

u0(x) = cpN (w(x) + r(x)). (4.1)

The construction of u0 here is the same as in Section 4.1 but with w(x) instead of u(x). The

gradient descent equations (3.15) are expected to diffuse u0 analogous to H1-regularization

of a planar image. It is important to recognize, however, that it is the initial map u0 that

is diffused not the colour values of the image. The image is only placed on N to enable

visualization of the initial map and the harmonic map computed by Algorithm 3.1.

4.2.1 Texture mapping by multidimensional scaling

For completeness, an explanation of the texture mapping method by Zigelmann et al. [79]

via multidimensional scaling (MDS) is needed. Note that there are many ways of obtaining

T. Computation of T can rely on dimensionality reduction like Zigelman et al. (see [36]

for a survey) or other mapping techniques such as conformal mappings [42]. Here a very

simple method is chosen since the construction of T is not the primary concern of our work;

the map T is only needed for visualization of our method. There are two key aspects to

create T: the computation of geodesic distances on N and the dimensionality reduction of

N based on geodesic distances.

There are a number of possible ways to compute geodesic distance between points on

the manifold N . For the example of N = S2 in Section 4.2.2, there is an exact expression

for geodesic distance between points ui and uj . The geodesic distance between points ui

and uj on the unit sphere is simply

dij = cos−1(ui · uj).

36



For more arbitrary objects there have been many different methods developed to compute

geodesic distance between ui and uj . Some examples for polyhedral surfaces are [56, 79].

A method for use with a level set implicit representation of the surface is given in [53]. A

recent approach applicable to many different surface representations, including point clouds,

is introduced in [28]. For the example in Section 4.2.2 with N as a triangulated pig surface

we use the publicly available Matlab software [1], which implements the work of Mitchell

et al. [56] with some minor improvements.

Once geodesic distances can be computed classical MDS is used to construct a map T

from N to the plane D ⊂ R2. Choose q points on N and let the geodesic distance between

points ui and uj be denoted dij . A q × q real symmetric matrix, M, of squared geodesic

distances is formed, where {M}ij = d2
ij . MDS is then used to “flatten” the n-dimensional

coordinates of N to 2-dimensional coordinates based on M. Hence, the goal is to compute

a q × 2 matrix X that contains the 2-dimensional coordinates corresponding to each n-

dimensional point on N . Obviously for manifolds with effective Gaussian curvature, one

cannot flatten N such that the Euclidean distance between points in X equals the geodesic

distance between points on N (see [31]). Instead MDS aims to compute coordinates in X

such that the error between the Euclidean distances and corresponding geodesic distances

is small.

To compute the 2-dimensional coordinates in X one first applies a double centering and

normalization to M. This is accomplished by multiplying both sides of M by the matrix

C = I− 1
q11T , where 1 is a vector of q ones. Then the matrix

B = −1

2
CMC

is approximated (in a least squares sense) by a matrix of rank 2. From the properties of

eigenvalue decompositions, we know that B can be approximated using the two largest

eigenvalues of B and their corresponding eigenvectors. Let Λ+ denote the 2 × 2 diagonal

matrix of largest positive eigenvalues. Let Q+ be the q × 2 matrix of eigenvectors corre-

sponding to eigenvalues in Λ+. The approximate 2-dimensional coordinates of the q points

on N are

X = Q+Λ+.

Solving the eigenvalue problem to compute X is accomplished in Matlab as shown in

Algorithm 4.1. The matrix X can be shown to be the minimizer of the Strain loss function
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Algorithm 4.1 Classical Multidimensional Scaling

C = eye(size(M,1)) - ones(size(M,1))./(size(M,1));

B = -0.5 * C * M * C; % center and normalize M
[Q, Λ,~] = eigs(B,2,’LA’); % solve for eigenvalues and eigenvectors
X = [sqrt(Λ(1,1)).*Q(:,1), sqrt(Λ(2,2)).*Q(:,2)];

L(X) = ‖XXT −B‖,

which is one of many alternative loss functions in the theory of multidimensional scaling.

For more information see [79] and references within.

The correspondence between the q selected points on N and 2-dimensional points in X

defines the texture map T from N to D. The map is inverted to obtain the map w : D → N .

Since colour values of the image I may be defined at different locations x than locations

in D, an interpolation scheme must be used to determine the colour value at each point in

X. This interpolation was accomplished using the griddata command in Matlab. After

interpolation we have constructed the map w(x) : I(x)→ N , which allows placement of I

onto N . To visualize the image on N the surface is triangulated and then displayed using

patch in Matlab.

Note that one must take q large enough such that when the surface is triangulated the

triangles are not visible, i.e., high enough resolution of N . One also needs to distribute the q

points around N somewhat uniformly; there is no benefit from increasing q if all the points

cluster in one portion of N .

Define the closest point set, ΩcpN , as the points on N obtained from evaluating cpN (u)

for each u ∈ Ωc. Remember that the computational domain Ωc consists of a uniform grid

in R3. For N = S2 the closest point set, ΩcpN , clusters in portions of the sphere, which

leads to unsatisfactory triangulations. Instead a points set ΩS2 obtained from the Matlab

command sphere and barycentric Lagrange interpolation, with degree 3 polynomials, is

used to obtain the values of the map at ΩS2 from ΩcpN . This also means that the map w

only needs to be constructed for ΩS2 , which is more efficient when solving the eigenvalue

problem in practice. In Section 4.2.2 we used q = 640, 000 for N = S2 to create w. Solving

the eigenvalue problem in Matlab is memory intensive, requiring more than 200Gb of

RAM on Compute Canada’s WestGrid server.

For the pig target manifold example in Section 4.2.2 we used q ≈ 18, 000 at points defined

by a refinement of the original triangulation. The refinement was accomplished using the
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publicly available Matlab software [2]. The refinement gave an adequate distribution of the

points for creating the map w. Linear interpolation was once again used in each dimension

to obtain values of the map at ΩN=pig from ΩcpN .

4.2.2 Harmonic maps from the plane

The initial noisy map u0 fromM, the plane, to N can now be constructed as described

in equation (4.1). Algorithm 3.1 is then applied with u0 as an initial condition. Numerical

implementation of Algorithm 3.1 is nearly identical to the closest point method for PDEs

on a single manifold [61]. The sole difference is the need to evaluate the closest points of

ũ(x, t+ ε) on N via cpN (ũ(x, t+ ε)). Note that the computational domain Ωc was banded

with respect to the target manifold N .

Our codes are all straightforward modifications of existing Matlab closest point method

software [4]. In particular, note that if cpN has an explicit formula, then we add the

corresponding formula to the code for heat flow on M. If instead cpN is defined on a

discrete set of points, we introduce an interpolation step since ũ will not necessarily lie on

the grid defining cpN . This interpolation was accomplished using scatteredInterpolant

in Matlab with a linear interpolant.

In both examples below, the heat equation is discretized by second order centred dif-

ferences in space and forward Euler time-stepping. The discretization step size in space is

taken to be ∆x = 0.05 for the plane to unit sphere maps and ∆x = 0.003125 for the plane

to pig maps discussed below. The time step size is set as ∆t = 0.1∆x2 to ensure numerical

stability. Further note that the surfaces are only triangulated afterwards for visualization

purposes.

In our first example, we compute from a plane to N = S2. Figure 4.1 shows the original

map w (first column), the noisy map u0(x) (second column) and our computed harmonic

map u(x) (third column). Two different colour images are mapped onto N = S2 to exhibit

different behaviour of the algorithm. Two viewing angles are shown for each of the different

planar images. The blue, white, black and yellow checkerboard image [3] shows that angles

are preserved with the harmonic map. The image of two parrots [60] shows that the overall

image does not become distorted.
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(a) (e) (i)

(b) (f) (j)

(c) (g) (k)

(d) (h) (l)

Figure 4.1: The original mapping w of the image is given in (a)-(d) for two viewing angles
with the two different planar images. The noisy initial map u0(x) from a plane to the unit
sphere is shown in (e)-(h). The harmonic map u(x) computed with Algorithm 3.1, after 60
time steps, is displayed on the unit sphere in (i)-(l).
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Notice that the closest point function for the unit sphere is known analytically, cpS2 =

x/‖x‖2, so no interpolation is needed. The harmonic map u(x) in Fig. 4.1 took approx-

imately 1 second to compute on a Macbook Air (1.4 GHz Intel Core i5). Computation

time does not include the preprocessing computation of u0, which is different for every

application.

In our second example, a harmonic map between a plane source manifold and a pig

target manifold [46] is constructed. The first column of Figure 4.2 shows the initial map

w using two different planar images and at two viewing angles of the pig. The second

and third columns of Figure 4.2 give two viewing angles of the initial noisy map u0 and

computed harmonic map u, respectively. The two planar images once again exhibit how

harmonic maps preserve angles and the overall fidelity of the original image. The colourful

horizontal checker planar image was found at [5].

The closest point function cpN for the pig is evaluated on a grid near the pig surface

using an algorithm described in [61]. The closest point function cpN is then evaluated as

needed using linear interpolation based on these grid values. This interpolation combined

with a smaller ∆x (to capture fine features on the pig) cause much more computational

work. The harmonic map in Fig. 4.2 took roughly 2.4 hours to compute on a Macbook

Air (1.4 GHz Intel Core i5). Computation time does not include the preprocessing steps of

computing u0 and cpN .

We conclude this section with a convergence study ofM as a plane and N = S2. There

is no analytical solution for this example so we compute an error estimate with a reference

solution, uref, using ∆x = 0.003125. The difference between uref and u is compared with

different ∆x at the final time tf = 0.015. The error estimate used is the average 2-norm of

the difference between uref and u. Specifically, the error estimate is taken to be

(Error Est.) =
1

N

N∑
i=1

‖u(xi)− uref(xi)‖2 ,

where N = 8002 is the number of points in the initial texture map. In Table 4.4 first order

convergence is observed when averaging the errors and convergence rates over 100 trials.

4.2.3 Harmonic maps from a cylinder to a submanifold of S2

In Section 4.1 examples of harmonic maps between two curved surfaces, with M = N ,

were shown. In the last section harmonic maps were computed between the plane and a
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(a) (e) (i)

(b) (f) (j)

(c) (g) (k)

(d) (h) (l)

Figure 4.2: The original mapping w of the image is given in (a)-(d) for two viewing angles
with the two different planar images. The noisy initial map u0(x) from a plane to a pig
is shown in (e)-(h). The harmonic map u(x) computed using Algorithm 3.1 with 15 time
steps is displayed on the pig in (i)-(l).
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∆x Error Est. Conv. rate

0.1 6.59e− 03
0.05 2.93e− 03 1.1684
0.025 1.43e− 03 1.0353
0.0125 7.32e− 04 0.9655
0.00625 3.71e− 04 0.9789

Table 4.4: Convergence study using errors between a reference solution uref and harmonic
map u from a plane to S2.

curved surface N . An example of harmonic maps between two curved surfaces withM 6= N

is given in this section. The harmonic maps are computed from a cylinder to a portion of

the unit sphere. We take a unit radius cylinder with z ∈ [−2, 2] and no top or bottom.

The construction of the initial map for this example is slightly different; the texture

mapping method by Zigelman et al. [79] is not used. Instead an image is placed on the

surface of the cylinder by a simple change of variables. The image is sized so that x ∈ [−π, π]

and y ∈ [−2, 2]. The x coordinate of the pixel is taken to represent the angle θ in cylindrical

coordinates. The y coordinate of the pixel is taken as the height z in cylindrical coordinates.

Intuitively, the planar image is simply rolled into a cylinder.

A texture map onto the sphere is then computed by finding points on the cylinder in

the radial direction of points on the sphere. This is accomplished using the inverse of the

closest point function for the sphere cpS2 . For each point pS2 = (p1, p2, p3)T of interest on

the sphere, the point pcyl on the cylinder in the radial directions from pS2 is

pcyl =


p1

√
1 + p2

3

p2

√
1 + p2

3

p3√
1−p23

 .

The point pcyl is generally not a pixel location on the cylinder, so linear interpolation is

used to obtain the colour value at pcyl. The same colour is assigned to the corresponding

point pS2 to place the image on the sphere. Note that since the cylinder is restricted to

z ∈ [−2, 2] the map only consists of points on a sphere with open north and south poles.

The addition of noise to the map between the cylinder and sphere is performed as before

in (4.1). This noisy map from the cylinder to the sphere is taken as u0. The noise in the

map is removed by computing the harmonic map between the cylinder and sphere with

Algorithm 3.1.
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The computational domain is constructed as a band around the surface of the cylinder.

Once again forward Euler time-stepping and second order centred finite differences in space

are used. A spatial discretization of ∆x = 0.00625 is taken for 300 time steps of ∆t =

0.1∆x2. The original, noisy and computed harmonic maps from the cylinder to a portion

of the unit sphere are depicted in Figure 4.3. Two different planar images are placed on

the sphere. For each planar image the sphere is viewed at two angles. The colour checker

planar image source is [6].

4.3 Denoising colour images

Colour image denoising is another application that validates our numerical framework

for harmonic maps and p-harmonic maps. The first approach one might use to denoise a

colour image would be to denoise the intensity values, e.g., RGB colour intensity vector

I(x) = (IR(x), IG(x), IB(x))T with x denoting the pixel location. Many authors have

however applied a different approach to denoise colour images, since colour artifacts are

frequently observed when denoising just intensity values. These artifacts are thought to

occur when the direction (chromaticity) of I is not well preserved. The idea is therefore to

denoise both the intensity I and the chromaticity u = I/‖I‖2, separately (see [74, 76] and

numerous references within).

Originally the difficulty when denoising the chromaticity was because it is a map, u(x) :

M→ S2, from a plane M to the unit sphere S2. The chromaticity is however a map that

can be easily denoised using our framework. Specifically, the algorithms for p-harmonic

maps with p = 2 (isotropic diffusion) and p = 1 (anisotropic diffusion) are implemented.

Methods for denoising the intensity of an image are well-established, e.g., H1-regularization,

TV denoising [20], filtering approaches [9], but are not our focus here. Noise is only applied

to the chromaticity u = I/‖I‖2 of the images here, so as to not confuse the denoising caused

by chroma diffusion with intensity diffusion.

“Salt and pepper” like chromaticity noise is applied to the original image in the following

manner. Choose some small subset of the image pixels, 5% in our examples, in a uniformly

random manner. For each randomly selected pixel, choose red, green or blue in a uniformly

random way and set u = (1, 0, 0)T if red, u = (0, 1, 0)T if green or u = (0, 0, 1)T if blue. The
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(a) (e) (i)

(b) (f) (j)

(c) (g) (k)

(d) (h) (l)

Figure 4.3: The original mapping (described in text) of the image is given in (a)-(d) with
two planar images and viewed at two different angles for each. The corresponding noisy
initial map u0(x) from the cylinder to unit sphere is shown in (e)-(h). The harmonic map
u(x) computed with Algorithm 3.1 after 300 time steps is displayed on the sphere in (i)-(l).
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(a) (b) (c)

(d) (e) (f)

Figure 4.4: Isotropic diffusion of chromaticity noise for two 256×256 pixel images: cartoon
of Newfoundland row houses [19] (first row) and natural scene of flowers (second row). The
noisy image (b) was denoised to give (c) after 25 time steps. The noisy flower image in (e)
took 30 time steps to give the denoised image in (f).

intensity values I(x) of the original image remain unchanged. The latter noisy chromaticity

map is taken as the initial map u0(x).

To denoise the chromaticity with isotropic diffusion, Algorithm 3.1 is implemented.

The diffusion is evolved for a number of time steps until the noise is considered sufficiently

removed. Stopping criteria based on reaching steady state could also be implemented. To

avoid interpolation of the initial map u0, the uniform spatial discretization is taken at a

resolution of one pixel, i.e., ∆x = 1 pixel. The heat equation in Algorithm 3.1 is discretized

using second order centred finite differences in space. A forward Euler discretization in

time is taken with time step size ∆t = 0.1∆x2. Figure 4.4 shows the original images in the

first column, chromaticity noise added in the second column and the isotropically denoised

image in the third column.

Anisotropic chromaticity diffusion is slightly more involved numerically. The anisotropic

diffusion of the initial noisy map is accomplished using (3.19) with p = 1, which simplifies

46



(a) (b) (c)

(d) (e) (f)

Figure 4.5: Anisotropic diffusion of 256 × 256 pixel images with chromaticity noise. A
cartoon of Newfoundland row houses [19] (a) with noise added to the chromaticity in (b)
was denoised to give (c) after 55 time steps. The flower image (d) with noise in (e) took
100 time steps to give the denoised image in (f).

to 

∂u

∂t
= ΠTuN

(
∇ ·
(

Ju

‖Ju‖F

))
,

u(x, 0) = u0(x),

Jun|∂M = 0.

(4.2)

Remember that the divergence of the matrix is defined to be the divergence of each row of

the matrix. As mentioned in Chapter 3, the PDE (4.2) is in the class of PDEs that can be

numerically solved by Algorithm 3.2. Each row of Ju is computed using first order forward

finite differences in space. The divergence of each row of Ju/‖Ju‖F is then computed using

first order backward finite differences. Forward Euler time-stepping is once again used but

with time step size ∆t = 0.5∆x2. One obvious difficulty is if ‖Ju‖F = 0, which causes a

division by zero. In practice one divides by ‖Ju‖F + δ where δ ∈ R is some small positive

constant. In the examples here δ is taken to be δ = 10−16.

Figure 4.5 shows the same original images as Figure 4.4 in the first column. The chro-
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(a) (b) (c) (d)

Figure 4.6: Comparison of isotropic and anisotropic diffusion of a simple 256 × 256 pixel
red, green and blue image. Chromaticity noise is added in (b) and denoised with 30 time
steps in (c) using isotropic diffusion. Anisotropic diffusion is applied for 125 time steps to
give the denoised image (d). Notice the blur of colours in (c) and the preservation of the
edges between colours in (d).

maticity noise is shown in the second column and the anisotropically denoised image is given

in the third column. It is difficult to see the difference between the isotropic and anisotropic

diffusion with the images in Figures 4.4 and 4.5. Figure 4.6 shows clearly how the anisotropic

diffusion preserves edges between different colours better than isotropic diffusion.
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Chapter 5

Conclusion

The main goal of this thesis was to establish a numerical framework for variational

problems and PDEs that define maps between a source manifold M and target manifold

N . A complete framework for all types of manifold mapping variational problems and PDEs

is highly dependent on each type of problem. Some necessary ideas were however illustrated

with the important example of p-harmonic maps. The inclusion of a data fidelity term with

the harmonic mapping energy was also discussed.

To our knowledge, there has been no numerical framework developed for solving general

variational problems and PDEs that define maps between manifolds. As mentioned at the

start of Chapter 3, there has mostly been work on numerical methods for harmonic maps

onto N = Sn−1 using a finite element approach. The work progressed to a finite element

method for harmonic maps onto more general target manifolds in [13]. Another approach,

more closely related to the work here, is that of Mémoli et al. [54]. They embed the

problem in the surrounding space using level set representations instead of the closest point

representation. Their approach is detailed for the harmonic mapping problem; however,

their ideas also extend to more general manifold mapping problems.

In our approach, the problem is embedded in the surrounding space using the closest

point representations ofM and N . This is accomplished by writing all geometric quantities

intrinsic to M and N in terms of cpM and cpN , respectively. By adopting the closest

point formulation, geometric flexibility is gained (the surfaces can be open or closed and

need not be oriented) as well as improved algorithm simplicity and efficiency. Moreover, the

closest point approach does not have the same stability restrictions and convergence order

degradation compared to the level set approach.
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Algorithm 3.1 for harmonic maps between manifoldsM and N is particularly straight-

forward; one alternates between a step of the closest point method for heat flow intrinsic

to M and a projection step onto N (via the closest point mapping). Our novel splitting of

the evolution into two steps reduces the problem of solving a PDE with quantities on both

M and N to solving a PDE on justM. Algorithm 3.1 was shown to decrease the harmonic

energy as the time step ε → 0. Algorithm 3.1 is also consistent with the original PDE up

to first order. A more general PDE (3.17), involving intrinsic geometric quantities on M

that are projected onto the tangent plane of N , can be handled similarly. Algorithm 3.2

details the two alternating steps to solve (3.17). The latter algorithm is shown to be first

order accurate as well.

Chapter 4 gave numerical examples of identity maps, denoising noisy texture maps and

denoising colour images to demonstrate the behaviour and performance of Algorithms 3.1

and 3.2. Algorithm 3.1 was confirmed numerically to be first order accurate for identity

maps of the unit sphere, an ellipsoid and a torus. It was also shown to be first order accurate

for a map from a plane to the unit sphere.

There are two obvious directions for future work. Exploring the use of the harmonic

maps in other applications not presented here is one direction. Extending the framework to

handle more general variational problems and PDEs is another possible avenue. Applying

this framework to the texture mapping method of Dinh et al. [30] is a possible application.

Another application is direct cortical mapping [68] discussed briefly in Section 3.2.1. The

energy functional for direct cortical mapping involves the harmonic energy (3.5) and a

data fidelity term. The difficulties for direct cortical mapping comes from the specialized

numerical schemes needed to handle sulcal curves and the construction of an initial map

u0. A simpler medical imaging application is the computation of maps between optic nerve

heads [39].

Somewhat less related to the work of this thesis, however important future work nonethe-

less, is the computation of geodesics. Geodesic computation arises in many problems in sci-

ence and was needed for the texture mapping application of harmonic maps in Section 4.2.

There are two promising approaches to geodesic computation with the closest point method.

Similar to Mémoli et al. [53] one could solve the Euler-Lagrange equations (3.13) for har-

monic maps from R to the target manifold N . The second approach would be to apply

the ideas of Crane et al. [28] with the closest point method. Crane et al. [28] show that
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their approach using heat flow is comparable in accuracy and much faster than the usual

alternative of solving the eikonal equation.
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