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Abstract

This project aims to establish the relationship of forest fire behavior with ecological /en-

vironmental factors, such as forest structure and weather. We analyze records of forest

fires during the fire season (May to September) in 1992 from the Forest Fire Manage-

ment Branch of Ontario Ministry of Natural Resource (OMNR). We start with a preliminary

analysis of the data, which includes a descriptive summary and an ordinary linear regres-

sion analysis with fire duration as the response. The preliminary analysis indicates that

the fire weather index (FWI) used by Natural Resource of Canada is the most relevant

together with fire location and starting time. We apply semi-variogram and Moran’s I, the

conventional methods for exploring spatial patterns, and extend them to investigate spatio-

temporal patterns with the fire data. Evaluations of the extended Morans I statistic with the

residuals of the ordinary linear regression analysis reveal a large departure from the inde-

pendence and constant variance assumption on the random errors. It motivates two sets

of partially linear regression models to accommodate possible nonlinear spatial/temporal

patterns of the forest fires. We integrate univariate and bivariate Kernel smoothing pro-

cedures with the least squares procedure for estimating the model parameters. Residual

analysis indicates satisfactory fittings in both sets of regression analysis. The partially lin-

ear regression analyses find that the association of fire duration with FWI varies across

different fire management zones, and depends on the fire starting time.

Keywords: Kernel Smoothing; Local Constant/Linear Regression; Morans I; Partially Lin-

ear Models
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“Love all, trust a few, do wrong to none”

— William Shakespeare,

ALL’S WELL THAT ENDS WELL, 1623

vi



Acknowledgments

I would like to express my deep gratitude to my supervisor, Professor Joan Hu. She has

been very supportive since the days I joined the master program in statistics at Simon

Fraser University. I feel lucky to have a supervisor who cared so much about my work

throughout the two years of my masters study. Her excellent guidance and scholarly inputs

lead me to complete my thesis project step by step. What I learn from her is not just how

to meet the program requirements, but also how to work as a good statistician.

I am grateful to Dr. Derek Bingham, Dr. John Braun and Dr. Tim Swartz for serving on

my project committee. I am also thankful to Dr. Steve Cumming, Dr. Meg Krawchuk and

Dr. Mike Wotton for their precious advice and comments on the fire data that my project is

based on.

I would like to thank Professors Ian Bercovitz, David Campbell, Jinko Graham, Robin

Insley, Richard Lockhart, Tim Swartz, Carl Schwarz, Boxing Tang in particular and all the

professors in the department of Statistics and Actuarial Science for teaching me statistics

and helping me to become a qualified statistician. I also thank Charlene Bradbury, Kelly

Jay and Sadika Jungic for their kind help in the past two years.

Additionally, I want to thank my fellow graduate students Sherry Chen, Michael Grosskopf,

Bobby Han, Kunasekaran Nirmalkanna, Nate Payne, Werjindra Premarathna, Pulindu Rat-

nasekera, Gerald Smith, Biljana Stojkova, Elena Szefer, Fei Wang, Huijing Wang, Vicky

Weng, Annie Yu, Sabrina Zhang and friends Annie He, Yanfang Le, Cindy Sun for their

help, encouragement, and friendship.

Finally, I record my special thanks to my parents, Junshun Xiong and Lixia Jiang, whose

love and support have been always with me.

vii



Contents

Approval ii

Partial Copyright License iii

Abstract iv

Dedication v

Quotation vi

Acknowledgments vii

Contents viii

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Project Objective and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Preliminary Analysis of Forest Fire Data 4

2.1 Descriptive Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Response Variables: Measurements of Fire . . . . . . . . . . . . . . 4

2.1.2 Explanatory Variables: Location and Time . . . . . . . . . . . . . . . 5

2.1.3 Explanatory Variables: Weather and Fuel Information . . . . . . . . 11

2.2 Ordinary Linear Regression Analysis . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Notation and Model Specification . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Residual Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

viii



3 Detecting Spatio-Temporal Correlation 21

3.1 Detecting Spatial Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Semi-variogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.2 Moran’s I Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Extended Methods for Spatio-Temporal Correlation . . . . . . . . . . . . . . 27

3.2.1 Spatio-Temporal Semi-variogram . . . . . . . . . . . . . . . . . . . . 28

3.2.2 Extended Moran’s I . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Application of Moran’s I in Residuals Analysis . . . . . . . . . . . . . . . . . 32

3.3.1 Check Spatial Correlation in Residuals . . . . . . . . . . . . . . . . . 32

3.3.2 Check Spatio-Temporal Correlation in Residuals by Extended Moran’s

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Partially Linear Regression Analysis of Forest Fire Data 39

4.1 Notation and Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Partially Linear Regression Analysis with Models 4.2(a) and 4.2(b) . . . . . 41

4.2.1 Estimation Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.2 Bandwidth Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.3 Estimation of Variance . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.4 Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.5 Residual Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Analysis of Partially Linear Regression with Model 4.3(a) and 4.3(b) . . . . 59

4.3.1 Estimation Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.2 Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.3 Residual Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Final Remarks 77

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Bibliography 79

ix



List of Tables

2.1 Description of the Fire Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Summary of Fire Duration and Size . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Regions and Districts in Ontario . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Summary Statistics of Fire Duration in Each Fire Zone . . . . . . . . . . . . 8

2.5 Summary Statistics of Fire Duration in Each Region . . . . . . . . . . . . . 8

2.6 Summary Statistics of Fire Duration in Each Month . . . . . . . . . . . . . . 10

2.7 Statistical Summary of Weather and Fuel Information . . . . . . . . . . . . 14

2.8 Statistical Summary of Standardized Weather and Fuel Information . . . . . 14

2.9 Ordinary Linear Regression Models . . . . . . . . . . . . . . . . . . . . . . 15

2.10 Regression Coefficients Estimates in Model 2.1(a). . . . . . . . . . . . . . . 16

2.11 Regression Coefficients Estimates in Model 2.1(b) and (c). . . . . . . . . . 17

3.1 Summary Statistics of Simulated Moran’s I . . . . . . . . . . . . . . . . . . 25

3.2 Moran’s I test on Model 2.1(a) and (b) . . . . . . . . . . . . . . . . . . . . . 33

4.1 Bandwidth Selection of Model (4.2a) and (4.2b) . . . . . . . . . . . . . . . . 44

4.2 Estimates of Regression Coefficients for Model (4.2a) and (4.2b) . . . . . . 47

4.3 Moran’s I test on Model (4.2a) and (4.2b) . . . . . . . . . . . . . . . . . . . 51

4.4 Bandwidth Selection of Model (4.3a) and (4.3b) . . . . . . . . . . . . . . . . 62

4.5 Estimates of Regression Coefficients for Model (4.3a) and (4.3b) . . . . . . 64

4.6 Moran’s I test on Model 4.3(a),(b) . . . . . . . . . . . . . . . . . . . . . . . . 70

x



List of Figures

2.1 Histograms of Fire Duration and Fire Size . . . . . . . . . . . . . . . . . . . 6

2.2 Scatterplots of Fire Duration and Fire Size . . . . . . . . . . . . . . . . . . . 7

2.3 Fire Durations of Different Zones and Regions . . . . . . . . . . . . . . . . 9

2.4 Fire Duration vs. Fire’s Start Date . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Fire Duration vs. Fire’s Start Date in terms of Fire Management Zones and

Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 The FWI System from Natural Resource of Canada (2008) . . . . . . . . . 12

2.7 Interpreting the Canadian Forest Fire Weather Index(FWI) System from De Groot

et al. (1998) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.8 Moisture Content and Fuel Moisture Code from Van Wagner et al. (1987) . 13

2.9 Association of FWI with Fire Starting Time and Fire Location . . . . . . . . 14

2.10 Residual Maps with Ordinary Linear Regression . . . . . . . . . . . . . . . 17

2.11 Normal QQ-Plots for Residuals . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.12 Scatterplots of Residuals in Model 2.1(a) . . . . . . . . . . . . . . . . . . . 19

2.13 Scatterplots of Residuals in Model 2.1(b) . . . . . . . . . . . . . . . . . . . 19

3.1 Semi-variograms of Simulated Independent Data . . . . . . . . . . . . . . . 23

3.2 Neighbors Within 400 km of Each Fire . . . . . . . . . . . . . . . . . . . . . 25

3.3 Moran’s I Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Moran’s I-based Spatial Correlogram for Fire Duration . . . . . . . . . . . . 27

3.5 Perspective Plot of Extended Moran’s I . . . . . . . . . . . . . . . . . . . . . 30

3.6 Extended Moran’s I-based Spatio-Temporal Correlogram for Fire Duration . 31

3.7 Semi-variograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.8 Spatial Correlograms for Model 2.1(a) and (b) . . . . . . . . . . . . . . . . . 33

3.9 Local Moran’s I Map for Model 2.1(a) and (b) . . . . . . . . . . . . . . . . . 34

3.10 Perspective Plots of Extended Moran’s I for Residuals with Ordinary Linear

Regression Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.11 Extended Moran’s I-based Spatio-Temporal Correlogram for Residuals in

Model 2.1(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

xi



3.12 Extended Moran’s I-based Spatio-Temporal Correlogram for Residuals in

Model 2.1(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Bandwidth Selection for Local Constant Estimator of h(t) with Model (4.2a) 45

4.2 Bandwidth Selection for Local Linear Estimator of h(t) with Model (4.2a) . . 45

4.3 Bandwidth Selection for Local Constant Estimator of h(t) with Model (4.2b) 45

4.4 Bandwidth Selection for Local Linear Estimator of h(t) with Model (4.2b) . . 46

4.5 Local Constant Smoothing Curves in Zone I, M and E for Model 4.2(a) . . . 47

4.6 Local Linear Smoothing Curves in Zone I, M and E for Model 4.2(a) . . . . 47

4.7 Local Constant Smoothing Curves in Zone I, M and E for Model 4.2(b) . . . 48

4.8 Local Linear Smoothing Curves in Zone I, M and E for Model 4.2(b) . . . . 48

4.9 Normal QQ Plot of Residuals in Model (4.2a) and Model (4.2b) by Local

Linear Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.10 Residual Plots of Model (4.2a) by Local Linear Estimator . . . . . . . . . . . 49

4.11 Residual Plots of Model (4.2b) by Local Linear Estimator . . . . . . . . . . . 49

4.12 Residual Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.13 Semivariogram of Residuals of Model (4.2a) and (4.2b) by Local Local Lin-

ear Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.14 Spatial Correlograms for Model (4.2a) and (4.2b) . . . . . . . . . . . . . . . 51

4.15 Local Moran’s I Map for Model (4.2a) and (4.2b) . . . . . . . . . . . . . . . . 52

4.16 Perspective Plot of Extended Moran’s I of Residuals with Model (4.2a) and

(4.2b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.17 Extended Moran’s I-based Spatial-Temporal Correlogram for Residuals in

Model (4.2a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.18 Extended Moran’s I-based Spatial-Temporal Correlogram for Residuals in

Model (4.2b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.19 Local Moran’s I-based Map for Residuals in Model (4.2a) . . . . . . . . . . 56

4.20 Local Moran’s I-based Map for Residuals in Model (4.2b) . . . . . . . . . . 57

4.21 Bandwidth Selection for Local Constant Estimator of g(s) with Model (4.3a) 62

4.22 Bandwidth Selection for Local Linear Estimator of g(s) with Model (4.3a) . . 62

4.23 Bandwidth Selection for Local Constant Estimator of g(s) with Model (4.3b) 63

4.24 Bandwidth Selection for Local Linear Estimator of g(s) with Model (4.3b) . . 63

4.25 Smoothed Values for Model (4.3a) by Local Constant Estimator . . . . . . . 65

4.26 Smoothed Values for Model (4.3a) by Local Linear Estimator . . . . . . . . 65

4.27 Smoothed Values for Model (4.3b) by Local Constant Estimator . . . . . . . 66

4.28 Smoothed Values for Model (4.3b) by Local Linear Estimator . . . . . . . . 66

xii



4.29 Normal QQ Plot of Residuals in Model (4.3a) and Model (4.3b) by Local

Linear Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.30 Residual Plots of Model (4.3a) by Local Linear Estimator . . . . . . . . . . . 67

4.31 Residual Plots of Model (4.3b) by Local Linear Estimator . . . . . . . . . . . 68

4.32 Residual Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.33 Semivariogram of Residuals of Model (4.3a) and (4.3b) by Local Linear Es-

timator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.34 Spatial Correlograms for Model (4.3a) and (4.3b) by Local Linear Estimator 70

4.35 Local Moran’s I Map of Residuals with Model (4.3a) and (4.3b) . . . . . . . 70

4.36 Perspective Plot of Extended Moran’s I for Residuals with Model (4.3a) and

(4.3b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.37 Extended Moran’s I-based Spatio-Temporal Correlogram for Residuals in

Model (4.3a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.38 Extended Moran’s I-based Spatio-Temporal Correlogram for Residuals in

Model (4.3b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.39 Local Moran’s I-based Map for Residuals in Model 4.3(a) . . . . . . . . . . 75

4.40 Local Moran’s I-based Map for Residuals in Model 4.3(b) . . . . . . . . . . 76

xiii



Chapter 1

Introduction

1.1 Background

Forest fire is a major cause of damage to both the forest ecosystem and human society. In

Canada, an average of 8,000 forest fires occur and the disruption costs are ranged from

500 million to 1 billion annually (Wotton, M. 2012). While less than half of the fires are

caused by lightning, the damage of those fires is greater than human-caused fires.

Forest fire management planning requires an understanding of the mechanism of fire

occurrence process. The process of a lightning-caused fire occurrence can be broken

down into 3 phases: ignition from a lightning strike, smouldering (either in the forest floor

or in surface), and detection (Kourtz and Todd 1992; Anderson et al. 2002). The first

stage of fire occurrence, i.e. the ignition, is crucial for the fire occurrence and the degree

of ignition will influence the way that fire behaves afterwards. Forest structure and climate

play the most important roles in the ignition of fire and these ecological factors often have

strong spatial and temporal characteristics. Hence, establishing the relationships between

the ecological factors and fire activities with embedded spatial and temporal characteristics

is in demand for fire management planning.

To understand the spatio-temporal patterns of fire activities, many researchers inves-

tigated the spatio-temporal patterns of fire occurrences and fire behavior (e.g. Gralewicz

et al. 2012; Krawchuk et al. 2006; Cumming 2001) from the historical data. Regression

analyses are carried out to study the relationship between a fire and associated ecological
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factors together with spatial and temporal characteristics of the fire. For example, Podur

(2001) presents spatial and temporal patterns of annual area burned by forest fire in On-

tario, Canada from 1917 to 2001, and Martell and Sun (2008) use spatial autoregressive

models to evaluate the association between environmental factors and fire’s burned area.

1.2 Project Objective and Outline

The previous studies suggest the importance of fires’ spatio-temporal characteristics in

evaluating the relationship between ecological risk factors and fire activities. This leads us

to consider a regression model for fire activity accounting for the spatio-temporal correla-

tion. Let Yi = Y (si, ti) be a measurement (e.g. duration of the fire) of fire i, occurring in

location si and starting at time ti. A general regression model is :

Yi = µ(si, ti; zi) + εi; i = 1, 2, · · · , n, (1.1)

where zi are the ecological factors of interest, µ(si, ti; zi) = E[Yi|zi] and εi = ε(si, ti) is the

random error with E[εi] = 0. The spatial and temporal patterns of the response can be

modeled by specifications of the mean function, together with the distribution of random

errors.

We aim to study the relationship between fire activities and the ecological factors (e.g.

moisture content in the forest, the weather condition) in order to provide insights to forest

fire control. The forest fire data provided by Forest Fire Management Branch of Ontario

Ministry of Natural Resource (OMNR) and described in Chapter 2 are used to motivate and

illustrate our approaches. Regression analyses with various specifications of µ(si, ti; zi)

in (1.1) are conducted with the fire data. We begin with the ordinary linear regression

analysis and use it to motivate two sets of partially linear models to capture better spatial

and temporal correlation in fire activities.

Another statistical objective is to check for the spatio-temporal correlation to validate

the regression model assumptions. We review the conventional approaches first and adapt

them to analyze the forest fire dataset in Chapter 3.

2



We organize the rest of the project as follows. In Chapter 2, we present descriptive

data analysis and an ordinary linear regression analysis with the forest fire data. Chapter

3 reviews some methodologies for detecting spatio-temporal correlation and adapts the

methods to the forest fire data. We present procedures for estimating the parameters in

the partially linear models and conduct residual analyses in Chapter 4. A summary of the

study and a list of future work are provided in Chapter 5.
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Chapter 2

Preliminary Analysis of Forest Fire

Data

This chapter first presents a descriptive summary of the forest fire data set. Then we ana-

lyze the forest fire data with the ordinary linear regression model as a preliminary analysis.

2.1 Descriptive Data Analysis

The Forest Fire Management Branch of Ontario Ministry of Natural Resource (OMNR) have

records of 259 lightning-caused fires during the fire season of 1992 (May to September).

The dataset includes information of fire’s size, durations, location, related fuel information

and weather condition. The variables of the dataset are listed in Table 2.1. The following

presents numerical and graphical summaries of the data.

2.1.1 Response Variables: Measurements of Fire

Fire size and fire duration are commonly-used measures of fire impact. Table 2.2 sum-

marizes the means, medians and standard deviations of the fire durations and sizes. The

standard deviations for both fire durations and sizes are quite high. The big differences

between means and medians indicate severe skewness of the original data, and the large

standard deviations show great variations in the data. The histograms of fire sizes and

fire durations are plotted in Figure 2.1a and 2.1b. We can see that the distributions of

4



Table 2.1: Description of the Fire Dataset

Variable Name Abbreviation Description Units of Measurements Value Range
Fire Measurement Variables

Size N/A The area of each fire has burned hectare 0.1 to 44200
Duration N/A Difference between fire’s start date days 1 to 58

and end date
Location and Time Variables

Start Date N/A Estimated start date of the fire N/A 1992-05-16 to 1992-09-15
Out Date N/A Date the fire was declared out N/A 1992-05-16 to 1992-09-17
Month N/A Month of fire’s start date N/A May to September in 1992
Latitude lat Latitude of fire’s start location degrees N44.47 to N53.97
Longitude long Longitude of fire’s start location degrees W95.10 to W76.26
Fmz Fmz Fire Management Zones Extensive(E), Measured(M), N/A

Intensive(I)
Region N/A Fire regions NWR, NER, SCR N/A
District Cur dist Administrative Districts APK, BAN, CHA, COC, N/A

DRY, FOR, HEA, KEM,
KEN, KLK, NIP, NOR,
PAR, PEM, PET, RED,
SAU, SLK, SUD,THU,
TIM, WAW

Weather and Fuel Variables
FFMC FFMC Fine Fuel Moisture Code numeric ratings 14 to 93
DMC DMC Duff Moisture Code numeric ratings 0 to 74
DC DC Drought Code numeric ratings 3 to 390
ISI ISI Initial Spread Index numeric ratings 0 to 22
BUI BUI Buildup Index numeric ratings 1 to 82
FWI FWI Fire Weather Index numeric ratings 0 to 33

both duration and size are highly skewed. On the other hand, the distribution of the log-

transformed fire duration is closer to a normal distribution; See Figure 2.1d.

From Figure 2.2b, we can see that the log-transformed fire sizes and durations are

closely related. It suggests to use either size or duration as the response variable in the

regression analysis. We choose fire duration as the response variable in the following.

Duration Size
Mean 8.4 658.6
Median 4.0 0.3
SD 11.1 3591.1

Table 2.2: Summary of Fire Duration and Size

2.1.2 Explanatory Variables: Location and Time

Fire Location

The location information of each fire included in the dataset is: Longitude, Latitude, Region,

District and Fire management zones (Fmz). There are 3 regions: Northeast Region(NER),

Northwest Region(NWR), South and Central Region(SCR). Each region contains a set of

5



(a) Histogram of Fire Size (b) Histogram of Fire Duration

(c) Histogram of the Log-transformed of Fire Size
(d) Histogram of the Log-transformed of Fire Du-
ration

Figure 2.1: Histograms of Fire Duration and Fire Size
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(a) Fire Duration vs Fire Size (b) Log(Fire Duration) vs Log(Fire Size)

(c) Fire Duration vs Log(Fire Size) (d) Log(Fire Duration) vs Fire Size

Figure 2.2: Scatterplots of Fire Duration and Fire Size
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districts. Table 2.3 lists the districts. It appears that regions and districts are determined

according to the geographical coordinates, i.e. longitude and latitude.

Table 2.3: Regions and Districts in Ontario

Zones NER NWR SCR
Districts NOR, CHA, COC, HEA, DRY, FOR, KEN, NIP, APK, BAN, KEM, PAR,

KLK, SAU, SUD, TIM, WAW RED, SLK, THU PEM, PET

Ontario is divided into 3 fire management zones based on fire management strategy:

extensive(E), measured(M) and intensive(I). Zone I is the area close to cities with large

populations. All fires in this zone are fought aggressively. Zone M is the area where a fire

has less potential to damage public safety and fires in zone M are only provided with full

resources to fight at the initial attack (Martell and Sun, 2008). Zone E is close to remote

areas and fires in this zone have less chance to threaten the public safety. So the fires in

zone E are not fought aggressively. Figure 2.3a displays the variation of fire duration in

each fire management zone and the summary statistics are listed in Table 2.4. From the

plot and the summary statistics, we see that durations of fires in zone E are longer than

other two zones, which is in agreement with the fire management strategy.

The variations of fire duration in different regions and zones suggest that, in addition to

considering the geographical coordinates (longitude and latitude), Region and Fmz might

be possible covariates to examine the association between fire location and fire duration.

Zone Number of Fires Mean of Fire Duration SD of Fire Duration
Extensive(E) 45 24.89 14.57
Measured(M) 31 8.90 11.19
Intensive(I) 183 4.27 4.19

Table 2.4: Summary Statistics of Fire Duration in Each Fire Zone

Region Number of Fires Mean of Fire Duration SD of Fire Duration
NWR 122 11.76 1.41
NER 97 5.40 0.78
SCR 40 5.48 0.65

Table 2.5: Summary Statistics of Fire Duration in Each Region

8



(a) Fire Durations across Zones

(b) Fire Durations across Regions

Figure 2.3: Fire Durations of Different Zones and Regions
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Fire’s Starting Time

All fires in the dataset started between May to September in 1992. Figure 2.4 plots fire

duration against fire’s start date, and Table 2.6 shows summary statistics of the fire dura-

tion. It appears that more than half of the fires started in June and fire duration in June was

higher than those in May and July. Plus the fire duration in June had the highest variation.

Figure 2.4: Fire Duration vs. Fire’s Start Date

Month No.of Fires Mean of Fire Duration SD of Fire Duration
May 35 5.68 7.11
June 169 9.37 12.74
July 22 5.64 4.96
August 31 8.42 7.19
September 2 5.00 4.24

Table 2.6: Summary Statistics of Fire Duration in Each Month

Plots in Figure 2.5 show the association of fire duration with fire’s start date in differ-

ent fire zones and regions. Most of fires with long durations were from region NWR and

extensive zone.
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Figure 2.5: Fire Duration vs. Fire’s Start Date in terms of Fire Management Zones and
Regions

2.1.3 Explanatory Variables: Weather and Fuel Information

Description

Weather and fuel moisture of the forest play important roles in fire duration. For ex-

ample, fires in a dry area might burn longer than a moist area. Canadian forest fire

management agencies use the Canadian Forest Fire Weather Index System to mea-

sure the weather and fuel moisture data to predict the behavior of fire. Figure 2.6 from

Natural Resource of Canada shows how the 6 standard components are calculated based

on daily temperature, relatively humidity and wind speed.

There are 3 fuel moisture codes: FFMC, DMC and DC. Each of them represents the

moisture content in different forest floors. The Fine Fuel Moisture Code (FFMC) mainly

measures the moisture content of the fine fuels in the surface, which indicates the ease of

fire ignition. The Duff Moisture Code (DMC) is a numeric rating of the average moisture

content of loosely compacted organic layers with moderate depth. The Drought Code(DC)

is a numeric rating of average moisture content in the deep compact organic layer, which

indicates the ease of fire smoldering. These terms are explained in Merrill et al. (1987).

Figure 2.7 shows the structures of forest floors and its corresponding fuel moisture codes.

Figure 2.8 shows the relationship between moisture content in the forest floors and fuel

moisture codes. The decreasing trends in plots suggest negative associations between

11



Figure 2.6: The FWI System from Natural Resource of Canada (2008)

Figure 2.7: Interpreting the Canadian Forest Fire Weather Index(FWI) System from
De Groot et al. (1998)
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moisture content and fuel moisture codes, i.e. if the forest floor is dryer, the fuel moisture

codes will be higher.

The remaining fire behavior indices ISI, BUI, FWI summarize daily weather and fuel in-

formation to represent the ratings of fire danger. The Initial Spread Index(ISI) is generated

based on wind speed and FFMC and indicates the rate of fire spread. Buildup Index(BUI)

is generated based on DMC and DC, which represents the amount of fuel available for fire

burning. Fire Weather Index(FWI) is derived from ISI and BUI and works as a numeric

rating of fire intensity. The formulas listed below are given in Van Wagner et al. (1987).

ISI = 0.208× (e0.0504W )(91.9e−0.138FFMC)(1 +
FFMC5.31

4.93
× 107)

BUI =
0.8(DMC)(DC)
DMC + 0.4DC

FWI = 0.1(ISI)[0.626(BUI0.809) + 2]

Figure 2.8: Moisture Content and Fuel Moisture Code from Van Wagner et al. (1987)

Summary Statistics

In this dataset, 6 codes on each fire’s start date are provided. Table 2.7 lists the summary

statistics of 6 codes. To make these codes more comparable, we standardized these codes

to make them range over [0, 1]. Table 2.8 displays the summary statistics of standardized

codes. We will use the standardized codes as covariates in future regression analysis.

FWI has been used commonly to summarize the weather and fuel information. Our

initial regression analysis confirmed that FWI is a good environmental factor. Thus in the

following, we only consider it as the environmental factor.
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FFMC DMC DC ISI BUI FWI
Mean 84.45 26.93 148.29 7.07 35.34 13.27

Median 89.00 26.00 151.00 6.60 34.00 13.00
SD 12.33 13.10 67.10 4.88 15.49 7.80

Table 2.7: Statistical Summary of Weather and Fuel Information

FFMC DMC DC ISI BUI FWI
Mean 0.89 0.36 0.38 0.32 0.42 0.40

Median 0.95 0.35 0.38 0.30 0.41 0.39
SD 0.16 0.18 0.17 0.22 0.19 0.24

Table 2.8: Statistical Summary of Standardized Weather and Fuel Information

The Association of FWI with Time and Location

To include FWI as a covariate in a regression model together with fire’s starting time and

location, we need to examine their correlation. Figure 2.9 shows the distributions of FWI

values in different months and different fire management zones. The yellow spot indicates

a low value of FWI and a red spot indicates a high FWI. There seems no obvious pattern

in FWI’s distributions, but FWI values in zone I and September are lower comparing with

other zones and other months.

(a) FWI in Each Fire Zone (b) FWI in Each Month

Figure 2.9: Association of FWI with Fire Starting Time and Fire Location
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2.2 Ordinary Linear Regression Analysis

The descriptive data analysis provides an information summary of the dataset and sug-

gests variables potentially related to fire duration. We conduct an ordinary linear regres-

sion analysis to explore how fire duration is associated with spatial and temporal variables

as well as the environmental factor FWI. For the fire duration mentioned in the rest of the

project, it stands for the logarithm of fire duration in the dataset.

2.2.1 Notation and Model Specification

We assume that µ(si, ti; zi) in Model (1.1) is a linear combination of functions of all the

spatial, temporal and environmental variables. The model is specified as follows:

Yi = α1 ∗ g(si) + α2 ∗ h(ti) + β
′
zi + εi, i = 1, 2, · · · , 259, (2.1)

where g(·) and h(·) are pre-determined functions. In this model, we assume that residuals

εi = ε(si, ti) are identically and independently from a normal distribution with mean 0 and

a constant variance σ2.

We use g(s) to represent a spatial variable considered as a predictor. It can be (a) the

geographical coordinates: Longitude, Latitude, that is g(s) = s; (b) the fire management

zone code; or (c) the region code.

To assess the relationship between fire duration and fire’s starting time t, we can use

h(t) as the fire’s starting date. We define the start date of each fire as the days between

fire’s start date and 1992-05-16. Variable z is the environmental factor. We focus on only

FWI = z in the analysis, which uses the standardized FWI ranging between 0 to 1. Table

2.9 lists the models with different g(s) specifications.

Model Explanatory Variables
Model 2.1(a) Longitude, Latitude, Start date, FWI
Model 2.1(b) Fire management zone, Start date, FWI
Model 2.1(c) Region, Start date, FWI

Table 2.9: Ordinary Linear Regression Models
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2.2.2 Analysis Results

Table 2.10 summarizes parameter estimates from Model 2.1 (a), which includes Longi-

tude and Latitude in the model. Table 2.11 summarizes the estimates from Model (b) and

(c), which incorporate the spatial effect as category variables. The standard errors and

p values from the Wald-test on whether the parameter is zero are given below the esti-

mates. R2 and mean squared error (MSE) are also given in the tables. The significance

level is 0.05. The significant predictors are marked as bold.

The spatial variables g(s) are found to be statistically significant among all three mod-

els. Model 2.1(a) suggests that Longitude and Latitude are statistically significant pre-

dictors for fire duration. Positive coefficients of Longitude and Latitude indicate that fire

occurring in northeastern part of Ontario have a longer duration. Model 2.1 (b) takes zone

I, as the reference level for variable Fire management zone (Fmz). From the results in

Table 2.11, duration of fires occurring in zone M and E, which are farther north parts, is

significantly longer than the ones in zone I. The analysis results of Model 2.1(c) indicate

that duration of fires occurring NWR regions are significantly longer than the ones in other

regions.

The time variable, Start date, is significant with Model 2.1(b). The fuel and weather

index, FWI, is significant with Model 2.1(c). Comparing the R2 and MSE of three models,

Model 2.1(b) has the highest R2 and smallest MSE. The small R2 value with Model 2.1(c)

indicates that there is a lot of variation left unexplained, making it the least appropriate

model.

Table 2.10: Regression Coefficients Estimates in Model 2.1(a).

Model a:
intercept αlong αlat αdate βFWI

Estimates -6.23 0.124 0.381 -0.001 -0.270
Std.Error 0.927 0.015 0.032 0.002 0.229
P−value <0.001 <0.001 <0.001 0.560 0.239
R2 0.367
MSE 0.784
AIC 615.9
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Table 2.11: Regression Coefficients Estimates in Model 2.1(b) and (c).

Model b: Model c:
intercept Fmz:E Fmz:M αdate βFWI intercept Region:NWR Region:SCR αdate βFWI

Estimates 1.51 1.86 0.360 -0.004 -0.379 1.05 0.562 0.192 -0.0001 0.584
Std.Error 0.137 0.125 0.141 0.002 0.210 0.221 0.132 0.182 0.003 0.268
P−value <0.001 <0.001 <0.001 0.037 0.072 <0.001 <0.001 0.292 0.966 0.030
R2 0.473 0.076
MSE 0.716 0.949
AIC 569.5 714.7

(a) Residual Map for Model 2.1(a) (b) Residual Map for Model 2.1(b)

(c) Residual Map for Model 2.1(c)

Figure 2.10: Residual Maps with Ordinary Linear Regression
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2.2.3 Residual Analysis

We produce a map of residuals in Figure 2.10 to further study the goodness of fit for the

three models. We use the size of each point to represent the absolute values of residuals

and the gradient of a point’s color from yellow to red to illustrate the values of residuals. If

the color of point is close to yellow, then the residual is negative; If it is close to red, then the

residual is positive. The residual map of Model 2.1(c) shows a pattern of clustering: posi-

tive residuals in the black rectangle area and negative residuals in the blue rectangle area.

The patterns in the residual map suggest that Model 2.1(c) might not be an appropriate

model.

The interpretation of ordinary linear regression model is based on the assumption that

the error terms are independently and identically from the standard Normal distribution

N(0, 1). Because of the obvious pattern in the residual map and low R2 value, we focus on

the residual analysis for Model 2.1(a) and (b) in the following.

Checking Model Assumptions

The normal distribution assumption for the models is checked by plotting Normal Q-Q plots

in Figure 2.11a and Figure 2.11b. The plots indicate that residuals from Model 2.1(a)

and (b) roughly follow normal distributions. The scatterplots of residuals versus predicted

values, residuals versus FWI and start dates for both models are plotted in Figures 2.12

and 2.13. The red lines are the locally weighted scatterplot smoothing curves drawn by

lowess function in R. These plots show that there may be more appropriate models, but

the fits of the two models could be acceptable.
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(a) Normal QQ Plot for Model 2.1(a) (b) Normal QQ Plot for Model 2.1(b)

Figure 2.11: Normal QQ-Plots for Residuals

Figure 2.12: Scatterplots of Residuals in Model 2.1(a)

Figure 2.13: Scatterplots of Residuals in Model 2.1(b)
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Another key assumption of the linear model is that all the observations are independent.

In other words, all the durations of fires, regardless of the starting time and location, are

independent. In fact, fires in near locations are likely related to each other. It is often

desirable to find spatio-temporal correlations in fire activities.
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Chapter 3

Detecting Spatio-Temporal

Correlation

In this chapter, we first review commonly-used methods for measuring and detecting spatial

autocorrelation. Then we extend the methods to examine the spatio-temporal correlation

in the forest fire data. The methods are applied for detecting spatio-temporal correlation

with the residuals of linear regression analysis in Chapter 2.

3.1 Detecting Spatial Autocorrelation

Spatial data analysis is challenging due to the presence of spatial autocorrelation. Fail-

ing to address the spatial autocorrelation in the data could lead to biased or inefficient

inference. In this section, we briefly review two well-established spatial autocorrelation

measurements: Semi-variogram and Moran’s I Statistics.

3.1.1 Semi-variogram

In geostatistical data analysis, variogram is used to summarize the covariance structure

of a spatial stochastic process. The variogram of a stochastic process {X(si) : i =

1, 2, · · · , n} is defined as a function V (si, sj) = V ar{X(si) − X(sj)}, which is the vari-

ance of the difference in X(·) at two locations (si and sj). The semivariance γ(si, sj) is

defined as half of variogram: γ(si, sj) = 1
2V (si, sj). The semi-variogram of a set of spatial
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data can be plotted as the scatterplot of the points (d(si, sj), γ(si, sj)), where d(si, sj) is the

distance between locations si and sj .

For example, with the regression model (1.1) in Chapter 1 for the forest fire dataset,

we may view the random errors as a spatial process ε(s) = {ε(s1), ε(s2), · · · , ε(s259)} with

E[ε(s)] ≡ 0 and V (ε(s)) = σ2. The semivariance of the residual spatial process is then

γ(si, sj) =
1

2
V ar[ε(si)− ε(sj)] =

1

2
E[{ε(si)− ε(sj)}2]; i, j = 1, 2, · · · , 259.

We call ε(s) an isotropic process if its covariance depends only on the distance d between

locations si and si. For such a process, the semivariance can be written as a function of

the distance d:

γ(d) =
1

2
V ar(ε(si)) +

1

2
V ar(ε(sj))− Cov{ε(si), ε(sj)} (3.1)

= σ2 − C(d),

where C(d) is the covariance function of any pair of observations with distance d.

The empirical semi-variogram is obtained by plotting the estimates of the semivariance

versus the distance between any pair of locations. An estimator for semivariance is given

by Cressie (1993):

γ̂(d) =
1

2N(d)

∑
i,j:|si−sj|=d

(X(si)−X(sj))
2 (3.2)

where N(d) is the set of distinct pairs separated by distance d.

The empirical semi-variogram with a dataset can be used to detect possible spatial

autocorrelation in the data. If observations close to each other have high correlation, the

covariance C(d) increases as the distance between observations becomes smaller, and

the semivariance γ(d) decreases. On the other hand, the semivariance γ(d) increases

as the distance increases. When the distance goes up to a certain value (leading to little

spatial autocorrelation between observations), the covariance C(d) reduces to 0 and the

semivariance reaches to the variance of the underlying spatial process. Therefore, the
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increase trend in semi-variograms as distance increases indicates a spatial autocorrelation

in the data. If there is no spatial autocorrelation in the data, the semivariance should be

distributed randomly around the true variance of the data.

We simulated 259 observations independently from a standard normal distribution

N(0, 1) and assigned each of them to the fire location. The semi-variogram with this sim-

ulated data is displayed in Figure 3.1. The red smoothing curve of the semi-variance is

added to the plot. The red curve remains constant and doesn’t increase as the distance

increases. Comparing with the blue dashed line, which is the true variance of these obser-

vations, the red curve is very close to the true variance of the data. It indicates that there is

no spatial autocorrelation in the data, which is in agreement with the settings of simulation.

Figure 3.1: Semi-variograms of Simulated Independent Data

The semi-variogram is commonly employed in descriptive geostatistics (F Dormann,

Carsten, et al. 2007) to describe the spatial autocorrelation of a spatial stochastic process.

However, it requires the stationary assumption of the underlying process and it is hard to

interpret with non-stationary process.

3.1.2 Moran’s I Statistics

The semi-variograms provide a visualization of the correlation structure in a spatial pro-

cess. However, we need some statistics to quantify the spatial autocorrelation. Moran’s I

introduced by Moran (1950) is a commonly-used statistic to measure spatial autocorrela-

tion. We review below how to use Moran’s I to check for spatial autocorrelation.
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Global Moran’s I Statistics

The global Moran’s I is defined by Moran(1950) with a dataset {xi, i = 1, 2, · · · , n} as:

I =

∑n
i=1

∑n
j=1wij(xi − x̄)(xj − x̄)

W0σ̂2
, (3.3)

where xi is observation at location si, and x̄ =
∑n
i xi
n , σ̂2 =

∑n
i=1(xi−x̄)2

n ,W0 =
∑n

i=1

∑n
j=1wij

with wij the weight chosen according to the locations of xi and xj . If the two observations

are neighbors, wij = 1; otherwise, wij = 0. We define neighbors based on distance be-

tween the locations of two observations. Usually, for a pre-determined distance d, we call

xi and xj are neighbors if distance between locations si and sj is less than d.

Moran’s I is a weighted average of the cross-product of observations, centered to the

average value of the observations and standardized to adjust for the variance of the obser-

vations (Walberg, 1985).

Theoretic properties, including the expectation and variance of global Moran’s I, are

derived by Cliff and Ord (1981). They show the expectation and variance of Moran’s I are

as follows.

E[I] =
−1

n− 1
, V ar[I] =

n2W1 − nW2 + 3W 2
0

(n− 1)(n+ 1)W 2
0

− 1

(n− 1)2
. (3.4)

where W0 =
∑

i

∑
j wij , W1 = 1

2

∑∑
i6=j(wij + wji)

2, W2 =
∑n

i=1(
∑n

j=1wij +
∑n

i=1wji)
2.

Cliff and Ord (1981) prove that the Moran’s I is asymptotically normally distributed. Based

on these results, global Moran’s I can be used to test on spatial independence assumption.

We conducted Moran’s I-based test with the forest fire dataset. For 259 records of fire

in the dataset, we use d =400 km as a pre-determined distance to define neighbors based

on fires’ locations. Figure 3.2 plots a map of the fires of the dataset. The colors represent

the durations of fires and the lines between points represent the neighbors of the fire. The

similar colors of neighbor points suggests a similar value of fire durations, which indicates

a possible spatial autocorrelation.

We obtained the Moran’s I statistic with the data as I=0.149, and the p value for testing

on a spatial autocorrelation is lower than 0.01. It indicates a significant spatial autocorre-

lation.
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Figure 3.2: Neighbors Within 400 km of Each Fire

The permutation tests can be used to verify the above test outcomes. With the fire

data, we permuted the fire duration and assigned them randomly to fire location at each

replication. Moran’s I can be computed at each replication. We repeated the procedure

999 times and obtained the sample distribution of Moran’s I. The observed Moran’s I above

can be compared with the simulated Moran’s I. Figure 3.3 shows the sample distribution of

Moran’s I and the observed Moran’s I with the fire data. Table 3.1 summarizes the statistics

of the simulated Moran’s I. The sample mean of simulated Moran’s I is −0.00393, which

is close to the mean −1
259−1 = −0.00388 computed by theoretical results in formula (3.4).

The blue dotted line is the observed Moran’s I. It is significantly deviated from the mean of

simulated Moran’s I, indicating a significant spatial autocorrelation.

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.0171 -0.0081 -0.00531 -0.00393 -0.00143 0.031410

Table 3.1: Summary Statistics of Simulated Moran’s I

The Moran’s I depends on the definition of neighbors. Denote the Moran’s I calculated

using neighbors with distance within d by I(d). We defined locations within 400 km as

neighbors above. To see how Moran’s I varies among the distance between neighbors, we

plot a spatial correlogram, a scatterplot of Moran’s I statistics I(d) against the distances d.
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Figure 3.3: Moran’s I Permutations

Figure 3.4 shows the spatial correlogram of Moran’s I statistics with fire duration. The

95% acceptance region is also plotted for each Moran’s I. The red dashed line shows the

expectation value. The plot shows the Moran’s I decreases as the distance between neigh-

bors increases. According to the 95% acceptance regions and the expectation values, the

spatial autocorrelation in fire duration is significant up to the distance by 1000 km.

Local Moran’s I Statistics

The global Moran’s I summarizes the spatial correlation with a single value. Local Moran’s

I, introduced by Anselin (1995), helps to investigate the local spatial clustering and identify

spatially correlated hotspots.

Local Moran’s I is calculated for each observation. Specifically, the local Moran’s I

associated with the ith observation at location si is:

Ii =
(xi − x̄)

∑n
j=1wij(xj − x̄)∑n

j=1wij σ̂2
(3.5)

Comparing with formula (3.3), the global Moran’s I is a weighted average of local Moran’s
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Figure 3.4: Moran’s I-based Spatial Correlogram for Fire Duration

I’s:

I =

∑n
i=1

∑n
j=1wijIi

W0

The expectation and variance of Ii can be derived based on the results of global Moran’s I.

We can conduct test of local spatial autocorrelation for each point based on these results

following the test procedure of global Moran’s I.

3.2 Extended Methods for Spatio-Temporal Correlation

A fire occurs at a location and a time point. It is neither purely a spatial process nor a

time series. The usual statistics to describe spatial autocorrelation need to be extended

to incorporate the time dimension (Dub, J. & Legros, D., 2013). We will first review the

semi-variogram computed for spatio-temporal process given by Cressie (1999) and then

extend Moran’s I methods to the spatio-temporal dimension.
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3.2.1 Spatio-Temporal Semi-variogram

One method to check the spatio-temporal correlation in the data is to treat the data as

a spatio-temporal process and then summarize its covariance structure. For a spatio-

temporal process {X(si, ti), i = 1, 2, · · · , n}, the estimator of spatio-temporal semivariance

is given by Cressie (1999):

γ̂(d; τ) =
1

2N(d; τ)

∑
i,j:|si−sj|=d,
|ti−tj |=τ

(X(si, ti)−X(sj, tj))
2 (3.6)

where N(d; τ) is the number of pairs of observations separated by distance d and time

differing at τ .

From this definition, semivariance is calculated for each combination (d, τ). However,

for forest fire data, it is not guaranteed that there are fires with respect to each combination

(d, τ). So this method might not be applicable for the fire data.

3.2.2 Extended Moran’s I

We consider an extension of the global Moran’s I by specifying spatio-temporal neighbors

to account for time dimension.

Define the extended global Moran’s I as follows:

I∗ =

∑n
i=1

∑n
j=1w

∗
ij(xi − x̄)(xj − x̄)

W ∗0 σ̂
2

. (3.7)

W ∗0 =
∑n

i=1

∑n
j=1w

∗
ij , where w∗ij = 1 if fire i and j’s locations si and sj are within a pre-

specified distance d and their starting times ti and tj differ at most by a pre-specified values

τ . The extended global Moran’s I have the same properties as the global Moran’s I given

in equation (3.3), except W0, W1, W2 in (3.3) are determined by w∗ij . Thus we can test on

significance of spatio-temporal correlation based on I∗.

Similarly, the local Moran’s I can be extended by defining the neighbors to account for

the time dimension. Maps of the extended local Moran’s I test results can be plotted to

evaluate local spatio-temporal correlation.
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Moran’s I-based correlograms can also be plotted to describe how the extended global

Moran’s I varies among the distance and time lag between neighbors. For forest fire data,

we define spatio-temporal neighbors based on fires’ locations and starting dates. The

extended global Moran’s I can be calculated to detect spatio-temporal correlation for fire

duration.

Figure 3.5 produces a perspective plot of the extended global Moran’s I against time

lags and distance. We choose distance between neighbors as 200 km, 400 km, 600 km,

800 km, 1000 km, 1200 km and 1400 km. The sequence of time lags is defined as 0

day, 5 days, 10 days,· · · , 120 days. To give a more detailed presentation, we produce

the correlograms which plot the extended Moran’s I with different distances and time lags.

The plots are shown in Figure 3.6. The 95% acceptance regions and expectation values

of extended Moran’s I are also presented in the plot. The red dashed lines represent the

expectation values and the orange dot-dashed lines represent original Moran’s I calculated

from (3.3) at each distance.

The correlogram shows that the extended Moran’s I decreases till it reaches the value

of original Moran’s I. Moreover, the significance of extended Moran’s I varies according to

both distance and time lag. Correlograms at distance 200 km, 400 km, 600 km and 800 km

show significant correlation regardless of the starting time. At distance 1000 km and 1200

km, we only find that the significant correlation exists when fires occurring on the same day

or within 5 days are considered as neighbors.
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Figure 3.5: Perspective Plot of Extended Moran’s I
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Figure 3.6: Extended Moran’s I-based Spatio-Temporal Correlogram for Fire Duration
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3.3 Application of Moran’s I in Residuals Analysis

To validate the independence assumption of residuals from Model 2.1(a) and (b) in Chapter

2, we apply first the existing methods to evaluate the spatial autocorrelation and then apply

the extended Moran’s I to examine the spatio-temporal correlation with the residuals in the

ordinary linear regression analysis.

3.3.1 Check Spatial Correlation in Residuals

First, we show the empirical semivariograms of residuals to check the spatial correlation

graphically. Figure 3.7 presents the empirical semivariograms of residuals from Model

2.1(a) and (b). The red curves are the smoothing curves drawn by lowess function in

R and the blue lines stand for the estimated variance of the residuals from the models.

The semivariance increases as the distance of pair of fire locations becomes larger. The

increase trends of semivariance with both Model 2.1(a) and (b) suggest a spatial autocor-

relation within distance 400 km. Because of the fact that the variance of the residuals may

(a) Semi-variogram of Residuals in Model 2.1(a) (b) Semi-variogram of Residuals in Model 2.1(b)

Figure 3.7: Semi-variograms

not be constant, the semivariance for both models keep fluctuating below the estimated

variance of residuals. As reviewed in section 3.1.1, a semivariogram may not indicate

the spatial autocorrelation if the variance of the underlying process is not constant. We

proceed to conduct the Moran’s I test with the residuals in the following.
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The spatial correlograms of obtained global Moran’s I with different neighbors’ defining

distances are shown in Figure 3.8 with the 95% acceptance regions. The plots show

that the significant spatial autocorrelation exists between fires till the distance between

their locations up to 400 km. The test results obtained by defining fires within 400 km

as neighbors are summarized in Table 3.2. The p values with both models indicate the

presence of strong spatial correlation within 400 km.

Figure 3.8: Spatial Correlograms for Model 2.1(a) and (b)

Observed Moran’s I Expectation Variance p value
Model 2.1(a) -0.016 -0.0038 0.000043 0.06
Model 2.1(b) 0.011 -0.0038 0.000043 0.02

Table 3.2: Moran’s I test on Model 2.1(a) and (b)

To investigate the local spatial clustering, we produce local Moran’s I maps in Figure

3.9. The p value of each point is adjusted for multiple testing and is plotted by different

colors in the map. The yellow spots are those with p value < 0.05, indicating a significant

spatial autocorrelation around the points. From the local Moran’s I map, the yellow spots

for Model 2.1(b) are more than the one of Model 2.1(a), indicating a stronger local spatial

autocorrelation of residuals in Model 2.1(b).
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(a) Local Moran’s I for Model 2.1(a) (b) Local Moran’s I for Model 2.1(b)

Figure 3.9: Local Moran’s I Map for Model 2.1(a) and (b)

3.3.2 Check Spatio-Temporal Correlation in Residuals by Extended Moran’s

I

Since the fires occurred over time, it is often of interest to examine their spatio-temporal

correlation. We apply the extended Moran’s I to check the spatio-temporal correlation in

the residuals. Following the settings in section 3.2, the correlograms based on extended

Moran’s I are produced.

Figure 3.10a and 3.10b show perspective correlograms plots which display extended

Moran’s I versus distance and time lag of fires. Figure 3.11 and 3.12 present the correl-

ograms which plot extended Moran’s I versus time lag of two fires according to different

distance. Comparing with the correlograms of fire duration in Figures 3.4 and 3.5, the ex-

tended Moran’s I is smaller for residuals, on average. The patterns of correlograms are

similar: the extended Moran’s I decreases as the distance and time lag between two fires

increase.

From these plots, spatio-temporal correlation is found in residuals. Especially at dis-

tance 200 km, we see the residuals are highly correlated regardless of the starting time.

With Model 2.1(a), the spatio-temporal correlation is eliminated when distance increases

to 800 km. With Model 2.1(b), the spatio-temporal correlation exists for residuals within 10

days when distance increases to the maximum.

34



(a) Perspective Plot of Extended Moran’s I for Residuals in Model 2.1(a)

(b) Perspective Plot of Extended Moran’s I for Residuals in Model 2.1(b)

Figure 3.10: Perspective Plots of Extended Moran’s I for Residuals with Ordinary Linear
Regression Models
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Figure 3.11: Extended Moran’s I-based Spatio-Temporal Correlogram for Residuals in
Model 2.1(a)
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Figure 3.12: Extended Moran’s I-based Spatio-Temporal Correlogram for Residuals in
Model 2.1(b)
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3.3.3 Discussion

The diagnostic results based on Moran’s I statistics indicates the presence of spatio-

temporal correlation in residuals from ordinary linear regression with Model 2.1(a) and

(b). However, the expectation and variance of Moran’s I derived by Cliff and Ord (1981)

are based on the assumption that there is no spatial autocorrelation in the data and imply

the stationarity of the data. So the large values of observed Moran’s I might indicate either

the presence of correlation or the nonstationarity. In order to address these issues, we can

consider a more appropriate regression model to reduce the nonstationarity and then bet-

ter explore the spatio-temporal correlation in the residuals. Alternatively, we can also focus

on the specification of spatio-temporal correlation and obtain estimates by accounting for

the correlation. In this project, we adopt the first approach and consider a partially linear

regression model.
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Chapter 4

Partially Linear Regression Analysis

of Forest Fire Data

The linear regression analysis in Chapter 2 provides preliminary results, indicating fire

duration is associated with fire’s location, fire’s starting time and FWI. However, the residual

analysis suggests that the linear relationship might not be appropriate. The correlation

tests suggest strong spatio-temporal correlation and nonstationarity in fire duration. This

motivated us to consider a partially linear regression model to explore the association

of fire duration with FWI, the fuel and weather index, adjusting for the potential spatial

and temporal effects. We adopt nonparametric regression with Kernel smoothers in the

analysis, and integrate it with the least squares estimator to assess the association. The

partially linear regression may partially address the concern about the potential spatio-

temporal correlation with conventional methods.

We propose two partially linear regression models with nonparametric time and location

terms. The following starts by introducing the notation and modeling, and reviewing the

estimation procedure with Kernel smoother by Speckman (1988). The regression analysis

with the models are then presented. After that, we check the spatio-temporal correlation in

residuals by using the extended methodology in Chapter 3.
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4.1 Notation and Modelling

Recall that the mean function µ(s, t; z) is specified as a linear function of a spatial variable,

a starting time variable and the environmental factor in the ordinary linear regression anal-

ysis in Chapter 2. Here, we model µ(s, t; z) into a nonparametric component of time and

location and a linear component of covariates z:

Yi = µ0(si, ti) + β′zi + εi (4.1)

Two special cases of µ0(si, ti) are considered. Specifically, we consider the following mod-

els,

Yi = hg(si)(ti) + βg(si)zi + εi, (4.2a)

Yi = hg(si)(ti) + βzi + εi, i = 1, 2, · · · , 259, (4.2b)

where g(si) is the code of the management zone of fire i, and hg(si)(·) is to be estimated.

We also consider:

yi = gh(ti)(si) + βh(ti)zi + εi, (4.3a)

yi = gh(ti)(si) + βzi + εi, i = 1, 2, · · · , 259, (4.3b)

where h(ti) is fire i’s starting time in month of May, June, July, August or September,

and gh(ti)(·) is unspecified. We group fires starting in August and September in the same

category to balance the number of fires in each category in the analysis.

The random errors εi = ε(si, ti) are assumed to be identically and independently from

a normal distribution with mean 0 and a constant variance σ2.
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4.2 Partially Linear Regression Analysis with Models 4.2(a) and

4.2(b)

4.2.1 Estimation Procedures

We adopt local constant and local linear estimation methods in estimating the nonparamet-

ric function hg(s)(t), and apply the least squares estimation (LSE) for estimating parameter

β. The variance σ2 is estimated using the adjusted residuals.

Local Constant Estimation

With Model (4.2a) for any fixed t, we approximate hg(si)(ti) by hg(si)(t). Then we minimize

the weighted sum squares in each fire management zone r:

∑
i:g(si)=r

(yi − βg(si)zi − hg(si)(t))
2K(

t− ti
d

)

where r = 1, · · · , R, (in this dataset R = 3 for three fire management zones: I, M and E),

and K(·) is a Kernel function of the bandwidth d. Here, we use the Tukeys Tricube weight

function:

K(u) =

 (1− |u|3)3 if |u| < 1;

0 if |u| > 1.

By taking derivatives and after some algebra, we obtained

ĥr(t) =

∑
g(si)=r(yi − βrzi)K( t−tid )∑

g(si)=rK( t−tid )
. (4.4)

In a matrix form, we write Yr as a sub-vector of Y = [y1, y2, · · · , y259]
′

and Zr as a sub-

vector of Z = [z1, z2, · · · , z259]
′
with yi and zi from stratum g(si) = r. Then the matrix form

of equation (4.4) is:

ĥr(t) = (1
′
Kr1)−11

′
Kr(Yr − βrZr) (4.5)

where Kr is a diagonal matrix for fire management zone r with diagonal elements being
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Kr(i, i) = K( ti−td )I(g(si) = r). We use Sr = (1
′
Kr1)−11

′
Kr as a smoothing matrix of fire

management zone r.

By plugging ĥr(t) of (4.5) in equation (4.4), we can estimate βr by minimizing ||(I −

Sr)(Yr − βrZr)||2. It yields β̂r = (Z̃′rZ̃r)
−1Z̃

′
rỸr, where Ỹr = (I− Sr)Yr, Z̃r = (I− Sr)Zr.

The fitted values Ŷr are then

Ŷr = Sr(Yr − β̂rZr) + β̂rZr

= SrYr + Z̃r(Z̃
′
rZ̃r)

−1Z̃r(Ir − Sr)Yr

= {Sr + Z̃r(Z̃
′
rZ̃r)

−1Z̃r(Ir − Sr)}Yr (4.6)

For Model (4.2b)(in the following), where β is fixed across zones, we minimize the

objective function below instead,

R∑
r=1

∑
i:g(si)=r

(yi − βzi − hg(si)(t))
2K(

t− ti
d

). (4.7)

From the estimation procedure with Model (4.2b), the estimators of hr(t) and β are

ĥr(t) = (1
′
Kr1)−11

′
Kr(Yr − βZr),

β̂ = (Z̃′Z̃)−1Z̃
′
Ỹ

where Ỹ = (I− S)Y, Z̃ = (I− S)Z and S = Diag[S1, · · · ,Sr, · · · ,SR]. Then the fitted

values Y can be obtained as: Y = {S + Z̃(Z̃′Z̃)−1Z̃
′
(I− S)}Y.

Local Linear Estimation

Local constant estimator approximates the function hg(si(ti) at a fixed t by taking an aver-

age of the values for observations such that ti are in a neighborhood of t. Similar with the

local constant estimator, the idea of a local linear estimator is to approximate hg(si)(ti) for

any fixed t by a linear function hg(si)(t)+ ḣg(si)(t)(ti−t), where ḣg(si)(t) is the first derivative

of hg(si)(t).

42



With Model (4.2a), we minimize weighted sum squares

∑
i:g(si)=r

(yi − βrzi − hg(si)(t)− ḣg(si)(t)(ti − t))
2K(

t− ti
d

). (4.8)

Then the estimators of hr(t) and its first derivative ḣr(t) are obtained:

(
ĥr(t),

ˆ̇
hr(t)

)′
= (Xr(t)

′
KrXr(t))

−1Xr(t)
′
Kr(Yr − βrZr)

where Xr(t) = (1,4) where 4 is a vector of components (ti − t) with g(si) = r. The

estimator of hr(t) is obtained as the first row component of
(
ĥr(t),

ˆ̇
hr(t)

)′
.

We use S∗r(t) = (Xr(t)
′
KrXr(t))

−1Xr(t)
′
Kr as a smoothing matrix for fire manage-

ment zone r. We can then obtain the estimator of βr by minimizing (4.8) with respect to

βr:

β̂r = (Z̃′rZ̃r)
−1Z̃

′
rỸr

where Ỹr = (I− S∗r)Yr, Z̃r = (I− S∗r)Zr. The fitted values are then Ŷr = {S∗r +

Z̃r(Z̃
′
rZ̃r)

−1Z̃
′
r(I− S∗r)}Yr.

Similarly we can estimate hr(t) and β with Model (4.2b):

(
ĥr(t),

ˆ̇
hr(t)

)′
= (Xr(t)

′
KrXr(t))

−1Xr(t)
′
Kr(Yr − βZr)

β̂ = (Z̃′Z̃)−1Z̃
′
Ỹ

where Ỹ = (I− S∗)Y, Z̃ = (I− S∗)Z and S∗ = Diag[S∗1, · · · ,S∗r, · · · ,S∗R]. Then the

fitted values Ŷ can be also be obtained as Ŷ = {S∗ + Z̃(Z̃′Z̃)−1Z̃
′
(I− S∗)}Y.

4.2.2 Bandwidth Selection

Choosing the bandwidth in Kernel smoothing is important. Various bandwidth selection

methods are discussed in the literature. We use the generalized Cross-Validation criterion

proposed by Craven and Wahba (1978) to select the bandwidth. The GCV function is

defined as

GCV (d) =
RSS(d)

[1− n−1trace(A)]2
,
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where RSS is the average residual sum of squares and A is the hat matrix which satisfies

Ŷ = AY. The optimal bandwidth is selected as the lowest GCV value.

4.2.3 Estimation of Variance

To estimate the variance of residuals in the partial linear model with kernel smoothing, we

use the estimation method by Speckman (1988), which can be written as:

σ̂2 =

∑n
i=1(yi − ŷi)2

n− trace(A)
,where A is the hat matrix.

Then we can estimate the standard error of β in the parametric part. Specifically, with

Model (4.2a), we have V̂ ar(β̂r) = σ̂2Z̃r(Z̃
′
rZ̃r)

−1(I− Sr)(I− Sr)Z̃r(Z̃
′
rZ̃r)

−1, and with

Model (4.2b), V̂ ar(β̂) = σ̂2Z̃(Z̃′Z̃)−1(I− S)(I− S)Z̃(Z̃′Z̃)−1.

4.2.4 Analysis Results

In this section, we present the analysis results, including bandwidth selection and estima-

tion results with Models (4.2a) and (4.2b).

Bandwidth Selection of h(t) in Each Zone

We first choose the bandwidth for h(t) in each fire zone by the lowest GCV values. Ta-

ble 4.1 displays the bandwidth in different fire management zones for local constant and

local linear estimators with Model (4.2a) and (4.2b). Figures 4.1, 4.2, 4.3, 4.4 show the

scatterplots of GCV versus different bandwidths. The chosen bandwidths for local linear

estimator with both the models are the same. Due to the fact that there are fewer fires in

zone M and zone E, the bandwidths in zone M and zone E are larger than the one in zone

I.

Model (4.2a) Model (4.2b)
hFmz=I(t) hFmz=M(t) hFmz=E(t) hFmz=I(t) hFmz=M(t) hFmz=E(t)

Local Constant 11 11 15 11 29 5
Local Linear 9 29 29 9 29 29

Table 4.1: Bandwidth Selection of Model (4.2a) and (4.2b)
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Figure 4.1: Bandwidth Selection for Local Constant Estimator of h(t) with Model (4.2a)

Figure 4.2: Bandwidth Selection for Local Linear Estimator of h(t) with Model (4.2a)

Figure 4.3: Bandwidth Selection for Local Constant Estimator of h(t) with Model (4.2b)
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Figure 4.4: Bandwidth Selection for Local Linear Estimator of h(t) with Model (4.2b)

Estimates of Regression Parameter and Nonparametric Function

Table 4.2 presents the estimates of regression coefficient β with Model (4.2a) and (4.2b)

using the optimal bandwidth chosen by GCV. The estimated standard errors and the

p values of the Wald-test on the significance are also displayed in the table. The statisti-

cally significant predictors’ effects are marked as bold. Model (4.2a) considers the situation

that the effect of FWI on fire duration is stratified to each fire management zone. We see

that the estimates of FWI coefficients vary across different fire zones with Model (4.2a).

The estimated coefficients of FWI with Model (4.2b) are similar and statistically significant

by both local constant and local linear estimators.

When we compare the results of Model (4.2a) and (4.2b), the estimated coefficient of

FWI β in Model (4.2b) can be approximated by a weighted average of βI , βM , βE in Model

(4.2a). The similarity of estimates by local constant and local linear estimators with both

the models suggest the robustness of estimators and important effect of FWI.

The estimated coefficients of FWI with both Model (4.2a) and (4.2b) are negative, which

is in agreement with the linear regression analysis in Chapter 2. Since a high value of FWI

indicates that the fire might be dangerous, the fire agency will provide more resources to

put out that fire. Thus the fire duration might decrease as the value of FWI increases.

The smoothing curves of fire’s starting time are obtained by local constant and local

linear estimators in three different zones. Figure 4.5 and Figure 4.6 show the smoothing
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Model (4.2a) Model (4.2b)
Local Constant Local Linear Local Constant Local Linear
βI βM βE βI βM βE βlocal constant βlocal linear

Estimates -0.23 -2.99 -0.24 -0.21 -2.86 -0.16 -0.47 -0.49
Std.Error 0.36 0.91 0.71 0.36 0.91 0.71 0.23 0.23
P−value 0.26 0.005 0.36 0.28 <0.001 0.41 0.02 0.01
MSE 0.450 0.447 0.485 0.467

Table 4.2: Estimates of Regression Coefficients for Model (4.2a) and (4.2b)

curves of fire’s starting time obtained by local constant and local linear estimators with

Model (4.2a). Figure 4.7 and Figure 4.8 show the corresponding smoothing curves with

Model (4.2b). Both sets of curves fit the data well and behave similarly with the two under-

lying models.

Figure 4.5: Local Constant Smoothing Curves in Zone I, M and E for Model 4.2(a)

.

Figure 4.6: Local Linear Smoothing Curves in Zone I, M and E for Model 4.2(a)

.

4.2.5 Residual Analysis

For both Model (4.2a) and (4.2b), we have assumed that εi are distributed independently

and identically from a normal distribution with mean 0 and constant variance σ2. Now we
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Figure 4.7: Local Constant Smoothing Curves in Zone I, M and E for Model 4.2(b)

Figure 4.8: Local Linear Smoothing Curves in Zone I, M and E for Model 4.2(b)

explore whether the corresponding model assumptions are valid. Since the results from

local constant and local linear estimators are similar, we only present the residual analysis

of Model (4.2a) and (4.2b) with local linear estimators.

Normal Q-Q plots are used to examine the normal assumption of residuals. Figure 4.9

shows the Q-Q plots for residuals from Model (4.2a) and (4.2b). The points are distributed

very closely to the red Q-Q lines. So the normal assumption is reasonable for the residuals.

The scatterplot of residuals versus predicted value, residuals versus FWI and residuals

versus start date are plotted in Figure 4.10 and 4.11 to check the mean and variance of

residuals. The red lines are the locally weighted regression smoothing curves computed

by lowess function in R. The plots show that residuals are distributed around zero so the

mean of residuals is approximately 0 for both models. However, there seems a residual

variation decreasing over time: the variance of residuals becomes smaller when fire starts

in late part of fire season, i.e. in August and September.

The residual maps of Model (4.2a) and (4.2b) are shown in Figure 4.12a and 4.12b.

The residual distributions are quite similar with both models. The maps don’t show obvious
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Figure 4.9: Normal QQ Plot of Residuals in Model (4.2a) and Model (4.2b) by Local Linear
Estimators

Figure 4.10: Residual Plots of Model (4.2a) by Local Linear Estimator

Figure 4.11: Residual Plots of Model (4.2b) by Local Linear Estimator
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patterns of residuals, which suggests that residuals are distributed with mean 0. Compar-

ing with the residual maps in Figure 2.10a and Figure 2.10b in ordinary linear regression,

there are fewer large and red spots in the residual maps of Model (4.2a) and (4.2b). As

discussed previously, this suggests better fits with the current models.

(a) Residual Map for Model (4.2a) (b) Residual Map for Model (4.2b)

Figure 4.12: Residual Maps

We proceed to examine the independence assumption by checking if residuals are cor-

related in space and time. Figure 4.13 shows the semivariogram of residuals from Model

(4.2a) and (4.2b). From the semivariograms, it is clear that there is an increase trend of

semivariance in a small area within 400 km. This indicates that there is a spatial autocor-

relation of fires whose starting locations are within 400 km. However, the semivariance

goes down instead of reaching to the estimated variance of residuals, making it likely that

the residuals are non-stationary and leading us to use Moran’s I to assess the spatial

correlation.

First, we conduct the global Moran’s I test on residuals. Based on the information

from the semivariograms, we define the fires whose starting locations are 400 km apart

from each other as neighbors. Table 4.3 summarizes the test results. The global Moran’s

I test results reveal that there is no statistically significant spatial autocorrelation among

residuals with Model (4.2a) and (4.2b).

To provide more evidence of the improvement with the partially linear models, we pro-

duce the spatial correlograms to show how Moran’s I varies according to the distance of
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Figure 4.13: Semivariogram of Residuals of Model (4.2a) and (4.2b) by Local Local Linear
Estimator

Observed Moran’s I Expectation Variance p value
Model (4.2a) -0.010 -0.0038 0.000043 0.32
Model (4.2b) -0.011 -0.0038 0.000043 0.31

Table 4.3: Moran’s I test on Model (4.2a) and (4.2b)

neighboring fires. Figure 4.14 shows the spatial correlograms of Model (4.2a) and (4.2b).

Comparing with the spatial correlograms in Figure 3.8 from ordinary linear regression,

Model (4.2a) and (4.2b) reduce the spatial autocorrelation because the 95% acceptance

regions include the expectation value of Moran’s I except at distance 1100 and 1200 km.

Figure 4.14: Spatial Correlograms for Model (4.2a) and (4.2b)

Furthermore, the local Moran’s I maps for residuals also show that spatial autocorre-

lation is mostly eliminated. Figure 4.15 displays maps of local Moran’s I test results for

residuals of Model (4.2a) and (4.2b). Comparing with maps by the same settings in Figure

3.9 in Chapter 3, we can see the numbers of yellow spots for Model (4.2a) and (4.2b) are
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much less than the ones from linear regression analysis.

(a) Local Moran’s I for Model (4.2a) (b) Local Moran’s I for Model (4.2b)

Figure 4.15: Local Moran’s I Map for Model (4.2a) and (4.2b)

After detecting the presence of spatial autocorrelation in residuals, we proceed to check

the spatio-temporal correlation by using the extended methods of Moran’s I. Figure 4.16a

and 4.16b show perspective correlograms of extended Moran’s I. Figures 4.17 and 4.18

present the correlograms which plot extended Moran’s I with the difference of fires’ starting

dates at different distance. For Model (4.2a), the correlograms at each distance show that

95% acceptance regions for extended Moran’s I test contain the expectation values of

extended Moran’s I under the null hypothesis that there is no spatio-temporal correlation.

For Model (4.2b), the correlogram at distance 200 km shows that 95% acceptance region

doesn’t contain the expectation value at time lag 0, which indicates a significant spatio-

temporal correlation for fires whose locations are within 200 km and starting on the same

day.

The maps of p values based on the extended local Moran’s I and adjusted for multiple

tests are also presented in Figures 4.19 and 4.20 to evaluate local clusters. We calculate

the extended local Moran’s I by choosing the pre-determined distance as 200 km and time

lags as 0, 5, · · · , 30 days. The patterns are similar for both models while the number of

yellow points (with p value < 0.05, indicating a significant local spatio-temporal correlation)

is lessened with Model (4.2b).
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(a) Perspective Plot of Extended Moran’s I for Residuals in Model
(4.2a)

(b) Perspective Plot of Extended Moran’s I for Residuals in Model
(4.2b)

Figure 4.16: Perspective Plot of Extended Moran’s I of Residuals with Model (4.2a) and
(4.2b)
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Figure 4.17: Extended Moran’s I-based Spatial-Temporal Correlogram for Residuals in
Model (4.2a)
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Figure 4.18: Extended Moran’s I-based Spatial-Temporal Correlogram for Residuals in
Model (4.2b)
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Figure 4.19: Local Moran’s I-based Map for Residuals in Model (4.2a)
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Figure 4.20: Local Moran’s I-based Map for Residuals in Model (4.2b)
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The residual analyses show that the normal and independence assumptions for par-

tially linear models (4.2a) and (4.2b) are reasonable. Recalling the residual analysis re-

sults of ordinary linear regression models in Chapter 3, the current models have reduced

the spatio-temporal correlation in data and provide improvements. However, the spatial

autocorrelation are not removed completely with current models and the constant variance

assumption is still not valid. We will try another set of partially linear models (4.3a) and

(4.3b) to provide a better fit.
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4.3 Analysis of Partially Linear Regression with Model 4.3(a)

and 4.3(b)

In order to provide a better fit accounting for the underlying correlation of the data, we

consider another partially linear regression. The estimation procedures and results as well

as residual analyses with the models are presented.

4.3.1 Estimation Procedures

Based on the estimation procedures of partially linear Model (4.2a) and (4.2b), we extend

local constant and local linear methods to estimate the 2-variate nonparametric function

gh(t)(si) and apply LSE to estimate the parameter β.

Similar to the estimation procedures in section 4.2, with Model (4.3a), we minimize the

weighted sum squares in each month m:

∑
i:h(ti)=m

(yi − βh(ti)zi − gh(ti)(s))
2K(

s− si
d

) (4.9)

where m = 1, 2, 3, 4 representing month May, June, July, August and September of fire

starting time in the dataset.

With Model (4.3b), we minimize the objective function below instead,

4∑
m=1

∑
i:h(ti)=m

(yi − βh(ti)zi − gh(ti)(s))
2K(

s− si
d

) (4.10)

We consider K(·) as a 2-variate Kernel function of bandwidth d. Here, we use the

Tricube function

K(u) =

 (1− |u|3)3 if |u| < 1;

0 if |u| > 1.

where u = (u1, u2)′ and |u| =
√
u2

1 + u2
2. The bandwidth d controls the size of the local

neighbors in both Longitude and Latitude direction.

The local constant and local linear estimation procedures for Model (4.3a) and (4.3b)

are similar with the presented procedures in section 4.2, except that we use bivariate
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Kernel smoothers. The estimators we obtained below are based on the procedures in

section 4.2.

Local Constant Estimation

Accordingly, with Model (4.3a) for any fixed location s = (s1, s2) ∈ R2, we approximate

gh(ti)(si) by gh(ti)(s). By minimizing the weighted sum squares in (4.9), the estimator of

function gm(si) and βm are:

ĝm(si) = (1
′
Km1)−11

′
Km(Ym − βmZm)

β̂m = (Z̃′mZ̃m)−1Z̃
′
mỸm (4.11)

where Ym is a sub-vector of Y = [y1, y2, · · · , y259]
′
, Zm is a sub-vector of Z = [z1, z2, · · · , z259]

′

with yi and zi from stratum h(ti) = m, and Ỹm = (I− Sm)Ym, Z̃m = (I− Sm)Zm. The

smoothing matrix in each month is Sm = (1
′
Km1)−11

′
Km, where Km is a diagonal matrix

Diag[K( s−sid ) : i with h(ti) = m].

With Model (4.3b), the estimators of function gm(si) and parameter β are obtained as:

ĝm(si) = (1
′
Km1)−11

′
Km(Ym − βZm)

β̂ = (Z̃′Z̃)−1Z̃
′
Ỹ (4.12)

where Ỹ = (I− S)Y, Z̃ = (I− S)Z, and the smoothing matrix S is a diagonal matrix

Diag[Sm : m = 1, 2, 3, 4].

Then the fitted values Ŷ with Model (4.3a) are:

Ŷm = {Sm + Z̃m(Z̃′mZ̃m)−1Z̃
′
m(I− Sm)}Ym, m = 1, 2, 3, 4, (4.13)

and with Model (4.3b),

Ŷ = {S + Z̃(Z̃′Z̃)−1Z̃
′
(I− S)}Y. (4.14)
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Local Linear Estimation

For local linear estimator with any fixed s = (s1, s2) ∈ R2, we approximate gh(ti)(si) by

gh(ti)(s) + ġh(ti)(s)
′(si− s) where ġh(ti)(s) =

∂gh(ti)(s)

∂s1

∂gh(ti)(s)

∂s2

 , and (si− s) = (si1− s1, si2− s2)′.

Then following the same settings with local constant estimation procedure, with Model

(4.3a), the local linear estimator is the first row component of

(
ĝm(s), ˆ̇gm(s)

)′
= (Xm(s)

′
KmXm(s))−1Xm(s)

′
Km(Ym − βmZm),

where Xm(s) = (1,4∗), and 4∗ is a matrix with ith row equal to (si1 − s1, si2 − s2). The

estimator of βm is β̂m = (Z̃′mZ̃m)−1Z̃
′
mỸm, and Ỹm, Z̃m are defined in (4.11).

Similarly, with Model (4.3b), the estimator of gm(s) is the first row component of

(
ĝm(s), ˆ̇gm(s)

)′
= (Xm(s)

′
KmXm(s))−1Xm(s)

′
Km(Ym − βZm).

The estimator of β is β̂ = (Z̃′Z̃)−1Z̃
′
Ỹ, where Ỹ, Z̃ are defined in (4.12).

The fitted values Ŷ using local linear estimator with Model (4.3a) and (4.3b) are in the

same form with the ones using local constant estimator in equation (4.13) and (4.14).

Bandwidth Selection and Estimation of Variance

The GCV criterion presented in section 4.2.2 and the estimation method for variance in

section 4.2.3 can be applied to Model 4.3(a) and (b).

4.3.2 Analysis Results

We apply GCV criterion to select the optimal bandwidth for Model (4.3a) and (4.3b) by

using local constant estimator and local linear estimator.

Table 4.4 lists the optimal bandwidths chosen by GCV criterion for Model (4.3a) and

(4.3b). The corresponding plots of GCV values versus bandwidths are produced in Figure

4.21, 4.22, 4.23 and 4.24. The bandwidths selected for local constant estimators remain

the same through the whole fire season with both the Model (4.3a) and (4.3b). Using local
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linear estimators, the selected bandwidths are consistent with both models for June, July,

August and September but are different in May. The bandwidths chosen in May are much

larger than other months.

Model (4.3a) Model (4.3b)
gMay(s) gJune(s) gJuly(s) gAugSep(s) gMay(s) gJune(s) gJuly(s) gAugSep(s)

Local Constant 5 5 5 5 5 5 5 5
Local Linear 30 5 7 5 17 5 7 5

Table 4.4: Bandwidth Selection of Model (4.3a) and (4.3b)

Figure 4.21: Bandwidth Selection for Local Constant Estimator of g(s) with Model (4.3a)

Figure 4.22: Bandwidth Selection for Local Linear Estimator of g(s) with Model (4.3a)

Using the optimal bandwidths, we then obtain the analysis results including estimates

of β and the smoothed function values of gm(s) in each month.

Table 4.5 presents the estimates of βm and β in Model (4.3a) and (4.3b). The estimated
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Figure 4.23: Bandwidth Selection for Local Constant Estimator of g(s) with Model (4.3b)

Figure 4.24: Bandwidth Selection for Local Linear Estimator of g(s) with Model (4.3b)
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standard errors are given below the estimates with the p-values of Wald-test on the sig-

nificance. The statistically significant predictors’ effects are marked as bold. The results

show that estimates of βm are different through the fire season with Model (4.3a). The

βAugSep is statistically significant by using local constant estimator to smooth the spatial

effect while βMay is significant by using local linear estimator. This difference can be ex-

plained by looking at Figure 4.25 and Figure 4.26, which produce the maps of values of

smooth function gm(s) in each month using local constant and local linear estimators. The

values of smoothed function gm(s) are represented by colors. From the map of the local

constant estimator in Figure 4.25, we can see the color of points are almost the same in

August and September, which means the variation of fire duration are mostly explained

by the parametric part in the model, i.e. by variable FWI in August and September. In

contrast, Figure 4.26 displays the smoothed values by local linear estimators. Comparing

with Figure 4.25, it exhibits a more clear pattern of fire duration varied from locations for

each month. In addition, the standard error and mean squared error(MSE) are smaller by

local linear estimators than local constant estimators.

The estimates of FWI’s effect are different by local constant and local linear smoothers

with Model (4.3b). The difference is in agreement with the results of Model 4.3(a) because

the obtained estimates β can be viewed as a weighted average of βMay, βJune, βJuly and

βAugSep in Model (4.3a). The values of gm(s) by local constant and local linear estimators

are presented in Figure 4.27 and 4.28. The exhibited pattern by local linear estimator is

similar to the one with Model (4.3a).

Comparing the results of Model 4.3(a), (b) with Model 4.2(a) and (b), we find FWI’s

effects on fire duration become less significant when we smooth the spatial effects for

each month, indicating that the influence of fire’s locations can not be omitted.

Model (4.3a) Model (4.3b)
Local Constant Local Linear Local Constant Local Linear

βMay βJune βJuly βAugSep βMay βJune βJuly βAugSep βlocal constant βlocal linear
Estimates -0.653 -0.160 0.112 1.69 -1.49 -0.375 0.209 0.668 0.00146 -0.274
Std.Error 0.689 0.318 0.834 0.599 0.578 0.318 0.741 0.527 0.252 0.255
P−value 0.343 0.614 0.447 0.004 0.011 0.226 0.616 0.205 0.984 0.283
MSE 0.622 0.502 0.621 0.501

Table 4.5: Estimates of Regression Coefficients for Model (4.3a) and (4.3b)
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Figure 4.25: Smoothed Values for Model (4.3a) by Local Constant Estimator

Figure 4.26: Smoothed Values for Model (4.3a) by Local Linear Estimator
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Figure 4.27: Smoothed Values for Model (4.3b) by Local Constant Estimator

Figure 4.28: Smoothed Values for Model (4.3b) by Local Linear Estimator
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4.3.3 Residual Analysis

We use the same procedure of residual analyses in section 4.2 for Model (4.2a) and (4.2b)

to check the normality, constant variance and independence assumption of the model.

The residual plots of Model (4.3a) and (4.3b) by local linear estimators are presented in

the following.

Normal Q-Q plots are displayed in Figure 4.29 and points are distributed closely to

the Normal Q-Q lines, therefore the normal assumption is reasonable. The scatterplot of

residuals versus predicted value, FWI and fire’s start date are plotted in Figures 4.30 and

4.31 to check the mean and variance of residuals. The red lines obtained from lowess in

R are close to 0 so the mean of residuals can be approximated to 0. Figure 4.32 displays

the residual maps and it is hardly to see the similarity in values for neighboring spots. So

the residual map doesn’t reveal any obvious pattern of residual distribution.

Figure 4.29: Normal QQ Plot of Residuals in Model (4.3a) and Model (4.3b) by Local Linear
Estimators

Figure 4.30: Residual Plots of Model (4.3a) by Local Linear Estimator
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Figure 4.31: Residual Plots of Model (4.3b) by Local Linear Estimator

(a) Residual Map for Model (4.3a) (b) Residual Map for Model (4.3b)

Figure 4.32: Residual Maps
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We check the independence assumption of residuals by investigating whether correla-

tion is present among residuals in time and space. Empirical semivariogram are produced

to visualize the possible correlation structure. The semivariograms in Figure 4.33 show

that the semivariances keep increasing up to 300 km and fluctuates around MSE with both

models. The rise and fall of semivariance after 300 km might be due to the violation of con-

stant variance assumption of residuals. So we proceed to use Moran’s I to further assess

the spatial autocorrelation of residuals.

Figure 4.33: Semivariogram of Residuals of Model (4.3a) and (4.3b) by Local Linear Esti-
mator

By defining that fires within 300 km as neighbors, the results of global Moran’s I test

are listed in Table 4.6. The test results indicate that there is no statistically significant

spatial autocorrelation among the residuals with both the models. The spatial correlograms

are displayed in Figure 4.34. Both spatial correlograms show that the 95% acceptance

region includes the expectation value of Moran’s I regardless of specification for distance.

This indicates that there is no significant spatial autocorrelation in residuals. Additionally,

local Moran’s I maps are produced to identify the points with high spatial autocorrelation.

The yellow points are those with p value < 0.05, indicating there is a significant spatial

autocorrelation around that point. Comparing with local Moran’s I map of Model (4.2a) and

(4.2b) in Figure 4.15, the number of points with significant local spatial autocorrelation is

lessened with Model (4.3a) and (4.3b).

Following the settings in section 4.2, we then produce the spatio-temporal correlograms

to check spatio-temporal correlation in residuals. From the perspective plots in Figures
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Observed Moran’s I Expectation Variance p value
Model (4.3a) Local Linear -0.013 -0.0038 0.000043 0.14
Model (4.3b) Local Linear -0.014 -0.0038 0.000043 0.12

Table 4.6: Moran’s I test on Model 4.3(a),(b)

Figure 4.34: Spatial Correlograms for Model (4.3a) and (4.3b) by Local Linear Estimator

(a) Local Moran’s I for Model (4.3a) (b) Local Moran’s I for Model (4.3b)

Figure 4.35: Local Moran’s I Map of Residuals with Model (4.3a) and (4.3b)
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4.36a and 4.36b, the values of extended Moran’s I change greatly from time lag 0 to

the next and remain unchanged spatially and temporally afterwards. The correlograms

in Figures 4.37 and 4.38 show that the values of extended Moran’s I are close to the ex-

pectation values regardless of time at all distance, indicating that there is no significant

spatio-temporal correlation in residuals.

The p values testing on local spatio-temporal correlation by using extended local Moran’s

I are plotted in Figures 4.39 and 4.40. We find that there are fewer yellow points compared

with the maps for Model 4.2 (a) and (b). This suggests that Model 4.3 (a) and (b) behave

better in removing the spatio-temporal correlation.

4.4 Summary

To tackle the problems arising from preliminary analysis and filter out the correlation of un-

derlying data, this chapter proposed 2 sets of partially linear regression models to analyze

the forest fire data. The analysis with the first model used the univariate Kernel smooth-

ing methods to handle fire’s starting time effects on fire duration. This model had great

improvements on removing the correlation of underlying data and obtained robust and

significant estimates in the parametric components. The analysis with the second model

extended univariate Kernel smoothing methods to 2-variate to estimate the spatial effects

of fire duration. The second model exhibited a more clear pattern of fire duration variation

spatially and the residuals are independent in time and space with the second model.

We considered fixed and stratified parametric components in each set of models to

examine if FWI’s effects vary from different fire management zone or different months. The

different estimates of the coefficients of FWI in the regression analysis suggests that FWI’s

effects on fire duration change from different fire management zone and different months.
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(a) Perspective Plot of Extended Moran’s I for Residuals in Model
(4.3a)

(b) Perspective Plot of Extended Moran’s I for Residuals in Model
(4.3b)

Figure 4.36: Perspective Plot of Extended Moran’s I for Residuals with Model (4.3a) and
(4.3b)
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Figure 4.37: Extended Moran’s I-based Spatio-Temporal Correlogram for Residuals in
Model (4.3a)
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Figure 4.38: Extended Moran’s I-based Spatio-Temporal Correlogram for Residuals in
Model (4.3b)
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Figure 4.39: Local Moran’s I-based Map for Residuals in Model 4.3(a)
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Figure 4.40: Local Moran’s I-based Map for Residuals in Model 4.3(b)

76



Chapter 5

Final Remarks

5.1 Summary

This project analyzes the forest fire dataset from Ontario and studies the association be-

tween fire duration and environmental variables, adjusting for spatio-temporal correlation

in fire duration. By extending the Moran’s I to account for the temporal correlation, we

examine spatio-temporal correlation in the dataset and the residuals of linear regression

models. The ordinary linear regression is the preliminary analysis motivating partially linear

regression analysis to filter out the embedded spatio-temporal correlation in the data.

With the partially linear regression models, we apply Kernel smoothing methods to han-

dle the nonparametric components. Residual analyses are performed to check goodness

of fit and the spatio-temporal correlation. Based on the results in Chapter 4, partially linear

regression models can capture the spatio-temporal effects and the model assumptions are

appropriate. Both the ordinary linear regression and partially linear regression indicate that

fire duration is significantly associated with fire’s location, fire’s starting time, and the fuel

and weather index FWI. The association varies in time and space.

5.2 Future Work

There are a few issues which need to be addressed. We listed them in the following:

• As discussed in Chapter 3, the significant results from Moran’s I test indicate either
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the presence of correlation or the nonstationarity of the data. There are 2 approaches

to address this issue. The partially linear regression models used in this project re-

duce the nonstationarity and the correlation of the residuals by further modelling the

systematic component. The alternative approach could incorporate the correlation

structures in the models. The generalized estimating equation (GEE) approach de-

veloped by Liang and Zeger (1986) can be an alternative approach.

• We detected the correlation in the data by extending Moran’s I to consider neighbors

in space and time. An alternative approach to extend Moran’s I by integrating a

spatio-temporal weight matrix proposed by Dub, J.& Legros, D. (2013) is worth being

studied.

• The ecological variable we used in this study is FWI related to ith fire on fire’s start

date. It will be of interest to consider its effect on fire duration is time-variant if the

records of FWI on each day could be provided.

• The conclusions in this project are based on the Ontario dataset in a specific time

period. Thus, these conclusions need to be confirmed by investigating forest fire data

of other years to make it a more comprehensive analysis.

78



Bibliography

Kerry Anderson. A model to predict lightning-caused fire occurrences. International journal
of wildland fire, 11(4):163–172, 2002.

Luc Anselin. Local indicators of spatial association—lisa. Geographical analysis, 27(2):
93–115, 1995.

Andrew David Cliff and J Keith Ord. Spatial processes: models & applications, volume 44.
Pion London, 1981.

Peter Craven and Grace Wahba. Smoothing noisy data with spline functions. Numerische
Mathematik, 31(4):377–403, 1978. 43

N Cressie. Statistics for spatial data: Wiley series in probability and statistics. 1993.

Noel Cressie and Hsin-Cheng Huang. Classes of nonseparable, spatio-temporal stationary
covariance functions. Journal of the American Statistical Association, 94(448):1330–
1339, 1999.

William J De Groot et al. Interpreting the canadian forest fire weather index (fwi) system.
In Proc. of the Fourth Central Region Fire Weather Committee Scientific and Technical
Seminar, 1998. xi, 12

Peter Diggle and Paulo Justiniano Ribeiro. Model-based geostatistics. Springer, 2007.
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