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Abstract
In this work we conduct a complex analytic study of Dyson–Schwinger equations, the

quantum equations of motion. Focusing on the particular family

G(x, L) = 1 � xG(x, @�⇢

)(e�⇢ L � 1)F (⇢)|
⇢=0

we consider the class of formal solutions

G(x, L) =
X

n

�
n

(x)Ln ,

whose formal and real analytic aspects have already been studied. Taking the point

of view of complex analysis we are able to shed some new light on the structure of

these solutions and provide useful tools to consider asymptotic questions.

This thesis is built around two functions. The anomalous dimension �1 which is

closely tied to the energy scaling properties of quantum field theory and the Green

function G(x, L), the actual solution to the Dyson–Schwinger equation. We study

their dual aspects as formal power series and analytic functions in the variables x

and L. Our tool of choice is the Laplace–Borel resummation method which proves

suitable to take care of the divergent series occuring naturally in quantum field theory.

Our main results consists of:

(i) conducting a Laplace–Borel analysis of the anomalous dimension �1;

(ii) constructing a Laplace–Borel solution to our Dyson–Schwinger equation by us-

ing the renomalization group equation.
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Chapter 1

Introduction

The goal of quantum field theory is to describe the propagation and interactions of

elementary particles. Those particles are encoded as fields and their behaviours are

captured in Green functions or correlation functions. Dyson–Schwinger equations are

the analog in quantum field theory of the equations of motion in classical mechan-

ics. To understand their solutions is to understand the corresponding dynamics of

elementary particles.

The Dyson–Schwinger equations form a system of integro-di↵erential equations

and as a system of non-perturbative equations, they can be used to investigate simul-

taneously the perturbative and non-perturbative aspects of the theory.

In this thesis we use combinatorial properties of chord diagrams and integral trans-

forms method to gather respectively perturbative and non-perturbative information

regarding a special class of Dyson–Schwinger equation.

In this chapter we introduce the Dyson-Schwinger equations and the renormaliza-

tion group equation in the context of quantum field theory.

1



CHAPTER 1. INTRODUCTION 2

1.1 Dyson–Schwinger Equations

For the mathematician, the elementary particles studied in quantum field theory are

maps from space-time to some target space chosen to encode the relevant properties

of the particles to be captured in our models. These maps are known as fields in

the physics literature. Making an analogy with classical mechanics, one can consider

the movement of a solid body and to keep track of the direction of its associated

angular momentum at any point of space and time. Then we would have a map L

from space-time to the unit sphere such that L(t, x) is the direction of the angular

momentum of the solid at time t and position x. In this example, the solid body is be

the analog of an elementary particle and L is its associated field keeping track of its

angular momentum. The same goes for quantum field theory, although some of the

features of elementary particles might be more exotic.

As an example let us consider �3 theory. In the context of quantum field theory, a

field is a map � : Rd �! R where Rd represent a d dimensional euclidean space-time

and the target space does not carry any particular structure.

The properties of the model are fixed by a choice of action functional S : C0(Rd,R) �!
R where C0(Rd,R) is the space of real valued functions with compact support on Rd.

For the �3 theory we take the action to be

S(�) =

Z

Rd

1

2
@�2 � g

3!
�3 dvol , (1.1)

where g is called a coupling constant as it parametrizes the strength of particle inter-

actions.

The study of the classical solutions of this model consists in describing the critical

points of the functional S while the study of the quantum properties of the model

consists in describing the correlations between the values of the fields � at di↵erent

points in space-time. For something equivalent, but more common, in practice we can

also study the interactions of the particles described by the fields � as a function of
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their momenta. These are the quantities tied to the collisions experiments of particle

physics.

Similar to the action S of the classical model, the partition function captures its

quantum properties. The partition function, Z(g), depending on the Planck constant

~ and the coupling constant g is formally defined by

Z(g) =

Z

C0(Rd
,R)

D� exp



� i

~
S(�)

�

, (1.2)

where D� is formally a density on C0(Rd,R) with the key properties of being invari-

ant by translation and satisfying Stokes theorem. Note that it is possible to take an

analytic approach to the partition function giving a precise meaning to the integral

by constructing it as a limit porcess using ideas coming from statistical mechanics

and renormalization group analysis. There are other ways to approach this question,

see the recent [8] and classical [13] for more information.

As a formal object Z is the generating function of the correlation functions of the

model:

h�(x1) · · ·�(x
n

)i(g) =
Z

C0(Rd
,R)

D�

Z(g)
�(x1) · · ·�(x

n

) exp



� i

~
S(�)

�

. (1.3)

We can manipulate this generating function to obtain functional equations that will

be translated as relations among the correlation functions. Those relations are the

Dyson–Schwinger equations. The derivation of Dyson–Schwinger equations from the

partition function is rather formal and relies on many assumptions on the models so

for the sake of clarity we will proceed di↵erently here. We refer again to introductory

textbooks such as [4, 21] for more details.

Indeed, there is another more combinatorial way to describe these correlation

functions together with their Dyson–Schwinger equations. It corresponds to a dia-

grammatic interpretation of the physical process encoded in the correlation functions

and uses Feynman diagrams.
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Let us detail the construction for our example. Looking back at the action S(�)

we distinguish two terms in the integrand. The term 1
2@�

2 which is quadratic in

� is associated to the propagation of particles. In a Feynman diagram these are

represented by edges that carry a momentum:

1
2@�

2 ()
p

Monomial Diagrammatic Representation

Similarly the cubic term g �3/3! signals the presence of interactions involving three

particles. Those interactions are represented by corollas with conservation of the

momentum:

g �3/3! ()

Monomial Diagrammatic Representation

One can then give a diagrammatic representation of the correlation functions by

following a simple recipe. Fix a set of external edges corresponding to the particles

that will be interacting. Write a formal sum whose terms are all the graphs one can

build with the fixed external structure only using the edges and corrolas prescribed

by the action S. Instead of having to consider all graphs we can use the familiar

exp� log scheme to keep only the connected combinatorial objects and a Legendre

transform to reduce again the number of graphs. Specifically, taking the logarithm

of the partition function eliminates the non-connected graphs and taking its legendre

transform eliminates the graphs that are not 2-edge connected. Hence it is always

possible to consider only those graphs that are 2-edge connected. As an example,

neglecting numerical symmetry factors, the interaction of two particles yields:
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⇡ + + + + · · ·

One can do the same for the interaction of three particles:

⇡ + + + + · · ·

and so on. Instead of writing the full series of graphs we can replace it by a diagram-

matic recursion. If the gray bubbles are place holders for admissible subgraphs with

an admissible structure we obtain the combinatorial Dyson–Schwinger equations up

to numerical symmetry factors:

= +

= +

In order to obtain analytic versions of the Dyson–Schwinger equations one introduces

the Feynman rules, i.e. a correspondence between the graphs and integral expressions,

such that they match with the expression that can be derived from the partition

function. Here these rules are

i) an internal edge carrying a momentum p corresponds to a factor 1/||p||2;
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ii) a vertex with entering momenta p, q, r corresponds to a factor g �(p+q+r) where

� is the Dirac distribution used here to impose the conservation of momentum

at each vertex;

iii) integrate over all the momenta of internal edges.

Applying these rules to a simple graph one has:

g2

Z

Rd

1

||q||2 ||p+ q||2 dq7�!
p p

p+ q

q

Applying these rules to the combinatorial Dyson–Schwinger equations we obtain (af-

ter a normalization of the trees to 1) the following analytic version of the Dyson–

Schwinger equations, where G2 corresponds to the two particles interaction and G3

corresponds to the three particles interaction:

G2(g, p) = 1 + g2

Z

Rd

G�1
2 (g, q)G�1

2 (g, p+ q)G3(g, p, q)2

||q||2 ||p+ q||2 dq (1.4)

and

G3(g, p, q) = 1 + g2

Z

Rd

G�1
2 (g, r)G�1

2 (g, p+ r)G�1
2 (g, r � q)G3(g, p, r)G3(g, q, r)2

||r||2 ||p+ r||2 ||r � q||2 dr .

(1.5)

1.2 Renormalization Group Equation

However these Dyson–Schwinger equations are not su�cient to describe a physical

theory. Indeed the Feynman rules typically produce divergent integrals which means

they need to be renormalized. The renormalization procedure makes the parameters

of the correlation functions dependent of the energy of the physical process, but one
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fundamental requirement for a well defined theory is that the correlation functions are

invariant under certain energy reparametrizations. This property is encoded with the

condition that they must satisfy a partial di↵erential equation, the renormalization

group equation (see chapter 7 in [7]). If µ denotes the energy of the system, then in

our case this equation is

µ @
µ

G
i

(g, µ) = �(g)@
g

G
i

(g, µ) � �(g)G
i

(g, µ) , (1.6)

where the function � is called the anomalous dimension of the fields, � is called the

beta function of the system and i = 2, 3.

The focus of this thesis is the case of a single Dyson–Schwinger equation and

its associated renormalization group equation. While the details of the results are

specific to the choice of having to consider only one correlation function there is in

principle no obstruction to extend this approach to the more general case of systems

of Dyson–Schwinger equations. In the case of a single equation the renormalization

group equation takes the form

µ@
µ

G = �(g)(sg@
g

� 1)G , (1.7)

where s is a normalization parameter.

The anomalous dimension � and the correlation function G satisfy equations that

can be solved perturbatively using power series expansions. As a rule these per-

turbative series are only asymptotic series. Our goal is to use integral transform

methods, namely the Laplace–Borel resummation method, to try to reconstruct non-

perturbative solutions from these perturbative series.

1.3 Results

In Chapter 2 we introduce some preliminary constructions regarding di↵erent repre-

senations of Dyson–Schwinger equations. Expanding on the work of [24] we explain
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the transition from the integral form of the Dyson–Schwinger equation,

G2(g, p) = 1 + g2

Z

Rd

G�1
2 (g, q)G�1

2 (g, p+ q)G3(g, p, q)2

||q||2 ||p+ q||2 dq , (1.8)

to an infinite order di↵erential equation

G2(g, p) = 1 + g2 G2(g, @�⇢

)�1 [e�L(p) ⇢ � 1]F (⇢)|
⇢=0 . (1.9)

We then explain the principles of the Laplace–Borel resummation technique and con-

struct a toolbox of useful properties in chapter 3 before moving on to the main results

of this work.

In Chapter 4 we study the resummation of the anomalous dimension � building

on previous results such as [24, 20, 1, 2]. Starting with the combinatorial interpreta-

tion of � as a chord diagram expansion (see [20]) we get some idea of the structural

properties of the Borel transform of �. Then using the P -di↵erential equation (see

[24, 1, 2]) we give a resummation formula for a large class of parameter functions P .

In any case this formula clearly shows that the singularities of the Borel transform of

�, known in physics as instantons and renormalons, prevent us from having a unique

non-perturbative solution corresponding to the perturbative expansion.

Finally in Chapter 5 we use the fact that G must satisfy the renormalization

group equation to obtain a resummation formula for the perturbative expansion of G

in terms of the parameter L(p).

This thesis fits in a larger area of research in physics that aims at extending

WKB and Laplace–Borel resummation methods, already used successfully on the

Schroedinger equation, to other problems where a perturbative solution is always

available but never convergent. One can find references regarding those e↵orts in the

non exhaustive list of papers:

• Schroedinger equation, A. Voros (1983) and A. Getmanenko (2008) [23, 19];

• WKB analysis related to Dyson–Schwinger equations, D. Kreimer and A. Youssef

(2013) [18];
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• trans-series solutions in quantum mechanics and quantum field theory, G. Basar,

G.V. Dunne and M. Unsal (2013, 2014) [3, 12];

• Laplace–Borel analysis in Chern–Simons theory, S. Garoufalidis (2007) [16].



Chapter 2

Rewriting Dyson–Schwinger

Equations

In this chapter we introduce a functional representation of Dyson–Schwinger equa-

tions. The goal is to revisit the traditional manipulations of Dyson–Schwinger equa-

tions leading to equivalent representations but this time keeping track of the analytic

conditions that have to be fulfilled for these equivalence to be more than just formal.

This process give rise to Theorem 2.1.1 which can be seen as an analytic version of

the correspondence described in [24] Section 3.3.

2.1 From Integral to Di↵erential Representation

In this section we take the following integral equation as a model for our Dyson–

Schwinger equation is

�(~, p) = �0(p) + ~
Z

Rd

A(�(~, q))K(p, q) dq (2.1)

where dq is the volume form on Rd and A is some analytic function. Working in the

context of semi-classical analysis ~ is an expansion parameter and does not correspond

to the Planck constant. Most of the time it is some power of the coupling constants.

10
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We assume the integral operator is well defined, that is, the corresponding Feyn-

man rules have already been renormalized and the parameters ~ and p stay away from

potential singularities.

This integral form of the Dyson–Schwinger equation is most useful for proving

properties of the corresponding solutions by induction using fixed point methods,

however in practice the momentum variable p 2 Rd is not necessarily the most rel-

evant and we prefer to use quantities of the form L(p) = log(||p||2/µ2) which is

dimensionless and compatible with scaling properties coming from the action of the

renormalization group. This is why we want to rewrite 2.1 introducing an infinite

order di↵erential operator to emphasize the role of these new quantities.

So let us formalize all this. Let L : Rd �! R and associate to this function an

ansatz for the solution to the equation 2.1

e�
L

(~, p) =
+1
X

n=0

�
n

(~)L(p)n . (2.2)

Based on this ansatz we can formally derive another form of the Dyson–Schwinger

equation 2.1 as in [24].

Our next theorem gives the conditions under which this correspondence holds at

the analytic level. It is convenient to introduce the set of parameters ~ making the

integrand of the Dyson–Schwinger equation singular

Sing(DSE) =
�

~ 2 C | 9q 2 Rd s.t. A(�(~, q)) = 1 (2.3)

and the functions A�
k

(~), coe�cients of a series expansion defined by the relation

A(e�
L

(~, p)) =
+1
X

k=0

A�
k

(~)L(p)k . (2.4)

Theorem 2.1.1. Assume that e�
L

is a solution of 2.1. Then it is also a solution of

e�
L

(~, p) = �0(p) + ~A(e�
L

(~, @
⇢

))

Z

Rd

e⇢ L(q) K(p, q) dq
�

�

⇢=0
(2.5)

for all ~ 2 C \ Sing(DSE) if the following conditions are satisfied:
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(i) for all k 2 N, A�
k

(~) 2 O(C\Sing(DSE)) and
R

Rd K(p, q)L(q)k dq is absolutely

convergent;

(ii) for all q 2 Rd the series
P

A�
k

(~)L(q)k and
P

A�
k

(~)
R

Rd K(p, q)L(q)k are

absolutely convergent;

(iii)
R

Rd K(p, q)e⇢ L(q) dq is an analytic function of ⇢ in some neighborhood of the

origin;

Proof. We will go through the proof of the formal correspondence between the two

equations as in [24] and check at each step that our operations make sense at the

analytic level. So let us start with the Dyson–Schwinger equation in its integral form:

�(~, p) = �0(p) + ~
Z

Rd

A(�(~, q))K(p, q) dq . (2.6)

Using the ansatz inside the integral one has for all appropriate ~
Z

Rd

A(�(~, q))K(p, q) dq =

Z

Rd

1
X

k=0

A�
k

(~)L(q)k K(p, q) dq , (2.7)

and we need to discuss how to swap the summation and integration symbols. Indeed

swapping the order of summation and integration one obtains:

1
X

k=0

A�
k

(~)
Z

Rd

K(p, q)L(q)k dq . (2.8)

By (i) we know that any term of the sum is finite and using (ii) the whole sum exists,

then by Lebesgue dominated convergence theorem we do have the equality:

Z

Rd

1
X

k=0

A�
k

(~)L(q)k K(p, q) dq =
1
X

k=0

A�
k

(~)
Z

Rd

K(p, q)L(q)k dq . (2.9)

Next we want to use the trick which consists in writing L(q)k as @k

⇢

e⇢ L(q)
�

�

⇢=0
. Observe

that by assuming (iii) we get the equality:

Z

Rd

K(p, q) @k

⇢

e⇢ L(q) dq = @k

⇢

Z

Rd

e⇢ L(q) K(p, q) dq . (2.10)
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Putting everything together the Dyson–Schwinger equation 2.1 becomes:

�(~, p) = �0(p) + ~
1
X

k=0

A�
k

(~) @k

⇢

Z

Rd

e⇢ L(q) K(p, q) dq
�

�

⇢=0
, (2.11)

which we can simply repackage as

e�
L

(~, p) = �0(p) + ~A(e�
L

(~, @
⇢

))

Z

Rd

e⇢ L(q) K(p, q) dq
�

�

⇢=0
. (2.12)

Note that it is customary to introduce a Laurent series F (⇢) defined by the factoriza-

tion
Z

Rd

e⇢ L(q) K(p, q) dq = (e⇢ L(p) � 1)F (⇢) , (2.13)

such that the Dyson–Schwinger equation is

e�
L

(~, p) = �0(p) + ~A(e�
L

(~, @
⇢

)) (e⇢ L(p) � 1)F (⇢)
�

�

⇢=0
. (2.14)

This is the representation that will be used in chapter 4 for the main reason that in

practice working with the parameter L is more natural than working directly with

the momentum parameter p.

We also want to point out that 2.5 can be seen as a di↵erential equation with a

recursively defined infinite order di↵erential operator A(e�
L

(~, @
⇢

)). This is a perspec-

tive on these equations that we have not seen exploited so far but that could lead to

yet another method to study structural properties of their solutions ( see [6] for some

examples of properties of infinite order di↵erential operators).

2.2 In Practice

The previous theorem requires many conditions but they are all very natural. Let us

consider a simplified situation to illustrate them. Fix the dimension to be d = 1 and

let µ 2 R+, we take for all p 2 R

L(p) = log(|p|2/µ2) . (2.15)
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Our first problem is to be sure that for all k 2 N the following integrals are convergent:

Z

R
K(p, q) log(q2/µ2)k dq . (2.16)

Looking at L we see that the integral might fail to be convergent due to divergences

when |q| ! 0,1. To prevent this from happening we must choose K(p, q) so that its

behaviour at 0 and 1 dominates the logarithm. Such examples include kernels of the

form

K(p, q) = ↵(p) q e�q

2
or K(p, q) =

↵(p)

1 + q2
. (2.17)

In the first case the decreasing exponential dominates the logarithm at 1 and the

polynomial factor q ensure that the integrand stays finite at 0. For the case where K

is rational in q the dominating powers are chosen again in order to behave like 1/q at

1 and q at 0. Next let us look at the other integral condition, that is the analycity

in some neighbourhood of the origin of the function of ⇢

Z

R
K(p, q)

✓

q2

µ2

◆

⇢

dq . (2.18)

The integrand being an entire function of ⇢ it is su�cient for the integral to be

convergent in order to have an analytic function. For the exponential kernel we have

Z

R
↵(p)

✓

q2⇢+1

µ2⇢

◆

e�q

2
dq . (2.19)

The exponential takes care of the convergence at 1 whatever the choice of ⇢ and we

are left with examining what happens at the origin. But to avoid any divergence it is

su�cient to choose ⇢ such that 2<(⇢) + 1 � 0 so there is definitely a neighbourhood

of the origin for which the integral is convergent and the condition is satisfied.

We can do the same kind of analysis if we pick the rational kernel:

Z

R
↵(p)

✓

q2⇢+1

µ2⇢(1 + q2)

◆

dq . (2.20)

Now we need two conditions on the real part of ⇢ in order to enforce the convergence

at 0 and 1, they are simply 2<(⇢) < 1 and 2<(⇢) > 1. So as long as |<(⇢)| < 1/2

the integral is convergent that is there is a neighbourhood of the origin on which the
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integral is analytic.

Of course by restricting ourselves to d = 1 we greatly simplified the analysis of the

conditions, but given the general forms of the Feynman rules in physical models it is

mostly the case that by partial integrations in spherical coordinates we can schemat-

ically reduce the problem to something close to these examples.

Checking condition (ii) of the theorem is a much more complicated problem. In-

deed making the particular choice A(y) = 1/y and assuming that �0 = 1 in order to

simplify the notations, one obtains the following expression for the coe�cients A�
k

(~):

A�
k

(~) =
k

X

i=1

(�1)i
X

p1+···+pi=k

p1 ,··· , pi �1

i

Y

j=1

�
pj(~) . (2.21)

Thus going further requires to get some information about the coe�cients �
i

(~). These
are computed by induction using the formula

�
n

(~) =
1

n
�1(~) (~ @~ � 1) �

n�1(~) . (2.22)

The easiest way do obtain this formula consists in applying the renormalization group

equation 1.7 to the ansatz e�
L

:

@
L

X

n

�
n

(~)Ln = �1 (~@~ � 1)
X

n

�
n

(~)Ln , (2.23)

that is for all n > 1

n �
n

(~) = �1(~) (~@~ � 1)�
n�1(~) . (2.24)

So we see that giving suitable estimates in order to verify the convergence of the

series appearing in condition (ii) can only be done once we have gathered information

about the function �1. This is the object of the second part of this work.

As an example, if we assume that �1 is exponentially bounded on a suitable domain,

we would have

|�
n

(~)|  C
An

n!
Pol

n

(~) en ↵ ~ (2.25)
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with Pol
n

a polynomial of degree n � 1 and A,C some positive constants. We can

use those inequalities to get a crude estimates on A�
k

(~):

|A�
k

(~)| 
k

X

i=1

Ai ei ↵ ~
X

p1+···+pi=k

p1 ,··· , pi �1

i

Y

j=1

Pol
pj(~)
p

j

!
. (2.26)

There must be a polynomial P
k

of degree k that bounds the sum of products of Pol
pj ,

so ignoring the denominators we have

|A�
k

(~)| 2k�1 P
k

(~)
k

X

i=1

Ai ei ↵ ~ (2.27)

A

2
e↵ ~ 2k P

k

(~)
1 � Ak ek ↵ ~

1 � Ae↵ ~ . (2.28)

Thus we see that in this case the coe�cients of the series appearing in condition (ii)

can be bounded by expressions that depend geometrically on k providing the neces-

sary tool to check for convergence. So we see that the knowledge of �1 is the essential

prerequisite to the application of our theorem.

To summarize, for the rest of the thesis we will assume that 2.5 is a valid form for

our Dyson–Schwinger equation and we will proceed to look for actual solutions.



Chapter 3

Technical Preliminaries

In this chapter we introduce some basic tools of complex analysis necessary to carry

out Laplace–Borel resummation.

Even if familiar with complex analysis the reader is encouraged to go through

these results in order to understand the fundamental ideas behind Laplace–Borel re-

summation and how we intend to use it to explore Dyson–Schwinger equations.

The most important result in this section is theorem 3.1.2 which gives a correspon-

dence between an asymptotic series and an analytic object obtained by the processes

of Laplace–Borel resummation.

3.1 Laplace–Borel Resummation

In this section we introduce the Laplace–Borel resummation method. This is a vast

subject but we focus here on the properties useful in the rest of this text. More details

can be found in [9, Chapters 3,5].

An important technical point: from this point and until the end of this thesis an-

alytic functions are considered by default to be multivalued unless stated otherwise.

17
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This choice is due to the fact that the entire theory of Laplace–Borel resummation re-

volves around considering all the analytic continuations of the Borel transforms which

are by construction only germs of analytic functions.

First of all let us introduce the notion of Gevrey-1 asymptotic expansion of an

analytic function.

Definition 3.1.1. Let f be an analytic function on a domain D of C and ef =
P

n

ef
n

z�n�1 2 z�1C[[z�1]] be a formal power series. We say that ef is a Gevrey-1

asymptotic expansion of f on D if there are some A,B > 0 such that for all z 2 D,

n 2 N⇤
�

�

�

�

�

f(z) �
n�1
X

k=0

ef
n

1

zn+1

�

�

�

�

�

 ABn n!
1

|z|n+1
. (3.1)

When ef is a Gevrey-1 asymptotic expansion of f we write f(z) ⇠1
ef .

The Laplace–Borel resummation process consists in constructing an analytic func-

tion f starting from some formal power series ef such that f(z) ⇠1
ef .

The first step consists in defining the formal Borel transform of a formal power

series as

B : C[[1/z]] �! C� � C[[⇣]] (3.2)

Cte +
+1
X

k=0

ef
k

1

zk+1
7! Cte� +

+1
X

k=0

ef
k

⇣k

k!
(3.3)

where � is a formal version of the Dirac distribution meaning that it will serve as a

neutral element for the convolution product of formal power series.

A subclass of formal power series is of particular interest when considering the

formal Borel transform.

Definition 3.1.2. A formal power series ef 2 C[[1/z]] is said to be of Gevrey class 1

if there are A,B > 0 such that for all n large enough | ef
n

|  ABn n!.
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Indeed one can immediately see that if ef is a formal power series of Gevrey class 1

then B[ ef ] 2 C� + C{⇣}, i.e. its formal Borel transform is associated to a germ of

analytic function at the origin.

Example 3.1.1. The Euler series E(z) =
P

(�1)k k! z�1�k is of Gevrey class 1 while
P

2(
k
2) z�(k+1) is not.

Now we define the Laplace transform of a function along the positive real axis to be

L0[ bf ](z) =

Z

R+

e�⇣ z

bf(⇣) d⇣ (3.4)

for any function bf locally integrable along R+ and satisfying some exponential bound

for ⇣ 2 R+ large enough. Let H
c

= {z 2 | <(z) > c} be a half plane, we have the

following result.

Lemma 3.1.1. Assume that bf is locally integrable over R+ and there are A, c0 > 0

such that for all ⇣ 2 [1,+1[ we have | bf(⇣)|  Aexp(c0 |z|). Then for all c > c0 the

Laplace transform L0[f ] is analytic in H
c

.

Proof. Since the integrand of L0[ bf ](z) is an entire function of z, the Laplace trans-

form is analytic as long as the integral is convergent. The Laplace transform can be

decomposed as

L0[ bf ](z) =

Z 1

0

e�⇣ z

bf(⇣) d⇣ +

Z +1

1

e�⇣ z

bf(⇣) d⇣ , (3.5)

where the first term is convergent and the second term is bounded by
Z +1

1

Ae�⇣(z�c0) d⇣ . (3.6)

Thus the condition <(z�c0) > 0 ensure that the Laplace transform is convergent.

So the Borel transform of a Gevrey-1 formal power series provides a germ of an

analytic function in a dual variable and under certain growth conditions taking its

Laplace transform gives us back an analytic function. This is the process of Laplace–

Borel resummation. In particular one can observe that

L0B[ efn

/zn+1] =
ef
n

n!

Z

R+

e�⇣ z⇣n d⇣ =
ef
n

zn+1
(3.7)



CHAPTER 3. TECHNICAL PRELIMINARIES 20

so that if ef 2 C{z�1} then L0B[ ef ] is equal to the Taylor series of ef . Thus when there

is nothing to resum, the original series is convergent, the Laplace–Borel summation

process is equivalent to the identity (up to taking a Taylor series).

With slightly more general hypotheses we get a much stronger result. For ✏ > 0

define the half-strip St
✏

to be the set of points ⇣ 2 C such that the distance from ⇣

to R+ is strictly smaller than ✏. For any c0 � 0 we also introduce bE
c0(R+) the set

of germs of analytic functions bf 2 C{⇣} such that for some ✏, A > 0 the germ bf has

a unique analytic continuation on St
✏

and for all ⇣ 2 St
✏

this analytic continuation

satisfies | bf(⇣)|  Aec0 |⇣|. The previous observation then generalizes to the following

theorem.

Theorem 3.1.2. If bf 2 bE
c0(R+) then for all c > c0 and all z 2 H

c

we have

L0[ bf ](z) ⇠1

+1
X

k=0

bf (k)(0)
1

zk+1
. (3.8)

Proof. Since bf 2 bE
c0(R+), it must be analytic in some half-strip St

✏

.

For all ⇣ 2 St
✏

and n 2 N⇤ consider the expression:

R
n

(⇣) = bf(⇣) �
n

X

k=0

bf (k)(0)
⇣k

k!
. (3.9)

Observe that:

• R
n

and all its derivatives are vanishing at the origin;

• R
(n+1)
n

= bf (n+1)(⇣);

Then applying the Laplace transform to R
(n+1)
n

(⇣) together with the previous lemma

one sees that:

L0[ bf
(n+1)](z) = L0[R

(n+1)
n

](z) (3.10)

= zn+1 L0[Rn

](z) (3.11)

= zn+1

(

L0[ bf ](z) �
n�1
X

k=0

bf (k)(0)
1

zk+1
�
bf (n)(0)

zn+1

)

, (3.12)
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which gives the relation

L0[ bf ](z) �
n�1
X

k=0

bf (k)(0)
1

zk+1
=

1

zn+1

n

L0[ bf
(n+1)](z) + bf (n)(0)

o

. (3.13)

So as a first step we obtain the bound:
�

�

�

�

�

L0[ bf ](z) �
n�1
X

k=0

bf (k)(0)
1

zk+1

�

�

�

�

�

 1

|z|n+1

n

L0[| bf (n+1)|](z) + | bf (n)(0)|
o

. (3.14)

Now consider any ⇣ 2 R+ and the disk D(⇣, ✏) ⇢ St
✏

. Since bf is analytic in D(⇣, ✏) we

can use Cauchy’s inequality to bound bf (n)(0). Since bf 2 bE
c0(R+), we have in D(⇣, ✏):

�

�

�

bf (n)(y)
�

�

�

 n!

✏n
sup

y2@D(⇣,✏)
| bf(y)|  n!

✏n
Aec0(⇣+✏) . (3.15)

In particular at ⇣ = 0 we have
�

�

�

bf (n)(0)
�

�

�

 n!Aec0✏/✏n from which we get that for all

z 2 H
c

L0[| bf (n+1)|](z)  (n+ 1)!A

✏n+1

Z

R+

e�⇣(z�c0)+c0✏ d⇣  (n+ 1)!

✏n+1

Aec0✏

c � c0
. (3.16)

But (n+ 1)!  2n n! so eventually we get for all n 2 N⇤ and all z 2 H
c

:
�

�

�

�

�

L0[ bf ](z) �
n�1
X

k=0

bf (k)(0)
1

zk+1

�

�

�

�

�

 A0 Bn n! (3.17)

that is

L0[ bf ](z) ⇠1

+1
X

k=0

bf (k)(0)
1

zk+1
. (3.18)

This is the general link between a formal power series and its Laplace–Borel sum.

Let us reformulate that with a precise definition.

Definition 3.1.3. A formal power series ef 2 C[[1/z]] is said to be fine-summable

along R+if it satisfies the following conditions:

(i) B[ ef ] = bf 2 C� � C{⇣};
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(ii) there is some c0 � 0 such that bf 2 bE
c0(R+);

When these conditions are satisfied we call L0B[ ef ] the Laplace–Borel sum of ef along

R+. Moreover L0B[ ef ] 2 O(H
c

) for all c > c0 and for all z 2 H
c

we have

L0B[ ef ](z) ⇠1
ef(z).

3.2 Properties of the Resummation

Here we have the notion of fine-summability along R+ but it can be generalized easily

to any direction ei✓R+ of the complex plane.

For that we have to consider the Laplace transform along the direction ei✓R+:

L
✓

[ bf ](z) =

Z

e

i✓R+

e�⇣ z

bf(⇣)ḋ⇣ =

Z

R+

e�⇣ z e

i✓
bf(⇣ ei✓) ei✓ d⇣ . (3.19)

It is then quite easy to adapt all the previous results to this new setting by a change

of variables. As an example we got the following existence lemma for the Laplace

tranform along ei✓R+.

Lemma 3.2.1. Assume that bf is integrable along ei✓R+ and that there is c0, A > 0

such that | bf(⇣)|  Aexp(c0|⇣|) for all ⇣ 2 ei✓[1,+1[. Then the Laplace tranform

L
✓

[ bf ] exists and is analytic in the tilted half plane H✓

c

=
�

z 2 C | <(z ei✓) > c
 

for all

c > c0.

Proof. This is the same argument as in 3.1.1.

In the same fashion all the other results remain the same mutatis mutandis. In par-

ticular if ef is fine summable along ei ✓R+ we get L
✓

B[ ef ](z) ⇠1
ef(z) for appropriate

values of z. Thus by choosing di↵erent ✓ we obtain a priori di↵erent resummations of

the same original series ef . As a rule the results for di↵erent ✓ are not independent.

In the simplest situation one can go from one resummation to the other by analytic

continuation.
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Let [✓1, ✓2] be some interval in the real line and bE(✓1, ✓2) be the set of germs of

analytic functions bf 2 C{⇣} such that for each ✓ 2 [✓1, ✓2] there is c(✓) > 0 such that
bf 2 bE

c(✓)(ei✓R+). Thus if bf 2 bE(✓1, ✓2) then for any ✓ 2 [✓1, ✓2] the Laplace transform

of bf in the direction ei✓R+ , L
✓

bf(z), defines an analytic function in a half plane H✓

c(✓).

The following theorem shows that it is possible to glue these di↵erent functions.

Theorem 3.2.2. Assume that bf 2 bE(✓1, ✓2) with 0 < ✓2 � ✓1 < ⇡. Then L
✓1
bf 2

O(H✓1
c1
), L

✓2
bf 2 O(H✓2

c2
), H✓1

c1

T

H✓2
c2
= H12 6= ; and we have

L
✓1
bf
�

�

H12
= L

✓2
bf
�

�

H12
. (3.20)

Proof. First of all the intersection H12 is not empty for geometric reasons. Observe

that @H✓1
c1

= c1 + ei(⇡
2�✓1)R and @H✓2

c2
= c2 + ei(⇡

2�✓2)R and since ✓2 � ✓1 < ⇡ there is

some point z⇤ at the intersection of these two lines. Thus H12 6= ; and our claim does

make sense.

z-plane

H✓1
c1

H✓2
c2

H12

(z⇤)

Figure 3.1: Domains of analyticity of the Laplace transforms.
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Now let us consider what happens in the ⇣-plane. By hypothesis bf defines an

analytic function in the sector contained between the lines ei✓1R+ and ei✓2R+. Inside

this sector we can consider the domain U enclosed by the curve

{rei✓1 | r 2 [0, R]} [ {rei✓2 | r 2 [R, 0]} [ {Rei✓ | ✓ 2 [✓1, ✓2]} . (3.21)

⇣-plane

I

(U)

(ei ✓2R+)

(ei ✓1R+)

Figure 3.2: Graphic representation of the contour of integration.

Then by Cauchy’s theorem we have the formula:

Z

@U
e�z⇣

bf(⇣) d⇣ =

Z

Re

i✓1

0

e�z⇣

bf(⇣) d⇣ �
Z

Re

i✓2

0

e�z⇣

bf(⇣) d⇣ +

Z

|⇣|=R

✓1<arg(⇣)<✓2

e�z⇣

bf(⇣) d⇣ = 0 .

(3.22)

So when we take the limit as R �! 1 we obtain

L
✓1
bf(z) � L

✓2
bf(z) + lim

R�!1

Z

|⇣|=R

✓1<arg(⇣)<✓2

e�z⇣

bf(⇣) d⇣ = 0 . (3.23)
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Then in order to prove our theorem we need to show that for all z in some open subset

of H12

lim
R�!1

Z

|⇣|=R

✓1<arg(⇣)<✓2

e�z⇣

bf(⇣) d⇣ = 0 . (3.24)

Indeed by the identity theorem of analytic functions, if that is the case then L
✓1
bf(z) =

L
✓2
bf(z) for all z 2 H12. From the fact that bf is exponentially bounded we get the

following estimates:
�

�

�

�

�

�

Z

|⇣|=R

✓1<arg(⇣)<✓2

e�z⇣

bf(⇣) d⇣

�

�

�

�

�

�

 Cte (✓2 � ✓1) e
�R(<(z)�c) . (3.25)

Then one can pick D, an open subset of H12, such that for all z 2 D, <(z) > c and

from our last estimates we have on this set

lim
R�!1

Z

|⇣|=R

✓1<arg(⇣)<✓2

e�z⇣

bf(⇣) d⇣ = 0 . (3.26)

So we get L
✓1
bf
�

�

D

= L
✓2
bf
�

�

D

as desired.

One can use the previous theorem to glue di↵erent resummations of the original series

into analytic functions.

Example 3.2.1. Let us go over the classical example of the resummation of the

Euler series. The Euler series ef(z) 2 C[[1/z]] is the formal power series solution to

the di↵erential equation
df

dz
� f = �1

z
. (3.27)

A quick calculation show that the series must be

ef(z) =
+1
X

n=1

(�1)n+1 (n � 1)!
1

zn

. (3.28)

This series is of Gevrey class 1 and its Borel transform is simply bf(⇣) = 1/(1+ ⇣) . It

has only one singularity at �1 and as a rational function it is exponentially bounded

everywhere else. Thus for any ✓ 6= ⇡ we have bf 2 bE0(ei✓R+) and the Euler series is

fine summable along each of these directions:

f
✓

(z) =

Z

e

i✓R+

e�⇣ z

d⇣

1 + ⇣
. (3.29)
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Let us pick the solution f0 corresponding to an integration along the positive real axis.

We know that f0 2 O(H0
0) and from theorem 3.2.2 a rotation of the line of integration

for the Laplace transform corresponds to an analytic continuation of f0 for rotation

angles smaller than ⇡. Let us illustrate this process starting from f0 and proceeding

to do an analytic continuation by a clockwise rotation of the contour of integration.

On the next page we read the figure as follows, on each line one can see:

• on the left the contour of integration in the Borel plane along which we compute

the Laplace transform;

• on the right side the half space in which the Laplace–Borel transform along the

chosen contour is analytic;

Going from top to bottom we observe the e↵ect of a counterclockwise rotation of the

contour of integration.
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z-plane H0
0 ⇣-plane

�1

(R+)

I

z-plane

H✓

0

⇣-plane

�1

(ei✓R+)
I

z-plane

H⇡

0

⇣-plane

�1

(C�)

I

Figure 3.3: Illustration of the principle of analytic continuation by clockwise rotation

of the contour of integration.
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Thus the clockwise analytic continuation of f0 gives rise to the function f+ 2 O(C \
iR�) and by the same argument a counterclockwise analytic continuation of f0 yields

another analytic function f� 2 O(C \ iR+). These two functions have in common the

domain of definition C \ iR so it makes sense to compare them. To do so we choose

representatives of f+ and f� corresponding to the contours of integrations C+ and C�

depicted below.

⇣-plane

�1

(C�)

⇣-plane

�1

(C+)

Figure 3.4: The contours of integration avoiding the singularity at �1 from the left

and from the right.

Computing their di↵erence reduces to a residue calculation:

f+(z) � f�(z) = 2i⇡Res

✓

⇣ 7! e�⇣ z

1 + ⇣
; ⇣ = �1

◆

= 2i⇡e�z . (3.30)

This relation holds on C \ iR; it is a connection formula whose origin is the presence

of a singularity at ⇣ = �1 for the Borel transform of the Euler series. This is the

Stokes phenomenon. Observe that the domain C \ iR can be divided in <(z) > 0 and

<(z) < 0. On the right half-plane the above formula shows that at infinity the two

functions f+ and f� get exponentially close while at infinity on the right half-plane

there di↵erence gets arbitrarily large. The line iR separates these two asymptotic

behaviours and is called a Stokes line.
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Example 3.2.2. Not all divergent power series are fine-summable, even if their

growth is controlled. Indeed any Gevrey-1 series whose Borel transform is lacunary

will not be fine-summable along any direction of the complex plane. As an example

fix p an integer strictly larger than 1 and consider the formal power series

ef(z) =
X

n=p

k

k2N

n!
1

zn+1
. (3.31)

The series ef is obviously of Gevrey class 1 and its Borel transform is the germ of

analytic function

bf(⇣) =
1
X

k=0

⇣p

k
. (3.32)

However we claim that bf has singularities at each pkroot of unity for all k 2 N. First

observe that bf has a radius of convergence equal to 1 with a singularity at 1. Moreover

for any k 2 N⇤ it satisfies the functional equation

bf(⇣p

k
) = bf(⇣) �

k�1
X

i=0

⇣p

i
. (3.33)

Thus if 1 is a singular point of bf so are all the solutions of the equation ⇣p

k
= 1 for

all k 2 N.

So bf is singular on a dense subset of S1 and one cannot find any ✏ > 0 such

that bf has a unique analytic continuation on a half-strip St✓
✏

around any direction

ei✓R+. Hence bf fails at condition (ii) in the definition of fine-summability along all

the direction in C.

We conclude this section with some technical properties of the convolution prod-

uct, the Laplace and the Borel transforms that are used in many calculations in the

following two chapters. Recall that if bf and bg are analytic functions in a neighbour-

hood of the origin then for |⇣| small enough their convolution product is give by the

line integral

bf ⇤ bg(⇣) =
Z

⇣

0

bf(t) bg(⇣ � t) dt . (3.34)
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In the following statement we take the point of view of the Laplace transforms. Using

the relation between the Laplace and Borel transforms given above (see theorem 3.1.2)

one can get equivalent properties from the point of view of the Borel transform.

Property 3.2.3. Let bf and bg be germs of analytic functions in a neighbourhood of the

origin without constant terms and ✓ 2 S1 be such that the Laplace transforms below

are well defined. We have the following relations:

(i) ( bf ⇤ bg)0 = bf 0 ⇤ bg = bf ⇤ bg0;

(ii) L
✓

[ bf ⇤ bg] = L
✓

[ bf ]L
✓

[bg];

(iii) L
✓

[�⇣ bf ] = d

dz

L
✓

[ bf ];

Proof. Without loss of generality we work with ✓ = 0 in order to simplify the nota-

tions.

(i) The first equality follows immediately from the application of the formula of deriva-

tion of an integral depending on a parameter. The second equality result from the

commutativity of the convolution product.

(ii) By definition the Laplace transform of a convolution product is given by

L0[ bf ⇤ bg](z) =
Z

R+

e�⇣ z

bf ⇤ bg(⇣) d⇣ (3.35)

=

Z

R+

Z

⇣

0

e�⇣ z

bf(t)bg(⇣ � t) dt d⇣ (3.36)

=

Z

R+

Z

⇣

0

e�t z

bf(t) e�(⇣�t)z
bg(⇣ � t) dt d⇣ . (3.37)

So our domain of integration is {0 < ⇣ < +1 , 0 < t < ⇣}, that is the part of the

left upper quandrant of the (t, ⇣) plane between the lines ⇣ = 0 and ⇣ = t. But this

domain can also be parametrized as {0 < ⇣ < +1 , ⇣ < t < 1} . We then rewrite

our integral as

L0[ bf ⇤ bg](z) =
Z

R+

Z +1

⇣

e�t z

bf(t) e�(⇣�t)z
bg(⇣ � t) dt d⇣ (3.38)

=

Z

R+

e�⇣ z

bf(⇣) d⇣

Z

R+

e�⇣

0
z

bg(⇣ 0) d⇣ 0 (3.39)

=L0[ bf ](z)L0[bg](z) , (3.40)
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with the change of variables ⇣ � t = ⇣ 0.

(iii) Let us look at the Laplace transform

L0[ bf ](z) =

Z

R+

e�⇣ z

bf(⇣) d⇣ . (3.41)

As we have seen before, when this integral is convergent it defines a function analytic

in z in some right half-plane. Changing the integrand with a multiplication by �⇣
does not decrease the domain of analyticity of the function. Thus we can exchange

the order of integration and di↵erentiation with respect to the variable z to obtain

d

dz
L0[ bf ](z) =

Z

R+

�⇣ e�⇣ z

bf(⇣) d⇣ = L0[�⇣ bf ](z) . (3.42)

A formal power series can always be interpreted as the asymptotic expansion of

some analytic function. Such a function is not unique but theorem 3.1.2 shows that

up to exponential terms it is given by the Laplace–Borel resummation process. We

are now ready to apply this method to the case of Dyson–Schwinger equations.



Chapter 4

Summability of the Anomalous

Dimension

4.1 Introduction

In the previous part we discussed the possibility of looking for solutions to Dyson–

Schwinger equations in the form of power series as

eG(x, L) =
+1
X

n=0

�
n

(x)Ln . (4.1)

In this section we want to explore some of the analytic properties of the coe�cients

�
n

. Observe that due to the recursive nature of the Dyson–Schwinger Equation 2.5

the �
n

satisfy the recursion

�
n

(x) =
1

n
�1(x)(x@x

� 1)�
n�1(x) (4.2)

for all n > 1. So we see that the properties of the coe�cients �
n>1 can be read di-

rectly from those of �1. Hence our work will be focused on the function �1 called the

anomalous dimension associated to the Green function G(x, L).

We start by using a combinatorial description of the series expansion of �1 as

described in [20] to obtain some preliminary results regarding the location of the sin-

gularities of its Borel transform b�1. It is this example that guides us to a general

32
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analysis of the P -di↵erential equation. Our main results in theorems 4.3.2 and 4.3.3

proves the Laplace–Borel summability of �1 for a large class of P -di↵erential equation.

In particular this result shows that to the asymptotic expansion of the anomalous

dimension corresponds several analytic objects. Thus going from the formal to the

analytic solutions to our problem one must introduce additional conditions to be able

to select one non-perturbative expression for the anomalous dimension.

4.2 Chord Diagrams

Suppose we are looking for a formal power series solution to the Dyson–Schwinger

equation, say eG(x, L) 2 C[[x, L]] and that we would like a combinatorial description

of this solution. Let {C
n

}
n2N be some family of combinatorial classes, we try the

ansatz
eG(x, L) =

X

n

X

X2Cn

eG
X

x|X| Ln . (4.3)

From experience we observe that the number of terms in the coe�cient of x|X| relative

to the combinatorial class C
n

grows like |X|!!, where |X| is the number of chords in

the diagram, which suggests to look at restricted class of matchings to describe C
n

.

Using the recursive form of the Dyson–Schwinger equation ?? we can obtain an

arbitrary long series expansion of the eG(x, L). Here is the beginning of this expansion

in terms of the coe�cients f
j

of the Laurent series F :

eG(x, L) = 1+f0xL+ f0f1x
2L � 1

2
f 2

0x
2L2 + (f0f

2
1 + 3f 2

0 f2)x
3L (4.4)

� 1

2
(f0f

2
1 + 3f 2

0 f2)x
3L2 +

1

6
3f 3

0x
3L3 (4.5)

+ (15f 3
0 f3 + 11f 2

0 f1f2 + f + f0f
3
1 )x

4L (4.6)

� 1

2
(18f 3

0 f2 + 9f 2
0 f

2
1 )x

4L2 +
1

6
(23f 3

0 f1)x
4L3 + · · · (4.7)

It happens that the correct interpretation makes use of combinatorial quantities

that can be read on rooted connected chord diagrams as described in [20]. Let us
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briefly extract from [20] some elementary constructions necessary to provide a com-

binatorial meaning to the asymptotic expansion of the anomalous dimension �1.

Definition 4.2.1. A chord diagram of order n is the data of 2n points (p1, · · · , p2n

)

arranged on a circle, together with n distinct pairs of distinct points
�

(p
i1 , pin+1), · · · , (pin , pi2n)

 

forming a partition of (p1, · · · , p2n

), where (p
ik
, p

in+k
) is represented by a chord joining

the points p
ik
and p

in+k
on the circle. Additionally we say that:

• Two distinct chords (p
ik
, p

in+k
) and (p

il
, p

in+l
) intersect each other if and only if

p
ik
< p

il
< p

in+k
< p

in+l
or p

il
< p

ik
< p

in+l
< p

in+k
;

• A chord diagram is rooted when we distinguish one of the points p1, · · · , p2n

on

the circle;

• A chord diagram is disconnected if we can partition the set of chords in two sets

so that no chord of the first set intersect any chord of the second. Otherwise we

will say that the chord diagram is connected.

In the following RCCD denotes the set of rooted connected chord diagrams, it

corresponds to
S

n2N⇤ C
n

in our ansatz. We say that a diagram with n chords has

degree n and we denote by RCCD
n

the family of these diagrams. Unless stated

otherwise our chord diagrams are oriented counterclockwise, meaning that the points

on the outer circle are numbered p1, p2, ..., p2n

with p1 corresponding to the root and

continuing counterclockwise from this point.
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(A)
1

2

3
4

(B)
1

2

3

1

Figure 4.1: (A) is a rooted connected chord diagram of degree 4 while (B) has degree 3

but is not connected. Here the root is the circled vertex, the root chord is numbered 1 and

the rest is labelled in the counterclockwise order.

Definition 4.2.2. LetX be a rooted connected chord diagram of degree n. We denote

by I(X) the labeled directed graph whose set of vertices {1, 2, ..., i, ..., n} corresponds

to the set of chords of X where i stands for the ith chords in the counterclockwise

order and there is a directed edge from i to j if the ith chord intersects the jth chord

with i < j. The graph I(X) is called the directed intersection graph of X.

Here is an example of a rooted connected chord diagram and its directed intersec-

tion graph:

1

2

3
4

1 2 3 4

1

Definition 4.2.3. Let X be a rooted connected chord diagram and I(X) its directed

intersection graph. A chord i is said to be terminal if the vertex i of I(X) has no

outgoing edges.
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Hence a terminal chord does not intersect any chord with a larger index. As one

can see in the examples presented below, the linear order on the vertices of the di-

rected intersection graphs makes it easy to observe the gaps between terminal chords.

But unfortunately things are not straightforward and at this point we need to rela-

bel the chords of our diagrams in a new order called the intersection order if we want

to capture combinatorially the recursive nature of our Dyson–Schwinger equation.

This order is defined recursively directly on the chord diagrams or on their in-

tersection graph. We choose this second option and we express this new order as a

permutation of the counterclockwise order.

Definition 4.2.4. Let X be a rooted connected chord diagram of degree n with its

sequence of chords (1, 2, ..., n) in the counterclockwise order and I(X) its intersection

graph. Apply the following recursive procedure:

1) consider the graph I(X) and delete the edges going out of its smallest vertex,

the vertex 1;

2) obtain k connected components I1(X) = {1}, I2(X), ..., I
k

(X) where the small-

est vertex of I
p

(X) is larger than the smallest vertex of I
q

(X) when q < p;

3) then each connected component I
p

(X) is associated to its sequence of vertices

(x1,p

, x2,p

, ...) in counterclockwise order. This defines a permutation (1, 2, ..., n) 7!
(1, x1,1, x2,1, ..., x1,2, x2,2, ..., x1,k

, x2,k

, ...);

4) apply this procedure recursively to each I
p

(X), (x1,p

, x2,p

, ...) until we are left

with n singletons;

This defines a permutation �
X

: (1, 2, ..., n) 7! (�1, �2, ..., �n

) that we call the inter-

section order of X.
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This procedure is easily understood on an example:

1 2

3

4

(X)

�
X

= (1243)

1 2 3 4

1 2 4 3

1 2 3 4

Step 1

(1, 2, 3, 4)

Step 2

(1, 2, 4, 3)

Step 3

(1, 2, 4, 3)

I(X)

I1(X) I2(X) I3(X)

I1(X) I2,1(X) I2,2(X) I3(X)

1

where each step corresponds to rearranging the elements of each block with respect

to their smallest label as prescribed in the definition.

So finally we obtain the chord diagram and its corresponding intersection diagram

now labeled in the intersection order given by �
X

= (1243):

1 2

4

3

(X)

1 2 3 4

I�(X)

.

1

A more general example:
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1

2 3

4

5

67

8

(X)

�
X

= (12368745)

1 2 3 4 5 6 7 8

1 2 3 6 7 8 4 5

1 2 3 6 7 8 4 5

1 2 3 6 8 7 4 5

1 2 3 6 8 7 4 5

Step 1

(1, 2, 3, 4, 5, 6, 7, 8)

Step 2

(1, 2, 3, 6, 7, 8, 4, 5)

Step 3

(1, 2, 3, 6, 7, 8, 4, 5)

Step 4

(1, 2, 3, 6, 8, 7, 4, 5)

Step 5

(1, 2, 3, 6, 8, 7, 4, 5)

I(X)

I1 I2 I3

I1 I2,1 I2,2 I3,1 I3,2

I1 I2,1 I2,2,1 I2,2,2 I2,2,3 I3,1 I3,2

I1 I2,1 I2,2,1 I2221 I2222 I2,2,3 I3,1 I3,2

1

So finally we get the following chord diagram together with its intersection graph in

the intersection order given by �
X

= (12368745):

1

2 3

7

8

46

5

(X)

1 2 3 4 5 6 7 8

I�(X)

.

1

If I(X) is a directed intersection graph we denote by I
�

(X) the graph obtained by

relabelling the vertices with the permutation �
X

. This operation is an automorphism
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of the graph I(X) so if i was a terminal chord of X in the counterclockwise order,

�
i

= �
X

(i) is a terminal chord of X in the intersection order.

For chord diagrams of small degree the intersection order and the counterclockwise

order coincide most of the time. It is only at higher degrees that we start to see the

di↵erences between these orders.

Definition 4.2.5. LetX be a rooted connected chord diagram with intersection order

�
X

= (�1, ..., �n

). The sequence of terminal chords of X in the intersection order is

denoted by Ter
�

(X) = (�
i1 , ..., �ik

) with �
i1 < �

i2 < ... < �
ik
. We associate to

Ter
�

(X) the sequence of consecutive gaps between terminal chords in the intersection

order:

�(X) = (�
i2 � �

i1 , �i3 � �
i2 , ..., �ik

� �
ik�1

) . (4.8)

We denote by b(X) the first element of Ter
�

(X) i.e. the smallest terminal chord

in the intersection order.

It is easier to handle sequences of gaps �(X) with constant lengths over the chord

diagrams with constant degree. So if X has degree n and �(X) = (�1, ..., �k) we

introduce:

�̄(X) = (0, ..., 0,
| {z }

n�k�1 times

�1, ..., �k) , (4.9)

so that �̄(X) has length n� 1 if X has degree n. The gaps are then linked to the size

of the diagram by a simple relation.

Lemma 4.2.1. For X a rooted connected chord diagram let g(X) be the sum of its

gaps i.e. the sum of the elements of �(X). We have the relation:

g(X) + b(X) = |X| . (4.10)

Proof. Using the notation of the previous definition the sum over all the gaps reduces

to a telescopic sum:

g(X) = �1 + · · · + �
k

= �
i2 � �

i1 + �
i3 � �

i2 + · · · + �
ik

� �
ik�1

= �
ik

� �
i1 . (4.11)
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But by definition �
i1 = b(X) and �

ik
= |X| since the last chord is always terminal.

So we get g(X) = |X| � b(X).

The main result of [20] consists in solving explicitly in the ansatz 4.3 to get a formal

power series expression for the anomalous dimension:

e�1(x) =
X

X2RCCD

f
X

f
b(X)�1 x

|X| , (4.12)

where the monomials f
X

are products of the coe�cients f
j

of the series expansion of

F defined by

f
X

= f
|X|�k�1
0 f

�1 f�2 ... f�k
. (4.13)

We sketch the main idea for the proof of the chord diagrams expansion. It all starts

by observing that the rooted connected chord diagrams satisfy Stein’s recursion [22],

that is if c
n

is the number of rooted connected chord diagrams on n chords then

c
n

= (n � 1)
n�1
X

k=1

c
k

c
n�k

. (4.14)

This recursion can be generalized to keep track of the smallest terminal chord b(X)

of the chord diagrams. One finds that if �
k

is the generating function of such chord

diagrams with smallest terminal chord larger or equal to k then

k �
k

= �1(2x@x

� 1)�
k

. (4.15)

The rooted connected chord diagrams admit a recursive decomposition, the root-share

decomposition, into smaller diagrams as well as a labelled rooted trees representation.

We do not describe these transformations but instead refer to [20] for a complete

treatment. The crucial point is that every rooted connected chord diagram X has

a root-share decomposition in two sub-diagrams X1 and X2 such that the following

equality holds:

f
X

f
b(X)�k

= f
X1fb(X1)�1fX2fb(X2)�k+1 . (4.16)

This factorization is proved using the rooted tree representation of the chord diagrams

and is all that we need to show that the chord diagrams expansion does solve the

Dyson–Schwinger equation.
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X
y

(0, i)

0 1

i

Y =
Y

X

y
i =

... i ... i

1

Figure 4.2: Root-share decomposition and tree representation.

In [20] we proved that when the series F is bounded by a geometric series then the

anomalous dimension e�1 necessarily has a convergent Borel transform, so let us study

an example of the limiting case. For the rest of this section we fix a particular Dyson–

Schwinger by the choice of

F (⇢) =
1

⇢
+

a

1 � a⇢
(4.17)

where a 2 C⇤. With this rational function e�1 takes a very simple form.

Theorem 4.2.2. With F (⇢) as introduced above and c
n

the number of rooted con-

nected chord diagrams of order n the series representation of the anomalous dimension

is

e�1(x) =
1

a

+1
X

n=1

c
n

an xn . (4.18)
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Proof. Let us look at the power series expansion of F (⇢):

F (⇢) =
f0

⇢
+

+1
X

n=0

f
n+1 ⇢

n (4.19)

=
1

⇢
+ a

+1
X

n=0

an ⇢n . (4.20)

That is f0 = 1 and for all n > 0 we have f
n

= an which implies that for all X 2 RCCD

f
X

= 1|X|�k�1 a�1+···+�k = a|X|�b(X) (4.21)

by application of lemma 4.2.1. Thus the series expansion e�1 is nothing but

e�1(x) =
X

X2RCCD

a|X|�b(X)+b(X)�1 x|X| (4.22)

=
1

a

+1
X

n=1

c
n

(a x)n , (4.23)

where c
n

is the number of rooted connected chord diagrams of order n.

In other words e�1 is nothing but a rescaled version of the generating function of rooted

connected chord diagrams. We now use a combination of analytic techniques together

with this combinatorial interpretation to obtain information about the analytic object

represented by the formal power series e�1.

Our first observation concerns the growth rate of this formal power series.

Lemma 4.2.3. The formal power series e�1 is a divergent series of Gevrey class 1.

Proof. From [22] we know that the number of rooted connected chord diagrams sat-

isfies the recursion

c1 = 1 and for n > 1, c
n

= (n � 1)
n�1
X

k=1

c
k

c
n�k

. (4.24)

From this relation we see that c
n

> (n � 1)! so the series has a radius of convergence

equal to zero. However c
n

is bounded by the total number of chord diagrams with n

chords that is

c
n

< (2n � 1)!!  (2n)!! = 2n n! . (4.25)
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So the coe�cients of e�1 do not grow faster than n! which proves that the series is of

Gevrey class 1.

This particular result actually follows from a more general observation.

Proposition 4.2.4. Assume that there is a positive constant C such that for all n 2 N
the coe�cients of F (⇢) satisfy |f

n

|  Cn+1, then for all k 2 N⇤ the formal power series

�
k

(x) is of Gevrey class 1.

Proof. We need to show that for all k 2 N⇤ and n 2 N
�

�

�

�

�

�

X

|X|=n , b(X)�k

f
X

f
b(X)�k

�

�

�

�

�

�

 A
k

Bn

k

n!

with A
k

, B
k

2 R+. To do so we write the monomial f
X

= f
p0(X)
0 · · · f pn(X)

n

with p
i

(X)

the number of times the factor f
i

appears in the product f
X

.

We have p0(X) + · · · + p
n

(X) = n � 1, the length of �̄(X). So we get:
�

�

�

�

�

�

X

|X|=n , b(X)�k

f
p0(X)
0 · · · f pn(X)

n

f
b(X)�k

�

�

�

�

�

�


X

|X|=n , b(X)�k

|f0|p0(X) · · · |f
n

|pn(X) |f
b(X)�k

|


X

|X|=n , b(X)�k

Cp0(X)+2 p1(X)+···+(n+1) pn(X) Cb(X)�k+1 .

We can decompose the exponent of C as

p0(X)+2p1(X) + · · · + (n+ 1)p
n

(X)

=[p0(X) + · · · + p
n

(X)] + [p1(X) + 2p2(X) + · · · + np
n

(X)]

=(n � 1) + g(X)

where g(X) is the sum over the gaps ofX. Using Lemma 4.2.1 in the second inequality

we get
�

�

�

�

�

�

X

|X|=n , b(X)�k

f
X

f
b(X)�k

�

�

�

�

�

�


X

|X|=n , b(X)�k

Cg(X)+n�1+b(X)�k+1  C2n�k c
n,k
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with c
n,k

the number of rooted connected chord diagrams of degree n with smallest

terminal chord larger than k. So for all k 2 N this is bounded by the total number of

rooted chord diagrams of degree n i.e.

c
n,k

 (2n � 1)!!  (2n)!! = 2n n! .

Putting everything together we get the desired bound:

�

�

�

�

�

�

X

|X|=n , b(X)�k

f
X

f
b(X)�k

�

�

�

�

�

�

 C�k (2C2)n n! .

For the �
k

satisfying the conditions of this proposition, applying the Borel trans-

form gives series with a non zero radius of convergence so that they are amenable

to a study of their Borel summability properties. In particular, for �1, this observa-

tion opens the road for a study of the global analytic properties (value distribution,

asymptotics at infinity) of the � function of this model.

In order to use the standard results concerning Laplace–Borel resummation we proceed

to the change of variables x = 1/t. That means we consider the formal power series

e�1(t) =
1

a

+1
X

n=1

c
n

an

1

tn
. (4.26)

Then by definition of the Borel transform with respect to the variable t we have

b�1(⇣) = B[e�1](⇣) =
1

a

+1
X

n=1

c
n

an

(n � 1)!
⇣n�1 . (4.27)

To reconstruct an analytic function from e�1(t) we need to learn a few things about

the singular points of its Borel transform b�1(⇣). Let us start by locating the singularity

closest to the origin.

Lemma 4.2.5. The dominant singularity of b�1(⇣) is ⇣0 = 1/2a.
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Proof. First of all observe that by choosing a = 1 we can consider that b�1(a = 1; ⇣) is

a shifted exponential generating function of the rooted connected chord diagrams.

From [15] we know the asymptotic estimates of c
n

:

c
n

(n � 1)!
⇠ Ct

✓

1

2

◆�n

n�1/2 . (4.28)

By applying Pringsheim’s theorem this indicates that ⇣0 = 1/2 is the closest singular-

ity of b�1(a = 1; ⇣). From there we obtain the general case simply by observing that

b�1(a = 1; a ⇣) = b�1(⇣), that is considering a general a 2 C⇤ is nothing but a rescaling

of the variable. Thus ⇣0 = 1/2a.

To get more information we need to go beyond the series expansion and look for a

functional equation satisfied by the anomalous dimension.

Proposition 4.2.6. The series e�1(t) and b�1(⇣) satisfy respectively the following equa-

tions:

�@
t

e�2 =
1

a t
e� +

1

t
e�2 (4.29)

and

b� = a + a ⇣ b� ⇤ b�0 . (4.30)

Proof. We start with e�1(t). Everything follows from rewriting the recursion satisfied

by c
n

(see [22]) in terms of a di↵erential equation. Observe that

e�1(t) =
X

n

c
n

an�1 1

tn
, (4.31)

e�2
1(t) =

X

n

an�2
n�1
X

k=1

c
k

c
n�k

1

tn
, (4.32)

� t @
t

e�2
1(t) =

X

n

n an�2
n�1
X

k=1

c
k

c
n�k

1

tn
(4.33)

1

a
e�1(t) =

X

n

c
n

an�2 1

tn
. (4.34)
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By substitution in the equation

1

a
e� = �t @

t

e�2 � e�2 (4.35)

we recognize the recursion

c
n

= (n � 1)
n�1
X

k=1

c
k

c
n�k

. (4.36)

Now to obtain an equation satisfied by the Borel transform b�1 we can simply compute

the Borel transform of the di↵erential equation

�@
t

e�2 =
1

a t
e� +

1

t
e�2 . (4.37)

Since B[t 7! 1/t](⇣) = 1 we introduce 1 as the constant function equal to 1 everywhere.

Using the properties described in property 3.2.3 we obtain

⇣ b� ⇤ b� =
1

a
1 ⇤ b� + 1 ⇤ b� ⇤ b� . (4.38)

This expression can be simplified by taking its derivative with respect to ⇣:

b� ⇤ b� + ⇣ b� ⇤ b�0 = 1

a
(b� � a) + b� ⇤ b� , (4.39)

that is

b� = a + a ⇣ b� ⇤ b�0 . (4.40)

With the functional equation satisfied by b�1 we can obtain an interesting property

regarding its set of singularities.

Lemma 4.2.7. Assume that ⇣0 and ⇣1 are non-zero distinct singular points of b�1.

Then the lattice (⇣0 N + ⇣1 N) \ {0} is contained in the set of singular points of b�1.

Proof. We only treat the case concerning singularities of the type (⇣ � ⇣
i

)�↵i with

↵
i

2 R+ as these are the ones appearing in our problem. However this result holds

for a larger class of singularity types.
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Assume that b�1 has a singular point at ⇣
i

. Then one can use the decomposition

b�1(⇣) =
A

i

(⇣)

(⇣ � ⇣
i

)↵i
+ B

i

(⇣) (4.41)

where A
i

and B
i

are regular at ⇣
i

. Then

b�01(⇣) =
A0

i

(⇣)

(⇣ � ⇣
i

)↵i
+

�↵
i

A
i

(⇣)

(⇣ � ⇣
i

)↵i+1
+B0

i

(⇣) (4.42)

and we are able to express the convolution product b�1 ⇤ b�01 as

b�1 ⇤ b�01(⇣) = I
ij

(⇣) + II
ij

(⇣) + B
i

⇤ B0
j

(⇣) (4.43)

with

I
ij

(⇣) =

Z

⇣

0

B
j

(⇣ � t)A0
i

(t)

(t � ⇣
i

)↵i
dt +

Z

⇣

0

B0
i

(t)A
j

(⇣ � t)

(⇣ � t � ⇣
j

)↵j
dt +

Z

⇣

0

�↵
i

A
i

(t)B
j

(⇣ � t)

(⇣ � ⇣
i

)↵i+1
dt , (4.44)

II
ij

(⇣) =

Z

⇣

0

A0
i

(t)A
j

(⇣ � t)

(t � ⇣
i

)↵i(⇣ � t � ⇣
j

)↵j
dt +

Z

⇣

0

�↵
i

A
i

(t)A
j

(⇣ � t)

(t � ⇣
i

)↵i�1(⇣ � t � ⇣
j

)↵j
dt . (4.45)

Thus we see that the terms I
ij

and B
i

⇤ B0
j

do not introduce any new singular points

(although it may change the nature of existing ones) while II
ij

(⇣) is introducing a

new singularity at ⇣
i

+ ⇣
j

. Indeed the integrands appearing in II
ij

contain terms of

the form

1

(t � ⇣
i

)a (⇣ � t � ⇣
j

)b
=

1

(t � ⇣
i

)a(⇣ � ⇣
i

� ⇣
j

)b
+

1

(⇣ � ⇣
i

� ⇣
j

)a(⇣ � t � ⇣
j

)b
. (4.46)

These integrals do not cancel each other since their integrand do not have the same

singularities or more precisely can have the same singularities but placed in di↵erent

sheets of the Riemann surface of the logarithm. So we see that if b�1 has singularities at

⇣
i

and ⇣
j

then b�1 ⇤ b�01 is singular at ⇣i, ⇣j and ⇣i+⇣j. But since b�1(⇣) = a+a ⇣ b�1 ⇤ b�01(⇣)
then b�1 is also singular at ⇣

i

+ ⇣
j

.

Thus proceeding by induction b�1 has singular points at a⇣0 + b⇣1 for all a, b 2 N such

that (a, b) 6= (0, 0).
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It is a general property of the convolution product of analytic functions to create a

lattice of singular points generated by the first singularity one encouters along every

direction of the complex plane.

⇣-plane (N + iN) \ {0}

⇣0

⇣1

Figure 4.3: A pattern of singular points generated by ⇣0 = 1 and ⇣1 = i.
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⇣-plane {(�n+ 2k
n

) + in |n 2 N⇤ , k
n

= 1, 2, · · · , n}

⇣0 ⇣1

Figure 4.4: A pattern of singular points generated by ⇣0 = 1 + i and ⇣1 = �1 + i.

Coming back to b�1, lemma 4.2.7 combined with our knowledge of the existence of

a singular point at 1/2a shows that b�1 is analytic in a neighborhood of the origin

with singular points on 1
2a

N⇤. Unfortunately we do not have a general closed form

representation for the analytic continuation of b�1 in this particular case so we are not

able to prove directly that these are the only singularities of the Borel transform of

the anomalous dimension. However what follows in the next section seems to indicate

that is the case. To see that let us do a small modification to the di↵erential equation

satisfied by e�1. With p some non zero number let

�@
t

e�2 =
1

at
e� +

1

t
e�2 � p

t
. (4.47)
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Looking for a formal power series solution to this di↵erential equation in the form of

e�(t) =
+1
X

n=1

c0
n

1

tn
, (4.48)

we see that similarly to the chord diagram recursion it corresponds to c00 = 0, c01 = p,

c02 = p2, c03 = 4p3 and in general

c0
n

= (n � 1)
n�1
X

k=1

c0
k

c0
n�k

. (4.49)

Thus an immediate induction shows that these new coe�cients are related to the num-

ber of rooted connected chord diagrams by c0
n

= pn c
n

. That means if b� is the Borel

transform of e�, then it has its first singularity at 1/2ap which propagates through the

convolution product to every n/2ap for n 2 N⇤.

So there seems to be a general pattern here and motivated by these combinatorial

observations we will apply purely analytic techniques to investigate this phenomenon

in the next section. For now we can gather the following wisdom from this part:

• if the asymptotic series expansion of the anomalous dimension satisfies a non-

linear equation its Borel transform must satisfy a convolution equation;

• the convolution product acts as a propagator of singularities in the Borel space

creating a lattice of singular points for the Borel transform;

• the convolution product of germs of analytic functions is an analytic function

on the universal cover of C punctured at its singular points;
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⇣-plane

1
2a

N⇤

1/2a
D

Figure 4.5: The singular points generated by the first singularity at 1/2a.

4.3 Resummation of the P-di↵erential Equation

More generally, the anomalous dimension satisfies a non-linear di↵erential equation

depending on a function P (see [24]), the so-called P -di↵erential equation:

2s � x @
x

� = �2 + � + P (x) . (4.50)

One must be careful of the fact that P does not have a straightforward interpretation.

Indeed we can show (see [20]) that P (x) has a series expansion expressed in terms of

chord diagrams:

P (x) =
X

X2RCCD

f
X

(f
b(X)�2 � f

b(X)�1) x
|X| . (4.51)

Hence due to the rapid growth of the number of rooted connected chord diagrams

this series is most of the time divergent with a convergent Borel transform. For the
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rest of this section we assume that P has been resummed to an analytic function so

that the P -di↵erential equation is well defined.

Another note of caution concerns the algebraic manipulations of the P -di↵erential

equation. The nature of Laplace–Borel resummation techniques consists in using at

the same time expressions that can be seen as formal power series, germs of analytic

functions and their analytic continuations. In order to ensure that one can treat all

these objects on an equal footing in the algebraic manipulations we cannot use any

simplification coming from the division of functions / series.

That being said, following Ecalle (see [14]), we start by doing a change of variables

to place the P -di↵erential equation in a canonical form that greatly simplifies the shift

to the Borel space. Note that [14] contains general claims concerning the classification

of analytic di↵erential equations, however we do not make use of those results for two

reasons: the lack of explicit constructions of the solutions and the absence of proof

of many key results of the classification. Fortunately our problem is well suited for a

direct approach leading to quantitative results.

So as in the previous part we exchange x for 1/t,

�2s e� t @
t

e� = e�2 + e� + P (t) , (4.52)

and continue with the following transformation.

Lemma 4.3.1. Let P (t) = p1

t

+ O( 1
t

2 ) with p1 6= 0. Under the change of variables

e� = �p1

t

(1 + g) we have the following correspondence:

@
t

e� =
e�2 + e� + P

�2 s t e�
(4.53)

,
✓

@
t

� 1

2 s p1

◆

g = G(t, g) (4.54)

where G 2 C{1
t

, g} and does not contain linear terms in g.
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Proof. Under the change of variables we have:

@
t

e� =
p1

t2
(1 + g) � p1

t
@

t

g (4.55)

and

e�2 + e� + P

�2 s t e�
=

1

2s



p1

t2
(1 + g)2 � 1

t
(1 + g) +

1

t
+ O(

1

t2
)

� ✓

1 � g

1 + g

◆

. (4.56)

We rearrange the terms in order to get an equation of the form:

(@
t

� ↵) g = G(t, g) . (4.57)

We find that ↵ = 1/2sp1 and

G(t, g) =

✓

1 � 1

2s

◆

1 + g

t
+

1

2sp1(1 + g)

✓

p1g
2 + 1 � tP

p1

◆

(4.58)

where G does not contain any linear term in g since G(t, g) = O(1/t).

Recasting the P di↵erential equation in this form is particularly appropriate to con-

duct a Laplace–Borel study of the formal solution. For the rest of the analysis it is

convenient to expand G(t, g) as a series in g, that is

G(t, g) =
+1
X

n=0

 
n

(t) gn , (4.59)

with

 0(t) =

✓

1 � 1

2s

◆

1

t
+

1

2sp1

✓

1 � tP

p1

◆

(4.60)

 1(t) =

✓

1 � 1

2s

◆

1

t
� 1

2sp1

✓

1 � tP

p1

◆

(4.61)

· · · (4.62)

 
n

(t) =(�1)n
1

2sp1

✓

1 � tP

p1

◆

+
(�1)n�2

2s
(4.63)

· · · (4.64)

Taking the Borel transform of equation (2.51) with respect to t immediately gives:

bg(⇣) =
b 0(⇣)

�0 � ⇣
+

1

�0 � ⇣
b 1(⇣) ⇤ bg(⇣) + 1

�0 � ⇣
b 2(⇣) ⇤ bg ⇤ bg(⇣) + · · · (4.65)
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where �0 = 1/2sp1, bg is the Borel transform of g and b 
n

(⇣) the Borel transform of  
n

.

We are now ready to study the properties of bg. We start with a strong assumption

on the Borel transform of P .

Theorem 4.3.2. Assume that p1 6= 0, bP (�0) 6= 0 and bP (⇣) is an exponentially

bounded entire function. Then bg is singular on N⇤/2sp1 and is exponentially bounded

away from its singular points along any ray avoiding a singular direction.

Proof. As we just observed, the Borel transform bg(⇣) satisfies the convolution equation

bg(⇣) =
b 0(⇣)

�0 � ⇣
+

+1
X

n=1

1

�0 � ⇣
b 

n

⇤ bg⇤n(⇣) (4.66)

which can be solved by iteration to obtain an expression of bg as an infinite sum of

convolution products of the functions b 
n

. We choose to rearrange this series as follows:

bg(⇣) =
1

�0 � ⇣

+1
X

n=1

n

X

p=0

X

i1+···+in=p

i1�···�in�0

C(i1, · · · , in) b i1 ⇤
✓

1

�0 � t1
b 

i2

◆

⇤ · · · ⇤
✓

1

�0 � t
n�1

b 
in

◆

(⇣) ,

(4.67)

where the t
k

are integration variables and the C(i1, · · · , in) are combinatorial factors

defined inductively. We simplify the notations by introducing

b 
i1···in(⇣) = b 

i1 ⇤
✓

1

�0 � t1
b 

i2

◆

⇤ · · · ⇤
✓

1

�0 � t
n�1

b 
in

◆

(⇣) . (4.68)

This way of grouping the terms is the most appropriate to study at the same time

the convergence of the series as well as the singularities of the resulting function.

We start by looking for the singularities of bg. First of all the immediate generaliza-

tion of lemma 4.2.7 shows that the terms b 
i1···in are singular at �0, 2�0, · · · , (n� 1)�0

for all admissible sets of labels (i1, · · · , in). That means it is su�cient to show that

for n large enough the following series of functions is not identically zero:

n

X

p=0

X

i1+···+in=p

i1�···�in�0

C(i1, · · · , in) b i1···in(⇣) . (4.69)
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Indeed we can focus on these series as when n is growing the set of singular points is

strictly increasing and cancellations cannot occur between terms having di↵erent sets

of singular points. But given the form of the b 
n

functions we do not get any complete

cancellations of those series.

So we are left we studying the convergence of the series and at the same time the

fact that it stays exponentially bounded away from its singularities. Note that since
bP is exponentially bounded so are the b 

n

and b 
n

(⇣)/(�0 � ⇣) away from �0. Now let

us consider the convolution product
 

b 
n

�0 � t1

!

⇤
 

b 
m

�0 � t2

!

(⇣) =

Z

⇣

0

b 
n

(t) b 
m

(⇣ � t)

(�0 � t)(�0 � ⇣ + t)
dt . (4.70)

This integral is well defined for any path of integration joining 0 to ⇣ while avoiding

the singularity at �0. Equivalently one can say that this convolution product defines

an analytic function for any ⇣ in the universal cover of C \ {�0}. So one has a first

inequality
�

�

�

�

�

 

b 
n

�0 � t1

!

⇤
 

b 
m

�0 � t2

!

(⇣)

�

�

�

�

�


Z

⇣

0

C2 e⌧ |t| e⌧ |⇣�t| |dt| (4.71)

for some positive constants C and ⌧ . Since the integrand is non singular along the

ray of integration from 0 to ⇣ we have along any ray avoiding a singular direction
�

�

�

�

�

 

b 
n

�0 � t1

!

⇤
 

b 
m

�0 � t2

!

(⇣)

�

�

�

�

�

 C2 ⇣ e⌧ |⇣| . (4.72)

Now this argument generalizes to the n-fold convolution product b 
i1···in and we get

| b 
i1···in(⇣)|  Cn

⇣n�1

(n � 1)!
e⌧ |⇣| . (4.73)

This shows that the generic term of the series representation of bg is exponentially

bounded for all ⇣ away from its singular points and geometrically bounded in the

parameter n since the sum of the combinatorial coe�cients C(i1, · · · , in) grows at

most exponentially (universal class of rooted trees). Thus the series is convergent and

bg is exponentially bounded as desired.
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So if bP is exponentially bounded and does not have any singular point the pre-

vious theorem shows that bg is Laplace transformable along any direction except

arg(1/2sP 0(0)). In particular that means we have established a resummation formula

for the anomalous dimension:

�
✓

(t) =
p1

t

✓

1 +

Z

e

i✓R+

e�⇣ t

bg(⇣) d⇣

◆

, (4.74)

where bg is explicitly given in terms of bP .

As an example we can consider the case where P (t) = p1/t which means that

 0(t) =  1(t) =

�

1 � 1
2s

�

t
(4.75)

and for all n � 2 we have  
n

(t) = (�1)n�2/2s. Thus the Borel transform of g only

involves convolution products of the

1 ⇤
✓

1

�0 � t1

◆

⇤ · · · ⇤
✓

1

�0 � t
n

◆

(⇣) (4.76)

with singular points at the integer multiples of �0. The resummation of the anomalous

dimension in the direction ✓ is then a generalization of the solution corresponding to

the Lambert function in the real case that was studied in [17]. To be more specific,

assuming that p1 2 R+ then for all ✓ 6= 0 the Laplace–Borel transform �
✓

is analytic

on H✓

0 and we can observe the following things:

i) because of the singular points on R+ in the Borel plane, the Laplace–Borel

resummation of e� is not unique. Similarly to the example 3.2.1 we have two

distinct analytic countinuations of the solution with iR as a Stokes line;

ii) our last theorem shows that bg can be analytically continued along any path

joining 0 to 1 avoiding �0, 2�0, · · · , so we have access to more Laplace–Borel

resummations of e�1 which can be described by a sequence of deformations of

R+ that specifies how one is to avoid each singular point (see figure 4.3).
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This illustrates the fact that we cannot speak of a unique resummation for those

divergent series appearing in quantum field theory. Instead we have a family of re-

summations that may or may not correspond to a non-perturbative physical solution.

⇣-plane Integration path (+,�,+,+,�, · · · )

Figure 4.6: A example of admissible path of integration along the singular direction.

Moreover as we pointed out at the beginning of this section P is given to us as an

asymptotic series which means that its Borel transform cannot be an entire function.

But looking at the proof of 4.3.2 it is immediately possible to accommodate more

realistic hypotheses for bP .

Theorem 4.3.3. Assume that p1 6= 0 bP (�0) 6= 0 and bP (⇣) is an exponentially bounded

function with singularities on (�1N + · · ·+ �
k

N) \ {0}. Then bg is singular on (�0N +

�1N + · · · + �
k

N) \ {0} and is exponentially bounded away from its singular points

along any ray avoiding a singular direction.
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Proof. Indeed we can apply the same arguments as in 4.3.2 but this time the mono-

mials of convolution b 
i1···in are mixing the singularities of bP with the one generated

by �0.

So we see that if we were able to gather some global information concerning the

parameter function P of the P -di↵erential equation then we could immediately deduce

additional property of the anomalous dimension via its Laplace–Borel resummation

formula. We hope that in the future a better understanding of the meaning of P will

allow us to carry out such a study.

Thinking about these results we can establish a strategy in three points for future

applications:

i) understand the Borel transform of P for realistic models;

ii) use the previous results to obtain a detailed description of the Borel transform

of �1;

iii) determine additional constraints that non-perturbative physical solutions should

satisfy and see if it possible to choose among all our resummations one that fits

those conditions.

We also believe that the results of the theorems 4.3.2 and 4.3.3 should hold not

only along non-singular rays but more generally on any compact domain of the uni-

versal cover of (�0N + �1N + · · · + �
k

N) \ {0}. We recommend the recent results of

[11] as a starting point in this direction.

Moreover the theorems 4.3.2 and 4.3.3 indicates that the anomalous dimension is

a resurgent function (see [14]) that is a highly structured kind of asymptotic series.

In particular the qualitative properties of the resummations for di↵erent choices of

analytic continuations can be studied using the ideas of Ecalle’s alien calculus but a

lot of technical work still needs to be done in this direction.



Chapter 5

Renormalization Group Equation

5.1 The Renormalization Group Approach

Dyson–Schwinger equations, in particular in their form

G(x, L) = 1 � xG(x, @�⇢

)(e�⇢ L � 1)F (⇢)
�

�

⇢=0
, (5.1)

produce formal power series solutions eG(x, L) known as perturbative expansions (see

chapter 1). On the other hand quantum field theory teaches us that for a renor-

malizable (the interesting ones) theory G(x, L) must also be a solution of a partial

di↵erential equation, the renormalization group equation, that takes the following

form in the simplest situation

@
L

G(x, L) = �(x) [s x @
x

� 1]G(x, L) . (5.2)

In this chapter we use the renormalization group equation to gain some insight

into the analytic information contained in the formal power series solution eG(x, L).

In particular

• we show that under reasonable hypotheses the formal solution to the renormal-

ization group equation can be studied by Laplace–Borel methods;

• we give a formula for the resummation of eG;

59
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Our objective is to o↵er an alternative way for the extraction of analytic prop-

erties of the Green function given the anomalous dimension and the specific initial

conditions. Our main result is theorem 5.2.4 which gives an integral formula for the

resummation of eG.

5.2 Laplace–Borel Solution

We consider a particular case of the renormalization group equation of the form
8

>

>

<

>

>

:

@
L

G = �(x) [s x @
x

� 1]G ,

G(x, 0) = G0(x) ,

G(0, L) = 0G(L),

(5.3)

and to simplify the notation we will often denote the di↵erential operator s x @
x

�1 by

s

D
x

. Here �(x) is the anomalous dimension, some analytic function with properties

to be detailed below.

We are looking for a formal power series solution of 5.3 in the parameter L. Note

that for an appropriate choice of boundary conditions it corresponds to a solution of

the Dyson–Schwinger equation (4.1):

eG(x, L) = G0(x) +
+1
X

n=1

�
n

(x)Ln . (5.4)

Our goal is to study the summability of eG(x, L) in the parameter L as a function of

the properties of the anomalous dimension �(x).

First let us give conditions on the pair (�, G0) for the series eG(x, L) to be of Gevrey

class 1 in L.

Proposition 5.2.1. Let eS be some open sector of C whose apex is at the origin. The

series eG 2 O(eS)[[L]] is of Gevrey class k on eS if the following conditions are statisfied:

(i) the function G0 is analytic on some open disc D0 ⇢ C centered at the origin and

containing eS;
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(ii) the function � is analytic on eS and has an asymptotic expansion of Gevrey class

k at the origin;

Proof. A simple calculation shows that the generic term of the series eG is

�
n

(x) =
1

n!
[�(x)

s

D
x

]n G0(x) . (5.5)

We want to prove that there are some positive functions A,B on eS such that for n

large enough

|[�(x)
s

D
x

]n G0(x)|  A(x)B(x)n (n!)k+1 . (5.6)

The proof relies on the decomposition of the general term [�(x)
s

D
x

]n G0(x) as

[�(x)
s

D
x

]n G0(x) =
s

D
x

[G0](x) �(x)
n�1 (s x)n�1 @n�1

x

�(x) + R
n

(x) , (5.7)

where R
n

only involves derivatives of � of order smaller that n � 1. We know that

• from (i) we can use Cauchy’s estimates to get on eS the inequality |@n

x

G0(x)| 
R�n

e
S

Me
S

n! where Re
S

and Me
S

are some positive constants for all n;

• from (ii) we can use the Gevrey-k asymptotic expansion to get on eS for n large

enough |@n

x

�(x)|  eA(x) eB(x)n (n!)1+k for some positive functions eA and eB;

Due to Leibniz rule each term of the expansion of [�(x)
s

D
x

]n G0(x) involves at most

p derivatives of G0 and q derivatives of � where p+ q is at most n. So from the above

estimates no term in the expansion can involve more than 1 + k power of n!. Since

the total number of terms in R
n

(x) is geometric in n we get the desired bound of the

form

|[�(x)
s

D
x

]n G0(x)|  A(x)B(x)n (n!)k+1 . (5.8)

So we see that the anomalous dimension � controls the growth of the coe�cients of

the formal solution, from now on we assume it is of Gevrey class 1 in some appropriate

domain.
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Now we want to learn things about the Borel transform of eG(x, L) with respect

to the variable ⇤ = 1/L denoted by bG(x, ⇣):

eG(x,⇤) = G0(x) +
+1
X

n=1

�
n

(x)
1

⇤n

, (5.9)

bG(x, ⇣) =
+1
X

n=1

�
n

(x)

(n � 1)!
⇣n�1 . (5.10)

Through a series of change of variables we are going to relate bG to a solution to

an inhomogeneous heat equation. Our starting point is the renormalization group

equation
8

>

>

<

>

>

:

@
L

G = �(x) [s x @
x

� 1]G ,

G(x, 0) = G0(x) ,

G(0, L) = 0G(L).

(5.11)

Our first change of variables consists of taking L = 1/⇤ andH(x,⇤) = ⇤�1/2 G(x,⇤�1).

Expressing the initial condition as a limit we get the correspondence:
8

<

:

@⇤H + 1
2 ⇤ H(x,⇤) = � 1

⇤2 �(x) s

D
x

H ,

lim
⇤!1

⇤1/2 H(x,⇤) = G0(x) .
(5.12)

Next we take the Borel transform bH(x, ⇣) of H(x,⇤), that is we can express the latter

as a Laplace tranform of the form

H(x,⇤) =

Z

e�⇣ ⇤
bH(x, ⇣) d⇣ . (5.13)

Then using 5.12 we obtain an equation for bH:

�⇣ bH +
1

2
[1] ⇤ bH = �� [⇣] ⇤

s

D
x

bH , (5.14)

where ⇤ is the convolution product of analytic functions. Using the fact that @
⇣

(f ⇤
g) = f 0 ⇤ g = f ⇤ g0 we can twice take the derivative with respect to ⇣ to get rid of

the convolution product. We arrive at:

⇣ @2
⇣

bH +
3

2
@

⇣

bH = �(x)
s

D
x

bH . (5.15)
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It is more convenient not to consider the initial condition at this point. We will come

back to it later. Things can be further simplified by choosing z = 2 ⇣1/2 and bI(x, z) =
z

2
bH(x, z2/4). An easy calculation shows that 5.15 becomes @2

z

bI = �(x)
s

D
x

bI and we

are left to work out their initial conditions. One has

lim
⇤!1

⇤1/2 H(x,⇤) =

Z

e�y y�1/2 lim
⇤!1

bI(x, 2 y1/2/⇤1/2) dy =
p
⇡ bI(x, 0) , (5.16)

so by 5.12 we arrive at bI(x, 0) = G0(x)/
p
⇡. But since we have to deal with a second

order equation in the varaible z we need one more condition. We know that

@
z

bI(x, z) =
1

2
bH(x, ⇣) + ⇣ @

⇣

bH(x, ⇣) (5.17)

and using 5.12 one computes
Z

e�⇣ ⇤ @
z

bI(x, z) d⇣ =

Z

e⇣ ⇤

✓

1

2
bH(x, ⇣) + ⇣ @

⇣

bH(x, ⇣)

◆

d⇣

=
1

2
H(x,⇤) +

Z

e�⇣ �⇣d bH(x, ⇣)

= �1

2
H(x,⇤) + ⇤

Z

e�⇣ ⇤⇣ bH(x, ⇣) d⇣ using integration by parts,

= �1

2
H(x,⇤) � ⇤@⇤H(x,⇤)

=
1

2⇤
�(x)

s

D
x

H(x,⇤) .

But on the other hand with the change of variables y = ⇣ ⇤ we have

lim
⇤!1

⇤1/2

Z

e�⇣ ⇤ @
z

bI(x, z) d⇣ =

Z

e�y y
3
2�1 lim

⇤!1
@

y

bI(x, 2 y1/2/⇤1/2) dy =

p
⇡

2
@

y

bI(x, 0) .

(5.18)

Thus since lim
⇤!1

1
2 ⇤1/2 �(x) s

D
x

H(x,⇤) = 0 we can conclude that @
z

bI(x, 0) = 0. So

5.15 is equivalent to:
8

>

>

<

>

>

:

@2
z

bI(x, z) = �(x)
s

D
x

bI(x, z) ,
bI(x, 0) = 1p

⇡

G0(x) ,

@
z

bI(x, 0) = 0 .

(5.19)

Looking at this last equation we see that it is very close to a heat equation where z

plays the role of a spatial variable and x is related to a time variable:

s �(x)
s

@
x

bI � @2
z

bI = � bI . (5.20)
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Indeed we can introduce the variable t such that x = f(t) with

t(x) =

Z

x

x0

d log(u)

s�(u)
(5.21)

such that t(0) = 0 and with bJ(t, z) = bI(x, z) we obtain the inhomogeneous heat

equation:
(

@
t

bJ(t, z) � @2
z

bJ(t, z) = �(f(t)) bJ(t, z) ,
bJ(t, 0) = 1p

⇡

G0(f(t)) , @z

bJ(t, 0) = 0 .
(5.22)

Finally, going through our series of change of variables, the initial condition for this

heat equation bJ(0, z) = 0
bJ(z) is defined by the relation

L1/2
0G(L) =

Z

e�⇣/L

0
bJ(2 ⇣1/2)

d⇣

⇣1/2
. (5.23)

Now fixing �,↵ 2 S1 there is a semi-group of operators {
�

K
t

}
t2e

i↵R+
such that by

Duhamel’s principle 5.22 is equivalent to the integral equation

bJ(t, z) =
�

K
t

~ 0
bJ(z) +

Z

t

0

�(f(⌧))
�

K
t�⌧

~
⌧

bJ(z) d⌧ (5.24)

where the time integral is along the line segment [0, t] ⇢ ei↵R+ and

�

K
t

~
⌧

bJ(z) =

Z

e

i�R+

p
t

(x, z) bJ(⌧, y) dy (5.25)

with the heat kernel p
t

(x, y) = 1
(4 ⇡ t)1/2

n

exp
⇣

� |y�z|2
4t

⌘

� exp
⇣

� |y+z|2
4t

⌘o

. We focus

on a particular class of initial conditions. Let ⌦ be a domain in C containing a neigh-

borhood of infinity. We introduce the set of square exponentially bounded analytic

functions at infinity

E2
1(⌦) =

n

F 2 O(⌦)
�

� 9A,B > 0 such that |F (z)|  AeB |z|2 when |z| ! 1
o

. (5.26)

Now for any complex valued function F we denote by Sing(F ) its set of singular points

and aSing(F ) the set of arguments of those singular points. Using the semigroup

property of the heat flow we get an explicit solution to the integral equation 5.24.
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Lemma 5.2.2. Assume that 0
bJ 2 E2

1(⌦) with 0 2 ⌦. For each (�,↵) 2 (S1 \
aSing( 0

bJ)) ⇥ (] � ⇡

2 ,
⇡

2 [\aSing(� � f)) the equation 5.24 has

bJ(t, z) =
�

K
t

~ 0
bJ(z)

y
exp

Z

t

0

�(f(⌧)) d⌧ (5.27)

as a solution for all (z, t) 2 ⌦ ⇥ ei↵R+ with

y
exp

Z

t

0

�(f(⌧)) d⌧ = 1 +
+1
X

k=1

Z

t

0

�(f(⌧1))

Z

⌧1

0

· · ·
Z

⌧k�1

0

�(f(⌧
k

)) d⌧
k

· · · d⌧1 . (5.28)

Proof. We are solving equation 5.24 by iteration, using mainly the fact that for all

t, ⌧, � 2 ei↵R+ such that |t| � |⌧ | � |�| we have
�

K
t�⌧

~
�

K
⌧��

=
�

K
t��

. Thus one

has

bJ(t, z) =
�

K
t

~ 0
bJ(z) +

Z

t

0

�(f(t1)) �

K
t�t1 ~

t1
bJ(z) dt1 (5.29)

=
�

K
t

~ 0
bJ(z) +

Z

t

0

�(f(t1)) �

K
t�t1 ~

�

K
t1�0 ~ 0

bJ(z) dt1 (5.30)

+

Z

t

0

�(f(t1))

Z

t1

0

�(f(t2)) �

K
t�t1 ~

�

K
t1�t2 ~

t2
bJ(z) dt2 dt1 (5.31)

=
�

K
t

~ 0
bJ(z)



1 +

Z

t

0

�(f(t1)) dt1

�

(5.32)

+

Z

t

0

�(f(t1))

Z

t1

0

�(f(t2)) �

K
t�t2 ~

t2
bJ(z) dt2 dt1 (5.33)

and so on. This gives the limiting formula:

bJ(t, z) =
�

K
t

~ 0
bJ(z)

"

1 +
+1
X

k=1

Z

t

0

�(f(t1))

Z

t1

0

· · ·
Z

tk�1

0

�(f(t
k

)) dt
k

· · · dt1
#

. (5.34)

Now we need to make sure that this expression makes sense. For that we have to pick

the parameters (�,↵) representing our lines of integration so that they avoid singular

points of the integrands. This ensure the local integrability of all the expressions in

5.27.

Next observe that for any finite t we get the following volume bound
�

�

�

�

Z

t

0

�(f(t1))

Z

t1

0

· · ·
Z

tk�1

0

�(f(t
k

)) dt
k

· · · dt1
�

�

�

�

 sup
⌧2[0,t]

|�(f(⌧))|k |t|k
k!

. (5.35)
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Thus the series denoted by
y
exp

R

t

0 �(f(⌧)) d⌧ is absolutely convergent for any finite

t.

Finally we have to make sure that the integral
�

K
t

~ 0
bJ(z) is convergent. Our

restrictions on � already take care of local integrability thus we only need to observe

the behaviour of the integrand as |y| goes to infinity.

�

K
t

~ 0
bJ(z) =

1

(4 ⇡ t)1/2

Z

e

i�R+

⇢

exp

✓

� |y � z|2
4t

◆

� exp

✓

� |y + z|2
4t

◆�

bJ(0, y) dy . (5.36)

To be sure that the integral is convergent for any square exponentially bounded 0
bJ

the exponential terms of the heat kernel must be decreasing at infinity which means

that we have to restrict t to <(t) > 0. Or in terms of the angular parametrisation we

must have ↵ 2] � ⇡

2 ,
⇡

2 [.

We can be more specific concerning the properties of these solutions. In particular

we have some smoothing property of the heat flow on the initial condition 0
bJ .

Property 5.2.3. Let 0
bJ 2 E2

1(⌦) with 0 2 ⌦ and (�,↵) 2 (S1 \ aSing( 0
bJ)) ⇥ (] �

⇡

2 ,
⇡

2 [\aSing(� � f)). Then for t 2 ei↵R+ with <(t�1) large enough the solution bJ(t, )

of 5.24 is an element of E2
1(C).

Proof. The z dependence of bJ(t, z) is concentrated in the convolution product
�

K
t

~
0
bJ(z), thus it is enough to focus on its properties. But by definition

�

K
t

~ 0
bJ(z) =

Z

e

i�R+

p
t

(y, z) 0
bJ(y) dy (5.37)

with the heat kernel p
t

(y, z) an entire function of the variable z. Thus as long as the

integral is convergent it defines an entire function of z.

Now concerning the behaviour of this convolution product for large |z| one has the
following estimates:

�

�

�

�

K
t

~ 0
bJ(z)

�

�

�

 e�<(t�1)|y|2/4

|⇡ t|1/2

Z

e

i�R+

e�<(t�1)|y|2/4 | 0
bJ(y)| |dy| . (5.38)
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So all we need to show is that the integral of the right hand side of the inequality is

finite. But 0
bJ 2 E2

1(⌦) so there are some positive constants a, b such that

e�<(t�1)|y|2/4 | 0
bJ(y)|  a exp

✓

�<(t�1)

4
|y|2 + b|y|2

◆

. (5.39)

So by choosing t such that <(t�1) is large enough we are sure of the convergence of

the integral at |y| �! 1 which concludes the proof.

At this point we know enough about the Borel transform to be able to express the

solution of our original problem as a Laplace transform.

Theorem 5.2.4. For each ✓ 2 S1 and (�,↵) 2 (S1 \aSing( 0
bJ))⇥(]� ⇡

2 ,
⇡

2 [\aSing(� �
f)), the following is a solution to 5.3 for <(1/t(x)) large enough and with appropritate

initial conditions

G
�,↵,✓

(x, L) =
1

L1/2

y
exp

Z

t(x)

0

�(f(⌧)) d⌧

Z

e

i✓R+

e�⇣/L

�

K
t(x) ~ 0

bJ(2⇣1/2)
d⇣

⇣1/2
. (5.40)
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Proof. One obtains this formula by following the change of variables:

G
�,↵,✓

(x, 1/⇤) =⇤1/2 H(x,⇤) (5.41)

=⇤1/2

Z

e

i✓R+

e�⇣ ⇤
bH(x, ⇣) d⇣ (5.42)

=⇤1/2

Z

e

i✓R+

e�⇣ ⇤
bJ(t(x), 2 ⇣1/2)

d⇣

⇣1/2
, (5.43)

or expressed in the L variable

G
�,↵,✓

(x, L) =
1

L1/2

Z

e

i✓R+

e�⇣/L

bJ(t(x), 2 ⇣1/2)
d⇣

⇣1/2
(5.44)

=
1

L1/2

y
exp

Z

t(x)

0

�(f(⌧)) d⌧

Z

e

i✓R+

e�⇣/L

�

K
t(x) ~ 0

bJ(2⇣1/2)
d⇣

⇣1/2
. (5.45)

The Laplace integral is convergent due to the property 5.2.3 so this formula defines a

Laplace–Borel resummation of the series eG(x, L).

We see that our resummation process yields a family of solutions depending on

many parameters such as ✓,↵,� as well as the initial conditions. We are then in the

presence of what can be assimilated to a Stokes phenomenon, although its origin is

somehow di↵erent from the one presented in the canonical example 3.2.1. The next

part illustrates this phenomenon.

Moreover the parameter t in the heat equation controls the convergence of the

integral solution. But since t is related to x that means our solutions are not valid

for all values of the coupling constant. From property 5.2.3, if the initial condition 0
bJ

is rational we do not have any constraints on the size of the coupling constant but as

soon as the initial condition grows exponentially we do have a constraint.

5.3 Connection Formulas

For the sake of clarity of the argument let us work on a particularly simple example.

Let c 2 R, define the anomalous dimension to be �(x) = c/x and the initial condition
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for the heat equation in the Borel plane is 0
bJ(z) = 1/(1 + z). With this particular

choice we obtain t(x) = c x/s, f(t) = s t/c and the path order exponential reduces to

y
exp

Z

t(x)

0

d⌧

s ⌧
= 1 +

+1
X

k=1

1

sk

Li
k

(c x/s) (5.46)

where Li
k

is the kth polylogarithm. The initial condition gives the convolution

�

K
t(x) ~ 0

bJ(z) =

Z

e

i�R+

p
t(x)(y, z)

dy

1 + y
(5.47)

which is well defined for all � but � = ⇡. Note that since 0
bJ is rational we do not

have any constraints on the size of the coupling constant x.

Because of the singularity of 0
bJ at �1 we really have two analytic continuations of

�

K
t(x) ~ 0

bJ(z), one corresponding to a path of integration avoiding �1 from the

left, the other from the right as in example 3.2.1. If we denote these two functions

respectively by +Kt(x) ~ 0
bJ(z) and �Kt(x) ~ 0

bJ(z) then by property 5.2.3 they share

the same domain of analyticity for all x and their di↵erence is given by:

+Kt(x) ~ 0
bJ(z) � �Kt(x) ~ 0

bJ(z) = 2i⇡ p
t(x)(�1, z) (5.48)

by application of the residue formula.

If we denote the corresponding Green functions by G+,↵,✓

and G�,↵,✓

then we obtain

a connection formula relating these two Laplace–Borel resummations:

G+,↵,✓

(x, L)�G�,↵,✓

(x, L) =
2i⇡

L1/2

"

1 +
+1
X

k=1

1

sk

Li
k

(c x/s)

#

Z

e

i✓R+

e�⇣/L p
t(x)(�1, 2 ⇣1/2)

d⇣

⇣1/2
. (5.49)

This time the Laplace transform plays a lesser role as the parameter ✓ is only con-

strained by a choice of determination of ⇣1/2 which we are free to choose at our

conveniance.
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Thus contemplating our resummation formula for the power series expansion eG of the

Green function

G
�,↵,✓

(x, L) =
1

L1/2

y
exp

Z

t(x)

0

�(f(⌧)) d⌧

Z

e

i✓R+

e�⇣/L

Z

e

i�R+

p
t(x)(y, 2⇣

1/2) dy
d⇣

⇣1/2
(5.50)

we see that once more the aymptotic series alone does not define a unique non-

pertubative solution by way of resummation. Instead we get a famlily of solutions

parametrized by paths of integrations which, while they share the same domain of

analycity, are not necessarily analytic continuations of each other as can be seen with

our example of connection formula.

We feel that the non-uniqueness of a non-perturbative solution is raising some inter-

esting questions which would require more input from the side of theoretical physics,

especially:

i) what are the additional requirements one should impose on the Green functions

to single out one of the resummations as being the physical solution?

ii) are some connection formulas, both the anomalous dimension and the Green

function, related to phenomena like S-duality?

iii) can we compare these non-perturbative features to the results of constructive

quantum field theory?

In both cases combining integral representations of the non-perturbative Green func-

tions and the anomalous dimensions with a better understanding of the singularities of

their Borel transform o↵ers strong tools for a better understanding of non-perturbative

results in quantum field theory.
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Conclusion

We saw in Chapter 2 that Dyson–Schwinger equations are fixed point integro-di↵erential

equations and that in our special case they can be reduced to

G(x, L) = 1 � xG(x, @�⇢

)(e�⇢ L � 1)F (⇢)|
⇢=0 . (6.1)

In Chapter 4 and in [20] we understood the formal power series solution to this

equation as a series indexed by rooted connected chord diagrams:

eG(x, L) =
+1
X

n=0

�
n

(x)Ln = 1 �
+1
X

n=1

X

X2RCCD
b(X)�n

f
X

f
b(X)�n

x|X| (�1)n

n!
Ln . (6.2)

This representation of the perturbative solutions is a description alternative to the

traditional Feynman diagrams expansion. In general it is only an asymptotic series

and does not have an immediate analytic interpretation however as it is of Gevrey

class 1, it is amenable to being studied in the Borel plane (4.2.4).

Thinking about this result two natural questions come to our mind. What class

of Dyson–Schwinger equations admit similar formal solutions expressed as chord dia-

grams expansions? The chord diagrams expansions being asymptotic series how can

we use them for numerical applications? While the first question seems wide open we

can briefly comment on the second point.

71
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Asymptotic series such as the chord diagrams expansion exhibit a typical behaviour

where the general term of the series decreases monotonically up to a certain rank

before blowing up. This rank depends on the value of the parameters of the series

and is called the least term. Approximating the value of the function by the partial

asymptotic series up to the least term gives a good agreement with the true value

of the approximated quantity at this point. Estimating the rank corresponding to

the least term is then of a certain importance when it comes to the question of

numerical applications of the asymptotic formula. We point out that for the chord

diagrams expansions this comes down to the combinatorial problem of understanding

the distribution of gaps for the chord diagrams with a fixed number of chords. Indeed

since the general term of the numerical series at point x0 is

X

|X|=n

f
X

f
b(X)�1 x

n

0 , (6.3)

understanding the typical profile of the gaps is a good way to approximate the sum

over the diagrams of size n in order to study the rank of the least term.

Going back to Chapter 4, the first coe�cient �1(x) of the chord diagrams expansion

of G(x, L) has a nonperturbative interpretation as the anomalous dimension of the

theory which encodes the scaling behaviour of our model. To go beyond its pertubative

expansion one can use the fact [24] that this anomalous dimension must satisfy a

non-linear di↵erential equation whose solutions can be studied using Laplace–Borel

transforms methods:

�2s � x @
x

� = �2 + � + P (x) . (6.4)

Analyzing this di↵erential equation we can prove that the chord diagram expansion

of �1 as an asymptotic series of Gevrey class 1 is actually Laplace–Borel summable

and possess non-perturbative corrections coming from a lattice of singular points in

its Borel plane. This is Theorem 4.3.3:

Theorem. Assume that p1 6= 0, bP (�0) 6= 0 and bP (⇣) is an exponentially bounded

function with singularities on (�1N + · · ·+ �
k

N) \ {0}. Then bg is singular on (�0N +

�1N + · · · + �
k

N) \ {0} and is exponentially bounded away from its singular points.
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In the most realistic case the distribution of these singular points is not wild and

the non-perturbative corrections are amenable to more quantitative studies.

This result gives a key to the non-perturbative understanding of the rest of the �
k

coe�cients thanks to the recursive formula

�
n

(x) =
1

n
�1(x)(x@x

� 1)�
n�1(x) . (6.5)

Thus we might ask then if similar techniques can be used to say something regard-

ing the resummation of G(x, L) in terms of the L variable. We answer this question

in chapter 5 as it can be done taking as a starting point the renormalization group

equation satisfied by G(x, L):

@
L

G(x, L) = �(x) [s x @
x

� 1]G(x, L) . (6.6)

Working in the Borel plane the problem is reduced to the non-homogeneous heat

equation

@
t

bJ(t, z) � @2
z

bJ(t, z) = �(f(t)) bJ(t, z) . (6.7)

Solving this equation by iteration we simply follow back the flow of transformations

to get a Laplace–Borel resummation formula in 5.2.4.

Theorem. For each ✓ 2 S1 and (�,↵) 2 (S1 \ aSing( 0
bJ))⇥ (]� ⇡

2 ,
⇡

2 [\aSing(� � f)),
the following is a solution to 5.3 for <(1/t(x)) large enough and with appropritate

initial conditions

G
�,↵,✓

(x, L) =
1

L1/2

y
exp

Z

t(x)

0

�(f(⌧)) d⌧

Z

e

i✓R+

e�⇣/L

�

K
t(x) ~ 0

bJ(2⇣1/2)
d⇣

⇣1/2
. (6.8)

As was already observed in Broadhurst and Kreimer in terms of the propagator-

coupling duality [5], the anomalous dimension is really the important object to capture

the singularities.

These results fall into the larger corpus of recent attempts to use integral trans-

forms techniques to extract non-perturbative information from the asymptotic series

that are perturbative solutions to problems of fundamental physics. While theorems
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4.3.3 and 5.2.4 only apply to one of the simple case of Dyson–Schwinger equations

we see that extracting quantitative information is already a di�cult task. We believe

it is possible to carry similar studies for more general systems of Dyson–Schwinger

equations but it would probably require more technical tools such as the ones coming

from Ecalle’s alien calculus.
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Appendix A

Appendices

A.1 The Combinatorial Objects

The following table contains all the rooted connected chord diagrams up to 4 chords

together with their corresponding rooted planar binary trees, smallest terminal chords

b(C) and monomials f
C

. The chords of the diagrams and the leaves of the trees are

labelled in the intersection order.

It serves as a reference to chapter 4 and is extracted from [20]. We refer to this article

for the construction of labelled rooted planar binary trees.
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