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Abstract 

Objectively measuring the operators’ task workload in goal-directed motor tasks such as 

surgical operations, is important for performance and safety.  This thesis presents an 

approach for objectively measuring task workload in goal-directed movements using an 

important eye response: the pupil diameter.  We demonstrate how to capture movement-

related pupil size changes during motor tasks, investigate how the pupil responds to task 

requirement, and show that the pupil diameter can be employed as an objective and 

quantitative indicator of task workload in motor tasks. 

In particular, we studied tasks where a tool is used to manipulate a target.  The 

challenges include how to quantitatively define the task requirement, accurately detect 

the movement-related pupil responses from other event-evoked pupil changes, and 

separate the pupil responses from consecutive movements.  We quantify the task 

requirements using Fitts’ index of difficulty.  The movement-related pupil events are 

captured from a time window aligned at a specific moment of tool movement which is 

automatically detected from recorded task videos.  To separate overlapping movement 

responses, each tool movement is divided into two phases: the Transport and Landing 

phases.  Three experiments were conducted to verify correlations between pupil 

responses and task difficulty of goal-directed movements, including two discrete target-

pointing tasks and a continuous target-pointing task.  We also investigated the pupil 

responses to task difficulty in a realistic situation: that is, during performance of a 

simulated surgical task, where we found that the pupil responses to the subtasks were 

related to the task difficulty. 

Overall, we found the pupil diameter can be employed to objectively measure task 

workload in goal-directed movements, by conducting three experiments of discrete and 

continuous target-point tasks and a study of real-life motor task.  The findings constitute 

the foundation for developing methods to objectively and quantitatively evaluate task 

workload of motor tasks using pupil diameter, and have a variety of implications in 

enhancing psychophysiological interactions in human-centered HCI and evaluating 

mental workload in high skill-demanding domains such as driving, aviation, and surgery. 
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Chapter 1.  
 
Introduction 

1.1. Background 

Objectively measuring task workload of operators has a wide range of 

applications including driving and aviation (Benedetto et al., 2011; Haak, Bos, Panic, & 

Rothkrantz, 2009; Hancock, Wulf, Thom, & Fassnacht, 1990; Noguchi, Shimada, 

Ohsuga, Kamakura, & Inoue, 2009; Ohsuga et al., 2011; Smith, Shah, & Lobo, 2000; 

Tsai, Viirre, Strychacz, Chase, & Jung, 2007), human-computer interaction (Bailey & 

Iqbal, 2008; Bednarik, Vrzakova, & Hradis, 2012; Iqbal, Adamczyk, Zheng, & Bailey, 

2005), and minimally invasive surgery (Berguer, Smith, & Chung, 2001; Richstone et al., 

2010; B. Zheng, Cassera, Martinec, Spaun, & Swanstrom, 2010; Bin Zheng et al., 2012).  

For example, surgeons undergo higher mental workload in minimally invasive 

laparoscopic surgeries than in open procedures (Berguer, et al., 2001).  Task 

requirements in a laparoscopic surgery are higher than in an open surgery due to the 

use of long-shafted tools, indirect mapping of visual field from the laparoscope, and the 

overall lack of natural vision on the surgical sites.  It is important to measure and monitor 

surgeons’ task workload in operating rooms regarding patients’ safety, since overloaded 

surgeons may lose their ability to maintain stable performance in the operating room 

(Mishra, Catchpole, Dale, & McCulloch, 2008; Stefanidis, Scerbo, Korndorffer Jr, & 

Scott, 2007; B. Zheng, et al., 2010).  They may lose vigilance to signs of life-threatening 

conditions (B. Zheng, et al., 2010) or make wrong decisions leading to undesirable 

consequence (Spaun, Zheng, & Swanström, 2009).   

Task workload is generally induced by task difficulty, but generated from various 

sources such as perceptual load, cognitive load, and physical load (Wickens, 2002, 

2008). These sources correspond to different stages of perception, cognition, and 

manual responding.  Perceptual load is the requirement to perceive more items during a 
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visual searching task, cognitive load comes from the task demands in working memory 

in cognitive tasks such as mental arithmetic tasks, and physical load arises from physical 

demands typically in motor tasks (Backs, Ryan, & Wilson, 1994; S. Chen & Epps, 2014).  

A task may involve multiple sources of loads.  For example, a mental arithmetic task 

may involve perceptual and cognitive loads: the subject has to take in the information of 

the question from either visual or acoustic channel (perceptual load), and then calculate 

from the items in the working memory (cognitive load).  Chen et al. (2014) designed an 

experiment to separate perceptual load and cognitive load as two distinct sources of task 

difficulty, by manipulating five levels of difficulty of an arithmetic task performed in low 

and high perceptual load situations respectively.  

In a visual-motor task such as target-pointing task, both perceptual load (visual) 

and physical load (manual responding) contribute to the task difficulty, but the latter 

usually dominates (Backs, et al., 1994). Backs et al.(1994) separated perceptual and 

physical loads in a manual tracking task.  In the case of a target-pointing task, visual 

perception is involved at the beginning of the task to perceive the global visual field of 

the task setting, and before the hand/tool approaches the target to intake the specific 

target position information (Abrams, Meyer, & Kornblum, 1990; Elliott, Helsen, & Chua, 

2001).  Therefore, the task difficulty of an aiming task mainly comes from physical 

demands.  In this thesis, the difficulty of the designed target-pointing task refers to that 

from the physical demands shaped by the target size and target distance. 

There are three main categories of approaches to measure task workload, viz., 

using subjective rating scales, using performance measurements (usually by indirectly 

measuring the performance of a secondary task), and physiological response 

measurements.  All of these measurements have significant limitations.  The subjective 

rating methods have bias in the answers which are greatly affected by the working 

memory of the participant and can only usually be done at the end of the task; the 

secondary task measurement causes extra workload which may affect the primary task; 

and physiological methods usually require attaching sensors to the human body, which 

is intrusive. 

With advances in eye-tracking technology, pupil diameter can be recorded 

remotely (unobtrusively) and continuously, and its subtle changes used to indicate the 
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cognitive task load (Klingner, Kumar, & Hanrahan, 2008).  What is lacking is the 

evidence between the change of pupil dilation and the change of task requirements in 

goal-directed movements.  Little work has been done in this area.  One of the pioneering 

fundamental works was conducted by Richer and Beatty (1985), who found that the pupil 

dilated as a function of the complexity of finger movements.  However, this was not 

testing the true task requirements during goal-directed movements; the participants in 

this 1985 study simply flexed their fingers while looking at a blank screen for the purpose 

of pupil size recording. 

In goal-directed interactive movements, such as aiming at a target and selecting 

a menu item, the tool or hand may move continuously with the coordination of eye 

movements, which may evoke a different pupil response pattern.  The discovery of this 

knowledge would have important implications.  For example, interactive environments 

could continuously adjust the presented information to accommodate the workload of the 

user in real-time.  Design guidelines for fundamental movements of a tool could be 

objectively evaluated, and training and simulation systems could be developed with 

specific tasks toward the improvement of motor and aiming skills. 

1.2. Challenges 

There are technical challenges in measuring task difficulty of motor tasks using 

pupil diameter.  First, the movement-related pupil responses are mixed with other event-

related pupil responses such as ambient lighting.  Usually, signal averaging techniques 

can be employed to detect the movement-related pupil responses.  By averaging many 

short epochs of the same task-evoked pupil responses, aligning at a specific common 

time point  such as the moment of stimulus onset, noise and other pupil size changes 

not correlated in time to the stimulus will be averaged to zero, and the useful pupil 

changes related to the task will be preserved (Beatty, 1982; Klingner, et al., 2008).  The 

selection of a common time point for aligning the short pupil response epochs is critical 

to the signal to noise ratio (SNR) of the movement-related pupil response.  However, 

goal-directed movement tasks are usually self-paced where the common time point for 

alignment is implicit.  In these cases, the hand/tool positions and the critical moments of 

movement such as when the hand/tool starts to move carry important information for the 
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analysis of movement-related pupil responses.  We developed a method for 

automatically extracting tooltip positions from the task videos (Appendix A).  Based on 

the extracted tooltip positions, the tool movements and the common aligning time point 

were determined according to the kinematics of the tool movement.   

Another challenge is how to quantitatively define the task difficulty.  There is no 

common way of defining the task difficulty in movement-related pupil studies.  For 

example, in the study performed by Richer and Beatty in 1985  (Richer & Beatty, 1985), 

the task difficulty was empirically defined by the increased number of fingers in the key-

pressing task.   

Fitts’ law is a traditional model of human movement by analogy to the 

transmission of information (Paul M. Fitts, 1954).  Specifically, the information capacity 

of the human motor system, which is called index of performance (IP), is considered to 

be relatively stable and can be calculated by the ratio of the index of difficulty (ID) of a 

motor task and its movement time (MT), as shown in equation (1).  To maintain a certain 

level of accuracy, the more difficult the task, the more movement time is needed.  The 

index of difficulty (ID) is determined by the target distance (A) and the target width (W), 

as shown in equation (2).  Fitts’ law has been widely adopted in a variety of research 

areas, including kinematics, human factors, and human-computer interaction (HCI) 

(MacKenzie, 1992), and recently in the laparoscopic environment (H.-J. Chen & Lin, 

2011; Prytz, Montano, & Scerbo, 2012). 

IP =
𝐼𝐷

𝑀𝑇
 (1) 

𝐼𝐷 = log2
2𝐴

𝑊
 (2) 

We quantitatively define task difficulty in target-pointing tasks (from Experiment 1 

to Experiment 3) and the simulated surgical task using Fitts’ index of difficulty (ID).   

Yet another challenge is that the pupil response may be affected by neighbouring 

events in continuous movements due to the low frequency of pupil response (typically 

lower than 0.5Hz) (Moresi et al., 2011; Privitera, Renninger, Carney, Klein, & Aguilar, 

2010; Richer & Beatty, 1985).  To address this problem, we observed pupil responses in 

both discrete and continuous target-pointing tasks.  We conducted two experiments 
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(Experiment 1 and Experiment 2) to explore the pupil response to task requirement in 

discrete target-pointing tasks, in which each movement was followed by a 10s waiting 

time to separate the pupil dilation from its previous movement and allow the pupil 

diameter to return to its baseline.  On the basis of the basic pattern of pupil response to 

a discrete movement, we further explored pupil responses to task requirement in 

continuous movements i.e. continuous aiming movements (Experiment 3).  For further 

analysis, we divided a movement into two phases e.g. the Transport and Landing 

phases according to the kinematics of the tool movement; this division provides a more 

detailed observation of the pupil responses in continuous movements.  Specifically, the 

pupil response during the Landing phase of a movement positively correlates to the task 

difficulty and the pupil response during the Transport phase reflects the effect of the 

previous movement. 

1.3. Overview of experiments 

Three experiments were conducted to investigate the pupil changes during goal-

directed tool movements.   

In Experiment 1, we explored the pupil responses to the task requirement of a 

discrete target-pointing task, where the subjects were required to move a tool to point 

and touch pairs of target circles with different target sizes and distances following the 

definition of Fitts’ ID and each movement was preceded by a 10s wait.  We found a 

small but significant dilation starting about 1.5s before the tool starts to move, followed 

by a slight constriction, the “valley” in the pupil size profile.  Before the tool touches the 

target, the pupil reaches its peak size.  Both the pupil dilation and the duration from 

Valley-to-Peak size positively correlate with the increase of IDs.  This evidence indicates 

that the change of pupil diameter is regulated by task requirement.  However, the task 

requirement in that discrete task study was affected by the mixed effect of both target 

size changes and target distance changes.   

To determine whether target size or target distance primarily contributes to the 

change of the pupil size, we conducted Experiment 2 by asking subjects to perform two 

tasks: 1) aiming at different-sized targets located a constant distance apart, and 2) 
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aiming at targets of the same size at varying distances.  The results demonstrated that 

the pupil dilates in response to both factors, either increase of target distance, or a 

reduction of the target size, in a similar pattern. 

Both Experiment 1 and Experiment 2 confirmed the connection between pupillary 

response and task difficulty in discrete movement tasks.  Examples of discrete visual-

motor tasks in daily life include inserting a key into a lock, shooting a basketball, and 

mouse-clicking at a specific location in an editor, etc.  However, in everyday interactive 

tasks, continuous movement tasks are much more common, such as steering the 

wheels of a vehicle, playing ping-pong, and selecting an item in a multiple-level cascade 

menu.  In many cases, the movement frequency is higher than the pupil response 

frequency which is typically lower than 0.5Hz (Jiang, Atkins, Tien, Bednarik, & Zheng, 

2014; Richer & Beatty, 1985), pupil response is inevitably affected by multiple 

movements.  It is important to carefully examine pupil response and develop a method to 

distinguish if pupil response is in reaction to an upcoming movement or is just a residual 

effect from a previous movement.  We needed to explore the pupil responses to the 

change of task requirements in a continuous aiming movement. 

In Experiment 3, we employed a similar experiment setting to that in the discrete 

movement studies, but here the participants performed a continuous pointing task 

without any waiting time between movements.  We hypothesized that pupil dilation will 

still respect Fitts’ law in continuous movements, such that higher task difficulty will evoke 

higher peak pupil dilation.  New challenges emerged during the analysis of pupil data in 

this continuous movement task as the pupil response was overlapped by the 

consecutive movements.  By carefully choosing the baseline and the moment to align 

the movement windows and by dividing the movement into two phases—Transport and 

Landing, we addressed these challenges.  The results supported our hypothesis.   

In summary, we found how to employ pupil diameter as a quantitative 

measurement of task difficulty of visual-motor tasks, via a series of experiments based 

on various tasks including discrete Fitts’ pointing tasks, continuous aiming task, and 

simulated surgical tasks.  By carefully processing the pupil signal and tooltip position 

data, we found that pupil responses to task requirement respect Fitts’ law in all these 

motor tasks, such that changes of pupil size positively correlate with the task difficulty.  
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These findings constitute the foundation of employing pupil diameter to measure task 

workload in motor tasks. 

1.4. Contributions 

This thesis has the following major contributions. 

1) Verified correlations between pupil diameter and task difficulty of motor tasks. 

 Innovatively set up the connection between pupil parameters e.g. peak pupil 

dilation to Fitts’ index of difficulty.  This enables us to quantitatively measure task 

workload using pupil diameter. 

 Discovered pupil response patterns in both discrete and continuous target-

pointing tasks, and confirmed the correlations between the changes of pupil 

diameter and the task difficulty defined by Fitts’ index of difficulty.  The findings 

constitute the foundation of employing pupil diameter as an objective, non-

intrusive, and continuous measurement of task difficulty of visual-motor tasks. 

 Applied pupil diameter to indicate task difficulties of real-life motor tasks.  We 

found the pupil response patterns in a simulated surgical task, and the pupil 

diameter is able to indicate both the task difficulty and task execution order of 

complex motor tasks. 

2) Developed key techniques to identify movement-related pupil responses.  We 

employed signal averaging techniques to reduce data noise and preserve 

movement-related pupil responses, and determined the window length, the aligning 

time point, and the baseline which are critical to the validity of the results.  

Furthermore, we divided a movement or subtask into Transport and Landing phases 

to better understand the pupil responses to a movement. 

 Employed windows to extract the movement-related pupil signal and aligned at a 

specific time point in the window.  We found a shorter window length (4s) is 

proper for extracting pupil signals from the continuous target-pointing task, a 

longer window (7s) for discrete target-pointing task to preserve the pupil response 

to the preparation of the movement at around 1.5s before tool starts to move, and 
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a long window (8s) for the surgical task since it took much more longer time for 

grasping or releasing the object. 

 Determined the valid time points for aligning the pupil signal windows.  We found 

that by aligning at the timestamps around moments of the tool starting to move, 

and reaching the target, the movement-related pupil signal was effectively 

preserved.  The moments of tool starts to move and reaching the target were 

automatically detected from the recorded task videos. 

 Defined the baseline pupil diameter and applied baseline subtraction to each 

window of the movement and subtask.  The baseline subtraction technique 

applied to each signal epoch greatly reduced the effects of pupil responses to 

factors such as unrelated events and changes of lighting and illumination of the 

screen.  We found the short segment before the beginning of the movement (2s 

before tool starts to move) was proper for the discrete target-pointing task and the 

short segment at the moment when the tool reaches the target was suitable for 

continuous movement tasks (continuous target-pointing and peg transportation 

tasks).  

 Decomposed a movement/subtask into Transport and Landing phases to better 

understand the pupil responses to a movement.  We found the pupil responses in 

the Landing phase correlate to the task difficulty, and the pupil responses in the 

Transport phase reflect the task execution order in motor tasks. 

3) Developed algorithms to identify tool movements from task videos of self-paced 

motor tasks.  

 Developed video processing algorithms to automatically extract tooltip positions 

from recorded task videos for identifying tool movements and the analysis of pupil 

responses to tool movements.   

 Developed algorithms to identify the moments when tool starts to move and 

reaches the target according to the kinemics of the tool movement.  These import 

moments were employed to separate individual movements from the self-paced 

motor tasks and to divide the movement phases. 
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1.5. Organization of thesis 

The thesis is organized as in Table 1.1. 

Table 1.1 Road map of thesis organization 

Chapter 1 Introduction 

Chapter 2 Literature review 

Chapter 3 Pupil responses in discrete movements: experiments 1 and 2 

Chapter 4 Pupil responses in continuous movements: experiment 3 

Chapter 5 Evaluation of pupil responses in a simulated surgical task 

Chapter 6 Conclusion 

 

Chapter 1 introduces the importance of developing an objective, non-invasive, 

and continuous method for assessing task workload and the challenges of employing the 

pupil diameter as indicator of task workload.  Chapter 2 reviews the work in mental 

workload measurement, eye-tracking technologies on pupil measurement, and pupil 

responses to both mental workloads of cognitive and visual motor tasks.  Chapter 3 

examines the correlation between the changes of pupil diameter and the task difficulty of 

discrete goal-directed movements, and Chapter 4 in continuous target-pointing 

movements.  Chapter 5 describes how we applied the technology to a real goal-directed 

movement task i.e. a peg transportation task under a laparoscopic environment.  

Chapter 6 summarizes the thesis.  
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Chapter 2.  
 
Literature review 

2.1. Mental workload, task difficulty, and measurement 
methods 

Mental workload is a finite mental resource that one uses to perform a task under 

specific environmental and operational conditions (Cain, 2004; Cassenti & Kelley, 2006; 

Wickens, 2002); it reflects the mental demand of performing the tasks as well as the 

capacity of the operator to respond to those demands.  For example, novice drivers may 

not be able to regularly check the side or back mirrors while driving, since the task of 

keeping driving forward costs most of the mental resources and leaves insufficient 

capacity for the safety checking; similarly, novices in a surgical task are not able to 

regularly check the vital life signals shown on the side screens (Geoffrey Tien, Atkins, 

Zheng, & Swindells, 2010; Bin Zheng et al., 2011).   

The motivation for measuring mental workload is for the prediction of task 

performance by quantifying the mental cost, as increased task demands may lead to 

unacceptable performance.  Human performance is a function of both individual 

processing capacity and task demands (May, Kennedy, Williams, Dunlap, & Brannan, 

1990).  Mental workload increases when the task becomes challenging, and when the 

task difficulty reaches or exceeds the processing capability of the operator, his 

performance may be jeopardized or the task may be failed.  Therefore, the 

measurement of mental workload is very useful for measuring the possibility of task 

accomplishment in a complex task environment. 

According to Wickens’ 4-D multiple resource model (Wickens, 2002, 2008), 

mental workload is generally induced by task difficulty, generated from various sources 

such as perceptual load, cognitive load, and physical load.  These sources correspond 
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to different stages of perception, cognition, and manual responding respectively.  

Perceptual load is the requirement such as to perceive more items during a visual 

searching task, cognitive load is related to the task demands on working memory in 

cognitive tasks such as mental arithmetic tasks, and physical load arises from physical 

demands typically in motor tasks (Backs, et al., 1994; S. Chen & Epps, 2014).  A task 

may involve multiple sources of loads.  For example, a mental arithmetic task may 

involve perceptual and cognitive loads: the subject has to take in the information of the 

question from either a visual or acoustic channel (perceptual load), and then calculate 

from the items in the working memory (cognitive load).  Chen et al. (2014) designed an 

experiment to separate perceptual load and cognitive load as two distinct sources of task 

difficulty, by manipulating five levels of difficulty of an arithmetic task performed in low 

and high perceptual load situations respectively.  

In a visual-motor task such as target-pointing task, both perceptual load (visual) 

and physical load (manual responding) contribute to the task difficulty, but the latter 

usually dominates (Backs, et al., 1994). Backs et al.(1994) separated perceptual and 

physical loads in a manual tracking task.  In the case of a target-pointing task, visual 

perception is involved at the beginning of the task to perceive the global visual field of 

the task setting, before the hand/tool approaches the target to intake the specific target 

position information (Abrams, et al., 1990; Elliott, et al., 2001).  After the visual search, 

the task difficulty of the aiming task mainly comes from physical demands.  In the rest of 

this thesis, the difficulty of the designed target-pointing task refers to that from the 

physical demands shaped by the target size and target distance. 

In order to evoke different levels of mental workload of a user in a study, the 

difficulty of the task has to be carefully manipulated.  Most past studies manipulated the 

task difficulty by changing related task factors such as the complexity of the task.  For 

example, Richer and Beatty (1985) defined four levels of task difficulty by varying the 

complexity of finger movement: one-finger flexion, two-finger flexion of one hand, one 

finger flexion of both hands, and three-finger flexion in one hand.  This empirical 

definition of task difficulty was not quantitative.  The difficulty of two-finger flexion was 

not necessarily twice as hard as that of single-finger flexion and even two-finger flexion 

in one hand might not be easier than one-finger flexion in both hands.  In goal-directed 
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movement tasks, the task difficulty is mostly from physical demands shaped by the 

target size and distance, and is governed by the law of speed-accuracy trade-off. 

Fitts’ law is a traditional model of human movement by analogy to the 

transmission of information (Paul M. Fitts, 1954), and serves as quantitative definition of 

difficulty in a variety of research areas, including kinematics, human factors, and human-

computer interaction (HCI) (MacKenzie, 1992), and even recently in the surgical 

environment (Prytz, et al., 2012).  Kourtis et al. (2012) explored the correlations between 

the electroencephalography (EEG) signals and the Fitts’ index of difficulty of an aiming 

movement, and found that the index of difficulty of the planned  movement correlated 

linearly with the amplitudes of the specific components of the EEG signals (N2 and P3b).  

In an eye-based interaction task where the participants were instructed to move their 

gaze from home position to target locations of various distance Fitts’ law has been found 

be valid to saccadic parameters, that is, the peak saccadic velocity and the variability of 

the endpoint of saccades positively correlate to the gaze travel distance (Abrams, 

Meyer, & Kornblum, 1989; Al-Aidroos, Fischer, Adam, & Pratt, 2008).  

Once a concrete and quantitative definition of the task difficulty is established, an 

analytic model such as linear regression between the difficulty and other physiological 

indicators such as EEG and pupil responses could be built (Backs, et al., 1994; Jiang, 

Atkins, Tien, Zheng, & Bednarik, 2014).  The established mapping between pupil 

responses and task difficulty could be further applied to situations where the task 

difficulty cannot be measured by Fitts’ law. 

Measuring mental workload is not trivial.  It needs to meet certain criteria for 

specific situations.  In the case of measuring mental workload in high risky task 

environments such as surgery, an objective, non-intrusive, and continuous method is 

needed.  Past research introduced three main categories of mental workload 

measurement techniques: subjective rating scales (self-assessment), performance 

measures (including primary and secondary task measures), and psychophysiological 

measures (Gawron, 2008).  The subjective rating methods are easy to perform, and they 

only require the operator to answer survey questions about the mental stress associated 

with a task.  However, the answers to the survey questions are affected by the 
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operator’s working memory as these measures cannot be taken continuously during 

tasks, and have a bias to the task difficulty (B. Zheng, et al., 2010).   

The subjective shortcomings may be avoided by using a secondary task to the 

primary task where decreased secondary task performance implies increased mental 

workload caused by the primary task (Wickens, 2002).  However, there may be extra 

workload caused by the secondary task that affects the performance of the primary task.   

Although psychophysiological measures have the advantage of eliminating the 

possibility of subjective bias and generally do not interfere with task performance, most 

of them present an intrusion, as they need sensors attached to the user. 

2.2. Eye-tracking technology 

2.2.1. Eye-tracking methods 

There are several different way of tracking eye movements and measure pupil 

dilation (Duchowski, 2007), including Electro-OculoGraphy (EOG), scleral contact 

lens/search coil, Video-OculoGraphy (VOG), and video-based combined pupil and 

corneal reflection.  In this thesis we mainly use remote video-based pupil and corneal 

reflection eye-tracking systems which usually contain illumination sources (often infrared 

red (IR)) and one or more eye-tracking cameras.  To estimate gaze location, the point 

where the subject is looking needs to be inferred from the eye image recorded by the 

camera attached in the eye-tracker.  That is, the m-dimensional image feature space 

must be mapped to the 3-D world coordinates by the parameter vector c: Φc: ℝ
m → ℝ3.  

(Villanueva et al., 2009).  The parameter vector c can be estimated by calibrating the 

gaze, which may differ in terms of system hardware and subject-specific variables.  The 

process of gaze calibration requires the user to look at a number N of predefined points 

labeled as ti on the screen, and calculate the corresponding eye features xi.  Then the 

mapping Φc should be derived from the tuple set D{(ti, xi)}. 

According to Villanueva et al’s (2009) simplified eye-tracking method (a single 

eye tracking camera, a single gaze target, and a 2D planar screen), there are three 

coordinate systems used in the geometrical modelling, the eyeball, the camera, and the 
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screen, assuming that the three components have their own coordinate systems 

(centered ec, Ocam, and Omon, respectively).  Taking the screen as the real world 

coordinate system, the other two coordinate systems can be transformed to the real 

world coordinate system (Villanueva, et al., 2009).  Consequently, the gaze point on the 

screen and the gaze direction can be derived from the relations between the visual axis, 

optical axis, and the screen, i.e., the intersection between visual axis and the screen 

(mv) and the intersection between the optical axis and the screen (mo). 

In order to obtain the eye features, i.e., the pupil centre, the image captured by 

the eye tracking camera (centered Ocam) will undergo image processing (Villanueva, et 

al., 2009) to detect the pupil outline.  Light sources are used to illuminate the eye area.  

The reflections of the light sources (IR) on the cornea are used to facilitate the image 

processing. 

2.2.2. Pupil diameter output from eye-tracker 

As described in section 2.2.1, the pupil outline is detected before the gaze 

location estimation in a remote video-based eye-tracking system, so that pupil size 

information is included in the output of most eye-trackers.  Usually, the pupil size 

information includes the horizontal and/or vertical diameter in pixels or in mm, which 

could be utilized to derive other pupil parameters.  For example, Benedetto et al. (2011) 

used the following formula to compute the pupil area. 

 

Where diaX and diaY are horizontal and vertical pupil diameters respectively and 

APS is the pupil area.   

When extracting pupil size information from the output of a video-based eye-

tracker, distortion caused by the view angle of the eye camera and eye movements may 

exist.  Pomplun and Sunkara (2003) proposed a neural-network-based calibration 

method to eliminate this geometry-based distortion when using a video-based eye-

tracker.  The calibration interface was evaluated in an experiment and the results 

showed that it significantly improved the signal-to-noise ratio.  Gagl et al. (2011) 

corrected the pupil distortion caused by the eye-camera angle by using an artificial eye 

*2/*2/ diaYdiaXAPS 
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model.  First the authors used an artificial eye model with a fixed pupil size to be 

captured by the eye-tracking system in different view directions.  Then parameters 

derived from the captured data were filled into a physical function to correct the pupil 

size from a real eye.   

Modern eye-tracking systems can monitor the eye movements remotely and 

provide pupil diameter information continuously and non-intrusively.  However, the 

question remains whether the remote video-based eye-trackers are capable (e.g. have 

enough precision) of measuring task-evoked pupillary responses (TEPR).  To answer 

this question, Klingner (2008) replicated two previous experiments i.e. mental 

multiplication (Ahern & Jackson, 1979) and short-term memory (Kahneman & Jackson, 

1966), where he measured cognitive load using pupil diameter output from a remote 

video-based eye-tracker instead of using a television pupillometer (Watanabe, Ikeda, 

Suzuki, & Nakamura, 1990) or a customized pupillometer systems employed in these 

two previous studies.  The results from both replicated experiments are consistent with 

those of the two previous experiments; this implies that remote eye-trackers can be used 

to measure cognitive workload. 

2.3. Pupil responses to the changes of mental workload in 
cognitive tasks 

The pioneer work exploring pupil size changes relating to mental workload was 

done by Hess and Polt (1964) in a mental arithmetic experiment.  The authors found that 

the pupil size of the subjects gradually dilated along with the time elapse of presentation 

of a multiplication problem and reached a peak value immediately before the production 

was orally reported; then constricted rapidly back to the original size.  The mean pupil 

dilation was also found to be a function of the level of difficulty of the problem.  Following 

this work, extensive studies have shown that the changes of pupil size reflect mental 

workload in different tasks, including mental arithmetic tasks (Bradshaw, 1967), recall or 

memory tasks (Beatty & Kahneman, 1966; Goldinger & Papesh, 2012; Libet, Gleason, 

Wright, & Pearl, 1983; Otero, Weekes, & Hutton, 2011; Peavler, 1974; van Rijn, 

Dalenberg, Borst, & Sprenger, 2012), and visual search tasks (Attar, Schneps, & 

Pomplun, 2013; Porter, Troscianko, & Gilchrist, 2007; Privitera, et al., 2010). 
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Pupil size also responds to a critical event such as mental arithmetic during 

information processing, which is called Task-Evoked Pupil Response (TEPR), appearing 

at the event onset with a short latency (averaging between 100ms and 200ms), and 

terminating rapidly following the completion of the event (Beatty, 1982).  The TEPR has 

been employed as an approach to capture and evaluate the mental workload changes 

during a variety of tasks (Beatty, 1982; Fong, Sibley, Coyne, & Baldwin, 2011; Goldinger 

& Papesh, 2012; Karatekin, Couperus, & Marcus, 2004; Piquado, Isaacowitz, & 

Wingfield, 2010). 

2.4. Pupil responses to task requirement in goal-directed 
movements 

The pioneering work exploring pupil responses to movement was conducted by 

Richer and Beatty (Richer & Beatty, 1985), which examined the pupil responses to 

simple finger movements, the self-paced finger flexion.  The participants were required 

to press their finger on the keyboard approximately every 5s-10s with their eyes fixating 

at a point at 2m distance while being recorded by a pupillometer.  The task difficulty was 

evoked by the increasing number of fingers to press the specified keys in the keyboard.  

The authors found the typical pupil dilation pattern to a simple finger movement is that 

the pupil dilates about 1.5s before the finger movement and peaks after about 0.5s, and 

the peak pupil dilation positively correlates to the task difficulty i.e. the number of finger 

flexion.  However, Richer and Beatty’s finger flexion task is not a realistic goal-directed 

movement as the participants’ eyes were looking at a fixed point during the finger 

movements, so the eyes and the hands were dissociated during the task.  In goal-

directed interactive movements, such as aiming at a target and selecting a menu item, 

the hand or tool may move continuously, which may evoke a different pupil response 

pattern.  Our research group conducted a series of studies to explore pupil responses to 

goal-directed movements (Jiang, Atkins, Tien, Bednarik, et al., 2014; Jiang, Atkins, Tien, 

Zheng, et al., 2014; Jiang, Zheng, Bednarik, & Atkins, 2014), which will be described in 

detail in this thesis. 

In the field of eye-hand coordination in health care training, Marshall (2002) 

reported the Index of Cognitive Activity (ICA) that is capable of capturing subtle cognitive 
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changes from pupil metrics, and was used to predict the expertise of surgeons, together 

with other eye metrics (Richstone, et al., 2010).  However, precise details of the pupil 

response to motor tasks were not reported. 
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Chapter 3.  
 
Pupil responses in discrete movements 

Two experiments were conducted to verify the correlations between the changes 

of pupil size and the task difficulty of discrete goal-directed movements—the discrete 

target-pointing tasks—with 10s wait before each movement.  Experiment 1 investigated 

pupil responses to a mixed effect of the variations of both target size and distance and 

Experiment 2 explored the pupil responses to the effect of either target size or target 

distance variations.  These two experiments employed the same experiment setting, 

apparatus, and were conducted at the same location in the same lighting and screen 

luminance conditions, but with different participants and different target settings.  The 

same data analysis methods were applied to both sets of data. 

3.1. Pupil responses to task requirement during discrete 
goal-directed movements (Experiment 1) 

3.1.1. Experiment purpose and hypothesis 

This experiment was designed to investigate the pupil responses to task difficulty 

of discrete goal-directed movements, where the participants performed a target-pointing 

task with 10s wait between each tool movement.  To quantify the task difficulty, the 

target sizes and distances were defined using indices of difficulty calculated according to 

Fitts’ law. 

The hypothesis was that different indices of difficulty would result in 

distinguishable patterns of pupillary response. 
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3.1.2. Methods 

Participants 

Twelve participants (four females) were recruited to the study, including ten 

graduate students, one undergraduate student, and one staff member from Simon 

Fraser University.  All were right-handed users and had normal or corrected-to-normal 

vision.  None of them were previously trained in any surgical procedures. 

Experimental setting and apparatus 

The task was to move a long-shafted laparoscopic grasper horizontally to touch 

the circles printed on a paper inside a laparoscopic training box, while the eyes of the 

user were looking at the projection of the inside of the box on a display screen, as shown 

in Figure 3.1.  Three pairs of target circles with combinations of variable sizes and 

distances between targets were designed with three indices of difficulty (ID).  The 

detailed parameters of the target circles are illustrated in Figure 3.2.  The formula for 

calculating ID is as in Equation (2) (Paul M. Fitts, 1954), where W is the diameter of the 

target circle and A is the distance between the pair of targets. 

 

Figure 3.1 Experimental setting (Experiment 1 and 2). 
Note. Tobii X50, training box, and web camera, showing the target circles on the Tobii display 

monitor. 
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Figure 3.2 Illustration of target patterns (the pairs of target circles on the paper 
inside the training box showing on the display monitor as in Figure 
3.1).   

Note. One group of subjects executed bottom up from the easiest task to the hardest task and 
then back to the easiest task (shown in the upper panel); another group of subjects 
executed bottom up from hard to easy tasks and then back to the hardest task (lower 
panel).  A1 to A3 represent the distances between targets and W1 to W3 represent the 
sizes of the targets of ID1 to ID3.  The following settings were employed: ID1=2.7 
bit/response (W1=0.9cm, A1=3cm) denoted here as Easy, ID2=4.3 bit/response 
(W2=0.6cm, A2=6cm) denoted here as Medium, and ID3=5.9 bit/response (W3=0.3cm, 
A3=9cm) denoted as Hard. 

Subjects held the surgical grasper at a standing pose about 60cm from the eye-

tracker.  The scene of the work area inside the training box was illuminated and captured 

at 30Hz by a built-in video camera and projected onto a 17” display.  The eye 

movements of the participants were recorded simultaneously using a remote eye-tracker 

(Tobii X50, Tobii Technology AB).  A web camera was attached to the top center of the 

display frame recording the face expressions of the participants for the purpose of 

identifying eye blinks and lost data.  The eye-tracker and the cameras were integrated 
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using Tobii software, Clearview 2.7.0.  The setting was physically isolated to keep the 

effect of ambient lighting relatively stable.  The brightness and contrast of the display 

were constant and set to a moderate level to make the pupil to work at the center of the 

length-tension curve of the iris muscle, for the best pupil response to the task 

requirement (Privitera, et al., 2010).  The tips of the grasper were black-taped to keep 

the tips’ color consistent with the shaft, and make image processing easier. 

Tasks and procedure 

The task was to move the surgical tool to point to the circles printed on a piece of 

paper placed horizontally at the bottom of the training box.  Since the frequency of pupil 

response to a movement is typically lower than 0.5Hz (Moresi, et al., 2011; Privitera, et 

al., 2010; Richer & Beatty, 1985) and the frequency of the tool movement of target-

pointing under laparoscopic environment is usually around 0.5Hz (H.-J. Chen & Lin, 

2011), in order to avoid overlap of the pupil dilation curve, we used discrete Fitts’ 

pointing (P. M. Fitts & Peterson, 1964) by waiting 10s before each tool movement. 

Specifically, each trial consisted of 16 discrete movement steps executed from 

the bottom to the top pairs of targets (phase 1, steps 1-8) and then from the top pairs to 

the bottom ones (phase 2, steps 9-16), each movement separated by 10s wait, with the 

execution sequence shown in Figure 3.3.  The trial started by placing the tooltip on the 

right bottom circle for 10s, then moving the tool to the left bottom circle (step (1)), and 

ended by stopping the tooltip on the right bottom circle for 10s after step (16).  Only the 

12 horizontal movements were used for analysis. 

The participants were instructed to move the tool and hit the target as accurately 

and as fast as possible; once the target was hit, 10s were counted before moving to the 

next target.  Each trial took about 180s. 
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Figure 3.3 Execution sequence of a trial (target setting 1), steps shown in 
parentheses.   

Note. The arrows represent tool movement from one circle to another; before each tool 
movement, the tool stops on the circle for 10s. 

Each participant read and signed a consent form before entering the study, and 

then read the instructions.  The participants practiced the task for a few minutes, until 

they were ready to begin.  Each participant performed two blocks of tasks, each 

containing three trials with a 20s break between trials.  To achieve counterbalance, each 

block used either task setting 1 (from easy to hard as shown in the top panel in Figure 

3.3) or task setting 2 (from hard to easy as shown in the bottom panel in Figure 3.3).  

Half of the participants started with task setting 1 and the other started with task setting 
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2.  We did not consider other ordering options like executing from medium difficulty to 

hardest to easiest, because the ANOVA results showed there was no significant 

difference in movement time between the two groups, and no interaction effect of ID and 

group order. 

Data analyses 

Tooltip location 

The task video was recorded by the camera inside the training box at 30Hz with 

a resolution of 352×288 pixels, and the text files (Combined Data file, CMD) containing 

eye movements (50Hz) were exported from Tobii Clearview for the offline analysis. 

To analyze the pupil responses to tool movements, we needed the information of 

the tool movements that the pupil responded to.  Therefore an algorithm was developed 

to automatically extract tooltip positions from the task videos.  The detail of the algorithm 

for extracting tooltip positions is described in Appendix A. 

The tooltip data were smoothed with a running-average-filter using equally 

weighted four samples window and then were synchronized to pupil signal in timeline as 

shown in Figure 3.4. 

Tool movement division 

A movement is defined from the tool starts to leave the current circle (Tool-

leave), to when the tool reaches the vicinity above the target (Tool-reach), and 

eventually touches the target (Tool-touch).  An algorithm was developed to detect the 

moments of Tool-leave and Tool-reach, as shown the dashed and solid vertical blue 

lines in Figure 3.4, respectively. 
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Figure 3.4 An example of tooltip movement and pupil size over time for a 
complete trial (subject 01, trial 01).   

Note. The blue curve is the tooltip position in pixels and the black curve is the pupil diameter.  
The dashed and solid vertical blue lines and the solid vertical red lines represent the 
moments of Tool-leave, Tool-reach, and Tool-touch, respectively.  The red cross at 
around 70s indicates a mis-operation (the tool points to a wrong target). 

The algorithm finds the absolute tooltip movement peak velocity in a movement, 

and then searches backward and forward for the moments of Tool-leave and Tool-reach 

respectively, by checking whether the x-axis absolute velocity is lower than a threshold.  

The tool movement velocity was calculated by dividing the distance in x-axis direction (in 

pixels) for two consecutive movements to their time interval.  The velocity thresholds for 

detecting the Tool-leave and Tool-reach moments were empirically determined, since 

there are abrupt changes of tool velocity at the moments of Tool-leave and Tool-reach.  

The Tool-leave and Tool-reach thresholds were both set to 30pixels/s.  The moment of 

Tool-reach detected by the algorithm is the moment that the tool quickly arrives at a 

position above (but not necessarily touching) the target circle.  An example of kinematics 

of tool movement is shown in Figure 3.5. 
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Figure 3.5 Kinematics of tool movement (subject 01, trial 01, from Experiment 
1) during a typical horizontal movement between circles.   

Note. The blue curve is the tooltip position in pixels along the horizontal line between the 
circles, and the red curve is the velocity of tooltip movement.  The vertical dashed and 
solid blue lines represent the moments of Tool-leave and Tool-reach, and the vertical 
dashed and solid red lines represent the moments of peak velocity of a tool movement 
and the tool touches the target. 

The tooltip usually leaves the current circle to the next target quickly in the 

horizontal direction once the tool starts to move, which makes it easy to accurately 

detect the Tool-leave.  However, the tooltip usually quickly arrives at a relative height 

position over the target circle and then slowly descends to touch the circle, which causes 

no change in the tooltip positions from the 2-D image during this descending period.  

Therefore the detected Tool-reach moment by this algorithm is not the moment that the 

tool touches the target circle.  Therefore, we manually annotated the moments where the 

tool touches the target (called Tool-touch) by observing the surgical videos, as shown in 

the solid vertical red lines in Figure 3.4 and in Figure 3.5. 

Tool movement phases 

A movement was further divided into Transport and Landing phases.  The 

Transport phase starts when the tool leaves (Tool-leave) for the target circle and stops 
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when the tooltip reaches the vicinity above the target circle (Tool-reach).  Starting from 

Tool-reach, the Landing phase slowly adjusts the tool till it touches the target circle 

(Tool-touch).  This Transport and Landing phases division is consistent with the phase 

division (initial impulse and error correction phases) in rapid movement studies (Abrams, 

et al., 1990; Adam et al., 2000; Elliott, et al., 2001; Pelz, Hayhoe, & Loeber, 2001). 

Movement-related pupil responses 

The pupil diameter data was processed and synchronized with the trajectory of 

the tooltip for the analysis of the pupil responses during tool movements.  The pupil 

diameter data was exported from Tobii Clearview to the text file (Combined Data file, 

CMD) and the tooltip positions were derived from the task video recorded by the built-in 

camera.  The pupil data were in 50Hz and the task videos were in 30Hz with a resolution 

of 352×288 pixels.  Segments of missed pupil data shorter than 100ms were 

interpolated, which might contain blinks and noise data.  Then a Butterworth low-pass 

filter with a cut-off frequency of 4Hz was applied to the pupil diameter data, since 

frequency above 2Hz of the pupil is considered as noise (Privitera, et al., 2010). 

The pupil response data of a movement were extracted from a 7-second window 

starting 3 seconds before and 4 seconds after every Tool-leave, as shown in Figure 3.6.  

The 7-second window is motivated by considering the extra movement time (about 1s-

2s) before the tool leaves in our study compared with others who noted pupil increases 

start 1.5s before the stimulus (Moresi, et al., 2011; Privitera, et al., 2010; Richer & 

Beatty, 1985) and the pupil continuous to dilate afterwards to a peak value in a few 

seconds e.g. 3s-window in (Privitera, et al., 2010), 4s-window in (Richer & Beatty, 1985), 

and 5s-window in (Moresi, et al., 2011).   

Relative pupil diameter changes in the window were derived by subtracting each 

sample from a baseline pupil diameter which was the mean of the pupil size during the 

first second of the window.  Figure 3.7 shows a blow-up of a segment of the sample trial 

data from Figure 3.6. 
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Figure 3.6 Illustration of the 7s windows extracting pupil responses over a 
complete trial (subject 01, trial 01).   

Note. The blue curve is the tooltip position in pixels along the horizontal line between the 
circles.  The dash and solid vertical blue lines and the solid vertical red lines represent 
the moments of Tool-start, Tool-reach, and Tool-touch, respectively.  The red rectangles 
on the top represent the 7s-windows which start 3s before Tool-leave and end 4s 
afterword.  The blue rectangle at the start of each 7s-window represents the baseline 
area for the window. 
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Figure 3.7 Blow up of a segment (95s-120s) from Figure 3.6, showing how the 
pupil size (black curve) increases when tool movements occur.   

Note. The black, blue and red curves are the pupil diameter in mm, tooltip position and gaze 
location in pixels along the horizontal line between the circles.  The dash and solid 
vertical blue lines and the solid vertical red lines represent the moments of Tool-start, 
Tool-reach, and Tool-touch, respectively.  The red rectangles on the top represent the 
7s-windows which start 3s before Tool-leave and end 4s afterword.  The blue rectangle 
at the start of each 7s-window represents the baseline area for the window. 

Since the pupil diameter baseline may drift during a task, usually baseline 

techniques (Bednarik, et al., 2012) are used to normalize the pupil size changes and 

eliminate the effect of drift of mean pupil size.  The way that the baseline was chosen 

e.g. the position of the baseline may greatly affect the results of the data analysis 

(Bednarik, et al., 2012).  The ideal baseline for event-related pupil diameter analysis 

should be derived from the period in the vicinity of the event where the pupil diameter is 

free from effects of the other events as possible. 
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The magnitude of workload-related pupil dilations (less than 0.5mm) is usually 

smaller than the magnitude of other simultaneously ongoing pupil changes caused by 

light reflex, respirations, and other brain activities (Klingner, et al., 2008), which causes 

difficulty in detecting the movement-related pupil dilation.  By averaging many repetitions 

of short epochs of the same task aligned at a specific common time point (usually the 

moment of the stimulus onset), noise and other pupil size changes not correlated in time 

to the stimulus will be averaged to zero and the useful pupil size changes related to the 

task will be preserved (Klingner, et al., 2008).  This is the signal averaging technique.  

Formally, assuming there are m movements from all trials of all subjects and each 

movement has n samples in a 7-second window,   is the 

matrix of pupil diameter values in the 7-second windows across all tooltip moves of all 

trials of all subjects.  The mean pupil diameter change of each time point in the window 

is in a vector .  Similarly, the mean pupil diameter changes were 

calculated across all moves from all trials for each ID.  The mean pupil diameter 

changes in the 7-second window were drawn in a graph for visual analysis.   

To examine segments where significant differences occurred in the 7-second 

window between the three IDs, a paired t-test was applied to the same time point sample 

and examines all the p-values along the time axis to determine which segments of the 

curves are significantly different.  Due to the temporal autocorrelation of pupil waveform, 

we considered a series of more than 4 consecutive samples (80ms) with p-values < .05 

as significantly different (Privitera, et al., 2010). 

For each 7-second window, the smallest and the biggest pupil sizes after tool-

leave was searched as “valley” and “peak” pupil size respectively, and then the Valley-

to-Peak pupil dilation (the difference between the peak and valley pupil sizes), the 

Valley-to-Peak pupil dilation duration (from the valley time point to the peak time point), 

and the peak pupil dilation duration (from the tool-leave time point to the peak time point) 

were calculated. 
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Experimental design 

The experiment had an independent variable task difficulty with three levels of 

Easy, Medium, and Hard.  The dependent variables were movement time, Valley-to-

Peak pupil dilation, Valley-to-Peak pupil duration, and peak pupil dilation duration. 

The total number of movements was 864 (12 participants, each performing 6 

trials, each trial has 12 movements). 

3.1.3. Results 

Accuracy 

A total of 72 trials were recorded (12 participants, each performed 6 trials).  

Three trials were excluded from analysis due to low ratio of total fixation time over total 

execution time (TF/TT), since we have observed that the quality of the eye movement 

data cannot be guaranteed when TF/TT is lower than a certain value (less than about 

70%).  From the 69 valid trials, there was window data for 828 movements available.  

However, we discarded 23 windows due to mis-operation such as when the participant 

moved the grasper to a wrong target.  All the movements’ endpoints (the tooltip positions 

when touching the target) were within the target circle.  Therefore we had 805 valid 

movements. 

Movement time 

The mean movement time (MT) is the mean transportation time between Tool-

leave and Tool-touch for all horizontal movements.  The mean MT for all ID is 2.6±1.1s, 

and the MT changes as a function of ID, i.e., the mean MT increases when the difficulty 

level increases, as shown in the mustard bars of Figure 3.8.  There is significant main 

effect between the three IDs in terms of mean MT (F2,802 = 237.069, p < .0001).  Post 

Hoc test (Tukey HSD) shows that the differences between pairs of the three IDs are 

significant (p < .0001), with mean MT of Easy, Medium, and Hard IDs being 1.8±0.6s, 

2.6±0.8s, and 3.4±1.1s, respectively. 
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Figure 3.8 Mean time of movement phases and complete movement time for 
different IDs over all subjects.   

Note. The blue bar is the movement time for the Transport phase, the green bar is the 
movement time for the Landing phase, and the mustard bar is the movement time for a 
complete move.  The error bars are for 95% confidence intervals. 

The mean MT of Transport phase of all IDs is 1.0±0.3s, and increases when the 

difficulty level increases, as shown in the blue bars of Figure 3.8.  There is significant 

main effect between the three IDs in terms of mean Transport MT (F2,802 = 134.150, p < 

.0001).  Post Hoc test (Tukey HSD) shows that the differences between pairs of the 

three IDs are significant (p < .0001), with mean Transport MTs of Easy, Medium, and 

Hard IDs being 0.8±0.2s, 1.0±0.3s, and 1.2±0.3s, respectively. 

The mean MT of Landing phase of all IDs is 1.6±1.0s, and increases when the 

difficulty level increases, as shown in the green bars of Figure 3.8.  There is a significant 

main effect between the three IDs in terms of mean Landing MT (F2,802 = 144.196, p < 
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.0001).  Post Hoc test (Tukey HSD) shows that the differences between pairs of the 

three IDs are significant (p < .0001), with mean Landing MTs of Easy, Medium, and Hard 

IDs being 1.0±0.6s, 1.6±0.8s, and 2.2±1.1s, respectively. 

Pupil responses to tool movements 

Descriptive analysis 

Figure 3.9 shows the mean changes of pupil diameter during horizontal tooltip 

movements over a 7-second window.  The data is averaged across 805 valid moves of 

69 trials from 12 subjects.  For clarity, error bars are drawn every 1s rather than drawn 

for every time sample (at 50Hz). 

 

Figure 3.9 Mean pupil diameter changes for 805 valid moves of 69 trials from 
12 subjects.   

Note. Data were aligned over a 7 second window 3 seconds before the Tool-leave.  The 
baseline is defined as the mean diameter of the pupil over the first second of the 
window, and the solid black curve is the mean pupil diameter change from the baseline 
over time.  The vertical red line is Tool-leave where all the data are aligned and the next 
two vertical dashed black arrows are the average Tool-reach time and Tool-touch time.  
The error bars for 1 std. dev. are drawn every 1s. 

Figure 3.10 shows the means of pupil size changes in the 7s-window for the 

three IDs.  The three ID curves share a common pupil change pattern as shown in 

Figure 3.9, i.e., all of them dilate in response to the movement preparation and execution 

in a relatively long period from about 1.5s before Tool-leave and peak 1-2s after Tool-
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reach, corresponding to the movement preparation and execution (Privitera, et al., 2010; 

Richer & Beatty, 1985).  There is also a small constriction commencing 200ms after the 

tooltip starts to move during Transport phase. 

 

Figure 3.10 Mean pupil diameter changes against different IDs.   
Note. Data are aligned over a 7-second window around Tool-leave.  The vertical red line is the 

Tool-leave.  The three colors of bars at the bottom indicate significant differences in 
pupil dilation between Easy, Medium and Hard ID with black representing Easy vs. 
Hard, red representing Easy vs. Medium, and green representing Medium vs. Hard.  
The error bars for 1 std. dev. are drawn every 1s. 

However, major differences can be observed between the three IDs.  First, 

during 2-3s in Figure 3.10, the pupil dilation for the Hard ID (green curve) is more than 

Easy (black) and Medium (red) ones.  Second, during Transport phase, the pupil of the 

Hard ID constricts the most among the three IDs and the pupil of the Easy ID constricts 

the least.  Third, the peak value and duration from Tool-reach to peak pupil size of the 

three ID curves are different: the Hard ID has the highest peak and longest duration and 

the Easy ID has the smallest peak and the shortest duration.   
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Furthermore, the increase of pupil size from the valley (between 0s and 1s along 

the time window in Figure 3.10) to its peak correlates to IDs: the easy task (black curve) 

increased about 0.13mm (0.07mm at valley to 0.2mm at peak), the medium task (red 

curve) increased about 0.18mm (0.02 to 0.2mm), and the hardest task (green) had the 

largest increase of about 0.27mm (-0.01 to 0.26mm).  Also, the Valley-to-Peak duration 

can be observed to be different between IDs. 

Statistical analysis 

The moment-to-moment based difference was examined between the pupil size 

change curves for the three IDs, with the results as shown in the bottom color bars in 

Figure 3.10.  For each time point, the paired t-test was performed in two IDs each 

containing samples from the 69 trials. 

Significant differences in pupil size changes between Easy ID and Hard ID are 

shown in black bars (bottom row) in Figure 3.10.  The first significant time period is 

located at 0.7s to 1.9s along the time window, where the Hard ID pupil curve (green) is 

at its local valley while the Easy ID curve (black) has already recovered from a short 

period of constriction.  The second significant time period starts at the intersection of 

Hard ID curve and Easy ID curve (at around 2s) to the end of the window. 

The red bars (middle row) in Figure 3.10 show similar significant differences 

between Easy ID and Medium ID, only with the first bar starting a little bit earlier (0.5s to 

1.6s in time axis). 

The green bars (upper row) in Figure 3.10 show significant differences between 

Medium ID and Hard ID.  There are three major significant time periods: the first one (-1s 

to 0.4s along the time window) where the pupil dilates more during the hard ID than the 

Medium ID, the second one (0.9s to 1.6s along time window) where the pupil constricts 

more during the Hard ID than the Medium ID, and the third one starts after 2.8s along 

the time window. 

According to the three colored bars at the bottom in Figure 3.10, significant 

differences between all three IDs can be found in two major time periods: one is around 

the end of the Transport phase where the hardest ID has deeper pupil constriction than 
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easier ones, and another area is after the peak, where the hardest ID has bigger pupil 

diameter than the easier IDs. 

Figure 3.11 shows the mean amount of the Valley-to-Peak pupil dilation for the 

three IDs.  ANOVA shows there is significant difference in the pupil size increase from 

Valley-to-Peak between IDs (F2,802 = 44.754, p < .0001).  Post Hoc test (Tukey HSD) 

also shows that the mean increase of pupil size from valley to peak is significantly 

different (p < .0001) between Easy (0.3±0.2mm), Medium (0.4±0.2mm), and Hard ID 

(0.5±0.2mm). 

 

Figure 3.11 Box-whisker plot for Mean Valley-to-Peak pupil dilation for three 
difficulty IDs. 

Figure 3.12 shows the mean Valley-to-Peak duration of pupil dilation for three 

IDs.  ANOVA shows there is significant difference in the duration of the pupil dilation 

from its valley to peak size between IDs (F2,802 = 91.938, p < .0001).  Post Hoc test 
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(Tukey HSD) shows that the duration from valley to peak is significantly different (p < 

.0001) between Easy (1.6±0.7s), Medium (2.1±0.9s), and Hard ID (2.7±1.1s). 

 

Figure 3.12 Box-whisker plot for mean Valley-to-Peak pupil dilation duration for 
three difficulty IDs. 

Figure 3.13 shows the duration from Tool-reach to the moment where the pupil 

peaked in size for each ID, up to 4s after the tooltip reach.  There is significant main 

effect between the three IDs in terms of this duration (F2,802 = 30.558, p < .0001).  

Further Post Hoc test (Tukey HSD) shows that this duration for the Hard ID (2.2±1.0s) is 

significantly (p < .0001) longer than that of Easy (1.6±1.0s) and Medium (1.8±0.9s), and 

the Medium ID is significantly longer than that of Easy ID (p < .01). 
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Figure 3.13 Box-whisker plot for Mean duration from Tool-reach to the moment 
where the pupil peaked in size for three difficulty IDs. 

3.1.4. Discussion 

The performance measures exhibited expected behavior—the MTs correlated 

perfectly to the increase of the ID, as shown in Figure 3.8.  Therefore, Fitt’s ID is a good 

measure for the task requirement in this study.  Furthermore, both the mean MTs of 

Transport and Landing phases perfectly correlated to the increase of ID, where the 

timing of Transport phase positively correlated to the target distance and the timing of 

Landing phase negatively correlated to the target size. 

The pupil response to simple goal-directed movement tasks was shown by our 

data, and furthermore, the different task IDs elicited different pupil responses.  Thus our 

hypothesis, that increased index of difficulty would result in distinguishable patterns of 

pupillary response, was confirmed. 
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The pupil dilation started 1.5s before Tool-leave and continued 2s afterwards 

(Figure 3.9) and clearly reveals the task requirement during the preparation and 

execution of the movement.  The preparation time for a movement (Abrams, et al., 1990; 

Elliott, et al., 2001) cannot be explicitly determined in this self-paced discrete aiming 

movement study, but we can roughly assume it is at the last minute of the 10s waiting 

time. 

Our data is consistent with the finding of previous works (Moresi, et al., 2011; 

Privitera, et al., 2010; Richer & Beatty, 1985).  The time that the pupil starts to dilate 

(1.5s before Tool-leave) in this study is same as that of Richer and Beatty’s finding, 

while the peak duration (2s after Tool-leave) is longer than that of Richer and Beatty’s 

(0.5s).  The likely reason is that we have a tool movement time, while Richer and 

Beatty’s is only a simple finger flexion. 

The pupil constricts slightly during the Transport phase (Figure 3.9), which is the 

time when the tooltip moves speedily to a target.  During the Transport phase of the 

aiming movement (corresponding to the initial impulse phase), the eye gaze usually 

saccades to the target ahead of tooltip for the visual guidance (Abrams, et al., 1990; 

Elliott, et al., 2001); the saccade causes the pupil constriction.  Our results show that 

longer travel distances require longer saccades, causing deeper pupil constrictions, as 

shown in Figure 3.10.   

The two significantly different time periods for pupil size (the pupil constriction 

around the Tool-leave movement, and the peak pupil size after the Tool-reach) were 

proven by the t-testing shown in Figure 3.10, where the three pairs of IDs (Easy vs. 

Hard, Easy vs. Medium, and Medium vs. Hard) all show significant differences. 

Although the peak pupil size of Easy and Medium ID shows similar amplitudes in 

Figure 3.10, the increase of pupil size from valley to peak is significantly different 

between all three IDs. 

Furthermore, the delay of peak pupil dilation (represented by the duration 

between Tool-reach and peak pupil size, as shown in Figure 3.13) was correlated with 

the three IDs, i.e. Hard ID has the longest delay, and Medium ID has the medium one.  

This is consistent with the finding of previous work (Richer & Beatty, 1985). 



 

39 

The 7s-window approach of averaging many repetitive task epochs to show the 

pattern of pupil size change may not be able to measure task requirement in real-time.  

However other features introduced here, such as the Valley-to-Peak pupil size dilation, 

the Valley-to-Peak duration, and the duration between the moments of Tool-reach and 

peak pupil size, can be employed to classify the task difficulty of each targeting step 

alone using techniques such as machine learning.  The ANOVA results showed that all 

these features have strong (p < .0001) ability in distinguishing the three difficulty levels of 

task requirement. 

The lighting condition and the screen illumination of this experiment were well-

controlled.  The ambient lighting in the case study room was kept constant throughout 

the entire experiment data collection.  The luminance of the screen was well-controlled 

to induce a mean pupil diameter of 4.1mm (±0.8mm) which falls in the center of length-

tension curve of the iris muscle, enabling the pupil to capture the cognitive changes well.  

The background of the screen was uniformly grey.   

Besides lighting conditions, one may be concerned that the pupil dilation or 

constriction are affected by the viewing angle to the eye-tracker camera due to the 

changes of gaze location (Brisson et al., 2013; Gagl, et al., 2011) during target-pointing.  

In our case, the tool quickly moves from a target circle to another and the eyes mostly 

fixate on the targets, as shown in the red curve in Figure 3.7.  To clarify the gaze angle 

problem, we only need to check whether the baseline pupil diameter of movements in 

two different directions (moving from right to left vs. from left to right) are significantly 

different.  In this study, there is no significant difference between the baselines of left 

and right movements.  Therefore, we are sure that gaze angle does not affect the 

measured pupil size in this study. 

Similarly, concerns may also be raised that the pupil response could be affected 

by the variation of the illumination for different sizes of the dashed black target circles 

(e.g. Easy ID has the biggest circles) (Kun, Palinko, & Razumenić, 2012). However, 

there was no significant effect of the target size (task difficulty) on the pupil baseline. 

For real-world application, several steps to capture the movement-related pupil 

responses should be carefully considered.  First, critical moments of the movement (the 
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moments the tool/hand starts to move or reach) should be accurately detected as timing 

markers of the movement event that the pupil responses to.  Usually Tool-leave is more 

promising as a movement event marker than Tool-reach since in a complex movement 

such as surgical tasks the tool may need extra actions at the end of the movements 

such as grasping or releasing an object.  One effective and robust way to detect Tool-

leave and Tool-reach is to first find the moment of peak velocity of the tool movement 

and then search backward and forward to get tool start and reached moments, as 

presented here.   

Second, the features of pupil size change should be extracted within a window in 

the vicinity of the movement start.  The window size should be properly defined 

according to the property of the application, since if the window is too small or too wide, 

useful pupil information may be excluded, or false pupil information introduced.   

Third, the baseline of pupil diameter used for deriving each relative pupil 

diameter change in the window should be carefully chosen.  In the present discrete 

movement study, the selection of the position of the baseline is quite straightforward, 

using the period between 2s to 3s before the Tool-leave moment, which is near the end 

of the 10s waiting time and is right before the pupil starts to dilate.  However in a real-

world motor task where the movements may occur consecutively without a clear waiting 

time between them it may be a challenge to select the position of the baseline. 

3.2. Pupil responses to target size and distance during 
discrete goal-directed movements (Experiment 2) 

In Experiment 1, we explored the pupil responses to the task requirement in a 

target-pointing task, i.e. moving a tool to point and touch the pairs of target circles with 

their size and distance defined following Fitts’ index of difficulty (ID).  We found that the 

pupil responds to the task requirement following a common pattern—the pupil dilates 

significantly (about 0.05mm) starting about 1.5s before the aiming movement, and then 

constricts slightly (about 0.02mm) 200ms after Tool-leave to a lower size (the valley).  

Before the tool movement ends, the pupil peaks in size, ranging from 0.2mm to 0.25mm 

according to the IDs.  The Valley-to-Peak pupil dilation and duration positively correlate 
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to the increase of IDs.  This evidence indicates that the changes of pupil diameter are 

regulated by task requirement.   

However, the task requirement in this previous study was affected by the mixed 

effect of both target size and target distance changes.  Previous studies have found that 

the pupil may constrict during saccades (Abrams, et al., 1990; Elliott, et al., 2001).  If 

pupil size has reversed relationship to the speed of saccade, then we like to know if 

distance and the size of target can separately affect pupil response.  If it does, then we 

like to ask to what degree of each target property affects the pupil.  Specifically, we 

would like to know whether the two parameters used for calculating the ID, the target 

size and target distance, affect the pupil size differently.  

Therefore, we decided to conduct Experiment 2 using a similar setting to that of 

Experiment 1, but asked the participants to perform two different tasks: 1) aiming at 

targets with 4 different sizes located at a constant distance apart, and 2) aiming at 

targets varying in 4 different distances. 

3.2.1. Experiment purpose and hypothesis 

Experiment 2 aimed to examine whether the variation of target size and distance 

has separate influence on the pupil size. 

We hypothesize that increasing target distance will not dilate the pupil as much 

as reducing the target size.  In other words, the primary factor regulating the change of 

pupil size would come from the changes of target size rather than the changes of target 

distance.  If our hypothesis is supported, the peak pupil size will increase as a function of 

the ID in the first setting with the smaller target sizes, but will maintain constant size in 

the second setting where only target distance changes.   
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3.2.2. Methods 

Participants 

Eight graduate students (four females and four males) participated in the study.  

All were right-handed users and had normal or corrected-to-normal vision.  None of them 

were previously trained in any surgical procedures. 

Experimental setting and apparatus 

In order to clearly separate the effects of pupil responses to either the changes of 

target size or distance, one of target size and distance is kept constant in two different 

task settings, as shown in Figure 3.14.  In setting 1, the target size changes between 

1.1cm, 0.9cm, 0.6cm, and 0.3cm with a constant distance of 6cm, while in setting 2, the 

target size is constant (0.6cm) but the target distances vary from 3cm, 5cm, 7cm,  and 

9cm.  The formula for calculating ID is as in Equation (2) (Paul M. Fitts, 1954).  

Therefore, in this experiment, four IDs for setting 1 are ID1=3.4, ID2=3.7, ID3=4.3, and 

ID4=5.3 bit/response; and the four IDs for setting 2 are ID1=3.3, ID2=4.1, ID3=4.5, and 

ID4=5.0 bit/response.  ID1, ID2, ID3, and ID4 are denoted as Easy, Medium, Hard, and 

Hardest respectively in this study. 

The apparatus are same as that in Experiment 1 as shown in Figure 3.1. 
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Figure 3.14 Target settings and task execution sequences.   
Note. The dash circles are the targets with distance (A) and size (W) shown in corresponding 

rows in the right table.  The horizontal arrows represent the horizontal tool movement 
steps, labeled from move 1 to move 8.  The vertical arrows labeled V1 to V3 represent 
the execution sequence between each pair of targets. 

Task and procedure 

The task was to point and touch to the circles printed on an A4 white paper 

pasted on a same size thin glass (5mm) at the bottom of the training box, using a 

surgical grasper.  This was a discrete target-pointing task, i.e., participants had to wait 

10s before each move to the next circle.  Specifically, a trial consisted of 8 discrete 
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horizontal tool movements (move1 to move8) between the targets in pairs and 3 vertical 

transfer (V1 to V3), each separated by 10s, as shown in Figure 3.14.  The trial started by 

placing the tooltip on the right bottom circle for 10s, then moving the tool to the left 

bottom circle (move 1), and ended by stopping the tooltip on the right bottom circle for 

10s after move 8.  Only the 8 horizontal tool movements were included in the analysis. 

The participants were instructed to move the tool and hit the target as accurately 

and as fast as possible; once the target was hit, 10s were counted before moving to the 

next target.  Each trial took about 2 minutes. 

Each participant read and signed the consent form before entering the study, and 

then read the instructions.  The participants practiced the task for a few minutes, until 

they felt ready to begin.   

Each participant performed two blocks of tasks using the two target settings 

shown in Figure 3.14 in a counterbalanced way, i.e., half of the participants performed 

setting 1 in block 1 and setting 2 in block 2; another half executed setting 2 in block 1 

and vice versa.  Each block consisted of 6 trials, with three trials starting from Easy to 

Hardest and the other three trials from Hardest to Easy (by flipping the target paper).  

There was 20s break between each trials.  Between two blocks, the target setting was 

changed. 

Data analysis 

Tooltip location 

The tooltip positions were automatically extracted using the algorithm described 

in Appendix A and were smoothed with a running-average-filtered using equally 

weighted four samples window.  The moments when the tooltip started to move (Tool-

leave) and reached (Tool-reach) the target, were detected by the algorithm described in 

Appendix A.  Similar as Experiment 1, we manually annotated moments of Tool-touch by 

observing the surgical videos, and a movement was further divided into Transport (from 

Tool-leave to Tool-reach) and Landing (from Tool-reach to Tool-touch) phases. 
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Movement-related pupil responses 

The pupil diameter data was exported from Tobii Clearview to the text file 

(Combined Data file, CMD).  Pupil data segments of missed pupil data shorter than 

100ms were linearly interpolated and a Butterworth low-pass filter with a cut-off 

frequency of 4Hz was applied to the pupil diameter data, since frequency above 2Hz of 

the pupil is considered as noise (Privitera, et al., 2010). 

Same as in Experiment 1, we were only interested in the pupil size changes in 

the window around the Tool-leave and Tool-reach, i.e. 3 seconds before Tool-leave and 

4 seconds after Tool-leave.  Relative pupil diameter changes in the window were derived 

by subtracting each sample from a baseline pupil diameter which was the mean of the 

pupil size during the 400ms from start of the window.   

All the data in the windows were aligned at the Tool-leave moment (3 seconds 

into the window), and the mean pupil diameter changes were calculated for each time 

point in the window across all horizontal tooltip movements from all trials.  Similarly to 

analysis of Experiment 1, the mean pupil diameter changes were calculated across all 

moves from all trials for each ID.  The mean pupil diameter changes in the 7-second 

window were drawn in a graph for visual analysis. 

To examine which parts of the pupil size changes in the 7-second window have 

significant differences between the four IDs, a paired t-test to the same time point 

sample and examines all the p-values along the time axis to determine which segments 

of the curves are significantly different.  Due to the temporal autocorrelation of pupil 

waveform, we considered a series of more than 4 consecutive samples  (80ms) with p-

values < .05 as significantly different (Privitera, et al., 2010). 

Peak pupil dilation was searched within 4 seconds after Tool-leave, and the pupil 

peak duration (from Tool-leave) was recorded as well. 

Experimental design 

The experiment had an independent variable in each task setting which is the 

task difficulty with four levels of Easy, Medium, Hard, and Hardest.  The dependent 

variables were movement time, peak pupil dilation, and peak pupil dilation duration. 
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The total number of movements was 768 (8 participants, each performing 6 trials 

in Constant Distance setting and 6 trials in Constant Size setting, each trial has 8 

movements (each trial had 4 ID executions, with each ID execution having 2 moves—

from right to left and left to right)). 

3.2.3. Results 

Accuracy 

A total of 96 trials were recorded.  Two trials in the CD setting and four trials in 

the CS setting were excluded from analysis due to low ratio of total fixation time over 

total execution time (TF/TT), since we have observed that the quality of the eye 

movement data cannot be guaranteed when TF/TT is lower than a certain value (less 

than about 70%).  From the 90 valid trials, there was window data for 720 horizontal tool 

movements available.  However, we discarded 4 windows in the CD setting and 9 

windows in the CS setting due to the mis-operation by the participants, e.g., when they 

moved the grasper to a wrong target.  Therefore we had 361 correct windows in the CD 

setting and 342 correct windows in the CS setting. 

Among the 361 movements in the CD setting, a total of 20 movements’ endpoints 

(the tooltip positions when touching the target) were outside their target circles (13 for 

Hardest ID, 4 for Hard ID, 3 for Medium ID, and none for Easy ID).  Most movements’ 

end points are within 2.5mm on the target paper (corresponding to 10 mm displayed on 

the 17” screen) to their corresponding target edges (12 movements).  The 8 movements 

with their endpoint distance greater than 2.5mm to their target circle edges were 

discarded.  Usually, all error end points should be included or excluded in the analysis, 

but as the error rate is less than 4% and we did not compare between conditions, these 

partly-erroneous included end points would not affect the results.  The remaining 353 

valid movements were further analyzed.  In the CS setting, all the 342 movements’ 

endpoints were within their target circles. 

Movement Time 

The mean tool movement time (MT) is the mean transportation time between 

Tool-leave and Tool-reach for all horizontal movements.   
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Figure 3.15 shows the linear regression of mean MT of each ID to ID values in 

both target settings with R2=0.970 and p < .001, which means MT is positively correlated 

with ID values.   

 

Figure 3.15 Linear regression of mean movement time (MT) of Each ID to Fitts' 
ID value (R2=0.970 and p < .001). 

In the constant distance (CD) setting, the mean MT for all IDs is 2.5±1.0s.  There 

is significant main effect between four IDs in terms of mean MT (F3,349 = 20.428, p < 

.0001).  Post Hoc test (Tukey HSD) shows that the mean MT of Hardest ID (3.2±1.1s) is 

significantly longer (p < .0001) than other three (Easy, Medium, and Hard IDs being 

2.2±0.9s, 2.2±0.9s, and 2.5±0.9s respectively), and there is no significant difference 

between other pairs of ID, but the Hard ID is marginally longer than that of the Easy ID 

(p = .076). 
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In the constant size setting (CS), the mean MT for all IDs is 2.5±1.0s.  There is 

significant main effect between four IDs in terms of mean MT (F3,338 = 18.389, p < 

.0001).  Post Hoc test (Tukey HSD) shows there are significant differences (p < .05) 

between all the pairs of four IDs except that the Hardest (3.2±1.4s) is marginally longer 

than that of Hard ID (2.8±1.1s, p = .056) and there is no significant difference between 

Hard and Medium ID (2.5±1.0s). 

Pupil responses to tool movements 

Figure 3.16 shows the mean changes of pupil diameter during horizontal tooltip 

movements over a window in both the CD and CS settings.  Both Figure 3.16A and 

Figure 3.16B show a very similar pupil diameter change pattern; the pupil starts to dilate 

slightly at 1.2s to 1.5s before Tool-leave (increasing less than 0.05mm), and then peaks 

(0.2mm compared to baseline) right before Tool-touch.   

 

(A) Constant Distance (CD) 
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(B) Constant Size (CS) 

Figure 3.16 Mean pupil diameter changes in both target settings.  
Note. (a) mean pupil diameter changes for 353 moves of 46 trials from 8 subjects in the CD 

setting; (b) mean pupil diameter changes for 342 moves of 44 trials from 8 subjects in 
the CS setting.  Data were aligned over a 7-second window 3 seconds before the Tool-
leave.  The baseline is defined as the mean diameter of the pupil over the 400ms at the 
beginning of the window, and the solid black curve is the mean pupil diameter change 
from the baseline over time.  The vertical red line is the moment of Tool-leave where all 
the data are aligned and the rest two vertical dashed arrows are the mean moments the 
Tool-reach and Tool-touch.  The error bars showing 1 std. dev. are drawn every 1s.   

Figure 3.17 shows the mean changes of pupil diameter in a window for four IDs 

in both the CD and CS settings.  Besides sharing a common pupil change pattern as 

shown in Figure 3.16, the four ID curves in both Figure 3.17A and Figure 3.17B are 

actually distinguishable.  First, as shown in Figure 3.17A, the moments when the pupil 

starts to dilate are different for the four IDs; the Hardest ID (the grey solid curve) starts 

the earliest at around 1.5s before Tool-leave, the Easy ID (the black solid curve) starts 

the latest at around 0.5s before Tool-leave, and the Medium and Hard ones are in the 

medium. 
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(A) Constant Distance (CD) 
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(B) Constant Size (CS) 

Figure 3.17 Mean pupil diameter changes against different IDs in two target 
settings.   

Note. Data are aligned over a 7-second window around Tool-leave.  The black, red, green, 
and grey curves are means of pupil changes cross all trials for Easy ID, Medium ID, 
Hard ID, and Hardest ID respectively.  The read vertical line is the Tool-leave and other 
four color vertical arrows represent the Tool-reach and Tool-touch moments of four IDs 
respectively.  The black bar at the bottom of each figure indicates the period having 
significant differences in pupil dilation between Easy and Hardest ID.  The error bars 
showing 1 std. dev. are drawn every 1s.   

Second, as shown in Figure 3.17B, the amplitude of the constrictions of the four 

curves in Transport phase is different; the Easy ID one (the black solid curve) nearly 

does not constrict due to the very short travel distance between the targets, the Hardest 

ID (grey solid curve) has the deepest constriction, and the other two IDs have the 

medium level of constrictions.  Third, as shown in both Figure 3.17A and Figure 3.17B, 
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the peak pupil dilation value and duration positively correlates with the level of difficulty 

of the task, i.e., the harder ID has higher peak pupil dilation value and longer duration. 

Moment-to-moment t-testing was applied between the curves for the Easy and 

Hardest IDs, with the results as shown in the bottom gray bars in Figure 3.17A and 

Figure 3.17B.  For each time point, the paired t-test was performed for each time point 

for two IDs each containing samples from the all trials respectively.  The horizontal black 

bars in both Figure 3.17A and Figure 3.17B represent the significant segment of the 

graphical significant testing between Easy and Hardest curves; there are significant 

differences between Easy and Hardest ID after 2.5s in both target settings.   

Figure 3.18 shows the linear regression of mean peak pupil dilation for each ID to 

ID value, with R2 = 0.849 and p < .005. 

 

Figure 3.18 Linear regression of mean peak pupil dilation of Each ID to Fitts' ID 
value (R2 = 0.849 and p < .005). 
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Figure 3.19 shows the linear regression of mean peak pupil dilation duration 

(from Tool-leave) for each ID to ID value, with R2 = 0.662 and p < .05. 

 

Figure 3.19 Linear regression of mean peak pupil dilation duration (from Tool-
leave) of Each ID to Fitts' ID value (R2 = 0.662 and p < .05). 

3.2.4. Discussion 

The hypothesis of this experiment was that the increasing target distance will not 

dilate the pupil as much as reducing the target size.  However, the results did not 

support our hypotheses.  The pupil size increases in response to the tool movements in 

both target settings in a very similar pattern, as shown in Figure 3.16; it starts to dilate at 

around 1.2s to 1.5s before Tool-leave, following a constriction right after Tool-leave, and 

then peaking at around 2.5s after Tool-leave.  This evidence indicated that once the task 

requirement changed, either by target size or distance, the ID of task will be perceived 

by human operators as a single parameter and responded in the pupil size changes with 
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the same pattern.  Specifically, the pupil reacts uniformly during the preparation and 

execution of the aiming movement.  Our findings are consistent with those in previous 

work (Moresi, et al., 2011; Privitera, et al., 2010; Richer & Beatty, 1985).  The uniform 

pupil response to the change of target distance and the target size has an important 

implication—that pupil dilation can be employed as a valid indicator for the overall task 

requirement in goal-directed movements. 

This is a significant extension of the previous knowledge of pupil as an indicator 

of cognitive task workloads, to eye-hand coordination involving motor tasks.  As the pupil 

dilation can be monitored uninterruptedly, it can be used for measuring the change of 

task loads to a human operator during a continuous performance.  In fact, Gao et al.  

(2013) have used pupil responses to monitor workload changes on operators working at 

a nuclear power plant.  Our results can be easily extended to the study of workloads of 

surgeons in the operating room setting.  Except for above main point, we also noticed 

some interesting findings from this study based on observation on the pupil behaviors.  

First, the peak pupil dilation occurred earlier with easier IDs than harder IDs, as shown in 

Figure 3.17.  After the pupil reached its peak size, the pupil maintained a larger size in 

harder IDs than in easier IDs.  

Second, after tool moving, as shown in Figure 3.17B, the extent of pupil 

constriction was different among four IDs in the constant target size setting.  It seemed 

that the extent of pupil constriction was associated with the tool travel distance: the 

longer the movement distance, the longer saccade, and the deeper pupil constriction.  

To support this, in the constant distance setting as shown in Figure 3.17A, the extent of 

pupil constriction for different IDs during the Transport phase was maintained constant 

as target distance was kept the same in this experimental setting. 

The third interesting observation came from the moment when the pupil started 

to react to the coming movement.  As shown in Figure 3.17A, the pupil started to react to 

tool movement at about 2s before Tool-leave, and this varied among different IDs, i.e. for 

the harder ID the pupil started to dilate earlier than for the easier IDs.  This may be a 

reflection of the level of mental preparation for an ongoing movement with different task 

requirement (Richer & Beatty, 1985); the smaller target size requires an earlier 

preparation. 
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Figure 3.18 shows a strong correlation between peak pupil dilation with task 

difficulty, and Figure 3.19 shows a correlation between the duration of the pupil dilation 

from the moment of tool leaving to peak value.  For real-world application, some features 

such as peak pupil size and pupil dilation duration from tool leaving derived from the 

vicinity of the moment of movement start can be employed to classify the task difficulty 

levels.   

3.3. Summary 

This Chapter verified the correlations between the pupil diameter and the task 

difficulty in discrete target-pointing movements using two experiments, where the 

participants were asked to use a surgical tool (grasper) to point and touch the target 

circles with a 10s waiting time before each movement.  The results of Experiment 1 

showed a typical pupil response pattern that the pupil dilates 1.5s in preparation before 

the tool starts to move, followed by a slight constriction, and then peaks in its size before 

the tool touches the target.  The extent of the Valley-to-Peak pupil dilation positively 

correlates to the task difficulty defined according to Fitts’ law.  The pupil diameter was 

further proved to respond to both the variation of target size and to the target distance in 

the second experiment, where the participants performed two discrete movement tasks, 

with only target size or distance changing in each task target setting. 

Our work is the first in the literature that relates pupillary response and task 

difficulty measured by Fitts’ law.  Previous research investigated either movement time 

(MT) and task difficulty, or pupillary response and mental workload.  The present study 

bridges these two directions and uncovers new knowledge about the relationships 

between Tool-movement difficulty and respective pupillary response. 

Knowledge gained from this study contributes to the understanding of how pupil 

responses indicate the changes of task requirement during a goal-directed movement.  

The research opens an opportunity for us to develop valid methods of measuring task 

load of motor tasks using pupil parameters. 

The results of Experiment 1 were orally presented at the SIGCHI conference 

2014, published in the Conference Proceedings of CHI 2014, and included in the ACM 
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Digital Library (Jiang, Atkins, Tien, Bednarik, et al., 2014)1.  This paper was selected to 

be a SIGCHI Best of CHI Honorable Mention Award (identified by the CHI Associated 

Chairs as being the top 5% of all submissions to CHI 2014). 

The results from Experiment 2 were orally presented at the conference of Eye 

Tracking Research and Applications (ETRA) 2014,  published in the Conference 

Proceedings, and included in ACM Digital Library  (Jiang, Atkins, Tien, Zheng, et al., 

2014)2. 

 

1 X.T. Jiang, M.S. Atkins, G. Tien, R. Bednarik, and B. Zheng, “Pupil Responses during Discrete 
Goal-directed Movements”, Proc. CHI 2014, 2075-2084 (2014) (Best of CHI Paper Honorable 
Mention Award). 

2 X.T Jiang, B. Zheng, G. Tien, R. Bednarik, & M.S. Atkins, “Pupil Dilations during Target-
pointing Respect Fitts' Law”.  In the Proceedings of the Symposium on Eye Tracking Research 
and Applications, pp 175-182 (2014). 
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Chapter 4.  
 
Pupil responses in continuous movements 
(Experiment 3) 

The above two studies (Experiment 1 and Experiment 2) found the connection 

between pupillary response and task difficulty in discrete tasks.  The subjects were 

instructed to wait 10s before the next aiming movement to ensure that the recorded pupil 

response would not be affected by the previous movement, and the pupil had time to 

return to its baseline size.  However, continuous movement tasks are much more 

common in the reality of everyday life, such as steering a vehicle, playing ping-pong, and 

selecting an item in a multiple-level cascade menu.  In many cases, the continuous 

movement frequency is higher than the pupil response frequency which is typically lower 

than 0.5Hz (Jiang, Atkins, Tien, Bednarik, et al., 2014; Richer & Beatty, 1985), so pupil 

response is inevitably affected by multiple movements.  It is important to confirm whether 

the pupil size can still serve as an indicator of task difficulty, via developing a method to 

distinguish if pupil response is in reaction to an upcoming movement or is just a residual 

effect from a previous movement.  We therefore explore the pupil responses to the 

change of task requirements in a continuous movement such as continuous aiming 

tasks, with the following research questions in mind.  First, is there a difference between 

the patterns of pupil size responses to discrete and continuous visual-motor tasks?  

Second, is the change of pupil size still able to distinguish task difficulty in continuous 

visual-motor tasks? 

We conducted the present study using a similar experimental setting as that in 

the discrete movement study (Jiang, Atkins, Tien, Bednarik, et al., 2014) but here the 

participants performed a continuous pointing task without any waiting time between 

movements.  We hypothesized that pupil dilation will respect Fitts’ law in continuous 

movements, such that a higher task difficulty evokes a higher peak pupil dilation.  If the 

hypothesis holds, it may be possible to measure the task difficulty in continuous visually-
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guided motor tasks.  Such measurements can be used for continuously adjusting 

proactive responses of user interfaces, for example in medical educational simulations 

involving visual-motor tasks. 

4.1. Experiment purpose and hypothesis 

In this experiment, we explored pupil responses to the change of task 

requirements in a continuous aiming movement.  This study used a similar experimental 

setting to that in the discrete movement studies (experiments 1 and 2), but here the 

participants performed a continuous pointing task without any waiting time between 

movements. 

We hypothesized that pupil dilation will respect Fitts’ law in continuous 

movements, such that a higher task difficulty evokes s higher peak pupil dilation and a 

longer dilation duration. 

4.2. Methods 

4.2.1. Participants 

Fourteen participants (three females) were recruited to the study, including three 

graduate students, seven undergraduate students, and four staff members from the 

University of Alberta.  All were right-handed and had normal or corrected-to-normal 

vision.  None were previously trained in surgical procedures. 

4.2.2. Experimental setting and apparatus 

The task was to move the grasper horizontally inside the training box to point at 

the horizontal circles printed on the paper, while viewing the scene inside the box which 

was displayed on a monitor, as shown in Figure 3.1.  The parameters of the target (the 

circles) setting, i.e., the target size and the distance between the targets, are the same 

as those in Experiment 1, shown in Figure 3.2.  Three difficulty levels were designed in 

this experiment according to the Fitt’s index of difficulty (ID) (Paul M. Fitts, 1954), i.e. 
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Easy (ID1=2.7 bit/response, W1=0.9cm, A1=3cm), Medium (ID2=4.3 bit/response, 

W2=0.6cm, A2=6cm), and Hard (ID3=5.9 bit/response, W3=0.3cm, A3=9cm).  The 

equation for calculating ID1, ID2, and ID3 is in Equation (2). 

The three difficulty levels of targets were organized in two target settings by their 

execution sequences.  Target setting 1 is shown in Figure 3.2, executed from Easy task 

(bottom circles) to Hard task (top circles).  Target setting 2 is similar to target setting 1, 

except the Hard target was on the bottom, so the task was executed from Hard to Easy.   

Since the purpose of this study was to explore the pupil responses in continuous 

aiming movements, the pointing task was designed to execute consecutively between 

the pair of circles for a certain number of times (10 times back and forth movements). 

The apparatus are the same as that in Experiment 1 but was located in a well-

isolated surgical simulation room in the University of Alberta where the ambient lighting 

was kept relatively stable.   

4.2.3. Tasks and procedure 

The task was to move the surgical tool to point to and touch the circles printed on a 

piece of paper placed horizontally at the bottom inside the training box, as for 

Experiment 1.  However, unlike Experiment 1, in this experiment each ID (each step) 

was executed continuously for 20 movements.  A trial consisted of 6 steps executing 

from bottom to top pairs of targets (phase 1, steps 1-3) and then from top pairs to the 

bottom ones (phase 2, steps 4-6), as shown in Figure 4.1.  The trial started by placing 

the tooltip on the right bottom circle for 20s for the recording of baseline for the whole 

trial.  The tool was then continuously moved to the left bottom circle and back to the right 

circle repetitively for ten times (20 movements) without any waiting time in-between 

movements (step (1)).  After step 1 the tool was moved to the medium right circle after 

staying 10s on the bottom right circle, then similarly step 2 and step 3 were performed 

(Figure 4.1, Phase 1).  Right after step 3, on the same target setting, step 4 started with 

a 10s pause on the top right circle, then steps 4, 5 and 6 were completed with a 10s 

pause between each step (Figure 4.1, phase 2).  The trial was ended by stopping the 
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tooltip on the right bottom circle for 10s after step (6).  Only the 120 horizontal moves 

were used for analysis. 

 

Figure 4.1 The execution sequence of target setting 1, including phase 1 (Step 
1 to Step 3) and phase 2 (Step 4 to Step 6).   

Note. Each step includes moving the tooltip from right to left and then left to right 10 times.  
The horizontal arrows represent 20 tool movements from one circle to another within a 
step, and the vertical arrows represent Transporting to the next step.  Before moving to 
the next step, the tool stops on the right side circle for 10s for baseline recording. 

The participants were instructed to move the tool and touch the target as 

accurately and as fast as possible.  Each trial took about 7 minutes. 

Each participant read and signed the consent form before entering the study, and 

then read the instructions.  The ethical consent was approved by the Research Ethics 

office of the University of Alberta.  The participants practiced the task for a few minutes, 

until they were ready to begin.  Each participant performed one trial either on task setting 

1 (from easy to hard and then from hard to easy as shown in Figure 4.1) or task setting 2 

(by flipping the paper, same execution sequence as in Figure 4.1 but starting with the 

hard targets on the bottom and easy targets on the top).  For counterbalance, half of the 

participants started the target setting 1 first and then performed the task setting 2, and 

the other half of the participants did the reverse. 

4.2.4. Data analysis 

Tooltip location 

The tooltip positions were automatically extracted from the task videos using the 

algorithm described in Appendix A and were smoothed with a running-average-filtered 

using equally weighted four samples window.  The moments when the tooltip started to 
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move (Tool-leave) and reached (Tool-reach) the target, were detected by the algorithm 

described in section 3.1.2.  An example trial of pupil signal synchronized with tooltip 

positions in timeline is shown in Figure 4.2. 

 

Figure 4.2 An example of tooltip movement and pupil size over time for a 
complete trial (subject 01, trial 01).   

Note. The blue curve is the tooltip position in pixels along the horizontal line between the 
target circles over time.  The black curve is the pupil diameter (mm) synchronized with 
the tooltip positions in the timeline.  The vertical lines represent the phases of 
procedure, with labels above the lines: BS is the baseline recording, Tr is transferring to 
a new ID execution, and ID is the period of movements between targets. 

Tool movement phases 

A movement time for this continuous aiming movement is calculated from when 

the tool starts to leave, to when next Tool-leave moment occurs, as shown in Figure 4.3.  

This definition of movement time follows that in Fitts’ study (1954), which includes the 

dwell time (Adam & Paas, 1996) which is from when the tooltip touches the target to the 

start of the next movement. 
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Figure 4.3 A blow-up plot showing four consecutive movements of the first 
round of hard ID execution (ID3, during 173-182s in Figure 4.2).   

Note. The black curve on the top is pupil diameter, the blue curve is the tooltip position (X 
coordinate) in pixels along the horizontal line between the target circles, and the red 
curve is the gaze locations (X coordinate).  The vertical dashed and solid blue lines 
represent the moments of start of a movement and the tool reaching the vicinity above 
the target. 

As shown in Figure 4.3, a movement is further divided into Transport and 

Landing phases (Abrams, et al., 1990; Adam, et al., 2000; Elliott, et al., 2001; Pelz, et 

al., 2001) to better distinguish the impact on the pupil response from a continuous 

movement.  The Transport phase starts when the tool leaves (Tool-leave) for the target 

circle and stops when the tooltip arrived at the vicinity above the target circle (Tool-

reach).  In the Landing phase the tool is slowly adjusted to touch the target circle before 

the immediate start of the next movement (next Tool-leave).  The moments of Tool-leave 

and Tool-reach are detected using the algorithm described in section 3.1.2. 
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Movement-related pupil responses 

The pupil diameter data was processed and synchronized with the trajectory of 

the tooltip for the analysis of pupil responses during tool movements.  The pupil diameter 

data was exported from Tobii Clearview to the text file (Combined Data file, CMD) and 

the tooltip positions were derived from the task video recorded by the built-in camera.  

The pupil data were in 50Hz and the task videos were in 30Hz with a resolution of 

352×288 pixels. 

Segments of missed pupil data shorter than 100ms were linearly interpolated.  

These missed data were caused by several reasons such as short blinks and delay in 

eye-tracking recovery.  Then a Butterworth low-pass filter with a cut-off frequency of 4Hz 

was applied to the pupil diameter data, since frequency above 2Hz of the pupil is 

considered as noise (Privitera, et al., 2010). 

A signal averaging technique was employed to capture the movement-related 

pupil responses, as described in section 3.1.2.  In signal averaging, properly choosing 

the time point for signal alignment and the size of window is critical for the detection of 

movement-related pupil changes.  In our previous study on discrete tasks (Experiment 1 

and 2), the repetitive 7s-windows of pupil responses were aligned at the moment of 

Tool-leave (the tart of Transport phase) to preserve the pupil dilation 1-2s before the 

movement which is considered to be a reaction to the preparation of a movement.  

However, in the present continuous movement study, the preparation period for a 

movement is overlaid with the Landing phase.  Therefore, we decided to align the task 

repetitions at the moment of Tool-reach (the end of Transport phase) to preserve the 

pupil diameter changes in both Transport and Landing phases.  Also, a shorter time 

window i.e. 4s-window was employed to extract and show pupil diameter data in this 

continuous movement study, since the longest movement time of the hardest task was 

3.2s. 

In our previous studies (Experiment 1 and 2), the baseline was chosen from the 

period at 2s before Tool-leave, since this period was the end of the 10s waiting time and 

occurred right before the pupil started to dilate for the upcoming movement.  In the 

present continuous aiming task, since there was no waiting time between movements, 

we instead considered the 400ms period at the beginning of the Landing phase, when 
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the eyes start to focus on the new target and the pupil starts to dilate.  Therefore, we 

used the 400ms period around the Tool-reach moment for the baseline pupil diameter, 

which is the beginning of the Landing phase. 

Relative pupil diameter changes in the 4s-window were derived by subtracting 

each sample from the baseline pupil diameter which was the mean of the pupil size 

during the above determined baseline period.  All the data in the windows were aligned 

at the moments of Tool-reach (2 seconds into the 4s window), and the mean pupil 

diameter change was calculated for each time point in the window across all horizontal 

tooltip movements from all trials from all subjects.  Similarly, the mean pupil diameter 

changes were calculated across all moves from all trials for each ID.  The mean pupil 

diameter changes in the 4-second window were drawn in a graph for visual analysis. 

To examine which parts of the pupil size changes in the 4-second window have 

significant differences between the three IDs, the moment-to-moment based significance 

testing was applied in the 4s-window as in Experiment 1 and 2. 

Experimental design 

The experiment had an independent variable task difficulty with three levels of 

Easy, Medium, and Hard.  The dependent variables were movement time, peak-to-valley 

pupil constriction, peak-to-valley pupil constriction duration, Valley-to-Peak pupil dilation, 

and Valley-to-Peak pupil dilation duration. 

The total number of movements was 1680 (14 participants, each performing 6 

trials, each trial has 6 ID executions (each ID was executed twice), with each ID 

execution having 20 moves—10 times from right to left and from left to right, for a total of 

120 movements for each subject). 

4.3. Results 

4.3.1.  Accuracy 

From the 1680 movements recorded by the 14 participants, we excluded the first 

2 moves and last 2 moves from each ID execution (96 moves remained for each 
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subject), and also discarded a total of 19 movements due to mis-operation, for example 

when the subject moved the pointing tool to a wrong target.  Therefore we obtained 1325 

correctly performed movement recordings. 

Among the 1325 movements, a total of 73 movements’ endpoints (the tooltip 

positions when touching the target) were outside the target circle (63 for Hard ID, 10 for 

Medium ID, and none for Easy ID).  Figure 4.4 shows how inaccurate these 73 

movements were.  Most movements’ (46 movements) end points are within 10 pixels to 

their corresponding target edges in the recorded videos frame (corresponding to 2.5mm 

on the target paper which is 10 mm displayed on the 17” screen).  The 27 movements 

with their endpoint distance greater than 2.5mm to their target circle edges were 

discarded.  The remaining 1298 valid movements were further analyzed.  Usually, all 

error end points should be included or excluded in the analysis, but as the error rate in 

this study is less than 4% and we did not compare between conditions, these partly-

erroneous included error end points would not affect the results.   

 

Figure 4.4 Scatter plot of the distribution of errors for the 73 inaccurate 
movements. 

4.3.2. Movement time 

The movement time (MT) for a complete movement starts from when the tool 

leaves the current target, and ends when the tool leaves that target for the next 
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movement (the next Tool-leave), such that the MT is the interval between two 

consecutive Tool-leave moments.  The mean MT for all movements is 2.0±0.8s, and the 

MT increases when the difficulty level increases (Figure 4.5).  There is a significant main 

effect of ID in terms of mean MT (F2,1295 = 412.258, p < .0001).  Post Hoc test (Tukey 

HSD) shows significant differences (p < .0001) between pairs of the three IDs, with 

mean MT of Easy, Medium, and Hard IDs being 1.3±0.5s, 1.9±0.6s, and 2.6±0.8s 

respectively. 

To distinguish the impact on the pupil response from a continuous movement, we 

divided the entire movement into Transport and Landing phases (Abrams, et al., 1990; 

Adam, et al., 2000; Elliott, et al., 2001; Pelz, et al., 2001).  The phase separation was 

defined by the kinematics of the tool.  The Transport phase starts from the moment of 

Tool-leave to Tool-reach (when the tool quickly moves to the vicinity above the target), 

and the Landing phase occurs between the Tool-reach and the next Tool-leave (when 

the tool descends and touches the target).   

Figure 4.5 shows the mean MT over all subjects for the Transport and Landing 

phases, and for the complete movement.  The mean MT of both Transport and Landing 

phases are significantly different (p < .0001) between the three IDs. 
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Figure 4.5 Mean time of movement phases and complete movement time for 
different IDs over all subjects.   

Note. The blue bar is the movement time for the Transport phase, the green bar is the 
movement time for the Landing phase, and the mustard bar is the movement time for a 
complete move.  The error bars are for 95% confidence intervals. 

4.3.3. Pupil responses to continuous tool movements 

Figure 4.6 shows the mean changes of pupil diameter averaged for all IDs for all 

subjects.  Data are aligned over a 4-second window starting 2 seconds before the Tool-

reach.  The mean pupil diameter change is shown from the baseline over time.  The 

baseline pupil diameter is the mean pupil diameter over a 400ms period at the Tool-

reach moment in each window, as shown in the orange rectangle.  The vertical red line 

indicates the moment of Tool-reach where all the data are aligned.  The red and purple 

bars represent Transport and Landing phases respectively.  The pupil starts to constrict 

about 150ms into the Transport phase and dilates in the Landing phase with an 
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approximate 100ms delay; this is the typical pattern of pupil size changes found in a 

single aiming movement found in this study. 

 

Figure 4.6 Mean pupil diameter changes for 1298 valid movements from all IDs 
from all 14 subjects.   

Note. Data were aligned over a 4-second window starting 2 seconds before the Tool-reach, 
shown by the vertical red line.  The solid black curve is the mean pupil diameter change 
from the baseline over time.  The pupil baseline diameter is the mean pupil diameter 
over a 400ms period at the Tool-reach moment, as shown in the orange rectangle.  The 
error bars for 1 std. dev. are drawn every 400ms. 

Figure 4.7 shows the mean changes of pupil diameter in a 4-second window 

aligned at the tool reach moment, for each of the three IDs.  The curves of the pupil 

response to the three IDs are clearly separated in both Transport and Landing phases; 

the hard ID constricts from a higher peak pupil size to the baseline in the Transport 

phase and dilates from the baseline to a higher peak pupil size in the Landing phase. 
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Figure 4.7 Mean pupil diameter changes (subtracted by baseline) for 3 different 
IDs from all subjects. 

Note. Data are aligned over a 4-second window 2 seconds before Tool-reach, shown by the 
vertical red line.  The three colored curves—black, red, and green—are the mean pupil 
diameter changes for Easy, Medium, and Hard ID respectively.  The pupil baseline 
diameter is the mean pupil diameter over a 400ms period at the Tool-reach moment, as 
shown in the orange rectangle.  The three rows of bars at the top represent Transport 
(red) and Landing (purple) phases for the three IDs Hard, Medium, and Easy, 
respectively.  The three colors of bars at the bottom indicate significant differences in 
pupil dilation between Easy, Medium and Hard ID with black representing Easy vs. 
Hard, red representing Easy vs. Medium, and green representing Medium vs. Hard.  
The error bars for 1 std. dev. are drawn every 400ms. 

Table 4.1 shows the extent and duration of the pupil diameter changes between 

the three IDs in Transport and Landing phases.  ANOVA results show that there are 

significant main effects in terms of Peak-to-Valley pupil constriction (F2,1295 = 157.463, p 

< .0001) and Peak-to-Valley duration (F2,1295 = 144.223, p < .0001) in the Transport 

phase and Valley-to-Peak pupil dilation (F2,1295 = 157.052, p < .0001) and Valley-to-Peak 

duration (F2,1295 = 408.863, p < .0001) in the Landing phase between the three IDs.  The 

values of the above four pupil diameter parameters (Peak-to-Valley pupil constriction, 
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Peak-to-Valley duration, Valley-to-Peak pupil dilation, and Valley-to-Peak duration) 

positively correlate with IDs (p < .0001). 

Table 4.1 The mean pupil diameter changes and duration over all subjects for 
Transport and Landing phases, for different IDs 

 Easy Medium Hard 

Transport phase    

   Peak-to-Valley Constriction (mm) 0.09± 0.10mm 0.16± 0.15mm 0.28± 0.21mm 

   Peak-to-Valley Duration (seconds) 0.52± 0.33s 0.68± 0.35s 0.97± 0.48s 

Landing phase    

   Valley-to-Peak Dilation (mm) 0.08± 0.09mm 0.15± 0.14mm 0.26± 0.20mm 

   Valley-to-Peak Duration (seconds) 0.53± 0.35s 0.91± 0.46s 1.44± 0.58s 

 

A paired t-test was performed for each time point in each pair of IDs containing 

samples from the 14 subjects, with the results as shown in the bottom colored bars in 

Figure 4.7.  The colored areas of the bars at the bottom of Figure 4.7 indicate significant 

differences (p < .05), with the black comparing Easy and Hard, the red comparing Easy 

and Medium, and the green comparing Medium and Hard.  Almost all moments along 

the 4s window are significantly different between pairs of the three IDs except in the area 

of the Tool-reach moment (baseline). 

4.4. Discussion 

The results support our hypothesis, that the pupil responses to a movement in 

this continuous aiming task respect Fitts’ law.  Our data revealed a pattern of pupil 

response to a single goal-directed movement in the continuous aiming task, where the 

pupil constricts during the Transport phase and dilates during the Landing phase (Figure 

4.6); this holds for different difficulty levels of movements, where harder task IDs elicit a 

higher magnitude of pupil response and longer pupil dilation/constriction duration (Figure 

4.7).  Both ANOVA on the pupil diameter features (Peak-to-Valley pupil constriction and 

duration in Transport phase and Valley-to-Peak pupil dilation and duration in Landing 



 

71 

phase), and moment-to-moment based t-test analysis on the changes of pupil size 

during a movement (the horizontal color bars on the bottom of Figure 4.7) show 

significant differences between the three IDs.  The pupil size of Easy ID did not show a 

significant peak (Figure 4.7).  We believe the reason to be that in the continuous aiming 

task, the frequency of tool movement for Easy ID is higher (0.7Hz) than that of pupil’s 

response (typically lower than 0.5Hz) (Jiang, Atkins, Tien, Bednarik, et al., 2014; Richer 

& Beatty, 1985). 

New challenges emerged during the analysis of pupil data in continuous 

movement tasks due to the interference between two consecutive movements without 

waiting time.  The challenges included how to choose the moment for the windows to 

align for the pupil signal averaging, and how to determine the period for baseline.  The 

end of the Transport phase was found to be a good timestamp for aligning windows, and 

the short period around this moment was suitable for the pupil baseline in this 

continuous movement task, where the pupil starts to dilate in response to the Landing 

phase.  

Our solution of aligning tasks at the end of tool transportation resolved the 

above-mentioned two challenges and also found new results which were not identified in 

the prior discrete aiming movement studies (Jiang, Atkins, Tien, Bednarik, et al., 2014; 

Jiang, Atkins, Tien, Zheng, et al., 2014).  First, two peak pupil dilations occurred, at 

around both the start of Transport and at the end of Landing phases (Figure 4.6), 

compared to only one peak at 2.0s after the tool started to move in the previous discrete 

movement studies.  This is because, in the continuous aiming movement, the 1-2s 

period before Tool-leave is also a Landing phase for the previous target, and pupil 

dilation is a combined response to the preparation for the Tool-leave and the execution 

of touching the target.  

Second, pupil response around the Tool-leave differs most significantly between 

the three IDs (Figure 4.7), where the end of the movement is followed immediately by a 

new movement.  The effect of the pupil dilation after the end of movement is overlapped 

by the new movement which yields a significant pupil response.  In contrast, in the 

discrete task (Experiment 1), the most significantly distinguishable phase is around the 
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end of each movement, since the pupil diameter develops to its peak followed by the 10s 

waiting time. 

Therefore, by aligning the windows at the end of Transport phase and subtracting 

the baseline, the pupil response patterns are clearly shown for the Transport and 

Landing phases.  Once the end of tool transportation is detected, the pupil diameter 

features including Peak-to-Valley constriction and duration and Valley-to-Peak pupil 

dilation and duration can be employed to distinguish the task difficulty of the movements. 

The lighting condition and screen illumination of this experiment were well 

controlled.  The ambient lighting in the case study room (a windowless room) was kept 

constant throughout the entire experiment data collection.  The luminance of monitor that 

the subjects looked at during performing the task was kept constant as well.  The 

background of the screen was uniformly grey.  Furthermore, the baseline subtraction 

performed for each window and the averaging of the windows would cancel most of the 

possible unrelated pupil responses. 

Besides lighting conditions, one may be concerned that the pupil dilation or 

constriction are affected by the viewing angle to the eye-tracker camera due to the 

changes of gaze location (Brisson, et al., 2013; Gagl, et al., 2011) during target-pointing.  

In our case, the tool quickly moves from a target circle to another and the eyes mostly 

fixate on the targets, as shown in the red curve in Figure 4.3.  To clarify the gaze angle 

problem, we only need to check whether the baseline pupil diameter of movements in 

two different directions (moving from right to left vs. from left to right) are significantly 

different.  In our two discrete studies (Experiment 1 and 2), there is no significant 

difference between the baselines of left and right movements.  Therefore, we are sure 

that gaze angle does not affect the measured pupil size in this study.  

Similarly, concerns may also be raised that the pupil response could be affected 

by the variation of illumination for different sizes of the dashed black target circles (e.g. 

Easy ID has the biggest circles) (Kun, et al., 2012). However, there was no significant 

effect of the target size (task difficulty) on the pupil baseline (F2,1295 = 2.476, p > 0.05). 

There are some threats to the validity of employing the pupil diameter to measure 

task workload in continuous movements.  First the pupil response may be much slower 
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than the continuous tool movement time, so that the pupil response pattern could not 

reflect the task workload changes.  Second, the learning effect may affect the accuracy 

of the pupil diameter measurement to task workloads.  That is, after many repeated tool 

movements for the same ID, the participants may get used to the task and the task 

workload would decrease.  Third, individual variations also should be considered as a 

violation to the validity of the pupil measurement.  The pupil diameter, as a bio-signal, 

differs between individuals, by varying in its profile including amplitude, rate of change, 

and response latency to stimuli. 

4.5. Summary 

The previous discrete movement studies showed that the pupil dilation positively 

correlates to task requirements modeled by Fitts’ index of difficulty.  The present study 

shows that pupil responses still respect Fitts’ law in continuous aiming tasks, which are 

more complex and common than discrete aiming movements.  This implies that pupil 

size changes can provide indicators for measuring task requirements in goal-directed 

movements. 

The detailed results have been written in a manuscript under review (Jiang, 

Zheng, et al., 2014)3. 

  

 
3
 X.T. Jiang, B. Zheng, R. Bednarik, and M.S. Atkins, “Pupil Responses to Continuous Aiming 
Movements”, Under review (2014). 
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Chapter 5.  
 
Evaluation of pupil responses in simulated surgical 
tasks  

In Experiment 3 (Chapter 4), we explored the changes of pupil diameter in 

response to the task difficulty in continuous target-pointing movements.  The pupil 

response was affected by consecutive movements in continuous motor tasks, by 

aligning and averaging the movements at the end of tool transportation, we discovered a 

typical pattern of pupil responses to continuous aiming movement that the pupil size 

drops in the Transport phase and dilates in the Landing phase, and the amplitude of the 

pupil constriction (in Transport phase) and dilation (in Landing phase) positively correlate 

to the task difficulty, which supported Fitts’ law.   

However, the above findings were obtained from a relatively simple and well-

controlled continuous task, where the movement only involves a simple pointing and 

touching action with the task difficulty clearly defined by the target size and movement 

distance.  In a real-life motor task, the action may be more complex rather than only 

pointing and touching a target, for example reaching and grasping an object or 

transporting an object to another place.  Furthermore, the object of the target location 

could be an irregular size and Fitts’ index of difficulty is not readily applicable.  In these 

cases of real-life motor tasks, would the changes of pupil diameter be a valid indicator of 

task difficulty?  With this question in mind, we decided to explore the pupil responses in 

real-life motor tasks to determine whether the pupil diameter can be employed as an 

indicator of task difficulty. 

Our research team had previously conducted a study of a simulated surgical 

task, the peg transportation task performed in a surgical training box, for the purpose of 

exploring differences in gaze behaviors for different difficulty subtasks.  However, there 
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was no analysis of the corresponding tool position, and no analysis of pupil responses to 

the task difficulty of the subtasks. 

The task was to transport a peg between three dishes, and was divided into 3 

different subtasks: picking up a peg, transporting it to another location and releasing the 

peg into a container, and touching a home location with the tip of the grasper.  These 3 

subtasks have different difficulties.  

5.1. Study description 

5.1.1. Participants 

Fourteen university students (9 males and 5 females, age: 20 – 36, mean = 28) 

from Simon Fraser University (SFU) with zero surgical experience participated in the 

study, as we wished to eliminate the influence of surgical expertise on the performance.  

All subjects were right-handed with normal or corrected-to-normal vision.  Written 

consent was obtained from each participant prior to entering the studies.  Ethics 

approvals were obtained from the Research Ethics Board of Simon Fraser University 

before the recruitment of human subjects. 

5.1.2. Experimental setting and apparatus 

The simulated training environment for laparoscopic surgery was set up inside 

the Medical Image Analysis Lab at SFU.  The training system including a laparoscopic 

training box (Laparoscopic Trainer, 3-D Technical Services, Franklin, Ohio) and a 

laparoscopic grasper (Ethicon Endo-Surgery, Cincinnati, Ohio), as shown in Figure 5.1.  

On the bottom of this training box, a custom-made wood plate was placed as the 

simulated surgical site.  The scene of the inside of the training box was captured by a 

webcam and displayed on to the monitor of Tobii 1750 eye-tracker (Tobii 1750, Tobii 

Technology, Danderyd, Sweden).  The web camera recorded facial expressions of the 

operator for validation purpose. 
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Figure 5.1 The experimental setting includes 3 components: Tobii eye-tracker, 
laparoscopic training box, and a webcam.  

Note. The screen shows the display scene projected from inside of the training box, consisting 
of the peg board with 3 colored dishes of 13 mm diameter, a white homing square (12 
mm in side length), and a green peg of 4.5 mm diameter. 

5.1.3. Task and procedure 

The task was to transport the rubber peg (a 4.5 mm × 10.5 mm green cylindrical 

peg) between three dishes using the grasper—from the red dish on the top to the green 

dish on the left, then to the blue dish on the right, and back to the red dish, touching the 

center white square (home plate) with grasper tip every time after the object was placed 

into a dish.   

A trial has 9 subtasks as shown in Figure 5.2, which can be grouped into three 

basic categories with different task requirements: reaching and grasping the object (RG), 

transporting and releasing the object (TR), and bringing the instrument to the home 

position in the white central square (H).  The peg was initially placed in the top dish.  

Taking the first three subtasks as an example, starting from the home position, the 
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grasper had to be moved to the top dish and the peg then had to be picked up out of the 

dish (RG).  The peg then had to be transported from the top to the left bottom dish using 

the grasper, which was then opened to release the peg into the left bottom dish (TR).  

After releasing the peg, the empty grasper had to be moved to the home position (H).  

These 3 subtasks were repeated three times until the peg was brought back to the 

original dish and the grasper back to the home position, as shown in Figure 5.2. 

 

Figure 5.2 Illustration of the task and subtasks.  
Note. In each group of subtasks, the participant moves the surgical grasper from the home 

plate (the rectangle in the centre) to grasp a peg (small green cylinder, 4.5mm × 
10.5mm) in a dish (reaching and grasping, RG); transport and release the peg to the 
next dish (TR), then bring the grasper back to the home plate (homing task, H).  This is 
repeated three times, moving the peg to the green and then the blue dish, then back to 
the red starting dish.  The origin of the image of the target setting is at the left top corner 
and horizontal is x-axis and vertical is y-axis.  The tool positions of subtasks RG1 and 
H3 change in y-axis, the tool positions of subtask TR2 change in x-axis, and the tool 
positions of the rest subtasks change in both x and y axis. 
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Each participant was given a brief oral description of the task and practiced a few 

minutes before starting to perform the task.  Each participant performed five trials, with a 

pause between each trial.  At the beginning and end of each trial, a camera flash was 

given for synchronization purpose.  The ambient lighting and data recording condition 

were maintained constant throughout entire study. 

5.2. Data analysis 

5.2.1. Estimation of difficulty of subtasks 

The task requirements of the three subtasks cannot be simply defined according 

to the target size and distance using Fitts’ index of difficulty (ID), since there is an extra 

action (grasping or releasing) added to the end of the tool movement in the RG and TR 

tasks, instead of just touching the target.  Table 5.1 shows the estimated ID of the three 

subtasks according to their target size and distance using Fitts’ ID according to equation 

(2). 

Table 5.1. The estimated task difficulty of the three subtasks using Fitts’ index 
of difficulty (ID). 

Subtask ID (bit/response) Size (mm) Distance (mm) 

   Reaching and Grasping 4.0 4.5 37 

   Transport and Releasing 3.3 13 65 

   Homing 2.6 12 37 

 

The TR task requires the longest distance to move (see Table 5.1), and the 

Homing and RG tasks the same, shorter, distance, so based on distance alone we 

would expect the Transport phase time of TR to be the greatest, and the RG and H 

Transport times to be equivalent.  However, the RG may be the hardest task, as the RG 

task requires picking up a small peg, whereas the TR task requires releasing the peg 

into a much larger dish (see Table 5.1 for actual size details).  Using Fitts’ Law naively, 

we have estimated the difficulty of the three subtasks, shown in Table 5.1.  Here, the RG 

task clearly is the most difficult, and the Homing task is the easiest with only a Transport 
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phase movement to home position and a small extra action to touch the Home plate 

(ID=2.6bits/response). 

5.2.2. Tooltip location 

Surgical videos were captured from the scene camera attached to the training 

box while the participants were performing the task, at 30Hz with resolution of 352×288 

pixels.  The tooltip positions were automatically extracted from the surgical videos using 

the algorithm described in Appendix B and were smoothed with a running-average-

filtered using equally weighted four samples window.  Since the scene of the task videos 

from this study is more complex than that of the videos from Fitts’ pointing study, an 

algorithm based on background subtraction was applied before searching for the tool 

object (Appendix B).  

5.2.3. Subtask separation and movement phases 

The subtasks needed to be separated sequentially for the analysis of pupil 

responses to different subtasks.  Two important tool movement moments for the 

separation of subtasks and movement phases are when the tool starts to leave the 

current target to next target (Tool-leave) and when the tool reaches the vicinity above 

the target (Tool-reach) detected by the following algorithm. 

The algorithm of searching the moments of Tool-leave and Tool-reach is similar 

to that in section 3.1.2 but according to the velocity of tool movement in different 

directions (x-axis, y-axis, or both directions) of the subtask; first the peak velocity of tool 

movement in the subtask’s specified coordinate is found and then the Tool-leave and 

Tool-reach can be determined by searching backwards and forward respectively to when 

the tool velocity is lower than a threshold. 

As shown in Figure 5.3, the detectable changes of the tool locations in 

coordinates differ between subtasks: the tool location of subtasks RG1, TR1, and H3 

change significantly in the y-axis, subtasks H1, RG2, and TR2 change in the x-axis, 

subtasks H2, RG3, and TR3 change in both x and y-axis. 



 

80 

 

Figure 5.3 An example (from the 3rd trial of subject 1) of tooltip positions (X 
and Y) curves over time and the subtasks.   

Note. The blue and green curves are the tooltip positions in X and Y coordinates, respectively.  
The dashed and solid vertical blue lines represent the moments of tool starts to leave 
the current target and the tool reaches the vicinity above the next target, respectively.  
RG1, TR1, and H3 change significantly in Y coordinates, H1, RG2, and TR2 in X 
coordinates, and H2, RG2, and TR3 in both X and Y coordinates. 

The subtasks are then separated from the continuous tool moving by the 

moments of Tool-leave.  As shown in Figure 5.2,  the RG subtask starts from the tool 

leaving home position (Tool-leave) and lasts until when the tool has successfully 

grasped the peg and starts to leave the dish to Transport the peg to the next dish (Next 

Tool-leave).  The TR subtask starts from the end of RG (defined above as when the 

grasper starts accelerating away from the dish) and lasts until the tool has released the 

peg into the dish and leaves for the home position.  The homing subtask starts from the 

end of TR (defined above as when the grasper starts accelerating away from the dish) 

and ends at the start of RG (defined above as when the tool leaves the homing position). 

To distinguish the impact on the pupil response from a continuous task 

execution, we divided a subtask into Transport and Landing phases (Abrams, et al., 

1990; Adam, et al., 2000; Bootsma, Marteniuk, MacKenzie, & Zaal, 1994; Elliott, et al., 

2001; Girgenrath, Bock, & Jüngling, 2004; Pelz, et al., 2001).  The phase separation was 

defined according to the kinematics of the tool.  The Transport phase starts from the 
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moment when the tool starts to leave (Tool-leave) to when the tool reaches the vicinity 

above the target (Tool-reach), and the Landing phase occurs between the Tool-reach 

and when the tool leaves for the next subtask (next Tool-leave).  The action of the 

Landing phase differs for each type of subtask: grasping the peg in RG subtasks, 

releasing the peg into the dish in TR subtasks, and resting at the home position in H 

subtasks. 

5.2.4. Movement-related pupil responses 

Pupil diameter data was continuously recorded by a Tobii 17/50 eye-tracker at 

50Hz, except for the moment of eye blinks and mis-capturing due to the large head 

movement.  Segments of missed pupil data shorter than 100ms were linearly 

interpolated and a Butterworth low-pass filter with a cut-off frequency of 4Hz was applied 

to the pupil diameter data, since frequency above 2Hz of the pupil is considered as noise 

(Privitera, et al., 2010).  

Since the peg transportation task is a continuous movement task, the pupil 

response to an individual subtask has to be separated according to the timestamp when 

tool starts to move.  Similar to the continuous aiming task, the time at the end of the 

Transport phase (the Tool-reach moment) was chosen as the alignment timestamp to 

preserve the pupil responses in both Transport and Landing phases, and the baseline 

pupil diameter was derived from the 400ms period at the end of Transport phase, when 

the eyes start to focus on the new target and the pupil starts to dilate. 

A 8s-window with 2s before Tool-reach and 6s afterwards was employed to 

extract pupillary responses for each subtask, since the mean Transport phase time is 

less than 1 second and the Landing phase is around 2-6 seconds.  Relative pupil 

diameter changes in the 8s-window were derived by subtracting each sample from the 

baseline pupil diameter.  All the data in the windows were aligned at the moments of 

Tool-reach (2 seconds into the 8s window), and the mean pupil diameter change was 

calculated for each time point in the window across all horizontal tooltip moves from all 

trials from all subjects.  Similarly, the mean pupil diameter changes were calculated 

across all moves from all trials for each subtask.  The mean pupil diameter changes in 

the 8-second window were drawn in a graph for visual analysis. 
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The pupil dilation or constriction may be affected by the viewing angle to the eye-

tracker camera due to the changes of gaze location (Brisson, et al., 2013; Gagl, et al., 

2011).  Figure 5.4 shows an example frame of the task video where the physical targets 

were projected.  Since the scene camera was not perpendicular to the plan of the peg 

board when recording, the red dish was at a relatively higher y-axis position in the image 

with a wider viewing angle to the eye-tracker camera.  That could cause a significant 

pupil distortion, whereas the home plate, green and blue dishes were at a similar 

horizontal level.   

 

Figure 5.4 An example frame of the task video showing the target setting. 

Figure 5.5 shows the mean baseline pupil diameter of each subtask of all trials 

from all subjects.  The baseline pupil sizes of RG1 and TR3 are the smallest among all 

the subtasks due to their wider viewing angle to the eye-tracker camera as discussed 

above.  RG1 is far smaller than TR3 because it is the first subtask of a trial and the pupil 
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starts to dilate from a relatively small size.  Therefore, we excluded the first subtask 

(RG1) and the last transport and release subtask (TR3).  The subtask (H3) was also 

excluded as it was the last action, with no following actions.  As a result, we retained 

data from TR1, H1, RG2, TR2, H2, and RG3 for further analysis. 

 

Figure 5.5 Mean of baseline pupil diameter of each subtask for all trials of all 
subtasks when performing.   

Note. The baseline is the mean pupil size of the 400ms period at the end of Transport phase. 

To examine which parts of the pupil diameter in the 8s-window had significant 

differences between the three types of subtasks, the moment-to-moment based t-testing 

approach described in experiments 1-3 was applied. 
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5.3. Results 

5.3.1. Accuracy 

A total of 70 trials were recorded (14 subjects, each performed 5 trials).  

Nineteen trials were excluded from analysis due to low ratio of total fixation time over 

total execution time (TF/TT), since we have observed that the quality of the eye 

movement data cannot be guaranteed when TF/TT rate is lower than a certain value 

(less than about 70%).  From the 51 valid trials, there would be a total of 459 subtasks 

(each trial has 9 subtasks).  However, we excluded the first subtask (RG1) and last two 

subtasks (TR3 and H3) of each trial (153 subtasks) and subtasks with peg-dropping (16 

subtasks).  As a result, 159 subtasks were excluded and 290 valid subtasks were 

available for further analysis. 

5.3.2. Movement time 

An execution time for a subtask starts from when the tool leaves the current 

target, and ends when the tool leaves that target for the next subtask execution, such 

that that the execution time of a subtask is the interval between two consecutive Tool-

leave moments.  Figure 5.6 shows the mean execution time over all subjects for the 

Transport and Landing phases and for the complete subtask, for the three types of 

subtasks.  The mean execution time for all subtasks is 4.3±3.1s, and differs between the 

three types of subtasks.  There is a significant main effect of subtask types in terms of 

mean subtask execution time (F2,287 = 25.730, p < .0001).  Post Hoc test (Tukey HSD) 

shows that the mean execution time of the H subtask (2.7±1.5s) is significantly shorter (p 

< .0001) than those of the TR and RG subtasks (4.9±1.7s and 5.4±4.3s respectively), 

and there is no significant difference between TR and RG. 
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Figure 5.6 Mean execution time for movement phases and a complete subtask 
of different subtasks for all subjects.   

Note. The blue column is the execution time for the Transport phase, the green column is the 
execution time for the Landing phase, and the mustard column is the execution time for 
the complete subtask.  The error bars are for 95% confidence intervals. 

The mean execution time of Transport phases for all subtasks is 0.7±0.3s, and 

differs significantly between the three types of subtasks (F2,287 = 25.174, p < .0001).  

Post Hoc test (Tukey HSD) shows that the mean Transport time of the TR subtask 

(0.9±0.4s) is significantly longer (p < .0001) those of RG and H subtasks (0.7±0.2s and 

0.6±0.2s respectively), and there is no significant difference between RG and H.  This 

result reflects that the distance to move in the TR task is much larger than the other two 

tasks (see Table 5.1).   

The mean execution time of Landing phases for all subtasks is 3.5±3.0s, and 

differs significantly between the three types of subtasks (F2,287 = 22.934, p < .0001).  
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Post Hoc test (Tukey HSD) shows that the mean time of the Landing phase of the H 

subtask (2.1±1.5s) is significantly shorter (p < .0001) those of TR and RG subtasks 

(4.0±1.7s and 4.7±4.3s respectively), and there is no significant difference between the 

Landing phases of the RG and TR subtasks. 

5.3.3. Pupil responses to task difficulty in performing surgical 
tasks 

Figure 5.7 shows the mean changes of pupil diameter in an 8-second window for 

each of the three subtasks from all subjects when performing the task, aligned at the end 

of the Transport phase.  The curves of the pupil response to the three subtasks clearly 

exhibit different shapes. 

During the RG subtask (green curve) the pupil dilates in both Transport and 

Landing phases and develops to its peak pupil size at about 3.9s in the Landing phase. 

During the H subtask (black curve) the pupil behaves oppositely to that of the 

RG—the pupil mostly constricts during both Transport and Landing phases. 

During the TR subtask (red curve) the pupil diameter shows a V-shape—the 

pupil starts from its peak size at the beginning of the Transport phase, drops to its 

smallest (valley) size when the tool reached, and then dilates to its peak size in the 

middle of the Landing phase (about 2.7s after the start of landing). 
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Figure 5.7 Mean pupil diameter changes (subtracted by baseline) for 3 different 
subtasks from all subjects when performing the task. 

Note. Data are aligned over an 8-second window 2 seconds before Tool-reach, shown by the 
vertical red line.  The three colored curves—black, red, and green—are the mean pupil 
diameter changes for H, TR, and RG subtasks respectively.  The pupil baseline 
diameter is the mean pupil diameter over a 400ms period at the Tool-reach moment, as 
shown in the red rectangle.  The three rows of bars at the top represent Transport (red) 
and Landing (purple) phases for the three subtasks RG, TR, and H, respectively.  The 
three colors of bars at the bottom indicate significant differences in pupil dilation 
between H, TR and RG with black representing H vs. RG, red representing H vs. TR, 
and green representing TR vs. RG.  The error bars showing 1 std. dev. are drawn every 
1s. 

Table 5.2 shows the extent and duration of the pupil diameter changes between 

the three subtasks in Transport and Landing phases while performing the task.  Both the 

peak pupil size of RG in the Transport phase and the peak pupil size of Homing in the 

Landing phase are negative since the pupil constricts in these two specific phases of the 

subtasks.  ANOVA results show that there are significant main effects in terms of peak 

pupil size (F2,287 = 215.777, p < .0001) in the Transport phase and peak pupil size (F2, 287 

= 358.024, p < .0001) and peak duration (F2, 287 = 115.894, p < .0001) in the Landing 
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phase between the three subtasks.  Post Hoc test (Tukey HSD) analysis shows that the 

values of the two pupil diameter parameters in the Landing phase (peak pupil size, and 

peak duration) positively correlate with the type of subtask (p < .0001), i.e., RG subtask 

(the hardest) has the highest peak pupil size and longest peak duration, TR subtask (the 

medium hard) has the medium peak pupil size and peak duration, and Homing subtask 

(the easiest) has the lowest peak pupil size (negative to the baseline) and the shortest 

peak pupil dilation.  In the Transport phase, the peak pupil size of Homing is significantly 

more than that of TR (p < .05) and RG (p < .0001), and TR is significantly more than RG 

(p < .0001). 

Table 5.2 The mean pupil diameter changes and duration over all subjects for 
Transport and Landing phases, for different subtasks 

 H  TR RG 

Transport phase    

   Peak pupil size (constriction) 0.38± 0.21mm 0.22± 0.22mm -0.16± 0.13mm 

   Peak duration (constriction) 0.95± 0.48s 1.01± 0.78s 0.87± 0.59s 

Landing phase    

   Peak pupil size (dilation) -0.29± 0.18mm 0.34± 0.22mm 0.46± 0.23mm 

   Peak duration (dilation) 1.24± 0.61s 2.71± 1.15s 3.86± 1.67s 

 

Moment-to-moment base significant testing was applied between the curves of 

the three subtasks, with the results as shown in the bottom colored bars in Figure 5.7.  A 

paired t-test was performed for each time point in each pair of subtasks containing 

samples from the 14 subjects; significance is indicated by (p < .05).  The colored areas 

of the bars at the bottom of Figure 5.7 indicate significant differences, with the black 

comparing Homing and RG, the red comparing Homing and TR, and the green 

comparing TR and RG.  Almost all moments along the 8s window are significantly 

different between pairs of three subtasks except around the Tool-reach moment. 
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5.4. Discussion 

Figure 5.6 shows that the mean execution time of a subtask increased as the 

difficulty of the subtask increased.  However, there is no significant difference in the 

mean execution time between RG and TR, although RG is estimated to be more difficult 

than TR (Table 5.1).  The probable reason is that the naïve application of Fitts’ law 

defining the target sizes to be the peg size in the RG task and the dish size in the TR 

task does not totally reflect the Landing difficulty.  The transport time of TR subtask is 

longer than those of RG and Homing due to its longer tool travelling distance (65mm of 

TR vs. 37mm of RG and Homing). 

The changes of pupil diameter are able to distinguish the difficulty of the 

subtasks in the simulated surgical task, such that the peak pupil dilation in the Landing 

phase positively correlates to the difficulty of the subtask: RG has more peak pupil 

dilation than TR and Homing, as shown in Figure 5.7.  

However, the pupil response patterns in the Transport phase did not reflect the 

ID value of the subtask; instead they followed the execution order of subtasks.  This 

means the pupil response was not just regulated by the current action in the hand, but 

was also influenced by the previous action, and sometimes, by an action in planning.  

Starting from the end of the Homing subtask with a relative low task requirement, the RG 

subtask evokes an increase of pupil diameter through the Transport phase into the 

Landing phase.  In contrast, both TR and Homing subtasks have a decrease of pupil 

diameter in the Transport phase since they start from completion of a relatively high 

requirement task (RG and TR).   

On the basis of the observation, it can be concluded that the extent of pupil 

dilation in the Landing phase positively correlates to the task requirement, whereas for 

the Transport phase the pattern of pupil dilation reveals the execution order of the 

subtasks which is affected by the previous subtask.  Therefore, the pupil diameter may 

be employed to indicate the task difficulty of the simulated surgical task. 

Some threats to validity have to be considered in this study.  First, the difficulty of 

subtasks cannot be quantitatively defined due to the complex action added at the end of 

the tool movement and the irregular size of the target objects.  Second, the execution 
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order of the subtasks is fixed, i.e. from RG to TR to Homing, and then back to RG etc.  

We have not tested other execution orders of the subtasks due to the characteristic of 

the peg transportation task.  More types of real-life motor tasks are needed to be tested.  

Third, mental activities such as anxiety concerning the performance during the execution 

of the task would affect the physical load. 

5.5. Summary 

This Chapter investigated the pupil responses during performing a relatively 

complex motor task, i.e. a simulated surgical task containing different subtasks executed 

sequentially in a mixed order.  We automatically separated each subtask employing 

video processing techniques and identified the critical tool movement moments for the 

signal averaging of pupil diameter to capture the movement-related pupil responses. 

We found the pupil responses in performing the surgical task exhibit a pattern 

that the changes of pupil diameter in the Landing phase correlate with task requirement.  

This finding suggests that the pupil diameter could be employed to measure task 

workload in performing simulated surgical tasks. 

The results of this study  have been written up in a manuscript under review for 

publication (Bin Zheng, Jiang, & Atkins, 2014)4. 

  

 
4
 B. Zheng, X.T. Jiang, M. S. Atkins, “Detection of Changes of Surgical Difficulty: Evidence from 
Pupil Responses”, Under review (2014). 
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Chapter 6.  
 
Conclusion and future work 

6.1. Conclusions 

While the work presented here follows in the footsteps of decades of work 
on using pupil diameter to estimate the cognitive load of various tasks, it 
is the first to tie Fitts’ index of difficulty to pupil diameter changes.  This in 
turn might be a significant step in standardizing our evaluations of the 
demands of manual-visual tasks.  These evaluations can even be used in 
a closed-loop system which would adjust the HMI to keep the user’s 
cognitive load under some threshold.  The paper describes a well 
thought-out and carefully conducted experiment.  The ideas are 
presented clearly and relevant work is adequately discussed.  This is 
exciting work that CHI 2014 attendees would enjoy hearing about. 

 (one of the reviewers to our submission to CHI 2014) 

This thesis presented a method of objectively measuring task workload of motor 

tasks employing pupil diameter and investigated how the pupil responds to a tool 

movement and how pupil diameter can be employed as an objective indicator of task 

workload in goal-directed motor tasks.  We conducted a series of experiments, starting 

with simple discrete target-pointing tasks, followed by a more complex continuous 

aiming task, and finally a complex surgical simulation task, to reveal the basic pupil 

response patterns during tool movements and to correlate the changes of pupil diameter 

to the changes to task workload of motor tasks. 

In Experiment 1, we found a common pattern of pupil responses to the task 

requirement of a discrete movement.  The pupil dilates 1.5s before the tool starts to 

move, followed by a slight constriction 200ms after the tool starts to move.  The pupil 

develops to its peak dilation around 2s after the tool leaves the target.  The Valley-to-

Peak pupil dilation and duration positively correlate to the task difficulty which is 
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quantitatively defined by Fitts’ index of difficulty.  These findings indicate that the 

changes of pupil size are regulated by task requirement, such that the pupil responses to 

task workload in goal-directed movements respect Fitts’ law.  The results of Experiment 

1 were orally presented and published in the Proceedings of Conference of CHI 20145.  

This paper won Best of CHI Honorable Mention Award. 

These findings were further confirmed by Experiment 2 using a similar simple 

discrete pointing task to that of Experiment 1, but with different size targets at a constant 

distance apart, and the same size targets at different distances apart.  It was found that 

the pupil size changes in response to both different target sizes and different distances 

between targets.  Furthermore, the extent of pupil dilation positively correlates to the 

task workload evoked by both decrease of target size and increase of target distance.  

The results of Experiment 2 were orally presented and published in the Proceedings of 

Conference of ETRA 2014 (Jiang, Atkins, Tien, Zheng, et al., 2014)6. 

In Experiment 3, we further investigated the pupil responses to task workload in 

more complex continuous aiming movements, which are more common than discrete 

movements in real life.  We found the pupil responses still respect Fitts’ law but with a 

slightly different pattern due to the overlap in pupil size changes between arriving at a 

target and the preparation for the next movement; the pupil constricts during the 

Transport phase and dilates during the Landing phase, and this holds for different 

difficulty levels of movements, where harder task IDs elicit a higher magnitude of pupil 

response and longer pupil dilation/constriction duration.  These results have been written 

in a manuscript for publication (Jiang, Zheng, et al., 2014)7. 

On the basis of the findings from experiments 1-3, we analyzed the pupil data 

from a previous experiment to examine whether the pupil responses can be employed to 

indicate task workload in a complex surgical simulation task.  We found that the pupil 

 
5
 X.T. Jiang, M.S. Atkins, G. Tien, R. Bednarik, and B. Zheng, “Pupil Responses during Discrete 
Goal-directed Movements”, Proc. CHI 2014, 2075-2084 (2014) (Best of CHI Paper Honorable 
Mention Award). 

6
 X.T. Jiang, B. Zheng, G. Tien, R. Bednarik, and M.S. Atkins, “Pupil Dilations during Target-
pointing Respect Fitts' Law”, Proc. ETRA 2014, 175-182 (2014). 

7
 X.T. Jiang, B. Zheng, R. Bednarik, and M.S. Atkins, “Pupil Responses to Continuous Aiming 
Movements”, Under review (2014). 
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diameter changes in the Landing phase reflect the task difficulty but the pupil diameter 

changes in the Transport phase reflect the execution order of the subtasks.  The results 

have been written in a manuscript and submitted for publication (Bin Zheng, Jiang, & 

Atkins, 2014)8. 

We tackled the challenges of capturing pupil responses to self-paced 

movements.  Numerous factors cause variations of pupil diameter including changes of 

lighting, luminance, emotion, and mental workload.  The signal averaging technique is 

effective to capture the movement-related pupil responses by aligning and averaging 

many repetitive movements, whereas here the common time point for alignment is 

implicit.  We extracted the pupil responses to movements using a time window defined 

according to kinematics of tool movement, and found the moments when the tool starts 

to move (Tool-leave) and when the tool reaches the vicinity above the target (Tool-

reach) are effective for the signal alignment in goal-directed movements.  Tooltip 

positions were automatically extracted from the recorded task videos without adding any 

motion tracking equipment. 

To perform the data analysis, the tooltip positions were automatically extracted 

from the task videos using customized algorithms.  For the task videos of Experiment 1 

to 3, a very simple but effective algorithm employing a biggest connected object 

searching method was developed (Appendix A).  A relatively complex video processing 

algorithm was developed to extract tooltip positions from the peg transportation task 

videos using background subtraction technique (Appendix B).  The output of this 

algorithm was compared with manually annotated ground truth data and very good 

results were achieved, with an average overlap rate (within less than 0.75˚ viewing 

angle, around 28 pixels on the 17˝ screen when the participants were 60 cm away the 

eye-tracker, corresponding to 7.4 mm in physical distance on the display) between 

computed tooltip positions and the ground truth of 98.4%.  These tooltip extraction 

algorithms could be applied to similar environments e.g. simulated laparoscopic surgery 

 
8
 B.  Zheng, X.T. Jiang, and M. S. Atkins, “Rapid Detection on the Change of Surgical Task Load: 
Evidence from Pupil Responses”, Under review (2014). 
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tasks.  The details of this algorithm have been written into a paper for publication in 

Surgical Innovation (Jiang, Atkins, & Zheng, 2014)9. 

We quantified the task difficulty of goal-directed movement by innovatively 

employing Fitts’ index of difficulty.  The size and distance of the targets were 

manipulated to generate different task difficulties. 

To observe the effect of pupil responses of continuous movements, we divided a 

movement into Transport and Landing phases according to the kinematics of the tool 

movement.  We found that the peak pupil dilation in the Landing phase positively 

correlated to the task difficulty and the changes of pupil in the Transport phase reflected 

the influence of the previous movement. 

Overall, this thesis lies in the area of interdisciplinary research of Computing 

Science, Human Factors, Experimental Research, Psychophysiology, and Surgical 

Simulation, with a focus on exploring how the user responds to the task workload of 

motor tasks in human-machine interaction.  We developed techniques to objectively and 

quantitatively measure mental workload in goal-directed tasks using pupil diameter, and 

found the pupil diameter can serve as an objective measure of task workload in goal-

directed movements, by conducting three experiments of discrete and continuous target-

point tasks and a study of real-life motor task.  The findings constitute the foundation for 

developing methods to objectively and quantitatively evaluate task workload of motor 

tasks using pupil diameter, and have a variety of implications in enhancing 

psychophysiological interactions in human-centered HCI and evaluating mental workload 

in high skill-demanding domains such as driving, aviation, and surgery. 

6.2. Threats to validity 

Individual variation exists in pupil diameter changes between subjects even in 

response to a same difficulty task, in terms of amplitude, rate of changing size, and 

response latency to stimuli.  The distinguishable pupil response patterns to different 

 
9
 X.T. Jiang, B. Zheng, and M. S. Atkins, “Video Processing to Locate the Tooltip Position in 
Surgical Eye-hand Coordination Tasks”, Surgical Innovation, In press (2014). 
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difficulty tasks in the studies of this thesis were derived by averaging many repeated 

windows of pupil signal over several individuals.  This signal averaging technique may 

not be applicable to a real-time analysis in terms of individual performance without some 

kind of individual calibration using a pre-defined task. 

The learning effect may affect the validity of the pupil diameter as an indicator of 

task workloads throughout continuous movements and peg transportation task.  That is, 

after many repeated tool movements for the same ID and the same task, the participants 

may get used to the task and the task workload would decrease. 

Pupil response may be much slower than the continuous tool movement time, so 

that the pupil response pattern could not reflect the task workload changes in continuous 

motor tasks such as a repetitive peg transportation task. 

In most real-life motor tasks, such as the peg transportation task, the difficulty of 

subtasks cannot be quantitatively defined due to the complex action added at the end of 

the tool movement and the irregular size of the target objects.  Also in the peg task, the 

execution order of the subtasks is fixed, i.e. from RG to TR to Homing, and then back to 

RG etc.  We could not test other execution orders of the subtasks due to the 

characteristic of the peg transportation task.  More types of real-life motor tasks need to 

be tested.  Lastly, mental activities such as anxiety about the performance during the 

execution of the task would affect the physical load. 

6.3. Future work 

In future, we plan to monitor and model the pupil over short intervals, so we can 

make accurate predictions about the difficulties a user experiences.  This will contribute 

to building more intelligent interfaces both for general HCI and for surgery procedures, 

for example for automatically evaluating and monitoring the task workload continuously 

in a very fine resolution during image-guided procedures. 

More work needs to be done before we can bring this pupil measurement 

technique into real-world applications.  The approach of averaging many repetitive task 

epochs to show the pattern of pupil size change may not be able to measure task 
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requirements in real-world applications.  We need to employ machine learning to train 

pupil response-to-difficulty models using pupil diameter features such as Valley-to-Peak 

pupil dilation and duration, and then use the trained model to classify each of new 

movements or subtasks in real-time.  Furthermore, the learning effect should be 

considered during the training and classifying process, for example, by discarding tasks 

according to the learning curve of the performance monitored. 

Another important work in the future is to build Fitts’ law model by conducting 

more experiments with more IDs in different experimental settings, for example  in open 

operation settings instead of tele-manipulation laparoscopic settings.  Once the Fitts’ 

model and its parameters are accurately estimated in terms of pupil diameter changes, 

the pupil measurement could be further applied to complex motor tasks where Fitts’ law 

is not readily applicable since the targets are in irregular size. 

In a real-life application, such as monitoring mental workloads of surgeons in the 

Operating Room or drivers in the car, many factors are needed to be considered 

affecting the validity of the pupil measurement.  First, multiple sources of the workload 

should be separated and measured by employing multiple modalities such as heart rate, 

skin conductivity, and respiration rate rather than merely pupil diameter.  These 

physiological signals would provide a different aspect of the measurement of mental 

workload.  For example, cardiac measures are able to distinguish the overall task 

complexity (Gao, et al., 2013), which could be a supplementary to the event-based pupil 

measurement method as proposed in this thesis.  It is also possible to resolve the 

individual variation problem of the pupil measurement by calibrating individual profiles 

employing physiological signals or other eye metrics such as blinks.  The key question 

becomes how to find out a correlation between a physiological signal and the individual 

profile of pupil diameter changes, which remains a subject for future research. 
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Appendix A.  
 
Tool detection from Fitts’ pointing task videos 

This algorithm was designed to detect tooltip positions from the task videos recorded 
from Experiment 1-3, in which the participants were asked to move and touch the circle 
printed on the paper inside the training box using a long shafted grasper with their eye 
motions recorded by a Tobii X50 eye-tracker.  The scene inside the training box was 
illuminated and recorded by the endoscopic camera attached to the training box, in the 
format of Audio Video Interleave (AVI) at 30 fps/s. 

The algorithm involved three major steps.  First, the RGB video was read in frame by 
frame and transferred to gray scale image format, and then binary-thresholded into black 
and while image format, where mostly only the tool was left in the image as shown in 
Figure A.1A Second, the biggest connected object was searched and identified as the 
tool, as shown within the red rectangle in Figure A.1B.  To simplify tool detection, the 
targets in the background of the image were designed in black dash-dotted circles in 
Experiment 1-3, in case of the target circle being the biggest object in the image when 
the tool is only a small part in the image.  Furthermore, the tip of the grasper was black 
taped to increase the contrast between the tool and the back ground. 

 
Figure A.1.  Key steps in detecting tooltip from surgical videos.  Panel A shows 

the binary-thresholded image with mostly the tool left.  Panel B 
shows the recognized tool (in red rectangle) and tooltip (the blue 
dot). 

Third, the coordinates of the left top corner of the tool rectangle (red rectangle) was used 
as tooltip position, as the tool was always consistently north-west orientated.  The 
determined tooltip position was shown as the blue dot in Figure A.1 B.  The tool 
rectangle is determined by the left-upmost and the right-bottommost coordinates of the 
pixel blob of the detected biggest object. 
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Appendix B.  
 
Tool detection from peg transportation task videos  

This algorithm was designed to detect tooltip positions from the task videos recorded 
from peg transportation tasks (Chapter 5), in which the participants were asked to 
transport a green peg between three dishes using a long shafted grasper with their eye 
motions recorded by a Tobii 17/50 eye-tracker.  The scenery inside the training box was 
illuminated and recorded by the endoscopic camera attached to the training box, in the 
format of Audio Video Interleave (AVI) at 30 fps/s. 

Since the task videos from the peg transportation task is relatively complex than those of 
target-pointing tasks, we validated the algorithm by comparing the algorithm captured 
tooltip positions to manually annotated tooltip position from the same video. 

B.1. Tool tracking algorithms 

The video first underwent a background subtraction, and then the tool was located by 
searching the biggest connected object from the thresholded foreground binary image.  
Lastly, the tooltip position was determined according to the status of the grasper, i.e. 
opened or closed.   

B.1.1. Background subtraction 

The background subtraction algorithm has two steps including selecting an initial 
background image and updating the background image (see Figure B.1a and Figure 
B.1b for examples of typical task video frames with the tool absent and present).  A 
frame without the tool in the image (which usually can be found at the first frame of the 
video) was used as the initial background image for the background subtraction, as 
shown in Figure B.1a.  Only one frame was needed for all trial videos of a subject if the 
camera setting (the distance and the direction to the scene) did not change over the 
trials for a particular subject.  However, different background images had to be chosen 
for different subjects, since they performed the task on different days and the camera 
setting might have been changed.  The initial background frames for the subjects were 
manually chosen from the videos, and the frame IDs were recorded in a list for the 
system to automatically read in.  
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Figure B.1 An example of the processing of tooltip location.  (a) a background 

image, (b) a target image for tool tracking, (c) the foreground image 
in RGB color mode, (d) the foreground image in grayscale color 
mode, (e) the thresholded binary image from (d), and (f) the located 
tool position as is shown in the red rectangle, in which the red dot 
on the green line segment is the tooltip position. 
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A partial background updating strategy (Colque & Cámara-Chávez, 2011) was employed 
to update the background image. Only the part of the image outside the rectangle of the 
recognized tool (see the tooltip location section below) was updated to the background 
image, since there usually was some noise in the tool rectangle such as shadows.  The 
criterion whether the background image needed to be updated was defined based on the 
detected object numbers and the number of consecutive noisy frames, where the 
number of separate objects detected in the frame was greater than a value.  For 
example, when three consecutive noisy frames happened, the background was updated.  
This criterion was set up to avoid some recoverable image changes, e.g., the effect of a 
sudden strong flash of light or an incidental touch to the dishes or plate by the grasper, 
which usually caused 1-2 frames of noisy images and then recovery to clean images.  
When there was no valid tooltip detected in the image and the image was noisy, the 
current background was replaced by the initial background image. 

B.1.2. Tool location 

Each frame was subtracted by the background image to get the foreground image, 
mostly with only the tool left in the foreground image, as shown in Figure B.1c.  Then the 
foreground images were transformed to grayscale images, and were thresholded to 
binary images, as shown in Figure B.1e A width-first pixel-wise search strategy was 
employed to search the connected objects in the binary images.  Any adjacent pixels in 
the binary image were included in an object.  

To locate the tool, a horizontal rectangle was derived to surround the found tool, shown 
as a red rectangle in Figure B.1f.  The rectangle was determined by the upper-left and 
lower-right corners of the tool, i.e., the x-axis value of the left-most point and the y-axis 
value of the upper-most point in the tool object were used as the x and y axis values of 
the upper-left corner of the rectangle.  Similarly, the x-axis value of the right-most point 
and the y-axis value of the lower-most point in the tool object were used as the x and y 
axis values of the lower-right corner of the rectangle, as shown in Figure B.2a.  

 
Figure B.2 Illustration of tool rectangle and opened tooltip location (a) shows 

the four points to determine the tool rectangle, (b) shows the 
approximated tooltip position using the middle point of the line 
segment between the two tooltips (the red point on the green line 
segment), and (c) shows the approximated tooltip position using the 
middle point of the arc between the two tooltips. 
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B.1.3. Tooltip location 

The calculations for the locations of the closed and opened tooltip are different.  For 
most surgical tasks performed in a laparoscopic environment, the direction of the tool is 
consistently oriented, e.g., right-handed tool is north-west oriented.  When the grasper is 
closed, the position of the tooltip is derived from the position of the north-west corner of 
the red rectangle, as is shown in Figure B.1f, and when the grasper is opened, the 
position of the tooltip is approximated from the middle point of the two opened tooltips, 
which is the middle point of the line segment between left-most and upper-most points, 
as shown in Figure B.2b.  As an alternative, the algorithm also provides the tooltip 
approximation from the middle point of the arc of the two opened tooltips, as shown in 
Figure B.2c.  

Several situations might arise which could provide erroneous location of the tool. 

Disconnection  

To avoid unnecessary disconnected parts belonging to the tool caused by the 
thresholding problem, as is shown in Figure B.3, pixels with gap less than a certain value 
were grouped to the same object.  Usually the biggest object was selected as the tool 
from the connected objects according to the total number of pixels in the object. 

 
Figure B.3 Example of the disconnection of tool parts.  (a) the disconnected 

part (in the red circle) of the tool, and (b) the recognition of the 
whole part of the object as a tool. 

Tool as largest object  

Criteria needed to be set up for judging a valid tool object, since the biggest object in the 
image was not necessarily always the tool.  For example, when the grasper was moved 
nearly out of the image or inserted into the working field (especially in parallel to the 
optical axis of the camera) with only a very small part visible in the image, the tool was 
smaller than some other objects in the image, as shown in Figure B.4.  The valid tool 
judgment criteria were defined on the basis of the characteristics of the tool in the task 
videos.  For example, the lower-right end of the tool should always be connected with 
the bottom or right edge of the image, as is shown in Figure B.1b.  Also the open amount 
of the tooltip should be less than a certain value, e.g. 80 pixels in the image (which is 
roughly twice the diameter of a dish in the image). 
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Figure B.4 Example of taking the second largest object as the tool: (a) the 

largest object (in the green dash-line rectangle) caused by the 
sleeping foreground object (the green peg), and (b) the recognized 
tool (in the red rectangle). 

Peg in the grasper  

When the green peg is picked up by the grasper, it may be misrecognized as a part of 
the tool, as shown in Figure B.5a.  We take this as tool opened situation as shown in 
Figure B.5b.   

 
Figure B.5 Example of peg in the grasper: (a) the binary image with the 

connected peg and grasper (in the red circle), and (b) the 
recognition result. 

B.2. Algorithm validation 

We manually annotated the tooltip positions from the task videos as the ground truth 
data for the evaluation of the algorithm.  The task videos were examined frame by frame 
using an open source video analysis software (Brown, 2013), in which the x and y 
coordinates of the tooltip were automatically recorded into a spreadsheet by mouse-
clicking at the observed tooltip position in the image. 

During the manual tooltip annotation, the tooltip was defined as the end point of the 
grasper when the grasper was closed and the middle point of the two opened tooltips 
when the grasper was open. 
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Two parameters were used to indicate the performance of the algorithm: the percentage 
of the pairs of true tooltip position and computed tooltip position with the distance within 
a certain value, and the average distance between the pairs of true tooltip and computed 
tooltip positions.   

B.3. Results 

A total of 12 task videos (the first trial of each participant) from previous study (Jiang, 
Zheng, Tien, & Atkins, 2013) were processed by the algorithm to output the tooltip 
positions, and these task videos were manually annotated to record the true tooltip 
position in each frame as the ground truth data.   

The average root mean square error (RMSE) of the true tooltip positions to the 
calculated tooltip positions on the captured video was 9.2 ± 2.1 pixels (about 2.4 mm in 
physical distance on the 17” display).  The average overlay rate between the true tooltip 
and the calculated tooltip from 12 task videos was 98.4% ± 1.7%.  An overlay was 
determined when the distance between the true tooltip and the calculated tooltip was 
within a 0.75˚ viewing angle (the definition for the radius of a fixation, about 28 pixels in 
the video frames, corresponding to 7.4 mm in physical distance on the 17˝ display when 
the participants were 60 cm away the eye-tracker. 

Two examples of the computer output tooltip position overlaid with the true tool positions 
over time are shown in Figure B.6.  In the example shown in Figure B.6a, the computer-
captured tooltip matched the true tooltip positions very well with the tooltip within a 0.75˚ 
viewing angle for 99.5% of the video frames.  Figure B.6b shows an example with slight 
displacement between true and recognized tool positions, where the green peg was 
recognized as a part of the grasper when the participant was holding the green peg in a 
special direction as shown in Figure B.5.  Even in the second example, most of the 
distances between the computer-recognized tooltip and the true tooltip were within 0.75˚ 
viewing angle (the overlay rate for this trial was 98.9%). 
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Figure B.6 Examples of the overlay between the computer output tooltip 

positions and the true tool positions over time. The black curve and 
red curve in the figure are the manually annotated true tooltip and 
the computer output tooltip (video tooltip) positions (Euclidian 
distance to the origin (top-left corner of the image)), respectively. 
The blue dots are the distances between the true tooltip and video 
tooltip positions. The blue horizontal lines are overlay threshold 
(0.75˚ viewing angle, 28 pixels in the video frames, corresponding to 
7.4 mm on the physical display). The panel a shows an example 
(subject 6) with well-matched computer output tooltip to the true 
tooltip positions. The panel b shows an example (subject 9) with 
slight displacement between the true tooltip position and recognized 
tooltip position during some segments, since the green peg was 
recognized as a part of the grasper as is shown in Figure B.. 

Several hard problems when using background subtraction such as the effects of 
background oscillating, shadows, and sleeping foreground (Cristani, Farenzena, Bloisi, & 
Murino, 2010) were successfully avoided.  Figure B.7a shows an example of background 
oscillation, which arose when the tool inadvertently touched the dishes; in this situation 
the tooltip was correctly located; Figure B.7b shows the correctly recognized result.  
Figure B.8a shows the sleeping foreground object from the green peg and the shadow of 
the tool in the binary image; Figure B.8b shows the correctly recognized result. 
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Figure B.7 Example of the effect of oscillation: (a) the binary image having 

small objects caused by the oscillation, and (b) the recognition 
result. 

 
Figure B.8 Example of the sleeping foreground and shadow: (a) the binary 

image having sleeping foreground and shadow of the tool, and (b) 
the recognition result. 

B.4. Discussion 

The performance is good with RMSE of about 2.4 mm which is far less than the 
accuracy of the eye-tracker (0.5˚ viewing angle, corresponding to around 5.2 mm at 60 
cm standing distance). 

The present tool tracking method is simple but effective, and does not require attaching 
any extra sensors or color markers to the instruments, which makes it likely to succeed 
in terms of market dissemination.  Some hard problems encountered in moving object 
detection using background subtraction, e.g., the effects of background oscillation, 
sleeping foreground objects, and shadows (Cristani, et al., 2010), were overcome in this 
case by employing object searching and the tooltip point determining strategy. 

The background oscillation did not cause problems because the tool was still the biggest 
connected object in the binary foreground image in most of time (see Figure B.7).  In 
some cases, even when the tool was not the biggest object in the foreground image, the 
tool location algorithm can successfully distinguish the valid tool according to the criteria 
described in the method section; similarly, the false alarm object from the sleeping 
foreground objects (e.g., caused when the green peg was Transported to and stayed in 
another dish) was mostly smaller than the tool object in the foreground images too, as is 
shown in Figure B.8a, and also could be avoided when it was bigger than the tool object, 
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by using the tool validation criteria, as is shown in Figure B.8b.  The sleeping object (see 
Figure B.8) in the foreground also was updated to the background after several frames 
(according to the parameters in the background updating strategy).  The shadow (see 
Figure B.8) by the illumination from the upper-front side of the tool which mostly lay on 
the downside of the tool, also did not affect the accuracy of the tooltip position, as the 
tooltip always was in the upper-left corner of the rectangle of the tool object, as 
illustrated in Figure B.1f, and only the part outside of tool rectangle is updated to the 
background image.   

The initial background image was manually selected from the task videos instead of 
being dynamically generated in this study. 

The peg would be recognized as the part of the tooltip when the grasper carried the peg 
in such a position as shown in Figure B.5.  By using the middle point between the 
touching points on the edges (the left-most and upper-most points), the estimated tooltip 
was pretty close to the actual tooltip.  A similar situation happened when the tool was 
open—the estimated tooltip position was more reasonable than taking the top-left corner 
of the rectangle as the tooltip position, as shown in Figure B.2b and Figure B.2c. 

Although only 2-Dimensional tooltip locations were derived from the eye-tracker output 
task videos instead of the actual 3-Dimensional scene in the training box, the tooltip 
locations were still sufficiently accurate for the eye-hand coordination analysis in 
laparoscopic tasks, since the performers looked at the same 2-Dimensional images from 
the eye-tracker display screen. 

The results were very good.  There was nearly no mis-recognition of the tool.  There was 
a slight displacement between the true tooltip and the recognized tooltip, as is shown in 
Figure B.6b, which was mainly contributed from two factors, one was that the peg in the 
grasper caused a problem as discussed before, and the other was the poor image 
quality when the tool was fast moving.   

The algorithm could easily be extended to detect more than one moving tools in the 
training box from the task videos by enhancing the background subtraction and tool 
detection algorithms, e.g., by enabling a multiple objects detection during the tool object 
searching. 

This method was designed for the analysis of eye-hand coordination under simulated 
laparoscopy environments.  In the future, however, the algorithms could be enhanced for 
applications to laparoscopic surgery for tracking tool trajectories from real surgical 
videos recorded in the operating room.  Challenges would arise because the videos 
recorded from real patients would present much more noise, and the algorithm would 
need to employ dynamic background calculations to work in a changing view.  However, 
the scope view often remains unchanged when the tools are working on a site, so we 
still could take advantage of the stable background for tracking important actions.  
Surgeons believe tool trajectories are associated tightly with their surgical skills 
(Aggarwal, Dosis, Bello, & Darzi, 2007).  Therefore, we would expect results from such a 
study would allow us to further assess surgeons’ skills in the operating room, as the 
characteristic orientations of the tools are similar. 
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B.5. Contributions 

A method was presented for tracking the tooltip surgical videos using background 
subtraction and object searching techniques.  This method is perfectly adequate for the 
analysis of eye-hand coordination in tasks employing stable backgrounds such as 
laparoscopic tasks using a training box, by taking advantage of the characteristics of the 
videos, i.e., the stable background and the orientation of the tool in the video.  This work 
achieves the first step towards tool tracking in a real laparoscopic operating room and 
training environment, where the surgical videos are more complex and more 
sophisticated video processing methods are needed.  

The results of this study have been written in a manuscript and submitted to Surgical 
Innovation (Jiang, Atkins, & Zheng, 2014)10. 

 

 
10

 X.T. Jiang, B. Zheng, and M.S. Atkins, “Video Processing to Locate the Tooltip Position in 
Surgical Eye-hand Coordination Tasks”, Surgical Innovation, In press (2014) 



 

116 

Appendix C.  
 
Other work and contributions  

The work described in this thesis is a part of an ongoing research project of eye-tracking 
applications in surgical simulation and training.  The author is also involved in other parts 
of the project and contributed as the first author or coauthor in the following publications.  
Our research group conducted a vigilance study in operating rooms (Geoffrey Tien, et 
al., 2010; Bin Zheng, et al., 2011)11,12.  On the basis of this vigilance study, I developed 
an algorithm to detect eye blinks from the eye videos recorded from a head-mounted 
eye-tracker.  This algorithm and the evaluation results were published in Journal of 
Behaviour Research Methods (Jiang, Tien, Huang, Zheng, & Atkins, 2013)13.  This blink 
detecting algorithm was applied in another study to classify surgeons’ mental workload 
during operating, and the results were published in Surgical Endoscopy (Bin Zheng, et 
al., 2012)14.  I was also involved in analyzing gaze behaviours in performing surgical 
tasks and watching surgical videos for training purpose.  Findings were published in 
Proceedings of the Symposium on Eye Tracking Research and Applications (Atkins, 
Jiang, Tien, & Zheng, 2012; Geoffrey Tien, Atkins, Jiang, Zheng, & Bednarik, 
2014)15,16 and Studies in Health Technology and Informatics (G. Tien, Atkins, Jiang, 
Khan, & Zheng, 2013)17, and another paper is under review for PLoS One (Bin Zheng, 
Jiang, Tien, Bednarik, & Atkins, 2014)18. 

 
11

Tien, G., M. S. Atkins, et al. (2010). Measuring Situation Awareness of Surgeons in 
Laparoscopic Training.  Eye Tracking Research and Applications, Austin, TX, ETRA. 

12
 Zheng, B., G. Tien, et al. (2011). "Surgeon's Vigilance in the Operating Room." American 
Journal of Surgery 201(5): 667-671. 

13
 X.T. Jiang, G. Tien, D. Huang, B. Zheng, and M. S. Atkins, “Capturing and Evaluating Blinks 
from Video-based Eyetrackers”, Behavior Research Methods, 1-8 (2013). 

14
 B. Zheng, X.T. Jiang, G. Tien, A. Meneghetti, O. N. M. Panton, M. S. Atkins, “Workload 
Assessment of Surgeons: Correlation between NASA TLX and Blinks”, Surgical Endoscopy 26, 
2746-2750 (2012). 

15
 M.S. Atkins, X. T. Jiang, G. Tien, and B. Zheng, “Saccadic Delays on Targets while Watching 
Videos”, Proceedings of the Symposium on Eye Tracking Research and Applications, 405-408 
(2012). 

16
 G. Tien, M.S. Atkins, X.T. Jiang, B. Zheng, and R. Bednarik, “Verbal Gaze Instruction Matches 
Visual Gaze Guidance in Laparoscopic Skills Training”, Proc. ETRA 2014, 331-334 (2014). 

17
 G. Tien, M.S. Atkins, X.T. Jiang, R. S.A. Khan, and B. Zheng, “Identifying Eye Gaze Mismatch 
During Laparoscopic Surgery”, Studies in Health Technology and Informatics 184, 453 – 457 
(2013). 

18
 B. Zheng, X.T. Jiang, R. Bednarik, and M. S. Atkins, “Gaze Characteristics in Video Watching: 
Loss of Visual Guidance”, Under revision (2014). 


	Approval
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Chapter 1.   Introduction
	1.1. Background
	1.2. Challenges
	1.3. Overview of experiments
	1.4. Contributions
	1.5. Organization of thesis

	Chapter 2.   Literature review
	2.1. Mental workload, task difficulty, and measurement methods
	2.2. Eye-tracking technology
	2.2.1. Eye-tracking methods
	2.2.2. Pupil diameter output from eye-tracker

	2.3. Pupil responses to the changes of mental workload in cognitive tasks
	2.4. Pupil responses to task requirement in goal-directed movements

	Chapter 3.   Pupil responses in discrete movements
	3.1. Pupil responses to task requirement during discrete goal-directed movements (Experiment 1)
	3.1.1. Experiment purpose and hypothesis
	3.1.2. Methods
	Participants
	Experimental setting and apparatus
	Tasks and procedure
	Data analyses
	Tooltip location
	Tool movement division
	Tool movement phases
	Movement-related pupil responses

	Experimental design

	3.1.3. Results
	Accuracy
	Movement time
	Pupil responses to tool movements
	Descriptive analysis
	Statistical analysis


	3.1.4. Discussion

	3.2. Pupil responses to target size and distance during discrete goal-directed movements (Experiment 2)
	3.2.1. Experiment purpose and hypothesis
	3.2.2. Methods
	Participants
	Experimental setting and apparatus
	Task and procedure
	Data analysis
	Tooltip location
	Movement-related pupil responses

	Experimental design

	3.2.3. Results
	Accuracy
	Movement Time
	Pupil responses to tool movements

	3.2.4. Discussion

	3.3. Summary

	Chapter 4.   Pupil responses in continuous movements (Experiment 3)
	4.1. Experiment purpose and hypothesis
	4.2. Methods
	4.2.1. Participants
	4.2.2. Experimental setting and apparatus
	4.2.3. Tasks and procedure
	4.2.4. Data analysis
	Tooltip location
	Tool movement phases
	Movement-related pupil responses
	Experimental design


	4.3. Results
	4.3.1.  Accuracy
	4.3.2. Movement time
	4.3.3. Pupil responses to continuous tool movements

	4.4. Discussion
	4.5. Summary

	Chapter 5.   Evaluation of pupil responses in simulated surgical tasks
	5.1. Study description
	5.1.1. Participants
	5.1.2. Experimental setting and apparatus
	5.1.3. Task and procedure

	5.2. Data analysis
	5.2.1. Estimation of difficulty of subtasks
	5.2.2. Tooltip location
	5.2.3. Subtask separation and movement phases
	5.2.4. Movement-related pupil responses

	5.3. Results
	5.3.1. Accuracy
	5.3.2. Movement time
	5.3.3. Pupil responses to task difficulty in performing surgical tasks

	5.4. Discussion
	5.5. Summary

	Chapter 6.   Conclusion and future work
	6.1. Conclusions
	6.2. Threats to validity
	6.3. Future work

	References
	Appendix A.   Tool detection from Fitts’ pointing task videos
	Appendix B.   Tool detection from peg transportation task videos
	B.1. Tool tracking algorithms
	B.1.1. Background subtraction
	B.1.2. Tool location
	B.1.3. Tooltip location
	Disconnection
	Tool as largest object
	Peg in the grasper
	B.2. Algorithm validation
	B.3. Results
	B.4. Discussion
	B.5. Contributions

	Appendix C.   Other work and contributions

