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Abstract

Many applications of multiview or three dimensional (3D) videos have been developed. This poses

great challenges to video coding. We study multiview video coding (MVC), perceptual multiview

video coding, 3D geometry compression, interactive multiview video streaming (IMVS), and free

viewpoint video (FVV). The applications studied in this thesis can be classified into two categories.

In the first category we focus on rate-distortion (RD) performance, where the distortion can be

measured by mean squared errors (MSE), human visual system based MSE, or metro distance.

First, we consider the application of FVV and propose a novel inpainting assisted approach to

efficiently compress multiview videos. The decoder can independently recover missing data via

inpainting, resulting in lower rate. Second, we study the application of just noticeable distortion

(JND)-based MVC and propose to exploit inter-view or temporal redundancy of JND maps to syn-

thesize or predict target JND maps, which are then used to adjust prediction residuals. Third, we

study 3D geometry compression and propose a new 3D geometry representation. We project 3D

geometry to a collection of surrounding tiles, and subsequently encode these tile images using a

modified MVC. The crux of the scheme is the optimal placement of image tiles.

In the second category, we study applications where real-time computation and the associated

complexity also need to be considered, in addition to the RD performance. These applications in-

clude IMVS and FVV. We first consider view switching in IMVS, an application where a network

client requests from server a single view at a time but can periodically switch to other views as the

video is played back uninterrupted. We propose the optimal frame structure such that frequently

chosen view switches are pre-computed while infrequent ones are computed in real-time upon re-

quest. On the other hand, we examine the decoder side computational complexity of view synthesis

in FVV. We propose to optimally tradeoff transmission rate for decoder-side complexity. For regular

view synthesis, we find the optimal subset of intermediate views to code. For a novel inpainting

assisted paradigm, we argue that some expensive operations can be avoided by directly sending

intra-coded blocks.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Multiview Image and Video

A digital image is a two-dimensional (2D) array of digital values (called pixels). A video is a set of

consecutively moving visual images. People used to watch video programs on television via cable,

tape, or optical disc. In the past decade, the consumption of Internet streaming video has been

explosively growing. As reported by Sandvine 1 in 2013, Netflix accounted for nearly one-third of

US Internet traffic at home. The efficient storage and streaming of such huge amount of data poses

great challenges to the industry and research community.

Recent years, the three-dimensional (3D) visual technology has been drastically changing the

video entertainment industry. 3D films that greatly enhance depth perception have been widespread

since the huge success of the film “Avatar” in 2009, though the history of 3D films can be traced

back to the beginning of the 20th century. Further, 3D visual technology has stepped out theaters

and occupied living rooms with the advent of 3D television (3DTV), which provides either stereo-

scopic display or autostereoscopic experience without the need of glasses. Besides the commercial

success of 3D films and 3DTVs, there have been a great deal of efforts on offering novel visual ex-

perience beyond the conventional 2D display. Panoramas extend the capability of regular capturing

devices, and present much wider fields of view. Panoramic photos can be captured by special cam-

eras like fisheye, or be synthesized using multiview techniques. Another novel way to display 3D

content is the free viewpoint TV (FTV) proposed by Nagoya University [32], which enables viewers

to interactively switch the viewpoints of a dynamic scene on a conventional 2D monitor, offering

the 3D photographical experience instead of that created by 3D graphics. Similar to FTV, Carnegie

1http://www.tubefilter.com/2013/05/14/netflix-us-internet-traffic-percentage/

1



Figure 1.1: An example of multiview texture-plus-depth images from the video sequence Ballet.

Mellon University introduced to Super Bowl XXXV an “Eye Vision” system 2, where 30 cameras

were installed around the stadium that gave TV viewers a flying-through feeling. Since these 3D vi-

sual techniques employ multiview images / videos instead of 3D geometrical models, the enormous

efforts to create the models are avoided, and the visual experience is more realistic.

The multiview images / videos to support those 3D visual presentations are captured by a num-

ber of cameras. In this thesis, we call the image / video from a fixed camera as a view. To enable

depth perception or render new views, depth maps should be measured or estimated. The Depth

value refers to the distance between the image plane of camera and the corresponding point in

the scene. The viewpoints that are not captured can possibly be synthesized using the color im-

ages (also called texture images in the thesis) from neighboring cameras using the geometrical

information provided by depth maps. This view synthesis procedure is called depth image based

rendering (DIBR) [29]. To enable the above applications, we need to store and transmit the mul-

tiview texture-plus-depth images [69], as shown in Fig. 1.1 3. Compared to single view image /

video, the amount of raw data is increased by several times. In this thesis, facing the aggravating

challenge, we propose several solutions of multiview image / video compression in order to satisfy

the diverse requirements of different application scenarios.

2http://www.ri.cmu.edu/events/sb35/tksuperbowl.html
3The video sequence can be downloaded from http://research.microsoft.com/en-us/downloads/5e4675af-03f4-4b16-

b3bc-a85c5bafb21d/
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1.1.2 Multiview Video Coding

Digital images and videos are huge in size but rich in repetitive patterns (redundancy). One second

of 24-bit 1080p video (resolution: 1920 × 1080) at 30 frames per second (fps) needs approximately

1.5 billion bits (186.6 megabytes) to represent the uncompressed raw data. However, pixels in a

small spatial region tend to be similar, a pixel patch may recur in the same image, and the changes

between consecutive frames in a video are relatively small. Image and video compression methods

try to remove the redundancies and represent the target image / video in a compact bitstream.

The design of most video coding methods is primarily aimed at having the highest compression

efficiency, which is the ability to encode video at the lowest possible bit rate while maintaining a

certain level of video quality. The ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC

Moving Picture Experts Group (MPEG) standardization organizations have developed a series of

video coding standards, such as H.261, H.262/MPEG-2, H.263, MPEG-4, H.264/AVC, and the most

recent H.265/HEVC (high efficiency video coding). Although the first version of HEVC has just been

finalized, Netflix has started using HEVC for its famous TV series “House of Cards”.

The video coding standards from H.261 to HEVC are all block-based. In H.264 [101] and

HEVC [89], the size of block is adapted to local characteristics of image. Small blocks are used

to code complex regions while large blocks are used to code smooth regions. In a block, the inter-

pixel correlation is decorrelated by coding tools like intra prediction and transform, and the temporal

redundancy of neighboring frames is exploited by motion-compensated prediction. Quantization is

a way to trade off image quality for compression ratio. The quantized transform coefficients are

converted to bitstream by entropy coding, where remaining statistical redundancies are removed.

As mentioned, we require multiview video coding (MVC) [30] to enable 3D visual experiences.

The amount of raw data is proportionally increased with the increased number of views. However,

if the cameras are closely spaced as applicable to most applications, the correlation among neigh-

boring views is strong. The main challenge for MVC is thus how to efficiently reduce the inter-view

redundancy. Similar to the removal of temporal redundancy, the motion-compensated prediction

(usually called disparity-compensated prediction in this case) has reasonable performance, but this

time the images from neighboring views are used as references. Fig. 1.2 is an example of MVC

predictive frame structure, where view 0 is compressed by a regular single view coding scheme

while the frames of view 1 are predicted by the frames of view 0 at the same time instant via dis-

parity estimation, in addition to the traditional motion estimation. Taking inter-view correlation into

consideration, MVC outperforms the simulcast scheme that independently codes each view.

1.1.3 Related Applications of MVC

In this thesis, we consider several applications of MVC. Free viewpoint video (FVV) allows users to

smoothly change the viewpoint. FVV can be enabled by stored multiview texture-plus-depth video,
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Figure 1.2: Example of MVC inter-frame and inter-view prediction structure, where I denotes intra-
coded frame and P denotes inter-predicted frame.

and it is critical to compress the data efficiently. In interactive multiview video streaming (IMVS) [15],

a network client requests from server a single view at a time but can periodically switch to other

views as the video is played back uninterrupted, where the MVC strategy should be changed adapt-

ing to user behaviors. 3D geometry compression [25] plays an essential role in computer graphics,

and it could be converted to an MVC problem and represented in a more compact format. The

just noticeable distortion (JND)-based [53] perceptual video coding can be extended to multiview

scenario, and it is possible to borrow some tools in MVC to the generation of multiview JND. To sum

up, it is necessary to design novel MVC algorithms based on the characteristics of each application.

1.2 Background Knowledge

To facilitate the understanding of our contributions, we review some important background knowl-

edge that is closely related to the work in this thesis, including view synthesis, image inpainting and

JND.

1.2.1 DIBR-Based View Synthesis

Image-based rendering (IBR) enables 3D scene to be represented by a number of sample images

without using explicit 3D geometry. IBR-based view synthesis is used to create novel views of a

scene from images taken from different viewpoints. There are many image-based representations

for a scene such as light field [58], lumigraph [45], concentric mosaics [85], view morphing [80], but

the works in this thesis focus on texture-plus-depth format in which a view is not only described by
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a color image but also a depth map where the per-pixel depth value corresponds to the distance

between camera and the 3D scene. With a scene represented by multiple closely-spaced views,

depth image-based rendering (DIBR) [29] can be used for view synthesis.

One of DIBR techniques, forward warping, project the pixels in the reference view to 3D space

using the camera calibration parameters and depth map of the view, and then the 3D points are

back-projected to the target view. With Lambertian assumption 4, the pixel values in the reference

view are not changed during DIBR. Mathematically, given pixel (xr, yr) in reference view r and its

depth value d(xr, yr), the corresponding 3D world coordinate of (xr, yr) is

(xw, yw, zw)T = R−1
r · (d(xr, yr) ·A−1

r · (xr, yr, 1)T
− tr), (1.1)

where Rr, Ar, and tr are rotation matrix, intrinsic matrix, and translate vector of view r, respectively.

The coordinate of the rendered pixel (xv, yv) in target view v can be obtained by

(xv, yv, 1)T = d(xv, yv)−1Av · (Rv · (xw, yw, zw)T + tv), (1.2)

where Rv, Av, and tv are rotation matrix, intrinsic matrix, and translate vector of view v, respectively.

d(xv, yv) is the depth value of pixel (xv, yv) in target view v, and is equal to d(xr, yr) assuming 1D

parallel camera arrangement.

After DIBR, there are some holes left due to disocclusion, a fact that the background objects

blocked by foreground objects in the reference view appear in the target view. We can use image

inpainting techniques (discussed in the following) to fill the holes, or merge several rendered images

together if there are more than one reference views.

1.2.2 Image Inpainting

Image inpainting modifies the pixel values in selected image regions such that the regions do not

stand out with respect to its surroundings. Image inpainting can be used to remove unwanted ob-

jects in an image, to restore damaged pictures, or to conceal errors due to unreliable transmission.

Generally speaking, there are two ways of image inpainting. The first way uses either a varia-

tional principle or a partial differential equation (PDE). In this category, Ogden et al [76] proposed

to use a Gaussian pyramid and a series of interpolation, upsampling, and downsampling to in-

paint. [66] proposed to interpolate missing pixels by extending the isophotes of image to mimic

human visual system that tries to complete edges in an occlusion context. The term “image in-

painting” was coined by Bertalmı́o et al in [5], where PDE is used to solve the inpainting problem.

The pixel values along the edges are propagated from the boundary of missing regions towards the

interior. Bertalmı́o et al [4] further proposed to use the Navier-Stokes equation of fluid dynamics to

inpaint image.

4In Lambertian reflectance, the apparent brightness of a surface to an observer is the same regardless of the observer’s
angle of view.
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Figure 1.3: Notation diagram of Criminisi’s inpainting algorithm [21].

In this thesis, however, we focus on the second way, the patch-based inpainting. Criminisi’s

inpainting algorithm [21] is a popular patch-based inpainting method, which is a significant extension

of [27]. Criminisi’s inpainting algorithm propagates texture patterns from known pixel regions to

spatial regions with missing pixels, assuming that self-similarity typically exists in natural images.

For convenience and consistency, we reuse some notations from Criminisi’s algorithm. We denote

the image by I, and Φ and Ω = I \ Φ respectively denote the source and target regions in the

inpainting process. As illustrated in Fig. 1.3, the pixels in Ω that are neighbors of Φ form the

boundary, denoted by δΩ. The region Φ includes the known pixels, while Ω represents the holes

with unknown pixels. A square-shaped target patch Ψp centered at pixel p on the boundary δΩ

is chosen by a priority-based patch selection procedure. The patch Ψp has two non-overlapping

parts: the known region Ψp ∩ Φ (also called template in the sequel) and the target unknown region

Ψp ∩Ω.

Mathematically, the priority value P(p) for a patch centered at p takes surrounding pixels and

linear structures into consideration:

P(p) = C(p) D(p), (1.3)

where C(p) and D(p) are the confidence and data terms respectively. The confidence term C(p)

evaluates the amount of reliable information in known region Ψp ∩Φ by summing up the confidence

values in the known region (normalized by |Ψp|):

C(p) =

∑
q∈Ψp∩Φ C(q)

|Ψp|
, (1.4)
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The more known and filled pixels in Ψp ∩ Φ, the higher value C(p) is. Hence the confidence term

C(p) promotes the selection of patches with more known pixels—ones that are easier to inpaint.

The data term D(p) encourages detected linear structure to be extrapolated as early as possible.

The reason is that pixel neighborhood with prominent linear structures (e.g. strong edges) are more

likely to continue propagating into the unknown region. If the normal np to the boundary δΩ is close

to the isophote ∇I⊥p (gradient) of known region at pixel p, their inner product will be a large value;

we compute D(p) as:

D(p) =
∇I⊥p · np

α
, (1.5)

where α is used for normalization and α = 255 for typical 8-bit image. Similar to C(p), the data

term can be interpreted as another measure of “ease-to-inpaint”: higher D(p) implies more reliable

propagation of linear structure. Combining the two into priority term P(p) = C(p) D(p), the priority

essentially leads to an “easy-to-hard” order.

For a given target patch Ψp with highest priority, template matching is performed in [21] to find

the patch Ψq in Φ that is the most similar to known pixels in Ψp ∩Φ:

Ψ∗q = arg min
Ψq∈Φ

d(Ψp,Ψq) (1.6)

where the distortion term d( ) is computed using only known pixels in Ψp and their corresponding

pixels in Ψq. After the optimal Ψ∗q is found, the pixels in Ψ∗q that correspond to missing pixel locations

in Ψp ∩Ω will be copied over for completion of Ψp.

1.2.3 Just Noticeable Distortion

Just noticeable distortion (JND) model [53] for image means that any error around a pixel below its

JND threshold cannot be perceived by human being. In this thesis, the pixel-domain JND is used to

eliminate the perceptual redundancy in MVC. A JND map consists of JND thresholds, one for each

image pixel. The JND threshold is a value corresponding to the compound effect of background

luminance adaptation and texture masking. The spatial JND threshold around pixel (x, y) can be

computed using the nonlinear model proposed in [110]:

JNDs(x, y) = Tl(x, y) + Tt(x, y) − Cl,t min{Tl(x, y),Tt(x, y)},

where Tl(x, y) and Tt(x, y) are the visibility thresholds for background luminance adaptation and

texture masking, respectively; Cl,t refers to the overlapping effect in masking.

Psychovisual experiments have showed that human eyes are sensitive to luminance contrast

rather than absolute luminance intensity, i.e., very bright or very dark regions can hide more noise

than middle gray level regions. This phenomenon is called background luminance adaptation.

Therefore Tl(x, y) is modeled as the function of the average background luminance I(x, y), and
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its parameters are fitted from the data collected in psychovisual experiments [19]. It can be written

as

Tl(x, y) =

 17(1 −
√

I(x,y)
127 ) + 3, if I(x, y) ≤ 127

3
128 (I(x, y) − 127) + 3, otherwise

When I(x, y) ≤ 127, Tl(x, y) is a monotonously decreasing function. Therefore pixels around darker

background luminance areas can hide more errors. When I(x, y) > 127, Tl(x, y) is a linearly increas-

ing function; hence regions with brighter background luminance have more perceptual redundan-

cies.

The texture masking accounts for the reduction in the visibility of the pixel around which spatial

non-uniformity happens. Intuitively, textured regions can hide larger errors than smooth ones. How-

ever, the areas with object edges are perceptually vulnerable to noise. To avoid over-estimation,

the edge information is taken into consideration in [110] when calculating the visibility threshold of

texture masking:

Tt(x, y) = η · G(x, y) ·We(x, y), (1.7)

where η is a control parameter, G(x, y) is the maximal weighted average of gradients around the

pixel at (x, y), and We(x, y) is an edge-related weight, which can be obtained by edge detection and

Gaussian filter.

In contrast to JND, minimally noticeable distortion (MND) [53] may be slightly visible. The MND

can be employed to image and video compression. The fast JND generation methods proposed in

Chapter 3 could be applicable to the pixel-domain MND as well.

1.3 Related Works

We next review the related works in the literature, including MVC, inpainting assisted coding, geom-

etry compression, and IMVS. We show how they motivate our works and the differences from the

thesis.

1.3.1 Related Works on MVC

Multiview image and video coding refers to the compression of multiple color images of the same

3D scene captured using an array of closely spaced cameras. Many papers on this topic focus

on the efficient coding of the entire set of images by exploiting the inter-view data redundancy

inherent in the camera setup. A straightforward way to achieve it is to use disparity-compensated

prediction. Similar to motion-compensated prediction in single-view video coding, for each block

in the target view, disparity compensation finds the best matching block in a reference view, then

encodes and transmits the disparity vector (DV) and the prediction residual for reconstruction at
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the decoder. In [64], motion compensation and disparity compensation are combined to encode

stereo sequences. The concept of Group of Group of Pictures (GoGOP) for inter-view prediction is

introduced in [49], where a picture can refer to decoded pictures in other views even at different time

instants. In [70,73], various modified hierarchical bidirectionally predicted structures are developed

for inter-view prediction. In [52], the problem of optimal GoGOP prediction structure for multiview

video coding is studied. However, simple 2D translational inter-view motion assumed by disparity

compensation cannot accurately represent the geometry transformation in a view-switch from one

camera viewpoint image to another; hence, disparity compensation is not always efficient.

Texture-plus-depth format is an alternative data representation that is particularly useful for

free viewpoint video [69]. Texture and depth images from multiple camera viewpoints are en-

coded together, and one can synthesize novel intermediate viewpoints via DIBR [97]. In this kind

of representation, an alternative to translational disparity prediction is view synthesis prediction

(VSP) [65, 72, 111], where a synthesized version of a target view is used for predictive coding.

Though high in computation complexity, using only texture images it is also possible to first estimate

disparity (depth) using stereo-matching methods [26,57] and then partially synthesize a target view-

point image [105,107].

Most view synthesis methods assume rectified cameras, i.e., the two cameras are parallel and

only differ from each other by a small horizontal shift. To deal with more general camera setups, a

rectification-based view interpolation method is proposed in [28]. In [105], an improved rectification-

based view interpolation and extrapolation method is developed for MVC. In Chapter 2, we also

try to deviate from the assumption of translational inter-view motion by using DIBR to render the

target picture, but the warped images are used for further inpainting-based completion instead of

additional reference.

As depth images are used only for view synthesis and are not themselves directly viewed, dif-

ferent rate-distortion (RD) optimization procedures have been designed for depth map coding to

optimize the synthesized view quality [12, 13, 17, 56]. In particular, since depth images possess

unique signal characteristics such as piecewise smoothness (PWS), new coding tools such as

graph Fourier transform (GFT) designed specifically for depth signals have been proposed [50,82].

Recently, HEVC has been extended to support encoding of 3D video, namely multiview video

and associated depth data [74, 91], similar to the MVC extension of H.264/AVC [10]. There are

mainly two types of tools employed: disparity compensation and view synthesis prediction. As

discussed earlier, this is the hybrid signal prediction / residual coding paradigm used in conven-

tional video coding standards, where the encoder dictates exactly how a target signal should be

constructed at the decoder.

The key differentiator for our proposal in Chapter 2 is that we leverage on the self-discovery

power of the decoder, so that the decoder can recover remaining missing pixels in the reconstructed

viewpoint image via inpainting procedures. Instead of disparity compensation, our proposal reduces
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inter-view redundancy by mapping pixels from a reference view to target view to create a starting

image, and then transmits auxiliary information to assist the decoder in the completion of the rest

of the image in a RD manner, thus avoiding the aforementioned shortcomings of disparity compen-

sation.

1.3.2 Related Works on Inpainting Assisted Video Coding

Employing inpainting at the decoder to aid compression was first proposed in [61] for 2D images.

In a nutshell, the work in [61] essentially advertises an advanced intra-prediction scheme based

on (local) inpainting. This inpainting is more sophisticated than uni-directional pixel copy employed

in video coding standards like H.264 intra [101], where texture in the target block is predicted us-

ing observed pixels from adjacent causal blocks that have already been reconstructed. To further

improve inpainting quality, edge information (called assistant information) for the target block is

optionally sent, so that sharp edges in the reconstructed block can be preserved. The success

of [61] has inspired a set of follow-up works that also employ inpainting for 2D image and video

coding [11,60,78,103,106]. For example, the authors in [103] generalize the notion of assistant in-

formation to a set of parameters for different model distributions; i.e., instead of simple edges, other

assistant information can be transmitted to aid inpainting. Blocks with statistics that do not fit with

model distributions are classified as non-featured blocks and coded using traditional DCT-based

methods. The authors in [78] propose an inpainting procedure based on Laplace partial differen-

tial equation (PDE) and total variation for HEVC intra coding, and later for depth map coding as

well [11]. In [22], towards the goal of efficient free viewpoint video compression, the concept of aux-

iliary information (AI) is introduced to assist a receiver in completing holes in a DIBR-synthesized

secondary view image via sender-assisted inpainting, given texture and depth maps of the primary

view.

Though also employing inpainting at the decoder, our work in Chapter 2 differs from these works

fundamentally in the following regard: inpainting for intra-prediction as described above exploits

local inter-pixel data redundancy in images, while our proposed encoder-driven inpainting strategy

exploits also data redundancy in non-local pixel patches due to self-similarity in images. Specifically,

our inpainting scheme is derived from inpainting schemes based on template-matching such as [21]

that identify and copy non-local pixel patches from distant spatial regions to the target patch. This

concept is similar to our previous work [22], which is significantly extended here in many aspects,

as will be discussed in Chapter 2.

1.3.3 Related Works on Geometry Compression

In computer graphics, geometry models are commonly represented by triangles recording infor-

mation such as vertex positions and connectivity. Recently, billions of triangles are used in 3D
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applications like video games, which requires efficient geometry compression to reduce storage

and transmission costs.

Previous work on compression of static 3D geometry is extensive. [25] first motivated the ge-

ometry compression problem and proposed generalized triangle mesh to solve the problem. [96]

proposed to compress triangular meshes directly through prediction of vertices and connectivity.

On the other hand, multiresolution progressive compression was studied. The vertex positions are

hierarchically predicted, and high compression ratio is achieved [95]. [99] proposed a progressive

coding scheme based on over-complete expansions by first projecting a 3D object onto a 3D sphere.

The selection of multiple spheres for geometric projection is further optimized in [98].

However, the compression of time-varying meshes (TVM) brings new challenges. In [75, 108,

109], TVM in each frame is first divided into patches, then a patch-based matching procedure is

used to exploit inter-frame correlation. The residual information is coded using scalar or vector

quantization. In Chapter 4, we pursue an image-based approach, where 3D geometry is first pro-

jected to tiles before the tile images are coded using a multiview image codec. An image-based

approach means motion compensation well understood in video coding can be directly applied to

reduce temporal redundancy.

1.3.4 Related Works on IMVS

Interactive Multiview Video Streaming

The MVC schemes focus on the compression of all viewpoint images as bulk data and did not

take user interactivity into consideration. Specifically, in an interactive multiview video streaming

(IMVS) scenario [16] where a receiver periodically requests only one out of a large number of

available views at a time from the server for playback, the server must encode the multiview video

in a sufficiently flexible manner, so that the lone requested view can be transmitted for correct

decoding while exploiting inter-view data redundancy (between views already transmitted to user

and the newly requested view) to lower transmission rate. Toward this goal, [63] proposed to pre-

encode three separate streams to support three most common types of view-switching requested by

users. [15] designed a redundant frame structure to optimize the trade-off between storage cost and

expected streaming rate, where distributed source coding (DSC) frames [18] were used to facilitate

view switching. The study of storage and transmission cost tradeoff was further generalized by

considering network delay in [104]. A more recent work [2] optimized frame prediction structure for

IMVS to minimize visual distortion subject to both the storage and transmission constraints.
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Decoder-side rate-complexity tradeoff in IMVS

In IMVS [15], only the single video view currently selected by a client is transmitted from server, low-

ering transmission rate. The technical challenge in [15] is to design a frame structure that efficiently

compresses multiview video and provides periodic view-switching mechanisms in the encoded bit-

stream at the same time. [104] extends the work in [15] by considering interactive streaming of free

viewpoint video, where texture and depth maps of two coded views that sandwich the virtual view

currently selected by a client are transmitted from server, so that the virtual view can be synthesized

at client via DIBR. In Chapter 6, following the same IMVS setup in [15, 104], we focus exclusively

on the rate-complexity (RC) tradeoff in client-side view synthesis, which is not considered in [104].

To the best of our knowledge, only [67] studies the complexity of DIBR-based view synthesis at

decoder in a formal manner. The common assumption in [67] and this work is that overall system

computation load (or power consumption) can be reduced by trading off view synthesis complex-

ity with an increase in transmission bitrate. The increase in transmission rate will not cause the

same proportional increase in power consumption; this is true for 3G network data transmission,

for example, since energy consumption is dominated by the tail energy at the end of a transfer,

not the actual amount of data transmitted [3]. For LTE, [51] experimentally shows that the power

consumption grows slow with increased downlink throughput, and that the energy per bit decreases

drastically and down to a very low level if the size of downlink bulk data constantly becomes larger.

The FVV applications considered in Chapter 6 involves massive data transmission through downlink

to client, and thus those observations could apply to our case. The key idea in [67] is to compute

and transmit from server the disoccluded pixels in an DIBR-synthesized image from a virtual view-

point, so that the client can simply integrate these server-computed pixels without performing any

inpainting, but [67] requires pre-encoding and storage of inpainted pixels for every possible virtual

view, resulting in a large storage cost.

1.4 Outline and Main Contributions

In this thesis we discuss how to compress multiview videos from different applications. We study

not only classical applications such as MVC, but also some new applications such as perceptual

MVC, 3D geometry representation and compression, IMVS, and FTV.

The application-specific MVC studied in this thesis can be generally classified into two cate-

gories. In the first category, we focus on the rate-distortion (RD) performance, where the distortion

can be measured by the mean squared errors (MSE) in Chapter 2, human visual system (HVS)-

based MSE in Chapter 3, or the metro distance in Chapter 4. In the second category, we study

applications where the real-time computation and associated complexity also need to be consid-

ered. We first consider the pre-computation and real-time computation of IMVS at the encoder
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(server) side in Chapter 5, and then study the computational complexity of view synthesis for FVV

at the decoder (client) side in Chapter 6.

In Chapter 2, we consider the application of FVV, where users can change the viewpoint and the

system can synthesize the corresponding view. We propose a novel inpainting assisted approach

to efficiently compress multiview videos that support FVV. The inter-view redundancy in multiview

videos is removed by projecting a coded reference view to a target view via DIBR. The remaining

holes in the target view are filled in a block-by-block manner. The decoder can independently

recover some missing data via inpainting without explicit directions from encoder, resulting in lower

rate at the same MSE.

In Chapter 3, we study the application of JND-based MVC. JND can be used to conceal im-

perceptible distortions in video coding, leading to more compact compression. However, the direct

calculation of JND maps incurs high complexity, and the problem is aggravated when JND maps

for multiple views are needed. We propose to exploit inter-view or temporal redundancy of JND

maps to synthesize or predict target JND maps, which are then used to adjust prediction residuals.

Experimental results show that the RD performance is improved if the distortion is measure by a

HVS-based metric.

In Chapter 4, we study 3D geometry compression, and propose a new 3D geometry represen-

tation method. Instead of compressing the 3D geometry directly, we project the geometry of a 3D

object to a collection of surrounding tiles, and subsequently encode these tile images using a modi-

fied MVC tuned for piecewise smooth signals. The crux of the scheme is the “optimal” placement of

image tiles, which yields the tradeoff between rate and distortion. The performance is measured by

the convex hull of rate and the metro distance (measuring the reconstruction quality of a 3D mesh),

and we show that our tile placement outperforms the naı̈ve tiling.

In Chapter 5, we discuss view switching in IMVS, an application where a network client requests

from server a single view at a time but can periodically switch to other views as the video is played

back uninterrupted. Given the statistics of user behaviors, we propose the optimal frame structure

such that frequently chosen view switches are pre-computed while infrequent ones are computed

in real-time upon request.

In Chapter 6, we examine the decoder side computational complexity of view synthesis in the

FVV. We propose to optimally tradeoff transmission rate for decoder-side complexity. For DIBR-

based view synthesis, we find the optimal subset of intermediate views to code. For a novel in-

painting assisted paradigm, we argue that some expensive operations at decoder can be avoided

by directly sending intra-coded blocks.

In Chapter 7, we summarize and conclude the research work of this thesis and discuss the

outlook of possible extensions.

The results in this thesis have been reported in [34–37, 40–42]. Some other papers have also

been published during my PhD studies, but are not included in the thesis, including [33,38,39].
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1.5 Acronyms and Notations

In this section, we summarize the acronyms and some common notations used throughout this

thesis.

Table 1.1: List of acronyms

1D one-dimensional
2D two-dimensional
3D three-dimensional
MVC multiview video coding
IMVS interactive multiview video streaming
FVV free viewpoint video
FTV free viewpoint television
3DTV three-dimensional television
JVT joint video team
MPEG moving experts group
VCEG video coding experts group
JMVC joint multiview video coding
HEVC high efficiency video coding
IBR image-based rendering
DIBR depth-based image rendering
VSP view synthesis prediction
HVS human visual system
JND just noticeable distortion
AI auxiliary information
QP quantization parameter
RD rate-distortion
GOP group of picture
GoGOP group of group of pictures
PWS piecewise smoothness
GFT graph Fourier transform
KLT Karhunen-Lòeve transform
DCT discrete cosine transform
CABAC context-adaptive binary arithmetic coding
SP switching P
DSC distributed source coding
LDPC low-density parity check codes
DP dynamic programming
PDE partial differential equation
PDF probability density function
PMF probability mass function
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MSE mean-squared-error
PSNR peak-signal-to-noise ratio
SSIM structural similarity
BD Bjontegaard Delta

Table 1.2: List of notations

R The set of real numbers
Z The set of integer numbers
R

+ The set of positive real numbers
Z

+ The set of positive integer numbers
A A boldface letter denotes a matrix
I The identical matrix
0 The null matrix
AT The transpose of a matrix A
AH The conjugate of a matrix A
A† The conjugate transpose of a matrix A
A−1 The inverse of a matrix A
‖A‖ The determinant of a matrix A
E(x) the expected value of a random variable x
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Chapter 2

Encoder-Driven Inpainting Based
MVC for FVV

In this chapter, we consider free viewpoint video (FVV) systems, where a user has the freedom

to select a virtual view from which an observation image of the 3D scene is rendered, the scene

is commonly represented by texture and depth images from multiple nearby viewpoints. In such

representation, there exists data redundancies across multiple dimensions. It is important to exploit

the redundancies for effective multiview video compression. Existing schemes attempt to eliminate

them via the traditional video coding paradigm of hybrid signal prediction / residual coding; typically,

the encoder codes explicit information to guide the decoder to the location of the most similar block

along with the signal differential. In this chapter, we argue that, given the inherent redundancies in

the representation, the decoder can often independently recover missing data via inpainting without

explicit directions from encoder, resulting in lower coding overhead. Specifically, after the pixels

in a reference view are projected to a target view via depth image based rendering (DIBR) at the

decoder, the remaining holes in the target view are filled via an inpainting process in a block-by-

block manner. We implemented our encoder-driven inpainting strategy as an extension of High

Efficiency Video Coding (HEVC). Experimental results show that our coding strategy can outperform

comparable implementation of HEVC by up to 0.8dB in reconstructed image quality.
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2.1 Introduction

In recent multiview video systems, texture maps (RGB images) and depth maps1 (per-pixel distance

between captured objects and capturing camera) of the 3D scene as observed from multiple closely

spaced cameras are captured at the encoder into a texture-plus-depth representation [69]. Armed

with the texture and depth images of multiple views, images of any arbitrary intermediate viewpoint

can also be constructed at the decoder via depth-image-based rendering (DIBR) [97] in order to

enable new applications such as free viewpoint video (FVV) [94].

It is apparent that this texture-plus-depth representation contains data redundancy across mul-

tiple dimensions. First, a voxel of an object in the 3D scene that is visible from multiple camera-

captured views will be represented as different pixels in multiple viewpoint images (inter-view re-

dundancy). Assuming that the 3D scene is Lambertian2, a 3D voxel reflects the same color value

to different viewpoints, and recording its value many times in multiple viewpoint images leads to

redundant information. Second, it is well understood that values of neighboring pixels of the same

object in a viewpoint image tend to be correlated statistically (inter-pixel redundancy). Finally, it is

observed that natural images tend to be self-similar. In other words, similar image patches tend

to recur in different spatial regions throughout the same image (inter-patch redundancy). Previous

computer vision research efforts have successfully exploited this nonlocal self-similarity character-

istic of images for denoising [8] and inpainting [21] (completion of missing pixels in a spatial region).

For an encoder to compactly describe information in a texture-plus-depth representation of a

3D scene, it is critical to exploit these inherent redundancies in the data representation. The vast

majority of conventional coding schemes [31,70,84] attempt to eliminate this redundancy following

the traditional video coding paradigm of hybrid signal prediction / residual coding, as is done in

video coding standards like H.264 [101] and HEVC [89]. Specifically, to reconstruct a given target

block, a sender transmits explicit instructions like motion vector (MV) to guide the receiver to the

location of the most similar block, which serves as a predictor signal. Then, the difference between

the predictor and target block, namely the prediction residual, is transform coded and transmitted

to the receiver to improve the quality of the reconstructed signal. This paradigm has a long legacy

in video coding research, dating back to the first ISO video coding standard MPEG1 and ITU-T

standard H.261 in the late 1980’s, where one of the crucial design criteria was a computationally

inexpensive video decoder. In that light, the hybrid signal prediction / residual coding paradigm

where the encoder dictates exactly how each code block should be reconstructed is a suitable

design choice that results in today’s many practical codecs across many platforms.

Given that the cost of computation has drastically decreased, the strict requirement that the

1Depth images can be acquired directly using depth sensors [44], or computed from neighboring color images using
stereo-matching algorithms [92].

2Reflective surfaces such as wine glasses and mirrors are not Lambertian. However, for closely spaced capturing cam-
eras, the Lambertian surface assumption is nonetheless a good approximation.
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video decoder must be computationally simple is no longer necessary in many practical cases.

Thus, in this chapter we argue that one can leverage on the computation power of a decoder to

recover a desired signal and lower the overall transmission cost. In particular, the decoder can

often independently recover missing pixels via inpainting without explicit directions from encoder,

resulting in lower coding overhead. Therefore, we propose the following encoder-driven inpainting

strategy for the texture-plus-depth representation. First, we directly project pixels from one reference

view to a target view via DIBR, thus eliminating inter-view redundancy. This projection results

in a number of disocclusion holes, namely spatial areas that are occluded in the reference view

by foreground objects but become exposed after the view change. However, assuming that the

viewpoints are close, these holes are relatively small. To complete these holes, we first order

the blocks with missing pixels in terms of decreasing difficulty for inpainting. For the most difficult

blocks, we then transmit explicit instructions called auxiliary information (AI) to guide the decoder

in the block reconstruction process. AI typically consists of the location information of the best

predictor block for inpainting, and color values for missing pixels. The incomplete blocks typically

contain known pixels projected from neighboring view via DIBR as well as missing pixels, but only

the missing pixels are explicitly coded via a graph Fourier transform (GFT) [82] or a sparsification

procedure using the discrete cosine transform (DCT) [12, 13], in order to achieve low coding cost.

Finally, the decoder can independently complete missing pixels in the blocks that are easy to inpaint

via a template-matching algorithm such as [21]. We believe that our new coding strategy opens the

way to new coders where decoder’s capabilities are judiciously used to lower transmission costs.

The outline of the chapter is as follows. We first overview our encoder-driven inpainting based

coding system in Section 2.2. We describe our design of AI used to guide the inpainting of disoc-

clusion holes at decoder in Section 2.3. The methods for sparsification of DCT and GFT of code

blocks are described in Section 2.4. The order in which the missing holes are completed is crucial

in our proposal; we show that finding the optimal filling order is an NP-hard problem and present a

heuristic ”hard-to-easy” order in Section 2.5. Finally, we discuss our experimentation and conclude

in Section 2.6 and 2.7, respectively.

2.2 Coding System Overview

2.2.1 System Overview

We propose a coding strategy based on encoder-driven inpainting for texture-plus-depth represen-

tation of multiview video data. Specifically, the objective of our coding strategy is to code texture

and depth image pairs of multiple views in a rate-distortion (RD) optimal manner. For the sake of

simplicity, we describe our coding strategy for two neighboring viewpoint images (two pairs of tex-

ture and depth images). The application of our strategy to more complex frame prediction structure
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is straightforward.

We first independently code texture and depth images of one view with the help of a video

codec; this view is called the independent view. Then we propose to code the second view (the

dependent view) as follows. We project the decoded texture pixels of the independent view to

the dependent view image via DIBR, where the geometric information provided by the depth map

of the independent view and the camera calibration parameters are used to identify pixel corre-

spondences between the two views. After that projection step, there are two kinds of holes in the

DIBR-synthesized image that require filling in order to have a good reconstruction of the depen-

dent view; these are: i) rounding holes, and ii) disocclusion holes. First, the disparity values of

the pixels in the independent view likely have fractional values; when projected to the dependent

view they need be rounded to the nearest integers to land on the 2D grid of the rendered image.

This rounding operation can result in rounding holes. By assuming a rectified camera setup where

the relative camera positions correspond to pure horizontal shifts, the pixel disparities have only

horizontal components. Thus we can identify the rounding holes simply as follows. For a given

hole in the projected image, we check if the nearest available pixels to the left and right of the hole

have almost identical depth values (namely, less than a pre-defined threshold δ). If so, we identify

the hole as a rounding hole and perform simple horizontal linear interpolation to fill in the missing

pixel(s).

After identification and filling of the rounding holes in the projected image, only disocclusion

holes remain. Disocclusion holes represent spatial regions in the dependent view that are not

visible in the independent view due to occlusion by foreground objects. An example of such disoc-

clusion holes is shown in Fig. 2.1 3. Unlike rounding holes, disocclusion holes may contain novel

information that cannot be easily extrapolated from available neighboring pixels. Hence, the en-

coder has to provide information to the decoder so that it can properly reconstruct the dependent

view. In particular, it has to code additional information to help the decoder fill in the disocclusion

holes in the projected image in a RD optimal manner. In this chapter, we assume that the decoder

has the computational resources to execute inpainting procedures. Thus the encoder only provides

carefully chosen auxiliary information (AI) to guide the decoder through the reconstruction of diffi-

cult spatial regions, so that the decoder can self-discover missing pixels in the remaining holes in

the dependent view via inpainting. The construction of this AI data is described in the next section.

The depth pixels of the independent view are also projected to the dependent view, and rounding

holes are identified and filled in the same manner as in the texture image4. However, the disocclu-

sion holes are simply extrapolated using adjacent background depth pixels. This is because depth

images are known to be piecewise smooth [50, 82]. We further find empirically that adjacent back-

ground depth pixels are good predictors for signal extrapolation into the disocclusion holes. The

3Video sequence Undo Dancer can be found from ftp://mpeg3dv.research.nokia.com
4The corresponding depth values for the two views are the same if we assume the two viewpoints are rectified [46].
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(a) view 1 (b) original view 5 (c) DIBR estimation of view 5

Figure 2.1: Illustration of disocclusion holes left after DIBR, in a view from the video sequence
Undo Dancer. The forward warping is performed from view 1 to view 5. The black regions close
to the right side of the foreground (the man) show the missing pixels that have to be filled after
projection.

overall procedure of the proposed coding strategy is summarized in Fig. 2.2.

2.2.2 Encoder-driven Disocclusion Hole Filling

We provide now more details about our original coding strategy that relies on inpainting to fill in

disocclusion holes. In the computer vision literature, there exist many inpainting [4, 5, 9, 21, 77] to

complete holes in a given image. The key difference between our work and inpainting schemes

like [21] is that, in our multiview coding scenario, the target image to be inpainted is known at the

encoder. Hence, the encoder can provide additional information to guide the image completion

process at the decoder. Inspired by the patch-based template-matching inpainting algorithm in [21],

we will employ a similar inpainting framework and complete the rendered image on a per-patch

basis. In a nutshell, our patch-based inpainting framework performs the following operations. We

first select a pixel on the boundary of disocclusion holes in the DIBR projection of the dependent

view; the selected pixel is the center of a target patch that will be inpainted. Missing pixels in the

target patch are then filled using known pixels in the reconstructed dependent view via template-

matching, possibly with help of AI provided by the encoder. Then, another target patch is selected

for filling, and the process continues until all missing pixels are completed. The order in which

the patches are selected for filling is called the patch order. Given this patch-based inpainting

framework, there are two key questions to solve for effective coding performance: i) for a given

target patch, how to best complete it, possibly with the aid of AI? ii) what is the optimal patch order
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Figure 2.2: The block diagram of the proposed strategy. Dependent views are obtained by DIBR
estimation from independently coded views, along with encoder-driven inpainting of the disocclusion
holes.
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to complete the rendered image?

We first observe that, given a local target patch to be completed, the level of difficulty in in-

painting it—called local hardness in the sequel—depends on the degree of self-similarity exhibited

between the target patch and already completed spatial regions in the predicted image. If the miss-

ing pixels in the target patch can be found in the completed spatial regions, then the encoder only

needs to convey a simple message (called the skip mode) to the decoder to signal that the missing

information can be self-discovered using an unassisted inpainting procedure such as template-

matching [21]. If the missing pixels are available in the completed spatial regions but it is difficult for

the decoder to discover them unassisted, then the encoder can provide lightweight search instruc-

tions (called the vec mode) to guide the discovery process. Finally, if the missing pixels are entirely

innovative, then the encoder has no choice but to explicitly encode the missing pixels (called the

intra mode). Note that only the subset of missing pixels in a target block requires intra coding. This

observation can be exploited for novel patch-based transform coding that can outperform conven-

tional scheme like DCT, which typically codes the entire code block, regardless of whether pixels

in the block are missing or not. These different kinds of information compose the set of AI that the

encoder convey to the decoder on a patch-by-patch basis for encoder-guided inpainting. Finally, we

remark that the different kinds of AI have different coding costs, and the choice of AI is determined

by a RD criterion. The details of the AI design is discussed in Section 2.3 and the patch-based

transform coding is described in Section 2.4.

The second question is related to the order of patches in the inpainting process. Clearly, a left-

to-right top-to-bottom raster scanning order employed in conventional block-based image / video

coding algorithms is not appropriate. A key innovation in Criminisi’s inpainting algorithm [21] is

the order in which target patches should be selected for inpainting: the main idea is to select

easy-to-inpaint patches first, so that propagation of likely errors in hard-to-inpaint patches to other

regions will be minimized. This patch ordering problem is called the global hardness of patches in

the inpainting process. In stark contrast to the ”easy-to-hard” patch order in Criminisi’s algorithm,

we propose a ”hard-to-easy” patch order for our encoder-assisted inpainting algorithm. The basic

idea is that, once the hardest patches are filled in (with ample assistance from the encoder), the

remaining patches are all easy-to-inpaint. They can be completed by the decoder unassisted, and

hence the encoder can directly save bits from reduction in AI signaling cost. Note that the problem

of error propagation from hard-to-inpaint patches to other spatial regions can be easily contained in

our setting, since the encoder-guided inpainting process can implicitly control the inpainting quality

at the decoder. The details of our proposed ”hard-to-easy” patch order is presented in Section 2.5.
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2.3 Inpainting Based Coding And Auxiliary Information

Towards a solution to address local hardness in encoder-driven image inpainting, we first overview

a well-known template-matching inpainting algorithm [21] as we use a similar framework in our

system. We then discuss the design and implementation of auxiliary information (AI).

2.3.1 Encoder-driven Patch Completion

Given a target patch Ψp, we now discuss our encoder-driven patch completion procedure using AI

to fill in the missing pixels in Ψp. In a nutshell, we seek to design a set of AI modes {ϕ} for the

completion of missing pixels in the target region and to eventually choose for each target patch Ψp

the AI mode that minimizes the RD cost, i.e.,

ϕ∗ = arg min
ϕ

d (p, ϕ) + λ · r (p, ϕ), (2.1)

In (2.1), r(p, ϕ) is the coding rate of the mode ϕ for patch Ψp centered at p, d(p, ϕ) is the distortion

between missing pixels in Ψp∩Ω and the reconstructed pixels using mode ϕ, and λ is a pre-defined

weighting parameter that trades off the importance of distortion and rate. We use sum of squared

differences as distortion in this chapter. The index of the coding mode in (2.1) is compressed via a

context-based arithmetic coder.

In this chapter, we design three AI modes with different coding costs r(p, ϕ) and different degrees

of influence on patch reconstruction. The AI “skip” mode results in zero rate beyond the signaling

cost of the mode itself. AI “vec” mode encodes a motion or disparity vector to inform the decoder the

location of the best matching patch in the known region. The AI “intra” mode encodes the intensity

of missing pixels in the target patch, and thus usually results in the highest rate. The encoder

chooses among these three modes for a given target patch Ψp in order to solve the optimization

problem in (2.1). We describe in details the three coding modes in the rest of this section.

2.3.2 AI Modes

AI “skip”

The AI “skip” mode instructs the decoder to self-discover missing pixels in Ψp using only information

in source region Φ. This can be done either locally or nonlocally. Local skip means that, given the

strong inter-pixel redundancy exhibited in the local patch, the missing pixels in Ψp ∩ Ω can be

deduced from neighboring known pixels via simple signal extrapolation schemes such as [5]. In

contrast, nonlocal skip instructs the decoder to perform template matching to complete missing

pixels in the target patch Ψp using its template Ψp ∩ Φ. This is similar to the template matching

in [21], except that the search region includes not only the known region Φ in the same image,
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but also designated decoded pictures in the decoder’s buffer. Designated pictures could include LT

previous decoded pictures in time from the same view and LV decoded pictures of the same time

instant but from neighboring views. For simplicity, only the decoded picture of previous time instant

from the same view is used as reference in our chapter. Local skip and nonlocal skip finally translate

to different AI mode indices for arithmetic encoding.

The AI “skip” mode is expected to be a dominant mode at low rate when coding rate is of higher

priority than distortion. At high rate, however, because of the lack of direct control in the pixel

completion process, the patch quality reconstruction is limited. We present next two other modes

with more direct control on the inpainting results, hence on the reconstruction quality.

AI “vec”

When the template matching of “nonlocal skip” fails to identify a good match for Ψp∩Ω, we offer the

AI “vec” mode as an alternative to improve the reconstruction quality by directly locating the pixels

in the known region that are the most similar to the missing pixels in the target patch. We stress

here the difference between ”nonlocal skip” and “vec”. ”Nonlocal skip” relies on the known pixels

in the target region of Ψp for template-matching with known patches, which may not always lead to

the best completion results. The “vec” mode, on the other hand, simply informs the decoder about

the location of the pixels in the known region that are the most similar to the missing pixels in the

target patch; it does not rely on template-matching at all.

To leverage on both self-similarity of still image and temporal redundancy of video sequences,

we propose two kinds of “vec” mode, namely intra-frame AI “vec” and inter-frame AI “vec”. For intra-

frame ”vec”, a similarity vector (SV) pointing to the known region in the same image is signaled

to the decoder. On the other hand, the inter-frame “vec” is akin to motion estimation in differential

coding for single-view video: a motion vector (MV) is used to represent the displacement of the

current block to the most similar one in a reference picture (i.e., the previous frame in time in the

same view).

AI “intra”

When no pixels similar to Ψp ∩Ω are found in the search space of nonlocal “skip” and “vec” modes,

e.g., in the case of disocclusion of novel objects, the AI “intra” mode is used to directly code the

missing pixels in the target patch Ψp. In this mode, the block is predicted, transformed, quantized,

and entropy-coded. Since the shapes of known pixels Ψp ∩ Φ and causal neighbors of Ψp are

arbitrary, the directional intra prediction used in conventional block-based video coding such as

HEVC [90] is not suitable here. Instead, we propose to use the signal extrapolation scheme in AI

“local skip” as the prediction, and to code only the resulting prediction results. Another noticeable

deviation from conventional block-based video coding is that, in our scenario, only missing pixels in
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a block requires coding and not the full block of pixels. We discuss in Section 2.4 two methods to

encode only the missing pixels in a square target block for AI “intra”.

Arithmetic Coding of AI Mode Indices

The coding modes are compressed with arithmetic coding. Let us consider a set of AI mode de-

cisions M = {mi}i=1..N for N consecutive patches. In order to transmit this vector M, we use an

arithmetic coder, which needs the mode probabilities as input, both at the encoder side and de-

coder side. As mentioned above, we have designed an encoder-driven inpainting algorithm that

adopts the “hard-to-easy” order. It means that “hard” modes such as AI “intra” or “vec” are chosen

more frequently at the beginning, while “easy” mode AI “skip” is likely chosen at the end of the

coding process. In order to take into account this evolution in the coding of M, we adapt the input

probabilities of the arithmetic coder. For a given mode flag mi to code, we evaluate the probabilities

pi,l of each coding mode l = 1, ...,L over the W last mode decisions

pi,l =

∑W
j=1 bi− j,l

W
, (2.2)

where

bi− j,l =

 1 if mi− j = l

0 otherwise
. (2.3)

The L probabilities, available at the decoder side also, are the contexts of our arithmetic coding of

mode indices. Note that we code the mode index directly and do not have a binarization process.

2.4 Transform Coding of Missing Patch Pixels

In our proposed patch-based coding scheme, the center p of a K × K target square patch Ψp is

always on the boundary of known and unknown regions as shown in Fig. 1.3. Hence, the patch Ψp

contains known pixels in Ψp∩Φ as well as missing pixels in Ψp∩Ω. If one naı̈vely use regular block-

based DCT to encode the patch (or the prediction residual of the patch), then the resulting K × K

transform coefficients will contain information belonging to both known and unknown pixels, result-

ing in undesirable representation redundancy. In this section, we propose two block-based coding

procedures to encode only the missing pixels in a patch, namely i) the graph Fourier transform

(GFT), and ii) the sparsification of DCT.

In the literature, shape-adaptive DCT [87] is suitable for coding pixels in arbitrarily-shaped image

segments. The transformation is computed by cascaded application of 1-D varying-length DCT

transforms, after geometrical shifts in vertical and horizontal directions. The GFT employed in this

chapter, however, has better decorrelation than the shape-adaptive DCT, due to the preservation

of correlation among neighboring pixels by maintaining their relative positions. Different from the
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Figure 2.3: An example graph from a 2-by-2 patch.

shape-adaptive DCT, the proposed sparsification of DCT is compatible to regular inverse DCT,

because the sparsification procedure performed at the encoder only adjusts the values of some

DCT coefficients. Moreover, the shape-adaptive DCT is not good at coding noncontiguous object

pixels, e.g., holes, which are commonly seen in the rendered images.

2.4.1 Graph Fourier Transform

GFT has recently been proposed for transform coding of a block in a piecewise smooth image like

a depth map that straddles sharp boundaries, so that filtering across discontinuities is avoided; this

results in a sparser signal representation in transform domain than DCT [50, 83]. The key idea is

to represent pixels in the block as nodes in a graph G, and connect each pixel with each of its four

neighbors with an edge of weight 1 only if both pixels reside on the same side of a boundary. In

essence, a block of pixels is divided into connected sub-graphs, as illustrated in Fig. 2.3.

The graph G is described by a few matrices. First, an adjacency matrix A describes the con-

nectivity of the graph G, where Ai, j = 1 if node i and j are connected via an edge and 0 otherwise.

For the graph in Fig. 2.3, the adjacency matrix is

A =


0 1 0 0

1 0 0 1

0 0 0 0

0 1 0 0

 . (2.4)

A degree matrix D is a diagonal matrix, where Di,i =
∑

j Ai, j. For the graph in Fig. 2.3, the degree
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matrix is

D =


1 0 0 0

0 2 0 0

0 0 0 0

0 0 0 1

 . (2.5)

Finally, the graph Laplacian matrix L is defined as the difference between the degree matrix and the

adjacency matrix [86]:

L = D −A. (2.6)

For the graph in Fig. 2.3, the graph Laplacian matrix is

L =


1 −1 0 0

−1 2 0 −1

0 0 0 0

0 −1 0 1

 . (2.7)

GFT is then defined as follows. It is a linear transform matrix Φ composed of the eigenvectors

of L, i.e., Lφi = λiφi, where φi is the i-th row of Φ written as a column vector, and λi is the i-th

eigenvalue of Φ, which could be seen as the i-th graph frequency of the graph G. For the simplified

example,

Φ =


0.4082 −0.8165 0 0.4082

−0.7071 0 0 0.7071

−0.5774 −0.5774 0 −0.5774

0 0 1 0

 . (2.8)

And the corresponding eigenvalues are 3, 1, 0, 0.

A given pixel block x is then interpreted as a graph-signal on graph G; after computing GFT

coefficients α = Φx, the coefficients α are quantized and entropy-coded. Unlike block transforms

such as DCT where the same transform is applied for every pixel block, GFT is an adaptive trans-

form; i.e., different signal-dependent transforms Φ are used for different input graph-signals x, since

the graph construction is dependent on the signals. Previous works [50, 82] have shown that this

overhead of encoding side information to describe GFT is not expensive for depth maps, and there

is overall substantial coding gain for GFT over fixed transforms like DCT for coding depth maps.

Based on the success of GFT to code depth maps, we propose here to use GFT to encode

only the missing pixels Ψp ∩ Ω in a given patch Ψp. We first construct a graph G only for these

missing pixels: each missing pixel in Ψp ∩Ω is denoted by a node, and there is an edge of weight

1 connecting two nodes if they represent two missing pixels that are neighbors. See Fig. 2.4 for an

illustration. In this way, the graph is composed only of nodes that represent the n missing pixels.

Given this graph of missing pixels, one can compute the adjacency and degree matrices A and

D accordingly. The graph Laplacian L = D−A can also be computed, and its eigen-decomposition
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Figure 2.4: An example of graph construction for an 8 × 8 patch. White circles denote unknown
pixels. Black circles denote known pixels. Edges connect neighboring unknown pixels. The weights
assigned to every edges are unity.

can be performed to obtain the GFT operator Φ. To encode missing pixels x (stacked together as

a vector), we simply compute the GFT coefficients α = Φx, and quantize and entropy encode them

into bits. Note that, unlike the classical DCT that has K ×K transform coefficients for K ×K pixels in

the patch Ψp, the number of GFT coefficients is only equal to the number of missing pixels in Ψp.

Since the locations of the missing pixels are known at decoder already, and a graph can be readily

constructed, and the operator Φ can be computed to permit reconstruction of the missing pixels.

We will show in Section 2.6 that usage of GFT to encode missing pixels in a patch can outperform

DCT in coding performance.

2.4.2 Sparsification Procedure using DCT

We introduce here another option to encode missing pixels in a patch by sparsification of the DCT

coefficients. While the GFT leads to good coding performance, the complexity required to compute

the GFT via eigen-decomposition both at the encoder and decoder can be high, especially, if the

number of missing pixels is large. Compared to the GFT, the DCT sparsification procedure is less

complex.

Since the values of rendered pixels in a patch are known at encoder and decoder prior to any

transform encoding, the known pixels in Ψp ∩ Φ can be viewed as degrees of freedom at encoder

side: they can be manipulated in order to reduce the cost of coding the patch Ψp as their decoded

values are simply discarded. Specifically, we propose a sparsification procedure in the DCT domain
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that exploits these degrees of freedom to minimize the number of non-zero DCT coefficients. The

percentage of non-zero quantized transform coefficients has an approximately linear relationship

with bitrate [48], hence minimizing the number of non-zero coefficients corresponds to reduce the

coding rate.

Let x be pixels in a K-by-K patch, stacked into a column vector. Let Θ be the DCT transform;

the DCT coefficients y can be computed simply: y = Θx. Let V be a K2-by-K2 diagonal matrix

where entry Vi,i = 1 if the i-th pixel in x is an unknown pixel and 0 otherwise. Our objective is to

minimize the rate-distortion cost of AI “intra” for the patch Ψp by manipulating the coefficients y in

the transform domain

min
y
‖V(Θ−1y − x)‖22 + λ ‖y‖0, (2.9)

Note that λ = λmode ∗B, the product of the Lagrange multiplier used in AI mode decision (λmode) and

the average bits to code a non-zero quantized coefficient (B), and hence B‖y‖0 is the coding rate

of the patch. In Eq. (2.9), the l0-norm is a rate proxy, while the l2-norm is a measure of distortion,

counting only the distortion contributed by the unknown pixels.

The minimization of the l0-norm in (2.9) is in general a non-convex and NP-hard problem. For

efficient computation, one can use an iterative re-weighted least squares algorithm and replace the

l0-norm with a sparsity-promoting weighted l2-norm [12]:

min
y

[V(Θ−1y − x)]T[V(Θ−1y − x)] + yTWλy, (2.10)

where the weight matrix is

Wλ =


λw1 0 · · · 0

0 λw2 · · · 0
...

...
. . .

...

0 0 · · · λwK2


, (2.11)

where {w1,w2, · · · ,wN2 } are iteratively updated. Intuitively, wi for the i-th DCT coefficient yi is chosen

such that wiy2
i is approximately equal to 1 if yi is non-zero. In this way, as a surrogate, the weighted

l2-norm is roughly equivalent to the l0-norm, leading to a sparse solution.

The optimal solution to Eq. (2.10) can be found by solving the linear system

(ΘṼΘ−1 + Wλ)yo = ΘṼx, (2.12)

where Ṽ = VTV = V.

Iteratively updating the weights in Wλ and solving the linear system in (2.12) can achieve trans-

form domain sparsity [12] [24] and minimum rate-distortion cost given λ. The detailed procedure is

written in Algorithm 1. After the algorithm converges, the optimal transform coefficients are quan-

tized and entropy coded. Finally, we note that the parameter τ in the iterative weight computation

process (see Algorithm 1) can control the speed of the algorithm, i.e. the complexity of encoder,

while at decoder side we only need to inverse-transform the received coefficients.
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Algorithm 1 Iterative re-weighted least squares (IRLS) for transform domain sparsification
1. Initialize weights: wi = 1/(|yt

i | + ε)
2, where yt

i = (Θx)i, the i-th transform coefficient of the ground
truth input signal x.
2. Find the solution to Eq. (2.12): yo

i .

3. Update weights: wi = (|yo
i |

2 + ε2)−
2−τ

2 if |
yo

i
Q | ≥ 0.5; wi = ε2−τ otherwise, where Q is quantization

step.
4. Repeat Step 2 to 3 until convergence.

2.5 “Hard-to-Easy” Order for Target Patch Selection

In this section, we address the following problem: how target patches Ψp in the target region Ω

should be selected for completion. The order of target patches to be filled can be denoted by a

sequence of positions p on the boundary between known and target regions, i.e., p ∈ δΩt, where

Ωt denotes the target region that contains all missing pixels at iteration t, until all missing pixels in

the image are filled. Our goal is to find a patch order so that the overall RD cost to fill all missing

pixels in Ω0 is minimized. The total number of possible orders is, in the worst case, exponential

in the number of missing pixels in Ω0, so clearly an exhaustive search for the optimal order is not

practical.

We discussed earlier that the Criminisi’s inpainting algorithm [21] proposed an ”easy-to-hard”

order for patch selection to minimize the chance of error propagation from hard-to-fill patches to

other spatial regions. Given that the encoder can transmit auxiliary information to guide decoder in

completing missing pixels, the error propagation from hard-to-fill patches can be contained proac-

tively. Hence, Criminisi’s order is clearly not an optimal order5 in the general case. In this section,

we first show that finding the optimal order is an NP-hard problem. We then propose our heuristic

”hard-to-easy” order, which can be computed in polynomial time.

2.5.1 NP-Hardness Proof for Patch Selection Order

In the most general setting, the optimal patch ordering problem can be formulated as follows. Let

Pt = {pt, . . . , p1} be the first t selected patch centers, and let Υt = {ϕt, . . . , ϕ1} be the t selected AI

modes for the first t selected patches Pt. Assuming that it requires T selected patches before all the

missing pixels are filled in the initial target region Ω0, the optimal patch order, expressed in patch

centers and AI modes P∗T and Υ∗T, is defined as:

(P∗T,Υ
∗

T) = arg min
PT ,ΥT

T∑
t=1

d (pt, ϕt |Pt−1,Υt−1) + λ · r (pt, ϕt |Pt−1,Υt−1) (2.13)

5Interestingly, one can argue that at zero rate, the Criminisi’s ”easy-to-hard” order is a good solution in RD performance.
We will in fact show our proposed order defaults to the Criminsi’s order when the rate constraint is extremely tight.
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where d (pt, ϕt |Pt−1,Υt−1) and r (pt, ϕt |Pt−1,Υt−1) are respectively the distortion and rate of complet-

ing the patch centered at pt using mode ϕt, given previous selected patch centers and modes Pt−1

and Υt−1. The selected patch centers and modes P∗T and Υ∗T must satisfy two conditions. First,

each center pt must lie on the boundary δΩt, where the target region of missing pixels Ωt for each

iteration t is updated as follows:

Φt = Φt−1 ∪Ψt−1, Ωt = I \ Φt (2.14)

In words, the known region Φt in iteration t is updated with completed pixels in patch Ψt−1, and Ωt

is the target region of remaining missing pixels.

Second, by completing all T patches, there should be no remaining pixels:

ΩT+1 = ∅ (2.15)

The optimal patch order problem in (2.13) is hard for two reasons. First, the distortion term

d (pt, ϕt |Pt−1,Υt−1) depends on the history of previously selected modes Υt−1, where each mode ϕt

can be selected from a discrete AI mode set {ϕ}. This means that the total number of these distortion

terms d( ) is at least on the order of |{ϕ}|T, i.e., exponential in the number of selected patches T.

Thus, the time required just for data collection of these terms is time-consuming. This is analogous

to the dependent quantization problem for video coding [79], where the distortion dt(Qt |Qt−1, . . . ,Q1)

of a differentially coded frame t depends on not only its own quantization parameter (QP) Qt, but

also QPs of all previous frames in the dependency chain as well.

Second, we have the difficulty of choosing an appropriate patch order for mode selection in

our problem. This means that, in addition to the set of patch centers Pt−1 selected in previous

iterations, the order in which these patch centers have been selected also influences the rate term

r (pt, ϕt |Pt−1,Υt−1) and the distortion term d (pt, ϕt |Pt−1,Υt−1). To illustrate this second difficulty, let

us consider the simple case where the rate term r (pt, ϕt |Pt−1,Υt−1) depends only on the current

patch center and the lone previous patch center, i.e., r (pt | pt−1). This corresponds to the case

where the location of the next patch center pt is differentially coded from the previous center pt−1,

while the AI mode coding cost is negligible, resulting in a rate cost r (pt | pt−1). We will assume that

the rate cost for the first patch center r (p1) is the same for all centers, and therefore can be safely

ignored in the optimization. To further simplify our complexity analysis, we also assume that the

distortion cost is negligible; this will correspond to the case when λ in (2.13) is set so large that the

rate term dominates. We now show that even in this special case, the optimal patch order problem

is NP-hard via a reduction from a well-known NP-hard problem—the traveling salesman problem

(TSP) [43].

TSP is formulated as follows. There exists a finite set of cities C = {c1, . . . , cM} and a distance

l(ci, c j) between each pair of cities ci, c j ∈ C. The question is how to find a tour of all the cities,
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π = {π(1), . . . π(M)}, where π(m) ∈ C, such that the total distance traveled is minimized:

π∗ = arg min
π

L(π) =

M−1∑
i=1

l(cπ(i), cπ(i+1)) + l(cπ(M), cπ(1)) (2.16)

TSP remains NP-hard if we do not require a cycle and remove the last distance term l(cπ(M), cπ(1)).

We now argue that the above simple case of patch selection includes TSP as a special case.

First, we construct M non-overlapping patches that require separate filling in the target region Ω0;

each patch i will correspond to a city ci ∈ C in the TSP problem. Then we set the rate cost r(i | j)

of selecting patch center i after previous selection of patch center j, as well as the reverse r( j | i),

to be l(ci, c j) in TSP. It is now clear that the optimal patch order in our simplified problem—one

that minimizes the total rate
∑M

t=2 r(pt | pt−1)—maps to a minimum distance tour in TSP. Hence, our

optimal patch order problem is at least as hard as TSP, which means that our optimal patch order

problem is actually NP-hard.

2.5.2 “Hard-to-Easy” Order

Given that the optimal patch order problem in (2.13) is NP-hard, we propose a simple ”hard-to-easy”

heuristic to determine a good patch order. The key idea is that, if all the difficult-to-fill patches are

first filled, then the missing pixels in the remaining easy-to-fill patches can be self-discovered at the

decoder exploiting self-similarity in images, such that no more AI is required. Further, bundling the

difficult-to-fill patches in the beginning of AI coding means that there is stronger statistical correlation

among chosen modes for these patches, resulting in coding gain when the chosen modes are

compressed using arithmetic coding, as described in Section 2.3.

In order to determine the “hard-to-easy” order, for each iteration t of the inpainting algorithm we

compute a metric for each candidate target patch Ψp centered at p ∈ δΩt using known pixels in

Φt. The metric is the distortion between candidate patch Ψp and the best matching block Ψq in Φt

chosen via template-matching, see Eq. (1.6), and computed using only the known pixels in Ψp, i.e.,

Ψp ∩ Φt. The candidate patch Ψp with the largest metric value will be deemed the hardest and is

selected as the next target patch for filling. The intuition here is that the candidate patch Ψp with no

good matching patch Ψq in the known region Φt likely lacks the self-similiarity characteristics that

are required for nonlocal template matching to recover missing pixels. Hence this patch is deemed

difficult-to-fill. Note that using this method, there is no need to explicitly inform the decoder about

the location of the next target patch center p, as it can perform the exact same operations as the

encoder to deduce the same target patch location.

The patch selection process is first computed until there are no missing pixels left. Then, a binary

search is performed to identify the best end point, at which the encoder stops all AI transmission and

the decoder is left to fill the remaining holes on its own via Criminisi’s algorithm in the default ”easy-

to-hard” order. At each candidate end point, the RD cost including both the AI-assisted patches
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and the decoder’s self-discovered patches is computed, and the candidate point with the smallest

RD cost is selected as the optimal end point. In practice, an ”end-of-transmission” flag is coded to

signal to the decoder the end of AI information and the start of the classical Criminisi’s algorithm to

fill in the remaining holes.

2.6 Experimentation

2.6.1 Experimental Setup

To test the coding performance of our proposed encoder-driven inpainting strategy, we performed

the following experiments. We selected the following four JCT-3V standard test sequences [71]:

Undo Dancer and GT Fly from Nokia at 1920× 1080 pixels resolution, and Kendo and Balloons from

Nagoya University at 1024 × 768 pixels resolution. Undo Dancer and GT Fly are synthetic multiview

video sequences with very accurate depth values, while Kendo and Balloons are video sequences

captured with multiple cameras where depth values have been estimated using stereo matching

algorithms. The camera viewpoints of GT Fly and Undo Dancer move over time. In contrast, the

camera positions of Kendo and Balloons are fixed. The foreground objects (the two swordsmen) in

Kendo consume a larger spatial area and have larger movements than the content of the other three

sequences. The first 200 frames of each sequence are used in our experiments.

As one of the advantages of texture-plus-depth representation resides in the possibility for users

to synthesize viewpoints at decoder, we evaluate the performance of our algorithm not only on pure

compression results for camera views, but also in terms of benefits for view synthesis. Hence,

besides the camera-captured views of the testing sequences, we also synthesize several equally-

spaced intermediate virtual views between the camera-captured views, and take the average distor-

tion of camera-captured and virtual views as our performance measure. The distortion is measured

by the average Peak-Signal-to-Noise-Ratio (PSNR) of the two coded views with and without virtual

views, respectively. Note that the PSNR in our experiments is a combination of Y, U, V channels,

i.e., PSNR = (4×YPSNR+UPSNR+VPSNR)/6, because all the testing YUV sequences are in 4:2:0

format. To conduct a fair comparison, similar prediction structures are used for our scheme and a

competing scheme, 3D-HEVC [91] as shown in Fig. 2.5. The independent view of our scheme is

coded using 3D-HEVC in IPPP structure, and the reconstructed texture and depth images of the

independent view are used to synthesize texture and depth maps of the dependent view via DIBR.

Then, to evaluate the coding performance for a wide range of bitrates, we use four quantization

parameters (QP) (25, 30, 35, and 40) for texture and depth images in both 3D-HEVC and our AI

“intra” mode. Lossy coding of the independent view images has large influence on the quality of

warped images in dependent view. In order to reconstruct quality-consistent video, QP of AI “intra”

is equivalent to the one used to quantize the independent view.
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Figure 2.5: Prediction structures used in our experiments, where I and P denote I- and P-frames
respectively, and V denotes equally-spaced intermediate virtual view images. In (b), W symbolizes
the warped region and H the hole region. Solid lines in both figures denote block-based inter/inter-
view prediction. Dashed lines denote view synthesis via DIBR. Dotted lines in (b) indicate the
reference frame used by template matching of temporally nonlocal “skip” and the motion estimation
of inter-frame AI “vec”.
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The patch size in our proposed strategy is chosen to be 8 × 8. In theory we could also make

our patch variable sizes in quadtree structures in the hope for better coding performance, but in this

chapter we focus on the point of encoder-driven inpainting, which can be illustrated with fixed size

patch without introducing too much complexity. Accordingly, the configuration of 3D-HEVC in our

experiments generally follows the common test condition [71], except that we set the size of coding

tree unit (CTU) to be 16 × 16, which is smallest option of CTU and the closest to the patch size

that we choose. Since 16 × 16 CTU of 3D-HEVC includes 8 × 8 coding unit as one of its candidate

modes, 16 × 16 CTU probably leads to better compression performance than the fixed 8 × 8 coding

patch. However, we will show that with better management of redundancies our method using 8× 8

coding patch nevertheless outperforms 3D-HEVC using 16 × 16 CTU.

2.6.2 Experimental Results

Comparison of Rate-Distortion Performance

We first compare the RD performance of our approach6 with 3D-HEVC. Recall that the rates and

distortions of the independent view are identical for the two competing schemes since both use

the same coding scheme. The differences are spotted on the dependent view and the synthesized

intermediate virtual views. The rates of the dependent view in our inpainting-based scheme are

those used to complete the holes (H region in Fig 2.5(b)), while the warped pixels (W region in

Fig 2.5(b)) actually cost zero bits. As mentioned in Section 2.2, the reconstruction of depth maps

of the dependent view does not need any coding bits in our scheme. In this experiment, the total

rate is the summation of the independent and dependent view including texture and depth images.

The comparison of rate-distortion performance is shown in Fig. 2.6, 2.7, 2.8, and 2.9. We can find

large gains of the proposed encoder-driven inpainting based coding over 3D-HEVC for different

testing sequences, which mainly comes from the compact representation of 3D scene. The inter-

view redundancy is exploited via DIBR: we do not code rendered regions whereas 3D-HEVC needs

to code every block. The inter-patch redundancy is exploited via AI “skip” and “vec” while 3D-

HEVC does not have efficient tools designed for nonlocal image-similarity. Further, the inter-pixel

redundancy is exploited via image inpainting and novel transforms that are more suitable to our

scenario than intra-prediction and DCT used in 3D-HEVC.

Comparison of Criminisi’s “Easy-to-Hard” Order and the Proposed “Hard-to-Easy” Order

We next examine the effectiveness of our proposed “hard-to-easy” patch order. First, we show in

Fig. 2.10 that the “hard-to-easy” order can be achieved by iteratively picking the patch that has the

6Here we use all the proposed coding tools including the new transforms and “hard-to-easy” patch order. Some compo-
nents will be examined individually later.
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Figure 2.6: Rate-distortion performance comparison: the total rate vs. the average distortion of
two coded views. BD gain denotes the increment of Bjontegaard PSNR [7] of our scheme over
3D-HEVC.
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Figure 2.7: Rate-distortion performance comparison: the total rate vs. the average distortion of
two coded views. BD gain denotes the increment of Bjontegaard PSNR [7] of our scheme over
3D-HEVC.
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(b) Balloons, BD gain: 0.80 dB

Figure 2.8: Rate-distortion performance comparison: the total rate vs. the average distortion of
two coded views and seven synthesized intermediate views. BD gain denotes the increment of
Bjontegaard PSNR [7] of our scheme over 3D-HEVC.
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Figure 2.9: Rate-distortion performance comparison: the total rate vs. the average distortion of
two coded views and seven synthesized intermediate views. BD gain denotes the increment of
Bjontegaard PSNR [7] of our scheme over 3D-HEVC.
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largest distortion with its best match in source region. The x-axis of Fig. 2.10 indicates the iteration

index. We compare our patch order with Criminisi’s ”easy-to-hard” order, where in each iteration

a template-matching fills a selected patch. The y-axis denotes the total number of hard modes

selected before the current iteration. The hard modes include AI “vec” and “intra”, because the

corresponding patches cannot be properly reconstructed without any explicit instructions. These

figures depict the accumulation process of hard modes over iterations, using our patch order and

Criminisi’s order. Note that we also draw a diagonal line y = x in the figure as reference, which

represents the situation where all modes up to current iteration are hard. Since we expect that a

“hard-to-easy” order can first pick hard-to-fill patches, the early part of the curve should approximate

y = x. At some point, when most of hard patches have been already coded, the curve should

grow as slow as possible with only a few hard modes left. In this sense, our heuristic for “hard-

to-easy” order performs as expected. Recall that, using the proposed “hard-to-easy” patch order,

we terminate the signaling of AI at an optimal RD point; the remaining holes can be inpainted by

the decoder, so that the number of iterations in our strategy are often less than a strategy using in

Criminisi’s order as shown in Fig. 2.10.

The next experiment shows the performance improvement using our proposed “hard-to-easy”

order. As shown in Fig. 2.11, our proposed “hard-to-easy” order outperforms Criminisi’s order.

Larger gains are observed at low rate, because more easy modes and less hard modes are chosen

and the bitstream is likely to be truncated earlier. We also observe larger coding gains for the Kendo

sequence than for Undo Dancer, because the growth of the number of hard modes in the Kendo

sequence gets slow earlier (see the saturation of the two red solid curves in Fig. 2.10), so there is

more room for Kendo to perform truncation, resulting in more bits-saving.

Finally, we note that the arithmetic coding of mode index can take advantage of the proposed

“hard-to-easy” order: “hard” modes such as AI “intra” or “vec” are chosen more frequently at the

beginning, while “easy” mode AI “skip” is likely chosen at the middle and end of the coding process.

When we evaluate the probabilities of each mode over W = 100 last mode decisions, we observe

a rate reduction of 15.51% (Undo Dancer) and of 14.45% (Kendo) for the coding of mode indices,

compared to the arithmetic coding without a limited-length window whose probabilities are estimated

by all previous mode decisions.

Evaluation of Graph Fourier Transform and Sparsification Procedure Using DCT

One key difference of our coding strategy with 3D-HEVC lies in the transform coding step. Instead

of regular DCT, we propose GFT and a sparsification procedure using DCT (i.e., transform domain

sparsification (TDS)) to take advantage of the particular feature of our coding patch, namely parts of

patches are known and do not need to be coded. The resulting gain using the proposed transforms

can be found in Fig. 2.12, where we compare the performance of our strategy using 1) DCT; 2) TDS

and DCT; 3) GFT and DCT; 4) all transforms (DCT, TDS, and GFT). For case 2) to 4), we pick the
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Figure 2.10: Iterative accumulation of hard modes along the iteration of the coding scheme, for two
different patch orders.
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Figure 2.11: Rate-distortion performance of our inpainting-based coding strategy using two different
patch orders.
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best transform in RD sense for each patch.

Since the proposed transforms are only for AI “intra”, coding gain is observed mostly at high

rate, where more AI “intra” modes are selected to achieve better reconstruction quality. As shown

in next part, our coding strategy prefers low-cost AI “skip”, and AI “vec” at low rate. Thus when the

proportion of selected AI “intra” is already small, the performance improvement using our proposed

transforms is limited. Fig. 2.12 shows that, using GFT can get more gain over the sparsification

procedure, but the latter only needs to iteratively solve least squares at encoder, while at decoder

the regular inverse DCT is only performed once, thus is less expensive in computation compared to

GFT. The performance over high rate is emphasized in Fig. 2.12 (b), where the combination of TDS

and GFT is better than using them individually.

Statistics of AI Modes

Each AI mode is proposed with its own purpose. To better understand why they are introduced

and how they work, we show the statistics of AI modes in different circumstances. As shown in

Fig. 2.13 and 2.14, we can find that 1) AI “skip” and “vec” dominate, meaning that there is a great

amount of similarity to exploit from the known region and reference frame; 2) with larger QP, i.e.,

lower rate budget, the number of the cheapest “skip” mode increases while the expensive “intra”

and “vec” mode decreases; 3) the difference between I-frame and P-frame in the coding structure

of Fig. 2.5 is not obvious, but obviously the chroma component requires less “intra” mode due to

simpler texture; 4) the proposed coding strategy can adapt to the feature of different sequences by

choosing different sets of AI modes.

2.7 Summary

Compression of texture and depth maps from multiple closely-spaced camera viewpoints is im-

portant for 3D imaging applications and new free viewpoint video communication. In this chap-

ter, we propose an encoder-driven inpainting strategy to complete disocclusion holes in the DIBR-

synthesized image in an RD optimal manner. Missing pixel regions that are difficult-to-inpaint are

first completed following instructions from the encoder in the form of auxiliary information (AI). The

remaining easy-to-fill holes are then completed without encoder’s help via nonlocal template match-

ing, which is effective due to the self-similarity characteristics in natural images. Finally, we propose

two patch-based transform coding techniques (graph Fourier transform and DCT sparsification), so

that only missing pixels in a target patch are encoded, avoiding representation redundancy. In doing

so, our coding strategy successfully exploits the three kinds of redundancy inherent in the texture-

plus-depth representation for coding gain: i) inter-view redundancy via DIBR-based 3D warping; ii)
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Figure 2.12: Performance of the different transforms to code unknown pixels in our coding scheme.
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Figure 2.13: Mode statistics for coding of Kendo with the proposed scheme.
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Figure 2.14: Mode statistics for coding of GT Fly with the proposed scheme.
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inter-pixel redundancy via patch-based transform coding; and iii) inter-patch redundancy via nonlo-

cal template matching.

The experimental results show that the proposed encoder-driven inpainting strategy is more

effective than conventional multiview video coding in RD sense. The inter-view, inter-patch, and

inter-pixel redundancies are greatly reduced by the efficient hole filling using the well-designed AI

modes. The proposed novel transforms boosts RD performance at high rate and the “hard-to-easy”

patch order improves RD performance mainly at low rate such that our overall scheme can get

noticeable coding gain over a large range of rate. Since we use DIBR to construct a starting image

to inpaint, the spacing of coding views and the quality of depth maps limit the performance of our

approach. Although the proposed method outperforms conventional multiview video coding like 3D-

HEVC, we expect that, in addition to regular block-based decoding, a contribution from the decoder

to be able to handle the new introduced coding modes.
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Chapter 3

Fast Estimation of the JND Maps for
Perceptual MVC

In this chapter, we consider perceptual MVC, where the just noticeable distortion (JND) is used to

cheat human visual system so that lower rate can be used in video coding. The direct calculation

of the JND map incurs high complexity, and the problem is aggravated in MVC. We propose two

fast methods to generate the JND maps of multiview videos. In the first method, the JND maps

of some reference views are used to synthesize the JND maps of other views via the depth im-

age based rendering (DIBR), which can be much faster than the direct JND computation. In the

second method, the motion and disparity vectors obtained during the video coding are employed

to predict the JND maps. If the prediction is not satisfactory, the JND block will be refreshed by

calculating the JND directly. This method does not need any camera parameters and depth maps.

The performances of the two fast JND map generation methods are evaluated in a perceptual MVC

framework, where the residuals after spatial, temporal, or inter-view prediction are tuned according

to the JND thresholds to save the bits without affecting the perceptual quality. Experimental results

show that the JND prediction method has better accuracy and lower complexity. In addition, both

fast JND methods lead to negligible degradation of the coding performance, compared to the direct

JND computation.

3.1 Introduction

The main goal of video coding is to achieve the best possible reconstruction quality for a given bit

rate. Since human eyes are the ultimate receivers of video signals, it is reasonable that the video

quality should be judged by human opinions. However, in the block-based video coding schemes, it

is impractical to bother people to assess the quality of image blocks and help to choose a prediction
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mode. Therefore, objective measurements such as mean squared error (MSE) are widely adopted.

Nevertheless, simple measurements like MSE bear some shortcomings, one of which is that they

could not satisfactorily match the human’s perception. Therefore, the properties of the human

visual system (HVS) have been extensively studied, with the hope to find useful clues to overcome

the disadvantages of current coding schemes.

One achievement of the research on HVS is the JND model [53], which shows that any error

around a pixel below a JND threshold cannot be perceived by the human being. Therefore if we hide

some errors according to the JND model, the perceived coding performance could be improved. As

a result, in addition to the temporal, spatial and statistical redundancies, the perceptual redundancy

can also be removed in the JND-based perceptual video coding. The JND threshold can be deter-

mined in either pixel domain or subband domain. The pixel-domain JND thresholds are estimated

by luminance adaptation and texture masking, whereas the subband-domain methods exploit the

varying spatio-frequency sensitivity of the HVS to tune transform coefficients [54].

Recently, there have been significant progresses in the development of the next generation

visual communication services such as 3DTV and free viewpoint video (FVV), and efficient MVC

is critical to their successful deployments [30]. In this chapter, we consider the applications of

multiview videos where at any time only a single view of the multiview video dataset is displayed by

a traditional 2-D monitor, although it is possible that the users can switch from one view to another

at certain switching points. In this case, the traditional single-view JND model can still be used to

reduce the bit rate of the system, while maintaining its perceptual quality.

The pixel-domain JND model is adopted in this chapter. A naive way of achieving this goal is

to directly generate JND maps 1 for every frame and then apply the perceptual video coding to

each frame. However, obtaining a JND map directly is computationally expensive, and the problem

becomes more aggravated in MVC.

Since the multiview videos discussed in this chapter are taken in the same scene, their inherent

similarities can be utilized to reduce the complexity of generating the JND maps. Two fast JND map

estimation methods are proposed in this chapter. The first method renders the pixel-domain JND

map of target view from a JND map of its neighboring view. The view synthesis can be employed

because the pixel-domain JND map can be viewed as a gray level image, which is assumed to follow

the pinhole camera model in multiple view geometry [47]. Different from the first method, our JND

prediction method not only uses the inter-view correlation but also exploits the temporal similarity

among JND maps. Specifically, the JND values of a block are copied from the best matched block

in either a temporal reference frame or a neighboring view. The motion or disparity vectors and

indices of reference frame employed in the JND prediction are obtained directly from the motion or

disparity estimation in the coding procedure, so the complexity is very low. As both intra-view and

inter-view correlations are exploited, the JND prediction method is expected to outperform the JND

1A JND map is a collection of per-pixel JND thresholds for an image.
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synthesis method. The proposed methods are evaluated in a perceptual MVC framework, where

the prediction residuals are tuned according to the JND thresholds to save the bits without affecting

the perceptual quality.

3.2 Block DIBR Based Fast JND Map Synthesis

Image-based rendering refers to the creation of new views without a 3-D scene model. This is

essentially a multidimensional sampling problem, which synthesizes new views using the reference

textures in adjacent views. Besides the reference image I[c, t, x, y] from camera c at time t, we

assume in this section that the camera calibration parameters, i.e., the intrinsic matrix A(c), rotation

matrix R(c), translation vector T(c), and the depth map D[c, t, x, y] are also known.

In this chapter we synthesize the JND map of the target view in order to avoid directly calculating

the map. A JND map generated by pixel-domain method can be considered as a gray level image. It

can be much more efficiently warped from the available JND maps of neighboring views than direct

computation. Experimental results in Sec. 3.5 show that the fidelity loss caused by the synthesized

JND map can be tolerated in multiview video coding.

According to the pinhole camera model, the JND threshold at location (x, y) in camera c can be

projected into the 3-D world coordinate [u, v,w] by [65]

[u, v,w] = R(c) · A−1(c) · [x, y, 1] ·D[c, t, x, y] + T(c). (3.1)

In order to get the corresponding JND threshold around [x′, y′, z′] in camera c′, the world coordinate

[u, v,w] is then back-projected into the image plane of target camera c′ by

[x′, y′, z′] = A(c′) · R−1(c′) · [u, v,w] − T(c′). (3.2)

The corresponding inhomogeneous coordinate is [x′′, y′′] = [x′/z′, y′/z′].

To further reduce the complexity, we only synthesize a JND map block by block. That is, all

pixels in the same block have the same 3-D projection. Obviously, this involves a tradeoff between

the fidelity of the synthesized JND map and the speed of DIBR, which will be studied in Sec. 3.5.

Note that although some potential applications of this chapter like FVV may require depth infor-

mation for view synthesis, the depth maps used in this chapter are not compressed or transmitted,

as the decoder does not need any side information (depth or JND) to reconstruct from the coded

bitstream. The proposed method does not change any syntax or decoding process of H.264 MVC.

Thus, the compression of depth map is out of the scope of this chapter. Also, the depth maps are

assumed to be available at the encoder side and the computational complexity of depth estimation

is not considered.

There are some limitations of the DIBR based JND synthesis. First, to get good performance,

the DIBR requires accurate calibration of cameras, high-quality depth maps, and small baseline to
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reduce occlusion areas. Second, even if the requirements in the first point are satisfied, it is not

guaranteed that adjacent pixels in the current view are adjacent in another view, because this de-

pends on the camera positions and orientations and on the characteristics of the scene. Therefore,

the JND value which relies on its neighboring pixels will be influenced and an offset away from the

true value will be inevitable.

3.3 Block Matching Based Fast JND Map Prediction

In this section, we propose another method, the block matching based fast JND map prediction,

which can be viewed as a generalization of DIBR based JND map synthesis discussed in Sec.

3.2. In addition to the inter-view similarity we have exploited in DIBR based method, the block

matching based method takes advantage of the temporal correlation among frames taken by a

certain camera. A JND block copying scheme will be introduced in Sec. 3.3.1. In Sec. 3.3.2 we

analyze the error propagation in this scheme. In Sec. 3.3.3, the error propagation is resolved by a

JND map refresh approach.

3.3.1 JND Block Copying Scheme

The block DIBR based JND map synthesis copies the whole JND block without any change from

the reference JND map of a neighboring view. The method is essentially a kind of disparity com-

pensation: the disparity vector is found by geometric projection instead of block matching, and there

is no residual to compensate, as the original JND map of the current view is not available (if it were,

we would not have bothered with the synthesis). Observed that the inter-view similarity has been

exploited in the JND map synthesis, it is natural to study how to use the temporal correlation which

is generally stronger than that between views [68].

In H.264 JMVC [1], the optimal motion vector and disparity vector of a block are estimated before

the transform and entropy coding, which are used to find an inter-frame or inter-view block matching.

In this section, we propose to take advantage of those readily available vectors to find the estimate

of the current JND block from the JND maps in reference lists. The reference JND maps can be

either from the current or neighboring views. It is reasonably assumed that the similar process of

inter-frame or inter-view matching can be also performed for each JND map because the JND is

derived from an image. Since we do not directly compute the original JND block, the lack of the

ground truth leads to the compromise that the prediction errors of the current JND block cannot be

compensated. Therefore, unlike the motion or disparity compensation of color image, only direct

copying is performed for JND blocks. We name it block matching based JND copying scheme,

whose complexity is very low.

In the context of this chapter, we attempt to improve the perceptual quality of reconstructed
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video and in the meantime avoid increasing computational burden too much. In addition, JND map

is basically a field of thresholds and will not be directly watched by observers. Therefore, only

integer-pel motion vector or disparity vector is employed when copying a JND block. This can

reduce the complexity by avoiding interpolating the JND maps, which does not contribute much to

the visual quality.

Besides its low complexity, another advantage of this method is that depth maps and camera

calibration parameters are not required any more. We simply use the available motion vectors

or disparity vectors estimated for color image rather than the geometric projections to locate the

matched JND blocks. The negative effect of quantized depth map and inaccurate camera calibration

parameters in DIBR can thus be avoided.

3.3.2 Error Accumulation and Propagation of JND Block

Note that a block is not always coded by an inter mode even in a P or B slice. Sometimes, intra

coding achieves better rate-distortion performance than inter coding, e.g., when no good matching

exists. In some smooth regions, even if good inter-frame matching can be found, intra mode is

still likely to be chosen in the sense of rate-distortion cost. In this chapter, we propose to refresh

(calculate directly as discussed in Sec. 1.2.3) the JND block when the matching of its associated

color image block is so poor that large distortion is possible to be introduced if the JND block is

copied from its predictor. Even if the matching is always acceptable, the errors caused by the JND

copying scheme will be accumulated and propagated over time, which will be studied in the sequel.

Suppose frame are numbered by its prediction order from 0. Let si(x, y)(i = 0, 1, ...) be a JND

block in frame i at location (x, y) and (di,x, di,y) be the ideally accurate motion vector (or disparity

vector) pointing from JND block si+1 to block si. If si is used to represent si+1, we have

si+1(x, y) = si(x − di,x, y − di,y) + ni(x − di,x, y − di,y), (3.3)

where ni is the temporal or inter-view difference between the two correlated JND blocks. Since the

accurate motion vector (di,x, di,y) does not affect the error propagation of the JND copying scheme,

to simplify the following mathematical analysis, we remove (di,x, di,y) from the following equations,

which is equivalent to a translation of the coordinate system of si. Therefore, Eq.(3.3) can be

simplified as

si+1(x, y) = si(x, y) + ni(x, y).

In this analysis, the JND map of frame 0 is refreshed entirely as the reference of the JND maps

of frame 1, 2, .... Except frame 0, no JND block will be refreshed. It is convenient to observe the

error accumulation and propagation in this setup. Hence, the estimate of s1 can be viewed as an

output of system h∆0 , given input s0,

ŝ1(x, y) = s0(x, y) ∗ h∆0 (x, y). (3.4)
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where ∗ denotes convolution. ŝ1 is basically a shift version of s0 by ∆0 which is an offset representing

the inaccuracy of the integer-pel motion estimation employed in the JND copying scheme. The

prediction error of s1 can be written as

e1(x, y) = s1(x, y) − ŝ1(x, y)

= s0(x, y) + n0(x, y) − s0(x, y) ∗ h∆0 (x, y)

= s0(x, y) ∗ [δ(x, y) − h∆0 (x, y)] + n0(x, y).

Similarly, since there is no compensation, the estimate of JND block s2 can be found by

ŝ2(x, y) = ŝ1(x, y) ∗ h∆1 (x, y)

= s0(x, y) ∗ h∆0 (x, y) ∗ h∆1 (x, y).

And its accumulated prediction error is

e2(x, y) = s2(x, y) − ŝ2(x, y)

= s0(x, y) ∗ [δ(x, y) − h∆0 (x, y) ∗ h∆1 (x, y)] + n0(x, y) + n1(x, y).

For frame N, the accumulated error becomes

eN(x, y) = s0(x, y) ∗ [δ(x, y) − h∆0 (x, y) ∗ h∆1 (x, y) ∗ ... ∗ h∆N−1 (x, y)] +

N−1∑
i=0

ni(x, y).

The convolution of the N space-shift systems can be simplified as

h∑N−1
i=0 ∆i

(x, y) = h∆0 (x, y) ∗ h∆1 (x, y) ∗ ... ∗ h∆N−1 (x, y),

If we model {∆i} and {ni} (i = 1, 2, ...,N) as independent zero mean Gaussian random variable

sequences respectively, it can be observed that the variances of both
∑N−1

i=0 ∆i and
∑N−1

i=0 ni(x, y) will

become larger by increasing N, as the variance of the summation of independent Gaussian random

variables is the summation of all the variances of those random variables. Therefore, the variance

of the accumulated prediction error grows in the JND copying scheme.

3.3.3 JND Block Refresh Scheme

In the previous analysis, it can be seen that the prediction error of the JND copying scheme will

be inflated along with time, so the JND block refresh will play a key role to control the propagation

of the error. The remaining problem is whether or not a JND block should be refreshed. In this

chapter, a simple but very effective method is proposed. If the sum of absolute difference (SAD) of

a color picture block calculated in motion estimation stage is larger than a threshold T, that is, the

inter prediction is not working well, the associated JND block will be refreshed.
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The JND block refresh is basically a set of pixel filtering operations, whose computation costs

do not strongly depend on the position of block, if the size of blocks is the same. Therefore we

can assume there is approximately a linear relation between the times of refresh and the extra

complexity introduced by JND. Let α be the proportion of refreshed blocks Nr f to the total number

of blocks Ntot

α =
Nr f

Ntot
.

Since the integer-pel motion (or disparity) vector and reference frame index for a macroblock

are available in the process of inter-frame coding and little computation is entailed to the JND pre-

diction obtaining and using the motion information, α is consequently an indicator of computational

complexity of the JND prediction method. For example, when α = 0.5 the JND prediction has about

double computational complexity compared to the case with α = 0.25.

Given a refresh proportion α (i.e. a certain computational complexity), we want to determine the

threshold T. Let the SAD ε be a random variable different block by block following the probability

density function pε(x). It is straightforward that α percentage of blocks with larger ε will be refreshed,

so the α-percentile point εα can be found by

P{ε > εα} =

∫
∞

εα

pε(x) dx = α

As a result, we have T = εα. If we find a good probability density function to model the stochastic

character of ε, the percentage α and the complexity could be precisely controlled, but this topic is

out of the scope of the chapter. The refresh thresholds used in experiments are obtained empirically

by the histogram of a collection of SAD’s from a subsequence of each testing video.

Note that the terminologies JND block copying and JND block prediction are distinguished in

this chapter. If the JND block refresh scheme is employed, i.e., when α > 0, we call it JND block

prediction scheme. If there is no refresh in any block of a frame, we call it JND block copying

scheme.

3.3.4 Steps of JND Synthesis and Prediction

The steps of JND synthesis method are:

1. Generate the JND map for view c′ by using the direct method discussed in Section 1.2.3;

2. Project the top-left corner (x, y) of a 16 × 16 block in view c to view c′ and obtain the corre-

sponding pixel position (x′, y′);

3. Copy the JND map from the JND block whose top-left corner is at (x′, y′) in view c′ to the JND

block buffer at (x, y) in view c;

4. Perform step 2 and 3 for every block in view c until a synthesized JND map for view c is

obtained.

The steps of JND prediction method are:
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Figure 3.1: Diagram of the proposed perceptual MVC encoder.

1. Generate the JND map for I-frame by using the direct method discussed in Section 1.2.3;

2. For P-frame or B-frame, in the mode decision stage, obtain the integer-pel motion (or dispar-

ity) vector and reference frame index from 16 × 16 skip/inter mode, and record the SAD caused by

the integer-pel motion estimation;

3. If the SAD is greater than a threshold, the JND for current block is refreshed;

4. If the SAD is not greater than the threshold, use the motion (or disparity) vector and reference

frame index obtained in step 2 to find the best matched JND block, and copy the JND block to the

current JND block buffer without compensation;

5. Perform step 2, 3, and 4 for every block until a predicted JND map for current frame is

obtained.

3.4 JND-based Perceptual Multiview Video Coding Scheme

In this section, a perceptual MVC framework is developed, which will be used in the next section

to compare the performances of the two fast JND map generation methods with the direct JND

method. Note that the proposed fast JND synthesis and prediction methods can be applied to any

JND based perceptual MVC, not just the scheme described in this section. Fig. 3.1 shows the block

diagram of the encoder of the perceptual MVC. It can be seen that most parts of the encoder are
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the same as the H.264 JMVC framework except for the JND-based residual filter, whose purpose

is to tune residual toward the mean value of the 16 entries in a 4 × 4 block, subject to the constraint

of the JND threshold at each pixel. The definition of the filter is modified from that in [110]. Let the

average of the residuals in a 4 × 4 block be e. When e ≥ 0, the operation of the filter is

e(x, y) =

 e, e < e(x, y) ≤ JNDs(x, y)

0, −JNDs(x, y) ≤ e(x, y) < 0
. (3.5)

When e < 0, the operation is

e(x, y) =

 e, −JNDs(x, y) ≤ e(x, y) < e

0, 0 < e(x, y) ≤ JNDs(x, y)
, (3.6)

where e(x, y) is the prediction residual at pixel (x, y). One difference between (3.5) - (3.6) and that

in [110] is that all residuals are tuned in [110], whereas our method only tunes the residuals whose

absolute value are below the corresponding JND thresholds. Another difference is that the method

in [110] is more complex than the one proposed in this chapter. The weight λ of the JND threshold

in [110] has to be carefully tuned to achieve a good performance. In contrast, our method does

not have any parameters to decide. This simplified perceptual MVC encoder is good enough to

evaluate the performance of our fast JND generation methods.

After tuning, the variance of the residuals is smaller, which leads to the reduction of the signal’s

entropy; hence statistically the number of bits used to code the residuals will be reduced. Since

the filter works under the constraint of the corresponding JND model, human eyes are not able to

perceive the differences after the residuals are adjusted. Consequently the perceptual quality of the

reconstructed video is not degraded. This conclusion can be better understood from the definition

of PSPNR, which is a widely used perceptual distortion metric when the pixel-domain JND map is

available. The PSPNR is given in [19],

PSPNR = 10 log10
255 × 255

1
WH

∑W
x=1

∑H
y=1(err(x, y))2δ(x, y)

where

err(x, y) = |I(x, y) − Î(x, y)| − JNDs(x, y)

δ(x, y) =

 1, if |I(x, y) − Î(x, y)| ≥ JNDs(x, y)

0, otherwise

where I(x, y) represents the uncompressed frame, Î(x, y) denotes the reconstructed frame, W and

H are the width and the height of the image, respectively. JNDs(x, y) is the JND threshold of I(x, y)

around pixel (x, y) and it is used as ground truth for all the PSPNR-based comparison in Sec. 3.5. It

can be seen from the equations above that the tuning in (3.5) and (3.6) does not change the value

of the PSPNR.
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Table 3.1: Speedup factor and MSE of the synthesized JND, compared to the directly computed
JND

Block Size Speedup Factor MSE
1 × 1 0.16 2.89
2 × 2 0.61 2.11
4 × 4 2.45 1.68
8 × 8 9.28 1.48

16 × 16 35.1 1.47
32 × 32 100.0 1.68

3.5 Experimental Results

In this section, we compare the performances of the proposed fast JND methods and the direct JND

method in the perceptual MVC framework. Before that, the setup of DIBR based JND synthesis and

the error propagation of the JND copying and prediction schemes will be studied.

3.5.1 Block Size of DIBR Based JND Synthesis

We first investigate the impact of block size on DIBR quality and complexity. We define speedup

factor to be the time used by the direct JND method (see Sec. 1.2.3) over the time used by the

synthesized JND method. Table 3.1 lists the speedup factors with different DIBR block sizes. In

addition, the corresponding MSE per pixel for each case is reported, using the directly computed

JND map as reference.

Surprisingly, the MSE performance of the block-based DIBR is not as good as expected when

the block size is smaller than 16 × 16. This suggests that the impacts of the geometrical projection

errors caused by the quantized depth maps and the imperfect calibration parameters might be less

pronounced in large blocks. In terms of the complexity, the table shows that when the block size

is larger than or equal to 4 × 4, the DIBR is computationally more efficient than the direct method.

Taking both speed and accuracy into consideration, we choose the block size of JND synthesis to

be 16 × 16 hereafter in this chapter.

3.5.2 Baseline Distance of DIBR Based JND Synthesis

To investigate the impact of the baseline distance between the target and the reference camera

on the accuracy of the synthesized JND map, we use the JND maps of View 1 to View 7 of the

sequence Breakdancers [113] to synthesize the JND map of View 0, respectively, where View 1

is the closest to View 0, and View 7 is the farthest. View 0 is then encoded using hierarchical B

structure with GOP size of 4, and 97 frames are coded. The influence of the baseline distance to

the R-D performance of perceptual coding View 0 is measured by PSPNR.
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Figure 3.2: Coding performance loss of view 0 using synthesized JND maps with different baseline
distances.

The results are summarized in Fig. 3.2, which suggests that the performance loss is less than

1dB when the JND map is synthesized from the immediate neighbor. In particular, the degradation

is smaller at low rates.

3.5.3 Error Propagation and JND block Refresh

In Sec. 3.3.2, the error accumulation and propagation of the JND copying scheme are studied.

To fight the propagation of the error, the JND block refresh is proposed, which will be empirically

verified in this part. In Fig. 3.3, the curves with the notation α→ 0 represent the case that the JND

map of the first frame is refreshed and there is no refresh any more in the following frames, so when

the number of frames is large enough the refresh percentage α goes to 0. In the synthesized JND

method, no temporal prediction is involved, so the error will not be propagated over time. For the

JND prediction method, two different error suppression intensities are tested, α = 0.25 and α = 0.5,

respectively. The SNR in Fig. 3.3 is obtained by

SNR = 10 log10

σ2
JND

MSE

where σ2
JND is the variance of direct computed JND values (as ground truth), and MSE is the mean

squared error between the ground truth and the synthesized or predicted JND values. From Fig. 3.3,

it can be found that the propagation error is effectively under control when α = 0.25. If the refresh
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Table 3.2: Average SAD of JND blocks when the SAD of corresponding color blocks is greater or
less than the thresholds

Sequence QP SAD < ε 1
2

SAD ≥ ε 1
2

SAD < ε 1
4

SAD ≥ ε 1
4

Breakdancers 18 53 131 64 178
Breakdancers 24 51 120 61 158

Ballet 16 15 49 23 61
Ballet 22 15 46 22 58

rate is set to α = 0.5, the fidelity of predicted JND maps will be much better than that of synthesized

JND maps, so we can expect a superior rate-distortion performance by using the predicted JND

maps.

Note that the synthesized JND maps of sequence Ballet [113] are not so good as those of

Breakdancers, as the occlusion areas of Ballet among different views are much larger than those of

Breakdancers.

There is another way to justify the proposed JND block refresh scheme. As shown in Table 3.2,

the SAD’s of JND blocks are collected, when the SAD’s of color blocks are greater than T = εα and

when they are smaller than the threshold. 1/2-percentile point ε 1
2

and 1/4-percentile point ε 1
4

are

chosen as the thresholds in this experiment. For all the tests with various sequences and QP’s,

the conclusion is consistent. That is, when the prediction of color blocks are not satisfactory, i.e.,

their SAD’s are beyond the threshold, the average distortion of the corresponding JND blocks will

become much larger, so it is reasonable to refresh them.

3.5.4 Performances of Fast JND Methods

We next compare the R-D performance of the perceptual MVC using the fast and direct JND meth-

ods. We encode the multiview sequences Breakdancers (1024 × 768), Ballet (1024 × 768), Cham-

pagne (1280 × 960), and Akko (640 × 480) 2 with hierarchical B structure and GOP size of 8. Twelve

GOP’s together with the first and the only I frame (97 frames in total) for each sequence are coded.

For sequence ballet, the QP values tested are 16, 18, 20, and 22. For other sequences, the QP

values tested are 18, 20, 22, and 24. In the synthesized JND method, the JND maps of Views 1 are

warped from those of Views 0. For the JND prediction method, refresh ratios α → 0, α = 0.25, and

α = 0.5 are chosen. Note that we can consider that 50% JND blocks are refreshed in the setup of

the JND synthesis, because the JND of View 0 is entirely refreshed as inter-view reference and the

JND of View 1 is entirely synthesized to reduce complexity. Hence, the JND synthesis and the JND

prediction with α = 0.5 have approximately the same computational cost, if the computation of depth

estimation is not taken into account. The JND prediction with α = 0.25 requires only a half of time to

generate the JND maps compared to the JND synthesis method. Additionally, the perceptual MVC

2Champagne and Akko are provided by http://www.tanimoto.nuee.nagoya-u.ac.jp/∼fukushima/mpegftv/
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Figure 3.3: Error propagation of the JND prediction methods and the projection errors of the JND
synthesis method (49 frames; QP=20; GOP size is 4; View 0 is independently coded; View 2
can be predicted by View 0; View 1 can be predicted by either View 0 or View 2). (a) View 1 of
Breakdancers. (b) View 1 of Ballet.
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with all JND maps refreshed can be viewed as a JND prediction method with α = 1, i.e., the direct

JND method.

The R-D performances of View 1 of Breakdancers and Ballet are reported in Fig. 3.4. Since the

JND synthesis method calculates the JND maps of View 0 directly and warps those of View 1 without

any refresh, for a fair comparison, the average performances of View 0 and View 1 are illustrated

in Fig. 3.5. The JND prediction scheme shows its superior performances in all experiments. At

both α = 0.5 and α = 0.25, the rate-distortion curves of this method are very close to the curve of

the all-refreshed method, but the complexity is only a half and a quarter of the direct JND method,

respectively.

Moreover, the Bjontegaard Delta (BD) rate increment [7] of the fast JND-based MVC over the

direct JND-based MVC is summarized in Table 3.3. Again, only negligible performance degradation

is found in the JND prediction method. For α = 0.25, the BD rate increment is no more than

0.6%; for α = 0.5, the highest increment is only 0.26%. However, if we do not control the error

propagation (α → 0), obvious performance loss for Breakdancers will be observed. The reason is

that Breakdancers have dramatic and complex motions. This justifies the necessity of JND refresh.

For the JND synthesis scheme, although the computational cost is reduced by a half, the bitrate

increment is in general larger than that of the JND prediction method. The most obvious degradation

is found in sequence Ballet, because the DIBR quality of Ballet is hurt by large occlusion areas.

Note that there is no guarantee that the JND copied from the temporal reference is always better

than the JND warped from the neighboring view, due to the following reasons. Firstly, as shown in

Section 3.3.2, the block-based JND prediction method leads to error accumulation. If the refresh

ratio α is low enough and there are many frames to code, the performance of block matching for

JND copy could be worse than JND warping. Secondly, in video coding the temporal reference

block is chosen by rate-distortion optimization. Thus the selected reference block is not necessarily

the one with the minimal difference from the current block, as the motion vector also plays a role.

Thirdly, if the multiview video system has very small baseline and very accurate depth information,

the JND warping might be better than the JND prediction. Also, at low rate, the prediction is not

very accurate; hence the JND prediction method based on motion vector or disparity vector could

be affected. In contrast, the JND warping is not influenced by low rate at all.

3.6 Summary

In this chapter, two fast methods are proposed to generate the JND maps of multiview videos. In the

JND synthesis method, for some views, the JND maps are obtained by exploiting the properties of

luminance adaptation and texture masking of frames. The JND maps of other views are synthesized

by utilizing existing neighboring JND maps. In the JND copying method, the motion and disparity

information yielded in JMVC encoder is utilized to predict JND block from reference JND maps. The
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Figure 3.4: R-D performance comparison of the direct JND method and the fast JND methods. (a)
View 1 of Breakdancers. (b) View 1 of Ballet.
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Figure 3.5: R-D performance comparison of the direct JND method and the fast JND methods. (a)
View 0 & View 1 of Breakdancers. (b) View 0 & View 1 of Ballet.
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Table 3.3: BD rate increment of the proposed methods (V stands for View). N/A means there are
no depth map and camera calibration parameters for the DIBR.

Sequence synthesis α→ 0 α = 0.25 α = 0.5
Breakdancers (V0+V1) 3.0% 8.0% 0.19% 0.05%
Breakdancers (V1) 6.6% 10% 0.02% 0.24%
Ballet (V0+V1) 4.5% 1.8% 0.30% 0.19%
Ballet (V1) 10% 2.0% 0.47% 0.23%
Champagne (V0+V1) 1.6% 1.4% 0.04% 0.03%
Champagne (V1) 4.2% 1.4% 0.24% 0.02%
Akko (V0+V1) N/A 2.8% 0.56% 0.12%
Akko (V1) N/A 3.7% 0.60% 0.26%

error propagation of the method is studied and a simple JND block refresh approach is proposed to

alleviate the influence of the error propagation.

A perceptual MVC scheme is developed based on the synthesized and predicted JND maps,

where the residuals after intra or inter prediction are adjusted within the range of the corresponding

JND thresholds. Experimental results show that the JND prediction method can be much faster

than the JND synthesis method and has a comparable performance with the expensive direct JND

method.
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Chapter 4

MVC Based 3D Geometry
Compression

In this chapter, we consider 3D geometry compression, which is important to graphical applications.

The compression of dynamic 3D geometry obtained from depth sensors is challenging, because

noise and temporal inconsistency inherent in acquisition of depth data means there is no one-to-one

correspondence between sets of 3D points in consecutive time instants. Instead of coding 3D points

(or meshes) directly, we propose to represent an object’s 3D geometry as a collection of tile images.

Specifically, we first place a set of image tiles around an object. Then, we project the object’s 3D

geometry onto the tiles that are interpreted as 2D depth images, which we subsequently encode

using a modified MVC tuned for piecewise smooth signals. The crux of the tile image framework is

the “optimal” placement of image tiles—one that yields the best tradeoff in rate and distortion. We

show that if only planar and cylindrical tiles are considered, then the optimal placement problem can

be mapped to a tractable piecewise linear approximation problem. We propose an efficient dynamic

programming algorithm to find an optimal solution to the piecewise linear approximation problem.

Experimental results show that optimal tiling outperforms naı̈ve tiling by up to 35% in rate reduction,

and graph Fourier transform (GFT) can further exploit the smoothness of the tile images for coding

gain.

4.1 Introduction

The advent of depth sensing technologies like Microsoft Kinect means (partial) 3D geometries of

objects in a dynamic scene can now be captured with relative ease. If an object’s geometrical infor-

mation can be accurately and compactly represented at the sender for network transmission, then
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at the receiver it can enable a spectrum of 3D imaging applications, such as virtual image synthe-

sis of the object from any freely chosen viewpoint. Thus compact representation of an object’s 3D

geometry is an important research problem.

Unlike computer-generated objects, dynamic 3D geometry periodically captured by depth sen-

sors is subject to acquisition noise and temporal inconsistencies, which means there is no one-

to-one correspondence in 3D points and edges between neighboring frames in time. Called time-

varying meshes (TVM) in [75,108,109], the authors proposed to code TVM directly using predictive

techniques similar to ones used in video compression algorithms like H.264 [101]. This is a difficult

proposition, because: i) 3D meshes typically undergo more complicated transformations over time

than the simple translational motion model assumed in motion prediction in video coding; and ii) lack

of one-to-one correspondence in 3D points across frames means exact match at patch-level might

not exist at all even if more complex motion models (which entail significant computation costs) are

introduced.

In this chapter, instead of coding 3D points (or meshes) directly, we propose an alternative to

compactly represent the geometry of 3D objects using the concept of image tiling. Specifically, we

first project the object’s 3D geometry as images onto a set of carefully placed tiles surrounding the

object, then encode the tile images using the MVC like [22] tuned for piecewise smooth signals (e.g.,

incorporating tools like graph Fourier transform (GFT) [50, 82]). At the receiver, the decoded tile

images are projected back into 3D space to reconstruct the object’s geometry. The key to a compact

yet accurate representation in our image tiling framework is the appropriate selection of image tiles

for a given object. We show that by restricting the tile types considered to be planar and cylindrical

tiles only, the optimal selection of tiles—the best-fitting tile combination given a representative cross

section of the object—maps to a tractable piecewise linear approximation problem. We propose

an efficient dynamic programming algorithm to solve the piecewise linear approximation problem.

To the best of our knowledge, we are the first in the literature to address the optimal image tiling

problem and provide a computation-efficient solution.

4.2 Image Tiles Selection

4.2.1 System Overview

We first describe the overall framework to represent an object using multiple depth images that are

projections of the object’s 3D geometry on selected tiles. The actual projected images on tiles can

be coded using either DCT-based or GFT-based multiview image codec.

Given the geometry of an object in 3D mesh, we first place a set of K tiles surrounding the

object, onto which the object’s 3D geometry is projected as 2D images. By projection, we mean

that for each pixel location on the tile, we trace an orthogonal line from the tile surface until we hit the
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Figure 4.1: Examples of linear and circular tiles.

surface of the object, upon which we record the distance (depth) as the pixel value. Each resulting

depth image on a tile is a 2D impression of the 3D geometry; the goal is to identify the optimal set

of 2D impressions for a given object.

Intuitively, the best placements of tiles—in terms of accuracy in representing the object’s geometry—

are the ones that are parallel to the surface of the object. As simple examples, consider only the

cross sections of two 3D objects in Fig. 4.1, which are triangle and circle in (a) and (b), respectively.

For Fig. 4.1(a), if we place three tiles parallel to the three sides of the triangle, regularly sampled

voxels on each side of the object can potentially be captured by the same number of evenly spaced

pixels on the corresponding tile. (Evenly spaced pixels in a 2D grid on the tile becomes an image

for coding.) If the three tile pixel lines are then losslessly coded, then the exact same triangle cross

section (in terms of the original voxel samples) can be reproduced at the decoder, resulting in zero

distortion. Similarly, in Fig. 4.1(b) we see a circular tile that is ideal for an object’s circular cross

section. Given this developed intuition, we next describe how we find K tiles that best match the

object’s surface.

4.2.2 Cross Section Selection

To simplify the tile selection problem, we first select a representative 2D cross section from the

object’s 3D geometry, on which we perform a best-fitting procedure given K tiles. We identify the

representative cross section as follows. For a given 3D geometric object, we first identify an axis in

3D space where the object is longest; i.e., if the object’s 3D points are projected onto this dimension,

the range from maximum value to minimum is the largest. As an example, if the 3D object is a

person standing up, the longest dimension would be the vertical axis (range will be his height). We

denote this axis as the principal axis or simply z-axis.
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Figure 4.2: Example of cross section and surface normal function.

Given the chosen principal axis, we next identify a 2D plane of the object orthogonal to the axis

that has the largest cross section. In the previous example, this could be a cross section of the

person’s belly. We perform our 2D optimization for tiling on this representative cross section, as

described in the next section.

4.2.3 Tile Selection

Given a 2D representative cross section, we first define a surface normal function (SNF), which is

the degree (in radian) of the surface normal, computed clockwise from the vertical up direction, as

one moves clockwise around the representative cross section. An example of a cross section and

its corresponding SNF F( ) is shown in Fig. 4.2.

As discussed earlier, our goal is to select tiles to approximate the representative cross section

as closely as possible. However, if too many tiles or tiles of too complicated shapes are deployed,

then the descriptions of the tiles themselves would require too many coding bits, leading to large

representation size. Thus the goal is to select a limited number of tiles, each of which required few

bits for description, to approximate the cross section as closely as possible.

Given the above considerations, we will use only two kinds of 2D tiles to approximate the repre-

sentative cross section in this chapter: i) linear tiles, ii) circular tiles. When considering 3D space,

linear and circular tiles extends to planar and cylindrical tiles respectively along the z-axis. Assum-

ing a change of coordinate is performed so that x and y are axes orthogonal to the principal axis z,

the location of these two kinds of tiles can be described using simple equations:

ax + y = b (4.1)

(x − x0)2 + (y − y0)2 = r2 (4.2)
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In particular, each tile can be described by at most three parameters: (a, b) for a planar tile,

and (x0, y0, r) for a cylindrical tile. Thus, the cost of describing each tile is negligible. Further,

one can map the pixels in each tile image easily onto a 2D grid for conventional image / video

coding. Note that though in general a tile can be located any distance from the object’s surface, for

simplicity we will assume in this chapter that a tile is at average distance ξ away from the surface it

is approximating, for suitably chosen ξ.

When a linear or circular 2D tile is mapped to the surface normal (SN) domain, they become a

constant or linear function, respectively. Given only linear or circular tiles are used for approximating

the representative cross section, the tile selection problem becomes essentially a piecewise linear

approximation problem in the SN domain, where we constrain the number of pieces used to be

K. We assume that the value K—i.e. the number of tiles we used—affects directly the overall rate

of the coding system. Hence, for a given K, we find the best possible piecewise linear function

to approximate the cross section’s SNF—a proxy for distortion. By adjusting K we can induce a

rate-distortion (RD) tradeoff.

Objective Function

Mathematically, given K we can define our objective function as follows. First, let the representative

cross section’s SNF be F( ), and the voxel sampling period on its surface be ∆ (with N total samples).

Let the circular tile k be represented as a linear function in SN domain as Ck(t) = mkt + hk, where mk

and hk are the slope and y-intercept, respectively. For linear tile, its representation in SN domain is

simply Lk(t) = hk. Let the boundary between neighboring pieces k and k + 1 be γk∆. The distortion

function—l2-norm between F( ) and its piecewise linear approximation—can then be written as:

D =

K∑
k=1

γk∑
i=γk−1+1

|F(i∆) − αkCk(i∆) − (1 − αk)Lk(i∆)|2 (4.3)

where γ0 = 0 and γK = N−1 is the last voxel sample on the cross section, and αk is a binary variable

to denote if a circular or linear tile is used for the kth piece.

Problem Constraints

We consider the following constraints for our optimization problem. First, the right boundary γk∆ for

the kth piece must come before the next boundary γk+1∆ in the approximation function, hence

γk < γk+1, 1 ≤ k ≤ K − 1 (4.4)

Second, though in theory any radius r can be used to describe the circular tile in (4.2), a very

large radius will create numerical instability when mapping tile pixels to the object surface. Thus,
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we will lower-bound the choice of slope mk for a circular tile as follows:

mk ≥ mmin, 1 ≤ k ≤ K (4.5)

Finally, as described earlier, αk is constrained to be a binary variable and can take on only one

of two values:

αk ∈ {0, 1} (4.6)

Dynamic Programming Algorithm

The optimization is now well defined:

min
{αk ,mk ,hk ,γk}

D (4.7)

such that constraints (4.4), (4.5) and (4.6) are satisfied.

The optimization problem (4.7) can be solved optimally and efficiently using dynamic program-

ming (DP). Let D(i, k) be the minimum distortion for voxel samples i to N, if k constant / linear pieces

can be used for approximating SNF F( ). If a single piece is used to approximate samples i till j

(resulting in distortion d(i, j)), then there will be one fewer pieces k − 1 for the remaining samples

j + 1 to N. Mathematically, we can write:

D(i, k) =

 min
j=i,...,N

d(i, j) + D( j + 1, k − 1) if k ≥ 2

d(i,N) o.w.
(4.8)

d(i, j) is the distortion if a piece k is used to approximate voxel samples i to j. We can solve for

the optimal tile variables αk, mk and hk using linear regression [6]. Specifically, we first solve for the

best-fit m∗k and h∗k:

m∗k =
θktk − θ̄k t̄k

t2
k − (t̄k)2

h∗k = θ̄k −m∗k − t̄k (4.9)

where t̄k and θ̄k are the average surface distance and surface normal angle respectively, t2
k is the

average of the square distance, and θktk is the average of the product of distance and angle, for

voxel samples i to j.

If the best-fit slope m∗k is smaller than mmin, we then compare the solutions when slope is mmin

(circular tile) and when slope is 0 (linear tile). The solution with the smaller square error with respect

to F( ) will be chosen.

The complexity of the DP algorithm (4.8), with initial call D(1,K), can be analyzed as follows. The

size of of the DP table to contain solutions to sub-problems D(i, k) is O(NK). To compute each entry

in the DP table, the operation in (4.8) is O(N). Hence the complexity of the algorithm is O(N2K).
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4.3 Experimentation

To demonstrate the value of optimizing tile placement, we conducted the following experiment. To

find the optimal tile placement for a given static geometry, we use our proposed DP algorithm dis-

cussed in Section 4.2.3 for a given budget of tiles K. Fig. 4.3(a) illustrates the optimal tile placement

for the 3D mesh when K = 4, while a naı̈ve scheme uses four planar tiles. The prediction structure

is IPPP and the quantization parameters are 5, 10, 15, 20, and 25. The generated depth maps

are coded using either DCT based encoder (HEVC) or GFT based encoder1. Fig. 4.3(b) shows the

RD performance of the two schemes, where maximum root mean square (RMS) of the metro dis-

tance [20] is used to measure 3D reconstruction distortion. The performance curve of our proposed

method is the convex hull of operational points obtained by varying QP and the number pieces K

used for approximation of SNF. We see that our proposed method outperformed the naı̈ve method

at all bitrates.

Fig. 4.4 shows the performance of another 3D mesh. The 3-tile competing scheme is obtained

by replacing cylindrical tile with a planar tile. The 4-tile competing scheme replaces the cylinder

tile by two orthogonal planar tiles, i.e., the four tiles face North, East, South and West direction,

respectively. From both experiments, we found that our proposed tile selection scheme outperforms

the naı̈ve tile placements. The gain is most pronounced at low rate, where up to 35% bit rate

reduction can be observed. We observe also that more gain is achieved by using GFT, where

piecewise smooth signals can be represented more sparsely compared to DCT.

4.4 Summary

We presented an image tiling framework for representation of an object’s dynamic 3D geometry,

where the object’s 3D mesh is first projected as 2D images to a set of carefully placed image

tiles, before a multiview image codec tuned for piecewise smooth signals is deployed for coding

of tile images. The key to a compact yet accurate representation is the selection and placement

of image tiles. We showed that if only planar and cylindrical tiles are considered, the optimal tile

placement problem (a finite tile set that best matches the object’s representative 2D cross section)

can be mapped to a piecewise linear approximation problem. The approximation problem can be

subsequently solved efficiently using a dynamic programming algorithm. Experimental results show

that optimal tile placements can outperform naı̈ve tile placements by up to 35% in rate reduction.

1Implementation of GFT used was found here: http://biron.usc.edu/∼kumarsun/Codes/GraphTransform Matlab.zip
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Figure 4.3: Result for the first 3D mesh.
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Figure 4.4: Result for the second 3D mesh.

73



Chapter 5

Optimizing Frame Structure with
Real-time Computation for IMVS

In the previous three chapters, we focus on rate-distortion (RD) performance. In the next two chap-

ters, we study applications where real-time computation and the associated complexity also need

to be considered. In this chapter, we consider interactive multiview video streaming (IMVS), an

application where a network client requests from server a single video view at a time but can peri-

odically switch to other views as the video is played back uninterrupted. Existing IMVS algorithms

output pre-computed frame structures that facilitate permissible view-switching while minimizing the

expected transmission rate given a storage constraint. Here, we propose to use real-time com-

putation (available at a remote powerful server or media cloud) to assist the pre-computed frame

structure to satisfy users’ view-switch requests. In particular, we first propose a new frame type

called uni-merge frame that is computed in real-time for view-switching from one single view to one

target view with low transmission rate and reasonable computation cost. Then, to enable permis-

sible view-switches to a particular target picture, we find the optimal combination of pre-computed

frames and real-time computed frames—one that minimizes streaming rate subject to both storage

and real-time computation constraints—using a greedy combinatorial algorithm. Experimental re-

sults show that with real-time computation, the expected streaming rate of the IMVS system can be

further decreased by 50% compared to pre-encoded frame structures without real-time computation.

5.1 Introduction

Multiview videos refer to videos of the same 3D scene captured by multiple closely spaced cameras

from different viewpoints. They can enable visually immersive applications such as free viewpoint

TV [94], virtual walk-through, etc. However, storage and transmission of multiview video data are
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very challenging, due to the large amount of visual data involved. As a result, there has been

extensive research in multiview video coding (MVC) [70], where the goal is to compress video

frames of all captured views across time in a RD optimal manner.

In many applications, however, not all views are required at the client at the same time. In

IMVS [15], a network client only requests from the server one captured view at a time for rendering

on conventional 2D display, but can switch to other viewpoints periodically during video playback.

The view-switching period is usually set very small to provide smooth view-switching visual experi-

ence.

To support frequent view-switching in IMVS without incurring large transmission cost, instead of

MVC structures (where inter-view predictions create complicated inter-dependency among frames,

limiting random access), previous IMVS studies [15,104] proposed redundant frame representation,

so that the expected transmission rate can be reduced at the cost of increased storage. In particular,

combinations of redundant P-frames (with low transmission rate but large storage cost) and merge

frames (based on distributed source coding (DSC) [18] to merge multiple decoding paths, with high

transmission rate but low storage cost) that optimally trade off between the expected transmission

rate and storage required to contain the redundant frame structure are sought in a combinatorial

optimization.

The coding structures in the existing IMVS schemes [15, 104] are pre-computed and stored,

incurring storage cost. With the advent of parallel and cloud computing, it is now possible to per-

form a limited amount of video processing tasks in real-time on demand [59, 93, 102] at affordable

computation cost. In this chapter, we optimize the design of IMVS redundant frame structure with

the help of real-time computation. In particular, we first propose a new frame type called uni-merge

frame1 that is computed in real-time for view-switching from one single view to one target view with

low transmission rate and reasonable computation cost. Then, to enable permissible view-switches

to a particular target picture, we find the optimal combination of pre-computed frames and real-

time computed frames—one that minimizes expected streaming rate subject to both storage and

real-time computation cost constraints—using a greedy combinatorial optimization.

5.2 Real-time Computation for IMVS

When a computation-intensive input-to-output information processing task needs to be performed

repeatedly over time, instead of computing all possible input-to-output mappings in real-time, map-

pings corresponding to the more frequently occurring inputs can be pre-computed and stored in

memory, so that during real-time processing, the pre-computed results can be simply looked up and

returned. Finding the optimal mixture of real-time computation and pre-computing partial results in

1Previously proposed merge frame [15] will henceforth be called multi-merge frame.
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storage for a given processing task is a fundamental problem in algorithm implementation [14],

and has been successfully investigated in various problem settings such as IP address lookups in

network routers [88] and scalar and vector quantization encoding [14].

With the advent of parallel and cloud computing, real-time computation for some video process-

ing operations can become affordable. We hence revisit the IMVS structure design problem, further

optimizing the streaming rate / storage tradeoff with the help of real-time computation. In particular,

we study the tradeoff among streaming rate, storage and real-time computation costs for previously

proposed view-switching tools [15]—redundant P-frames and multi-merge frame—and a new tools

called uni-merge frame, and optimize new frame structures based on our analysis.

5.3 System Description

We consider an IMVS system that offers dynamic and static view-switching every N frames in time

for streaming clients. In other words, after playing back the video of a single view for N temporal

frames, a client can either switch to one of the other captured views as video continues playback

in time, or freeze in time and switch to other views. To enable this view-switching functionality effi-

ciently, at a particular view-switching point, we find the optimal structure composed of pre-computed

frames and real-time computed frames to minimize expected streaming rate subject to storage and

real-time computation constraints.

Let Fi, j be a picture group that includes N pictures2 of the j-th view with time instants iN, iN +

1, . . . , (i + 1)N − 1. A view switch from group Fm,n to Fi, j is denoted as (m,n)→ (i, j). In this chapter,

only switches within a view distance of K views are supported. Thus, a legal dynamic view-switch

can be represented by (i − 1,n) → (i, j), and a legal static view-switch by (i,n) → (i, j), where

j − K ≤ n ≤ j + K in both cases.

Our goal is to design a frame structure Si, j to represent pictures in group Fi, j, one that facilitates

all legal view-switches to Fi, j, while achieving the optimal tradeoff among transmission rate, storage

and real-time computation. In each structure Si, j, the first picture of instant iN can be represented

in multiple versions as redundant P-frames, or a single version as a merge frame [15]. The remain-

ing pictures in the group are each coded as a P-frame, motion-compensated using the previous

temporal frame of the same view as predictor. All coded versions of the first picture must recon-

struct to exactly the same frame to avoid coding drift in the following differentially coded frames. We

accomplish that using DSC frames [18], as discussed below.

2We will use “picture” to denote the original captured image, and “frame” to denote a coded version of a picture.
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Figure 5.1: Coding structure examples with P-/DSC0-/DSC1-frames, where single-headed arrows
denote prediction dependency and double-headed arrows denote merge operations using DSC0-
and DSC1-frames.
5.3.1 Distributed Source Coding Frames

We employ two types of DSC frames with different tradeoffs between storage and transmission

rate [18]. The first type is called DSC0, which includes a set of motion vectors (MV) and low-density

parity check (LDPC) code. In particular, for each legal view-switch from a predictor frame to target

frame, motion estimation is first performed, resulting in a set of MVs and an estimate of the target

frame (side information (SI)). LDPC code is then used to remove the difference (noise) between SI

and the target frame. Note that only one set of LDPC code is used for all possible predictor frames,

so that no matter which SI is available from which predictor frame, the same DSC0 frame can be

reconstructed. DSC0 is a multi-merge frame, as multiple decoding paths are merged at the target

frame so that the same target picture can be reconstructed.

The second DSC frame type DSC1 is used together with redundant P-frames. Specifically,

motion compensation is first performed from each legal view-switching reference frame, resulting

in a set of P-frames. Then, LDPC code is generated to remove the difference between these

redundant P-frames and the target frame. Though the coding mechanism is the same, DSC0

acts as a multi-merge frame, while the much smaller DSC1 (redundant P-frames are of the same

view and time instant as the target frame, resulting in better quality SI with small noise) acts as a

“denoising” frame. Compared to DSC0 frame, the combination of redundant P-frames plus DSC1

frame requires more storage, but it has lower transmission rate, thanks to the smaller DSC1 frame.

Usage of DSC0 and DSC1 is illustrated in Fig. 5.1 for N = 5. Pi, j(m,n) denotes a P-frame

(square) for instant i and view j using frame of instant m and view n for prediction. M0
i, j and M1

i, j

denote DSC0 and DSC1 frame (diamond), respectively. Note that M1
i, j is used in combination with
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redundant P-frames. Note further that the target frame for DSC frame Mi, j is chosen to be a re-

quantized version3 of P-frame Pi, j(i− 1, j); i.e., the DSC frame will reconstruct to be bit-by-bit equiv-

alent to re-quantized Pi, j(i − 1, j). This is done so that during normal video playback in the same

view (the most likely view-switch), only P-frame Pi, j(i − 1, j) needs to be transmitted.

Turbo code is an alternative to implement DSC-frame, and the proposed system is possible to

adopt any DSC implementations. However, LDPC code has better performance in high-rate range,

and is more suitable for distributed coding [62]. Also, LDPC decoder can be practically implemented.

5.3.2 Tradeoffs in IMVS View-switching Tools

Having discussed previous view-switching tools for IMVS [15], we now overview the tradeoffs in

streaming rate, storage and real-time computation for these tools for intuition. First, consider the

case when real-time computation is expensive. In this case, DSC0 frame would offer the most

storage-efficient view-switching solution, since no extra P-frames are stored, though it would result

in a large transmission rate due to the large DSC0 frame size. Combination of redundant P-frames

and DSC1 frame would offer a lower transmission rate solution, due to the smaller DSC1 frame

size. However, the redundant P-frames (for large K) would lead to large storage cost.

Consider now the case when real-time computation is affordable. For the combination of re-

dundant P-frames plus DSC1 frame M1
i, j, instead of pre-computing and storing redundant P-frames

Pi, j(m,n)’s for all legal view-switches (m,n) → (i, j), we can now store only the frequently accessed

P-frames, while the less accessed P-frames are computed in real-time. The real-time computed

P-frames are discarded after use to avoid storage cost.

In contrast, one can use real-time computation to change the encoding of DSC0: DSC0 can

be computed in real-time on demand for a single view-switch (m,n) → (i, j). That means only one

set of MVs for a particular predictor frame plus LDPC code strong enough to overcome the noise

in this particular SI is sufficient to perfectly reconstruct the target frame. We denote this real-time

computed frame as DSC0-RT M0
i, j(m,n). Note that because it handles only a single view-to-view

switch, the size of this DSC0-RT frame is much smaller than pre-computed DSC0 frame, and smaller

than Pi, j(m,n) plus DSC1 M1
i, j. Further, instead of using channel code like LDPC to remove noise,

one can alternatively use differential coding techniques like H.264’s secondary SP-frames [55] to

perfectly reconstruct the target frame. This real-time computed uni-merge frame (DSC0-RT)—

one with low transmission rate and reasonable real-time computation cost—to switch from a single

view to a target view is in stark contrast to the pre-computed multi-merge frame (DSC0) that must

necessarily merge multiple decoding paths for best tradeoff between transmission rate and storage.

3Re-quantization means the decoded P-frame is re-encoded as an I-frame. This is done so that LDPC code in the DSC
frames only have to match the quantization bin index of each transform coefficient, lowering LDPC encoding rate.

78



We next discuss how the best combination of DSC0, redundant P-frames plus DSC1, and DSC0-

RT can be found through a greedy optimization.

5.4 Frame Structure Optimization

5.4.1 Problem Formulation

We now formulate our objective function. We first assume a user switches from group Fm,n to Fi, j with

view-switch probability pi, j(m,n), where
∑

i, j pi, j(m,n) = 1, ∀(m,n). The normal playback probability

pi, j(i− 1, j) will be the largest relative to other switches. Let πi, j be the steady-state probability of Fi, j.

Let |Si, j| be the size of structure Si, j, and SX
i, j(m,n) and SC

i, j(m,n) be the transmission rate and

real-time computation cost associated with the view-switching from Fm,n to Fi, j, respectively. Given

storage and computation budget S̄ and C̄ for the entire multiview video, the constrained optimization

is written as:

min
∑
i, j

∑
m,n

πm,npi, j(m,n) SX
i, j(m,n) (5.1)

s.t.
∑
i, j

|Si, j| ≤ S̄,
∑
i, j

∑
m,n

πm,npi, j(m,n)SC
i, j(m,n) ≤ C̄

where the optimization variables are the structures Si, j’s for groups Fi, j’s in the video.

Instead of solving the constrained problem (5.1), we solve the unconstrained version problem

using Lagrange multipliers λ and µ for the two constraints:

min
∑
i, j

∑
m,n

πm,npi, j(m,n) SX
i, j(m,n) + (5.2)

λ
∑
i, j

|Si, j| + µ
∑
i, j

∑
m,n

πm,npi, j(m,n)SC
i, j(m,n)

where λ and µ need be adjusted so that the optimal solution to (5.2) meets the two constraints in

original (5.1).

It is clear that (5.2) can be solved separately for each group Fi, j without losing optimality:

min λ|Si, j| +
∑
m,n

πm,npi, j(m,n)
(
SX

i, j(m,n) + µSC
i, j(m,n)

)
(5.3)

Hence we next describe our algorithm to find the optimal structure Si, j for each group Fi, j in (5.3).

5.4.2 Greedy Optimization

Following our discussion in Section 5.3.2, we see that there are three logical options for structure

Si, j. If real-time computation and storage costs are both expensive (weighted by πm,n pi, j(m,n) µ and

λ in (5.3) respectively), then pre-computing DSC0 frame is optimal—solution with smallest storage

size without real-time computation cost. If real-time computation cost is very cheap, then DSC0-

RT frame is optimal—solution with smallest streaming rate and no storage cost. For other cases,
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pre-computing DSC1 frame with redundant P-frames optimally divided between pre-compute and

real-time computation would be a good solution. Hence we can devise our optimization strategy as

follows to check for the performance of these three basic structures.

1. Pre-compute a DSC0 frame M0
i, j for storage and calculate objective (5.3) as cost J0.

2. Pre-compute a DSC1 frame M1
i, j for storage.

3. Incrementally add the most beneficial redundant P-frame Pi, j(m,n) for a legal view-switch

(m,n) → (i, j), i.e., one that lowers objective (5.3) the most. Stop when there are no more

beneficial P-frame to add.

4. Calculate objective (5.3) as cost J1.

5. Real-time compute DSC0-RT frame M0
i, j(m,n) for all legal view-switches (m,n)→ (i, j). Calcu-

late objective (5.3) as cost J2.

The structure that corresponds to the smallest of the three costs J0, J1 and J2 would be the

optimal structure we choose for Si, j.

5.5 Experimentation

For intuition, we first illustrate when the three basic structures become optimal for different prices

of storage and computation. Then we compare our proposed scheme to a competing scheme that

does not utilize real-time computation and all frames are pre-computed and stored.

The video playback probability without view-switch pi, j(i − 1, j) is denoted by ppb for short. Let

p1 = (1 − ppb)/(K · (K + 1)). The view-switch probability from view j to view j ± k is (K + 1 − k) p1 for

k ∈ [1,K]. This includes both static and dynamic view-switches. In our first experiment, the steady

state probability πi, j is set to be 0.5/(2K + 1), where K is the maximal view-switch distance.

We first tune the Lagrange multipliers λ and µ in (5.3) to show the influence of storage and

computation prices on the optimal structure. The picture group F2,3 of the multiview video sequence

Kendo is coded into a structure generated using our proposed scheme, with K = 3, N = 4 (picture

group size). The results are summarized in Table 5.1 for different ppb.

When storage and real-time computation are both expensive, J0 is smaller than J1 and J2, i.e.,

the pre-computed DSC0 frame merging all legal view-switches is optimal, since it has the smallest

storage and no real-time computation cost. When storage is very cheap, the pre-computed DSC1

with all redundant P-frames also pre-computed is the best choice, where the transmission rate is

lower than the pre-computed DSC0 frame and no real-time computation cost is paid. In usual cases,

DSC1 with combination of pre-computed and real-time computed P-frames has the lowest total cost

(only one typical combination of λ and µ for usual case is shown in Table 5.1). When the real-time
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Table 5.1: Costs of different structures.
ppb λ µ J0 J1 (computation cost) J2

0.1 10 114212 128299 ( 35710) 14296445
0.5 0.0001 0.1 47655 20593 ( 0) 149730

0.01 0.1 54251 25821 ( 714) 150113
0.01 0.01 54251 25178 ( 71) 21541

1 200 713824 762087 (285800) 57185054
0.9 0.00001 0.1 47595 6307 ( 0) 32152

0.01 0.1 54251 11131 ( 143) 32538
0.01 0.01 54251 11003 ( 14) 6824
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Figure 5.2: Tradeoff between storage and transmission with ppb = 0.5.

computation is cheap, DSC0-RT is the optimal structure, since it has low transmission rate and no

storage cost.

We next consider the optimization of entire multiview video sequence and show the tradeoff

between storage and transmission with or without real-time computation. 50 picture groups, each

of 4 pictures, from sequence Kendo are considered. In this experiment, the steady state probabilities

are randomly generated. Note that the computation budget C̄ for the proposed scheme is fixed.

The results are plotted in Fig. 5.2 and 5.3, showing that the proposed scheme outperforms the

competing scheme without consideration for real-time computation. In particular, the streaming rate

can be decreased by approximately 50%, which demonstrates the importance of introducing the

real-time computation to IMVS.
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Figure 5.3: Tradeoff between storage and transmission with ppb = 0.9.

5.6 Summary

Unlike previous work on interactive multiview video streaming (IMVS) that studied the tradeoff be-

tween expected streaming rate and storage cost when optimizing frame structures, we proposed to

redesign frame structures with the help of available real-time computation, where frequently used

view-switches are handled by pre-computed frames in storage, and infrequently used view-switches

are handled by real-time computed frames. In contrast to multi-merge frames previously proposed

that offer good tradeoff between transmission rate and storage cost, we proposed a uni-merge

frame that is computed in real-time and offers good tradeoff between transmission rate and real-

time computation cost. Experimental results show that with real-time computation, the expected

streaming rate can be further decreased by 50% compared to pre-encoded structures without real-

time computation.
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Chapter 6

Rate-Complexity Tradeoff for
Client-side FVV

In this chapter, we consider free viewpoint video (FVV) that enables a client to interactively choose

a viewpoint from which to synthesize an image via depth image based rendering (DIBR). However,

synthesizing a novel viewpoint image entails a sizable computation overhead. We study the optimal

tradeoff between transmission rate and the complexity of view synthesis at the client side, so that in

the event that a client device is computation-constrained, complexity of DIBR-based view synthesis

can be scalably reduced at the expense of a controlled increase in transmission rate. Specifically,

for standard view synthesis paradigm that requires texture and depth maps of two neighboring

reference views, we design a dynamic programming algorithm to select the optimal subset of inter-

mediate virtual views for rendering and encoding at the server, so that a client performs only video

decoding of these views, reducing overall view synthesis complexity. For the new view synthesis

paradigm discussed in Chapter 2 that synthesizes the second reference view itself from the first,

we optimize the transmission of AI used to assist inpainting of large disocclusion holes, so that

some computation-expensive exemplar block search operations are avoided, reducing inpainting

complexity. Experimental results show that the proposed schemes can scalably and gracefully re-

duce client-side complexity, and the proposed optimizations achieve better rate-complexity tradeoff

than competing schemes.

6.1 Introduction

FVV [94] enables a client to interactively choose a virtual viewpoint from which to synthesize an im-

age via DIBR [97]. While observation of the 3D scene from different viewpoints can enhance depth

perception in the viewer [112], the DIBR view synthesis process using texture and depth maps
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captured from two nearby views entails a sizable computation overhead. Further, to reduce the

transmission rate of FVV, instead of explicitly encoding the second reference view for the synthesis

of intermediate views, our work in Chapter 2 call for the view synthesis of the second reference view

itself using only texture and depth maps of the first reference view. Using only one reference view for

view synthesis typically results in large disocclusion holes in the target image, which necessitates

transmission of a small amount of auxiliary information (AI) to assist more complex inpainting algo-

rithms [21] to complete the image satisfactorily. For computation-constrained devices like tablets,

this computation load may be overwhelming.

To address the client complexity problem, we study the optimal tradeoff between transmission

rate and client-side complexity, so that in the event that a client device is computation-constrained,

the complexity of DIBR-based view synthesis can be gracefully and scalably reduced at the ex-

pense of a controlled increase in transmission rate. We first consider the rate-complexity (RC)

tradeoff for standard virtual view synthesis paradigm that requires texture and depth maps from

two neighboring reference views, as commonly done in the free viewpoint literature [94, 97]. The

resulting synthesized image typically has small disoccluded regions that can be filled using simple

standard procedures [97]. In this case, we design a dynamic programming (DP) algorithm to select

the optimal subset of virtual views between two reference views for rendering and encoding at the

server, so that a client that desires a free viewpoint “look-around” from the first reference viewpoint

to the second can perform video decoding of these frames, reducing overall synthesis complexity.

As an example in Fig. 6.1, in addition to reference views 1 and 2, virtual view 1.5 is chosen to be

rendered and encoded as a P-frame P1,5, so that only virtual views 1.25 and 1.75 are synthesized

at client (each using two nearby encoded frames as reference, shown as dashed lines), reducing

overall complexity.

For new view synthesis paradigm discussed in Chapter 2 that synthesizes the second reference

view using texture and depth map of the first reference, we study the RC tradeoff for the construction

of the second reference view by controlling the selection of AI to assist inpainting of large disocclu-

sion holes. More specifically, if a missing block requires high-complexity search in the filled-in region

to identify a suitable exemplar block for copying, then an intra block can be transmitted instead to

complete the block at a cost of AI transmission rate increase. See Fig. 6.2 for an illustration. Virtual

views 1.25, 1.5, 1.75 are synthesized at client using views 1 and 2 as reference (shown as dashed
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Figure 6.2: Example of rate-complexity tradeoff for high-spec devices.

lines). Reference view 2 is reconstructed via view synthesis from reference view 1, with the help of

transmitted AI to inpaint disoccluded regions to complete the image. The RC-optimal sequence of

AIs is selected at the sender by finding the shortest path in a trellis.

The outline of the chapter is as follows. We first overview our system model in Section 6.2. We

formulate our RC optimization for two types of devices in Section 6.3. Finally, experimental results

and conclusions are presented in Section 6.4 and 6.5, respectively.

6.2 System Overview

Like [104], we consider an IMVS scenario where a server pre-encodes and stores a multiview video

content of V captured views, v ∈ {1, . . . ,V}, where v corresponds to the physical location of a camera

in a 1D array. The IMVS interactivity we provide is static view-switching, which means a user can

stop the playback of the video in time and navigate to neighboring virtual views of the paused 3D

scene1. Specifically, a client observes one virtual view at a time denoted by v + k/K, where k ∈ I

and 1 ≤ k ≤ K − 1. In essence, the client observes a “look-around” of the static 3D scene by

viewing virtual views from v to v + 1. Upon arriving at view v + 1, the client then has the option of

either continuing the static 3D scene “look-around” to camera view v + 2, or starting temporal video

playback at view v+1. Dependent on the baseline distance between neighboring cameras, K should

be large enough to support a smooth-switching user experience.

Unlike [104] that seeks to minimize expected transmission rate while facilitating application-

required periodic view-switching, the challenge in this chapter is to design additional coded data for

transmission, so that complexity of view synthesis at client can be scalably reduced. To understand

the computation complexity for the new view synthesis paradigm, we first overview the AI scheme

where texture and depth maps for the second reference view v + 1 is synthesized using texture

and depth maps of a first reference view v, with the help of transmitted AI to aid the inpainting

process of large disoccluded regions. It was demonstrated that such a representation has better

1 [63] showed that humans prefer the visual effects of static view-switching over dynamic view-switching [15], where the
video is played back in time uninterrupted as users interactively switch to neighboring views. The latter produces effects
similar to single-camera pan, which is not novel.
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rate-distortion (RD) performance compared to multiview video coding (MVC) [70] and layered depth

video (LDV) [81].

6.2.1 Auxiliary Information (AI) for Hole-filling

As discussed in Chapter 2, the second reference view is constructed as follows. First, texture pixels

from the first reference view are mapped to their corresponding locations in the second reference

view according to their disparity values2. These are the known pixels in the source region Φ. To fill in

values in the disoccluded pixels in the target region Ω, the additional AI is transmitted, as reviewed

below. We designates a filling order for code blocks with center on the boundary δΩ between source

Φ and target region Ω. There are three types of AI to assist in block completion: skip, vec, intra.

1. skip means missing pixels on a block with center on boundary δΩ can be capably inpainted

(copied) by the most similar block in Φ, found using the Criminisi’s search. Thus, no further

information need to be transmitted.

2. vec means that Criminisi’s search cannot identify a good quality block in source region Φ as

replacement. Thus a transmitted similarity vector (SV) can help directly locate a best-matched

block in Φ for copying.

3. intra means no similar block exists in source region Φ. Thus an intra coded block is trans-

mitted for pixel completion.

For our AI implementation, we implemented these three types of AI with three additional modifi-

cations beyond the work in Chapter 2. First, skip can specify a search range θ, so that complexity

for the Criminisi’s search can be scalably reduced. Second, if the previous block is coded as vec,

then the current block also coded as vec can have its SV differentially coded, reducing transmission

overhead. Third, there is a one-bit flag in intra indicating the type of intra-prediction performed.

Specifically, if the previous block is also coded as intra, then the one bit indicates whether the

intra prediction should be performed using the previous block, or using the pixels across boundary

δΩ, with the isophote3 as computed in the Criminisi’s algorithm [21] as prediction direction. If the

previous block is not coded as intra, then the one bit indicates whether intra prediction should not

be performed, or performed using the pixels across δΩ as described earlier. The properties of the

three types of AI are summarized in Table 6.1.

2Since there is a one-to-one correspondence between texture and depth, we will use these terms interchangeably.
3Isophote is basically the gradient at a pixel rotated by 90 degrees [21], which empirically we found to be a good intra-

prediction direction.

86



Table 6.1: Rate-complexity of three types of AI. SV is short for similarity vector.

AI Server Side Client Side Bit Rate Decoder
Complexity

skip(θ) signal the search range θ perform Criminisi’s search low moderate or high
inside specified range depending on θ

vec template matching, encode, send SV decode SV, block copy moderate low
intra (intra-prediction), encode, send block (intra-prediction), decode block high low

6.2.2 Choosing AI for RC Tradeoff

From Table 6.1, one can find the tradeoff between bit-rate and client-side complexity for different

AIs. Suppose it is required that one must achieve a certain reconstruction quality for every block.

intra is capable of reconstructing to any desired quality (specified by the quantization parameter

(QP)) at low decoder complexity. However, the transmission cost of AI intra is the highest. If a

good matching block does exist in the source region (one that satisfies the quality requirement), its

location can be explicitly specified by AI vec, with a medium transmission cost, or search using the

Criminisi’s algorithm, which will incur a large computation cost at decoder. The RC-optimal selection

of AI will be formulated in Section 6.3.2.

6.3 Problem Formulation

We divide the RC optimization of client-side virtual view synthesis into two sections. We first for-

mulate the RC optimization for standard view synthesis paradigm, where each virtual view is syn-

thesized using two nearby reference views. We then formulate RC optimization for a new view

synthesis paradigm, where the second reference view is first synthesized from the first reference,

and then disoccluded region is constructed using our proposed complexity-scalable inpainting algo-

rithm.

6.3.1 Rate-Complexity Tradeoff for Standard View Synthesis

For decoders that adopt the standard view synthesis paradigm [97], reference view v and v + 1, will

be encoded as video frames, so that intermediate views between them can be synthesized using

two references via DIBR. The RC tradeoff is how to select additional virtual views between them

for rendering and encoding at server, so that complexity at client can be optimally reduced. More

specifically, given network bandwidth can support M additional encoded frames for transmission,

how to select M intermediate virtual views for encoding so that the complexity of synthesizing the

remaining views is minimized.

For simplicity, we assume complexity of synthesizing a view in DIBR is a weighted sum of the
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number of translated pixels4 plus the number of inpainted pixels due to disocclusion. More precisely,

let ψ(u,w) be the complexity of synthesizing intermediate virtual views u + 1/K, . . . ,w− 1/K between

u and w, if each is synthesized via DIBR using encoded views u and w as left and right reference

views, respectively. We write:

ψ(u,w) =

w−1/K∑
y=u+1/K

gy(u,w) + µ hy(u,w) (6.1)

where gy(u,w) and hy(u,w) are the numbers of translated and inpainted pixels in virtual view y

respectively, given left and right reference views u and w are used during synthesis, and µ is a

weighting parameter. If a computation-intensive inpainting method [23] is used for disocclusion

hole-filling, then µ is assigned a value� 1.

The objective is to find M additional encoded views, u1, . . . ,uM, between reference views v and

v + 1, so that the overall complexity is minimized:

min
u1,...,uM

CL =

M∑
m=0

ψ(um,um+1) s.t.


u0 = v

uM+1 = v + 1

um < um+1

(6.2)

(6.2) can be solved recursively as follows. We first define CL(u,m) as the minimum complexity

from intermediate view u + 1/K till v + 1 − 1/K, given view u is an encoded view and m remaining

intermediate views can be selected for encoding. CL(u,m) can be defined recursively as:

CL(u,m) =

 minw ψ(u,w) + CL(w,m − 1) if m ≥ 1

ψ(u, v + 1) o.w.
(6.3)

Using (6.3), a recursive call to CL(v,M) will yield the optimal solution to (6.2). Further, the

complexity of computing (6.3) can be reduced via dynamic programming (DP): each time CL(u,m)

or ψ(u,w) is computed, the solution is stored in entry [u,m] or [u,w] of DP tables, so that repeated

calls to the same sub-problem can be looked up instead. This is particularly helpful if (6.2) needs

to be solved multiple times for different M’s.

6.3.2 Rate-Complexity Tradeoff for New View Synthesis

We now formulate the RC optimization problem for the new view synthesis paradigm, where the

virtual views between references v and v + 1 are synthesized via DIBR using the two reference

images, but the second reference v + 1 is first synthesized using texture and depth maps of the first

reference v only. The problem we pose is how to first construct the second reference image v + 1

given the first reference v, using a complexity-scalable inpainting algorithm.

4A translated pixel means a texture pixel copied from left and/or right texture map(s) to target view, where the copied
location is indicated by the depth map(s). See [97] for details of DIBR.
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First, we assume that all translated pixels in reference view v + 1 are mapped using texture and

depth maps at reference v. The remaining disoccluded pixels in the target region Ω need to be filled

with the help of transmitted AI. Specifically, each block b with center on the target / source region

boundary δΩ needs to be completed using one of three AI: ϕb ∈ {skip(θ), vec, intra}. To select AI

ϕb for block b, we write our objective of overall bit-rate as:

min
{ϕb}

∑
b

R(ϕb, ϕb−1) (6.4)

where R(ϕb, ϕb−1) is the encoding rate for block b if AI ϕb and ϕb−1 are used for blocks b and b − 1,

respectively. There is a dependency on the AI chosen for previous block b − 1, because: i) SV can

be differentially coded if the consecutive blocks use vec as AI, and ii) available intra-prediction types

depend on whether previous block is also coded as intra, as described in Section 6.2.1.

It is subject to a distortion constraint for each block b:

D(ϕb) ≤ d̄, ∀b (6.5)

where D(ϕb) is the resulting distortion of block b if mode ϕb is used, and an overall complexity

constraint for all blocks b’s: ∑
b

C(ϕb) ≤ C̄ (6.6)

where C(ϕb) is the processing time of block b if mode ϕb is used.

Instead of solving (6.4) directly, we solve the equivalent Lagrangian instead:

min
ϕb |D(ϕb)≤d̄

∑
b

R(ϕb, ϕb−1) + λC(ϕb) (6.7)

where λ is a Lagrangian multiplier, selected so that complexity constraint (6.6) is met for the entire

frame. (6.7) can be solved by first constructing a trellis where each column b of three states cor-

respond to the three types of AI that can be chosen for block b. The edge cost from state ϕb−1 of

column b − 1 to state ϕb of column b is R(ϕb, ϕb−1) + λC(ϕb), except when D(ϕb) > d̄, in which case

the edge cost is infinity. Once the trellis is constructed, one can find find the shortest path in the

trellis using the known Viterbi algorithm, which corresponds to the optimal set of AIs for all blocks

b’s.

6.4 Experimentation

We now demonstrate the performance of our proposed RC optimizations for standard and new

synthesis paradigms, respectively. The test sequences used are Kendo and Balloons5.

5http://www.tanimoto.nuee.nagoya-u.ac.jp/ fukushima/mpegftv/
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Figure 6.3: Tradeoff between the number of encoded virtual views and total number of holes after
DIBR for standard synthesis.
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For standard synthesis paradigm, we select a subset of virtual views between two reference

views for rendering and encoding at server. A naı̈ve method to select M intermediate virtual views

is to pick views that are equally spaced, i.e., insert M encoded views at locations v + 1/(M + 1),

v + 2/(M + 1), etc. This method is denoted by “equally-spaced” in Fig. 6.3. Also shown is our

“proposed” scheme. Note that M is a simple proxy for rate. One can alternatively consider actual

rates of the M encoded views in the RC optimization, at the cost of a more complex optimization

algorithm. This is left for future work.

We see in Fig. 6.3 that for the same number of encoded views, “proposed” can achieve much

lower complexity (measured in number of disocclusion holes). The reason can be explained as

follows. In practice, the non-stationary geometrical information of the 3D scene means that disoc-

cluded pixels are not evenly distributed across views, but rather skewed towards views with cameras

that are closer to objects in the scene. Our proposed recursive optimization is robust to this non-

stationarity and can smartly select the views with more disoccluded pixels, resulting in a dramatic

decrease in client-side complexity.

In the second experiment for new synthesis paradigm, we verify the performance of our complexity-

scalable DIBR-based view synthesis algorithm by smartly selecting AI to assist inpainting of the

second reference view. In Fig. 6.4, trellis-based optimization (“trellis”) can achieve noticeable gain

over separate optimization that selects AI for each block individually (“no trellis”), by exploiting rate

dependency between two consecutive AIs. Note that since the shortest path in trellis is searched at

encoder, there is no client-side complexity increase when using “trellis” instead of “no trellis”.

Fig. 6.4 also shows the performance of trellis-based optimization without skip(16)—only skip(32)

and skip(64) are used for AI skip—and optimization without vec (“no mv”). Without vec, we can

have comparable performance in low-bitrate region, but there is a larger performance gap in high-

bitrate region, which implies that when complexity is more a concern, vec is an important AI to

effectively reduce complexity. Without skip(16), the AI-aided method cannot perform well at low

bitrate region, where the complexity is dramatically increased. This observation means that a well-

defined search range is critical to scalably reduce the complexity at low bitrate.

6.5 Summary

DIBR-based view synthesis at client entails a sizable computation overhead, which may be too

costly for computation-constrained devices. In this chapter, we propose two techniques to scalably

reduce the complexity of view rendering at client, at the expense of a controlled increase of transmis-

sion rate from server. For standard view synthesis paradigm, we propose a dynamic programming

algorithm to identify subset of virtual views for rendering and encoding at server, so that the client is

only required to decode the encoded rendered images with no view synthesis overhead. For a new

view synthesis paradigm, we propose to tune the selection of auxiliary information (AI) used to aid
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Figure 6.4: RC tradeoff of view synthesis with the AI-aided hole-filling for new synthesis paradigm.
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inpainting of large disoccluded regions, to optimally trade off transmission rate and inpainting com-

plexity. Experimental results show that the proposed schemes can scalably and gracefully reduce

client-side complexity, and the proposed optimizations achieve better rate-complexity tradeoff than

competing schemes.
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Chapter 7

Conclusions

In this thesis, we investigate the design of different MVC approaches for different multiview/3D video

applications. We first review the previous works, and then various efficient coding techniques are

proposed to achieve significant improvements over existing methods. In this chapter, the conclu-

sions are drawn and the possible future directions are discussed.

7.1 Conclusions

The compression of texture-plus-depth video from multiple closely-spaced camera viewpoints is im-

portant for 3D imaging applications and new free viewpoint video communication. In the first part of

this thesis, we propose an encoder-driven inpainting strategy to complete disocclusion holes in the

DIBR-synthesized image in an RD optimal manner. Missing pixel regions that are difficult-to-inpaint

are first completed following instructions from the encoder in the form of auxiliary information (AI).

The remaining easy-to-fill holes are then completed without encoder’s help via nonlocal template

matching, which is effective due to the self-similarity characteristics in natural images. Finally, we

propose two patch-based transform coding techniques (graph Fourier transform and DCT sparsifi-

cation), so that only missing pixels in a target patch are encoded, avoiding representation redun-

dancy. In doing so, our coding strategy successfully exploits the three kinds of redundancy inherent

in the texture-plus-depth representation for coding gain: i) inter-view redundancy via DIBR-based

3D warping; ii) inter-pixel redundancy via patch-based transform coding; and iii) inter-patch redun-

dancy via nonlocal template matching. Experimental results show noticeable coding gain over a

comparable HEVC implementation.

In the second part of this thesis, two fast methods are proposed to generate the JND maps

of multiview videos. In the JND synthesis method, for some reference views, the JND maps are

obtained by exploiting the properties of luminance adaptation and texture masking of frames. The
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JND maps of other views are synthesized by utilizing existing neighboring JND maps. In the JND

copying method, the motion and disparity information yielded in JMVC encoder is utilized to pre-

dict JND block from reference JND maps. The error propagation of the method is studied and a

JND block refreshing approach is proposed to alleviate the influence of the error propagation. A

perceptual MVC scheme is developed based on the synthesized and predicted JND maps, where

the residuals after intra or inter prediction are adjusted within the range of the corresponding JND

thresholds. Experimental results show that the JND prediction method can be much faster than the

JND synthesis method and has a comparable performance with the expensive direct JND method.

Thirdly, we presented an image tiling framework for representation of an object’s dynamic 3D

geometry, where the object’s 3D mesh is first projected as 2D images to a set of carefully placed

image tiles, before a multiview image codec tuned for piecewise smooth signals is deployed for cod-

ing of tile images. The key to a compact yet accurate representation is the selection and placement

of image tiles. We showed that if only planar and cylindrical tiles are considered, the optimal tile

placement problem (a finite tile set that best matches the object’s representative 2D cross section)

can be mapped to a piecewise linear approximation problem. The approximation problem can be

subsequently solved efficiently using a dynamic programming algorithm. Experimental results show

that optimal tile placements can outperform naı̈ve tile placements by up to 35% in rate reduction.

In the fourth part, unlike previous work on IMVS that studied the tradeoff between expected

streaming rate and storage cost when optimizing frame structures, we proposed to redesign frame

structures with the help of available real-time computation, where frequently used view-switches

are handled by pre-computed frames in storage, and infrequently used view-switches are handled

by real-time computed frames. In contrast to multi-merge frames previously proposed that offer

good tradeoff between transmission rate and storage cost, we proposed a uni-merge frame that is

computed in real-time and offers good tradeoff between transmission rate and real-time computation

cost. Experimental results show that with real-time computation, the expected streaming rate can

be further decreased by 50% compared to pre-encoded structures without real-time computation.

DIBR-based view synthesis at client entails a sizable computation overhead, which may be too

costly for computation-constrained devices. In the fifth part of this thesis, we propose two tech-

niques to scalably reduce the complexity of view rendering at client, at the expense of a controlled

increase of transmission rate from server. For standard view synthesis paradigm, we propose a

dynamic programming algorithm to identify subset of virtual views for rendering and encoding at

server, so that the client is only required to decode the encoded rendered images with no view syn-

thesis overhead. For a new view synthesis paradigm, we propose to tune the selection of auxiliary

information (AI) used to aid inpainting of large disoccluded regions, to optimally trade off trans-

mission rate and inpainting complexity. Experimental results show that the proposed schemes can

scalably and gracefully reduce client-side complexity, and the proposed optimizations achieve better

rate-complexity tradeoff than competing schemes.
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7.2 Future Work

7.2.1 Inpainting Assisted Multiview Video Coding

In the future work of the inpainting assisted multiview video coding as presented in Chapter 2,

the performance can be further improved by incorporating with quadtree coding structure, because

different sizes of coding block can adapt to local image characteristics. Secondly, since finding the

optimal patch order in the proposed strategy is NP-hard, another heuristic to rank patches leading

to better RD performance than the proposed one could exist.

7.2.2 Perceptual Multiview video Coding

Future work of the JND-based perceptual multiview video coding includes the design of more ad-

vanced JND-based residual filters to take full advantage of perceptual coding, the derivation of JND

specific to stereoscopic and autostereoscopic display, and the application of subband-based JND

model or structure-based perceptual assessment metrics [100] to MVC. There is also much room

for improvement in the DIBR approach used in this thesis.

7.2.3 Geometry Compression

We are currently considering the following for future work. First, there is an implicit assumption in

our current framework that the object’s many cross sections along the principal axis are similar and

well represented by the largest cross section. For objects where the cross sections vary drastically

along the principal axis, one can divide the object into N parts before performing our tile optimization

for each part, resulting in N times as many tiles. Second, after identifying the principal axis, one

can identify a secondary axis, orthogonal to the principal axis, where the range of the projected 3D

points onto the axis is maximized. We can then perform tile selection for a representative cross

section orthogonal to the secondary axis. Third, it is possible to project the geometry of 3D object

to alternative 2D manifolds, e.g., a sphere, other than the proposed planar and cylindrical tiles.

However, some pre-processing prior to depth coding may be required accordingly.
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