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ABSTRACT

The spectra of graphs and their relation to graph properties have been well-studied. For digraphs,
in contrast, there are relatively few results. The adjacency matrix of a digraph is usually difficult to
work with; it is not always diagonalizable and the interlacing theorem does not hold (in general) for
adjacency matrices of digraphs. All acyclic digraphs have the same spectrum as the empty graph.
This motivates the need to work with a different matrix which captures the adjacency of the digraph.
To this end, we introduce the Hermitian adjacency matrix.

Another way to extract more information out of the spectrum is by restricting to specific classes of
digraphs. In this thesis, we look at vertex-transitive digraphs with simple eigenvalues. Intuitively, the
property of having many simple eigenvalues tends to coincide with having few automorphisms. For
example, the only vertex-transitive graph with all eigenvalues simple is K2. In the case of graphs,
we restrict to the cubic vertex-transitive case, where we find combinatorial properties of graphs with
multiple simple eigenvalues. We also explore the eigenvectors of vertex-transitive digraphs with all
eigenvalues distinct.
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Chapter 1

Introduction

The spectra of graphs and their relation to graph properties have been well-studied. There has been
extensive study about the interplay of eigenvalues of a graph and various graph properties, such as
the diameter [16, 43] or the chromatic number [17, 33, 32]; see also [45]. The relationship between
symmetries of a graph and its eigenvalues has also been investigated extensively, for example in
[15, 55, 56]. The eigenvalues of the Laplacian matrix of a graph determine the number of connected
components. For connected graphs, the eigenvalues of the adjacency matrix determine whether
the graph is bipartite. There are spectral bounds on the independence number and many other
properties. As a concrete example, the Delsarte-Hoffman bound for the size of the largest coclique
of an undirected graph was first proved by Delsarte for distance regular graphs and generalized to
arbitrary regular graphs by Hoffman [28].

1.0.1 Theorem (Delsarte-Hoffman). Let X be a k-regular graph on n vertices with least eigenvalue
of its adjacency matrix equal to τ . Then α(X), the size of the largest co-clique, is bounded by:

α(X) ≤ n

1− k
τ

.

There are many methods for finding and bounding the eigenvalues of a graph, with respect to
various matrices which depend on the adjacency relation of the graph. The main tools are the
Perron-Frobenius theorem and eigenvalue interlacing.

For digraphs, in contrast, there are relatively few results. There is a directed analogue of Wilf’s
bound on chromatic number [44], however the spectra of digraphs is, comparatively, a less explored
area. For a survey of the area, see [12]. The adjacency matrix of a digraph is usually difficult to
work with. It is not always diagonalizable. The interlacing theorem does not hold for adjacency
matrices of digraphs, in general. All acyclic digraphs have the same spectrum as the empty graph.

This motivates the need to work with a different matrix which captures the adjacency of the
digraph. To this end, we study the Hermitian adjacency matrix. For a digraph X = (V,E), the
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Hermitian adjacency matrix H is the matrix with entries

Huv =



1 if uv and vu ∈ E;

i if uv ∈ E and vu /∈ E;

−i if uv /∈ E and vu ∈ E;

0 otherwise.

In this definition, i denotes the imaginary unit. The Hermitian adjacency matrix is diagonalizable
and the interlacing theorem can be applied. However, the Perron-Frobenius theorem does not hold
for this class of matrices, and some strange behaviour occurs, in the sense of being different from
the adjacency matrix of graphs.

Another way to extract more information out of the spectrum is by restricting to specific classes
of digraphs. In this thesis, we look at vertex-transitive digraphs with simple eigenvalues. Intuitively,
the property of having many simple eigenvalues tends to coincide with having few automorphisms.
For example, the only vertex-transitive graph with all eigenvalues simple isK2. In the case of graphs,
we restrict to the cubic vertex-transitive case, where we find combinatorial properties of graphs with
multiple simple eigenvalues. We also explore the eigenvectors of vertex-transitive digraphs with all
eigenvalues distinct.

1.1 Background and known results

The eigenvalues of digraphs have not been extensively studied. However there has been a lot of
activity in the study of the eigenvalues of tournaments, with respect to the adjacency matrix and the
skew-symmetric adjacency matrix. Some work has also been done for the skew-symmetric adjacency
matrix of oriented digraphs.

The skew-symmetric matrix of a tournament T is a {0,±1} matrix; for our purposes, it is
equivalent to iH(T ). There are many results on the eigenvalues of skew symmetric matrices of
tournaments. Gregory, Kirkland and Shader used Pick’s inequality to bound the maximum absolute
eigenvalue of such a matrix in [30]. Skew-symmetric conference matrices are studied in [29] and
[22]. More recently, the singular values of the skew-symmetric adjacency matrix of oriented graph
has been studied in [1], [14] and [35].

For the skew-symmetric matrix, there is a notion of switching equivalence. If we reverse all arcs
across a cut of the digraph, the spectrum will be preserved. This idea of switching has been studied
in relation with the switching reconstruction problem [6, 2, 42]. This switching is related to Seidel
switching in the Seidel matrix of graphs and a concept that is analogous to two-graphs has been
defined as a skew two-graph or oriented two-graph by Cameron in [13] and Moorhouse in [47].

The digraphs studied in this thesis are also called mixed graphs in the literature.
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1.2 Summary of Results

In this thesis, we study the spectrum of digraphs with respect to various matrices; in particular we
investigate the adjacency matrix, the Hermitian adjacency matrix and the A-Laplacian. In addition,
we consider simple eigenvalues of these matrices in the case that the digraphs are vertex-transitive,
with the intuition that the added algebraic structure and symmetry will help understand the combi-
natorial structure of the digraphs. In the case of cubic graphs, we find surprising connections with
regular maps and Chebyshev polynomials.

1.2.1 Hermitian adjacency matrix of digraphs

The main contribution of this dissertation is the exploration of the Hermitian adjacency matrix of
digraphs. As this is a new concept, we give many basic properties, such as the coefficients of the
characteristic polynomial. We find that tr(H(X)2), for a digraph X, counts the number of edges
in the underlying graph and that tr(H(X)3) is a linear combination of the numbers of subgraphs
isomorphic to four digraphs whose underlying graph is K3. As we do for the adjacency matrix in
Section 5.4, we study digraphs whose H-eigenvalues are symmetric about 0. In the case of the
Hermitian adjacency matrix, the picture is less complete than for the adjacency matrix; all oriented
graphs and digraphs with bipartite underlying graphs will have H-eigenvalues which are symmetric
about 0, but there are also other digraphs with this eigenvalue property which are not of those
classes.

It has come to our attention that this matrix was introduced in a recent paper of Liu and Li in
[41], where they find several of its basic properties.

We show that the largest eigenvalue of the Hermitian adjacency matrix is upper-bounded by
the maximum degree of the underlying graph. Contrary to the case for the adjacency matrix, there
does not appear to be a bound on the diameter of the digraph in terms of the number of distinct
eigenvalues of the Hermitian adjacency matrix. In fact, we give an infinite families of digraph whose
number of distinct eigenvalues is constant, but whose diameter goes to infinity.

In spite of the many unintuitive behaviours that the Hermitian adjacency matrix exhibits, it is
still possible to extract combinatorial structure of the digraph from its eigenvalues. In Section 6.10,
we find all digraphs whose H-eigenvalues lie in the range (−

√
3,
√

3). Using interlacing, we find
spectral bounds for the maximum independent set and maximum acyclic subgraphs for oriented
graphs.

We also study operations on digraphs which preserve the spectrum of the Hermitian adjacency
matrix. In particular, given a digraph X with vertex u and a non-adjacent vertex v, the digraphs
obtained by adding the arc uv, adding the arc vu and adding both arcs uv and vu are all cospectral
under the Hermitian adjacency matrix.

We also find the H-eigenvalues of many families of digraphs, including all oriented cycles and
all digraphs whose underlying graph is a star. We give a new proof for finding the eigenvalues of
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a transitive tournament, with respect to the Hermitian adjacency matrix. We also find all graphs
whose H-eigenvalues are the same as those of Kn and the negative of those of Kn.

This matrix was formulated by Bojan Mohar and these results were proved in collaboration with
him.

1.2.2 Interlacing bounds on digraphs

The interlacing theorem, stated here in Chapter 4, is a powerful tool when working with the eigenval-
ues of graphs. We would like to use interlacing to find bounds on combinatorial properties of digraph
X in terms of the eigenvalues of some matrix associated with X. We succeed in this endeavour by
using the A-Laplacian matrix (defined in Chapter 9 to prove a result which generalizes a result of
Haemers [32] for graphs to the class of digraphs with normal A-Laplacian matrices. Since the main
theorem is quite technical, we will state Haemer’s lemma here, which appears in this dissertation as
Corollary 9.3.1.

Theorem ([32]). Let X be a connected graph on n vertices and let Y and Z be disjoint vertex sets
in X with no arcs from Z to Y . Then,

|Y ||Z|
(n− |Y |)(n− |Z|) ≤

(σn − σ2)2

(σn + σ2)2

where 0 = σ1 < σ2 ≤ · · · ≤ σn are the Laplacian eigenvalues of X.

Using the generalization of this theorem to digraphs whose A-Laplacian matrix is normal, we
also find an upper bound on the size of the maximum induced acyclic subdigraph.

1.2.3 Simple eigenvalues of vertex-transitive graphs

In the last chapter of this dissertation, we study cubic, vertex-transitive graphs with 1 as a simple
eigenvalue and study the combinatorial structure of such graphs, as well as give several families of
graphs which such spectral properties. This is joint work with Bojan Mohar.

1.3 Overview

Chapters 2–5 are background chapters containing basic definitions and background materials. The
remaining chapters contain original results.

In Chapter 2, we give our main definitions, with regards to digraphs, and notation which will be
used through the thesis. We work out preliminary lemmas and theorems concerning eigenspaces and
digraph symmetrices for a general class of matrices that capture the adjacency relation of digraphs
in Chapter 3. The results in the section are standard for the adjacency matrix, but are proved here
for a large class of matrices. We give a thorough introduction to eigenvalue interlacing, which will
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be an important tool for studying digraph spectra in Chapter 4. Although the main focus of the
thesis is on the Hermitian adjacency matrix of digraph, we consider the adjacency matrix of digraphs
in Chapter 5; mainly, we study situations that occur for digraphs but not for graphs and also basic
properties so that we may compare to the Hermitian adjacency matrix.

The Hermitian adjacency matrix is introduced in Chapter 6. We work out basic concepts for
it in Chapter 6 and find operations that preserve the spectrum in Chapter 7. In Chapter 8, we
introduce special families of digraphs whose spectra with respect to the Hermitian adjacency matrix
merit special attention. In Chapter 9, we use interlacing to find a spectral bound for the maximum
acyclic subdigraph. In Chapter 10, we extend the exploration of vertex-transitive digraphs with all
simple eigenvalues with respect to a matrix respecting adjacency in Chapter 3 to some results on
the simple eigenvalues of cubic vertex-transitive graphs.

Statements of preliminary theorems in linear algebra are given in Appendices A and B. Appendix
C contains a table which is referenced by several proofs and which was not included in the main
text for reasons of readability.
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Chapter 2

Digraphs

2.1 Definitions

In this chapter, we establish the main definitions and notation which will be used for the remainder
of this thesis. Concepts which are natural and common for graphs, are defined here for digraphs,
for the sake of completeness, but assumed to be understood for graphs. We refer to standard graph
theory texts such as [7, 23] for basic definitions which are omitted here. Where it is possible, we have
defined concepts for digraphs, such as regularity, so that it generalizes the corresponding concept
for graphs.

A directed graph or digraph is a pair X = (V,E) of finite sets together with two maps

h : E → V

and
t : E → V

which assign every element e ∈ E to a tail or initial vertex , t(e), and a head or terminal vertex ,
h(e). The set V is the vertex set of X, sometimes denoted V (X) when the context is unclear, and
its elements are said to be the vertices of X. The set E is the arc set of X, sometimes denoted
E(X), and its elements are said to be the arcs of X. For arc e ∈ E, the head and tail vertices
of e are also said to be the ends of e. We will work with strict digraphs which are digraphs with
no loops or parallel arcs, which are arcs with the same head and tail. We note that two oppositely
oriented arcs with the same ends are permitted.

We also say that an arc e is incident to its ends t(e) = x and h(e) = y, and we may write
e = xy. Thus we may write the arc set E as a subset of the set of all ordered pairs of vertices. If
xy is an arc of X, then x is an in-neighbour of y and y is an out-neighbour of x. The set of all
in-neighours of x is the in-neighbourhood of x and is denoted N−X (x). The set of all out-neighours
of x is the out-neighbourhood of x and is denoted N+

X (x).
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If xy ∈ E(X) and yx ∈ E(X), we say that the unordered pair {x, y} is a digon of X. Further,
if xy, yx ∈ E(X), we may say that xy and yx are incident to the digon {x, y}. In this case, since
y is both an in-neighbour and an out-neighbour of x, we may say that y is a neighbour of x.

We define G(X), the symmetric subgraph of digraph X, to be the graph with vertex set V (X)
and the edge set being the set consisting of all digons of X. Similarly, we define D(X), the
asymmetric sub-digraph of digraph X, to be the graph with vertex set V (X) and the arc set being
the set of arcs of X which are not incident to any digons of X.

The underlying graph of a digraph X, denoted Γ(X), is the graph with vertex set V (X) and
edge set

E = {{x, y} | xy ∈ E(X) or yx ∈ E(X)}.

If a digraph X has every arc incident to a digon, then we say that X is undirected. or, more simply,
that X is a graph. If a digraph X has no digons, we say that X is an oriented graph. Given a graph
G, the digraph of G is the digraph on the same vertex set with every undirected edge replaced by
two of arcs with opposite orientation. We will denote the digraph of a graph G as ~D(G).

The converse of digraph X = (V,E) is the digraph XC with vertex set V and arc set E′ such
that

E′ = {xy | yx ∈ E}.

Observe that every digon of X is unchanged under the operation of taking converses. Thus,
G(XC) = G(X) and D(XC) = (D(X))C .

The in-degree of a vertex x ∈ V (X), denoted d−(x), is the number of in-neighbours of x.
The out-degree of a vertex x ∈ V (X), denoted d+(x), is the number of out-neighbours of x. The
degree of a vertex x ∈ V (X), denoted d(x), is equal to |N−X (x)∩N+

X (x)|. The maximum in-degree
(resp. out-degree) of X will be denoted ∆−(X) (resp. ∆+(X)) and the minimum in-degree (resp.
out-degree) of X will be denoted δ−(X) (resp. δ+(X)). Note that we may omit the superscripts
for graphs, which will then agree with the typical notation for the undirected case.

Suppose X is a digraph such that G(X) is a regular graph and D(X) has in-degree equal to s
and out-degree equal to t at every vertex. Then, letting n be the number of vertices of X, we have
that D(X) has ns arcs and also nt arcs, both by the handshaking lemma, and so s = t. A digraph
X is said to be regular if G(X) is k-regular and D(X) has in-degree and out-degree equal to t at
every vertex. If a digraph X has in-degree equal to out-degree at every vertex, we say that X is
eulerian.

2.2 Sub-digraphs and other properties

Given a digraph X, any digraph Y whose vertex set is a subset of V (X) and whose arc set is a
subset of E(X) is said to be a sub-digraph of X.

A (directed) walk of X is an alternating sequence of vertices and arcs, (v0, a0, v1, . . . , ak−1, vk),
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such that h(aj) = vj and t(aj) = vj+1 for j = 0, . . . , k − 1. Since we work exclusively with strict
digraphs, we sometimes denote a walk by its sequence of vertices (v0, . . . , vk) or just v0v1 . . . vk,
for convenience. The length of a walk v0v1 . . . vk is k and its order is k + 1. Given a walk W in a
digraph X, we may consider the sub-digraph of X whose vertices and arcs are those appearing in
W . Thus, we may speak of the vertex set and arc set of W . If a walk W has all distinct vertices,
then it is said to be a (directed) path.

For vertices u and v, the distance from u to v, denoted d(u, v), is the smallest k such that
there exists a walk of length k in X with u as the first vertex and v as the last vertex. We define
d(u, v) =∞ when no such walk exist.

A digraph X = (V,E) is strongly connected if for every pair of vertices (x, y), there exists a
directed walk from x to y in X. A digraph is weakly connected if its underlying graph is connected.

2.3 Automorphism group of a digraph

Let X = (V,E) be a digraph. A bijective mapping α : V → V is an automorphism of X if
α(u)α(v) ∈ E if and only if uv ∈ E. The automorphism group of X, denoted Aut(X), is the set
of all automorphisms of X, which forms a group acting on V , under composition.

Each automorphism of X acts on V as a permutation, so Aut(X) ⊆ Sym(V ), the symmetric
group acting on V . Let |V | = n. We may represent any permutation α of the (totally ordered)
n-element set V , as an n × n permutation matrix P such that Peu = eα(u), where ex is the
elementary basis vector indexed by the element x of V . More explicitly, in CV , the vector space of
C of dimension n, with coordinates indexed by the elements of V , the elementary basis vector ex
is the vector with 1 in the coordinate indexed by x ∈ V and 0 elsewhere. Thus, we may represent
the automorphism group of digraph X by a group of n× n permutation matrices. We will conflate
notation and use Aut(X) to denote the matrix group of permutation matrices representing the
automorphisms of X.

2.4 Chromatic number of a digraph

An acyclic digraph is a digraph with no directed cycles. The chromatic number χ(D) of a digraph
D is the least integer k such that there exists a partition of the vertices of D into k parts such that
each part induces an acyclic subdigraph.
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Chapter 3

Eigenspaces and automorphisms

In algebraic graph theory, the study of eigenvalues often seeks to exploit the interaction between
the automorphism group of a graph and the eigenspaces of a graph. There is a surprising inverse
correlation between the number of eigenvalues of a graph and the size of its automorphism group. If
the automorphism group of a graph G is arc-transitive, the graph has at most two simple eigenvalues.
On the other hand, if a graph on n vertices has at most 2 distinct eigenvalues, the automorphism
group is the full symmetric group of n elements. We turn our attention to classes of graphs and
digraphs with many automorphisms and many simple eigenvalues, with the intuition that they should
not be many in number and with the hope that we may describe them.

In this chapter, we prove that the automorphisms of a digraph fix its eigenspaces under any matrix
which "captures" the adjacency of the digraph; this class of matrices will include the adjacency matrix
and the Hermitian adjacency matrix of Chapter 6. Then, we specialize to vertex-transitive case for
graphs and digraphs.

3.1 Matrices respecting adjacency

Let X = (V,E) be a digraph. We consider the following four relations between ordered pairs (u, v)
of distinct vertices of X:

(R 0 ) there are no arcs between u and v, i.e. uv, vu /∈ E;

(R+) uv ∈ E and vu /∈ E;

(R−) vu ∈ E and uv /∈ E; and

(R 1 ) uv and vu are both elements of E.

Observe that every pair of vertices (u, v) must satisfy exactly one of the relations (Ri) for i ∈
{0,+,−, 1}. We may summarize this information with a mapping RX : V × V → {0,+,−, 1},
where RX(u, v) = i if (u, v) satisfies (Ri).
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We are interested in matrices whose entries are related to adjacency in the digraph X. Let M
be a matrix with rows and columns, indexed by the vertices of X. We say that M respects the
adjacency of X if the following conditions hold:

(i) For every pair of vertices (u, v) and (x, y): if RX(u, v) = RX(x, y), thenM(u, v) = M(x, y).

(ii) M(u, u) = M(v, v) whenever u and v are in the same orbit under the action of Aut(X).

We may sometimes write that such a matrix M is a matrix respecting adjacency (of X). The
adjacency matrix of a digraph X, denoted A(X), is the matrix such that

A(u, v) =

1, if u 6= v and RX(u, v) ∈ {+, 1};

0, otherwise.

Examples of matrices respecting the adjacency ofX whereX is a graph include the adjacency matrix
A(X), the Laplacian matrix L(X) and the signless Laplacian Q(X). For tournaments, the skew
symmetric adjacency matrix is a matrix respecting adjacency. For digraphs in general, the adjacency
matrix and the Hermitian adjacency matrix, which we introduce in Chapter 6, also respect adjacency.

3.1.1 Proposition. If M is a matrix respecting adjacency of digraph X and P ∈ Aut(X), then
P TMP = M .

Proof. Observe first that P T = P−1 for a permutation matrix P . Let X be a digraph, M a matrix
respecting its adjacency and P be the permutation matrix representing α, an automorphism of X.
For vertices u and v of X, we consider the (u, v) entry of the matrix P TMP and see that:

(P TMP )(u, v) = eTu (P TMP )ev
= (Peu)TM(Pev)

= eTα(u)Meα(v)

= Mα(u),α(v).

Since α takes the pair (u, v) to (α(u), α(v)), we haveRX(u, v) = RX(α(u), α(v)). ThenM(α(u), α(v)) =
M(u, v) since M respects the adjacency of X.

An immediate corollary of Proposition 3.1.1 is that any automorphism P preserves the eigenspaces
of M .

3.1.2 Corollary. If M is a matrix respecting adjacency of digraph X and P ∈ Aut(X), then the
action of P on CV (X) fixes the eigenspaces of M .

Proof. Let M , X, and P be as in the statement of the corollary and let v be an eigenvector of
M with eigenvalue λ. It suffices to show that Pv is also an eigenvector of M with eigenvalue λ.
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Proposition 3.1.1 gives that MP = PM and so

M(Pv) = (MP )v = (PM)v = P (λv) = λ(Pv)

as claimed.

3.2 Simple eigenvalues of vertex-transitive digraphs

Let X be a vertex-transitive digraph on vertices [n] := {1, . . . , n}. Let M be a matrix respecting
adjacency for digraph X. Let λ be a simple eigenvalue of M and let x ∈ Cn be a corresponding
eigenvector; for simplicity of notation, we consider Cn = CV (X).

Let P ∈ Aut(X). By Corollary 3.1.2, the action of P on Cn fixes the λ-eigenspace of M . Since
λ is a simple eigenvalue, we see that Px = αx for some α ∈ C. Since P is a permutation matrix,
x and Px have the same norm and so |α| = 1. Let m be the order of P ; that is m is the least
positive integer such that Pm = In. Then Pmx = αmx = x gives that α is a m-th root of unity.
In this way, given a simple eigenvalue λ of M , we may define a mapping χ(λ, ·) : Aut(X)→ C, by
χ(λ, P ) = α for P ∈ Aut(X) where α ∈ C is such that Px = αx for any x in the λ-eigenspace of
M .

3.2.1 Lemma. The mapping χ(λ, ·) is a character of Aut(X).

Proof. We need to show that χ(λ, ·) is a homomorphism. Observe that χ(λ, I) = 1. Let P,Q ∈
Aut(X) and consider χ(λ, PQ). Let x be an eigenvector of M for λ. Then Px = χ(λ, P )x and
Qx = χ(λ,Q)x. Then

PQx = P (Qx) = P (χ(λ,Q)x) = χ(λ,Q)Px = χ(λ,Q)χ(λ, P )x

and so χ(λ, PQ) = χ(λ, P )χ(λ,Q).

We may obtain even more information about the entries of x.

3.2.2 Lemma. All entries of x have the same norm.

Proof. For u, v ∈ V (X), let P ∈ Aut(X) be an automorphism taking u to v. We know one exists,
since X is vertex transitive. Then Px = χ(λ, P )x and so x(u) = χ(λ, P )x(v). Since χ(λ, P ) has
norm 1, we see that |x(u)| = |x(v)|.

Then, we may assume that x(1) = 1, by taking the appropriate normalization.The algebraic
conjugates of an algebraic number α are the roots of the minimal polynomial of α over the rationals.

3.2.3 Lemma. Under the normalization x(1) = 1, the entries of x are roots of unity and are closed
under algebraic conjugation.
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Proof. Let u 6= 1 be a vertex of X. Let P ∈ Aut(X) such that P maps 1 to u. Then x(u) =
χ(λ, P )x(1) = χ(λ, P ), which is a root of unity since χ(λ, ·) is a character of Aut(X), a finite
group. Then, by taking the kth power of P , for any k, we see that x(u)k is an entry of x.

If M is diagonalizable over R, like the adjacency matrix, then the entries of x must be real
roots of unity by Lemma 3.2.3, which are {±1}. For M = A(X), we have the following standard
theorem, which can be found in [5] or [18].

3.2.4 Theorem (Petersdorf and Sachs [49]). Let X be a vertex-transitive graph of degree k. If λ
is a simple eigenvalue of A(X), then

λ = k − 2α

for some integer α ∈ {0, . . . , k}.

Proof. Let λ be a simple eigenvalue of X and let v be a corresponding ±1 eigenvector. Let x be a
vertex of X. Without loss of generality, we may assume v(x) = 1. We have that

∑
y∼x

v(y) = λv(x) = λ. (3.1)

Let α (0 ≤ α ≤ k) be the number of neighbours y of x such that v(y) = −1. Then (3.1) implies
that λ = k − 2α.

3.3 Vertex-transitive digraphs with all eigenvalues simple

Let X be a vertex-transitive digraph on vertices [n]. Let M be a matrix respecting adjacency for
digraph X. Observe that since Aut(X) is a subgroup of all n×n permutation matrices, the action
of Aut(X) on Cn is faithful.

3.3.1 Lemma. Suppose M is diagonalizable with all eigenvalues simple. For P,Q ∈ Aut(X), if
χ(λ, P ) = χ(λ,Q) for every eigenvalue λ of M , then P = Q.

Proof. Since M is diagonalizable, it has an orthonormal eigenbasis v1, . . . ,vn of Cn with cor-
responding eigenvalues λ1, . . . , λn. For j ∈ [n], we see from the hypothesis and definition that
χ(λj , P ) = χ(λj , Q) implies Pvj = Qvj . Since this holds for every j, we see that the action of P
and Q agree over a basis of Cn and, since the action of Aut(X) on Cn is faithful, P = Q.

3.3.2 Lemma. If M is diagonalizable with all eigenvalues simple, then Aut(X) is an abelian group.

Proof. Let P,Q ∈ Aut(X) and λ an eigenvalue of M . We see that

χ(λ, PQ) = χ(λ, P )χ(λ,Q) = χ(λ,Q)χ(λ, P ) = χ(λ,QP )
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since complex numbers commute. Since this holds for every λ, we see by Lemma 3.3.1 that PQ =
QP .

A Cayley digraphX = Cay(G,A) is a digraphical regular representation (DRR) ofG if Aut(X) =
G. This condition is equivalent to requiring that Aut(X) act regularly on X.

3.3.3 Proposition. If all eigenvalues of M are simple, then X is a DRR of an abelian group.

Proof. Recall that we consider Cn = CV (X). Let x, y be vertices of X. Since X is vertex transitive,
there exists P ∈ Aut(X) mapping x to y; that is to say Pex = ey. Suppose Q ∈ Aut(X) also
maps x to y.

Let λ be an eigenvalue of M with eigenvector v. Since P maps x to y, we must have that

vx = χ(λ, P )vy.

But Q also maps x to y, so
vx = χ(λ,Q)vy.

Lemma 3.2.2 says that every entry of v has the same norm, and so every entry of v is non-zero.
Then vy 6= 0 and we obtain that χ(λ, P ) = χ(λ,Q). Since this holds for every choice of λ, Lemma
3.3.1 implies that P = Q and we have shown that the action of Aut(X) is regular on X.

Since some subgroup of Aut(X) acts transitively and regularly on X, we have, by Sabidussi’s
theorem (see [57]), that X is a Cayley digraph of Aut(X). In addition, since it is Aut(X) itself that
acts regularly on X, we have that X is a DRR of Aut(X), which is abelian by Lemma 3.3.2.
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Chapter 4

Interlacing for Hermitian matrices

In the theory of eigenvalues of graphs, the method of interlacing is a powerful tool. In this chapter,
we state and prove the main theorems about interlacing. The proofs are given here because these
theorems, while true for Hermitian matrices, are usually stated only for symmetric matrices. These
theorems are found in [27] and [31].

If (λi)ni=1 and (µi)n−1
i=1 are sequences of real numbers such that

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ λn−1 ≥ µn−1 ≥ λn

then (µi)n−1
i=1 is said to interlace (λi)ni=1. More generally, if λ1 ≥ · · · ≥ λn and µ1 ≥ · · · ≥ µm are

real numbers with m < n, then we say that (µi)mi=1 interlaces (λi)ni=1 if

λi ≥ µi ≥ λn−m+i

for i = 1, . . . ,m. If m = n− 1, we see that this implies that

λi ≥ µi ≥ λi+1

for i = 1, . . . , n − 1. For m < n − 1, this second interlacing is sometimes called generalized
interlacing. The interlacing is tight if there exists k ∈ [1, . . . ,m] such that

λi = µi for i = 1, . . . , k,

and
λn−m+1 = µi for i = k + 1, . . . ,m.

Note the tight interlacing is a stronger condition than the containment of (µi)mi=1 in (λi)ni=1, when
considered as multisets. We will use these notions mostly where (λi)ni=1 is the multiset of eigenvalues
of an n× n matrix A and (µi)mi=1 is the multiset of eigenvalues of an m×m matrix B.
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4.1 Interlacing of principal minors

In this chapter, we follow the rational functions approach to interlacing in [27].

4.1.1 Proposition. [27] If A is an n × n Hermitian matrix and B an (n − 1) × (n − 1) principal
submatrix of A, then the eigenvalues of B interlace those of A.

Proof. Since B is a principal submatrix, B is the matrix obtained from A by deleting, say, the uth
row and column. Since A is a Hermitian matrix, we may use spectral decomposition of Section A.4
to decompose A into a sum of idempotents as follows:

A =
∑
θ

θEθ

where the sum runs over θ distinct eigenvalues of A and Eθ is the idempotent projection matrix
onto the θ eigenspace of A in Cn. For t a variable over C, consider the matrix (tI −A)−1 where I
is the n× n identity matrix. We have

(tI −A)−1 =
(
tI −

∑
θ

θEθ

)−1

and since EθEθ′ = O for θ 6= θ′ and E2
θ = Eθ, we see that(

tI −
∑
θ

θEθ

)(∑
θ

1
t− θ

Eθ

)
=
∑
θ

t

t− θ
Eθ −

(∑
θ

θEθ

)(∑
θ

1
t− θ

Eθ

)

=
∑
θ

t

t− θ
Eθ −

∑
θ

θ

t− θ
Eθ

=
∑
θ

t− θ
t− θ

Eθ

=
∑
θ

Eθ

= I.

Then
(tI −A)−1 =

∑
θ

1
t− θ

Eθ.

The (u, u)-entry of this matrix is

(tI −A)−1
u,u =

(∑
θ

1
t− θ

Eθ

)
u,u
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for which we may obtain a different expression using Cramer’s rule as follows:

(tI −A)−1
u,u = φ(B, t)

φ(A, t)

where φ(M, t) is the characteristic polynomial of M in variable t. This gives

φ(B, t)
φ(A, t) =

(∑
θ

1
t− θ

Eθ

)
u,u

. (4.1)

For Hermitian matrices, the idempotent matrices in the spectral decomposition are positive
semi-definite. Thus, the diagonal elements of Eθ are non-negative for each θ. If we differentiate
both sides of equation (4.1) with respect to t, we obtain

d

dt

φ(B, t)
φ(A, t) =

∑
θ

− 1
(t− θ)2 (Eθ)u,u .

Since each (Eθ)u,u is non-negative, we see that

d

dt

φ(B, t)
φ(A, t) ≤ 0.

Then, between any two poles of φ(B,t)
φ(A,t) , there is exactly one zero. This shows that the roots of

φ(B, t) interlace those of φ(A, t), as required.

The following useful theorem follows from iterated application of Proposition 4.1.1.

4.1.2 Theorem. If A is a Hermitian matrix and B is a principal submatrix of A, then the eigenvalues
of B interlace those of A.

4.2 Generalized interlacing

In this section we will introduce the generalized interlacing theorems of Haemers [32, 10, 31]. We
will provide interlacing properties for matrices following [31] and then, in Section 4.3, we will show
the equivalence to the interlacing in Section 4.1.

The following is the main theorem concerning generalized interlacing. Note that we use M∗ to
denote the conjugate transpose of matrix M .

4.2.1 Theorem. [32] Let A be a Hermitian n × n matrix and let S be a complex n ×m matrix
such that S∗S = I. If B = S∗AS, then the eigenvalues of B interlace the eigenvalues of A.
Furthermore, if the interlacing is tight, then SB = AS.

To prove Theorem 4.2.1, we need some linear algebra; in particular, we need Rayleigh’s Theorem,
see [34, Theorem 4.2.2]. We will give the theorem statement but not the proof.
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4.2.2 Proposition (Rayleigh). Let v1, . . . ,vn be an orthonormal eigenbasis of a n × n Hermitian
matrix A with corresponding eigenvalues λ1 ≥ · · · ≥ λn. Then

v∗Av
v∗v ≥ λi (4.2)

if v ∈ 〈v1, . . . ,vi〉 and
v∗Av
v∗v ≤ λi (4.3)

if v ∈ 〈v1, . . . ,vi−1〉⊥. Furthermore, equality holds in 4.2 iff v is an eigenvector of A for λi and
equality holds in 4.3 iff v is an eigenvector of A for λi.

We are now ready to prove Theorem 4.2.1.

Proof of Theorem 4.2.1 Recall that A is a Hermitian n× n matrix, S is any complex n×m matrix
such that S∗S = I and we define B to be B := S∗AS. Let λ1 ≥ · · · ≥ λn be the eigenvalues of A
with corresponding orthonormal eigenbasis {u1, . . .un}. Let µ1 ≥ · · · ≥ µm be the eigenvalues of
B with corresponding orthonormal eigenbasis {v1, . . .vn}. For i ∈ {1, . . . ,m}, consider

Wi = 〈v1, . . . ,vi〉 ∩ 〈S∗u1, . . . , S
∗ui−1〉⊥.

Since the first term of the intersection has dimension i and the second term has dimension m−i+1,
then Wi is a non-trivial subspace of Cm. We may choose nonzero xi ∈ Wi. Then, since SS∗ = I,
we have that Sxi ∈ 〈u1, . . . ,ui−1〉⊥. Then, by Proposition 4.2.2, we have that

λi ≥
(Sxi)∗A(Sxi)
(Sxi)∗(Sxi)

= x∗iBxi
x∗ixi

≥ µi. (4.4)

If the interlacing is tight, then for some k ∈ {1, . . . ,m}, equality holds for all i = 1, . . . , k in
Equation 4.4. By Proposition 4.2.2, equality occur for i = j if and only if xj is an eigenvector of
B for eigenvalue µi and Sxi is an eigenvector of A with eigenvalues λi. Similarly, if we apply the
above argument to −A and −B, we obtain that λn−m+i ≤ µi. In the case of tight interlacing,
λn−m+i = µi for i = k + 1, . . . ,m. By Proposition 4.2.2, equality occur for i = j if and only if xj
is an eigenvector of B for eigenvalue µi and Sxi is an eigenvector of A with eigenvalue λi. Thus,

SBxi = µiSxi = λn−m+iSxi = ASxi

where the xi are as chosen above. Since AS and SB are n × m matrices and {xi}mi=1 is an
orthonormal basis of Cm, the action of AS and SB agree over Cm implies that AS = SB.

In general, we apply Theorem 4.2.1 to a matrix and the quotient matrix of some partition of
the matrix into block matrices. Let A be a Hermitian matrix. Let P be a partition of the rows of
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A which induces a partitioning of A into block matrices as follows:

A =


A11 · · · A1m
...

...
Am1 · · · Amm


where the Aij are block matrices and the corresponding partition of the rows and columns is
X = {X1, . . . , Xm}, as a partition of [n]. Note that since we are interested in the eigenvalues of
A, which are preserved under permuting the rows and columns simultaneously, we may assume all
partitions of the rows of A are of this form. The quotient matrix of A with respect to partition P
is B̃ where the ijth entry is

B̃ij = 1
|Xi|

1TAij1

the average row sums of the blocks of A, where 1 denotes the all ones vector. If Aij has constant
row sums for all i, j ∈ {1, . . . ,m}, then the partition P is said to be an equitable partition of the
rows of A.

4.2.3 Corollary (Haemers). Let A be a Hermitian matrix and B̃ be its partition matrix with respect
to partition P. The eigenvalues of B̃ interlace those of A. If the interlacing is tight, then P
is an equitable partition of the rows of A. If P is an equitable partition of the rows of A, then
σ(B̃) ⊆ σ(A).

Proof. Let S̃ be the characteristic matrix of the partition X; that is, S̃ has rows indexed by [n] and
columns indexed by sets X1, . . . , Xm such that

S̃ij =

1 if i ∈ Xj ;

0 otherwise.

Then, the quotient matrix B̃ is as follows:

B̃ij = 1
|Xi|

1TAij1 = 1
|Xi|

(
S̃TAS̃

)
ij
,

and
B̃ = D−1S̃∗AS̃

where D is a diagonal matrix defined as follows:

Dii = |Xi|.
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Since D is diagonal, we can let

B = D
1
2D−1S̃∗AS̃D−

1
2 = D−

1
2 S̃∗AS̃D−

1
2 .

Let S = S̃D−
1
2 . We can see that SS∗ = In×n and S∗S = Im×m. In addition B = S∗AS. Then

by Theorem 4.2.1, the eigenvalues of B interlace those of A. Observe that B̃ is similar and hence
cospectral to B. The equality conditions follow.

Note that if σ(B̃) ⊆ σ(A) it is possible but not necessary for the partition to be equitable.

4.3 Interlacing properties

In this section, we will remark that though Theorems 4.1.2 and 4.2.1 have very different approaches,
they are in fact equivalent.

Suppose B is a prinicipal submatrix of Hermitian matrix A. Then we may reorder the rows and
columns on A and B so that B = S∗AS, where S =

(
I 0

)T
. Hence, the interlacing of prinicipal

submatrices follows from Theorem 4.2.1.
If A and B are n× n and m×m Hermitian matrices, respectively, where B = S∗AS for some

S with orthonormal columns, then we will show that B is a principal submatrix of some matrix
which is cospectral with A. Since the columns on S are orthonormal, we may extend S to a n× n
orthogonal matrix; we may choose Q such that(

S Q
)

is an orthogonal matrix. Let

Ã =
(
S Q

)∗
A
(
S Q

)
=
(
S∗AS S∗AQ

Q∗AS Q∗AQ

)
=
(

B S∗AQ

Q∗AS Q∗AQ

)
.

We see that B is a principal submatrix of Ã and Ã is cospectral to A, since A and Ã are similar
matrices. This shows that Theorem 4.1.2 imples Theorem 4.2.1 and vice versa.
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Chapter 5

Adjacency matrix of digraphs

In this chapter, we give background information on the adjacency matrix of digraphs, for the purposes
of comparisons with the Hermitian adjacency matrix. For this chapter, eigenvalues of a digraph are
the eigenvalues of its adjacency matrix. We refer to standard texts in algebraic graph theory [10, 18]
for any definitions omitted here and for further information. We also discuss the known results on
the adjacency matrices of tournaments, in particular.

5.1 Incidence matrices

The in-incidence matrix of a digraph X is the |V | × |E| matrix Dh, with rows indexed by vertices
and columns indexed by edges such that the (u, e) entry is as follows:

Dh(u, e) =

1 if u = h(e);

0 otherwise.

Similarly, the out-incidence matrix of X is the |V | × |E| matrix Dt, with rows indexed by vertices
and columns indexed by edges such that the (u, e) entry is as follows:

Dt(u, e) =

1 if u = t(e);

0 otherwise.

Note that Dt −Dh is the usual incidence matrix of X. The adjacency matrix of a directed graph
X is the matrix A with rows and columns indexed by the vertices of X, such that

A(u, v) =

1 if there exists an edge e such that u = t(e) and v = h(e);

0 otherwise.

One can easily verify that A = DtD
T
h .
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5.2 Characteristic polynomial

Following [10, 18], we find an expression for the characteristic polynomial of a directed graph.
A basic digraph is a digraph on n vertices with i isolated vertices and in-degree and out-degree

equal to 1 at the other n − i vertices. Let X be a digraph on n vertices. A basic subdigraph of
order i of X is a spanning subdigraph of X with i isolated vertices and in-degree and out-degree
equal to 1 at the other n− i vertices. Note that the set of all basic subdigraphs of the digraph of
Kn is in one-to-one correspondence with Sym(n); to σ ∈ Sym(n) we associate the basic digraph
with arc set {1σ(1), . . . , nσ(n)}, with all loops deleted. Figure 5.1 shows an example of a basic
digraph of order 1 in ~D(K6), which corresponds to the permutation (123)(4)(56).

1

4

2

3

6

5

Figure 5.1: Example of a basic subdigraph of ~D(K6).

5.2.1 Lemma. Let X be a digraph with n vertices and A be its adjacency matrix. Then the
characteristic polynomial of A is

φ(A, t) =
n∑
i=0

cit
i

where ci =
∑
C(−1)c(C) where the sum runs over all basic subdigraphs of order i of X and c(C) is

the number of cycles of C.

Proof. Recall that φ(A, t) = det(tI − A). For simplicity, we will let V (X) = {1, . . . , n}. For any
n× n matrix M ,

det(M) =
∑

σ∈Sym(n)
sgn(σ)M1σ(1) · · ·Mnσ(n).

Let M = tI −A. Suppose σ ∈ Sym(n) has i fixed points. The term contributed by

sgn(σ)M1σ(1) · · ·Mnσ(n)

is a constant multiple of ti. If the basic digraph associated with σ is not a basic subdigraph of
X, then the term sgn(σ)M1σ(1) · · ·Mnσ(n) is 0. Otherwise, let C be the basic subdigraph of X
corresponding to σ.
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Consider the cyclic decomposition of σ into disjoint cycles. We may conflate the notation and
allow c(σ) to denote the number of cycles of length greater than 1 in the cyclic decomposition of σ.
A cycle of length m can be written as the product of m− 1 transpositions. Then sgn(σ) = (−1)e,
where e is a the number of even cycles. Observe that the number of odd cycles is equal to n − i
mod 2. Then e = c(σ) + n− i mod 2 and we have that sgn(σ) = (−1)n−i+c(σ).

The number of cycles of length greater than 1 in σ is same as the number of directed cycles in
C. Thus, we obtain that

sgn(σ)M1σ(1) · · ·Mnσ(n) = (−1)n−i+c(σ)(−1)n−iti = (−1)c(σ)ti

Therefore the coefficient of ti in det(tI −A) is

∑
σ with exactly i fixed points

sgn(σ)M1σ(1) · · ·Mnσ(n) =
∑

σ with exactly i fixed points
(−1)c(σ).

Thus we may write the coefficient of ti in the characteristic polynomial of X as

∑
C

(−1)c(C)

where the sum runs over all basic subdigraphs of X or order i.

Note that the above implies that edges which do not occur in any directed cycle of X do not
affect the characteristic polynomial and we obtain the next easy corollary.

5.2.2 Corollary. A directed graph is acyclic if and only if its adjacency matrix is nilpotent.

Proof. If a graph X is acyclic, then 5.2.1 implies that the adjacency matrix has characteristic
polynomial φ(A(X), t) = t|V (X)| and is hence nilpotent.

Let A be the adjacency matrix of X. If A is nilpotent, then we can simultaneously permute the
rows and columns of A so that A is upper-triangular with 0s on the diagonal. We can label the
vertices of X as {x1, . . . , xn} by their order as columns on A. Then, we see that any cycle requires
an edge from xi to xj where j < i, which does not exist. Thus X is acyclic.

We may observe that a digraph X is acyclic if and only if there is an ordering of the vertices
such that A(X) is upper-triangular.

5.3 Bounds on eigenvalues

For a strongly connected digraph X, the matrix A(X) has non-negative entries and so the Perron-
Frobenius theorem A.5.1 holds and A(X) has a real, nonnegative eigenvalue ρ with a real nonnega-
tive eigenvector. The following theorem bounds the real parts of the other eigenvalues. The Perron
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value of an irreducible matrix M with non-negative entries is the largest real eigenvalue, as in the
Perron Frobernius theorem. The eigenvalues ofM which are not the Perron value are said to be the
non-principal eigenvalues. Note that the graph G corresponding to a digraph X in Theorem 5.3.1
differs from G(X) as given in Section 2.1, since it is a multi-graph with parallel edges corresponding
to the digons of X. The result in Theorem 5.3.1 is a special case of a theorem of Bendixson in [3].

5.3.1 Theorem. [3] Let X = (V,E) be a strongly connected, regular digraph on n vertices and
let G be the multi-graph on V with an edge euv for each arc uv ∈ E. Let µ1 ≥ · · · ≥ µn be the
eigenvalues of G. Then all non-principal eigenvalues λ of D satisfy

µ2
2 ≥ Reλ ≥ µn

2 .

Proof. Let A be the adjacency matrix of X. Then B = A+AT is the adjacency matrix of G. Since
X is regular, the all ones vector 1 is an eigenvector for both A and B. Let z be an eigenvector of
A with Az = λz, where z is orthogonal to 1. Then we see that

zTBz = zT (A+AT )z

= zTAz + zTAT z

= zT (Az) + (Az)T z

= λzT z + λzT z

= 2 Reλ zT z.

On the other hand, B is symmetric and so has an orthonormal eigenbasis {v1, . . . ,vn}, where
Bvj = µjvj . Then z is orthogonal to v1 = 1 and there exists {αj}nj=2 such that

z =
n∑
j=2

αjvj .

Then,

zTBz =
∑
i,j≥2

αiαjviTBvj

=
n∑
j=2
|αj |2µj .
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Since µ2 ≥ · · · ≥ µn, we have

n∑
j=2
|αj |2µ2 ≥

n∑
j=2
|αj |2µj ≥

n∑
j=2
|αj |2µn

µ2zT z ≥
n∑
j=2
|αj |2µj ≥ µnzT z.

Then,

µ2zT z ≥ 2 Reλ zT z ≥ µnzT z
µ2
2 ≥ Reλ ≥ µn

2 .

5.4 Eigenvalues symmetric about 0

A directed cycle is said to be even (resp. odd) if it has even (resp. odd) length. Let X be a digraph
on n vertices with eigenvalues {λ1, . . . , λn}. We say that the eigenvalues of X are symmetric about
0 if for each j = 1, . . . , n, λj and −λj occur with equal multiplicity in the spectrum of X. In the
case of undirected graphs, the graphs with eigenvalues symmetric about 0 are precisely the bipartite
graphs. This is also the case for strongly connected digraphs.

5.4.1 Proposition. A directed graph X has eigenvalues symmetric about 0 if and only if all directed
cycles of X are even.

Proof. A basic subgraph on n vertices of order j with n − j odd has an odd cycle. Observe that
there exists a basic subdigraph of X, a digraph on n vertices, of order j with n− j odd if and only
if X contains an odd directed cycle. Every directed cycle of X is even if and only if the coefficient
of all tj where n − j is odd is 0 in φ(A(X), t). Let m, a ∈ Z≥0 be such that n = 2m + a, where
a is the remainder of n when divided by 2. Then, every directed cycle of X is even if and only if
φ(A(X), t) can be written as

φ(A(X), t) =
m∑
j=0

an−2jt
n−2j = ta

m∑
j=0

a2m−2jt
2m−2j = taf(t2)

where f(x) =
∑m
j=0 a2m−2jx

m−j . If λ1, . . . , λm are the roots of f , then the roots of φ(H(X), t) are
±λj for j = 1, . . . ,m and one additional 0 if a = 1. Thus the eigenvalues of A(X) are symmetric
about 0 if and only if every directed cycle of X is even.

5.4.2 Proposition. A strongly connected digraph X has all directed cycles even if and only if the
underlying graph is bipartite.
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Proof. Let X be a digraph of order n. It is clear that if Γ(X) is bipartite, then every directed cycle
of X is even. It remains to show the converse direction.

Suppose, for a contradiction, that X is a strongly connected digraph where all directed cycles
have even length and that Γ(X) is not bipartite. We will first show that there exists a closed walk
of odd length in X.

Consider a cycle C = (v0, . . . , vm−1, vm = v0) in Γ(X), whose length, m, is odd. For j ∈ Zm,
we will find a directed path Pj,j+1 of odd length from vj and vj+1. If (vj , vj+1) is an arc of X,
then Pj,j+1 = (vj , vj+1) and has length equal to 1. Otherwise, (vj+1, vj) ∈ E(X) and, since X is
strongly connected, there exists a directed path from vj to vj+1 using arcs of X. Let Pj,j+1 be any
such path. Then Pj,j+1 together with arcs (vj+1, vj) gives a directed cycle of X. Since all directed
cycles have even length, we obtain that Pj,j+1 has odd length. Now consider the walk W obtained
by concatenating paths P0,1, . . . , Pm−1,m. Since W starts and ends at v0 = vm, it is a closed walk
consisting of m paths, each of which has odd length. Then W is a closed walk of odd length.

Since there exists an odd closed walk in X, we may choose W ′ = (w0, . . . , wk = w0) to be the
shortest odd closed walk of X. Since all directed cycles have even length, W is not a directed cycle
and hence traverses some vertex v at least twice. Let j be the index such that wj = v and let vj+r
be the next occurrence of v in (w0, . . . , wk−1). Let W ′′ = (vj , vj+1, . . . , vj+r) be the subsequence
of path W ′ from vj to vj+r. Since W ′′ is a closed walk of shorter length than W ′, its length r must
be even. We may remove W ′′ from W ′ to get

W ∗ = (w0, . . . , vj−1, vj = vj+r, vj+r+1, . . . wk = w0)

an odd closed walk with length strictly shorter than that of W ′, a contradiction.

We note that the property of being strongly connected in Proposition 5.4.2 is necessary. Every
acyclic digraph has all eigenvalues equal to 0 and hence are trivially symmetric about 0, but need
not have bipartite underlying graphs. It is also not difficult to find digraphs containing digons with
eigenvalues symmetric about 0, where the underlying graph is not bipartite. Figure 5.2 gives two
such examples.

D1
φ(A(D1),t)=t3−t

D2
φ(A(D2,t)=t4−2t2+1

Figure 5.2: Two digraphs with eigenvalues symmetric about 0, whose underlying graph is not
bipartite.
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5.5 Adjacency matrix of tournaments

The tournaments attaining the maximum and minimum Perron values have been well-studied.
Brauer and Gentry showed in [8] that, for odd n, the n × n tournament matrices which attain
the maximum Perron value are precisely the regular tournaments. The Brualdi-Li conjecture [11]
about the tournament matrices of even order attaining the maximum Perron value has recently been
solved by Drury in [24]. The strongly connected tournaments attaining the minimum Perron value
have also been studied in [21] and characterized by Kirkland in [39].

Other spectral properties of tournaments have been studied. The number of distinct eigenvalues
of a tournament has also been studied. A family of tournaments with all simple eigenvalues is given
in [21]. Hadamard tournaments, which coincide with doubly regular tournaments, are studied in
[21, 54]. The rank of a tournament matrix has been studied in [20, 9, 21].
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Chapter 6

Hermitian adjacency matrix of digraphs

In this chapter, we study the Hermitian adjacency matrix of digraphs. We are interested in its
spectral properties. In particular, we would like to study properties that two digraphs must share
if they are cospectral with respect to the Hermitian adjacency matrix. The Hermitian adjacency
matrix recently appeared in [41].

6.1 Definitions

For a digraph X = (V,E), we consider the Hermitian adjacency matrix H := H(X), whose entries
are given by

Hu,v =



1 if uv and vu ∈ E;

i if uv ∈ E and vu /∈ E;

−i if uv /∈ E and vu ∈ E;

0 otherwise.

If every edge of X lies in a digon, then H(X) = A(X), which reflects that X is, essentially,
equivalent to an undirected graph.

Since i is a primitive fourth root of unity, we can easily see that

H ◦H ◦H ◦H

is the adjacency matrix of the underlying graph of X, where ◦ denotes the entry-wise matrix product,
also called the Schur product or Hadamard product.

Observe that H is a Hermitian matrix and so is diagonalizable with real eigenvalues. The
following lemma contains properties that are true for adjacency matrices which also carry over to
the Hermitian case.

6.1.1 Lemma. For a digraph X on n vertices and H = H(X) its Hermitian adjacency matrix, the

27



following are true:

(i) all eigenvalues of H are real numbers;

(ii) if v and w are eigenvectors of H corresponding to different eigenvalues.

The eigenvalues of H(X) are the H-eigenvalues of X and the spectrum of H(X) is the H-
spectrum of X. We will denote the H-spectrum by σH(X) and we will express it as either a multiset
of H-eigenvalues or a list of distinct H-eigenvalues with multiplicities in superscripts. We say that
digraphs X and Y are H-cospectral if H(X) and H(Y ) are cospectral matrices. Since H(X) and
H(Y ) are diagonalizable, X and Y are H-cospectral if and only if H(X) and H(Y ) have the same
characteristic polynomial; that is

φ(H(X), t) = φ(H(Y ), t).

Recall that digraphs X and Y are cospectral (or A-cospectral, if we wish to distinguish between the
two matrices) if A(X) and A(Y ) have the same characteristic polynomial. To avoid ambiguity, we
will refer to eigenvalues and spectrum of X with respect to its adjacency matrix as the A-eigenvalues
and A-spectrum, respectively.

6.2 Characteristic polynomial of H

We first examine one of the coefficients of the characteristic polynomial of H(X) and describe the
combinatorial objects that it counts, then we give the formula for the characteristic polynomial of
H(X).

6.2.1 Lemma. For X a digraph and H = H(X) its Hermitian adjacency matrix,

H2
u,u = d(u)

where d(u) is the degree of u in the underlying graph of X.

Proof. Since H is Hermitian and has only entries 0, 1 and ±i, we have

HuvHvu = HuvHuv = 1

whenever Huv 6= 0. This implies that the (u, u) diagonal entry in H2 is the degree of u in the
underlying graph of X.

Note that the degree of a vertex x of digraph X in the underlying graph of X is equal to
|N−X (x) ∪N+

X (x)|. Lemma 6.2.1 immediately gives the following information about the coefficient
of tn−2 in the characteristic polynomial of a digraph X on n vertices.
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6.2.2 Corollary. The coefficient of tn−2 in φ(H(X), t), is −e where e is the number of edges of
the underlying graph of X.

Proof. Let X be a digraph on n vertices, let Γ be its underlying graph, and let H := H(X). Let
λ1, . . . , λn be the eigenvalues of H. Then the characteristic polynomial of H can be written as

φ(H, t) =
n∑
j=0

cjt
n−j = (t− λ1) · · · (t− λn).

Then, the coefficient of tn−2 is
c2 =

∑
1≤j<k≤n

λjλk.

Observe that  n∑
j=1

λj

2

=
n∑
j=1

λ2
j + 2

∑
1≤j<k≤n

λjλk =
n∑
j=1

λ2
j + 2c2 = tr(H2) + 2c2

The matrix H has all zeroes on the diagonal, and so
∑n
j=1 λj = 0. Then, we obtain that

0 = tr(H2) + 2c2.

By Lemma 6.2.1, we have that tr(H2) =
∑
u∈V (X) dΓ(u) = 2e, where e is the number of edges of

Γ. Thus c2 = −e.

Using the definition of matrix determinant, we can write the characteristic polynomial of H(X)
in terms of cycles in the underlying graph. Recall the definition of basic digraphs from Section
5.2. Here we will consider basic subdigraph in the digraph of the underlying graph of X. Recall
the function RX defined for a digraph X in Section 3.1. The following result appears in [41] as
Theorem 2.8.

6.2.3 Theorem. [41] Let X = (V,E) be a directed graph with n vertices and H = H(X) be its
Hermitian adjacency matrix. Then the characteristic polynomial of H is

φ(H, t) =
n∑
j=0

cjt
j

where cj =
∑
C i

2c(C)−n+j+r−(C)+2r+(C), where the sum runs over all basic subdigraphs C of order
j in ~D(Γ(X)) and rk(C) = |{uv ∈ E(C) | RX(u, v) = k}|.

Proof. Let Γ := Γ(X) be the underlying graph of X. For simplicity, we will let V (X) = {1, . . . , n}.
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Recall that φ(H, t) = det(tI −H). Let M = tI −H, then

det(M) =
∑

σ∈Sym(n)
sgn(σ)M1σ(1) · · ·Mnσ(n).

Suppose σ ∈ Sym(n) has j fixed points. We let

hσ = sgn(σ)M1σ(1) · · ·Mnσ(n)

which is the term contributed by σ in the sum for the determinant. We see that hσ is a constant
multiple of tj . If the basic digraph associated with σ is not a basic subdigraph of ~D(Γ(X)), then
the term hσ is 0. Otherwise, let C be the basic subdigraph of ~D(Γ(X)) corresponding to σ.

Let C be the digraph on vertex set V with arc set E(C) = {`σ(`) : ` ∈ V }. Consider the cyclic
decomposition of σ into disjoint cycles. We use c(C) to denote the number of directed cycles in C,
which will coincide with the number of cycles of length greater than 1 in the cyclic decomposition of
σ. A cycle of lengthm can be written as the product ofm−1 transpositions. Then sgn(σ) = (−1)e,
where e is a the number of even cycles. Observe that the number of odd cycles is equal to n − j
mod 2. Then e = c(C) + n− j mod 2 and we have that sgn(σ) = (−1)n−j+c(C).

For uv ∈ E(C),

Mu,v =


−i, if RX(u, v) = +

i, if RX(u, v) = −; and

−1, if RX(u, v) = 1.

Then,

hσ = (−1)n−j+c(C)+r1(C)(−i)r+(C)ir−(C)

= i2(n−j)+2c(C)+2r1(C)+3r+(C)+r−(C)

= i3(n−j)+2c(C)+r1(C)+2r+(C)

= i2c(C)−n+j+r1(C)+2r+(C),

where the third equality is due to n− j = r+(C) + r−(C) + r1(C).
From this, we see that the coefficient of tj in det(M) is

∑
C i

2c(C)−n+j+r1(C)+2r+(C), where the
sum runs over all basic subdigraphs of order j in ~D(Γ(X)).

We give an example for clarity; Figure 6.1 shows, from left to right, an example of a digraph
X, a basic subdigraph C of ~DΓX corresponding to the permutation σ = (123)(4)(56), and C with
arcs labelled by their contribution to hσ.

We may verify that the expression for cn−2 from Theorem 6.2.3 agrees with the result in Corollary
6.2.2. Using this theorem, we can see the following lemma, which is also given in [41].
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Figure 6.1: An example of a digraph X, a basic subdigraph C of ~D(Γ(X)), and C with arcs labelled
by their contribution to the term in det(tI −H(X)).

6.2.4 Lemma. [41] Supposed u, v are vertices of a digraph X such that RX(u, v) = 1. If uv is a
cut-edge of Γ(X), then the spectrum of H(X) is unchanged when RX(u, v) is changed to + or −.

Proof. Let X1 be the component of X with edges uv and vu deleted containing vertex u and X2

be the digraph induced by the vertices V (X) \ V (X1), including v. Let Y+ be the disjoint union
of X1 and X2 with the arc uv added. Let Y− be the disjoint union of X1 and X2 with the arc vu
added. Let Y1 = X, which is the disjoint union of X1 and X2 with both arcs uv and vu added. We
will show that the characteristic polynomial of H(Yj) are equal for j ∈ {+,−, 1}, by showing that
the contribution of the arcs with both endpoints in {u, v} to the coefficients in Theorem 6.2.3 are
equal.

Fix j ∈ {+,−, 1} and consider all basic subdigraphs of ~D(Γ(Yj)) containing either uv or vu.
Since uv is a cut-edge in Γ(X), every such basic subdigraph must use both edges. In other words,
{u, v} is a component consisting of a digon. Then, the contribution of this component to the
coefficient in 6.2.3 is either (−i)i, i(−i), or (−1)(−1) for j = +,−, 1, respectively. In any case,
the contribution is equal to 1.

6.3 Directed walks

Analogous to the results for the adjacency matrix found in standard texts like [5], we may write the
(u, v) entry of H(X)k, for a digraph X, as a weighted sum of the walks in Γ(X) of length k from
u and v. In fact, we will do so in more generality for any matrix M respecting the adjacency of X.

6.3.1 Proposition. Let X be a digraph and M be a matrix respecting the adjacency of X. For
vertices u, v ∈ V (X) and any positive integer k, the (u, v) entry of the kth power ofM is as follows:(

Mk
)
u,v

=
∑
W∈W

wt(W )
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where W is the set of all walks of length k from u to v in Γ(X) and for W = (v0, . . . , vk) ∈ W,
where v0 = u and vk = v, the weight is

wt(W ) =
k−1∏
j=0

Mvj ,vj+1 .

Proof. Let X = (V,E). Fix vertices u and v. We proceed by induction. For k = 1, the walks of
length 1 in Γ(X) are precisely the edges of Γ(X) and the weight of any such walk is just Muv.

Assume that the statement is true for k ≤ m and consider when k = m+ 1. Then,(
Mm+1

)
u,v

= (MmM)u,v

and
(
Mm+1)

u,v is equal to the product of the uth row of Mm with the vth column of M . Then

(
Mm+1

)
u,v

=
∑
w∈V

(Mm)uwMwv.

Let hw = (Mm)uwMwv for w ∈ V . If w � v in Γ(X), then hw = 0. Otherwise, w ∼ v ∈ Γ(X)
and

hw =
∑

W∈Ww

wt(W )

where Ww is the set of all walks from u to v of length m+ 1 in Γ(X), where w is the penultimate,
or mth, vertex of W . Since every walk from u to v of length m + 1 is in Ww for a unique w, we
have that ∪w∈VWw =W, where W is the set of all walks of length m from u to v in Γ(X). Then
we have that ∑

w∈V
hw =

∑
W∈W

wt(W )

which concludes the induction.

We will use Proposition 6.3.1 to find an expression for tr(H(X)3) in terms of numbers of
sub-digraphs isomorphic to certain types of triangles.

6.3.2 Proposition. For any digraph X, we have tr(H(X)3) = 6(x4 +x5 +x7−x3) where xj is the
number of copies of Xj as an induced sub-digraph of X and Xj are digraphs as shown in Figure
6.2.

Proof. Let X = (V,E) and H := H(X). We apply Proposition 6.3.1 to obtain:

tr(H3) =
∑
v∈V

(H3)v,v =
∑
v∈V

∑
W∈Wv

wt(W )

where Wv is the set of closed walks at v of length 3 in Γ(X) and wt as defined in Proposition
6.3.1. Every closed walk of length 3 has C3 as its underlying graph. For simplicity, we will refer
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to any digraph with C3 as the underlying graph as a triangle and we will call a sub-digraph of X
isomorphic to a triangle a triangle of X. In Figure 6.2, we enumerate all non-isomorphic triangles.

X1 X2 X3 X4

X5 X6 X7

Figure 6.2: All non-isomorphic digraphs on 3 vertices whose underlying graph is a 3-cycle.

Let X1, . . . , X7 be the digraphs as shown in Figure 6.2. If C is an induced triangle of X, then
C ∼= Xj for some j ∈ 1, . . . , 7; each such sub-digraph C of X contributes 6 closed walks of length
3, two choices for the direction of traversal and 3 choices for the starting vertex. We now consider
closed walks of length 3 on Xj . Observe that such a walk W will have wt(W ) depending only on
whether it is a clockwise or counter-clockwise walk with respect to the drawing of Xj in Figure 6.2,
and not on the choice of the starting vertex. We summarize the information about the weights of
walks in X in Table 6.1

wt(W ) wt(W )
j W a clockwise walk in Xj W a counter-clockwise walk in Xj

1 −i i

2 i −i
3 −1 −1
4 1 1
5 1 1
6 i −i
7 1 1

Table 6.1: Weights of closed walks of length 3 on Xj , for j = 1, . . . , 7.

Observe that for j = 1, 2, 6, the walks on opposite direction will cancel in the sum for tr(H3).
Thus,

tr(H3) = 6(x4 + x5 + x7 − x3)

where xj is the copies of Xj as an induced sub-digraph of X. We may observe that Xj for
j = 4, 5, 3, 7 are precisely the triangles with an even number of arcs which are not incident to
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digons.

6.4 Connectivity

As in the case of the adjacency matrix, it is easy to see that H(X) is an irreducible matrix if and
only if Γ(X) is connected. The H-spectrum of a digraph X does not determine if X is strongly-
connected, weakly-connected or not connected. In Figure 6.3, we give an example of three digraphs;
X1, X2 and X3. For j = 1, 2, 3, we compute that

φ(H(Xj), t) = t5 − 5t3 + 2t2 + 2t.

Observe that X1 is strongly connected, X2 is weakly connected but not strongly connected, and X3

is not weakly connected.

X3X2X1

Figure 6.3: H-cospectral digraphs on 5 vertices with different connectivity properties.

6.5 H-Eigenvalues symmetric about 0

We have shown in Section 5.4 that, for a digraph X, its A-eigenvalues are symmetric about 0 if
and only if Γ(X) is bipartite. Here, we consider digraphs X whose H-eigenvalues are symmetric
about 0. Note that the eigenvalues of H are real and can be ordered as λ1 ≥ · · · ≥ λn, they are
symmetric about 0 if and only if λj = −λn−j+1 for j = 1, . . . , n. The following proposition also
appears in [41] as Corollary 2.13.

6.5.1 Proposition. [41] For a digraph X, if Γ(X) is bipartite, then the H-eigenvalues are symmetric
about 0.

Proof. First we observe that if a basic digraph on n vertices of order j has n − j odd, then it
must contain an odd cycle. Let X be a digraph on n vertices. If Γ(X) is bipartite, then ~D(Γ(X))
contains no odd cycle, and so has no basic subdigraph of order j such that n− j is odd. Thus, in
φ(H(X), t), the coefficient of all tj where n− j is odd is 0. Let m, a ∈ Z≥0 such that n = 2m+ a,
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where a is the remainder of n when divided by 2. Then

φ(H(X), t) =
m∑
j=0

an−2jt
n−2j = ta

m∑
j=0

a2m−2jt
2m−2j = taf(t2)

where f(x) =
∑m
j=0 a2m−2jx

m−j . If λ1, . . . , λm are the roots of f , then the roots of φ(H(X), t) are
±λj for j = 1, . . . ,m and one additional 0 if a = 1. Then the H-eigenvalues of X are symmetric
about 0.

The converse to Proposition 6.5.1 is not true. For example, the digraph C̃3 in Figure 6.4 has
eigenvalues ±

√
3, 0.

C̃3

Figure 6.4: A digraph on 3 vertices with H-eigenvalues symmetric about 0 whose underlying graph
is not bipartite.

In fact, every oriented graph has H-eigenvalues symmetric about 0. Proposition 6.5.2 below
appears in [41] as Corollary 2.13. We give a different proof here.

6.5.2 Proposition. [41] If X is an oriented digraph, then the H-eigenvalues of X are symmetric
about 0.

Proof. Let X be an oriented graph on n vertices and H := H(X). Let the eigenvalues of H be
λ1 ≥ λ2 ≥ . . . ≥ λn. Let M = iH. Then, M is a skew-symmetric matrix with purely imagi-
nary eigenvalues iλ1, . . . , iλn. Since M has rational entries, φ(M, t) is a polynomial with rational
coefficients. Then, by Theorem B.1.1, every eigenvalue µ of M occurs with the same multiplic-
ity as its complex conjugate. Since the eigenvalues of M are purely imaginary, each eigenvalue
µ ∈ {iλ1, . . . , iλn} occurs with the same multiplicity as −µ. Then iλj = −iλn−j+1, and H has
eigenvalues symmetric about 0.

There are digraphs with H-eigenvalues symmetric about 0, which are neither oriented nor have
bipartite underlying graphs. Computationally, we verified that there are no such graphs on fewer than
4 vertices. Using a Sage computation, on 4 vertices, we find that there are exactly sevenH-cospectral
classes with H-spectrum symmetric about 0, which contains digraphs which are not oriented, whose
underlying graph is not bipartite. One of these classes contains exclusively such digraphs; this class
contains 15 non-isomorphic digraphs all of which have underlying graphs isomorphic to K4, and
which contain at least one digon. One graph from this class, D, is shown in Figure 6.5. The
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characteristic polynomial of D is

φ(H(D), t) = t4 − 6t2 + 5

which has its roots symmetric about 0.

D

Figure 6.5: An example of a digraph on 4 vertices, having H-eigenvalues symmetric about 0, but
not oriented and not bipartite.

6.6 Largest H-eigenvalue

For a digraph X, let the eigenvalues of H := H(X) be λ1 ≥ · · · ≥ λn. Note that since H is not a
matrix with non-negative entries, there is no analogue of the Perron value of the adjacency matrix
and the properties of λ1 are highly unintuitive. Figure 6.6 shows a strongly connected digraph K ′3 on
3 vertices with H-eigenvalues {1(2),−2}. This shows that, in general, λ1 is not necessarily simple
or largest in magnitude.

K ′3

Figure 6.6: Digraph K ′3.

Instead of considering the largest eigenvalue, we may consider the largest eigenvalue in absolute
value (the spectral radius), for which we find a bound that is analogous to the adjacency matrix.
The spectral radius of matrix M is denoted ρ(M) and

ρ(M) = max{|λ| | λ an eigenvalue of M}.

6.6.1 Proposition. For a weakly connected digraph X with H-eigenvalues λ1, . . . , λn, ρ(H(X)) ≤
∆(Γ(X)). If equality holds, then Γ(X) is a ∆(Γ(X))-regular graph and there exists an eigenvector
of H(X) corresponding to eigenvalue ρ(H(X)) with entries in {±1,±i}.
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Proof. Let H := H(X) and let λ be an eigenvalue of H with eigenvector x. Choose v ∈ V (X)
such that |x(v)| is maximal. Now we consider the v entry of Hx. For simplicity of notation, we
will write N(v) := N−X (v) ∩N+

X (v). We obtain

(Hx)(v) =
∑

u∈N(v)
x(u) + i

∑
w∈N+

X(v)\N(v)

x(w)− i
∑

x∈N−X (v)\N(v)

x(x).

On the other hand, (Hx)(v) = λx(v). Then

|λx(v)| = |(Hx)(v)| ≤
∑

u∈N(v)
|x(u)|+ |i|

∑
w∈N+

X(v)\N(v)

|x(w)|+ | − i|
∑

y∈N−X (v)\N(v)

|x(y)|

≤
∑

u∈N(v)
|x(v)|+

∑
w∈N+

X(v)\N(v)

|x(v)|+
∑

y∈N−X (v)\N(v)

|x(v)|

= degΓ(X)(v)|x(v)|

≤ ∆(Γ(X))|x(v)|.

(6.1)

From this, we obtain that |λ| ≤ ∆(Γ(X)).
If ρ(H(X)) = ∆(Γ(X)), then all of the inequalities in (6.1) must hold with equality. From

the last inequality of (6.1), we see that every vertex of X has degree ∆(Γ(X)) in Γ(X). If the
second inequality of (6.1) hold with equality, we obtain that all vertices |x(z)| = |x(v)| for all
z ∈ N−X (v) ∪ N+

X (v). The first inequality of (6.1) follows from the triangle inequality for sums of
complex numbers, and so equality holds if and only if every complex number in Z has the same
argument as λx(v), where

Z = {x(u) | u ∈ N(v)} ∪ {ix(w) | w ∈ N+
X (v) \N(v)} ∪ {−ix(y) | y ∈ N−X (v) \N(v)}.

Since every element of Z also have the same absolute value as x(v), we have obtained that

x(v) = x(u) = ix(w) = −ix(y)

for every u ∈ N(v), w ∈ N+
X (v) \N(v) and y ∈ N−X (v) \N(v). Suppose v has an out-neighbour w

which is not also an in-neighbour. Since x(v) = ix(w), we have that |x(w)| is also maximal. The
choice of v was arbitrary amongst all vertices whose entry in x has maximal absolute value, so we
may apply the above argument to any vertex in N−X (v)∪N+

X (v). Since X is weakly connected, we
obtain that x(z) ∈ {±1,±i} for any vertex z of X.

Note that ρ(H(X)), for a digraph X, can be smaller than δ(Γ(X)). For example, see digraph
C̃3 in Figure 6.4 which has eigenvalues ±

√
3, 0 and δ(Γ(C̃3)) = 2.
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6.7 Diameter

Since the diameter of a graph is reflected in the spectrum of its adjacency matrix, it is natural to
consider similar questions for the Hermitian adjacency matrix. If the eigenvalues of the adjacency
matrix of a graph are all equal to zero, then the graph has no edges. This is not true of digraphs
under the adjacency matrix, since every acyclic digraph is A-cospectral to the empty graph on the
same number of vertices. However, an analogous statement is true for the Hermitian adjacency
matrix.

6.7.1 Proposition. For a digraph X, the matrix H(X) has all eigenvalues equal to 0 if and only if
E(X) = ∅.

Proof. Let n be the number of vertices of X. We may assume n ≥ 2. Instead of using a Hermitian
operator argument, we will derive this as an easy application of Corollary 6.2.2. It is clear that X
has no arcs if and only if Γ(X) has no edges. By Corollary 6.2.2, this occurs if and only if cn−2 = 0.
If all eigenvalues of H(X) are 0, then φ(H(X), t) = tn and cn−2 = 0. Conversely, if cn−2 = 0,
then H(X) is the all zero matrix and so has all eigenvalues equal to 0.

LetM be a square Hermitian matrix. LetM be the matrix algebra generated by I,M,M2,M3, . . .

and let ψ(M, t) be the minimal polynomial of M . Then, deg(ψ(M, t)) = dim(M) + 1. The degree
of ψ(M, t) is the number of distinct eigenvalues of M .

If M = A(X), the adjacency matrix of a digraph, we obtain that the diameter of the graph is
at most the dimension ofM, whence we obtain a bound on the diameter in terms of the number
of distinct eigenvalues.

The case for the Hermitian matrix, where M = H(X) for some digraph X, is very different. It
would be convenient if the following were true: if u, v ∈ V (X) are at distance k, then (H(X)k)uv 6=
0. This would show that the if d is the diameter of X, then H(X) has at least distinct d + 1
eigenvalues. However this is untrue. For example, consider the modified directed cycle C̃n, obtained
from a directed cycle by changing the orientation on one arc to the opposite direction. We may
recall that the digraph C̃3 was considered in Section 6.5. Here we look at C̃4, shown in Figure 6.7.

v0

v1

v2

v3

Figure 6.7: Digraph C̃4, obtained from C4 by reversing one arc.
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We can compute that

φ(H(C̃4), t) = t4 − 4t2 + 4 = (t2 − 2)2

and we see that C̃4 has exactly two distinct H-eigenvalues, but the diameter of Γ(C̃4) is 2. In fact,
we can show that, in general, there does not exist a function of the number of distinct H-eigenvalues
which bounds the diameter of the underlying graph.

6.7.2 Proposition. There exists an infinite family of digraphs {Xj}∞j=1 such that the diameter of
ΓXj goes to ∞ as j →∞ and the number of distinct H-eigenvalues of Xj is a constant C for all
j ≥ 0.

Proof. We use the necklace digraphs in Section 8.6, by taking Xj to be Nj−2. Each digraph Nn

has Γ(Nn) with diameter n and H(Nn) has exactly 3 distinct eigenvalues.

6.8 Eulerian digraphs

6.8.1 Proposition. Let X be a digraph. Then H(X) has the all-ones vector as an eigenvector if
and only if G(X) is regular and D(X) is eulerian.

Proof. Suppose D(X) is eulerian, then the sum along any row of H(D(X)) is equal to 0 and so
1 is an eigenvector for H(D(X)) of eigenvalue 0. If G(X) is regular, then 1 is an eigenvector of
H(G(X)) = A(G(X)) with eigenvalue equal to the valency of G(X), say k. Then

H(X)1 = H(D(X))1 +H(G(X))1 = k1.

For the other direction, suppose that H(X)1 = γ1 for some γ ∈ R. The row sum along the
row indexed by x is equal to d+ (s− t)i where d = d(x), s = d−(x), and t = d+(x). Then, since
γ is a real number, we must have that s = t and d = γ.

6.9 Computations on small digraphs

Computation on all isomorphism classes of digraphs of orders 2, 3, 4, 5, and 6 were carried out
using Sage open-source mathematical software system [58], for both the adjacency matrix and the
Hermitian adjacency matrix. We include some data here to give an idea of how the Hermitian
adjacency matrix behaves compared to the adjacency matrix, on small digraphs. We refer to the
set of all digraphs that are H-cospectral to a given digraph as an H-cospectral class. A digraph is
determined by its H-spectrum if every digraph that is H-cospectral with it is also isomorphic to it.
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Order 2 3 4 5 6
Number of digraphs 3 16 218 9608 1540944
Number of distinct characteristic polynomials 2 6 27 275 10920
Number of H-cospectral classes such that:
a) characteristic polynomial is irreducible over Q 0 0 0 0 6
b) characteristic polynomial is square-free 1 3 14 214 9980
Maximum size of a H-cospectral class 2 6 21 158 1338
Number of digraphs determined by H-spectrum 1 2 3 5 16
Number of H-cospectral classes containing:
a) no graphs 0 2 16 242 10769
b) only graphs 1 1 1 1 1
c) at least one graph and a digraph 1 3 10 32 150

Table 6.2: The H-spectra of small digraphs.

Order 2 3 4 5 6
Number of digraphs 3 16 218 9608 1540944
Number of distinct characteristic polynomials 2 7 46 718 35239
Number of A-cospectral classes such that:
a) characteristic polynomial is irreducible over Q 0 1 12 277 19392
b) characteristic polynomial is square-free 1 5 36 625 33146
Maximum size of a A-cospectral class 2 6 42 592 15842
Number of digraphs determined by spectrum 1 5 23 166 2317
Number of A-cospectral classes containing:
a) no graphs 0 3 35 685 35088
b) only graphs 1 2 5 15 69
c) at least one graph and a digraph 1 2 6 18 82

Table 6.3: The adjacency matrix spectra small digraphs.
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6.10 Digraphs with H-eigenvalues between −1 and 1

In the previous sections, we have seen that the H-eigenvalues of digraphs behave differently and
somewhat strangely compared with the A-eigenvalues of graphs. It appears that graph invariants
like diameter, minimum degree, and number of connect components cannot be bounded by the H-
spectrum. However, since H is a Hermitian, we may use interlacing theorems, which we could not
do for the adjacency matrix of digraphs. Using interlacing, we will characterize all digraph with all
H-eigenvalues lying between −1 and 1. First we will look at a special case where all H-eigenvalues
are equal to 1 or −1, then we will look at the general case. Note that mX where X is a digraph
denotes the union of m disjoint copies of X.

6.10.1 Theorem. A digraph X has the property that λ ∈ {−1, 1} for each H-eigenvalue λ of X if
and only if Γ(X) ∼= mK2 for some m.

Proof. Let X be a digraph on n vertices having the property as in the statement of the theorem.
Let λ1 ≥ · · · ≥ λn be the eigenvalues of H(X). Then λi ∈ {−1, 1} for i = 1, . . . , n by assumption.
Since the H-eigenvalues of X must sum to tr(H) = 0, the multiplicity of 1 and −1 are equal and
X has an even number vertices, say n = 2m. Observe that

tr(H(X)2) =
n∑
i=1

λ2
i = n = 2m.

Lemma 6.2.1 gives that Γ(X) has m edges.
If X has an isolated vertex, then X will have 0 as an H-eigenvalue. Thus, every vertex must

have degree at least 1 in Γ(X). Then dΓ(X)(v) = 1 for every vertex v and so Γ(X) ∼= mK2.

6.10.2 Theorem. For a digraph X the following are equivalent:

(a) σH(X) ⊆ (−
√

2,
√

2);

(b) σH(X) ⊆ [−1, 1]; and

(c) every component of X is either a single arc, a digon or an isolated vertex.

Proof. Let X be a digraph on n vertices with H-eigenvalues λ1 ≥ · · · ≥ λn. By assumption
√

2 > λ1 and λn > −
√

2. Let Y be an induced subdigraph of X on 3 vertices and let µ1 ≥ µ2 ≥ µ3

be the H-eigenvalues of Y . Applying the interlacing theorem, we obtain that

−
√

2 < µi <
√

2

for i = 1, 2, 3. There are exactly 16 digraphs on 3 vertices and so we may compute their H-
eigenvalues and determine which digraphs on 3 vertices have all eigenvalues between strictly −

√
2
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and
√

2. The digraphs on 3 vertices grouped by H-cospectral classes are found in Section C.1 of the
Appendix. Following the naming of the digraphs in Table C.1, we see that Y is isomorphic to one
of E3, Z5 and Z6. In other words, Y is either the empty graph on 3 vertices or a graph consisting
of an isolated vertex and either one arc or one digon.

Since the choice of Y was arbitrary, the above holds for every induced subdigraph of X on 3
vertices. Then, Γ(X) does not vertices of degree 2 or more. Thus ∆(Γ(X)) ≤ 1 and so Γ(X)
consists of the union of disjoint copies of K2 and isolated vertices. The result follows.

Note that Theorem 6.10.2 implies that X has H-spectrum equal to {1(m), 0(k), (−1)(m)}, where
k is the number of isolated vertices and m is the number of components consisting of a single arc or
a digon. Since ~P2 and K2 are H-cospectral, we see that no better characterization of X is possible.
We may also see this using an iterated application of Proposition 7.2.7.

6.10.3 Theorem. If X has the property that σH(X) ⊆ (−
√

3,
√

3), then every component of Γ(X)
is either a path of length at most 3, a 4-cycle or a 5-cycle.

Proof. Let the H-eigenvalues of X be λ1 ≥ · · · ≥ λn and let Γ := Γ(X). By assumption
√

3 > λ1 and λn > −
√

3. Again, we consider Y an induced subdigraph of X on 3 vertices and let
µ1 ≥ µ2 ≥ µ3 be the H-eigenvalues of Y . Applying the interlacing theorem, we obtain that

−
√

3 < µi <
√

3

for i = 1, 2, 3. Again, we consult Table C.1 to see that Γ(Y ) is isomorphic to one of P3, K2 +K+1
or E3. In other words, Γ(Y ) is acyclic. Since the choice of Y was arbitrary, the above holds for
every induced subdigraph of X on 3 vertices. Then, Γ does not contain a triangle.

If Γ contains a vertex of degree at least 3, then Γ contains either a star on 4 vertices or a triangle.
We have already shown that Γ does not contain a triangle, so it must contain a star on 4 vertices of
X, say x1, x2, x3, x4. In Theorem 8.5.1, we show that all digraphs on m vertices whose underlying
graph is isomorphic to the star have largest H-eigenvalue equal to

√
m− 1. Then, the subdigraph

of X induced by {xj}4j=1 has maximum H-eigenvalue
√

3, which is impossible by interlacing. Thus
every vertex in Γ has degree at most 2.

We have shown that the components of Γ are paths and cycles. Suppose W ⊆ V (X) induced
a path of length 4 in Γ. The spectral radius of P5 is

√
3 and, since all digraphs with P5 as its

underlying graph are H-cospectral by Lemma 6.2.4, W induced a subgraph of X with maximum
H-eigenvalue equal to

√
3, which is again impossible. Every cycle of length at least 6 contains an

induced path of length 4 and every path of length at least 4 contains an induced path of length 4,
so Γ does not have any cycles of length greater than 5 or paths of length greater than 3.

It is interesting to consider for which values of α the number of weakly connected digraphs whose
H-eigenvalues will all lie in the interval (−α, α) or [−α, α] will be finite. We see from Theorem
6.10.3 that there are only finitely many weakly connected digraphs with all H-eigenvalues in the
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interval (−
√

3,
√

3). It may be true that the same holds for every α with 0 ≤ α < 2. The directed
paths show that there are infinitely many weakly connected digraphs whose H-eigenvalues will all
lie in the interval (−2, 2), thus α = 2 will not give the same conclusion.

6.11 Other applications of eigenvalue interlacing

Interlacing is a powerful tool in algebraic graph theory. Theorem 4.1.2 implies that the eigenvalues
of any induced subdigraph interlace those of the digraph itself.

To see a simple example, we find the eigenvalues of the directed cycle Dm in Section 8.1 and we
see that Dm has at least one H-eigenvalue equal to 0, and, as an oriented graph, its H-spectrum
is symmetric about 0. We let η+(M) denote the number of non-negative eigenvalues of matrix M
and η−(M) denote the number of non-positive eigenvalues of matrix M .

6.11.1 Lemma. If digraph X has Dm as an induced subdigraph, then η+(H(X)) ≥
⌈
m
2
⌉
and

η−(H(X)) ≥
⌊
m
2
⌋
.

Proof. Let λ1 ≥ · · · ≥ λn be the eigenvalues of H(X). By interlacing, we see that λdm2 e ≥ 0 ≥
λn−dm2 e+1 and the result follows.

This is not a very strong statement as there are many graphs that satisfy the conclusion, however,
it shows, for instance, that any digraphH-cospectral withKn has no induced directed cycle of length
3 or more, since the H-spectrum of Kn contains only 1 non-negative eigenvalue.

Similarly, the Cveković bound (see [18]) for the largest independent set of a graph extends to
the class of digraphs with the Hermitian adjacency matrix.

6.11.2 Lemma. If X has an independent set of size α, then η+(H(X)) ≥ α and η−(H(X)) ≥ α.

Proof. Let λ1 ≥ · · · ≥ λn be the eigenvalues of H(X). By interlacing, we see that λα ≥ 0 and so
H(X) has at least α non-negative eigenvalues. Applying the same argument to −H(X) will show
that there are at least α non-positive eigenvalues as well.

We can also obtain a spectral bound of the maximum induced transitive tournament of a digraph.
Gregory, Kirkland and Shader bounded the maximum spectral radius of a skew-symmetric matrix
and classified the matrices where equality holds in [30]. We will state a special case of their theorem
here, as it applies to the Hermitian adjacency matrix of oriented graphs. Two tournaments are
switching-equivalent if one can be obtained from the other by reversing all arcs across an edge-cut
of the underlying graph. The transitive tournament is defined in Section 8.4.

6.11.3 Theorem. [30] If X is an oriented graph of order n, then

λ1(H(X)) ≤ cot
(
π

2n

)
.

Equality holds if and only if X is switching-equivalent to Tn the transitive tournament of order n.
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The following lemma is another immediate consequence of interlacing.

6.11.4 Lemma. If X is a digraph with an induced subdigraph isomorphic to Tm, then λ1(H(X)) ≥
cot

(
π

2m
)
.

In other words, if m > π
2 cot−1(λ1(H(X))) then X contains no induced subdigraph switching-

equivalent to Tm.
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Chapter 7

Cospectrality for the Hermitian
adjacency matrix

In this chapter, we study properties of digraphs that are H-cospectral and operations on digraphs
which preserve the H-spectrum. In particular, we are motivated to consider digraph operations that
preserve the H-spectrum and preserve the underlying graph.

By the computation on small digraphs, as recorded in Tables 6.3 and 6.2, we see that, for small
digraphs, the number of H-cospectral classes is smaller than the number of A-cospectral classes
on the same number of vertices. Since the support of the Hermitian adjacency matrix of digraph
X is the adjacency matrix of the underlying graph of X, we may expect the H-spectrum of X to
capture some information about the underlying graph.

By contrast, any two acyclic digraphs on the same number of vertices are A-cospectral; in
particular, there are A-cospectral digraphs on 2 vertices with non-isomorphic underlying graphs,
where as the smallest pair of H-cospectral digraphs with non-isomorphic underlying graphs have 4
vertices (shown in Figure 7.1).

X1 X2

Figure 7.1: The smallest pair of H-cospectral digraphs with non-isomorphic underlying graphs.

There are many cases of H-cospectral digraphs having isomorphic underlying graphs. In Chapter
8, we will see that all orientations of the cycle of odd order n are pairwise H-cospectral and all
digraphs with the star of order n as the underlying graph are pairwise H-cospectral. From Table
C.1, we see that every pair of H-cospectral digraphs on 3 vertices have the same underlying digraph.

We will try to explain the spectral information about the underlying graph by looking at a few
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H-spectrum preserving operations which do not change the underlying graph.

7.1 Converses and local reversal

7.1.1 Lemma. If X is a digraph and XC is its converse, then H(XC) = H(X)T = H(X).

Proof. It follows from the definition of converse that

H(XC)uv =



1 if uv and vu ∈ E(X);

−i if uv ∈ E(X) and vu /∈ E(X);

i if uv /∈ E(X) and vu ∈ E(X), and;

0 otherwise.

This shows that H(XC) = H(X)T . The second equality follows from the definition of H.

7.1.2 Corollary. A digraph X and its converse are H-cospectral.

Proof. A standard fact in linear algebra gives that det(A) = det(AT ) for any square matrix A. We
see the characteristic polynomial of H(XC) in the variable t is

φ(H(XC), t) = det(tI −H(XC))

= det(tI −H(X)T )

= det((tI −H(X))T )

= det(tI −H(X))

= φ(H(X), t)

which gives that H(X) and H(XC) are cospectral.

Inspired by this, we now define a local operation on a digraph which will also preserve the
spectrum with respect to the Hermitian adjacency matrix. For a digraph X and a vertex v of X,
the local reversal of X at v is the graph obtained from X by replacing every arc xy incident with
v by its converse yx. We can extend this to the local reversal of X at S ⊂ V by taking the local
reversal at v for each v ∈ S. Observe that the order does not matter. If arc xy is incident to two
vertices of S, then it is unchanged in the local reversal at S. We denote by δ(S) the arcs with
exactly one end in S. Note that this operation generalizes the concept of switching-equivalence,
defined earlier for tournaments.

7.1.3 Proposition. If X is a digraph and S ⊂ V (X) such that δ(S) contains no digon, then X
and the local reversal of X at S are H-cospectral.
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Proof. Let X ′ be the local reversal of H at S. Let M be a diagonal matrix indexed by the vertices
of X given by

Mu,u =

−1, if u ∈ S;

1, otherwise.

Consider MH(X)M . Applying M on the left of H(X) changes the sign for all columns indexed by
vertices of S and applying M on the right changes the sign of all rows index by vertices of S. Then

(MH(X)M)u,x =

−H(X)u,x, if S contains exactly one of u, x;

H(X), otherwise

= H(X ′)

since δ(S) contains no digons. Since M = M−1, the matrices H(X) and H(X ′) are similar and
hence cospectral.

7.2 Operations preserving spectrum

We will use the following theorem about determinants found in [53, Theorem 3.1.3].

7.2.1 Theorem. Suppose u is a row vector, v is a column vector, a is a matrix entry and A is a
square matrix of order at least 2. Then∣∣∣∣∣A v

u a

∣∣∣∣∣ = a det(A)− u(adjA)v.

First, we look at the characteristic polynomial of a directed star with respect to the Hermitian
adjacency matrix. In Chapter 8, we find that any pairs of graphs, both of which have a star of the
same order as the underlying graph, have the same spectrum with respect to the Hermitian adjacency
matrix. Here, we will first use Theorem 7.2.1 to find the H-characteristic polynomial of a directed
star, then we will use it to look at when an operation on a graph preserves the H-characteristic
polynomial.

Let Sn be the orientation of the star on n vertices where every arc is oriented towards the center
vertex. Then H(Sn) the Hermitian adjacency matrix of Sn is

H(Sn) =
(

0n−1×n−1 i1
−i1T 0

)
.

7.2.2 Theorem. The characteristic polynomial of H(Sn) is tn−2(t2 − (n− 1)).
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Proof. We will find the characteristic polynomial of H(Sn) by taking the following determinant:

sn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t 0 . . . 0 i

0 t
. . . ...

...
... . . . . . . 0

...

0 . . . 0 . . . i

−i . . . . . . −i t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=
∣∣∣∣∣tIn−1 i1
−i1T t

∣∣∣∣∣ .

From Theorem 7.2.1, we have that

sn = tdet(tIn−1)− (−i)1T adj(tIn−1)(i)1 = tn − 1T adj(tIn−1)1.

Every minor Ajk of the identity matrix is 1 when j = k and 0 when j 6= k, since the submatrix
contains a row of zeros. Then every minor Mjk of M = tIn−1 is tn−2 when j = k and 0 when
j 6= k. We obtain

sn = t · tn−1 − (n− 1)tn−2 = tn−2(t2 − (n− 1))

as claimed.

Observe that the same proof would hold when one of the arcs is changed into a digon. With
the help of Theorem 7.2.1, we will look into a more general situation where changing an arc into a
digon does not change the spectrum.

Let X = (V,E) be a digraph on n vertices with vertices labelled {1, . . . , n}, with an arc uv
such that vu /∈ E(X). Without loss of generality, we may assume that uv = (1, n) by relabelling
the vertices. Let X ′ be the digraph obtained from X by adding the arc (n, 1), creating the digon
{1, n}. For a square matrix M , we use Mkj to denote the (k, j)-th minor of M ; that is to say Mk,j

is equal to the determinant of the matrix with the kth row and the jth column removed. First, we
have the following technical lemma.

7.2.3 Lemma. If X and X ′ are as constructed above, then H(X) and H(X ′) are cospectral if and
only if ∑

j ∈ {2, . . . , n}
RX(1, j) ∈ {+,−, 1}

Re(αj) = 0 (7.1)

where αj = (−1− i)A1jvj where A and v are such that

tI −H(X) =
(
A v
uT t

)
.
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Proof. Let X, X ′ be as above. We claim that

φ(H(X ′), t)− φ(H(X), t) =
∑

j ∈ {2, . . . , n}
RX(1, j) ∈ {+,−, 1}

Re(αj),

which will imply the statement of the lemma. By Theorem 7.2.1,

φ(H(X), t) = t det(A)− uT adj(A)v = tdet(A)−
n−1∑
k=1

n−1∑
j=1

Akjukvj .

Similarly, we see that

φ(H(X ′), t) = det(tI −H(X)) =
∣∣∣∣∣ A v̂
ûT t

∣∣∣∣∣
where û is obtained from u by changing the first entry from −i to 1 and v̂ is obtained from v by
changing the first entry from i to 1. We obtain that

φ(H(X ′), t) = tdet(A)− ûT adj(A)v̂

= tdet(A)−
n−1∑
k=1

n−1∑
j=1

Akjûkv̂j

= tdet(A)−
∑

j,k∈{2,...,n
Akjûkv̂j −A1,1û1v̂1 −

n−1∑
k=2

Ak1ûkv̂1 −
n−1∑
j=2

A1jû1v̂j

= t det(A)−
∑

j,k∈{2,...,n
Akjukvj −A1,1u1v1 −

n−1∑
k=2

Ak1uk −
n−1∑
j=2

A1jvj .

A similar expansion from φ(H(X), t) gives:

φ(H(X), t) = tdet(A)−
∑

j,k∈{2,...,n
Akjukvj −A1,1u1v1 −

n−1∑
k=2

Ak1ukv1 −
n−1∑
j=2

A1jvju1

= tdet(A)−
∑

j,k∈{2,...,n
Akjukvj −A1,1u1v1 − i

n−1∑
k=2

Ak1uk + i
n−1∑
j=2

A1jvj .

Then, we may subtract the two expressions to obtain

φ(H(X ′), t)− φ(H(X), t) = (−1 + i)
n−1∑
k=2

Ak1uk + (−1− i)
n−1∑
j=2

A1jvj . (7.2)

Since A is Hermitian, we have that Akj = Ajk. Since H(X) is Hermitian, we have that u = v.
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We apply this to Equation 7.2 to obtain the following:

φ(H(X ′), t)− φ(H(X), t) = (−1 + i)
n−1∑
j=2

A1jvj + (−1− i)
n−1∑
j=2

A1jvj

=
n−1∑
j=2

(−1 + i)A1jvj + (−1− i)A1jvj

=
n−1∑
j=2

αj + αj

=
n−1∑
j=2

2 Re(αj)

where αj = (−1− i)A1jvj .

From Lemma 7.2.3, we may trivially obtain the following more tractable statement.

7.2.4 Corollary. Let X ′ be the digraph obtained from X by replacing an arc uv with a digon {u, v}
and let A = tI −H(X − v). If Re(Au,x) = 0 for all x 6= u such that RX(u, x) 6= +, then H(X)
and H(X ′) are cospectral.

Using the same method, we may consider what happens when an arc uv such that vu /∈ E(X) is
replaced with arc vu. Let X be a digraph such that RX(1, n) = + and X∗ be the digraph obtained
from X by deleting the arc (1, n) and adding the arc (n, 1).

7.2.5 Lemma. If X and X∗ are as constructed above, then H(X) and H(X∗) are cospectral if
and only if ∑

j ∈ {2, . . . , n}
RX(1, j) ∈ {+,−, 1}

Re(βj) = 0

where βj = αj = (−2i)A1jvj where A and v are such that

tI −H(X) =
(
A v
uT t

)
.

Proof. Recall that A is a n − 1 × n − 1 matrix and u and v are (n − 1)-dimensional vectors. By
Theorem 7.2.1,

φ(H(X), t) = t det(A)− uT adj(A)v

= t det(A)−
∑

j,k∈{2,...,n
Akjukvj −A1,1u1v1 − i

n−1∑
k=2

Ak1uk + i
n−1∑
j=2

A1jvj
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Similarly, we see that

φ(H(X∗), t) = tI −H(X) =
(
A ṽ
ũT t

)

where ũ is obtained from u by changing the 1st entry from −i to i and ṽ is obtained from v by
changing the 1st entry from i to −i. We obtain that

φ(H(X∗), t) = t det(A)− ũT adj(A)ṽ

= t det(A)−
∑

j,k∈{2,...,n}
Akjukvj −A1,1u1v1 + i

n−1∑
k=2

Ak1uk − i
n−1∑
j=2

A1jvj

Then, we may subtract the two expressions to obtain

φ(H(X∗), t)− φ(H(X), t) = (2i)
n−1∑
k=2

Ak1uk + (−2i)
n−1∑
j=2

A1jvj . (7.3)

Since A is Hermitian, we have that Akj = Ajk. Since H(X) is Hermitian, we have that u = v.
We apply this to Equation 7.3 to obtain the following:

φ(H(X∗), t)− φ(H(X), t) = (2i)
n−1∑
j=2

A1jvj + (−2i)
n−1∑
j=2

A1jvj

=
n−1∑
j=2

(2i)A1jvj + (−2i)A1jvj

=
n−1∑
j=2

βj + βj

=
n−1∑
j=2

2 Re(βj)

where βj = (−2i)A1jvj .

In this case, we obtain the following corollary.

7.2.6 Corollary. Let X be a digraph with exactly one pair of vertices u, v such that RX(u, v) = +.
Then, the digraph X∗ on (V (X) with arc set E(X) \ {uv} ∪ {vu} is H-cospectral with X.

Proof. Let n be the number of vertices of X. We may relabel such that u = 1 and v = n and apply
Lemma 7.2.5 to obtain that

φ(H(X∗), t)− φ(H(X), t) =
n−1∑
j=2

2 Re(βj)

where βj = (−2i)A1jvj . Since the Hermitian adjacency matrix of any digraph is Hermitian and
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so has real eigenvalues, we may consider t as a real variable. Since the (1, n) and (n, 1) entries
of H(X) (and of H(X∗)) are the only entries that are not real numbers, we see that A1j ∈ R
and vj ∈ R for each j = 2, . . . , n − 1 . Then Re(βj) = 0 for all j = 2, . . . , n − 1 and so
φ(H(X∗), t) = φ(H(X), t).

We demonstrate the use of the lemmas in this section in a specific example. A pendant vertex
is a vertex of degree 1.

7.2.7 Proposition. If Y is a digraph with a pendant vertex v such that uv is the only arc of Y
incident with v, then the digraphs Y ′ obtained from Y by adding the arc vu is H-cospectral to Y .

Proof. Label the vertices of Y and Y ′ with 1, . . . , n such that vertex v has label n and u has label
1. Then Y and Y ′ satisfy the hypotheses of Lemma 7.2.3. We see that v = e1 in this case and the
sum in Equation 7.1 is empty. Thus we obtain that Y and Y ′ are cospectral.

Note that Proposition 7.2.7 also follows from Lemma 6.2.4.
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Chapter 8

Hermitian adjacency matrix of special
families of digraphs

8.1 Direct cycles

Let Dn denote the directed cycle on n vertices. Figure 8.1 shows D5.

D5

Figure 8.1: The directed cycle on 5 vertices.

8.1.1 Lemma. The eigenvalues of H(Dn) are 2 sin
(

2πk
n

)
for k = 0, . . . , n− 1.

Proof. Let A be the adjacency matrix of Dn. It is well-known that the eigenvectors of A are

v =



1
ζ

ζ2

...
ζn−1


for each ζ ∈ {e 2πk

n | k = 0, . . . , n− 1}. Observe that

Av = ζv
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and
ATv = ζn−1v.

Then, since H = i(A − AT ), the eigenvalues of H are i(ζ − ζn−1). Since ζ is a root of unity, we
see that ζn−1 = ζ, and so the eigenvalues of H are

i(2i Im ζ) = −2 Im ζ

for ζ ∈ {e 2πk
n | k = 0, . . . , n−1}. Then the eigenvalues of H are −2 sin

(
2πk
n

)
for k = 0, . . . , n−1.

Since Dn is an oriented graph, its H-eigenvalues are symmetric about 0 and so this is the same as
2 sin

(
2πk
n

)
for k = 0, . . . , n− 1.

We may observe that the eigenvalues of H(Dn) are symmetric about 0 for any n. Since
sin(θ + π

2 ) = cos θ, if n = 4m, then H(Dn) has the same eigenvalues as A(Dn).
We will use local reversal to show that all orientations of odd cycles are cospectral and that

there are two H-cospectral classes of orientations of even cycles of length 2m for any m. First we
must consider a specific orientation of a cycle.

The digraph C̃n has vertices {x1, . . . , xn} and arc set E = {xjxj+1 | j = 1, . . . , n−1}∪{x1xn}.
We have come across C̃3 in Section 6.5 and C̃4 in Section 6.7, in Figures 6.4 and 6.7, respectively.
Figure 8.2 shows C̃5. In order to find the H-eigenvalues of C̃n, we will use known theorems about
certain types of circulant matrices, which we will use again when finding the H-eigenvalues of the
transitive tournament in Section 8.4.

C̃5

Figure 8.2: The digraph C̃5, obtained from the directed 5-cycle by reversing one arc.

Circulant matrices have been studied extensively, see [34] for more information. A skew circulant
matrix is a circulant with a change in sign to all entries below the main diagonal. We will follow
the notation of [19] and define for a =

(
a0, . . . , an−1

)
with real entries, the skew circulant matrix

of a as:

S(a) =


a0 a1 . . . an−1

−an−1 a0
. . . ...

... . . . . . . a1

−a1 . . . −an−1 a0

 .

The eigenvalues of a skew circulant matrix S(a) are found in [19, Section 3.2.1].

54



8.1.2 Theorem ([19]). The eigenvalues of S(a) are µj(a) =
∑n−1
k=0 akσ

(1+2j)k, where σ = e
πi
n , for

j = 0, 1, . . . , n− 1.

In particular, it will be useful to simplify this statement for skew-symmetric, skew circulant
matrices.

8.1.3 Corollary. Suppose that aj = an−j for j = 1, . . . , n−1. If n is odd, then S(a) has eigenvalues

νj(a) = a0 +
n−1

2∑
k=1

2iak sin
(
k(1 + 2j)π

n

)

for j = 0, 1, . . . , n− 1. If n is even, then S(a) has eigenvalues

νj(a) = a0 + (−1)jan
2
i+

bn−1
2 c∑

k=1
2iak sin

(
k(1 + 2j)π

n

)

for j = 0, 1, . . . , n− 1.

Proof. Let σ = e
πi
n . If aj = an−j for j = 1, . . . , n − 1, it is clear from the definition that S(a)

is skew-symmetric. Observe that σ is a primitive 2n-th root of unity and so σn = −1. For any
j ∈ {0, . . . , n− 1} and k ∈ {1, . . . , n− 1}, consider the contribution of terms with ak and an−k in
µj(a) of Theorem 8.1.2:

akσ
(1+2j)k + an−kσ

(1+2j)(n−k) = ak
(
σ(1+2j)k + σ(1+2j)(n−k)

)
= ak

(
σ(1+2j)k + σ(1+2j)nσ(1+2j)(−k)

)
= ak

(
σ(1+2j)k + (−1)1+2j(σ−k)1+2j

)
= ak

(
σ(1+2j)k − (σk)1+2j

)
= ak

(
σ(1+2j)k − σk(1+2j)

)
= ak

(
2i Im(σ(1+2j)k)

)
= ak

(
2i sin

((1 + 2j)kπ
n

))
.

If n is odd, then we are done. If n = 2m, then we have that

µj(a) = a0 + amσ
(1+2j)m +

bn−1
2 c∑

k=1
ak2i sin

(
k(1 + 2j)π

n

)
.
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Observe that σm = i and we see that

µj(a) = a0 + (−1)jan
2
i+

bn−1
2 c∑

k=1
2iak sin

(
k(1 + 2j)π

n

)

as claimed.

It is reassuring that we can see from Corollary 8.1.3 that any skew-symmetric skew circulant
matrix with zeros on the diagonal will have purely imaginary eigenvalues. We will use Corollary
8.1.3 to find the eigenvalues of C̃n.

8.1.4 Lemma. The eigenvalues of C̃n are 2 sin
(

(1+2j)π
n

)
for j = 0, . . . , n− 1.

Proof. Observe that H(C̃n) = i S(a) where a =
(
a0, . . . , an−1

)
and a1 = an−1 = 1 and aj = 0 for

j /∈ {1, n− 1}. Then, by Corollary 8.1.3, the eigenvalues of H(C̃n) are iνj(a) for j = 0, . . . , n− 1.
Let σ = e

πi
n as before. Since an

2
= 0, we obtain for j ∈ 0, . . . , n− 1,

νj(a) = 2i sin
((1 + 2j)π

n

)
.

Then, the eigenvalues of H(C̃n) are −2 sin
(

(1+2j)π
n

)
for j = 0, . . . , n − 1, which is easily seen to

be the same as claimed.

We consider two digraphs X and Y to be equivalent under taking local reversals if there exists
a digraph X ′, obtained from X by taking a series of local reversals, such that X ′ ∼= Y .s

8.1.5 Lemma. All orientations of C2m+1 are equivalent under taking local reversals. All orientations
of C2m are equivalent to either D2m or C̃2m under taking local reversals.

Proof. Let n ≥ 3 be an integer. Let X be any orientation of Cn on vertex set V = {x1, . . . , x2m+1}.
We may reorder the vertices such that the edges of Cn are {xjxj+1} where the indices are modulo
2n. We will use geometric intuition and say that the orientation of an arc of X is clockwise if it
is xjxj+1 for some j and counter-clockwise if it is xjxj−1 for some j. We will show that X is
equivalent to Dn or to C̃n under local reversals.

Let Y be the graph obtained from X by local reversals such that Y has the most number of
arcs with clockwise orientation, say with k arcs oriented clockwise. If k = n, then Y is isomorphic
to Dn and we are done. We may now assume that k ≤ n − 1. If k ≤ n − 2, there are two arcs
a, b both oriented counter-clockwise in Y , then a and b form an edge cut of the graph and we may
consider S, the vertices in one of the components of Y with a and b deleted. We may take Y ′ the
local reversal of Y at S. This operation only changes the directions of arcs a and b. Now Y ′ has
k+ 2 arcs oriented clockwise and is equivalent to X under taking local reversals, which contradicts
our choice of Y . Then k = n− 1.
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If n is even, then we have obtained that X is equivalent to C̃n by local reversals and we are
done.

Now suppose that n = 2m + 1. Let a be the unique arc of Y with the counter-clockwise
orientation. We may pair up the remaining 2m arcs of Y and then take local reversal at the cut
sets, as above, to obtain Y ′ where all 2m clockwise arcs of Y have been reversed. Then Y ′ is again
isomorphic to D2m+1.

The above would imply that every orientation of Cn is H-cospectral with Dn or with C̃n. Note
that for even n, the spectra of Dn and C̃n are not equal.

8.2 Forests

We see from Lemma 6.2.4 that if uv is a cut-edge in the underlying graph, then changing the
adjacency of u and v to +,−, 1 does not affect the H-spectrum. We then obtain the following
theorem, which also appears in [41] as Corollary 2.21.

8.2.1 Theorem. [41] If X is a digraph whose underlying graph is a forest, then H(X) is cospectral
to H(Γ(X)).

Proof. Every edge of Γ(X) is a cut-edge and so we may replace every arc uv of X such that
vu /∈ E(X), while preserving the H-spectrum, by Lemma 6.2.4. Then, X is H-cospectral with
Γ(X).

Note that for undirected graphs, the Hermitian adjacency matrix is equal to the adjacency
matrix.

8.3 Products of digraphs

Let X and Y be digraphs. The Cartesian product of X and Y , denoted by X�Y , is the graph
with vertex set V (X)× V (Y ) such that there is an arc from (x1, y1) to (x2, y2) when either x1x2

is an arc of X and y1 = y2 or y1y2 is an arc of Y and x1 = x2. The Hermitian adjacency matrix of
X�Y is

H(X�Y ) = H(X)⊗ I|V (Y )| + I|V (X)| ⊗H(Y )

where Ik is the k×k identity matrix. For definitions of Kronecker products of matrices and vectors,
see [18].

8.3.1 Proposition. If X and Y are digraphs with H-eigenvalues {λj}nj=1 and {µk}mk=1 respectively,
then X�Y has H-eigenvalues λj + µk for j = 1, . . . , n and k = 1, . . . ,m.

Proof. Let v1, . . . ,vn be an orthonormal eigenbasis of H(X) such that H(X)vj = λjvj , for
j = 1, . . . , n. Let w1, . . . ,wn be an orthonormal eigenbasis of H(Y ) such that H(Y )wk = µkwk,
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for k = 1, . . . ,m. Observe that the vectors {vj ⊗ wk | j ∈ {1, . . . , n}, k ∈ {1, . . . ,m}} form a
basis of Cnm. We see that

H(X�Y )vj ⊗wk = (H(X)⊗ Im) (vj ⊗wk) + (In ⊗H(Y )) (vj ⊗wk)

= H(X)vj ⊗ Imwk + Invj ⊗H(Y )wk

= λj (vj ⊗wk) + µk (vj ⊗wk)

= (λj + µk) (vj ⊗wk)

for every j ∈ {1, . . . , n} and k ∈ {1, . . . ,m}.

8.4 Transitive tournaments

The transitive tournaments are an important class of digraphs to study and the spectra of their
skew-symmetric adjacency matrices have been studied as skew circulants and Toeplitz matrices in
[30, 38]. Here we will find the characteristic polynomials of the Hermitian adjacency matrices of
transitive tournaments using a different method, with hopes that this approach may give intuition
and tools for further work. We will also consider the matrix as a skew circulant matrix and use
existing results to find the actual eigenvalues.

Let Tn denote the transitive tournament on n vertices and Hn := H(Tn) denote its Hermitian
adjacency matrix. Let pn(t) be the characteristic polynomial of Hn in variable t; we will sometimes
write pn for convenience. Figure 8.3 shows T5.

T5

Figure 8.3: Transitive tournament T5 on 5 vertices.

8.4.1 Lemma. The characteristic polynomial φ(Hn, t) = pn(t) of the Hermitian adjacency matrix
of the transitive tournament of order n satisfies the following recursion:

pn = 2tpn−1 − (t2 + 1)pn−2. (8.1)

Proof. Let hn = tIn−HT
n . We will find the following determinant which will give the characteristic
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polynomial of Hn:

pn = det(hn) =

∣∣∣∣∣∣∣∣∣∣∣∣

t i . . . i

−i t
. . .

... . . . . . .
−i . . . −i t

∣∣∣∣∣∣∣∣∣∣∣∣
.

Cofactor expansion along the first row gives that

pn = t det(hn−1) +
n−1∑
k=1

(−1)kiMn−1,k

where Mn−1,k is the determinant of the n− 1× n− 1 matrix with −i1 as the first column and the
next n− 2 columns are the columns of hn−1 with the kth column removed. Note, here the indexing
of the columns of hn−1 is considered to be {1, . . . , n− 1}. We may simplify the equation to be:

pn = tpn−1 + i
n−1∑
k=1

(−1)kMn−1,k (8.2)

Now we consider the cofactor expansion of the same matrix hn along the first two rows. Note
that there are only 4 different 2x2 sub-matrices in the first two rows:(

t i

−i t

)
= h2,

(
t i

−i i

)
,

(
i i

t i

)
, and

(
i i

i i

)
.

The determinants of these 2 × 2 matrices are t2 − 1 = p2, it − 1, −it − 1 and 0, respectively.

Note that every term with
∣∣∣∣∣
(
i i

i i

)∣∣∣∣∣ as a coefficient contributes 0 to the determinant pn. Then the

cofactor expansion along the first two rows gives:

pn = p2pn−2 +
∣∣∣∣∣
(
t i

−i i

)∣∣∣∣∣
n−2∑
k=1

(−1)kMn−2,k +
∣∣∣∣∣
(
i i

t i

)∣∣∣∣∣
n−2∑
k=1

(−1)k+1Mn−2,k

= p2pn−2 + (it− 1)
n−2∑
k=1

(−1)kMn−2,k + (−it− 1)
n−2∑
k=1

(−1)k+1Mn−2,k

= p2pn−2 +
n−2∑
k=1

(−1)k 2tiMn−2,k

= (t2 − 1)pn−2 + 2ti
n−2∑
k=1

(−1)kMn−2,k.
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We obtain from Equation (8.2), applied to n− 1 instead for n, that

pn−1 = tpn−2 + i
n−2∑
k=1

(−1)kMn−2,k.

We combine the two expressions to obtain that:

pn − 2tpn−1 = (t2 − 1)pn−2 + 2ti
n−2∑
k=1

(−1)kMn−2,k − 2t2pn−2 − 2ti
n−2∑
k=1

(−1)kMn−2,k

= (t2 − 1)pn−2 − 2t2pn−2

= (−t2 − 1)pn−2.

We may rearrange to obtain:
pn = 2tpn−1 − (t2 + 1)pn−2

as claimed.

8.4.2 Theorem. The characteristic polynomial of Hn = H(Tn) is

pn(t) =
bn2 c∑
j=0

(−1)j
(
n

2j

)
tn−2j = 1

2(t+ i)n + 1
2(t− i)n.

Proof. We use the recursion from Lemma 8.4.1 to find the characteristic polynomial. As before, we
will write pn = pn(t) for simplicity. Let

p0 := 1, p1 := t.

We may compute that p2 = t2−1 and p3 = t3−3t. Then, pn for n = 0, 1, . . . satisfies the recursion
in Equation (8.1). Let G(z) be the generating function for the characteristic polynomial pn;

G(z) :=
∞∑
n=0

pnz
n.

Multiplying both sides of (8.1) by zn gives:

pnz
n = 2tpn−1z

n − (t2 + 1)pn−2z
n.

Then, we take the sum for n = 2, 3, . . . on both sides to obtain:

∞∑
n=2

pnz
n = 2tz

∞∑
n=2

pn−1z
n−1 − (t2 + 1)z2

∞∑
n=2

pn−2z
n−2
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which we may simplify as

G(z)− p1z − p0 = 2tz(G(z)− p0)− (t2 + 1)z2G(z),

G(z)− tz − 1 = 2tzG(z)− 2tz − (t2 + 1)z2G(z).

Rearranging gives the following:

G(z) = 1− tz
(t2 + 1)z2 − 2tz + 1 . (8.3)

Observe that the denominator in Equation (8.3) factors as

(t2 + 1)z2 − 2tz + 1 = (1− (t+ i)z)(1− (t− i)z).

We wish to apply partial fractions to Equation (8.3) by solving for a0, a1, b0, and b1 in the following:

1− tz
(t2 + 1)z2 − 2tz + 1 = a0 + a1z

1− (t+ i)z + b0 + b1z

1− (t− i)z

= a0−a0(t−i)z+a1z−a1z2(t−i)+b0−b0(t+i)z+b1z−b1z2(t+i)

(t2 + 1)z2 − 2tz + 1

= (−a1(t−i)−b1(t+i))z2+(−a0(t−i)−b0(t+i)+a1+b1)z+a0+b0

(t2 + 1)z2 − 2tz + 1 .

This is equivalent to solving the following system of linear equation in a0, a1, b0, and b1:
−a1(t− i)− b1(t+ i) = 0,

−a0(t− i)− b0(t+ i) + a1 + b1 = −t,

a0 + b0 = 1.

Solving for a0, a1, b0, and b1, we obtain:

a0 = −r + 1, a1 = 1
2(2r − 1)t+ ir − i

2

b0 = r, b1 = −1
2(2r − 1)t+ ir − i

2 ,

for any r ∈ C. We may choose a particular solution when r = 0 to obtain:

a0 = 1, a1 = −t− i2

b0 = 0, b1 = t− i
2 .
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Then we can write Equation (8.3) as

G(z) =
1− t+i

2 z

1− (t+ i)z +
t−i
2 z

1− (t− i)z .

We may expand using the following:

1
1− (t+ i)z =

∞∑
n=0

(t+ i)nzn

and
1

1− (t− i)z =
∞∑
n=0

(t− i)nzn.

Then we have

G(z) =
(

1− t+ i

2 z

) ∞∑
n=0

(t+ i)nzn +
(
t− i

2 z

) ∞∑
n=0

(t− i)nzn

=
∞∑
n=0

(t+ i)nzn −
∞∑
n=0

1
2(t+ i)n+1zn+1 +

∞∑
n=0

1
2(t− i)n+1zn+1

= 1 +
∞∑
n=1

(t+ i)nzn −
∞∑
n=1

1
2(t+ i)nzn +

∞∑
n=1

1
2(t− i)nzn

= 1 +
∞∑
n=1

(
(t+ i)nzn − 1

2(t+ i)nzn + 1
2(t− i)nzn

)

= 1 +
∞∑
n=1

(1
2(t+ i)n + 1

2(t− i)n
)
zn.

Since G(z) is defined such that pn is the coefficient of zn, we obtain that

pn = 1
2(t+ i)n + 1

2(t− i)n.
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To obtain the coefficients of pn, we simplify further as follows:

pn = 1
2 ((t+ i)n + (t− i)n)

= 1
2

(
n∑
k=0

(
n

k

)
tn−kik +

n∑
k=0

(
n

k

)
tn−kik(−1)k

)

= 1
2

n∑
k=0

(
n

k

)
tn−kik(1 + (−1)k)

= 1
2

n∑
k=0,k even

2
(
n

k

)
tn−kik

=
bn2 c∑
j=0

(
n

2j

)
(−1)jtn−2j

as claimed.

We may also consider Hn as a skew circulant matrix, as introduced in Section 8.1.

8.4.3 Lemma. The eigenvalues of Hn are

n−1
2∑

k=1
2 sin

(
k(1 + 2j)π

n

)

for j = 0, . . . , n− 1, when n is odd, and

(−1)j +
n−2

2∑
k=1

2 sin
(
k(1 + 2j)π

n

)

for j = 0, . . . , n− 1, when n is even.

Proof. Observe that Hn = iS(a) where a =
(
a0, . . . , an−1

)
and a1 = . . . = an−1 = 1 and a0 = 0.

We see that S(a) is a skew-symmetric skew circulant and so we may apply Corollary 8.1.3 to obtain
that eigenvalues of S(a) are

νj(a) =

a0 +
∑n−1

2
k=1 ak2i sin

(
k(1+2j)π

n

)
if n is odd;

a0 + (−1)jan
2
i+

∑bn−1
2 c

k=1 ak2i sin
(
k(1+2j)π

n

)
if n is even.

=


∑n−1

2
k=1 2i sin

(
k(1+2j)π

n

)
if n is odd;

(−1)ji+
∑bn−1

2 c
k=1 2i sin

(
k(1+2j)π

n

)
if n is even

for j = 0, . . . , n− 1. Then eigenvalues of H are iνj for j = 0, . . . , n− 1.

Note that for n = 2m+ 1, the eigenvalue of Hn contributed from j = m is 0.
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8.5 Directed stars

In Section 7.2, we found the characteristic polynomials of digraphs with a star as the underlying
graph. Here, we will find the eigenvalues directly.

8.5.1 Theorem. Let X be any digraph whose underlying graph is isomorphic to the star graph
on n vertices. Then, the eigenvalues of H(X) are ±

√
n− 1 each with multiplicity 1, and 0 with

multiplicity n− 2.

Proof. Let X be as in the theorem statement. Then, relabelling so that vertex 1 is the vertex with
arcs to or from every other vertex, we may write the Hermitian adjacency matrix H := H(X) as
follows:

H(X) =
(

0 uT

v 0

)

where 0 is the n− 1× n− 1 zero matrix and uT = v∗. We may observe that uTv = n− 1. Then

H

(√
n− 1
v

)
=
(

uTv
√
n− 1v

)
=
(

n− 1
√
n− 1v

)
=
√
n− 1

(√
n− 1
v

)

and
√
n− 1 is an eigenvalue of H. Similarly,

H

(
−
√
n− 1
v

)
=
(

uTv
−
√
n− 1v

)
=
(

n− 1
−
√
n− 1v

)
= −
√
n− 1

(
−
√
n− 1
v

)

and −
√
n− 1 is an eigenvalue of H. Observe that the bottom n− 1 rows of H are scalar multiples

of each other, as they all have exactly one nonzero entry, in the first position, and zeroes elsewhere.
Then rk(H) = 2, and the remaining n− 2 eigenvalues of H are equal to 0.

Note that by Theorem 8.2.1, all forests with isomorphic underlying graphs are H-cospectral.
Let X be a digraph whose underlying graph is Y , the star on n vertices.The proof of Theorem

8.5.1 actually shows that H(X) is similar to H(Y ) by a diagonal matrix. If n ≥ 3, let v be
the vertex of Y (and X) of degree greater than 1. If n ≤ 2, the choice of v is arbitrary. The
similarity from H(X) to H(Y ) is the matrix P , the n × n diagonal matrix such that P (v, v) = 1
and P (u, u) = H(X)(u, v). It is easy to see that P ∗H(X)P = H(Y ).

8.6 Necklace digraphs

We construct a family of digraphs for the purpose of studying the relationship between the number
of distinct H-eigenvalues and the diameter of the underlying graph. See Section 6.7.

For n ≥ 3, the nth necklace digraph, denoted Nn, is an oriented graph on 3n vertices with
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vertices and arcs as follows:

V (Nn) = {vj | j ∈ Z2n} ∪ {wk | k ∈ Zn}

and
E(Nn) = {vjvj+1 | j ∈ Z2n} ∪ {v2kwk, v2k+2wk | k ∈ Zn}.

Let Cj be the cycle (v2j , v2j+1, v2j+2, wj , v2j). Every v2j lies on two of these cycles, Cj and Cj−1.
Every other vertex lies on a unique Cj . Figure 8.4 shows N4 with cycle C0 highlighted.

v0

v1

v2

v3

v4

v5

v6

v7

w3 w0

w1w2

C0

Figure 8.4: N4 with C0 in a lighter colour.

We will find the eigenvalues of Nn.

8.6.1 Lemma. For every n ≥ 3 and H := H(n), we have H3 = 4H.

Proof. We will show H3(u, v) = 4H(u, v). Observe that since the underlying graph Γ := Γ(Nn)
is a bipartite graph of girth 4, we have that H3(u, u) = 0 and H3(u, v) = 0 if dΓ(u, v) is even or
dΓ(u, v) > 3. We only need to consider the two cases where dΓ(u, v) ∈ {1, 3}.
Case 1: u, v are such that dΓ(u, v) = 1. Since H and H3 are Hermitian, we need only check u, v
such that uv ∈ E(Nn). Let W be the set of all walks of length 3 from u to v. The following are
all possible walks of length 3 in Γ, starting at u and ending at v:

(a) W1 = (u, v, u, v);

(b) W2 = (u, v, x, v), where x ∈ NΓ(v) \ {u};

(c) W3 = (u,w, u, v), where w ∈ NΓ(u) \ {v}; and

(d) W4 = (u,w, x, v), where w ∈ NΓ(u) \ {v}, w ∈ NΓ(v) \ {u}, and wx ∈ E(Γ).
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These walks are illustrated in Figure 8.5.

(a) (b) (c) (d)u

v

u

v

x

w

u

v

u

w

x

v

Figure 8.5: All possible walks of length 3 in Γ, starting at u and ending at v.

Every edge of Γ which is traversed once in each direction in any Wj contributes a factor of 1 to
wt(Wj). Thus wt(W1) = wt(W2) = wt(W3) = i. To find the weight of W4, we observe that every
arc uv lies on a cycle Cj , for some j, and that W4 together with arc uv gives a directed 4-cycle in
Γ, which must then correspond to Cj . From this we immediately see that, for each such uv, there
is exactly one walk from u to v isomorphic to W4 and that W4 is a path of length 3 on Cj . We may
observe that all such paths either traverse two arcs in the backward direction and one in the forward
direction, or all three arcs in the forward direction. In either case, wt(W4) = (±i)2(i) = −i.

For every arc uv, one of u or v has degree 4 in Γ and the other has degree 2. Then W contains
one walk isomorphic to W1 and either 3 walks isomorphic to W2 and one isomorphic to W3, or 3
walks isomorphic W3 and one isomorphic to W2. Then, since Wj for j = 1, 2, 3 have the same
weight, we get

H3(u, v) =
∑
W∈W

wt(W )

= wt(W1) +
∑

NΓ(v)\{u}
wt(W2) +

∑
NΓ(u)\{v}

wt(W3) + wt(W4)

= i+ (3i+ i)− i

= 4i

= 4H(u, v)

as claimed.
Case 2: u, v are such that dΓ(u, v) = 3. In this case, since vertices lying on Cj for any given j can
be at distance at most 2, we have that u ∈ Cj and v ∈ Cj±1. Also note that either u or v is of
degree 4 in Γ(X), thus equal to v2k for some k ∈ Zn.

Suppose u = v2k for some k. Then v ∈ Ck+1 or v ∈ Ck−2. See Figure 8.6. In either case, there
are two walks from u to v of opposite contributions, and so H3(u, v) = 0 = H(u, v).

8.6.2 Corollary. The spectrum of H(Nn) is {0(n), 2(n), (−2)(n)}.
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u = v2k

v

Figure 8.6: An induced subgraph of Γ containing u, v such that dΓ(u, v) = 3, as in Case 2.

Proof. LetH := H(Nn). From Lemma 8.6.1, we see that the minimal polynomial ofH is t3−4t = 0.
Since every eigenvalue of a matrix is a root of its minimal polynomial, the distinct eigenvalues of H
are 0, 2 and −2. Let q, r, and s be the multiplicities of 0, 2, and −2, respectively. Since tr(H) = 0,
we see that r = s. By Lemma 6.2.1, tr(H2) = 2|E(Γ(Nn))| = 8n. Then

r(22 + (−2)2) = 8n

and so r = n. Since q + 2r = 3n, we have that q = n.

8.7 Digraphs that are H-cospectral with Kn

In the undirected case, the complete graphs have the property of being determined by spectrum. In
the case of directed graphs with the Hermitian adjacency matrix, for each n, we find that there are
exactly n digraphs with the same H-spectrum as Kn.

Let Yn,m = (V,E) be the digraph on vertex set

V = {vj | j = 1, . . . , n} ∪ {wk | k = 1, . . . ,m}

and arc-set

E = {vjv` | j 6= ` ∈ [1, . . . , n]} ∪ {wkwr | k 6= r ∈ [1, . . . ,m]}

∪ {vjwk | j ∈ [1, . . . , n], k ∈ [1, . . . ,m]}.

In other words, Yn,m consists of a copy of ~D(Kn) and a copy of ~D(Km), with all possible arcs from
~D(Kn) to ~D(Km). Figure 8.7 shows Y2,3. We note that Y2,1 and Y2,2 appeared in Figure 5.2 as
examples of digraphs whose A-spectra are symmetric about the origin, but whose underlying graphs
are not bipartite.

8.7.1 Proposition. The digraph Yn,m as defined above is H-cospectral with Kn+m.
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v1 v2

w1 w3w2

Figure 8.7: Digraph Y2,3 of Proposition 8.7.1, which is one of five digraphs H-cospectral to K5 by
Corollary 8.7.2.

Proof. Let H := H(Yn,m). Then, we see that

H =
(
Jn,n − In iJn,m

−iJm,n Jm,m − Im

)
=
(

Jn,n iJn,m

−iJm,n Jm,m

)
− In+m

where Jr,c denotes the r× c all-ones matrix. Let M =
(

Jn,n iJn,m

−iJm,n Jm,m

)
. We see that M has rank

1 and so has 0 as an eigenvalue with multiplicity n+m− 1. We also observe

M

(
1n
−i1m

)
=
(

(n+ i(−i)m)1n
(−in− im)1m

)
= (n+m)

(
1n
−i1m

)
.

Since H = M − In+m and M and In+m commute and hence have a common eigenbasis, we have
that the eigenvalues of H are n + m − 1 with multiplicity 1 and −1 with multiplicity n + m − 1,
which is the same as the H-spectrum of Kn+m.

In fact, we may note that H and H(Kn+m) are similar by a diagonal matrix. Let

P =
(
In 0
0 iIm

)
.

Then, we see that

PHP ∗ =
(
In 0
0 iIm

)(
Jn,n − In iJn,m

−iJm,n Jm,m − Im

)(
In 0
0 −iIm

)
=
(
Jn,n − In Jn,m

Jm,n Jm,m − Im

)

which is exactly H(Kn+m).

8.7.2 Proposition. For each n, there are precisely n non-isomorphic digraphs that have the same
H-spectrum as Kn. There are the digraphs Kn and Ya,b, where a = 1, . . . , n− 1 and b = n− a.

Proof. For a, b ≥ 1, we observe that the out-degree of a vertex of Ya,b is either a− 1 + b or b− 1.
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Then, for c, d ≥ 1, the digraphs Ya,b and Yc,d have different sets of degrees unless a = c and b = d.
Thus, we observe that Ya,b is isomorphic to Yc,d if and only if a = c and b = d. From Proposition
8.7.1, we see that the digraphs

{Ya,n−a | a ∈ [1, . . . n− 1]}

are each cospectral with Kn. Together with Kn itself, there are at least n non-isomorphic digraphs
in the H-cospectral class containing Kn.

Let X be a digraph which is H-cospectral with Kn. We will now show that X is isomorphic to
one of Kn and Ya,b, where a = 1, . . . , n− 1 and b = n− a.

Since [tn−2]φ(H(X), t) = [tn−2]φ(H(Kn), t), we see that Γ(X) has the same number of edges
as Kn, and so Γ(X) ∼= Kn, by Corollary 6.2.2.

Also, tr(H(X)3) = tr(H(Kn)3). By Proposition 6.3.2, we see that tr(H(Kn)3) = 6
(n

3
)
, since

every 3 vertices of Kn induce a triangle isomorphic to the digraph X7 in Proposition 6.3.2. Then
every 3 vertices of X must induce a digraph isomorphic to one of X4, X5 or X7 in Figure 6.2, which
are precisely the triangles with weight equal to 1.

Consider G(X), the symmetric subgraph of X. If there is a path of length 2, say (u, v, w) in
a component of G(X), then {u, v, w} induce a triangle of X with more than one digon and hence
must be isomorphic to X7. Thus, each connected component of G(X) is complete. If G(X) has
3 or more components, then choosing three vertices from different components will give a triangle
with no digons and hence not isomorphic to any Xj for j ∈ {4, 5, 7}. Thus, G(X) has at most 2
components. If G(X) has one, then X ∼= Kn. Otherwise, the vertices of X may be partitioned
into V (X) = A∪B such that A and B induced complete subgraphs of X and every arc whose end
points are in different parts does not lie on a digon.

Let x ∈ A. If x has both an in-neighbour y1 and an out-neighbour y2, then x, y1, y2 induce a
triangle isomorphic to X3, a contradiction. Then, x has only in-neighbours or only out-neighbours.
The same also holds for any vertex of B. If x has only in-neighbours, then every vertex of B is
adjacent to x in Γ(X) and so every vertex of B has x as an out-neighbour in X. By the previous
observation, every arc e incident to a vertex y in B has t(e) = y. We have show that all arcs with
one end in A and one end in B are oriented from B to A. Similarly, if x has only out-neighbours,
all arcs with one end in A and one end in B are oriented from A to B. Now we have show that X
is isomorphic to one of Y (|A|, |B|) and Y (|B|, |A|).

8.8 Digraphs with spectrum {−(n− 1), 1(n−1)}

In Section 6.6, we encountered a digraph K ′3 with H-spectrum {−2, 1(2)}. In Section 8.9, we will
see a digraph K ′4 with H-spectrum {−3, 1(3)}, used in a construction of digraphs with the least
eigenvalue larger than the greatest eigenvalue, in magnitude. The two digraphs are shown in Figure
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8.8. We may observe that K ′3 and K ′4 have H-spectra that is the negative of the H-spectra (and A-
spectra) of K3 and K4, respectively. Naturally, we may ask if there are other digraphs on n vertices
with H-spectrum {−(n − 1), 1(n−1)}. Such digraphs would have a large negative eigenvalue and
small positive eigenvalues and thus exhibit extreme spectral behaviour, opposite to the behaviour
described in the Perron-Frobenius theorem for undirected graphs. We answer this in the negative
and show that K ′3 and K ′4 are the only non-trivial digraphs with this property.

K ′3 K ′4

Figure 8.8: K ′3 and K ′4.

8.8.1 Theorem. If X is a digraph such that σ(H(X)) = {−(n − 1), (−1)(n−1)}, then X ∼= Y

where Y ∈ {K1,K2, T2,K
′
3,K

′
4} (where T2 is the transitive tournament on 2 vertices).

Proof. Let X be a digraph such that H := H(X) has spectrum {−(n − 1), (−1)(n−1)}. Then X
has n vertices, since H is diagonalizable. If n = 1, then X ∼= K1 and if n = 2 then X ∼= K2 or T2.
We may assume n ≥ 3. The characteristic polynomial of H is φ(H, t) = (t + (n − 1))(t − 1)n−1.
Observe that φ(H(Kn)) = (t− (n− 1))(t+ 1)n−1 and so

[tk]φ(H, t) =

[tk]φ(H(Kn), t), if n− k is even;

−[tk]φ(H(Kn), t) if n− k is odd.

In particular, [tn−2]φ(H, t) = [tn−2]φ(H(Kn), t). Thus, by Corollary 6.2.2, Γ(X) has the same
number of edges as Kn, and so Γ(X) ∼= Kn.

Also, tr(H3) = − tr(H(Kn)3). By Proposition 6.3.2, we see that tr(H(Kn)3) = 6
(n

3
)
, since

every 3 vertices of Kn induce a triangle isomorphic to the digraph X7 in Proposition 6.3.2. We see
that tr(H3) = −6

(n
3
)
and so every 3 vertices of X must induce a digraph isomorphic to digraph

X3 ∼= K ′3 in Figure 6.2, the only Xj with negative weight.
Consider G(X), the symmetric subgraph of X. If there is a path of length 2, say (u, v, w) in

a component of G(X), then {u, v, w} induce a triangle of X with more than one digon and hence
not isomorphic to K ′3, which is a contradiction. Thus, each connected component of G(X) is a
copy of either K1 or K2. If G(X) has 3 ore more components, then choosing three vertices from
different components will give a triangle with no digons and hence not isomorphic to K ′3. Thus,
G(X) has at most 2 components. Since n ≥ 3, we see that G(X) has exactly two components and
n ∈ {3, 4}. If n = 3, then X ∼= K ′3 since K ′3 is an induced sub-digraph.
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If n = 4, then the deletion of any vertex of X results in a digraph isomorphic to K ′3. Let
x1, . . . , x4 be the vertices of X such that the deletion of x4 results in a copy of K ′3 with vertex
labels as in Figure 8.9.

x3

x1 x2

Figure 8.9: Digraph X with vertex x4 deleted.

We see that x4 must be in the same component of G(X) as x3 and so RX(x3, x4) = 1. The
vertices x3, x4 and x2 induce a triangle of X isomorphic to K ′3, so RX(x2, x4) = +. The vertices
x3, x4 and x1 induce a triangle of X isomorphic to K ′3, so RX(x4, x1) = +. We have determined
the adjacencies of all pairs of vertices of X and we observe now that X ∼= K ′4.

8.9 Digraphs with a large negative H-eigenvalue

An unfamiliar aspect of the spectra of the Hermitian adjacency matrix is that there exist digraphs
where the least eigenvalue is strictly larger than the largest positive eigenvalue in absolute value.
Here, we present an infinite family of digraphs with this property to provide examples and intuition
for understanding the Hermitian adjacency matrix. In addition, we use the method of eigenvalue
interlacing of Chapter 4, which is not available when working with the adjacency matrix of digraphs.

We define a digraph X(a, b) on 2a+ b vertices, where a ≥ 1 and b ≥ 1. The vertices of X(a, b)
consist of X ∪ Y ∪ Z, where X = {x1, . . . , xa}, Y = {y1, . . . , ya} and Z = {z1, . . . , zb}. The arcs
are

{xjyj , yjxj | j = 1, . . . a}

and
{xjz`, z`yj | j = 1, . . . , a and ` = 1, . . . b}.

We see that K ′3 from the previous section is isomorphic to X(1, 1). Figure 8.10 shows X(1, 3) and
X(2, 3).

8.9.1 Proposition. Digraph X(a, b) as constructed above has H-spectrum{
−1 +

√
1 + 8ab

2 , 1(a), 0(b−1),−1(a−1),
−1−

√
1 + 8ab

2

}
.
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X(1, 3) X(2, 3)

z1 z2 z3

z1 z2 z3

x1 y1

x1

x2 y2

y1

Figure 8.10: DigraphsX(1, 3) andX(2, 3), constructed as examples of digraphs with a large negative
H-eigenvalue.

Proof. Let H = H(a, b). We may write H as follows:

H =


0 Ia iJa,b

Ia 0 −iJa,b
−iJb,a iJb,a 0


where we recall that In denotes the n × n identity matrix and Jm,n denotes the m × n all-ones
matrix.

Observe that the last b rows are all identical and hence linearly dependent. This implies that
rk(H) ≤ 2a + b − (b − 1), which implies that H has 0 as an eigenvalue with multiplicity at least
b− 1.

For j = 1, . . . , a, let vj = (ej ej 0)T , where ej is the a-dimensional j-th elementary vector.
We see that Hvj = vj for j = 1, . . . , a and so 1 is an eigenvalue of H with multiplicity at least a.

Similarly, for j = 1, . . . , a− 1, let

wj =


ej − ea
−(ej − ea)

0


where en is defined as above. Then Hwj = −wj and so −1 is an eigenvalue of H with multiplicity
at least a− 1.

We have found 2a+ b− 2 eigenvalues of H. To find the remaining two eigenvalues, we will use
the interlacing theorem. Partition the vertices of X(a, b) (and consequently the rows and columns
of H) into the sets X, Y and Z. Each block of H, under this partition, has constant row sums
and so this is an equitable partition of H. We obtain B the quotient matrix corresponding to this

72



partition as follows:

B =


0 1 ib

1 0 −ib
−ia ia 0

 .
We find that the characteristic polynomial of B is

φ(B, t) = t3 − (2ab+ 1)t+ 2ab = (t− 1)(t2 + t− 2ab).

Using the quadratic formula, we see that the roots of φ(B, t) are 1, τ and σ, where

τ = −1 +
√

1 + 8ab
2

and
σ = −1−

√
1 + 8ab

2 .

The partition is equitable and so τ and σ are also eigenvalues of H. Since for a, b ≥ 1, τ and σ
are not equal to any of the eigenvalues of H that we have already found. Then H has spectrum
{τ (1), 1(a), 0(b−1),−1(a−1), σ(1)}.

Note that X(a, b) has ρ(H(X(a, b)))− λ1(H(X(a, b))) = 1, where λ1(M) denotes the largest
eigenvalue of matrix M . We now use the Cartesian product to construct digraphs where this
difference is much larger. We let X�n denote the n-fold Cartesian product of X with itself; that is
X�n = X� · · ·�X, where there are n terms in the product.

8.9.2 Lemma. The digraph Xn = K ′�n4 has ρ(H(Xn))− λ1(H(Xn)) = 2n.

Proof. By applying Proposition 8.3.1 n times, the set of H-eigenvalues of Xn is
n∑
j=1

βj | βj ∈ {−3, 1}

 ,
considered without multiplicity. Then ρ(H(Xn)) = −3n and λ1(H(Xn)) = n.
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Chapter 9

Interlacing bounds in eulerian digraphs

9.1 Laplacian matrix of directed graphs

We define the A-Laplacian matrix of directed graphs analoguous to the undirected Laplacian. For a
digraph X, let ∆+(X) be the diagonal matrix indexed by the vertex set of X with ∆+(u, u) equal
to the out-degree of vertex u. Let A be the adjacency matrix of X. Then, the A-Laplacian matrix
of digraph X is

L(X) = ∆+(X)−A(X).

We will write L, ∆+ and A when there is no ambiguity. We are interested in digraphs where L is
normal. Recall that we assume our digraphs have no loops or parallel arcs.

9.1.1 Proposition. For a weakly connected digraph X, if L(X) is normal, then X is eulerian.

Proof. Since L is normal, we have that

0 = LLT − LTL

= (∆+ −A)(∆+ −A)T − (∆+ −A)T (∆+ −A)

= (∆+)2 −A∆+ −∆+AT +AAT − (∆+)2 +AT∆+ + ∆+A−ATA

= ∆+(A−AT ) + (AT −A)∆+ +AAT −ATA =: M.

For a square matrix N , let diag(N) denote the vector consisting of the diagonal entries of N :

(diag(N))u = N(u, u).

Observe that ∆+ is a diagonal matrix and both A and AT have zero diagonal. Then

diag(∆+(A−AT )) = diag((AT −A)∆+) = 0.
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We see that M = 0 and so has diag(M) = 0. Then

diag(AAT ) = diag(ATA). (9.1)

Combinatorially, we have that

(ATA)u,u = |{w : wu is an arc of X}| = deg−(u)

and
(AAT )u,u = |{y : uy is an arc of X}| = deg+(u).

This and (9.1) implies that deg−(u) = deg+(u) for every vertex u of X and, since X is weakly
connected, so X is eulerian.

If a weakly connected digraph is Eulerian, then it is also strongly connected. Since there is no
confusion, we may say that such graphs are connected.

The following lemma can be proved by considering L+LT as the Laplacian of a multi-graph and
appealing to known results about Laplacians of graphs. Here, however, we will give a direct proof
to be thorough. Parts (a) and (b) of Lemma 9.1.2 follow from well-known results on M -matrices,
see [4].

9.1.2 Lemma. If X is a connected digraph and L(X) is normal, then

(a) L(X) has eigenvalue 0 with multiplicity 1;

(b) Re(λ) > 0 for λ 6= 0 an eigenvalue of L(X); and

(c) if L(X)v = λv, then L(X)Tv = λv.

Proof. First, we will show part (c). Let v be an eigenvector of L := L(X) with eigenvalue λ. Since
L and LT commute, they may be simultaneously diagonalized, so we many assume v is also an
eigenvector of LT with eigenvalue θ. Then

v∗Lv = λv∗v

and
v∗Lv = (L∗v)∗v = (θv)∗v = θv∗v.

Then, θ = λ.
To show parts (a) and (b), we will first show that

Re(λ) ≥ 0
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for all eigenvalues λ of L. Observe that 0 is an eigenvalue of L with the all ones vector as an
eigenvector. We will use the property that X is connected to establish that 0 has multiplicity 1 as
an eigenvalue and that the other eigenvalues lie in the open right half plane.

To see that all eigenvalues of L lie in the closed right half plane, we must look at some other
incidence matrices.

For any digraph X, we may define the two incidence matrices, Dh and Dt of X, with rows
indexed by vertices and columns indexed by edges such that the (u, e) entry is as follows:

(Dh)u,e =

1 if u = h(e);

0 otherwise

and

(Dt)u,e =

1 if u = t(e);

0 otherwise.

We see that if X is eulerian, then

∆+ = DtD
T
t = DhD

T
h

and
A = DtD

T
h .

Let N = Dt −Dh. Then

NNT = (Dt −Dh) (Dt −Dh)T

= DtD
T
t −DtD

T
h −DhD

T
t +DhD

T
h

= DtD
T
t −A+DhD

T
h −AT

= L+ LT .

But, NNT is a square, symmetric matrix with all non-negative eigenvalues since

v∗NNTv = ||NTv||2 ≥ 0

for any vector v ∈ Cn, where n is the order of N .
Let v be an eigenvector of L with eigenvalue λ. Then,

(L+ LT )v = (λ+ λ)v = 2 Re(λ)v

Then 2 Re(λ) is an eigenvalue of NNT and so Re(λ) ≥ 0.
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Let d be the maximum out-degree of A. Let

B = dI − L

where I is the n×n identity matrix. We see that B is a non-negative matrix. Let v be an eigenvector
of L with eigenvalue λ. Then

Bv = dv− Lv = (d− λ)v

and v is an eigenvector of B with eigenvalue d − λ. Conversely, if x is an eigenvector of B with
eigenvalue θ, then

Lx = dx−Bx = (d− θ)x.

Then λ is an eigenvalue of L if and only if d− λ is an eigenvalue of B with the same multiplicity.
We may regard B as the adjacency matrix of some digraph X ′ with some number of loops at

each vertex. Since X is connected, then so is X ′. Then B is irreducible and we may apply the
Perron-Frobenius theorem. We obtain that B has a positive real eigenvalue ρ such that ρ ≥ |θ| for
all θ eigenvalues of B and ρ has algebraic multiplicity 1. We see that ρ = d−λ for some eigenvalue
λ of L. Since Re(λ) ≥ 0 for all eigenvalues of L, we have that d− λ is maximized by λ = 0. Then
ρ = d is the Perron value of B and thus has multiplicity 1. Then 0 is an eigenvalue of L with
multiplicity 1.

If L has an eigenvalue λ = iβ for some β 6= 0 ∈ R. Then |d − λ| is an eigenvalue of B and
|d− λ| ≥ |d|, which is a contradiction. Then for λ 6= 0 an eigenvalue of L, we see that

Re(λ) > 0

as claimed.

Observe that if X is not connected, then we may consider the spectrum over the connected
components of X to obtain the following corollary.

9.1.3 Corollary. If X is a digraph and L(X) is normal, then Re(λ) > 0 for all eigenvalues λ of
L(X) except λ = 0.

9.2 Interlacing with the A-Laplacian

In this section, we will consider eulerian digraphs X such that the A-Laplacian matrix of X is
normal. Let α(X) denote the size of the largest acyclic subgraph of X. First we will find a spectral
bound of disjoint vertex sets Y and Z with no arcs from Z to Y . Then, we will use the bound to
find a spectral bound for the maximum acyclic subdigraph of X.

We would like to use interlacing to find bounds of combinatorial properties of digraph X using
eigenvalues of some matrix respecting the adjacency of X. In particular, we would like to use

77



the same method as the proof of Lemma 6.1 in [32], which is stated here as Corollary 9.3.1. We
achieve this using the A-Laplacian matrix and prove a result which generalizes the original lemma
of Haemers to a sub-class of digraphs. However, as this matrix is not symmetric like in the case for
graphs, we need to restrict to digraphs X whose the A-Laplacian matrices are normal and we also
need a few technical lemmas in order to prove Theorem 9.2.3, the main result of this chapter.

For L, we see that the singular values of LTL are just |λ| for each eigenvalue λ of L.

9.2.1 Lemma. Let X be an eulerian digraph on n vertices such that the Laplacian L of X is normal.
If λ is an eigenvalue of L, then |α+ λ| is a singular value of

αI + L

for each α ∈ C and I is the n× n identity matrix.

Proof. We need to consider the following:

(αI + L)(αI + L)∗ = (αI + L)(αI + LT )

= |α|2I + αLT + αL+ LLT .

Let v be an eigenvector of L with eigenvalue λ. Then

(αI + L)(αI + L)∗v = |α|2v + αLTv + αLv + LLTv

= |α|2v + αλv + αλv + |λ|2v

= (α+ λ)(α+ λ)v

= |α+ λ|2v.

Then the singular values of αI + L are |α+ λ| for each eigenvalue λ of L.

9.2.2 Lemma. Let X be a digraph such that L(X) is normal. Let

f(λ) = |λ|2

2 Re(λ)

and let θ 6= 0 be the eigenvalue of L(X) which maximizes f amongst non-zero eigenvalues of L(X).
Let

g(λ) = Re(λ)(f(θ)− f(λ))
Re(θ)− Re(λ)

and let µ be the eigenvalue of L(X) which minimizes g such that g(µ) ≥ 0, if such an eigenvalue
exists in the domain of g, and µ = 0 otherwise. Let L̃ = αI + L(X), where α ≤ −f(θ). Then |α|
is the largest singular value of L̃. Further,

(a) if X is connected and Re(λ) ≥ Re(θ) for all λ /∈ {0, θ}, then |α + θ| is the second largest
singular value of L̃; and
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(b) if X is connected and −f(θ)− g(µ) ≤ α, then |α+ θ| is the second largest singular value of
L̃.

Proof. Note that f is well-defined for non-zero eigenvalues λ of L, since Re(λ) > 0 by Lemma 9.1.2.
Observe also that f is positive real-valued and α ∈ R. The function g is well-defined for λ when
Re(λ) 6= Re(θ). If there exists an eigenvalue λ /∈ {0, θ}, such that Re(λ) < Re(θ), then, we can
see that g(λ) ≥ 0, and so µ is non-zero. Also, the range for α in part (b), [−f(θ)− g(µ),−f(θ)],
is non-empty.

Since 0 is an eigenvalue of L, Lemma 9.2.1 gives that |α| is a singular value of L̃. The singular
values of L̃ are of form |α+ λ| where λ is an eigenvalue of L. Let λ be a non-zero eigenvalue of L.
Consider

|α|2 − |α+ λ|2 = α2 − (α+ λ)(α+ λ)

= α2 − (α+ λ)(α+ λ)

= α2 − (α2 + α(λ+ λ) + |λ|2)

= −α(λ+ λ)− |λ|2

= −2αRe(λ)− |λ|2.

(9.2)

By definition of α, we have that

−α ≥ f(θ) ≥ f(λ) = |λ|2

2 Re(λ) (9.3)

for all nonzero λ ∈ σ(L). From (9.2) and (9.3), we obtain:

|α|2 − |α+ λ|2 = −2αRe(λ)− |λ|2 ≥ 0

and we have shown the first part of the statement.
For statements (a) and (b), let δ be as follows:

δ(λ) := |α+ θ|2 − |α+ λ|2.

Since X is connected, L has only one eigenvalue whose real part is equal to 0 by Lemma 9.1.2. It
suffices to show that δ(λ) ≥ 0 for all nonzero λ ∈ σ(L). We expand δ(λ) as follows:

δ(λ) = |α+ θ|2 − |α+ λ|2

= α2 + α(θ + θ) + |θ|2 − (α2 + α(λ+ λ) + |λ|2)

= |θ|2 − |λ|2 + 2α(Re(θ)− Re(λ)).
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If Re(θ) = Re(λ), then δ(λ) = |θ|2 − |λ|2. In this case,

f(θ) = |θ|2

2 Re(θ) = |θ|2

2 Re(λ) ≥ f(λ) = |λ|2

2 Re(λ)

and, since Re(λ) and Re(θ) are positive, |θ|2 ≥ |λ|2 and δ(λ) ≥ 0.
If Re(θ) < Re(λ), then we may consider

δ(λ) = |θ|2 − |λ|2 − 2α(Re(λ)− Re(θ)).

Since (Re(λ)− Re(θ)) > 0 and −α ≥ f(θ) ≥ 0, we may simplify as follows:

δ(λ) ≥ |θ|2 − |λ|2 + 2f(θ)(Re(λ)− Re(θ))

= |θ|2 − |λ|2 + |θ|2

Re(θ)(Re(λ)− Re(θ))

= |θ|2 − |λ|2 − |θ|2 + |θ|
2 Re(λ)
Re(θ)

= −|λ|2 + |θ|
2 Re(λ)
Re(θ)

= Re(λ)
(
− |λ|

2

Re(λ) + |θ|2

Re(θ)

)
= 2 Re(λ)(f(θ)− f(λ))

≥ 0.

We have shown part (a) and also part (b) when Re(λ) ≥ Re(θ).
For part (b), we need only consider eigenvalues λ such that Re(θ) > Re(λ). In this case, we

will use that
g(λ) ≥ g(µ) ≥ 0.

Then

δ(λ) = |θ|2 − |λ|2 + 2α(Re(θ)− Re(λ))

≥ |θ|2 − |λ|2 + (−2f(θ)− 2g(µ))(Re(θ)− Re(λ))

= |θ|2 − |λ|2 − |θ|2 + 2f(θ) Re(λ)− 2g(µ)(Re(θ)− Re(λ))
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Since Re(θ)− Re(λ) > 0 and −2g(µ) ≥ −2g(λ), we obtain

δ(λ) ≥ −|λ|2 + 2f(θ) Re(λ)− 2g(λ)(Re(θ)− Re(λ))

= −|λ|2 + 2f(θ) Re(λ)− 2 Re(λ)(f(θ)− f(λ))

= −|λ|2 + 2 Re(λ)f(λ)

= 0

and we obtain that δ(λ) ≥ 0, as required.

It is worth observing that if we take α = −f(θ), then

|α+ θ|2 = α2 + α2 Re(θ) + |θ|2 = |α|2.

9.2.3 Theorem. Let X be a connected digraph on n vertices where L := L(X) is normal. Let f ,
g, θ and µ be as defined in Lemma 9.2.2. Also, let ν 6= 0 be the eigenvalue of L which minimizes
f amongst non-zero eigenvalues of L. Let Y and Z be disjoint vertex sets in X with no arcs from
Z to Y . Then,

|Y ||Z|
(n− |Y |)(n− |Z|) ≤

|α+ θ|2

α2 ,

where α =

−f(θ)− f(ν), if Re(λ) ≥ Re(θ) for all λ /∈ {0, θ};

−f(θ)− g(µ), otherwise.

Proof. Let α = −f(θ) − g(µ) and let L̃ = αI + L. In L and L̃, there is an off-diagonal block
of 0s, where the rows are indexed by Z and columns are indexed by Y . This follows directly from
hypothesis that there are no arcs from Z to Y . We wish to use interlacing to bound the size of
such an off-diagonal block of 0s. Let

C =
(

0 αI + L

αI + LT 0

)
=
(

0 L̃

L̃T 0

)
.

Note that we use 0 in matrices to represent the zero matrix of the appropriate dimensions and hence
will omit subscripts. We see that C is symmetric and the eigenvalues of C are

{±σ : σ a singular value of L̃}.

Using Lemma 9.2.1, we can write the eigenvalues of C as

{±|α+ λ| : λ eigenvalue value of L}.

By Lemma 9.2.2, we see that |α| is the biggest eigenvalue of C and |α + θ| is the second largest
eigenvalue of C.
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Since X is eulerian, each row and column of L sums to 0 and so each row and column of L̃
sum to α. We may partition the rows of L̃ into rows indexed by {Z, V (X) \ Z} and the columns
of L̃ into columns indexed by {V (X) \ Y, Y }. Then,

L̃ =
(
L̃11 0
L̃21 L̃22

)
.

This partition of L̃ induces a partition of C where all diagonal blocks are square;

A =


0 0 L̃11 0
0 0 L̃21 L̃22

L̃T11 L̃T21 0 0
0 L̃T22 0 0

 .

We let B be the quotient matrix of C with respect to this partition. Recall from Theorem 4.2.3
that the entries of B are the average row sums of the corresponding blocks of C. We will index
the rows and columns of B with [4], for convenience. Since the row and column sums of L̃ are all
equal to α, we see that each row and column sum of L̃11 and of the matrix

(
L̃21 L̃22

)
is equal to

α. Then B(1, 3) = B(4, 2) = α and

B(2, 3) +B(2, 4) = B(3, 1) +B(3, 2) = α.

Observe that L̃22 is a n− z× y matrix, where the lower y× y submatrix is a principal submatrix
of L̃. For S, T ⊆ V (X), let E(S, T ) denote the set of edges e such that t(e) ∈ S and h(e) ∈ T .
Let W = V (X) \ (Y ∪ Z). We will find B(2, 4) by taking the sum over all of the entries of L̃22 as
follows:

(n− 2)B(2, 4) =
n∑
j=1

n∑
`=1

L̃22(j, `)

= yα+
∑
y inY

d+(y)− |E(Y, Y )| − |E(W,Y )|.
(9.4)

Since there are not arcs from Z to Y , we have that

|E(Y, Y )|+ |E(W,Y )| = |E(V (X), Y )| =
∑
y∈Y

d−(y). (9.5)

Since X is eulerian, we see that
∑
y∈Y d

−(y) =
∑
y∈Y d

+(y). Then, from (9.4) and (9.5), we obtain
that B(2, 4) = yα

n−z , which implies that B(2, 3) = α − yα
n−z . By an analoguous argument, we find
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that B(3, 1) = zα
n−y and B(3, 2) = α− zα

n−y . Thus we have

B =


0 0 α 0
0 0 α− yα

n−z
yα
n−z

zα
n−y α− zα

n−y 0 0
0 α 0 0

 .

Since B is the quotient of a symmetric matrix, we see from the proof of Theorem 4.2.3 that B
is similar to a symmetric matrix. Thus we may let the real eigenvalues of B be µ1 ≥ µ2 ≥ µ3 ≥ µ4.
Let λ1 ≥ λ2 ≥ · · · ≥ λ2n−1 ≥ λ2n be the eigenvalues of C. Observe that C is similar to −C and
B is similar to −B by construction of C. Then, we have that

µ4 = −µ1, µ3 = −µ2, λ2n = −λ1 and λ2n−1 = −λ2.

Applying the interlacing theorem gives

λ1 ≥ µ1, λ2 ≥ µ2 and µ3 ≥ λ2n−1, µ4 ≥ λ2n.

Recall that (λ1, λ2) = (|α|, |α+ θ|). Then

µ1µ2µ3µ4 = (−1)2(µ1µ2)2 ≤ (λ1λ2)2 = (|α||α+ θ|)2 . (9.6)

On the other hand, we see that

µ1µ2µ3µ4 = det(B) = α2y

n− z
α2z

n− y
. (9.7)

From (9.6) and (9.7), we obtain that

α2y

n− z
α2z

n− y
≤ (|α||α+ θ|)2

which simplifies to
y

n− z
z

n− y
≤ |α+ θ|2

α2

as claimed.

Using Theorem 9.2.3, we can find a bound on the maximum acyclic subdigraph of a digraph
whose A-Laplacian is normal.

9.2.4 Theorem. Let X be a connected digraph on n vertices such L := L(X) is normal. Let α be
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as in Theorem 9.2.3. If X has an induced acyclic subdigraph of order s, then

s ≤ 2n
1 + |α|

|α+θ|

+ 1.

Proof. Let S be an induced acyclic subdigraph of X of order s. Since S is acyclic, there is an
ordering, (v1, . . . , vs), of the vertices of S such that vj has no neighbours amongst {vi : i ≤ j}.
Then, any partition of the vertices of S into

Y = {v1, . . . , vj} and Z = {vj+1, . . . , vs}

will have the property that there are no arcs from Z to Y . Then, for any y, z ≥ 0 such that
y + z = s, we can find Y and Z such that |Y | = y, |Z| = z and there are no arcs in X from Z to
Y . In particular, we will consider y =

⌊
s
2
⌋
and z =

⌈
s
2
⌉
. Let α = −f(θ) − g(µ) where θ, µ, f(θ)

and f(µ) are as in the statement of the theorem. We may apply Theorem 9.2.3 to obtain that

yz

(n− y)(n− z) ≤
( |α+ θ|
|α|

)2
.

Observe that y ≤ z and that 1
n−y ≤

1
n−z . Then

y2

(n− y)2 ≤
( |α+ θ|
|α|

)2

and so we see that
y

(n− y) ≤
|α+ θ|
|α|

.

We simplify this expression to obtain a bound on y as follows:

y

(n− y) ≤
|α+ θ|
|α|

y ≤ (n− y) |α+ θ|
|α|

y + y

( |α+ θ|
|α|

)
≤ n |α+ θ|

|α|

y

( |α+ θ|+ |α|
|α|

)
≤ n |α+ θ|

|α|

y ≤ n

1 + |α|
|α+θ|

.

Recall that y =
⌊
s
2
⌋
≥ s−1

2 and
s− 1

2 ≤ y ≤ n

1 + |α|
|α+θ|
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which gives that
s ≤ 2n

1 + |α|
|α+θ|

+ 1.

Note that if |S| is even, then the 1 on the right hand side can be omitted.

9.3 Corollaries

If X is a graph, then the A-Laplacian is the usual Laplacian matrix of a graph. In this case, the
A-Laplacian is symmetric and hence normal and so all eigenvalues are real and non-negative. Thus,
for λ an eigenvalue of L(X), we see that

f(λ) = g(λ) = λ/2.

Then, we can recover the original theorem of Haemers [32, Lemma 6.1] for graphs as a corollary of
Theorem 9.2.3, which is the following.

9.3.1 Corollary ([32]). Let X be a connected graph on n vertices and let Y and Z be disjoint
vertex sets in X with no arcs from Z to Y . Then,

|Y ||Z|
(n− |Y |)(n− |Z|) ≤

(σn − σ2)2

(σn + σ2)2

where 0 = σ1 < σ2 ≤ · · · ≤ σn are the Laplacian eigenvalues of X.

A tournament has normal adjacency matrix if and only if it is regular (see [20]). Then, the
A-Laplacian matrices of regular tournaments are normal matrices. Let X be a regular tournament
on n vertices. In this case, all of the non-zero eigenvalues have real part equal to n

2 . We see that

f(λ) = |λ|
2

2n2
= |λ|

2

n
.

Then, α = − |θ|
2

n −
|ν|2
n , where θ and ν are the largest and smallest eigenvalues of L(X) in magnitude.

Theorem 9.2.4 gives the following corollary.

9.3.2 Corollary. Let X be a connected, regular tournament on n vertices with an acyclic subgraph
of order m, then

m ≤ 2n
1 + |α|

|α+θ|

+ 1

where α = − |θ|
2

n −
|ν|2
n where θ and ν are the largest and smallest eigenvalues of L(X) in magnitude.
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9.4 Examples of digraphs with normal Laplacian matrices

We observe that, if the digraph is regular, then the Laplacian matrix is normal if and only if the
adjacency matrix is normal. We say that a digraph is normal if it has a normal Laplacian matrix
and a normal adjacency matrix.

9.4.1 Theorem. Every Cayley digraph on an abelian group is normal.

Proof. Consider a Cayley digraph X = Cay(G,C) where G is abelian and let A be the adjacency
matrix of X. Since X is regular, we need only check that A is normal. Then

(ATA)u,v = |{w : wu and wv are arcs of X}|

and
(AAT )u,v = |{y : uy and vy are arcs of X}|.

Let u, v be vertices of X and suppose they have a common in-neighbour w. Then for some
a1 6= a2 ∈ C, we have

u = a1w and v = a2w.

It is clear that a2u is an out-neighbour of u and a1v is an out-neighbour of v. In addition,

a2u = a2a1w = a1a2w = a1v

and so a2u is a common out-neighbour of u and v. Conversely, following the same argument, given
a common out-neighbour of u and v, we may construct a common in-neighbour of u and v. Then

(ATA)u,v = (AAT )u,v

and so A is a normal matrix.

In general, the adjacency matrix being normal does not have to coincide with the Laplacian
matrix being normal. We present some data on all digraph on 4,5 and 6 vertices. Note that if X
has a normal adjacency matrix or a normal Laplacian, it must be eulerian.
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Table 9.1: Small digraphs with normal Laplacian and adjacency matrices.

4 vertices 5 vertices 6 vertices
number of digraphs 218 9608 1540944
eulerian 17 107 2269
regular 5 10 52
normal Laplacian 14 43 194
normal adjacency matrix 14 45 212
normal 14 43 190
connected and eulerian 12 90 2162
undirected 10 31 43
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Chapter 10

Simple eigenvalues of cubic
vertex-transitive graphs

In this chapter, we turn our attention to simple eigenvalues of cubic vertex-transitive graphs. Cubic
vertex-transitive graphs have been studied in [52, 51] and a census of all such graphs with order at
most 1280 vertices is maintained by Potočnik, Spiga and Verret in [50].

10.1 Cubic vertex-transitive graphs having 1 and −1 as simple eigen-
values

A cubic graph X has largest eigenvalue 3, which is simple if and only if X is connected. It is well-
known that if −3 is also an eigenvalue of X and X is connected, then −3 is a simple eigenvalue
and X is bipartite; see [5] for example. By Theorem 3.2.4, the only possible simple eigenvalues of
a cubic vertex-transitive graph besides ±3 are ±1.

We will index rows and columns of the adjacency matrix A = A(X) of X by vertices of X. We
will use function notation where A(x, y) denotes the (x, y)-entry of A. For v a vector indexed by
the vertices of X and a vertex x of X, we write v(x) for the entry of v corresponding to x.

A bipartite graph with bipartite (B,C) is said to besemi-regular if every vertex in B has degree
b and every vertex in C has degree c. Recall from Chapter 4 that a partition {V1, . . . , Vm} of
the vertices of a graph X is equitable if the subgraph of X induced by each Vi is regular and the
bipartite subgraph of X induced by the edges from Vi to Vj is semi-regular, for each pair i, j such
that i 6= j. If that is the case, then we define the m ×m quotient matrix B = [bi,j ]mi,j=1 whose
entries bij are number of neighbours of any vertex in Vi in Vj .

10.1.1 Theorem. If a cubic vertex-transitive graph X has both 1 and −1 as simple eigenvalues,
then X is bipartite.
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Proof. Let v and u be the ±1 eigenvectors for eigenvalues 1 and −1, respectively. Let

V + = {x ∈ V (X) | v(x) = 1},

V − = {x ∈ V (X) | v(x) = −1},

U+ = {x ∈ V (X) | u(x) = 1}

and
U− = {x ∈ V (X) | u(x) = −1}.

For any automorphism P in Aut(X), we have that P must either fix both V + and V − or interchange
them as sets. Similarly, P either fixes both U+ and U− or interchanges them. By using (3.1), we
see that V + and V − each induce a 2-regular subgraph of X and U+ and U− each induce a 1-regular
subgraph of X.

Let W++ = V + ∩U+, W+− = V + ∩U−, W−+ = V − ∩U+ and W−− = V − ∩U−. Consider
the subgraph Y induced by the vertices inW++. SinceW++ ⊆ U+, each vertex ofW++ has degree
0 or 1 in Y . Since X is vertex-transitive, the automorphism group of X must also act transitively
on Y . Then Y is either 1-regular (an induced matching) or an independent set of vertices. The
same conclusion applies to W+−, W−+, and W−−.

If Y is 1-regular, then we find the quotient matrix of the partition of V (X) induced by
W++,W+−,W−+,W−− to be

B =


1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1


and this partition is equitable and, by the interlacing theorem (see [10, Theorem 2.5.1], for example),
the eigenvalues of B are a sub-multiset of the eigenvalues of A. The matrix B has eigenvalue 1
with multiplicity 2 and so A(X) also has eigenvalue 1 with multiplicity at least 2. This contradicts
the assumption that 1 is a simple eigenvalue of X.

Therefore, it must be that W++ is an independent set. In this case, by vertex transitivity, the
same holds for W+−,W−+ and W−−. This implies that each vertex in W++ has two neighbours
in W+−, one neighbour in W−+, and no neighbours in W++ ∪W−−. In particular, the partition
of V (X) into sets W++ ∪W−− and W+− ∪W−+ is a bipartition of the graph X.

10.2 Combinatorial structure

We now consider a cubic vertex-transitive graph X that has λ = 1 as a simple eigenvalue with
eigenvector v whose entries are in {1,−1}. We define vertex sets V + and V − as in the previous
section.
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For W ⊆ V (X), we use X[W ] to denote the subgraph of X induced by W . Let M denote the
set of edges between V + and V −; that is

M = {e ∈ E(X) | e = xy for x ∈ V + and y ∈ V −}.

10.2.1 Lemma. For (V +, V −) as defined above, the following are true:

(i) X[V +] is the disjoint union of cycles of the same length;

(ii) X[V +] is isomorphic to X[V −] and V + and V − are blocks of imprimitivity of the action of
Aut(X);

(iii) (V +, V −) is the unique partition of V (X), such that both parts induce 2-regular graphs;

(iv) M is a perfect matching of X; and

(v) Aut(X) acts arc-transitively on M and fixes M set-wise.

Proof. For every vertex x in V +, we have that

∑
y∼x

vy = vx = 1.

Since vy for all y neighbours of x are either 1 or −1, it follows that x is adjacent to two vertices
in V + and one vertex in V −. This implies that M is a perfect matching of X and X[V +] is a
2-regular graph.

Any partition of V (X) into sets (V1, V2) such that the induced graphs X[V1] and X[V2] are
2-regular gives rise to an eigenvector for X with eigenvalue 1, by taking the vector u defined as
follows:

u(v) =

1, if v ∈ V1;

−1, if v ∈ V2.

Since 1 is a simple eigenvalue of X, it follows that {V −, V +} is the only such partition. Then every
automorphism of X must fix V + and V − or must swap V + and V − set-wise. This shows (v).
Observe that there is an automorphism of X taking a vertex of V + to a vertex in V −. Such an
automorphism must take every vertex in V + to a vertex in V − and every vertex in V − to a vertex
in V + and so is an isomorphism from X[V +] to X[V −]. This shows that (ii) holds. Since Aut(X)
acts transitively on X, the induced action on V + is also transitive, so X[V +] is a vertex-transitive
2-regular graph. Then X[V +] must be a disjoint union of cycles of the same length.

We may reorder the vertices of X such that

A(X[V +]) = A(X[V −]).
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We may assume that each of X[V +] and X[V −] is the disjoint union of m cycles of length k. Let
the vertices of V + be vi,j where i = 1, . . . ,m and j = 1, . . . , k, such that {vi,1 . . . , vi,k} induce a
cycle Ci in X[V +] (and in X). Similarly, we may denote the vertices of V − as wi,j for i = 1, . . . ,m
and j = 1, . . . , k, such that {wi,1 . . . , wi,k} induce a cycle Di in X[V −].

Let η be the function such that η(i, j) = (r, s) when vi,j is adjacent to wr,s. Since M is a
perfect matching of X, we have that η is well-defined and induces a bijection from V + to V −. The
adjacency matrix of X can be partitioned into block matrices, according to V + and V − as follows:

A(X) =
(
B P

P T B

)
,

where B = A(X[V +]) and P is the permutation matrix corresponding to η.

10.3 Relation to regular maps

We recall some preliminary definitions from the area of graph embeddings. Further details may be
found in [46]. Let G be a connected multigraph. For each v ∈ V (G), let πv be a cyclic permutation
of the edges incident to v. Then Π = {πv | v ∈ V (G)} is said to be an embedding of G (on an
orientable surface) and it defines a collection of closed walks, called facial walks or faces, such that
each edge is traversed once in each direction by these walks. A triple (v, e, f) where v is a vertex of
G incident to edge e incident to face f is said to be a flag of (G,Π). An embedding is said to be
regular if Aut(G) acts transitively on the flags of (G,Π). If G is arc-transitive and there are two
orbits of flags of (G,Π) under the action of Aut(G), we say that (G,Π) is a half-regular map.

Let X be a cubic, vertex-transitive graph with 1 as a simple eigenvalue, as considered in Section
10.2. Let Ci and Di (i = 1, . . . ,m) be the cycles forming X[V +] and X[V −], respectively, as
observed at the end of Section 10.2. Let G be the multigraph obtained from X by contracting each
cycle Ci, Di to a single vertex. More precisely, G has a vertex ci for each cycle Ci of X and a vertex
di for each cycle Di of X. There is an edge joining ci and dr in G for each edge of X joining a
vertex in Ci to a vertex in Dr. We say that G is the contracted multigraph of X. Observe that G
is connected since X is.

10.3.1 Lemma. If G is the contracted multigraph of X, then Aut(X) ≤ Aut(G) and any vertex-
transitive subgroup of Aut(X) acts transitively on the arcs of G. In particular, G is arc-transitive
and bipartite.

Proof. Consider α ∈ Aut(X). If we take the contracted multigraph of α(X), we again obtain G.
Since the cycles Ci, Dj form blocks of imprimitivity under the action of Aut(X). Thus α acts on
G as an automorphism. so Aut(X) ≤ Aut(G). Let Γ ≤ Aut(X) act transitively on the vertices of
X. Then Γ acts arc-transitively on the edges of M , which are in one-to-one correspondence with
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the edges of G, and thus acts arc-transitively on G. Clearly every edge in G connects some ci to
some dj , so G is bipartite.

For a vertex ci, let the edges incident to ci be ei,1, . . . , ei,k, where ei,j is the unique edge of G
corresponding to the edge of M incident with vi,j . Similarly, for a vertex di, let the edges incident
to di be fi,1, . . . , fi,k, where fi,j is the unique edge of G corresponding to the edge of M incident
with wi,j . Let Π = {πv | v ∈ V (G)} be a rotation system satisfying the following: for each i,
the permutation πci satisfies πci(ei,j) ∈ {ei,j−1, ei,j+1} and πdi satisfies πdi(ei,j) ∈ {fi,j−1, fi,j+1}
where the indices are taken modulo k. Then we say that (G,Π) is a compatible embedding of G
with respect to X.

Note that since there are two choices for each of the permutations πv, there are 22m (possibly
non-isomorphic) embeddings of G that are compatible with the graph X.

Conversely, given an embedding (G,Π) where G is a connected multigraph with no loops and Π
is a rotation system, we may define a cubic graph ρ(G,Π), called the truncation of (G,Π), in the
following way. The graph ρ(G,Π) has vertices (v, e) for every v ∈ V (G) and every edge e incident
to v. In ρ(G,Π), every vertex (v, e) is adjacent to (v, πv(e)), to (v, π−1

v (e)), and to (w, e) where
w is the other endpoint of e. Every vertex has two neighbours with the same first coordinate and
one with the same second coordinate and ρ(G,Π) is cubic.

10.3.2 Lemma. Let X be a vertex-transitive, cubic, connected graph with 1 as a simple eigenvalue
and let G be the contracted multigraph of X. An embedding Π of F is compatible with X if and
only if ρ(G,Π) = X.

We will now consider the action of Aut(X) on a compatible embedding (G,Π). For a given
set Π of local rotations, it is possible that not every element of Aut(X) preserves the faces of
(G,Π). We will restrict our attention to automorphisms of X which preserve the faces of (G,Π).
Let Γ ≤ Aut(X). Note that Γ also acts on E(G) = M . We say that (G,Π) is compatible with Γ
if, for every v ∈ V (G) and e an edge incident to v, we have

α(πv(e)) = πα(v)(α(e))

for every α ∈ Γ.

10.3.3 Lemma. Let Γ ≤ Aut(X) be a subgroup acting transitively on the vertices of X. If (G,Π)
is compatible with Γ, then the flags of (G,Π) lie in at most two orbits under the action of Γ.

Proof. Consider a flag (v, e, f) of (G,Π) and α ∈ Γ which takes (v, e) to (v′, e′). Then, since α
preserves the faces of the embedding, α(f) is one of the two faces incident to v′ and e′. Since Γ
acts transitively on the arcs of G by Lemma 10.3.1, for any (v′, e′) where v′ is incident to e′, there
exists α ∈ Γ which maps (v, e) to (v′, e′). Then, the orbit of (v, e, f), say O, under the action of Γ
contains at least half of the flags of (G,Π). Since every orbit of flags has the same order, we have
that there are at most 2 orbits of the flags of (G,Π) under the action of Γ.
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We see that if there exists Γ ≤ Aut(X) and Π such that Γ acts vertex-transitively on X

and (G,Π) is compatible with (X,Γ), then (G,Π) is a regular map or a half-regular map. For
example, the cube, considered as a regular map on the sphere, is an embedding compatible with a
vertex-transitive, cubic graph that has 1 as a simple eigenvalue, by the result in Section 10.5.1

10.4 Adjacency matrix

For this section, let X be a cubic vertex-transitive graph with 1 as a simple eigenvalue. Let
A := A(X) and let P and B be defined as in Section 10.2. In general, we have Lemma A.6.1, but
in this specific case, we may do slightly better.

10.4.1 Lemma. If BkP = PBk for some 1 ≤ k ≤ m, then

(i) BP = PB if k is odd, and

(ii) B2P = PB2 if k is even.

Proof. We may write B = C + C−1 where C is a permutation matrix consisting of disjoint cycles
of the same order, say q. Let ei denote the ith elementary basis vector of RX , which has a 1 in the
position indexed by vertex i and zeros elsewhere. We have that

Cei = ei+1

where the indices are modulo q. Then

Bk = (C + C−1)k

=
k∑
j=0

(
k

j

)
Ck−j(C−1)j

=
k∑
j=0

(
k

j

)
Ck−2j

and

Bkei =
k∑
j=0

(
k

j

)
Ck−2jei =

k∑
j=0

(
k

j

)
ei+k−2j

where the indices are modulo q.
For v ∈ V (X), consider the coefficient of ev in Bkei. If v is not in the same component as i in

X with the matching deleted, then the coefficient of ev is 0. If v and i lie in the same component
of V + (or V −), the coefficient of ev is the sum of all

(k
j

)
for which k+ i− 2j = v mod q. If there

are no such j, the coefficient of ev is 0.
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Suppose ev and eu have the same nonzero coefficient in Bkei and u 6= v. Then

v = i+ k − 2j

and
u = i+ k − 2j′

for j 6= j′ such that (
k

j

)
=
(
k

j′

)
.

Then j′ = k− j. Then distinct vertices ev and eu have the same nonzero coefficient in Bkei if and
only if v = i+ k− 2j and u = i− k+ 2j for some j. Let φ denote the permutation represented by
permutation matrix P .

To prove the statement, suppose first that k is odd and let k = 2m+ 1. Then ei+1 = ei+k−2m

has coefficient
( k
m

)
6= 0 and ei−1 has the same coefficient in Bkei by above argument. Observe that

PBkei =
k∑
j=0

(
k

j

)
Pei+k−2j =

k∑
j=0

(
k

j

)
eφ(i+k−2j)

and

BkPei =
k∑
j=0

(
k

j

)
eφ(i)+k−2j .

Since PBkei = BkPei and the ei’s are pairwise orthogonal, we must have that the coefficient of
eφ(i±1) in PBkei is equal to the coefficient of eφ(i)±1 in BkPei, and distinct from the coefficient of
any other ej . Then, we have that

{φ(i− 1), φ(i+ 1)} = {φ(i)− 1, φ(i) + 1}.

This is true for any i, if we consider φ as a map from V + to V −, we see that φ sends every edge
of V + to an edge of V + and φ is bijective since there is a perfect matching between V + and V −.
Then P represents an automorphism of the graph with adjacency matrix B and so PB = BP .

Suppose k = 2m is even. We see that ei±2 = ei±k∓2(m−1) has coefficient
( k
m−1

)
6= 0 in Bkei.

By a similar argument as above, we obtain that

{φ(i) + 2, φ(i)− 2} = {φ(i+ 2), φ(i− 2)}.

Now
B2 = C2 + 2I + C−2.

94



Then,

PB2ei = P (ei+2 + 2ei + ei−2)

= eφ(i+2) + 2eφ(i) + eφ(i−2)

= 2eφ(i) + eφ(i)+2 + eφ(i)−2

= B2eφ(i)

= B2Pei

for all i and we have that B2P = PB2, which concludes the proof.

10.5 Families of graphs

10.5.1 Truncations of cubic arc-transitive graphs

The truncation of a graph G is a graph T (G) where every vertex v of G corresponds to a clique of
order deg(v) and every edge uv of G gives an edge of T (G) between the cliques corresponding to
u and to v, such that each vertex of T (G) is adjacent to exactly one vertex in a different clique. If
G is a cubic graph, the truncation of G is also cubic. The following theorem appears as Theorem
2.1 in [59].

10.5.1 Theorem. [59] If the eigenvalues of a cubic graph X are µ1, . . . , µn, the eigenvalues of the
truncation of X are

λi = 1±
√

4µi + 13
2

for i = 1, . . . , n and −2 and 0, each with multiplicity n
2 .

10.5.2 Theorem. The truncation of a cubic graph X has 1 as an eigenvalue if and only if X is
bipartite. Furthermore, if X is bipartite, then 1 is a simple eigenvalue of the truncation of X if and
only if X is connected.

Proof. We see from Theorem 10.5.1 that the eigenvalues of X which are equal to −3 are precisely
those which map to eigenvalues equal to 1 in the truncation of X. A cubic graph X has −3 as an
eigenvalue if and only if it is bipartite. The multiplicity of −3 as an eigenvalue of X (and hence of
1 as an eigenvalue of the truncation of X) is 1 if and only if X has exactly one component.

10.5.3 Corollary. If X is a connected vertex-transitive cubic graph containing a cycle of length 3,
then X has 1 as a simple eigenvalue if and only if X = T (G), where G is a connected, bipartite,
arc-transitive, cubic graph.

Proof. First we show that if X is vertex-transitive, contains a triangle and has 1 as a simple
eigenvalue, then X must be the truncation of a graph G. Since X has 1 as a simple eigenvalue, we
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may partition the vertices of X into cycles V + and V −, as in Lemma 10.2.1. Let v be vertex in V +.
We have that v is incident to a cycle of length 3, say T , in X. Since there is a matching between
V + and V −, the triangle T does not use any edge of the matching. Thus v must be incident to
a cycle of length 3 in the subgraph of X induced by V +. Since V + induces a vertex-transitive
2-regular subgraph of X by Lemma 10.2.1, X[V +] must be a disjoint union of cycles of length 3.
The same holds for X[V −]. Let G be obtained from X by contracting all the 3-cycles in X[V +]
and X[V −]. We see that G is cubic, since each vertex of X is incident to exactly 1 edge which is
not contracted to obtain G. By part (v) of Lemma 10.2.1, G is an arc-transitive bipartite graph, as
claimed.

By Theorem 10.5.2, the converse implication is clear.

10.5.2 Prisms

The prism of order 2n is the Cartesian product of Cn with K2. A prism is a cubic vertex-transitive
graph, which always has 1 as an eigenvalue, but not always as a simple eigenvalue. We can find
exactly which prisms have 1 as a simple eigenvalue.

10.5.4 Theorem. Let X, P and B defined as in Section 10.2, then BP = PB if and only if X is
the prism of order 2n, where n 6= 0 mod 4.

Proof. Suppose PB = BP . Let H+ and H− denote the subgraphs of X induced by V + and V −,
respectively. Note that H+ ∼= H− and A(H+) = A(H−) = B. Then P represents a permutation
φ of the vertices H+ which is a graph automorphism of H+. We will, however consider φ as an
isomorphism from H+ to H−.

First we will show that H+ is a cycle of length n. Suppose for a contradiction that it is not.
Observe that H+ and H− are 2-regular graphs and every automorphism of X must fix each of V +

and V − or swaps them. Then, H+ is vertex transitive since X is. If H+ is not a single cycle,
then H+ is the disjoint union of cycles of the same length. Let C+ be one of the cycles and x be
a vertex of C+. Consider φ(x). Let C− be the cycle of H− which contains φ(x). Since φ is an
isomorphism, φ maps connected components to connected components. Specifically, φ map C+ to
C−. Then, in X, all edges of the matching with one end in C+ has the other end in C−. Since X
is cubic, the vertices of C+ and C− induce a connected component of X. Since X is connected, it
follows that C+ = H+, thus showing that H+ is a cycle of length n.

Let Y = Cn�K2. We will show that X is isomorphic to Y by giving an explicit isomorphism.
Let the vertices of Cn be {c1, . . . , cn} and let the vertices of K2 be {1, 2}. We will write the vertices
of X as

V + ∪ {φ(v) | v ∈ V +}
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where V + = {v1, . . . , vn}. Define a map ψ from vertices of X to vertices of Y as follows:

ψ(vi) = (ci, 1) and ψ(φ(vi)) = (ci, 2)

for each vi ∈ V +. Clearly ψ is bijective. For an edge vivi+1 of X, we see that ψ(vi) = (ci, 1) and
ψ(vi+1) = (ci+1, 1). Then ψ(vi)ψ(vi+1) is an edge of Y . Similarly, an edge φ(vi)φ(vi+1) of X, we
see that ψ(φ(vi)) = (ci, 2) and ψ(φ(vi+1)) = (ci+1, 2). Then ψ(φ(vi))ψ(φ(vi+1)) is an edge of Y .
For the edge viφ(vi, we see ψ(vi) = (ci, 1) and ψ(φ(vi)) = (ci, 2). Then ψ(vi)ψ(φ(vi)) is an edge
of Y . Then, ψ is an isomorphism as required.

For the other implication, we must check that if n 6= 0 mod 4, then Y has 1 as a simple
eigenvalue and we can write the adjacency matrix of Y as

A =
(
B P

P T B

)

where PB = BP and P is a permutation matrix.
Consider the spectrum of Y = Cn�K2 (the prism of order 2n) for any even n. From [10] or

any other standard text in spectral graph theory, we obtain that the eigenvalues of Y are θ± 1, for
each θ eigenvalue of Cn

2
. Then the eigenvalues of Y are

2 cos
(2πj

`

)
± 1

for j = 0, . . . , `− 1 and ` = n
2 . Note that

2 cos
(2πj

`

)
− 1 = 2− 1 = 1

when j = 0, so Y has 1 as an eigenvalues with multiplicity at least 1. The multiplicity of 1 as an
eigenvalue is simple if and only if 0 + 1 is not also an eigenvalue, which is to say, if and only if 0 is
not an eigenvalue of Cn. We may see that Cn has 0 as an eigenvalue if and only if n is divisible by
4. Then Y has 1 as a simple eigenvalue if and only if n is not divisible by 4.

Suppose Y = Cn
2
�K2 where n is even but not divisible by 8. Then Y has 1 as a simple

eigenvalue and we see that the function f such that

f((ci, 1)) = 1 and f((ci, 2)) = −1

is an eigenvector with eigenvalue 1. Partition Y into V + = {(ci, 1)} and V − = {(ci, 2)} with
respect to f . We may write the adjacency matrix as

A =
(
B P

P T B

)
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where P is the permutation taking (ci, 1) to (ci, 2). Then P commutes with B as required.

10.5.5 Corollary. A prism of order 2n has 1 as simple eigenvalue if and only if n 6= 0 mod 4.

10.5.3 Generalized Petersen graphs

We would like to classify which generalized Petersen graphs have 1 as a simple eigenvalue. This
turns out to be a difficult task. We record a partial progress here.

The generalized Petersen graph, denoted P (n, k) is the graph with vertex set U ∪ V where

U = {uj}n−1
j=0 and V = {vj}n−1

j=0

and edges
ujvj , ujuj+1, vjvj+k

for every j, where the indices are modulo n. The well-known Petersen graph is P (5, 2). We have
the following theorem concerning vertex-transitivity.

10.5.6 Theorem ([25]). The generalized Petersen graph P (n, k) is vertex-transitive if and only if
(n, k) = (10, 2) or k2 ≡ ±1 mod n.

The following theorem gives the eigenvalues of P (n, k).

10.5.7 Theorem ([26]). The graph P (n, k) has eigenvalues δ for every root δ of

x2 − (αj + βj)x+ αjβj − 1 = 0 (10.1)

for j = 0, . . . , n− 1, where

αj = 2 cos(2πj
n ) and βj = 2 cos(2πjk

n ).

The eigenvalues of P (n, k) which are equal to 1 are solutions for Equation (10.1) where x = 1,
which we may simplify as:

αjβj = αj + βj .

We may let θ = 2πj
n and rewrite as:

2 cos θ cos kθ = cos θ + cos kθ. (10.2)

Observe that j = 0 gives a solution to this equation for any k. Hence, every generalized Petersen
graph has eigenvalue 1 with multiplicity at least one. From now on, we will only consider the case
where j 6= 0 and cos θ 6= 1. We know that cos(kθ) = Tk(cos θ) where Tk is the kth Chebyshev
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polynomial of the first kind. Then

2 cos θ Tk(cos θ) = cos θ + Tk(cos θ).

From this we see that cos θ is an algebraic number and, letting ψ(x) denote the minimal polynomial
of cos θ over Q, we see that ψ(x) divides 2xTk(x)− x− Tk(x). Let

f(x) = 2xTk(x)− x− Tk(x)
x− 1 .

Since Tk(1) = 1 for any k, we see that x− 1 is an irreducible factor of 2xTk(x)− x− Tk(x) and so
f(x) is a polynomial of degree k with coefficients over Q. Since ψ(x) is irreducible, ψ(x) divides
x− 1 or ψ(x) divides f(x). Since we are considering cos θ 6= 1, we may assume that ψ(x) divides
f(x).

10.5.8 Lemma. If cos θ is rational, then P (n, k) has 1 as an eigenvalue with multiplicity greater
than 1 if and only if n = 4m for some integer m and km ∈ {m, 3m} or 3km ∈ {m, 3m}, where
the arithmetic takes place over Zn.

Proof. We require that cos θ = cos kθ = 0 for some θ 6= 0. Suppose cos θ is rational. There is an
elementary result (see, for example, [36]) which gives that cos θ ∈ Q where θ is a rational multiple
of π if and only if cos θ ∈ {±1,±1

2 , 0}. We will now check these cases explicitly.
We have already considered the case when cos θ = 1. If cos θ = −1, Equation (10.2) gives that

cos kθ = 1
3 ∈ Q. Then kθ must be an irrational multiple of π, which contradicts that k is an integer.

Similarly, there are no solutions when cos θ = ±1
2 . If cos θ = 0, then Equation (10.2) gives that

cos kθ = 0. This can happen if and only if n = 4m for some m and {km, 3km} ∩ {m, 3m} 6= ∅,
over Zn.

Now we consider the case when cos θ is not rational. In this case, we find the degree of the
extension of the rationals by Q(cos θ). This can be found in an elementary text for algebraic number
theory, such as [40], but we include it here for completeness.

10.5.9 Lemma. The algebraic degree of cos(2πj
n ) over the rationals is φ(n′)

2 where φ denotes the
Euler totient function and n′ is such that j

n = j′

n′ and gcd(j′, n′) = 1.

Proof. Let θ = 2πj
n , as before, and let j′, n′ be such that j

n = j′

n′ and gcd(j′, n′) = 1. Let ζ = eiθ,
which is a primitive n′-th root of unity. Since Q(ζ) is the splitting field of a cyclotomic polynomial
we see that

[Q(ζ) : Q] = φ(n′).

We observe that
cos θ = ζ + ζ−1

2 ∈ Q(ζ).
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SinceQ(cos θ) is a real extension of the rationals whileQ(ζ) is not, we see that [Q(ζ) : Q(cos θ)] ≥ 2.
Further, we see that

(x− ζ)(x− ζ−1) = x2 − (ζ + ζ−1)x+ 1 = x2 − 2 cos θx+ 1

is a polynomial of degree 2 over Q(cos θ), which has ζ as a root. Hence [Q(ζ) : Q(cos θ)] ≤ 2.
We have obtained that [Q(ζ) : Q(cos θ)] = 2 and

[Q(ζ) : Q(cos θ)][Q(cos θ) : Q] = [Q(ζ) : Q] = φ(n′).

From this we see that
[Q(cos θ) : Q] = φ(n′)

2 ,

as claimed

If Equation (10.2) has a solution where θ 6= 0, then, for some q > 1 dividing n, we have that

φ(q)
2 < deg(f(x)) = k.

We have proven the following theorem.

10.5.10 Theorem. If the generalized Petersen graph P (n, k) has 1 as an eigenvalue of multiplicity
greater than one, then there exists q, a divisor of n, such that q > 1 and φ(q) ≤ 2k, where φ
denotes the Euler totient function.

Proof. Suppose the generalized Petersen graph P (n, k) has 1 as an eigenvalue of multiplicity
greater than one, then there exists j 6= 0 such that θ = 2πj

n satisfies Equation (10.2). If cos θ is
rational, then we have from Lemma 10.5.8 that n = 4m for some integer m and km ∈ {m, 3m} or
3km ∈ {m, 3m} over Zn. Then 2|n and φ(2) = 1. SInce k ≥ 1, we have that φ(2) < 2k.

If cos θ is not rational, then we see that its algebraic order over the rationals is equal to φ(n′)/2
where j

n = j′

n′ and gcd(j′, n′) = 1. Then n′|n and n′ > 1 and

φ(n′)
2 ≤ deg(f(x)) = k

as claimed.

This result gives a complete characterization when n is prime.

10.5.11 Corollary. If the generalized Petersen graph P (p, k), where p is an odd prime, is vertex-
transitive, then P (n, k) has 1 as a simple eigenvalue unless P (n, k) is isomorphic to the Petersen
graph.

Proof. Since the graphs P (n, k) and P (n, n−k) are isomorphic, we may assume that k ≤ p
2 . Since

p is an odd prime, we may assume that k ≤ p−1
2 . Theorem 10.5.10 gives the necessary condition
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for P (n, k) to have one as a non-simple eigenvalue. We consider when the condition in Theorem
10.5.10 may be satisfied. In this case, the only divisor of p not equal to 1 is p and φ(p) = p − 1
gives that p−1

2 ≤ k. Then it must be that k = p−1
2 . Since P (p, k) is vertex-transitive and p 6= 10,

we must have k2 ≡ ±1 mod p by Theorem 10.5.6. Suppose k2 ≡ 1 mod p. We obtain
(
p− 1

2

)2
≡ 1 mod p

p2 − 2p+ 1 ≡ 4 mod p

0 ≡ 3 mod p

and p = 3. In this case, we may check that P (3, 1) does in fact have 1 as a simple eigenvalue
and so is not an exception. We see that if P (p, k) has 1 as a non-simple eigenvalue then k2 ≡ −1
mod p. Then

(
p− 1

2

)2
≡ −1 mod p

p2 − 2p+ 1 ≡ −4 mod p

0 ≡ 5 mod p

and p = 5. In this case, we obtain that p = 5 and k = p−1
2 = 2 and so P (p, k) = P (5, 2) is

isomorphic to the Petersen graph, whose multiplicity of 1 as an eigenvalue is greater than 1.

10.5.4 Regular embeddings of Km,m

Let Tk be the graph defined in the following way. The vertices of Tm are {vi,j , wi,j | i, j ∈ Zm}.
The edges are

{vi,j , vi,j+1}, {wi,j , wi,j+1}, {vi,j , wj,i}

for all i, j ∈ Zm. It is easy to see that Tm is a cubic, vertex-transitive graph with 1 as an eigenvalue,
not necessarily simple, by considering the eigenvector that is +1 on every vertex vi,j and −1 on
every vertex wi,j .

Alternatively, we can construct Tk from the regular embedding of Kk.k, given by Nedela and
Skoviera in [48]. We considerKk,k as a Cayley graph on Z2k with the connection set {1, 3, 5, . . . , 2k−
1} as the generating set. The rotation system Π has vertex rotations at each vertex is given by the
cyclic permutation (1, 3, 5, . . . , 2k−1) of the generators. The graph Tk is isomorphic to ρ(Kk,k,Π).

Let B be the m2×m2 matrix such that B = Im⊗Cm, where Cm is the adjacency matrix of the
cycle of order m and Im is the m ×m identity matrix. Let P be the permutation matrix indexed
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by Zm × Zm such that P takes (i, j) to (j, i). The adjacency matrix of Tm can be written as

A := A(Tm) =
(
B I

I P TBP

)
.

Observe that P 2 = I and P = P T . By definition, we see that

P (ei ⊗ ej) = ej ⊗ ei

where ek denotes the kth elementary basis vector. Then for any m × 1 vectors v and w, we see
that

P (v⊗w) = w⊗ v.

10.5.12 Theorem. The eigenvalues of Tm are

cos 2πj
m

+ cos 2π`
m
±

√(
cos 2πj

m
+ cos 2π`

m

)2
+ 1

for all (j, `) ∈ Zm × Zm.

Proof. We use the proof methods used in [26] to find the eigenvalues of generalized Petersen graphs,
to find these eigenvalues. Let v,w be eigenvectors of Cm with eigenvalues λ and θ, respectively.
Then

B(v⊗w) = (Im ⊗ Cm)(v⊗w) = v⊗ θw = θ(v⊗w)

and
P TBP (v⊗w) = P T (Im ⊗ Cm)(w⊗ v) = P (λv⊗ θw) = λ(v⊗w).

Let V be an eigenbasis for Cm in Rm. Then the basis

W = {v⊗w | v,w ∈ V }

of Rm2 simultaneously diagonalizes B and P TBP . We construct an eigenbasis U of A over R2m2

such that the elements of U are (
αv⊗w
v⊗w

)

where v,w ∈ V with eigenvalues λ and θ, respectively and α = δ − θ for each δ a solution to

δ2 − (θ + λ)δ + θλ− 1 = 0. (10.3)

Observe that since (
θ + λ

2

)2
= θ2 + λ2

2 + θλ > θλ− 1
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for any λ, θ ∈ R, Equation (10.3) always has two distinct solutions for δ. The U consists of 2m2

linearly independent vectors in R2m2 . We now verify that each element of U is an eigenvector of A
by observing

A

(
αv⊗w
v⊗w

)
=
(
B I

I P TBP

)(
αv⊗w
v⊗w

)

=
(
αθv⊗w + v⊗w
αv⊗w + λv⊗w

)

=
(

(αθ + 1)v⊗w
(α+ λ)v⊗w

)
.

But α has been carefully chosen such that α+ θ = δ and αλ+ 1 = δα, so

A

(
αv⊗w
v⊗w

)
= δ

(
αv⊗w
v⊗w

)
.

Then U is an eigenbasis for A, as claimed, and the eigenvalues of A are the solution for δ in Equation
(10.3) where θ and λ range over the eigenvalues of Ck. We use the quadratic formula to see that

δ = θ + λ±
√

(θ + λ)2 − 4(θλ− 1)
2

= θ + λ±
√

(θ − λ)2 + 4
2 .

The eigenvalues of Cm can be found in a standard reference in algebraic graph theory such as [10]
and are

2 cos 2πj
m

for j ∈ Zm. Then, for j, ` ∈ Zm,

δ =
2 cos 2πj

m + 2 cos 2π`
m ±

√(
2 cos 2π`

m − 2 cos 2πj
m

)2
+ 4

2 .

= cos 2πj
m

+ cos 2π`
m
±

√(
cos 2π`

m
− cos 2πj

m

)2
+ 1

which concludes the proof.

It is difficult to determine how many eigenvalues of Tm are equal to 1, but we may find two
cases where 1 is not a simple eigenvalue of Tm.

10.5.13 Proposition. The multiplicity of 1 as an eigenvalue of T4k is at least 5 for any k ≥ 1. The
multiplicity of 1 as an eigenvalue of T5k is at least 9 for any k ≥ 1.
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Proof. We see that 1 appears as an eigenvalue of Tm for every solution (j, ell) to Equation (10.3)
where δ = 1, θ = 2 cos 2πj

m and λ = 2 cos 2π`
m , where j, ` ∈ {0, . . .m− 1}. We can simplify this as:

cos 2πj
m

+ cos 2π`
m

= 2 cos 2πj
m

cos 2π`
m

. (10.4)

Observe that (j, `) = (0, 0) is always a solution to (10.4). We find additional solutions to 10.4 when
m is divisible by 4 and when m is divisible by 5.

Note that
cos

(
2π1

4

)
= cos

(
2π3

4

)
= 0.

Then, if m = 4k for some k, then

(j, `) ∈ {(k, k), (k, 3k), (3k, k), (3k, 3k)}

are all solutions to Equation10.4. Then, together with (j, `) = (0, 0), there are at least 5 distinct
solutions to Equation 10.4, so the multiplicity of 1 as an eigenvalue of T4k is at least 5.

Similarly, if m = 5k for some k, we note that

cos
(2π

5

)
= −1 +

√
5

4 and cos
(4π

5

)
= −1−

√
5

4

and we see that
cos

(2π
5

)
+ cos

(4π
5

)
= −1 +

√
5

4 + −1−
√

5
4 = −1

2
and

cos
(2π

5

)
cos

(4π
5

)
=

(
−1 +

√
5
) (
−1−

√
5
)

4 = (−1)2 − 5
4 = −1

2 .

Then, let A = {k, 4k} and B = {2k, 3k}. For every choice of j ∈ A and ` ∈ B, we obtain distinct
solution (j, `) to Equation (10.4). Then the multipliticity of 1 is at least 8 + 1 = 9.
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Chapter 11

Open problems and future work

There are many open problems concerning the spectra of digraphs. One of the motivating questions
for this thesis, was the search for a spectral bound for digraph chromatic number. A proper k-
colouring of a digraph X is a partition of its vertices into k sets, each of which induced an acyclic
subdigraph of X. The chromatic number of digraph X is the least k for which X admits a proper k-
colouring. A bound analogous to Hoffman’s bound in the undirected case would be a very interesting
new result.

One of the difficulties of working with the adjacency matrix of digraphs is that there is no
analogue of the eigenvalue interlacing theorem. For a differentiable complex-valued function f , the
Gauss-Lucas theorem gives that the roots of f ′ lie in the convex hull of the roots of f . For a
vertex-transitive digraph X, we have that φ(A(X − v), t) is a scalar multiple of φ(A(X), t), for any
choice of vertex v. The Gauss-Lucas theorem would give that the A-eigenvalues of X − v lie in the
convex hull of the A-eigenvalues of X. This is, however, not a very good bound and also cannot,
in general, be applied iteratively, as X − v is not vertex-transitive unless X is complete. Finding
a true analogue to the interlacing theorem would give a great tool for working with the adjacency
matrix of digraphs.

In this dissertation, we study a Hermitian adjacency matrix with entries {0, 1,±i}. It is also
reasonable to ask about other matrices respecting adjacency which are Hermitian, but with different
entries. In particular, for a digraph X, the matrices H ′(X) and H ′′(X) are also matrices respecting
the adjacency of X, where

H ′(X)uv =



1 if uv and vu ∈ E;
1+i√

2 if uv ∈ E and vu /∈ E;
1−i√

2 if uv /∈ E and vu ∈ E;

0 otherwise,
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and

H ′′(X)uv =



1 if uv and vu ∈ E;

e
iπ
3 if uv ∈ E and vu /∈ E;

e
−iπ

3 if uv /∈ E and vu ∈ E;

0 otherwise.

In Section 6.10, we find all digraphs with all H-eigenvalues strictly between −
√

3 and
√

3. It is
plausible that a classification can also be found for all digraphs with all H-eigenvalues between −2
and 2. In general, which digraphs have all H-eigenvalues in the range (−α, α)? In Section 6.10,
we also ask for which values of α there are only finitely many weakly connected digraphs whose
H-spectrum is contained in (−α, α).

In Section 8.9, we look at digraphs where the spectral radius is significantly larger that the largest
eigenvalue. We give a family of digraphs {Xn}∞n=1 such that ρ(H(Xn)) − λ1(H(Xn)) → ∞ as
n→∞. For this family, we also have that ρ(H(Xn)) and λ1(H(Xn)) both approach∞ as n→∞.
We can ask if there exists a family of digraphs where ρ grows much faster that λ1; for example, if
it is possible to construct a family of digraphs such that λ1(H) is constant and ρ(H) → ∞ and
n→∞.

Intuitively, a digraph X having a large number of simple eigenvalues, with respect to any matrix
respecting adjacency, tends to have few symmetries. We could ask if there is a characterization
of the digraphs with all eigenvalues simple (with respect to some diagonalizable matrix respecting
adjacency) which are also arc-transitive. For the adjacency matrix, the even directed cycles provide
examples of such digraphs. For the Hermitian adjacency matrix, the odd directed cycles provide
examples of such digraphs.
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Appendix A

Linear algebra

A.1 Definitions
In this section, we give basic linear algebra definitions and concepts. See [34] for a standard reference
text.

Let A be a n× n matrix. If v is a non-zero vector such that

(A− λI)kv = 0

for some k and some scalar λ, then v is said to be a root vector of A with eigenvalue λ. The index
of v as a root vector of A is the least integer k such that (A − λI)kv = 0. If v is a root vector
with index 1, then v is said to be an eigenvector of A. Equivalently, v is an eigenvector of A with
eigenvalue λ if Av = λv.

Fix λ. We wish to consider eigenvectors of A with eigenvalue λ; this is equivalent to asking for
solutions to the equation

(A− λI)v = 0.

Observe that the equation has a solution if and only if |A − λI| = 0. Then, the eigenvalues of A
are roots of p(λ) = |λI −A|, which is said to be the characteristic polynomial of A. The converse
is also true; if λ is a root of the characteristic polynomial of A, then there is an eigenvector of A
with eigenvalue λ.
A.1.1 Theorem. Eigenvectors corresponding to different eigenvalues are linearly independent.
A.1.2 Theorem. Let A and B be n× n matrices. The characteristic polynomials of AB and BA
coincide.
A.1.3 Corollary. Let A and B be m × n matrices. The characteristic polynomials of ABT and
BTA differ by a factor of λn−m.

We use φ(A, t) to denote the characteristic polynomial of A in variable t and σ(A) to denote
the multiset of roots φ(A, t). The multiset σ(A) are said to be the eigenvalues of A or the spectrum
of A.
A.1.4 Theorem. For a matrix A with spectrum σ(A),∑

λ∈σ(A)
λk = tr(Ak).
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A.2 Polynomials of matrices
Let V be a vector space of dimension n and let A be a linear operator acting on V . Since the space
of endomorphism of V has dimension at most n2, we have that

1, A,A2, . . . , An
2

are linearly dependent. Then, there exists a polynomial ψ(A) such that

ψ(A) = 0.

Any such polynomial is said to be an annihilating polynomial of A.

A.2.1 Lemma. There exists a monic annihilating polynomial ψ of least degree.

The monic polynomial of least degree such that ψ(A) = 0 is said to be the minimal polynomial
of A.

A.2.2 Theorem. Let f be a polynomial such that f(A) = 0 and let ψ be the minimal polynomial
of A. Then ψ divides f .

We will follow the notation of [27] and define the characteristic polynomial of matrix A in the
variable t to be

φ(A, t) := det(tI −A).

The following is a famous theorem of Cayley and Hamilton.

A.2.3 Theorem. For any square matrix A over a commutative ring, the characteristic polynomial
φ(A, t) of A satisfies φ(A, t) = 0.

It is evident that the minimal polynomial of A divides the characteristic polynomial of A. Every
eigenvalue of A is a root of the minimal polynomial.

A.3 Similar matrices
If matrices A and B satisfy

A = P−1BP

for some invertible matrix P , then A and B are said to be similar matrices. If A and B are similar,
then they represent the same linear operator under different bases.

A.3.1 Theorem. If A and B are similar, then the following are true:

(i) rk(A) = rk(B),

(ii) |A| = |B|,

(iii) tr(A) = tr(B),

(iv) p(A) = p(B), where p(M) denotes the characteristic polynomial of matrix M ,

(v) the minimal polynomials of A and B are equal, and
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(vi) the eigenvalues of A and B coincide.

A.3.2 Theorem. Let A and B be real matrices such that A = P−1BP where P is a complex
matrix. Then A = Q−1BQ for some real matrix Q.

A square matrix A is said to be be diagonalizable if A is similar to a diagonal matrix. A square
matrix N is normal if N∗N = NN∗, where the ∗ denotes conjugate transpose. A square matrix H
with entries in C is said to be Hermitian if H∗ = H. We may observe that Hermitian matrices are
normal.

A.3.3 Theorem. If A is a normal matrix, then A is diagonalizable.

A.3.4 Theorem. If H is a Hermitian matrix, then all eigenvalues of H are real numbers.

A.4 Spectral decomposition
We will state the spectral decomposition theorem for Hermitian matrices.

A.4.1 Theorem. If A is a n × n Hermitian matrix with distinct eigenvalues θ1, . . . , θm and corre-
sponding eigenspaces V1, . . . , Vm, then

A =
m∑
i=1

θiEi

where Ei is the projection onto Vi and

Rn = V1 ⊕ V2 ⊕ · · · ⊕ Vm.

Proof. Since A is diagonalizable, consider an othonormal eigenbasis B for A. For Vi define Ei to be

Ei :=
∑

v∈B∩Vi
vvT .

Consider any vector w ∈ Rn. Then
w =

∑
v∈B

αvv

for some αvs. We have

Eiw =

 ∑
v∈B∩Vi

vvT
(∑

v∈B
αvv

)

=
∑

v∈B∩Vi
αvv

since B ∩ Vi is an orthonormal basis of Vi. If w ∈ Vi, then w is fixed by Ei. Otherwise, we have
that Eiw ∈ Vi is the projection of w onto Vi, as required.

For any n ×m matrix A with entries in C, the matrix N = AA∗ is Hermitian and hence has
real eigenvalues. For such a matrix A, the eigenvalues of AA∗ (or, equivalently, A∗A) are said to
be the singular values of A.
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A.5 Perron-Frobenius
The Perron-Frobenius Theorem is an important linear algebra result for algebraic graph theory and
can be found in graph theory and linear algebra textbook, including [10, 34].

A square matrix A is reducible if there exists a permutation matrix P such that

P TAP =
(
A11 A12

0n−r,r A22

)

where A11, A12 and A22 are block matrices and On−r,r denotes a (n− r)× r block of zero entries,
for 1 ≤ r ≤ n− 1. A square matrix A is irreducible if it is not reducible.

Let A be an irreducible real n× n matrix. The period d of A is the greatest common divisor of
all integers m such that Am(j, j) > 0 for some j ∈ [n]. The period does not depend on the choice
of j.

A.5.1 Theorem (Perron-Frobenius). Let A be an irreducible, real matrix with non-negative entries.
Then there exists a unique positive λ ∈ R with the following properties:

(i) there exists a real vector v with positive entries such that Av = λv;

(ii) λ has geometric and algebraic multiplicity equal to 1 as an eigenvalue of A;

(iii) for each eigenvalue θ of A, we have |θ| ≤ λ; and

(iv) if A has period d, then A has precisely d eigenvalues θ with |θ| = λ, which are{
λe

2πij
d | j = 0, . . . , d− 1

}
.

A.6 Commuting matrices
A.6.1 Lemma. For real, symmetric, square matrices A and B, if AmB = BAm for m ≥ 1, then
A2hB = BA2h where 2h is the largest power of 2 dividing m.

Proof. It suffices to show for odd m that AmB = BAm implies that AB = BA. Then, if
A2hmB = BA2hm for some h, then we may apply the statement to A′ = A2h .

The function f(x) = xm is a bijective function when m is odd. Thus, the eigenvalues of A and
Am are in one-to-one correspondence and A and Am have the same eigenspaces. Suppose that A
and B and both n× n.

Let v1, . . . ,vn be an eigenbasis for Am and B, which exists since Am and B commute. Observe
that this is also an eigenbasis for A. Let λ1, . . . , λn be the eigenvalues of A such that Avj = λjvj
for j ∈ [n]. Let µ1, . . . , µn be the eigenvalues of B such that Bvj = µjvj for j ∈ [n]. Then

(AB)vj = λjµjvj = µjλjvj = (BA)vj .

for any j ∈ [n]. Then AB and BA agree over a basis of Cn and so AB = BA.
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Appendix B

Polynomials

B.1 Roots of Polynomials
The following standard results about the roots of polynomials with real or rational coefficients are
found in [37].

B.1.1 Theorem. Let p be a polynomial with coefficients in R. If a + bi is a root of p, where
a, b ∈ re, then a− bi is also a root of p, with the same multiplicity.

B.1.2 Theorem. Let p be a polynomial with coefficients in Q. If α is a root of p, then the algebraic
conjugates of α over Q are also roots of p.

B.1.3 Corollary. Let p be a polynomial with coefficients in Q. If a +
√
b is a root of p, where

a, b ∈ Q and b not a square, then a−
√
b is also a root of p, with the same multiplicity.
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Appendix C

Data

C.1 Digraphs on 3 vertices

Polynomial p(t) Roots of p(t) All digraphs X such that φ(H(X), t) = p(t)

t3 − 2t
√

2, 0,−
√

2 Z1 ~P3 Z2 Z3 Z4 P3

t3 − 3t+ 2 1, 1,−2 K′3

t3 0, 0, 0 E3

t3 − 3t− 2 2,−1,−1 K3 Y2,1 Y1,2

t3 − t 1, 0,−1 Z5 Z6

t3 − 3t
√

3, 0,−
√

3 Z7 D3 C̃3

Table C.1: H-cospectral classes of all digraphs on 3 vertices.
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Nomenclature

[n] {1, 2, . . . , n}

α(G) the size of the largest co-clique in a graph G

~D(G) digraph of graph G

Γ(X) underlying graph of digraph X

λ1(M) the largest eigenvalue of matrix M

1 the all ones vector

φ(M, t) characteristic polynomial of matrix M in variable t

ρ(M) the spectral radius of matrix M

σ(M) the multiset of eigenvalues of matrix M

Sym(n), Sym(V ) the symmetric group acting on [n], or on ground set V

D(X) asymmetric sub-digraph of digraph X

G(X) symmetric subgraph of digraph X

J the all ones matrix

M∗ the conjugate transpose of matrix M

Tn transitive tournament on n vertices

X a digraph, unless stated otherwise
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Index

H-cospectral, 29
H-cospectral class, 39
determined by H-spectrum, 39

acyclic digraph, 8
adjacency matrix, 21

matrix respecting adjacency, 10
annihilating polynomial, 109
arc, 6
arc set, 6
asymmetric sub-digraph of a digraph, 7
automorphism, 8
automorphism group, 8

basic digraph, 22
basic subdigraph, 22

Cartesian product of digraphs, 56
characteristic polynomial, 108, 109
chromatic number, 8
converse, 7

degree, 7
digon, 7
digraph, see directed graph

of a graph, 7
digraphical regular representation, 12
digraphs

strict digraphs, 6
directed graph, 6
distance, 8
DRR, see digraphical regular representation

eigenvalue, 108
A-eigenvalue, 29
H-eigenvalue, 29
symmetric about 0, 25

eigenvector, 108

ends, 6
equitable partition, 18
eulerian digraph, 7
even dicycle, 25

graph, 7

Hadamard product, see Schur product28
head vertex, 6
Hermitian adjacency matrix, 28

in-degree, 7
in-incidence matrix, 21
in-neighbour, 6
in-neighbourhood, 6
incidence matrix, 21
incident, 6
index, 108
initial vertex, see tail vertex
interlacing, 14

generalized interlacing, 14
tight interlacing, 14

local reversal
at a vertex, 45
on a subset, 45

matrix minor, 47
minimal polynomial, 109

necklace digraph, 63
neighbour, 7

odd dicycle, 25
oriented graph, 7
out-degree, 7
out-incidence matrix, 21
out-neighbour, 6
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out-neighbourhood, 6

path, 8
pendant vertex, 51
period, 110

quotient matrix with respect to a partition, 18

regular, 7
root vector, 108

Schur product, 28
similar, 109
skew circulant matrix, 53
spectral radius, 37
spectrum

A-spectrum, 29
H-spectrum, 29

strongly connected, 8
sub-digraph, 7
switching-equivalent, 43
symmetric subgraph of a digraph, 7

tail vertex, 6
terminal vertex, see head vertex
triangle digraph, 33

underlying graph of a digraph, 7
undirected, 7

vertex, 6
vertex set, 6

walk, 7
length, 8
order, 8

weakly connected, 8
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