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Abstract 

Coriolis vibratory gyroscopes (CVG) suffer from various error sources including 

manufacturing imperfections and environmental factors. This poses a difficult solution 

called “mode matching” requiring complex and accurate on-chip electronics.  

The research discussed in this thesis acts as a proof of concept on utilizing well-established 

phenomena in the field of nonlinear dynamics and vibration in the design of CVG 

gyroscopes with improved sensitivity and robustness against manufacturing imperfections. 

A significant increase in the sense mode bandwidth is shown by structurally tuning the 

system to 2:1 resonance between the sense and drive modes respectively.  

A simplified mathematical model of a two-degree-of-freedom system, having quadratic 

nonlinearities, is obtained and compared qualitatively to more complex models from 

literature. Experimental results verify numerical simulations, confirming the 

aforementioned hypothesis. Additional bandwidth enhancement possibility is established 

through simple feedback of the nonlinear coupling terms obtained from the mathematical 

models.  
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Chapter 1.  
 
Introduction 

1.1. Background and Motivation   

In ancient times, Greek, Chinese and Roman societies constructed the first 

gyroscopes as a self-balancing spinning toy. Sailors were the first to use gyroscope like 

devices to locate the horizon in foggy or misty conditions. In 1851, the device was named 

a “gyroscope” by French scientist Leon Foucault and used to detect rotation of planet Earth. 

The gyroscope designed by Foucault was a long, heavy pendulum which was set to swing 

back and forth along the north-south plane, while Earth turned beneath it [1]. 

Navigation grade gyroscopes such as the Sperry gyroscope employed a rotating 

momentum wheel fixed to a gimbal structure. These types of gyroscopes suffered from 

several drawbacks, mainly related to bearing friction and wear. The solution to the bearing 

problem was the elimination of rotating parts. As a result, the vibrating gyroscopes, such 

as the Hemispherical Resonator Gyroscope (HRG) and Tuning Fork Gyroscopes, were 

introduced as alternatives. Recently, there have been alternative high-performance 

technologies such as fibre-optic gyroscopes (FOG) and ring laser gyroscopes (RLG), which 

are relatively more accurate. For this reason, fibre-optic gyroscopes and ring laser 

gyroscopes are mainly applied to high-end applications. 

Coriolis vibratory gyroscopes (CVG) are designed based on the fictitious force 

induced on a moving mass with respect to a rotating frame of reference [2]. They are 

currently being used in many navigation applications, ranging from systems such as Inertial 

Navigation Systems (INS), automotive anti-rollover and suspension controls, rehabilitation 

and video-gaming controllers such as those used in the PlayStation™ and Wii™. In inertial 
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navigation applications, gyroscopes, accelerometers and magnetometers are components 

of an inertial measurement unit (IMU) also called an Attitude and Heading Reference 

System (AHRS). IMU’s have great potential for indoor motion tracking systems in 

manufacturing [3], human supporting systems [4], rehabilitation [5], and a range of other 

applications. One of the most important components to obtain accurate orientation using 

an IMU is the gyroscope. The three angular velocities are integrated to obtain angular 

displacement. This integration step introduces drift directly related to noise density and 

sensitivity of the gyroscope. In the consumer market, gyroscopes are commonly 

manufactured based on Micro-electromechanical Systems (MEMS) technology, which are 

produced at low cost with medium accuracy and sensitivity. However, MEMS gyroscopes 

are subject to manufacturing imperfections and manufacturing defects that significantly 

impact their performance due to their design and complexity of their implementation.   

Most commercial MEMS CVG gyroscopes are generally composed of a proof mass 

moving in two degrees of freedom (DOF) forming drive and sense modes, respectively. 

Upon periodic excitation of the drive mode - mainly electrostatically - an external rotation 

(with the rotation axis normal to that of the drive mode) results in a Coriolis force that 

transfers the vibration energy from the drive to the sense mode [1]. These modes are 

normally tuned to the same resonance frequencies (i.e. mode-matched or tuned to 1:1 ratio) 

in order to maximize their corresponding vibration amplitudes [6]. Realistically, this tuning 

is challenging to achieve due to manufacturing imperfections, and “significant 

amplification gains are lost” [7]. Utilizing nonlinear dynamics (the focus of this research) 

in the design process can significantly improve the performance of gyroscopes specifically 

and sensors relying on the principles of modal interactions in general [8]. 

The developments of mitigation techniques to compensate for gyroscope errors- 

such as bias and drift- have been an active area of research for decades. The most 

commonly used strategy has been through utilizing sensor fusion algorithms. As the name 

suggests, the basic idea of sensor fusion is based on combining data from multiple 

redundant sensors to predict the best estimate of sensor values. Parnian and Golnaraghi [9] 

developed an indoor inertial navigation system based on fusing the 3D position and 
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orientation information from both a stereovision camera system and an IMU using a 

variation of the Extended Kalman Filter (EKF) algorithm. This system was then applied to 

estimate the position and orientation of surgical tools during an operation- a system named 

commercially as the Surgical Navigation System (SNS). Won and Golnaraghi [10] 

developed a fastening tool system for the automotive industry by calibrating and fusing 

IMU data with string potentiometers for quality assurance. Marzouk and Golnaraghi [11] 

utilized EKF as a sensor fusion algorithm aided with a mechanical model of the human arm 

to be used in a post-stroke rehabilitation application. As a result of this extensive research 

by our research team, robustness and sensitivity have always been a challenge resulting 

mainly from the IMU system component caused by the gyroscope specifically.  

This research aims at studying the effects of nonlinear dynamics and vibration on 

(a) the resonator and (b) on the gyroscope to improve robustness and sensitivity. This 

serves as a proof of concept for future work on implementing these concepts in micro-scale 

designs of parametric resonators and gyroscopes. 

1.2. Literature Review 

Early in the eighteenth century, mechanical gyroscopes were used for measuring 

orientation; after the MEMS revolution, micro-machined gyroscopes were developed 

based on a variety of physical phenomena. In 1942, a patent for a tuning fork CVG was 

registered to F.W. Meredith and later improved by Hobbs and Hunt in the 1950s [12]. 

Scientists and researchers who developed the miniature tuning fork gyroscopes using 

MEMS technology used the same theory of operation as that in the earlier mechanical one. 

However, several key parameters had to be taken into consideration due to the extremely 

small size of the MEMS structure.  

The first CVG MEMS gyroscope design used two vibration modes to measure 

angular velocity [13]. The first mode was excited by the system in order to generate 

Coriolis forces accompanying rotation. The second mechanism used a capacitive-based 

structure to transform Coriolis vibrations from the physical mechanical quantity into its 
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electrical form as a voltage or duty cycle signal. After that, the sensor readings were filtered 

and amplified according to the sensor specifications, using electronic circuits that can also 

be embedded on the same semiconductor die. Analog Devices showed that their iMEMS™ 

gyroscope design was based on the concept of measuring the Coriolis acceleration [14]. 

Draper Labs made another one of the first of announcements of a fully functioning CVG 

[15]. 

Due to unavoidable manufacturing imperfections, a major drawback in CVG design 

lies in mode matching the excitation drive-signal frequency with the resonance frequency 

of the structure. A minor shift in the excitation frequency can result in a gain drop and 

consequently sensitivity. As demonstrated by A. Cenk and A. Shkel, [1], a 5 Hz relative 

shift in the drive-signal of a CVG with a high quality factor (QF = 10000) resulted in a 

90% gain drop. This decreased the overall gain of the sensor [16],[17]. Moreover, it can 

render manufacturing to be challenging [5], [18]. Another major element contributing to 

the difficulty of mode matching is the damping coefficients of the system. It can vary 

during or after the manufacturing process is completed due to package leaks (which leads 

to vacuum loss) and temperature change resulting from internal friction.  

One of the most successful mechanical approaches introduced multiple degrees of 

freedom to increase the bandwidth of the sense mode and hence increased robustness and 

immunity to the aforementioned imperfections [19]–[23]. One mitigation strategy they 

used to increase bandwidth was to design a multi-DOF resonator as shown by C. Acar and 

A. M. Shkel [24][25]. Despite its complexity, this approach showed promising results. 

Nevertheless, the multiple DOF approach increases design constraints. Other control-based 

proposed solutions used adaptive control and tuning [26], [27]. 

In order to increase the sensitivity of a CVG (i.e. obtain a higher sense-mode proof-

mass displacement per angular rate input), the sense and drive mode natural frequencies 

should match [28] under low damping conditions [29]. Some research groups conducted 

physical experiments to show the nonlinear phenomena in MEMS gyroscopes and offered 

mathematical models for its mitigation. Researchers in [30] collaborated with 

STMicroelectronics to model a few types of these nonlinearities. Their semi-analytical 
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solution was built on a two-dimensional FEA model (using FEMLAB/COMSOL™ 

Multiphysics) of a classical vibrating MEMS comb drive used in the design of both 

accelerometers and gyroscopes. The nonlinear results were further curve fitted using a third 

order polynomial. Finally, the polynomial fit calculated parameters were used to build a 

lumped element model and a physical prototype to verify the numerical results. In the 

physical experiments, they used a Polytech™ Doppler vibrometer to measure the proof 

mass velocity at each excitation frequency using a microscope for aiming the vibrometer’s 

laser pointer on the proof mass. The obtained velocity from the vibrometer was further 

divided by the drive frequency to obtain displacement [31]. Results showed that the support 

beams induced structural nonlinearities. A numerical and a semi-analytical model was 

devised to outline these nonlinearities and then compared to experimental results. The 

numerical methods used were adapted from [32]. 

Another experimental proof was produced by A. Trusov et al [33] to show the 

nonlinear dynamics of electrically actuated resonators. They used a simple MEMS multi-

cantilever accelerometer designed by Senata Technologies was used with masses attached 

to the end of each tip. Moreover, it has also been shown that the sub-harmonic resonances 

appear at an excitation frequency close to twice the fundamental natural frequency of the 

resonator. 

The small signals produced by gyroscopes require displacement measurements in 

the order of Fermi (10−15 of a meter) and charges comparable to that of a single electron 

[34]. Utilizing nonlinear dynamics in the design process can significantly improve the 

performance of inertial sensors [8]. In 1984 [35], an L-beam macro-scale structure was 

built with a 2:1 ratio between its first two natural frequencies, the nonlinear internal 

resonance phenomenon was shown through analytical modeling and nonlinear vibration 

analysis techniques (explained in more details in Chapter 2 of this thesis). A few key 

publications ([36], [37], [38], [39]) were published in which the internal resonance was 

utilized to control the vibration of an oscillatory system. In [40], Golnaraghi studied the 

nonlinear behavior of a rotating flexible robot arm with similar equations of motions to a 

gyroscope. In [36], a strategy was proposed for controlling the free vibrations of a second-
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order system coupled to a controller (itself a second-order system) utilizing quadratic 

nonlinear terms. Upon proper tuning of the controller’s natural frequency to a 2:1 ratio, the 

nonlinear terms act as an energy bridge, causing the vibrations of the plant to be transferred 

to the controller. In [37], this concept was extended to forced vibration, which takes 

advantage of the saturation phenomenon that occurs when two natural frequencies of a 

system with quadratic nonlinearities are in the ratio of 2:1. When the system was excited 

at a frequency rate close to higher than that of the natural frequency, most of the input 

energy is channeled to the secondary system to be actively controlled.  

The governing equations in this case were very similar to those of a gyroscope, and 

the quadratic nonlinearities used were identical to the Coriolis terms in gyroscope 

mathematical models. The main goal of this research is to use these principles to enhance 

and immunize MEMS gyroscopes against manufacturing nonlinearities by increasing 

robustness. 

The principle idea of this research is based on applying the nonlinear principles, 

namely internal resonance and saturation in gyroscope design. These principles have 

attracted a great deal of attention over the past few years for several other applications. To 

maximize the sensitivity of gyroscopes, drive and sense modes have been usually designed 

to the same resonance frequencies (i.e. mode matched or tuned to a 1:1 resonance ratio 

between these modes), have high quality factors and large proof mass, and are driven with 

large amplitudes [6]. This research area, which has been active for approximately a decade, 

involves the study of nonlinear behaviors arising in small scale, vibratory, and mechanical 

devices that are typically integrated with highly accurate electronics for use in signal 

processing, actuation, and sensing applications. The inherent nature of these devices, which 

includes low damping, desired resonant operation, and the presence of nonlinear potential 

fields, sets an ideal stage for the appearance of nonlinear behavior. While nonlinearities are 

typically avoided in device design, they have the potential to allow designers to beneficially 

use nonlinear behavior in certain applications.  
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1.3. Objectives  

The broader goal of this research is to improve robustness and sensitivity of MEMS 

gyroscopes by decreasing the sense-mode gain loss due to manufacturing imperfections 

relative to the quality factor. In this thesis, this goal is achieved by increasing the sense 

mode’s  bandwidth by tuning the system to a 2:1 resonance frequency ratio between its 

sense and drive modes, respectively, and by utilizing nonlinear effect known as internal 

resonance. Ideally this results in a flattop frequency response for the sense mode. In this 

respect, the objectives of this thesis are to prove the proposed concept utilizing a macro 

test bed. More specifically we  

1. Study and identify the best suited macro proof of concept gyro configuration. 

2. Study the nonlinear behaviour of the system. 

3. Confirm the theoretical hypothesis using numerical simulation as well as 

physical experiments in case of 2:1 internal resonance 

4. Confirm that under internal resonance, the system can behave as a gyroscope 

and compare its performance to a linear gyroscope case. 

5. Demonstrate the robustness of the sense mode of the proposed design.  

6. Establish the basis for bandwidth enhancement using parametric excitation and 

feedback of nonlinear terms to the drive signal.  

As a result, MEMS gyroscope applications such as navigation systems or 

automotive stability controls that integrate gyroscope’s data to obtain angular displacement 

for orientation estimations will be dramatically influenced by decreasing the need for 

complex sensor fusion algorithms and accurate electronics.  
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1.4. Contributions 

1. Mathematical modelling and simulation of a nondimensionalized macro-scale 

gyroscope with 2:1 frequency ratio between its first two natural frequencies. 

The analytical solution is verified using computer simulations and the nonlinear 

behavior is proved to enhance performance. 

2. A novel gyroscope macro-scale physical design proving the hypothesis. 

3. The nondimensionalized mathematical, simulation and physical models will lay 

the foundation for further research on applying the concept to MEMS scale 

designs.  

4. A novel method has been introduced to increase the sense mode bandwidth 

through using feedback of the nonlinear coupling terms of the system. 

More publications are expected after submission of a patent, currently in 

progress through the SFU Innovation Office. 
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1.5. Thesis Outline 

In Chapter 1, a brief historical background and applications of gyroscopes is first 

provided. After that, literature review is presented on the topic of improving robustness by 

increasing sense mode bandwidth for Coriolis type gyroscopes. 

In Chapter 2, the connection between related previous research utilizing nonlinear 

internal resonance and saturation and gyroscope models, is established. Multiple analytical 

and experimental models are summarized with focus on the effects of modal interaction 

and nonlinear coupling on the frequency response. 

In Chapter 3, a simplified lumped-element mathematical model of a T-beam 

gyroscope is presented. The equations of motion are first derived using Euler-Lagrange’s 

energy method and are then nondimensionalized. Furthermore the equations of motion are 

scaled to study the effect of the nonlinear terms on the overall performance. Then the 

approximate analytical solution is given through the perturbation solution. Numerical 

simulation results are then compared to literature for validating the model. Moreover, the 

novel hypothesis of increasing bandwidth of the sense mode through feedback of the 

nonlinear coupling terms is presented. 

In Chapter 4, experimental evidence is shown to confirm the analytical results are 

conversed. Two different macro-scale experimental prototypes are presented: one as a 

resonator and the other as a gyroscope.   

In Chapter 5, the conclusion is stated as well as ideas for future work.  
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Chapter 2.  
 
Utilizing Internal Resonance in Gyroscope Design  

As specified in section 1.3, the goal of this research is to improve the stability and 

robustness of MEMS gyroscopes by increasing the sense mode’s natural frequency 

bandwidth by tuning the system to a 2:1 resonance ratio between its sense and drive modes, 

respectively, and nonlinear effects known as internal resonance. In this chapter, we 

establish the configuration of a gyroscope best suitable to utilize the principle of internal 

resonance in its operation. 

2.1. Coriolis Vibratory Gyroscopes 

Coriolis Vibratory Gyroscopes (CVG) forms the most commonly used design 

principle in current MEMS-based gyroscopes. Over the past few years, multiple MEMS 

flexure designs have been developed and analyzed to imitate springs. Pisano [41] and 

Fedder [42] studied the linear and nonlinear analytical models of common 

suspension/flexure designs used in MEMS, the latter reporting approximately 3% error 

between the analytical and FEA solutions. 

 In MEMS CVG design, the crab-leg flexure has been one of the commonly used 

designs due to its modeling, design and manufacturing simplicity. One acceptable 

modeling approximation for a single mass CVG uses a simple two degrees of freedom 

lumped element model as shown in Figure 2-1.  

At first, two coordinate frames are assigned, a fixed inertial frame {i} and a rotating 

frame {g} attached at the center of the gyroscope frame. 
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Figure 2-1: Simplified lumped element model for a single mass CVG 

The position vector g
mr
  of the proof mass with respect to the gyroscope frame is 

given in Cartesian coordinates as 

 1 2ˆ ˆg
mr x e y e= +   (2.1) 

Such that 1̂e  and 2ê  are unit vectors along the x and y axes of the gyroscope frame {g} 

respectively. Using vector addition we derive the proof mass position with respect to the 

inertial frame as: 

 i i g
m g mr r r= +     (2.2) 

Now using fundamental dynamics theory of rotating frames of reference, the velocity 

vector of the proof mass with respect to the inertial frame is given by 

 3̂

g
i gm

m m
d rr e r
dt

 
= + Ω × 
 







   (2.3) 
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Such that Ω  is the input angular velocity applied on the gyroscope about the z axis. 

Expanding equation (2.3) we find that the velocity of the proof mass with respect to the 

inertial frame is 

 ( ) ( )1 2ˆ ˆi
mr x y e y x e= −Ω + +Ω


     (2.4) 

In order to derive acceleration of the proof mass, equation (2.4) is differentiated with 

respect to time based on equation (2.3). The acceleration vector is thus found to be 

 

( ) ( )

3

2 2
1 2

ˆ

ˆ ˆ2 2

g g
i gm

m m
m

drdr e r
dt dt

x y y x e y x x y e

     = + Ω× +Ω ×     
      

= −Ω − Ω −Ω + +Ω + Ω −Ω









 

   

  (2.5) 

The reaction forces acting upon the proof mass due to angular rotation are thus given by 

 ( ) ( )2 2
1 2ˆ ˆ2 2i

mF m x y y x e y x x y e = −Ω − Ω −Ω + +Ω + Ω −Ω 


 

      (2.6) 

One can classify these forces into three different types: 

 

( ) ( )
( ) ( )

( ) ( )

1 2

2 2
1 2

1 2

ˆ ˆ2 2

ˆ ˆ2

ˆ ˆ

Coriolis

Centrifugal

Euler

F m y e m x e

F m x e m y e

F m y e m x e

= − Ω + Ω

= − Ω − Ω

= − Ω − Ω



 





 

  (2.7) 

Now to consider stiffness and damping effects as well as the harmonic forcing excitation 

with amplitude F and frequency dω the equations of motion become 

 
( ) ( )
( )

2

2

2 sin

2

x x d

y y

m x y y x k x c x F t

m y x y k y c y m x

ω−Ω − Ω −Ω + + =

−Ω +Ω + + = − Ω



  



  

  (2.8) 

The term 2 yΩ   can be neglected as the effect of the displacement of the sense axis on the 

drive displacement is significantly less than vice versa. Also assuming a constant input 
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angular velocity (i.e. 0Ω= ) the terms yΩ and xΩ can be neglected. Moreover, since the 

input angular acceleration is almost always less than the drive mode natural frequency, the 

centripetal acceleration terms 2xΩ and 2 yΩ can also be ignored yielding the equations of 

motion to be  

 
( )sin

2
x x d

y y

m x k x c x F t
m y k y c y m x

ω+ + =

+ + = − Ω

 

  

  (2.9) 

Dividing both sides by the proof mass m and using the following substitutions 

 ; ; ;
2 2

y yx x
x y x y

x y

k ck c
m m m m

ω ω ζ ζ
ω ω

= = = =   (2.10) 

We get            ( )22 sinx x x d
Fx x x t
m

ζ ω ω ω+ + =         (2.11) 

Such that ,x yω  and ,x yζ  are the drive and sense mode natural frequencies and damping 

ratios respectively. Give the harmonic forcing nature of the system the solution is expected 

to also take a harmonic nature as ( ) ( )sino dx t x tω φ= +        (2.12) 

Where the amplitude of the response along the x-axis is given by [33] 

 
2

1
1 2

2 22 2

2
; tan

1
1 2

d
x

x x
o

d
d d

x x
x x

F

x

ωζ
ω ωφ

ω
ω ωζ ω
ω ω

°

−

        = =        −         − +             

  (2.13) 

 22 2 cos( )y y y d dy y y X tζ ω ω ω ω φ+ + = − Ω +    (2.14) 
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 1
2 22 2

2

1 2

d

d d
y y

y y

m XY

k

ω

ω ωζ
ω ω

Ω
=

       − +              

  (2.15) 

The equations of motion have been verified by comparison to [1], [43] and [33]. 

In order to enhance the sensitivity Y Ω , the drive mode displacement amplitude ox is 

required to be maximized and the excitation frequency is matched to both the sense and 

drive mode natural frequencies (i.e. d x yω ω ω= = ) also known as mode-matching. 

Next, we look at systems with similar dynamics, and obtain different models from literature 

mainly developed to study modal interactions and vibration absorption by utilizing internal 

resonance.  

2.2. Modal Interaction in L-shaped two DOF resonator with 1:2 
internal resonance 

As the scope of this research is to study the nonlinear behavior of CVG gyroscopes, 

it was found that the research done by Alan G. Haddow [35] [44] on the resonator shown 

in Figure 2-2 is of evident relevance. 

In [44], the macro-scale L-shaped structure, shown in Figure 2-2, was subjected to 

a harmonic base excitation using an electromagnetic vibration shaker, and the performance 

of the system in both the linear (Figure 2-3) and nonlinear (Figure 2-4) cases was studied, 

numerically, experimentally and through perturbation analysis. 
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Figure 2-2: A L-beam test-bed setup tuned to 2:1 internal resonance and excited 

by an electromagnetic shaker1 [44] 

 
Figure 2-3: Coordinate system for the linear realization of the L-beam1 [44] 

 
1 Used with permission, reproduced by author 
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Figure 2-4: Coordinate system for the nonlinear realization of the L-beam1 [44] 

 At first, the equations of motion have been derived using Euler-Bernoulli’s beam theory 

combined with Lagrange’s energy method. The equations of motion are shown in (2.16) 

[35]. 

 

( )

( ) ( )

2
1 1 11

2
2 2 22

2
1 1 1

1 11 2 1 2

2 21 2 2 1
2
2 2 2

1 1

2 2

0
2 cos

0

0
2

0

0
2 cos sin

0

u u K
F

u u K

u u u
uu u u u

Y
uu u u u

u u u

u u
FZ

u u

ω
τ

ω

µ
ε ε

µ

ε τ τ

      
+ − Ω      

      
 +
 +     + +     +     

+  
     

+ Ω Ω + Ω =     
    





 


  


  

 









  (2.16) 

Such that: 1u  and 2u are the generalized coordinates corresponding to the primary and 

secondary beam deflections 1a and 2a . Y and Z are matrices composed of nonlinear 

coefficients and coefficients of parametric terms respectively.  Due to the cumbersome 

nature of the terms, the interested reader is referred to [35] for the detailed listing of 

parameters. sw is the base displacement in Figure 2-4 with excitation amplitude F and 

 
1 Used with permission, reproduced by author 
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frequency Ω , 𝜏𝜏 is non-dimensional time, and (.) represents derivative with respect to τ. 

The quadratic nonlinear terms (Coriolis-like), such as 1 2u u  , represent the generalized 

velocities for the primary and secondary beams, respectively. The natural frequencies and 

mode shapes of the systems have been found using Eigen value analysis that closely 

matched the experimental findings. These terms are also used in the experimental model 

to amplify the coupling effect between the two degrees of freedom and thus enhancing the 

bandwidth of higher natural frequency. As part of establishing the background for this 

study, the mode shapes and natural frequencies obtained using the linearized model were 

derived and verified using ANSYSTM FEA software, as shown in Figure 2-5.  

 
Figure 2-5: The first mode (left) and second mode (right) of the L-beam obtained 

using ANSYS™ FEA analysis software 

2.2.1. Internal Resonance and Saturation 

The analytical perturbation solution of the nonlinear equations of motion (2.16) was 

derived and validated using direct numerical integration, and  confirmed results found in  

[44]. Our approach was based on the method of multiple scales (MMS) developed by 

Nayfeh [45]. The main focus was to study modal interaction effects on the two DOF L-

shaped structure in cases of internal resonance, a nonlinear phenomenon specific to multi-

DOF systems [45]. It appears when the natural frequencies of the system are tuned to be in 

a linear combination. The relation between the natural frequencies can be expressed as: 

 , ,i jn i j nω ω= ∃ ∈   (2.17) 
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Such that 𝑛𝑛 is an integer and 𝜔𝜔𝑖𝑖 and 𝜔𝜔𝑗𝑗 are natural frequencies of the system.  

If a nonlinear system is excited at one of its natural frequencies iω  , it will not only 

resonate as explained by linear systems theory, but will also show resonances at 

multiple/fractions of the excited natural frequency. The focus of this research focuses only 

on the case when the natural frequency of the drive beam is equal to twice that of the 

secondary one with a system depicting quadratic nonlinearities. This has been achieved in 

this specific design by using a thicker drive beam relative to the secondary one [44]. 

Once the system is tuned to 2:1 internal resonance, an interesting nonlinear effect 

can be observed. Given that the excitation frequency is fixed at the higher natural 

frequency, by gradually increasing the excitation amplitude the frequency response curves 

will show the nonlinear effects on the bandwidth of the resonance peaks. For relatively 

small excitation amplitudes, the system behaves as predicted by linear theory. After a 

certain system dependent excitation amplitude threshold, the once linear peak starts to grow 

in bandwidth and decrease in amplitude as shown in Figure 2-6 such that 1a  and 2a are the 

steady state solutions (amplitudes) for the primary and secondary beams respectively. This 

is when the nonlinear response curves diverge from the expected linear solution.  

Another nonlinear phenomena associated with internal resonance is the so-called 

saturation phenomenon. First illustrated by Nayfeh [46] to analyze modal interaction 

between a ship’s pitch and roll motion. It has been found that modal amplitudes between 

these two DOF are highly dependent not only on the excitation frequency but also on the 

excitation amplitude contrary to linear theory. Given that the system contains quadratic 

nonlinearities, saturation is expected to occur when the drive and sense mode natural 

frequencies are tuned to 2:1 respectively. Similar to the conditions stated in the previous 

section, if the excitation frequency is fixed at the higher natural frequency and the 

amplitude is gradually increased, after an excitation amplitude threshold, the lower mode 

of vibration is excited. In addition to the increase in bandwidth as state earlier, the modal 

amplitude of the drive mode “saturates” and an energy bridge starts forming causing the 
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secondary beam (sense mode) to resonate, as shown in Figure 2-6. Experimental results 

verifying the saturation phenomenon have been obtained in  [35], [44]. 

 
Figure 2-6: Internal resonance and saturation effects on steady state amplitudes 

as functions of detuning from 2:1 resonance ratio (left) and forcing 
amplitude (right)1  [44] 

2.3. A two DOF Lumped mass System representing the 
Gyroscope  

Another system similar to the L-beam, is a lumped-element model studied by Tuer 

et al. [39] shown in Figure 2-7 where internal resonance was used for controlling vibrations 

of a flexible beam using an active tuned controller. The principle objective was once the 

energy is transferred from a vibrating flexible beam to a secondary rigid one, connected a 

dc motor was used to actively absorb the vibration. The quadratic coupling nonlinearities 

in the system, facilitated the transfer of energy between its two modes.  The study also 

highlighted that an actuator could be used to enhance the transfer of energy between two 

systems. 

Due to the complexity of the structure, a lumped-element model mathematical was 

developed. Considering the center of mass locations, the free body diagram with respect to 

the inertial frame of reference is shown in Figure 2-8. 

 
1 Used with permission, reproduced by author 



 

20 

 
Figure 2-7: An L-beam structure tuned to 2:1 internal resonance between the 

natural frequencies of its primary and secondary beams, respectively 
utilizing a DC motor as a vibration absorber, system block diagram 
(right) and coordinate system (left)1 [39]  

x1

y1

x2

y2

θ1

θ2

mB

mA

C2,K2

C1,K1

 
Figure 2-8: Free Body Diagram of the L-beam vibration absorber structure 

 
1 Used with permission, reproduced by author 
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In order to follow the Euler-Lagrange equations to derive the equations of motion, 

we first find the kinetic energy of the system was defined as 

 
( ) ( ) ( )

( ) ( ) ( ) ( )

22 2 2 21 1 1 1
2 2 2 41 1 2 1 1 2 2 1 2

2
1 1

2 22 1 2 1 1 2 2 2/ 1 2sin

sys A B B

B cm

T I m m m l m m l

m m l l I

θ θ θ θ

θ θ θ θ θ θ

= + + + + + +

− + + + +

   

    

 (2.18) 

Such that the mass of moments of inertia of the primary beam (about the base) and the 

secondary beam (about its centre of gravity) are represented by 1I and 2/cmI , respectively. 

The lengths of the primary and secondary beams are given by 1l and 2l . The masses of 

secondary beam, DC motor and secondary beam tip mass are represented by 2m , Am and

Bm , respectively.  

The system’s total potential energy is       2 21 1
2 21 1 2 2sysV k kθ θ= +  (2.19) 

Now using the Euler-Lagrange procedure, the equations of motion are found to be as [38] 

( ) ( ) ( ) ( )( )
( ) ( )( )

2 21 1
2 21 1 1 2 2 1 1 1 1 1 2 2 2 1 2 2 2 2

2 21
22 2 2 1 2 2 2 3 1 2 1 2

2 sin sin cos cos ,

2 sin cos

n n

n

J J

J

θ ω θ θ ξ ωθ θ θ θ θ θ θ θ θ θ

θ ω θ θ ξ ω θ θ θ θ θ

+ + = − + + + +

+ + = − + −

       

    

 

 (2.20) 

where 

( ) ( )
( )

2 21
41 2 1 2 1 2 1 2 2 1 2 2 2/ 1

2 2
3 2 1 2 1 2 2 1 1 1 2 2 2

1 1 1 1 2 2 2 2
2 2 2 2 21

41 1 2 2 2 1 2 1 1 2/
2 21

42 2 2 2 2/

2 ,

2 , ,
2 , 2

n B n B cm

n B

B B A cm

B cm

J m l l m l l J m l l m l I

J m l l m l l k k
c c

I m l m l m l m l m l I
m l m l I

χ χ

χ ω χ ω χ
ξ ω χ ξ ω χ

χ

χ

= + = + +

= + = =

= =

= + + + + + +

= + +

 

Torsional springs constants are denoted by 1k and 2k and viscous damping coefficients by 

1c and 2c respectively. Separating the linear and nonlinear terms on each side, we get 
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 1 2 1 11

2 2 2 22

0
0
k f

k g
χ χ θθ
χ χ θθ

        
+ =        

       





  (2.21) 

The forcing terms is f and g are the remaining nonlinear terms in the equations of motion 

(2.20). At internal resonance it has been found that damping significantly affects the 

transfer of energy between the two modes experiencing internal resonance. Based on this 

fact, a vibration absorber was designed to minimize the vibration in the primary beam [38], 

[39] by actuating the DC motor to achieve optimal damping. Figure 2-9 shows the 

frequency response -using FFT- in the case of internal resonance.  In the undamped case, 

a constant-amplitude beat phenomenon was observed due to the transfer of energy from 

one mode to the other and back given an initial deflection. Damping was then added by 

matching experimental and simulation results. It can be observed that by tuning the 

damping to an optimal value (through control) energy can be transferred from the primary 

beam to the sacrificial one and dissipated before its return. 

 

Figure 2-9: Fast Fourier Transform (FFT) of the structure tuned to 2:1 ratio 
between its first two frequency modes1 [38]  

 

 
1 Used with permission, reproduced by author 
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2.4. A gyroscopic system based on the L-beam structure 

In this section another intensive study of a similar two DOF system is examined 

with respect to an input angular harmonic excitation. In this case one of the DOFs is 

translational (i.e. 1( )r t ) and the other is rotational (i.e. 1( )tθ ) as shown in Figure 2-10 [47]. 

In addition to the excitation forcing function given to the translational DOF, a harmonic 

rotational one rotates the entire platform using a four-bar linkage mechanism. This 

rotational excitation will be analogically compared to the input angular rate of gyroscope 

in later sections. 

 
Figure 2-10: Mathematical model for a two degrees of freedom high-speed flexible 

arm utilizing internal resonance1 [47] 

In addition to studying the nonlinear behavior and saturation in the case of 2:1 

internal resonance for the aforementioned system having quadratic nonlinearities, the effect 

 
1 Used with permission, reproduced by author 
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of the Coriolis and centripetal forces was taken into consideration. Generally, the equations 

of motion of a two DOF system, take the form shown as 

 
( )
( )

2
1 1 1 1 1 1 2 1 1 1

2 2
2 2 2 2 2 1 2 2 2

2 cos Ω

2 cos Ω

x x x x x F t

x x x x F t

ω γ τ

ω γ τ

+ = − + + +

+ = − + + +



 

  



  (2.22) 

Such that 2�̇�𝑥1�̇�𝑥2 is the Coriolis-like force induced by the quadratic nonlinearities 

and �̇�𝑥12 is present in the terms related to centripetal forces due to rotational motion. 

The equations of motion of the system were derived to be: 

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )
( ) ( ) ( ) ( )( )

( ) ( ) ( )

2
1 2 1 1 1 1 1 2 2 2 2 2 2

2
2 2 1 2 1 2 1 2 2

2
1 2 1 1

2 2
2 2 2 2 2 2 2 2 2 1 2 2 2 1 1 2 1 2

2
2 2 1 1 2 2 2 1
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sin cos 2 cos
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r

m m r c r k r m r

m r t t t

m m r t F t

m r c k m r r m r r t

m r t r m r t

θ

θ θ θ θ

θ θ θ θ θ θ θ

θ

θ θ θ θ θ θ θ

θ θ θ

+ + + − +

− + +

− + =

+ + − + +
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  (2.23) 

Such that 𝑟𝑟1 and 𝜃𝜃2 are the generalized coordinates,  𝑟𝑟2 and 𝜃𝜃1 are given. 

The forcing functions are 𝐹𝐹𝑟𝑟(𝑡𝑡) = 𝐴𝐴 cos(Ω𝑟𝑟𝑡𝑡) acting as the translational force and 

𝜃𝜃1(𝑡𝑡) = 𝐹𝐹2 sin(Ω𝜃𝜃𝑡𝑡) as the rotary one, respectively. As can be seen in the equations of 

motion (2.23), the nonlinear terms can be divided into two main categories: geometric and 

kinematic. The geometric nonlinearities include the terms involving sin(𝜃𝜃2) and cos(𝜃𝜃2). 

The kinematic nonlinear terms on the other hand include velocities represented by �̇�𝑟1 and 

�̇�𝜃2 (e.g. �̇�𝜃22 involved centripetal acceleration). Also the Coriolis terms show the coupling 

between the equations of motion such as the ( ) ( )2 2 1 1 22 cosm r t rθ θ

  term in (2.23). 

Rewriting (2.23) in matrix form and separating the linear and nonlinear terms on different 

sides of the equality leads to: 

 1 2 1 1 1 1 1
2

2 2 2 2 2 2 2

0 0 0
0 0 0

m m r k r c r f
m r k c gθ θ θ

+             
+ + =             

            

 

 

  (2.24) 
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Where f and g, represent the nonlinear terms in the equations of motion. In the following 

sub-section, the cases of internal resonance and saturation will be shown and later are 

compared with the proposed mathematical and experimental results for this thesis. 

2.4.1. Internal Resonance and Saturation 

The nonlinear coupled equations of motion (2.24) were solved using perturbation 

techniques and verified through direct numerical simulation. The results confirmed the 

findings in [47]. The nonlinear frequency response function (steady state amplitude 

response) was then studied in the case of exact internal resonance and the detuned cases, 

as shown in Figure 2-11. A flattop frequency response can be observed for the second 

modal amplitude 2a  and a V-shape response for the first modal amplitude 1a . Similar to 

the previous system, saturation can be observed where the first modal amplitude “saturates” 

after a certain threshold of forcing amplitude and all energy beyond that threshold is 

channeled to the second mode. 

 
Figure 2-11: Steady state amplitude responses as a function of detuning frequency 

showing internal resonance (left) and versus excitation amplitude 
showing saturation (right)1 [47] 

 
1 Used with permission, reproduced by author 
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2.5. Conclusions 

This chapter represented three examples with dynamics similar to that of MEMS 

gyroscopes represented by the equations of motion in (2.8). The nonlinear dynamics 

associated with these systems are in line with the hypothesis of this research that is to 

improve robustness and sensitivity of MEMS gyroscopes, one can increase the sense 

mode’s natural frequency bandwidth by tuning the system to a 2:1 resonance ratio between 

its sense and drive modes, respectively, through utilizing the nonlinear phenomenon known 

as internal resonance.  
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Chapter 3.  
 
T-beam Structure Mathematical Model  

A typical Coriolis vibratory gyroscope is essentially a resonator. Since this research 

acts as a proof of concept on utilizing internal resonance in modern MEMS gyroscopes, a 

simple resonator design has been adopted. The T-beam resonator design, shown in 

Figure 3-1, was influenced by the work shown in [8].  

 
Figure 3-1: T-shaped resonator structure used in this research using two different 

thicknesses of stainless steel sheet metal and tuning mass 

In essence, a T-beam resonator tuned to 2:1 resonance frequency ratio experiences 

internal resonance resulting in a flattop frequency response at the first “lower” natural 

frequency. This is represented in the tip displacement of the fixed-free section of the T-

beam as shown and the displacement of the center of mass of the fixed-fixed beam as shown 

in Figure 3-2. The novelty of this research is in the simplified mathematical model used 

and the extension of application from a mass sensor to a gyroscope.  The effects of angular 

velocity on the system dynamics are also discussed in details. In addition, bandwidth and 

gain enhancement methods are proposed through feedback of the nonlinear coupling terms 

obtained from the mathematical model.  

In this chapter, a mathematical model and numerical simulation of the T-beam 

structure will be examined under the influence of input angular velocity. The mathematical 

model uses a simplified lumped-element approach due to firstly the complexity of analysis 

of such structure as continuous system and secondly that only qualitative results are 
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required to be compared to experimental results. In addition, at the time of writing, several 

other common MEMS gyroscope designs are being studied by our research team in the 

case of internal resonance and compared with the T-beam one.  

The nonlinear coupled equations of motion are first derived using Euler-Lagrange 

equations, and then linearized to study the basic system characteristics. After that the linear 

and nonlinear responses of the system are compared. Furthermore, the analytical solution 

is obtained using the two variable expansion perturbation method, for the 

nondimensionalized scaled nonlinear equations of motion. This approach closely follows 

the work presented in [47], given that the angular velocity input to the system is constantly 

compared to a sinusoidal signal. 

Once the analytical solution is obtained, it is compared to simulation results and 

later in the experimental study chapter compared to experimental results. The parameters 

used in the analytical and numerical solutions are obtained for the experimental test bed 

for validation purposes. 

3.1. T-beam Gyroscope Mathematical Model 

Similar to the procedure followed to analyze the L-beam structures in the previous 

chapter, the lumped mass approach is used for a T-beam structure. The T-beam design uses 

two flexible sheet metal beams with a suspended tuning mass at the junction as shown in 

Figure 3-2. The concentrated mass M1 represents the effective mass attached at the drive 

beam’s center of mass. M2 represents the effective mass of the clamped-free sense beam 

and the tuning mass used to achieve the required natural frequency ratio. Ci, Ki are rotational 

damping coefficients and spring constants respectively. 
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Figure 3-2: T-beam resonator model approximation of the continuous structure 

(left) by a simplified lumped-element model (right) 

The velocities of each of the centers of masses are given by 

 

1 1 1 1mv r i r jθ= +




   (3.1) 

 ( ) ( )( ) ( )( ) 1 1 2 1 2 2 1 1 2 1 2 2sin cos( )mv r r i r r jθ θ θ θ θ θ θ= − + + + +


    

   (3.2) 

Such that 1r is the drive beam center of mass displacement whereas 2θ and 2θ represent 

deflection angle and velocity of the sense beam from the vertical axis. 1 1 1, ,θ θ θ  represent 

the input angular displacement, velocity and acceleration respectively applied to the 

system. Also 2r is the length of the sense beam. The kinetic energy of the system can then 

be shown as 

   (3.3) 

and potential energy for the system is  

 
2

1 1

2

211 1
2 21 1 1 2 2

12 2

arcsinSystem kk k

rV V V V k k
l

θ
  

= + + = +     
  (3.4) 

( ) ( ) ( )
( )( )

1 2 1 2

2 21 1
2 21 2

22 2 2 21 1 1
2 2 21 2 1 1 1 2 1 2 2 1 2

2 2 1 2 1 1 2 1 2cos( ) r sin( )

Total m m m mT T T m r m r

m m r m m r m r

m r r

θ θ θ

θ θ θ θ θ

= + = +

= + + + + +

+ + −
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Such as 1l is half the drive beam length. Using Euler-Lagrange’s formulation, the nonlinear 

equations of motion were derived as 

 1,11 1 1 1,1

2,12 2 2 2

0
0

Fr r k K
M C

Fkθ θ θ
        

+ + =         
         

 

 

  (3.5) 

such that             ( ) ( )
( )

1
1 2 2 2 2 2 2

1 12
2 2 2 2 2

2

0sin
,

sin
0

C
m m m r

M C l r
m r m r

C

θ
θ

 
+ −   = = −   −    

 

 

( )
( )

( ) ( )

1
2 2

2 2 2 2 1 2 2 1 2 21
1,1 1,11 22 2

1 2 1 11
1 2

1

2
2,1 2 2 1 1 2 2 2 1 2 1

arcsin cos( ) 2 cos( )
,

(t)
1

sin 2 cos

r

r
m r m rl

K F
m m r Frl

l

F m r r m r r

θ θ θ θ θ θ

θ

θ θ θ θ

 
   + +   = =

 + + +   − 
 

= − −

   



 



  

3.1.1. Nondimensionalization 

In this stage of analysis, new non-dimensional variables are introduced to focus on 

the nonlinear dynamics irrespective of dimensional scale of the structure. This step will be 

significant in the near-future phase of utilizing this model in developing MEMS versions 

of the design. It basically liberates the development from burdens of considering the 

physical system dimensions and units during the transfer from a macro-scale (on the orders 

of tens of centimeters) to the micro-scale (on the order of a few micrometers). The 

dynamics of this model is similar to the system shown in [47]. 

First Non-dimensional Equation of Motion 

As seen in (3.6), 1ρ  represents the non-dimensional driving displacement acting on the 

mass M1 and τ is non-dimensional time. That is 

 1
1 1 1 2

2

, , , c
c

r tr r t t
r t

ρ ρ τ τ= = = =   (3.6) 
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Now to proceed to nondimensionalize velocity and acceleration for this generalized 

coordinate as 

 

( )

( ) ( )

1 21 1 1 1
2 2

2 2 2
1 2 21 1 1 1

2 22 2 2

rr r d r r
t dt t t

rr dr r r
t t dt t

ρ ρ ρτ τ τ
τ τ τ τ

ρ ρ ρτ
τ τ τ τ

∂∂ ∂ ∂ ∂∂ ∂
= = = = Ω

∂ ∂ ∂ ∂ ∂ ∂ ∂
∂∂ ∂ ∂∂ ∂ ∂

= = = Ω Ω = Ω
∂ ∂ ∂ ∂ ∂ ∂ ∂

  (3.7) 

Following the same method for the input angular velocity to the system, the accompanying 

non-dimensional parameters become 

 

1 1 1 1

2 2
21 1 1 1

2 2

t t t

t t t t

θ θ θ θτ τ
τ τ τ

θ θ θ θτ
τ τ τ

∂ ∂ ∂ ∂∂ ∂
= = = Ω

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂∂ ∂ ∂

= = = Ω
∂ ∂ ∂ ∂ ∂ ∂ ∂

  (3.8) 

The non-dimensional sense beam deflection angular velocity and acceleration are derived 

as 

 

2 2 2 2

2 2
22 2 2 2

2 2

t t t

t t t t

θ θ θ θτ τ
τ τ τ

θ θ θ θτ
τ τ τ

∂ ∂ ∂ ∂∂ ∂
= = = Ω

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂∂ ∂ ∂

= = = Ω
∂ ∂ ∂ ∂ ∂ ∂ ∂

  (3.9) 

Isolating the first DOF in (3.5) 

( )
( )

( )

( ) ( )

1
2

21
1 2 1 1 1 1,1 2 2 2 2 1 2 1 12 2

1 1

2 * 2
2 2 1 2 1 2 2 2 2

sin( )

cos( ) 2 cos( ) cos( ) cos r

Cm m r r k K m r m m r
l r

m r A t

θ θ θ

θ θ θ θ θ θ θ ω

+ + + − = +
−

+ + + +

 

 

   

  (3.10) 

Where: ( ) 2
1 2 2 rA m m rω= − +  

Then substituting the obtained non-dimensional variables, the first equation of motion 

develops into 
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( ) ( ) ( )

( )
( )

2 2

1 1,1
1 1 2 22

1 2 1 2 2

* * * 2
1 2 2 2 2 2

2
1 1 1

sin

cos( ) 2 cos( ) cos( )

cos

k K
M

m m m m r

M

F

αρ ρ θ θ

ρ θ θ θ θ θ

ω τ

+ + − =
+ Ω + Ω

Ω + Ω + Ω +

+ Ω



 

    (3.11) 

Such that 
( )

*1 2 1
1 1 22

1 22 1 2
1

1

, , , ,

1

rC mM
m mrl

l

θωθ ωα θ
ρ

= = = Ω = Ω =
+ Ω Ω Ω  

 −     



  

and  
( )1 2

1 2 2

AF
m m r

=
+ Ω

 

The uncoupled natural frequencies of the unforced linear system are: 

 
1 1

2 2
1 2

1 2 2
1 2 2 2

,K K
m m m r

ω ω
   

= Ω = Ω   +   
  (3.12) 

Second Non-dimensional Equation of Motion 

Following the same procedure to nondimensionalize the second equation of motion 

( ) ( ) ( )2 2
2 2 2 2 2 2 2 2 2 1 2 2 2 1 1 2 2 1 2 1 2sin sin 2 cosm r C k m r r m r r m r rθ θ θ θ θ θ θ θ+ + − = − −   

    (3.13) 

Dividing both sides by 2 2
2 2M r Ω  and incorporating the non-dimensional parameters 

obtained previously yields 

 ( ) ( ) ( )2 *2 *
2 2 2 2 2 1 2 1 2 1 2sin sin 2 cosθ γ θ ω θ ρ θ ρ θ ρ θ+ + − = − Ω − Ω 

    (3.14) 

and nondimensional damping is given by 

 

( )

1 2
1 2 22

2 22 1 2
1 1 2

1

,

1

C C
m rrl m m

l

γ γ
ρ

= =
Ω  

 − + Ω    

  (3.15) 
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3.1.2. Scaling 

Once the non-dimensional equations of motion are obtained, a small-valued parameter 

1ε <<  is introduced to study the effects of each of nonlinear and coupling terms. Thus, 

following change of variables is first introduced 

 
( ) ( )

1 1 2 1, , ,
sin , cos 1

k m n jF fε θ ε θ ρ ε ρ ε ω
εθ εθ εθ

= = = Ω =

= =
  (3.16) 

Such that the orders j, k, m, n > 1, and assuming the following approximations 

2 4

2 2
1 12

1 11 2

1

1 2
3 5

1 2 2 2
1,1 1 1 11

2 2 1 1 1
1 2

1

1  1+ +

1

arcsin
2 8
3 15

1

r r
l lr

l

r
l r r rK

l l l
r

l

ρ ρ
ρ

ρ

ρ ρ ρ
ρ

   
         

 −     
 
        = + +     

       
 −     





  (3.17) 

Scaling of first equation of motion 

Applying the approximations from (3.17) to get   

( )

( )

( )
( )

1
2

1
1 1 *2 2

1 1 1 11 2
*2 * 2

2 2 2 2 21
2

1
1 2 22

1 2

cos

cos( ) 2 cos( ) cos( )

sin( )

c
l

Fm m
Mk

l
M

m m

ρ ρ
ρ ω τ

θ θ θ θ θ

ρ θ θ

  
  

  + +   Ω + Ω ++ Ω
   =

 Ω + Ω +      
  − + Ω 

 

 



  (3.18) 

And assuming 
( )

1
2*

1
*

1 2* *1 1 1
1 1 1 12 2

1 1 1 2

, , ,

k
m mc k CC k

l l m m
γ ω

 
 + = = = =

+ Ω Ω
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The result is 

 
( )

( )( )
2 *2 2

1 1 1 1 1 2 2 1 1 1 1

*2 * 2
2 2 2 2 2

sin( ) cos

cos( ) 2 cos( ) cos

M F

M

ρ γ ρ ω ρ θ θ ρ ω τ

θ θ θ θ θ

+ + − = Ω + Ω

+ Ω + Ω +



 

 

 

 (3.19) 

Thus, the scaling transformation of variables are  

 
( )

( )
2 2 2 2 2

1 1 1 1 1

2 2 2 2

cos

2

n n n m j m k

j j m m

M f

M

ε ρ ε γ ρ ε ω ρ ε θθ ε ρω ε ω τ

ε ω ε ωθ ε θ

+

+

+ + − = + Ω

+ + +



 

 

  (3.20) 

To perturb the system from its linear solution, the orders of ε  accompanying linear terms 

are set to lower than those of the nonlinear terms. Following the same procedure as in [47], 

the integers , ,j m n  and k  are deduced to control the excitation amplitude. 

 
( )

( )
2 2 2 1 2

1 1 1 1 1

2 2

cos

2

kM f

M

ρ γ ρ ω ρ εθθ ε ρω ε ω τ

ε ω ωθ θ

−+ + − = + Ω

+ + +



 

 

  (3.21) 

Scaling of second equation of motion 

Following the same approach, (3.14) will be scaled as: 

 2 2 2
2 2 2 2 2 2m m m n m n m j j nε θ ε γ θ ε ω θ ε ρθ ε ρω θ ε ρ+ + + ++ + − = − − 

    (3.22) 

Comparing powers of ε  in (3.22) and keeping the nonlinear terms one order less than the 

linear ones [40], The values of integers n, m and j=1 yield the non-dimensional scaled 

second equation of motion as 

 2 3 2
2 2 2 2 2 2θ γ θ ω θ ερθ ε ρω θ ερ+ + − = − − 

    (3.23) 

Incorporating non-dimensional damping in (3.21) as 

 1 1 1 2 2 2,γ ε µ γ ε µ= =   (3.24) 
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Results in 

( ) ( )2 2 2 1 2 2 2
1 1 1 1 1

2 3 2
2 2

cos 2

2

kM f Mρ εµ ρ ω ρ εθθ ε ρω ε ω τ ε ω ωθ θ

θ εµ θ ω θ ερθ ε ρω θ ερω

−+ + − = + Ω + + +

+ + − = − −

  

 

 

 

  (3.25) 

3.1.3. The Two-variable Expansion-perturbation Method 

The goal of our perturbation analysis is to help in understanding the dynamics of 

the system near internal or forced resonances. The response is observed in two different 

time scales (two variable expansion method [48]), a slow time scale η  versus a faster one

ξ  and τ is the independent variable. 

 ,ξ τ η ετ= =   (3.26) 

The idea of this method is to permit the dependent variables ρ and θ to depend explicitly 

on two time scales: a fast on represented by ξ and a slow one represented by η. 

The derivatives of ρ (ξ, η) and θ (ξ, η) are 

( )
2 2 2

2 2
2 2 2

d
d

d O
d

α ε
τ ξ η

α αε ε
τ ξ ξ η

∂ ∂
= +

∂ ∂

∂ ∂
= + +

∂ ∂ ∂

  (3.27) 

And expanding ρ  and θ such that 

 ( ) ( )2 2
0 1 0 1,O Oρ ρ ερ ε θ θ εθ ε= + + = + +   (3.28) 

The different effects when exciting the system at the sense beam natural frequency versus 

exciting it at the drive beam’s one (twice the sense beam’s natural frequency) are studied 

next. 
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The forced resonance case 1ωΩ =  

Considering that the excitation frequency is close to the drive mode natural frequency  

 1 1ω ε σΩ = +   (3.29) 

Choosing 1k =  such that 1 1F fε= . Substituting (3.27) and (3.28) into (3.25), the for order 

ε0 are                  2 2
0 1 0 0 2 00, 0ξξ ξξρ ω ρ θ ω θ+ = + =                             (3.30) 

And for order ε1 

( ) ( )22 2 2
1 1 1 0 0 0 0 1 0 0 1 1 1

2
1 2 1 0 2 0 0 0 0

2 2 cos

2 2

M M M M fξξ ξη ξξ ξ ξ ξ

ξξ ξη ξ ξ ξ ξ

ρ ω ρ ρ θ θ θ µ ρ ωθ ω ω ξ

θ ω θ θ µ θ ρ θ ωρ

 + = − + + − + + + Ω


+ = − − + −
 

 (3.31) 

The solution of the set of equations (3.31) take the general form 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 1 1 2 1

0 3 2 4 2

sin cos

sin cos

K K

K K

ρ η ω ξ η ω ξ

θ η ω ξ η ω ξ

= +

= +
  (3.32) 

Then substituting (3.32) into into (3.31) supressing the secular terms associated with 

( )1cos ξΩ where ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 1 1

1 1 1 1

cos cos cos

cos cos sin sin

ξ ω ξ εσ ξ ω ξ ησ

ω ξ ησ ω ξ ησ

Ω = + = +

= −

     (3.33) 

Next, two cases are considered: the non-resonant case (i.e. 1ω is away from 22ω ), and the 

internal-resonant case 1 22ω ω . 

The non-resonant case 1ω  is away from 22ω  

Assuming the following polar transformations 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 2 1 1 3 2 2 4 2 2sin , cos , sin , cosK a K a K a K aη ϕ η ϕ η ϕ η ϕ= = = =  

 (3.34) 

The secular-term equations are thus obtained as 

( ) ( )1 1 1 2 1 1
1 1 2 2 1

1

sin , , cos
2 2 2 2

f fa a a a
aη η η

µ ω µ ωψ ψ σ ψ= − + = − = +   (3.35) 

Where 1 1 2, constantψ σ η ϕ ϕ= + = . 

The equilibrium solution is then derived by equating the right hand side of each equation 

in (3.35) to zero yielding  

( )
11 1 1

1 21/22 2
11 1

, 0, tan
22 / 4

fa aω µψ
σσ µ

−  
= = =  

 +
  (3.36) 

Then utilizing the following trigonometric identities  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 1 1 2 1 1 1 1 1 1 1

0 3 2 4 2 2 2 2 2 2 2

sin cos sin sin cos cos
sin cos sin sin cos cos

K K a a
K K a a

ρ η ω ξ η ω ξ ϕ ω ξ ϕ ω ξ
θ η ω ξ η ω ξ ϕ ω ξ ϕ ω ξ

= + = +
 = + = +

 

 (3.37) 

We find 
( )0 1 1 1

0

cos
0
aρ ω ξ ϕ

θ
 = −


=
       (3.38) 

Therefore the steady state solution is given by 

( ) ( )
( )

( ) ( )

( )

1
2 1 1

1 1 1 11/22 2
1 1

cos cos
2 / 4

Fa O O

O

ω ερ ω ξ ϕ ε τ ψ ε
σ µ

θ ε

−
= − + = Ω − +

+
 =

  (3.39) 

Such that ( )O ε is the linear system solution. 
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The internal resonance case 1 22ω ω=  

This is the case when ω1 is very close to 2 ω2. 

 1 2 22ω ω εσ= +   (3.40) 

And using the following trigonometric identities  

 

( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 2 2 2 2 2

2 2 2 2

1 2 2 2 2 2 2

2 2 2 2

cos cos 2 cos 2 cos 2

cos 2 cos sin 2 sin

sin sin 2 sin 2 sin 2

sin 2 cos cos 2 sin

ω ξ ω εσ ξ ξω εξσ ξω σ η

ξω σ η ξω σ η

ω ξ ω εσ ξ ξω εξσ ξω σ η

ξω σ η ξω σ η

 = + = + = +


= −


= + = + = +
 = +

 

 (3.41) 

Thus, the steady state amplitude responses with respect to the slowly varying time scale η

, in polar form are 

 

( ) ( )

( )

( ) ( )

( )

2
22 1 1 1

1 2 2 1 1
1

2
1 2

2 1 2 2 2
2

2
22 1 1

1 2 2 1
1 1 1
2
1

2 1 2
2

sin sin
2 2 2

sin
4 2

cos cos
2 2

cos
4

m fa a a

a a a a

m fa
a a

a

η

η

η

η

ω µ ωψ ψ
ω

ω µψ
ω

ω ωϕ ψ ψ
ω

ωϕ ψ
ω


= − +




= − −


 = − +

 = −


  (3.42) 

Where 1 1 1 2 2 2 1, 2ψ ησ ϕ ψ ησ ϕ ϕ= + = + − .  Eliminating nϕ  from  (3.42) we get 
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( ) ( )

( )

( ) ( )

( ) ( ) ( )

2
22 1 1 1

1 2 2 1 1
1

2
1 2

2 1 2 2 2
2

2
22 1 1

1 2 2 1 1
1 1 1
2 2

21 2 1 1
2 1 2 2 2 1 2

2 1 1 1

sin sin
2 2 2

sin
4 2

cos cos
2 2

cos cos cos
2 2 2

m fa a a

a a a a

m fa
a a

m fa a
a a

η

η

η

η

ω µ ωψ ψ
ω

ω µψ
ω

ω ωψ ψ ψ σ
ω

ω ω ωψ ψ ψ ψ σ
ω ω


= − +




= − −


 = − + +

 = − + − +


 

 (3.43) 

To find equilibrium solutions 0i iaη ηψ= =  in (3.43) 

The first case (a2 = 0) 

11 1 1
2 1 1 21

2 12
2 1
1

0, a , tan ,
2

2
4

fa arbitraryω µψ ψ
σµσ

−  
= = = − = 

  
+ 

 

  (3.44) 

Leading to the solution in (3.45) and (3.46) 

 

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

0

1 1 2 1

1 1 1 1 1 1

1 1 1

1 1
1 11/22 2

1 1

1
1 1

11/22 2
1 1

sin cos

sin sin cos cos

cos

cos
2 / 4

cos
2 / 4

Homogeneous Solution

O

K K O

a a O

a O
f O

F O

ρ ρ ε

η ω ξ η ω ξ ε

ϕ ω ξ ϕ ω ξ ε

ω ξ ϕ ε
ω ω ξ ϕ ε

σ µ

ε ω τ ψ ε
σ µ

−

= +

= + +

= + +

= − +

= − +
+

= Ω − +
+



  (3.45) 
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( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0

3 2 4 2

2 2 2 2 2 2

sin cos

sin sin cos cos
0

Homogeneous Solution

O

K K O

a a O

θ θ ε

η ω ξ η ω ξ ε

ϕ ω ξ ϕ ω ξ ε

= +

= + +

= + +

=



  (3.46) 

assuming ( )
1 1 1

1 1 1 1 1 1 1 1 1 1

ϕ ψ ησ
ω ξ ψ ησ ω ξ ησ ψ ξ ψ τ ψ
= −

 − + = + − = Ω − = Ω −
  (3.47) 

This shows that the ( )O ε is the linear solution 
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  (3.48) 

The second case (
( )

1 2
1 2

1 1 2

2
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a
a
µ ω
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Γ ± −Γ  =  
    

  + 
=   + − 

 
   =  +  

  (3.49) 

where ( )( ) ( )( )1 1 1 2 1 2 2 2 1 1 2 1 2 24 2 , 2 4σ σ σ µ µ ω µ σ σ µ µ ωΓ = + − Γ = + +  

The steady state solution is given by: 
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  (3.50) 

And  
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Γ ± −Γ = − 
  



  (3.51) 

Expanding the variables in (3.50) and (3.51) using 
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  (3.52) 
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The steady state response can then be derived as  

( )( ) ( ) ( )

( ) ( ) ( )

1
2 2 22

1 2 2 1 12
1

1
1 2

2 2 6 2 2
1 1 1 2

1 1 2
2 1
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F
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ωρ σ σ µ τ ψ ε
ω

ε ω
θ τ ψ ψ ε

ω ω

−

= + + Ω − +

 
Γ ± −Γ   = Ω − − +      

  (3.53) 

An estimate of the frequency response for each of the two degrees of freedom can 

be calculated using numerical values obtained from the experimental setup as shown in the 

table below. 

Table 3-1: Numerical values used in numerical simulation 

Nondimensionalized Parameter Symbol Value/Range 
Drive mode natural frequency 

1ω  2 

Sense mode natural frequency 
2ω  1 

Internal detuning parameter 1 2 12ω ω εσ= +    1σ  -10 to 10 

External detuning parameter 1 1ω ε σΩ = +  2σ  0 

Drive mode damping  
1µ  0.69 

Sense mode damping 
2µ  2.58 

Forcing amplitude 
1f  0.1 to 5 

Applying these parameters into the two cases from equation (3.44)  and (3.49) the 

approximate frequency response behavior can be captured.  As can be observed in 

Figure 3-3, the drive mode response in the first case depicts a linear behaviour in the 

frequency domain, it shows a single sharp peak with no frequency split. The second case 

however acts nonlinearly. 

More importantly, the sense beam deflection is shown to increase in bandwidth as 

excitation amplitude is increased as seen in Figure 3-4. These results illustrate the 

hypothesis of increasing a gyroscope’s sense mode bandwidth. The perturbation solution 

obtained here qualitatively match literature sources shown previously despite the 

differences in the structure of the two degrees of freedom models. 
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Figure 3-3: Drive mode frequency response perturbation solution as a function of 

detuned excitation frequency and amplitude  

 
Figure 3-4: Sense mode frequency response perturbation solution as a function of 

detuned excitation frequency and amplitude 
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3.1.4. Simulation Results for the Gyroscope’s Mathematical Model  

This section discusses the simulation results regarding the effect of angular velocity on the 

responses in both degrees of freedom of the system. This is done to establish the proof of 

concept for the application of the T-beam structure as a simple gyroscope. These results 

are later qualitatively compared to the experimental counterparts in later sections. Input 

angular velocity is simulated as a ramp function with 0.001 2deg s acceleration. The 

system is harmonically excited with various excitation amplitudes at the lower natural 

frequency (i.e. sense mode) expecting a linear system behaviour and the higher natural 

frequency as the nonlinear case. This can clearly show the difference between both cases 

without changing the structural dimensions. 

Linear case 2ωΩ =  

Given that the excitation frequency is set to the lower natural frequency, an overall 

linear system response is expected. Figure 3-5 shows the displacement and velocity 

responses along the drive and sense beam directions respectively set against input angular 

velocity.  

An interesting effect can be observed in the drive beam deflection 1r , an increasing drift 

can be noticed as input angular velocity increases. It can be considered that the centrifugal 

force generates this drift. The same effect is documented in the experimental section, it 

shows how this drift can overcome the forcing amplitude at higher angular velocities 

limiting the measurement range of the sensor. Feedback control of the drive amplitude can 

be used to mitigate this drift. However, as it falls out of the scope of this study it has been 

postponed to future work. 
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Figure 3-5: Numerical simulation results illustrating the effect of angular velocity 

on the T-beam gyroscope in the linear case (excitation frequency close 
to the sense mode natural frequency), (a, b) drive beam displacement 
and velocity, (c, d) sense beam deflection and velocity 
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On the other hand, deflection of sense beam (i.e. 2θ ) showed a linear response up to a 

certain threshold of angular velocity. The effect of increasing excitation amplitude is shown 

in Figure 3-6. As expected, sensitivity increases by increasing the forcing amplitude.  

Nevertheless, the drifting effect due to the centrifugal force observed from the time domain 

response on the drive beam can also be seen at higher angular velocities. It results in a 

negative slope of amplitude response versus angular velocity. This produces a challenge in 

detecting two different angular velocities on both sides of the threshold. Nonetheless, it is 

not expected in fully symmetric designs such crab-leg or H-type structures. 

 

 
 

Figure 3-6: Numerical simulation results for the sense beam deflection (top) and  
drive beam deflection (bottom) deflection in the linear case given 
various excitation amplitudes 
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Nonlinear case 1 22ω ωΩ = =  

Similar to the linear case, a significant drift in the drive beam direction can be 

observed at higher angular velocities as illustrated in Figure 3-7. In addition, a transfer of 

energy can be observed between the drive and sense modes ( 1r and 2θ ) respectively. This 

resulted in the sense beam amplitude larger than that in the linear case by approximately 

an order of magnitude. Also a time lag can be observed between the start of excitation until 

the sense beam reaches its steady state value. This time-lag was observed to decrease by 

increasing excitation amplitude in both simulation and experimental results.  

 
Figure 3-7: Numerical simulation results illustrating the effect of angular velocity 

on the T-beam gyroscope in the nonlinear case (excitation frequency 
close to the drive mode natural frequency) 

A strong linear relation between the sense beam amplitude responses versus angular 

velocity can be observed with lower excitation amplitudes as shown inset in Figure 3-8. 

This relation continues until a certain excitation amplitude threshold defined in the 

saturation section later. Moreover, significantly higher sensitivities can be achieved by 

feedback control applied at excitation amplitudes such the one depicted by red in the same 

figure. This poses a strong novel research topic for future work. 
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Figure 3-8: Simulation results for the sense mode (top) and drive mode (bottom) 
displacement in the nonlinear case given various excitation amplitudes 
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3.2. T-shaped Resonator Mathematical Model 

Modelling the same structure as a pure resonator, the only excitation signal is 

applied to the horizontal clamped-clamped beam and the deflection of the clamped-free 

vertical beam resembles the sensing element. Both drive and sense beams are approximated 

to be massless beams with concentrated effective masses [49]. 

We consider modeling the structure as a resonator is a special case of the detailed 

model derived in the previous section for a gyroscope. Particularly by assigning no input 

angular velocity to the system the equations of motion can be considered to be: 

 
( ) ( ) ( )

1

1* 2
1 2 1 1 1 1 2 2 2 2 2 22

1
1 2

1

2
2 2 2 2 2 2 2 2 2 1 2
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sin( ) cos( ) cos
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r

r
l

M M r C r k M r A t
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M r C k M r r

θ θ θ θ

θ θ θ θ

  
  
  + + + − + = Ω 
 − 
 

+ + − =

 

 

 



 

 (3.54) 

Assuming: ( ) ( )( )21
1 1 1 1 1 1sin , 1spring damperr l r l r lθ θ−∆ = ∆ = −

   

 Following the same approach the final equations of motion can be derived as: 
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ε ω
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ω ω
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= + + Ω − +



  

Γ ± −Γ    = Ω − − +        

 

 (3.55) 
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3.2.1. Simulation Results for the Resonator Mathematical Model  

Using small angle approximation the equations of motion (3.54) can be expressed as: 

( ) ( ) ( )
1

1* 2
1 2 1 1 1 1 2 2 2 2 22

1
1 2

1

2
2 2 2 2 2 2 2 2 2 1 2

arcsin
(t) cos

1

0

r r

Quadratic Nonlinearities

r
l

M M r C r k M r F A t
rl
l

M r C k M r r

θ θ θ

θ θ θ θ

  
  
  + + + − + = = Ω 
 − 
 

+ + − =

 

 



 



The mass matrix remains the same as in (3.5) yields the first two natural frequencies as: 

 
( ) ( )

1 2
1 2 2

1 2 2 2

,k k
M M M r

ω ω= =
+

  (3.56) 

The energy transfer between the drive and sense modes is then studied. A slowly 

varying frequency sweep is applied to the system as a forcing function on the drive ( 1r ) 

degree of freedom. As the forcing frequency approaches the higher natural frequency, 

energy transfer between the two modes is expected. However, as can be seen in Figure 3-9a, 

this energy transfer is unobservable in the case of lower excitation amplitudes. 

Nevertheless, as observed in Figure 3-9 subplots (b) through (d), as the excitation 

amplitude is increased the coupling between the two modes increases spanning over a 

larger time interval.  
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Figure 3-9: Time domain response shows the energy transfer between the drive 

beam and the sense beam for different excitation amplitudes (a-c)  
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Common to characterizing a nonlinear system’s frequency response, the steady 

state amplitude of the time response for a given excitation frequency. After that the 

excitation frequency is changed (incremented in case of an up-sweep or decremented in 

case of a down-sweep) and the new steady state amplitude is logged and the process repeats 

over the frequency range of interest. In the case of this model, this process can be done by 

exciting the system using what is called a “stair case” signal with special care that the 

duration of each step takes the proper time for the system to reach steady state. 

Unfortunately, the steady state time varies with multiple variables including excitation 

amplitude, coupling effects and damping which is extremely challenging to model. This 

leads to either inaccuracies in determining the nonlinear frequency response function (FRF) 

and prolonged simulation times. An acceptable replacement method is input a chirp signal 

-swept cosine- and to capture the envelope of the time response as showed previously in 

Figure 3-9 after passing through a linear phase filter with cutoff frequencies around the 

range of interest. After that, the frequency sweep is repeated at different excitation 

amplitudes to show the evolution of the bandwidth and gain of the sense and drive modes 

in the frequency domain as shown in Figure 3-10 and Figure 3-11 respectively. As 

illustrated in red, the frequency response acts similar to a linear one with lower excitation 

amplitudes. However, in the sense mode the bandwidth and gain increase with reaching a 

flattop response as excitation amplitude increases. This behavior is very well suited for all 

resonator applications as it immunizes the system in case either the excitation or the natural 

frequencies are shifted due to design imperfections.  
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Figure 3-10: Sense beam normalized frequency response showing the increase in 

the sense mode frequency peak bandwidth proportional to excitation 
amplitude 

 
Figure 3-11: Drive beam normalized frequency showing a frequency split 

increasing proportional to the increase in excitation amplitude 
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Saturation 

Given that the system is tuned to 2:1 ratio and excited at its second mode, the 

saturation phenomenon occurs after increasing the excitation amplitude beyond a certain 

threshold. Before that threshold is exceeded, only the drive beam is excited and the 

system behaves linearly. However, after this excitation threshold is surpassed, the energy 

is channeled to the sense mode and excites at its natural frequency (i.e. half the drive 

mode frequency) as shown Figure 3-12Error! Reference source not found.. 

 
Figure 3-12: Numerical simulation results showing the nonlinear saturation 

phenomena for the T-beam structure. Energy is transferred from the 
drive beam to the sense beam after exceeding a specific excitation 
amplitude threshold 

The above presented results for the resonator match the experimental ones in Chapter 4 

and literature [8], [38], [39], [44], [47] verifying the validity of the simplified lumped mass 

model used in this research.  

In addition, the overall system bandwidth and gain can be further improved through 

feedback on the nonlinear coupling terms stated previously in the equations of motion as 

will be discussed next. 
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3.3. Feedback Control for Bandwidth and Gain Improvement 

Recalling the equations of motion for the resonator (3.54), five coupling terms arise as 

shown below: 
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Studying the effect of each of the coupling terms, the gains  AK  through EK  are multiplied 

to each of the terms respectively. Simulation results showed that the coupling terms 

2 2 2 2sin( )AK m rθ θ  and 2
2 2 2 2cos( )CK m r θ θ  pose immediate effects on the system’s 

performance. As shown in Figure 3-13, AK has directly proportional effect on the sense 

mode bandwidth and relatively weaker effect on the drive mode. 
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Figure 3-13: The effect of feedback of the coupling term 2 2 2 2sin( )AK m rθ θ  with 

different proportional gains KA on the sense (top) and drive (bottom) 
beams’ frequency responses  
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Additionally, the sense mode gain can be further increased by feeding back the nonlinear 

term 2
2 2 2 2cos( )CK m r θ θ  from the excitation signal driving the system as shown in 

Figure 3-14. 

 

Figure 3-14: The effect of feedback of the coupling term 2
2 2 2 2cos( )CK m r θ θ  with 

different proportional gains KA on the sense beam (top) and drive 
beam (bottom) frequency responses  
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3.4. Conclusions 

In this chapter we presented a simplified mathematical model for a T-beam 

gyroscope and its simplification as a resonator.  The analytical derivations and numerical 

simulation results proved similar to other two degree of freedom systems with quadratic 

nonlinearities discussed in Chapter 2 and the results will be validated experimentally 

in Chapter 4. This concludes the validity of the mathematical model in spite of its 

simplicity. 

 Furthermore, the possibility of enhancing the frequency response and sensitivity 

of the gyroscope model through feedback of coupling terms is shown through numerical 

simulation. These outcomes establish the foundation for gyroscope designs with enhanced 

performance and robust stability. 
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Chapter 4.  
 
Experimental Testing and Results 

4.1. Introduction 

In this chapter, the proof of concept using experimental macro-models is illustrated. 

Several prototypes were developed but only the valid test-beds are mentioned. At first, 

common experimental designs and procedures are stated. After that, major sources of errors 

are reviewed. The experimental tests follows the theoretical sections of this thesis focusing 

on the T-beam structure first as a resonator (i.e. no input angular velocity) then as a 

gyroscope. For each shown experiment, time, frequency response and saturation testing 

results are compared between the linear and nonlinear cases. The main forcing function 

variables are excitation amplitude, frequency and input angular velocity in the gyroscope 

case. 

4.2. Experimental procedures 

4.2.1. Natural Frequency Tuning  

Impulse Response Test Procedure 

The purpose of this test was to excite the device under test (DUT) with an impact 

hammer in order to excite the device’s natural frequencies as shown in Figure 4-1. This 

test procedure was heavily used in the structural tuning process. However, great care had 

to be considered not to exert excessive impact force that might have detuned the natural 

frequencies specifically in the drive beam. This was because of the imperfection in the 

clamped-clamped implementation and non-ideal boundary conditions. The structure was 

designed so that the torsional out-of-plane mode point {3} is shifted away by at least 20% 

from the first two in-plane ones (points {1} and {2}) to minimize its effect. The drive beam 

thickness was set to approximately twice the sense beam thickness. 
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Figure 4-1: Impulse response sample results showing the sense beam frequency 

response (a, b) and the drive beam frequency response (c, d) 

Each DUT was first built based on estimates from both the analytical and FEA 

models. The physical design was developed to have natural frequencies close to the 

mathematical model. Nevertheless, the physical model was fine-tuned to meet the design 

constraints (e.g. 2:1 frequency ratio). The two most common techniques used for tuning 

were to either add a tuning mass as implemented by Haddow [44] or by changing beam 

lengths. In either cases, the linear frequency response using the Fast Fourier Transform 

(FFT) of the impulse time response was obtained as a tuning verification tool. In all the 

mentioned experiments an impulse test was implemented before and after each test. 

After an impulse was applied to the system, acceleration, displacement and in some 
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choice of sampling frequency was based on the preliminary FEA analysis of each structure 

such that the first three natural frequencies were designed to be less than 100 Hz. 

Furthermore, all logged time-domain data were passed through a linear phase band pass 

filter as will be shown in a later section. The filtered response was then converted to the 

frequency domain using the Fast Fourier Transform method (FFT). 

Initial Condition Test Procedure 

In this procedure the T-beam was given an initial deflection (i.e. initial condition) 

at its sense beam’s tip. After that the structure was released into free vibration. In most 

cases this initial displacement was large enough to excite the main resonance-frequencies 

of interest: the fundamental and second in-plane harmonic of the sense beam and the first 

of the drive mode labeled points {1}, {2} and {3} respectively in Figure 4-2(d). In this 

example test, the detuning frequency was determined between points {2} and {3}, which 

was used to study its effect on performance. Compared to the impulse response test, this 

procedure was found to be more efficient to be used in tuning as the risk of detuning the 

system via excessive impact was minimized. 

 
Figure 4-2: Initial deflection sample results showing the sense beam frequency 

response (a, b) and the drive beam frequency response (c, d)  
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Experimental Verification of Mode Shapes 

The next step after the determining the natural frequencies of the structure was to 

verify mode shapes. In case of structures with relatively large modal amplitudes and 

frequencies less than 5 Hz, visual verification of mode shapes was sufficient. In the case 

of higher frequencies, a high-speed camera was used to verify the in-plane mode-shapes as 

shown in Figure 4-3. On the other hand if the displacement couldn’t be verified visually or 

using the high-speed camera, non-contact LASER displacement sensors were pointed at 

various locations of the structure to verify mode shapes. 

 
Figure 4-3: Mode shape verification using a high-speed camera for the first T-

beam resonator macro-model prototype showing the drive mode (top) 
and the sense mode (bottom) 
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4.2.2. Steady State Amplitude Response Test Procedure 

Since taking the time response for an impulse and transforming it into the frequency 

domain via FFT only yielded the linear frequency response function, a few other methods 

were devised to study the nonlinear counterpart. In this section, the two common methods 

used for this research are briefly explained. 

Steady state amplitude response 

The first method was based on the application of a harmonic excitation signal to 

the structure at a frequency relatively lower than frequency band under study. After that, 

the structure was monitored online in the time domain until the vibration amplitudes 

reached steady state. One drawback of this method was that the elapsed time for the system 

to reach steady state widely varied depending on the nearness of the excitation frequency 

to the natural frequency and damping. Once the system reached steady state, the amplitude 

was averaged over a proper interval of time with a sufficient number of oscillations (e.g. 

order of hundreds of cycles) or an envelope detector was used. However, depending on the 

frequency separation between the excitation frequency and the natural frequency, the 

response amplitude of the sense beam could suddenly drop after a change in the excitation 

frequency as shown in Figure 4-5 between t=620 and t=640 seconds.  

As a solution, a simple approach to overcome the aforementioned problem was 

devised. The excitation frequency was applied as a staircase signal. The goal was to 

maintain the same excitation frequency for a sufficient amount of time for the system to 

reach steady state.  After that, the excitation frequency was increased or decreased 

depending on the nature of the test such as an upward frequency sweep or a downward one. 

In order to avoid transients, only the last few number of cycles were captured from 

sensors before a new excitation frequency transition takes place. The transition of the 

excitation frequency was located using the first derivative of the stair case pattern resulting 

in a delta function representing every change (i.e. delta train). Then the steady state values 

were determined on the time axis 3 seconds before each delta function. A summary of the 

algorithm to determine the nonlinear steady state response is depicted in Figure 4-4.  
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Figure 4-4: Flowchart of the procedure to obtain the nonlinear frequency 

response using steady state amplitude 

 
Figure 4-5: Time history showing the difference between obtaining the frequency 

response to an input staircase excitation frequency sweep (a), using an 
envelope detector versus calculating the steady state amplitude at 
discrete time intervals (c, d) using the excitation frequency time-
derivative (b) 

Once a sufficient number of points was acquired, the steady state amplitude 

response function could be determined as shown in Figure 4-6. The advantage of using the 

derivative of the stair-case signal to locate the exact time of transition for steady state 

amplitude calculation proved helpful in avoiding transient responses. The contrast between 

the two methods can be shown by comparing the result of an envelope detector on one of 

the drive beams by calculating the steady state amplitude right before the transition in 

frequency occurs in Figure 4-6. This is due to the fact that the envelope detector will not 

differentiate between the time transients occurring after each change of excitation 

frequency giving a false result for the steady state amplitude. 
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Figure 4-6: Performance comparison in calculating the frequency response using 

a Hilbert transform envelope detector versus using the steady state 
amplitude for a staircase frequency sweep 

Slowly varying frequency sweep 

As seen in the last section, the steady state amplitude response can be time and 

computer-memory consuming.  As a more convenient alternative, a slowly varying 

frequency sweep was found to achieve acceptable results in less time. However, in this 

case, great care had to be considered when setting the rate of the frequency sweep. It had 

to be small enough to allow the system to reach steady state. After that the envelope of the 

response’s amplitude can be determined. An advantage of this method over the previous 

one was that it didn’t induce large transient responses as the frequency is varied as a ramp 

function not as a staircase. Another two major contributors to the frequency response were 

internal detuning and damping (i.e. quality factor) of the structure under testing. 

4.2.3. Saturation Test Procedure 

In this experiment, the excitation frequency was held constant at the drive beam’s 

first natural frequency (i.e. twice the sense beam’s) and the excitation amplitude was 

incremented. Increasing in excitation amplitude could have been done either manually, or 

automatically using a staircase or ramp signal with small slope. The experimental 
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procedure is shown in Figure 4-7. The procedure to determine the steady state amplitude 

is the same as discussed earlier in this chapter. 

 
Figure 4-7: Flowchart of the procedure to show the nonlinear saturation 

phenomenon using an excitation amplitude sweep 

Boundary conditions, clamping and vise parallelism  

Boundary conditions play an important role in the analytical as well as the 

experimental system behavior. It was found that the clamping forcing greatly affected the 

natural frequencies specifically for the drive (clamped-clamped) beam. 

Aluminum clamps were originally chosen for their light weight and ease of 

machining in the first prototype. The reasoning behind that was great attention had to be 

given not to exert unnecessary forces perpendicular to the shaker’s direction of motion. For 

the same reason, a linear bearing guide was adopted in the design. As a result, the choice 

of using aluminum clamps proved problematic due to its material properties such as 

stiffness. Experimental results showed that the force exerted by each of the clamp screws 

had significant effects on the drive beam’s natural frequency. As a solution to this issue, a 

torque wrench was used to assure the uniform force distribution exerted by the clamp 

screws on the beam. 

Warmup Effect on zero-input bias drift  

Equipment warm-up time was observed to affect the zero-input bias of the sensors. 

Electronic equipment used in this test included data acquisition cards, piezoelectric and 

strain-gauge amplifiers and two LASER displacement sensors.  The LASER displacement 

sensors’ signals showed a drift and DC bias in the case of no system excitation as can be 

seen in Figure 4-8. The difference in bias at t=0 is due to human error while placing the 

sensors in proximity of the sense and drive beams respectively. The signal drifts is in the 
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order of hundreds of micrometers over a 4.5 hours’ time span. This zero-input bias drift 

was filtered using the bandpass filter mentioned later in this chapter. 

 
Figure 4-8: Effect of 4.5 hours warmup time on zero-input DC-drift 

A frequency and amplitude time-response shifts were also observed while testing T-beam 

structures actuated with misaligned PZT actuator patches as shown in Figure 4-9. Based 

on literature [50], these effects are due to imperfect boundary conditions and pre-stresses 

acting on the DUT. This explanation agrees with the clamping challenges discussed in the 

previous section. As a solution, the vise clamps had to be aligned using a micrometer and 

machined guides to ensure symmetry and minimum pre-stress effects. 

 
Figure 4-9: The effect of 4.5 hours warmup time on the frequency response of the 

sense beam (a, b) and the drive beam (c, d) 

 

0 1 2 3 4 5
-0.4

-0.3

-0.2

-0.1

0

B
ea

m
 D

ef
le

ct
io

n 
(m

m
)

 

 

 

Drive Beam
Sense Beam

0

0.2

0.4

Se
ns

e 
B

ea
m

D
ef

le
ct

io
n 

(m
m

)

0

0.5

1

1.5
x 10

-3

 

 
Before Test
After Test

17 17.5 18 18.5
0.00

0.01

0.02

D
riv

e 
B

ea
m

D
ef

le
ct

io
n 

(m
m

)

Frequency (Hz)
30 35 40 45

0.00

0.01

0.02

0.03

Frequency (Hz)

(c) (d)

(b)(a)



 

68 

Angular Velocity effects on the T-Beam Structure 

The centrifugal force acting on the system was found to affect the natural frequency 

of the drive beam in particular as shown in Figure 4-10. In the case of a linear system with 

low damping this would result in a significant gain drop. However, given a flattop 

frequency response as will be shown, the system maintains consistent performance over a 

wider bandwidth. In the second prototype, at higher angular velocities this centrifugal force 

overcame the excitation force applied on the drive beam limiting the measurement range. 

 
Figure 4-10: Angular velocity effect on an unexcited T-beam structure, at higher 

angular velocity the centrifugal force shifted the joint mass pre-
stressing the drive beam 

Filtering Electrical noise 

Given that sampling frequency was fixed through all experiments at 1000 Sample/s, 

all acquired signals were passed through a software band pass filter (BPF). This linear 

phase FIR filter was designed to block the DC bias and drift as well as high frequency noise 

as shown in Figure 4-10. The –3 dB cutoff frequencies was set to 5 and 60 Hz respectively. 

This ensured that the first three natural frequencies of interest passed. Figure 4-11 shows 

the filter’s magnitude and phase responses. 
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Figure 4-11: Band pass filter magntiude and phase frequency response used to 

filter DC bias, slow drift and high frequency noise affecting the 
LASER displacement sensor signals 

4.3. Experimental Prototypes 

4.3.1. First Experimental Prototype 

Macro T-Beam Resonator Prototype 

Several T-structure macro-scale prototypes were built in order to precisely tune the 

system to have the correct frequency ratio of 2:1 between its two lateral vibration modes. 

The system was also designed such that the torsional mode was located away from the in-

plane modes.  The first full functional prototype was designed and built using off-the-shelf 

stainless steel sheet metal beams with dimensions as shown in the next table.   

Table 4-1: First Experimental Prototype Dimensions 

Part Parameter Value  
 
Drive 
Beam 

Length 650 mm  (25.6 in) 
Width 1.519 mm (Gauge 16 / 0.0598 in) 
Thickness 35 mm (1.38 in) 

 
Sense 
Beam 

Length 240 mm (9.45 in) 
Width 35 mm (1.38 in) 
Thickness 0.607 mm  (Gauge 24 / 0.0239 in) 
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Furthermore, a vibration shaker controlled by a Brüel & Kjær vibration control 

system (LDS COMET USB) was used to drive the resonator for the experiments. A 

vibration shaker was specifically chosen to study the effect of increasing drive/excitation 

signal amplitude on the system’s time and frequency responses as well the nonlinear 

phenomena under investigation.  As shown in Figure 4-12, a linear guide was adapted to 

support the structure’s longitudinal motion along the shaker’s axis and minimize the 

vertical load and avoid instabilities in the shaker’s drive controller. Nevertheless, tuning 

the linear guide to be perfectly parallel to the shaker’s motion axis proved challenging. A 

misaligned guide caused the shaker to excite the support structure which added 

measurement noise.  

 
Figure 4-12: First T-Beam macro-scale experimental prototype used as a resonator 

excited by an electromagnetic shaker 

Strain gauges mounted on the drive and sense beams were utilized to measure 

deflection. T-shape strain gauges were connected in a full Wheatstone bridge configuration 

for high sensitivity. In addition, this T-rosette type strain gauge configuration was adopted 

for its temperature compensation and axial strain rejection. Two EA-13-125TQ-350 strain 

gauge sets from Vishay industries were used as shown in Figure 4-13. Also a full layer of 

Cyanoacrylate strain gauge adhesive was applied to mount the strain gauges from HBM 

part number Z70 and left for 24 hours to fully cure. 

Once the strain gauges were bonded successfully to the substrate, wiring the 

electrical connections was the next step. Since this prototype was on a relatively large scale, 
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wire mass and stiffness played a negligible role in affecting the system’s dynamics. 

However, this was not the case with the second smaller prototype as will be discussed in 

later sections. In this design, wire wrap was soldered to connect the strain gauges on the 

stainless steel substrate. Hot glue was then used as a strain relief as the strain gauge pads 

could easily be damaged if the wire was pulled rendering them dysfunctional. After that 

the strain gauge wires were connected to a standard 350 Ω strain gauge amplifier and then 

sampled in real-time via the DSPACE data acquisition card. 

 
Figure 4-13: Strain gauge configuration to measure beam bending with 

temperature compensation and axial-strain rejection 

The use of an electromagnetic shaker for base excitation helped characterize the 

forces needed to choose the proper piezoelectric actuators in the experimental prototypes. 

As mentioned in the experimental procedures at the beginning of this chapter, the structure 

had to be first tuned to 2:1 ratio using an impulse response. The tuning process in this case 

was completely performed by changing the drive beam length through relocating the 

clamps maintaining symmetry about the shaker’s longitudinal axis. An example impulse 

response of the quasi-tuned structure is shown in Figure 4-14. The first frequency peak at 

approximately 7.7 Hz is the first natural frequency (i.e. sense mode), the second and third 

frequency peaks represent the second harmonic of the sense mode and the first drive mode 

respectively.  The frequency difference between peaks {2} and {3} is approximately 1 Hz, 

with ratios between them and the sense mode (peak {1}) equal 1.98 and 2.12 respectively, 

the system was said to be tuned. Moreover the natural frequency at {4} depicts the torsional 
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mode showing a shift away from the second mode by approximately 75%. This insured the 

minimum effect of the torsional mode on the system dynamics within the frequency band 

of interest. 

 
Figure 4-14: First T-beam resonator impulse response in the frequency domain 

showing the frequency response of the drive beam (top) and the sense 
beam (bottom) 

Time Response  

Once the system was tuned, a quick verification test to show the effect of the 2:1 

internal resonance was performed. The shaker’s excitation frequency as set to twice the 

first mode natural frequency (e.g. 15.4 Hz) and a reasonable excitation amplitude (0.254 

mm for this test). As illustrated in Figure 4-15, the bottom plot shows the measured strain 

gauge voltage located on the drive beam reaching steady state in about t=10 seconds. On 

the other hand, the sense beam remains unexcited until the drive beam reached steady state 

when a virtual energy gate can be thought to open between the two modes. After that, the 

deflection of the sense beam started to grow with relative decrease in the drive beam 

deflection. The sense beam deflection reaches steady state at approximately t=23 seconds 

with a frequency half that of excitation. 
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Figure 4-15: T-shaped resonator time history showing the transfer of energy from 

the drive beam (bottom) to the sense beam (top) 

Steady State Amplitude Frequency Response 

One relatively challenging aspect of using the shaker was that its controller did not 

accept external input signals. This rendered the idea of automating a stair-case frequency 

sweep impossible. Nevertheless, the test was completed manually by setting the shaker’s 

drive signal parameters using the controller’s provided software. The steady state 

amplitude response was logged given different excitation frequencies (around twice the 

sense mode natural frequency). After that the test was repeated using a higher excitation 

amplitude. As can be seen in Figure 4-16, the sense mode frequency response has a flat-

top (similar to that of a band-pass filter) with a stable frequency region of symmetry about 

the sense beam’s natural frequency. These results match the predictions obtained from 

analytical model shown in Figure 3-10 and Figure 3-11. 
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Figure 4-16: First resonator prototype frequency responses for various excitation 

amplitudes; sense beam (top) and drive beam (bottom) 
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Saturation 

Given that the system was tuned to 2:1 ratio and excited at its second mode, the 

saturation phenomenon occurred after increasing the excitation amplitude beyond a certain 

threshold. Before that threshold was exceeded, only the drive beam was excited and the 

system behaved linearly. However, after this excitation threshold was exceeded, the energy 

was channeled to the sense mode and was excited at its own natural frequency (i.e. half the 

drive mode frequency) as shown in Figure 4-17. 

 
Figure 4-17: First Macro T-beam prototype saturation experimental results 

showing the transfer of energy from the drive beam to the sense beam  

Gyroscope Experiment 

Next was to study the effects of angular velocity on the T-beam structure. The first design 

constraint was the driving actuator. In the previous resonator experiments, an 

electromechanical shaker was used. However, since a rotating platform was required for 

this experiment, an actuator with significantly lighter weight was needed. A flexible 

piezoelectric actuator (Physik Instrumente™ P876.15) was chosen as the driving actuator. 

It offered sufficient blocking force (775 N) to drive the system into the nonlinear region of 

operation and lower power consumption.  

Moreover a custom-made rate table test bed was designed and built to rotate the test bed as 

shown in Figure 4-18. The rate table design contained a slip-ring to connect the rotating 

sensors and actuators to their respective amplifiers and data acquisition cards without 
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entanglement. It also used an industrial grade servo motor and a quadrature shaft encoder 

to monitor angular displacement for feedback control purposes. The gyroscope calibration 

test was then performed by linearly increasing angular velocity of the rate table and then 

maintaining a steady state angular velocity. The sense beam strain was then monitored 

using strain gauges showing promising results as can be seen in Figure 4-19.  

 
Figure 4-18: First T-beam gyroscope experimental prototype mounted on a 

custom-made rate table using piezoelectric actuators for excitation 
and strain gauges for deflection measurements 

 
Figure 4-19: Time history for a ramp angular velocity input of the first T-beam 

gyroscope prototype showing a linear correlation to the sense beam 
deflection 
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4.3.2. Second Experimental Prototype 

A second resonator prototype, shown in Figure 4-20, with different design 

specifications was built for several reasons. Firstly to validate the results of the earlier 

prototype. Secondly was to mitigate the observed design shortcomings, and thirdly to be 

later used on a state-of-the-art rate table for validating experimental results in response to 

rotary motion. 

The physical prototype was implemented using off-the-shelve available materials 

(i.e. standard stainless steel sheet metal thicknesses) shown in Figure 4-20. The drive beam 

thickness was chosen to be thicker than the sense beam’s in order to shift the torsional 

mode as far as possible but not overly thick to be easily actuated using piezoelectric 

actuators. A mass was attached at the joint to reduce the drive mode natural frequency to 

be closer to twice the sense mode’s natural frequency.  

 
Figure 4-20: Preliminary T-beam resonator physical design dimensions (in mm) 

used in simulation 

Mode shapes of the structure were verified using FEA analysis (ANSYSTM) to ensure the 

proper order of mode shapes and natural frequencies. The first three mode shapes are 

shown in Figure 4-21.  This step proved important in the implementation stage of the 

physical model as the displacements were smaller than to be visually observed without 

specialized equipment. 
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Figure 4-21: FEA simulation using ANSYS™ showing the first three mode shapes 

of the T-beam resonator (left) sense mode (middle) drive mode (right) 
torsional mode 

The earlier design utilized strain gauges to measure deflection. Since this system is 

on a relatively small scale, strain gauge wires significantly altered the system dynamics. 

As a solution, two noncontact LASER displacement sensors (LTS 15/03 and 15/12) were 

used to measure deflection of both the drive and the sense beams respectively as shown in 

Figure 4-22. 

 
Figure 4-22: Second T-beam gyroscope macro-scale experimental prototype 

composed of a two degrees of freedom resonator, piezoelectric 
actuators and LASER displacement sensors for deflection 
measurements 
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Also better drive beam clamps were designed to overcome the challenges 

experienced in the first prototype. The earlier clamp design proved very challenging with 

respect to tuning as it used a four screw configuration as shown on the left in Figure 4-23, 

the same setback was reported in [51]. As a solution to this problem a pair of precision 

grinding vises were used as shown in Figure 4-23. Two KBC™ P/N 1-814-015 grinding 

vises that utilize one machine cap screw to hold the work piece were adopted. This 

eliminated the challenge of tuning the torque on each of the four screws to maintain 

uniform distribution of the clamping force on the beam. Nevertheless, both vises holding 

the drive beam had to be perfectly aligned using specialized equipment for near-ideal 

boundary conditions. 

  

Figure 4-23: Early prototype clamp design (left) vs precision grinding vise (right) 

 The second modification updated in this design was the use of piezoelectric 

actuators instead of the vibration shaker so it can be later used on a rate table. The design 

constraint in this case was not only the unavailability of an accurate vibration shaker 

suitable for this task, but also the slip ring wire current rating were significantly lower than 

needed. 

An updated T-shaped structure was designed in CAD software (Solidworks™), 

mode shapes analyzed in ANSYS™ then physically built. Since this experiment acts 

primarily as a proof of concept for a gyroscope, the platform needed to be rotated at 

different angular speeds.  

Piezoelectric ceramics were used in numerous applications as both sensors and 

actuators. One of the main reasons for the popularity of using piezoelectric sensors and 

actuators is their relatively low power consumption and linearity. Several research groups 
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use them for vibration suppression and energy harvesting through mounting on flexible 

beams. The key idea behind using piezoelectric ceramics for bending flexible beams is that 

once voltage is applied; the patch will either expand or contract depending on polarity.  

In this experiment, four identical 15x19x0.19 mm PSI-5H4E piezoelectric ceramic 

actuators were used as shown in Figure 4-24. As also shown in the same figure, the 

actuators were connected in a parallel configuration with the stainless steel substrate acting 

as a common conductor. An E-835 Duract™ bipolar piezoelectric driver module was used 

to drive all piezoelectric patches simultaneously. This insured that the top set of patches 

shrank in-phase with expansion of the bottom set and vice versa. In case there was a phase 

shift, the excitation forces would not be symmetric which might had an effect on the desired 

mode shape of the drive beam. 

 
Figure 4-24: Piezoelectric actuator configuration for exciting the T-beam using 

four piezoelectric actuators connected to one amplifier 

Similar to strain gauges, the same mounting Cyanoacrylate glue (Z70) was used to 

fix the piezoelectric patches in place. It is worth noting that Cyanoacrylate acts as an 

insulator, which posed a challenge as good conductive connections were needed to be made 
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between the bottom side of the patches and the stainless steel substrate. As a solution, a 

drop of 8330S silver conductive epoxy was first applied to the middle of the patch. After 

that, a thin layer of Cyanoacrylate glue was spread across the area around the conductive 

epoxy before pressure was applied for two minutes to insure a strong electrical and 

mechanical bonds between the two surfaces. 

Frequency Response 

At first an initial deflection and impulse response test was performed to fine-tune 

the structure to 2:1 resonance. Examining the initial deflection results shown in 

Figure 4-25, one can see that the sense mode natural frequency labelled {1} is 21.48 Hz 

and it’s second harmonic labelled {2} 42.97 Hz while the drive mode natural frequency 

labelled {3} is 44.5 Hz, 1.62 Hz away. The resonance ratios between the point {2}, {3} 

and {1} are 2.00 and 2.07. 

 
Figure 4-25: Initial deflection time history tests results for the second T-beam 

prototype, drive beam (top) and sense beam (bottom) 

As a next step, a series of slowly varying frequency sweep tests with a slope of 

0.001 Hz/sec were performed to obtain accurate frequency response curves. The first 

experiment shown in Figure 4-26 shows the effect of different excitation amplitudes over 

a frequency sweep passing the sense mode natural frequency. As expected, results show 

that the sense beam frequency peak behaved linearly in the frequency domain (i.e. single 
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sharp peak rather than flattop) irrelevant of excitation amplitudes. The sense beam 

deflections amplitudes ranged from 6 μm at 7 V to 10 μm at 9 V, respectively. 

On the other hand, the drive beam deflection showed rather interesting behaviour. 

At lower excitation amplitudes (i.e. 7 V and 8 V), the drive beam’s frequency response was 

similar to that of the linear case. However, at 9 V excitation amplitude, the drive beam 

showed a significant increase in bandwidth (doubled). It is worth noting that the drive beam 

peak-to-peak deflection was smaller than that of the sense beam’s (0.6 μm and 0.4 μm). 

This was due to the nature of its boundary conditions as well as dimensions compared to 

the sense beam. The higher frequency components for both the sense and the drive beams 

are shown for the reader’s convenience. 

 
Figure 4-26: Effect of excitation amplitude on the frequency response in the linear 

case, sense beam deflection (a, b) and drive beam deflection (c, d) 
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With the purpose of studying the nonlinear frequency response of the system, the excitation 

frequency sweep was shifted to around twice the sense mode natural frequency (42.5 Hz 

to 43.5 Hz) using the same slope as the previous test. The experimental results are shown 

in Figure 4-27, the sense beam responded near its own natural frequency (half that of 

excitation) showing a nonlinear flat-top behaviour at 9 V excitation amplitude. 

 
Figure 4-27: Effect of excitation amplitude on the frequency response in the 

nonlinear excitation case, sense beam deflection (a, b) and drive beam 
deflection (c, d) 

It is also worth noting that the sense beam response amplitude increased to approximately 

15-times more than the previous “linear” case. Both linear and nonlinear results are 

compared in Figure 4-28. It can be observed that by increasing excitation amplitude, not 

only a significant flat-top bandwidth can be achieved, but in this case, also the overall gain 

(i.e. quality factor) was increased. 

Saturation 

The saturation test for this design also matches the theoretical expectation. For this 

test, the excitation frequency was fixed at 21.5 Hz for the “linear” case and 42.8 Hz for the 

“nonlinear” case and all excitation amplitude sweeps were introduced at a 0.01 V/sec slope. 
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As shown in Figure 4-29, the linear case response amplitude increased linearly as expected. 

On the other hand, the sense beam started to respond in the nonlinear case after a threshold 

excitation amplitude of approximately 3.5 V was exceeded. After that, it increased almost 

linearly after 4 V. 

 
Figure 4-28: Comparison between the linear and nonlinear frequency responses of 

the sense beam excitation amplitudes of 7 V (a, b), 8 V (c, d) and 9 V 
(e, f) 

 
Figure 4-29: Second Macro T-beam prototype saturation experimental results 

showing the transfer of energy to the sense beam in the nonlinear case 
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Gyroscope Experiments 

This experimental prototype had the same mechanical structure as the second 

resonator prototype with the exception of sensors. A state-of-the-art rate table (Ideal 

Aerosmith 1621-200A-TL) was used in this test as a replacement for the custom made one. 

In addition, the rate table’s angular velocity was monitored through interfacing the 

DPSACE DAQ card with the analog output of the rate table’s controller as shown in 

Figure 4-30. 

 
Figure 4-30: Gyroscope test bed system block diagram 

The Linear case: exc senseωΩ =  

In this test, excitation frequency was fixed at the sense mode natural frequency (i.e. 

21.5 Hzsω = ) and piezoelectric actuator excitation amplitude of 9 V. This choice of 

excitation amplitude was because the same structure showed nonlinear behavior in the 

resonator experiments. Angular velocity was then increased at the slowest possible 

acceleration allowed by the rate table ( )20.256deg/sec  resulting in the time domain results 

shown in Figure 4-31. A linear increase in the sense beam deflection was observed starting 

at approximately 15 deg/sec up to 58 deg/sec with sensitivity of 0.7 μm deg s . However, 

after the angular velocity exceeded 58 deg/sec , sense beam deflection sensitivity to 

angular velocity became inversely proportional. This was due to the centripetal forces 

applied on the structure counteracting the drive forces exerted by the piezoelectric 

actuators.  
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Figure 4-31: Linear case time history results showing the deflection in the sense 

and drive beams respectively (a, b) in response to a ramp angular 
velocity signal (c). Calibration curve (d) shows sensitivity of the sense 
beam against angular velocity 
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The Nonlinear case: 2exc drive senseω ωΩ = =   

In this case, excitation amplitude was fixed similar to the linear case experiments 

but excitation frequency was doubled. This facilitates the comparison between the linear 

and nonlinear cases of the same structure. Figure 4-32 shows the envelope of the sense 

beam deflection increasing proportionally with angular velocity with sensitivity of

22 μm deg s , 21 times higher than the linear case. 

 
Figure 4-32: Nonlinear case time history results showing the deflection in the sense 

beam (a) and drive beam (b) in response to a ramp angular velocity 
signal (c). The calibration curve (d) shows sensitivity of the sense 
beam deflection versus angular velocity 
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It can be also seen that the centrifugal force affected the drive beam displacement after the 

same angular velocity threshold was exceeded. In-turn the sense beam response was 

affected. This drawback can be addressed in the future through the use of feedback control 

algorithms to regulate the drive beam deflection. 

Linear vs Nonlinear Frequency Response 

In addition to evaluating the linear vs nonlinear frequency responses of the structure 

as a resonator, the effect of angular velocity on the frequency response was established. 

The two shown frequency sweep results in Figure 4-33 were performed at angular 

velocities of 30 and 40deg s  respectively.   

It was found that the frequency peaks were shifted at the two input angular 

velocities. In turn, this structural natural frequency shift detuned the system away from the 

frequency of the drive signal significantly after 45 deg s . As a result, this angular velocity 

threshold behaved as an upper bound for this design. One method used in MEMS 

gyroscopes designs is to track the resonance frequency of the structure using a phased 

locked loop to maintain consistent performance at the cost of system complexity. 

 
Figure 4-33: Comparison frequency responses in the linear and nonlinear cases to 

a swept sine excitation at angular velocities of 30 deg/sec (top) and 40 
deg/sec (bottom)  
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4.4. Feedback Control for Bandwidth Enhancement 

In addition to the increase in bandwidth associated with internal resonance, more 

robustness was achieved by introducing simple closed-loop feedback control. The general 

idea was to feedback a coupling nonlinear term -or a combination of nonlinear terms- to be 

added to the excitation signal. If tuned correctly, this was found to increase the coupling 

between the drive and sense beam which in-turn facilitated the transfer of energy between 

the two vibration modes. 

In this section, the effect of using the measured in-plane velocities of the centers of mass 

of the drive and sense beams represented by dx and sx to achieve an increase in bandwidth. 

The reason behind this choice of quadratic coupling term is its resemblance to a Coriolis-

like term in gyroscopes. Moreover, a simple proportional controller was used to tune the 

effect of the aforementioned nonlinear terms on the amplitude of the excitation signal 

similar to amplitude modulation as  

 ( )( )sinp s dA K x x tω+     (4.1) 

Such that A is the minimum excitation amplitude in volts observed to drive the system to 

operate in its nonlinear region (A was set to 9 V for this test bed).  

Moreover, in order to avoid driving the system to instability that might damage the test 

bed, the tuning gain 𝐾𝐾𝑝𝑝was introduced. It was used in studying the effect of the nonlinear 

term (i.e. s dx x  ) on the system’s overall response. A preliminary experiment was first 

performed to estimate the maximum possible value of the nonlinear terms without 

introducing the gain 𝐾𝐾𝑝𝑝 as shown in Figure 4-34.   
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Figure 4-34: Preliminary test to estimate the maximum value of the term s dx x   

After that, the system was excited at its higher natural frequency to induce the nonlinear 

response with the highest drive amplitude possible. For this experiment the maximum 

measured value for s dx x  was 2000. Consequently, the nonlinear term s dx x  was first 

normalized by the aforementioned estimate (i.e. 2000) to insure stability and then amplified 

by the gain pK  as shown in Figure 4-35. 

 
Figure 4-35: Proportional feedback algorithm of the nonlinear terms for 

bandwidth enhancement 

Lastly, a series of experiments were completed using different values of the 

proportional gain pK and a frequency sine sweep within the range of the second mode (i.e. 
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drive) natural frequency of the T-beam. Figure 4-36 shows the sense beam tip deflection 

in the frequency domain. A significant gain drop was observed in-line with increasing the 

proportional gain pK until it diminished to zero at 200pK = . 

 Figure 4-37 shows the effect in the time domain of increasing the gain positively 

compared to open loop excitation (i.e. 0pK = ). It can be observed that the sense beam 

time response amplitude decreased with increasing pK . Moreover, the drive beam 

deflection exhibited no apparent change as the excitation frequency approached the drive 

mode natural frequency. 

 
Figure 4-36: The effect of positive feedback gain on the sense beam frequency 

response, higher gain is observed in the frequency domain 
proportional to the feedback proportional gain Kp 

Since the positive feedback gain showed not only gain degradation but also unobservable 

bandwidth enhancement, negative feedback gain was introduced. Figure 4-38 and 

Figure 4-39 show the relation between the system time responses given different negative 

feedback gain values. The first interesting effect to be observed is the significant change in 

the response of the nonlinear term compared to the previous case contributing to the 

excitation signal. Also, the drive beam deflection ascended to a stable amplitude within a 

frequency range around the drive mode natural frequency of 40.83 Hz between t=250 and 

t=300 seconds. As the proportional gain pK was increased, the time interval at which the 

drive beam switches to the higher amplitude increased indicating a frequency response with 

higher bandwidth. Conversely, a gain beyond -900 forced the system to instability. 
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Figure 4-37: Time history during a frequency sweep (b) showing the effect of 

positive feedback of the nonlinear term (c), with gains Kp= 0, 100 and 
200 on the drive beam (a) and sense beam (d)  
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Figure 4-38: Time history during a frequency sweep (b) showing the effect of 

positive feedback of the nonlinear term (c), with gains Kp= -200, -300 
and -500 on the drive beam (a) and sense beam (d) 
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Figure 4-39: Time history during a frequency sweep (b) showing the effect of 

positive feedback of the nonlinear term (c), with gains Kp= -800, -900 
and -1000 on the drive beam (a) and sense beam (d) 
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Similar to the positive feedback case, the sense beam frequency responses for different 

proportional gain values are compared in Figure 4-40. The sense mode bandwidth 

increased by increasing the proportional gain on the cost of decreasing the gain (i.e. quality 

factor). This aligned with the theoretical background established in the chapters two and 

three. It also proves the hypothesis that by amplifying the coupling terms between the two 

vibration modes, one can induce an increase in bandwidth.  

 
Figure 4-40: The effect of negative feedback gain on the sense beam frequency 

response, wider bandwidth with decreased gain was observed in the 
frequency domain proportional to the feedback proportional gain Kp 

4.5. Conclusions 

The experimental results shown in this chapter qualitatively validate the numerical 

simulation results for the gyroscope and resonator mathematical models shown in Chapter 

3. The goals of increasing the sense mode bandwidth and the potential additional 

performance improvements that could be obtained using feedback of the appropriate 

nonlinear coupling terms to the forcing function were successfully achieved.  
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Chapter 5.  
 
Conclusion and Future Work 

The main objective of this research to establish the proof of concept in utilizing 

nonlinear internal resonance in modern gyroscope designs was successfully established. A 

theoretical background was founded by comparing typical gyroscope models to designs 

used in literature showing the effects of internal resonances on the frequency response. For 

each of the examined designs, the Coriolis-like terms as well as the coupling and quadratic 

nonlinearities were identified and related to similar terms in the gyroscope’s equations of 

motion. 

A mathematical model of a T-shaped two DOF structure was derived and solved 

both analytically and using numerical simulation. The analytical derivation used the Euler-

Lagrange equations to derive the nonlinear coupled equations of motion. After that the 

equations of motion were nondimensionalized in order to study the modal interaction 

separately from physical units. This step will ease the transition from the macro-scale 

analysis performed in this research to future work on implementing this concept to the 

micrometer scale (i.e. MEMS gyroscopes). Moreover, the equations of motion were then 

scaled to examine the effect of nonlinearities on the overall system response. Lastly, the 

perturbation solution was derived to provide qualitative results to be later put in use during 

the design of experimental models. 

An experimental test bed was developed to confirm the analytical results. These 

investigational results qualitatively showed promising trends to the corresponding 

numerical and analytical counterparts. A significant increase in the sense beam bandwidth 

with a flattop behavior was achieved in the case of 2:1 internal resonance. Nevertheless, 

this increase in bandwidth and gain was quasi-proportional to excitation amplitude. The 

sense beam deflection in the nonlinear case showed significant increase in the nonlinear 

resonance case over the linear case. Also the saturation phenomenon was analytically and 

experimentally validated. 
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The developed gyroscope design showed a linear relationship to angular velocity 

over an acceptable range. As future work, this measurement range limitation can be 

mitigated using a feedback control loop to track the drive mode natural frequency. 

Moreover, utilizing the analytical investigation, the nonlinear terms were added to the 

excitation frequency in a simple feedback scheme to the frequency response and achieve 

wider bandwidth while maintaining higher gains (i.e. quality factor). 

The hypothesis of increasing the sense mode bandwidth through feedback of 

nonlinear coupling terms was established and validated by experimental results. Further 

studies can be completed on examining other coupling terms or a combinations of multiple 

terms weighted to achieve both higher quality factor and increase bandwidth as well as 

thorough stability analysis. 

At the time of writing, our research team has successfully completed several 

preliminary MEMS gyroscope prototypes based on the concept of internal resonance 

established in this thesis. Nonetheless, the fundamental principles of nonlinear modal 

interactions as well as saturation can be projected to hold. 
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