
DISCRETE DISTRIBUTED LOAD BALANCING

by

Hoda Akbari

M.Sc., Sharif University of Technology, 2009

B.Sc., Sharif University of Technology, 2007

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

in the

School of Computing Science

Faculty of Applied Sciences

c© Hoda Akbari 2014

SIMON FRASER UNIVERSITY

Fall 2014

All rights reserved.

However, in accordance with the Copyright Act of Canada, this work may be

reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,

research, criticism, review and news reporting is likely to be in accordance

with the law, particularly if cited appropriately.

APPROVAL

Name: Hoda Akbari

Degree: Doctor of Philosophy

Title: Discrete Distributed Load Balancing

Examining Committee: Chair: Dr. Binay Bhattacharya

Professor

Dr. Petra Berenbrink,

Associate Professor, Computing Science

Simon Fraser University

Senior Supervisor

Dr. Funda Ergun,

Professor, Computing Science

Simon Fraser University

Supervisor

Dr. Andrei Bulatov,

Professor, Computing Science

Simon Fraser University

SFU Examiner

Dr. Nicholas J. A. Harvey,

Assistant Professor

Department of Computer Science

University of British Columbia

External Examiner

Date Approved: Nov. 20, 2014

ii

Partial Copyright Licence

iii

Abstract

The neighbourhood load balancing problem considers a network along with a distribution

of tasks over its nodes. The aim is to minimize discrepancy which is the difference

between the maximum and the minimum load. This is done by a distributed process that

exchanges load between neighbouring nodes. One distinguishes between the continuous

model - where tasks can be split arbitrarily - and the more practical discrete model in

which tasks are atomic. The former has been comprehensively studied in early results [20,

57, 29]. In the latter model, various algorithms have been developed and analyzed [10, 9,

27, 28, 41, 39, 44, 57, 62, 64]. Nevertheless, several aspects are yet to be explored, such

as devising new discrete algorithms, and generalizing or tightening the existing analyses.

We study the problem of discrete neighbourhood load balancing. We propose a new

approach that can transform continuous load balancing algorithms into deterministic

or randomized discrete versions. Despite its simplicity, the proposed approach works

in quite general settings (arbitrary network topology, weighted tasks and heterogeneous

processors) and in many cases achieves improved discrepancy bounds. We also study

the usage of rotor-router walks – deterministic analogue of random walks – for discrete

load balancing, and in particular, derandomization of existing randomized approaches.

After that, we obtain discrepancy bounds for deterministic and randomized discrete

second-order processes [57], where the amount of load transferred in each round depends

both on the current load distribution and the amount of load transferred in the previous

round. In second-order processes a node may attempt to send out more load than its

available load. To address this issue, we provide bounds on the minimum load of any

node which is sufficient to prevent such conditions.

iv

Acknowledgments

Completion of this thesis was possible with the help and support of several people.

Foremost, I would like to express my sincere gratitude to my supervisor Dr. Petra

Berenbrink for the continuous support of my PhD study and research, for her patience,

motivation, insight, and helpful discussions. I would like to thank the rest of my thesis

committee: Dr. Funda Ergun, Dr. Andrei Bulatov, and Dr. Nicholas Harvey for their

time and generous support to improve the quality of this work. Special thanks to Dr.

Thomas Sauerwald and Dr. Robert Elsässer with whom I had the honour of research

collaboration and for their very helpful discussions. I am also thankful to Dr. Tom

Friedetzky for his guidance on how to better present the material.

I am also indebted to my fellow labmates for stimulating discussions. Thanks also go

to all faculty, staff, and friends in the School of Computing Science at SFU for providing

such a nice academic environment. My graduate studies would not have been interesting

without them. I also thank Simon Fraser University, for scholarship funding that helped

me to focus full time on my research.

I cannot thank my parents enough. This journey would not have been possible

without their encouragement and endless support. Finally, I extend heartfelt thanks to

my husband, for his continued love and staying with me throughout this journey.

v

Contents

Approval ii

Partial Copyright License iii

Abstract iv

Acknowledgments v

Contents vi

1 Introduction 1

1.1 Model and Notation . 2

1.2 An Overview of the Results . 4

2 Related Work 9

2.1 Continuous Load Balancing . 9

2.2 Discrete Load Balancing . 12

2.2.1 Improved Processes for Discrete Load Balancing 15

2.3 Other Related Models . 20

2.3.1 The Game-Theoretic Model . 20

2.3.2 The Balls-into-Bins Model . 24

2.3.3 Propp Machines and Rotor-Router Walks 25

3 Flow Imitation 28

3.1 Definitions . 30

3.2 Establishing Basic Facts . 31

3.3 Deterministic Flow Imitation . 34

vi

3.4 Randomized Flow Imitation . 40

3.5 Comparison with Other Results . 47

4 Propp Machines 51

4.1 The Deterministic Propp Process . 55

4.1.1 Analysis of D Propp . 57

4.2 The Randomized Propp Process . 60

4.2.1 Definitions and Basic Facts . 61

4.2.2 A General Bound for Arbitrary Graphs 63

4.2.3 Graph-specific Bounds . 68

5 Discrete Second-Order Processes 77

5.1 General Framework for FOS Schemes . 78

5.1.1 Deviation between Continuous and Discrete FOS Schemes 78

5.1.2 Framework for Randomized FOS Schemes 81

5.2 Second-Order Diffusion Processes . 88

5.2.1 Deviation between Continuous and Discrete SOS Schemes 92

5.2.2 Framework for Randomized SOS Schemes 93

5.2.3 Experimental Simulations . 95

5.3 Negative Load for SOS Schemes . 95

5.3.1 Experimental Simulations . 99

Appendix A Tools 101

A.1 Hypercube Facts . 103

Bibliography 105

vii

Chapter 1

Introduction

Due to the ubiquity of computer networks in a wide variety of applications, distributed

computation on large decentralized networks is becoming an increasingly popular area of

research. Here, load balancing is a key issue with considerable impact on the performance

of the systems and the perceived quality of service. The goal of load balancing is that the

processors receive equal shares of the total workload or data. Nevertheless, an overall

benefit is achieved only if the balancing process itself is very efficient. The work proposed

here centres on design and analysis of efficient balancing processes.

The neighbourhood load balancing problem considers a network along with a distri-

bution of tasks over its nodes. The aim is to minimize discrepancy which is the difference

between the maximum and the minimum load. This is done by a distributed process

that exchanges load between neighbouring nodes. Chapter 2 contains an overview of the

existing results in this area. Early results considered the continuous model where tasks

can be split arbitrarily. In the more realistic discrete model, on the other hand, tasks

are atomic and cannot be divided to smaller tasks. As will be mentioned in Chapter 2,

the continuous model is well understood (Section 2.1), while the discrete model is still

attracting researchers’ attention. Various discrete algorithms have been developed and

analyzed (Section 2.2). Nevertheless, several aspects are yet to be explored, such as

devising new discrete algorithms, and improving the existing analyses.

We study the problem of discrete neighbourhood load balancing. In Chapter 3,

we present a new approach that transforms continuous load balancing algorithms into

deterministic or randomized discrete versions. Chapter 4 contains new results on the

usage of rotor-router walks – deterministic analogue of random walks – for discrete load

1

CHAPTER 1. INTRODUCTION 2

balancing, and in particular, derandomization of existing randomized approaches. In

Chapter 5 we analyze discrete second-order processes [57] (processes where the amount

of load transferred in each round depends both on the current load distribution and the

amount of load transferred in the previous round).

Next, we describe the model more formally and introduce the notation.

1.1 Model and Notation

In the neighbourhood load balancing problem we consider a connected network of n

processors. The network is modelled by a graphG = (V,E) of order n with the processors

as its nodes labelled by V = {1, . . . , n} and the communication links as its edges. N(i)

is the neighbourhood of node i, defined as the set of direct neighbours of i. The degree

of a node i is di = |N(i)|, and d is the maximum degree among all the nodes. Initially,

m tasks are arbitrarily distributed over the nodes.

In general settings, both nodes and tasks have statically assigned positive weights.

The weight of a node i is denoted by si which models the amount of computational

resources i has, or simply its speed. We assume s1 = 1, and for all 2 6 i 6 n, we

have si > 1. We define s = s1 + · · ·+ sn as the capacity of the network. The network is

called homogeneous when all the nodes have the same speed and heterogeneous otherwise.

Similarly, weight wi of a task i is proportional to the amount of computational resources i

requires in order to finish. When tasks are identical, they are also called tokens. The

maximum task weight is denoted by wmax, and w := w1 + · · · + wm is the total weight

of all the tasks.

The load xi of a node i is defined as the total weight of its tasks. The makespan `i

of node i is defined as its load divided by its speed, i.e., xi/si. The makespan of an

assignment (x1, . . . , xn) is the maximum makespan of any node. The goal is to distribute

the tasks so that the makespans of all the nodes are equal and thus the makespan of

the assignment is minimized. In other words, the balancing process should eventually

converge to a state where xi = x̄i := si ·w/s. In a homogeneous network, since all x̄i are

equal we drop the node index and denote the average load by x̄ := m/n. We consider

synchronous processes, i.e., processes that work in synchronous rounds. Each round

consists of each node exchanging load with its neighbours in parallel in a decentralized

fashion. The key issue is how to determine the amount of load to be sent to each of the

neighbours. A general scheme is shown in Algorithm 1.1, which is run in parallel over

CHAPTER 1. INTRODUCTION 3

all the nodes.

For a process P, the load vector at the beginning of round t is denoted by

xP(t) = (xP1 (t), . . . , xPn (t))

Also, yPi,j(t) represents the load transferred from node i to node j, so that we have:

xPi (t+ 1) = xPi (t)−
∑
j∈N(i)

(yPi,j(t)− yPj,i(t)). (1.1)

When clear from the context, we omit the process superscript.

Algorithm 1.1 A General Neighbourhood Load Balancing Algorithm: The process on
node i at round t

for each neighbour j of i in parallel
Compute yPi,j(t)

Send a total load of yPi,j(t) to j

yPj,i(t)← The amount of load received from j

xPi (t+ 1) = xPi (t)−
∑

j∈N(i)(y
P
i,j(t)− yPj,i(t))

The discrepancy1 of a vector v is defined as (maxi vi−mini vi). The widely accepted

balancing measure is the makespan discrepancy which is the discrepancy of the makespan

vector. In a homogeneous network this is equivalent to the load discrepancy, which is the

discrepancy of the load vector. Here, we will use the shortened term discrepancy for the

makespan discrepancy. We also define max-avg discrepancy as the difference between

the maximum makespan and w/s, which is the makespan of the balanced allocation.

The convergence time or the balancing time of a continuous load balancing process

P – denoted by TP– is the time it takes for the algorithm until it reaches a state with

constant discrepancy – e.g. discrepancy of one. In this thesis, we use the following

definition which ensures a discrepancy of two:

TP := TP(x(0)) = {min t : ∀i, |xi(t)− w · si/s| 6 1}.

When clear from the context, we omit the process superscript of T . In the context of ran-

domized processes, we say an event occurs with high probability (w.h.p) if its probability

is at least 1−O(n−α) for some constant α > 0.

1For more clarity, we will sometimes use the term ”max-min discrepancy”.

CHAPTER 1. INTRODUCTION 4

Tables 1.1 and 1.2 outline the notation and terms used throughout the thesis.

1.2 An Overview of the Results

This thesis extends and contributes to the existing results in the discrete distributed load

balancing from different angles. In Chapter 3, we present a new approach through which

a discrete process tries to achieve load distribution similar to a continuous process. In

Chapter 4 we analyze a so-called rotor walk model as a model for load balancing, leading

to new results in both the rotor walks and the load balancing area. Chapter 5 extends

the existing results on randomized discrete load balancing to heterogeneous networks

and so-called second-order processes by generalizing the existing analysis techniques.

This was made possible by introducing abstractions on some concepts such as rounding.

The main idea of Chapter 3 is to consider cumulative values of load transferred over

each edge, while previous algorithms consider the current state of the network only. This

provides a framework that can transform continuous algorithms to discrete algorithms

in quite general settings (heterogeneous networks, weighted tasks, and variety of contin-

uous algorithms). A deterministic and a randomized transformation are presented (task

weights are not supported in the randomized algorithm). Both algorithms calculate the

cumulative values in the same way. The former algorithm rounds the values down while

the latter applies randomized rounding. Let T be the convergence time of the continu-

ous process. Then at time T the deterministic and randomized transformation achieve

max-avg discrepancies of O(d ·wmax) (Theorem 3.3) and d
4 +O(

√
d log n) (Theorem 3.8),

respectively.

In Chapter 4 we consider the rotor walk (or Propp machine) model which distributes

tokens in a round-robin fashion. The model was originally introduced as a derandomized

version of a random walk model in which tokens perform random walk steps indepen-

dently in a synchronous manner. To measure how well rotor walks can approximate

random walks one compares the number of tokens a node has in the two models, taking

the maximum difference between the two values over every node and every round. In-

terestingly, in regular graphs the rotor walk and the random walk model can be viewed

as discrete and continuous load balancing algorithms.

By adopting this view, we obtained bounds on the deviation of the rotor walk model

from the continuous random walk model. Here, our main contribution is to prove that

CHAPTER 1. INTRODUCTION 5

Table 1.1: The Notation Used Throughout the Thesis

n Number of processors

V V = {1, . . . , n}; the set of processors

E The set of edges denoting the underlying connections of the
processors

G = (V,E) A simple undirected loop-free graph denoting the network’s
topology with V as its nodes and E as its edges

N(i) The set of direct neighbours of the node i

di di = |N(i)|; Degree of node i

d Maximum node degree

si Speed of node i; we assume s1 = 1, and for all 2 6 i 6 n,
we have si > 1.

s s := s1 + · · ·+ sn; capacity of the network

m Number of tasks

wj Weight of task j

wmax wmax := maxj wj ; maximum weight of any task

w w = w1 + · · ·+ wm; the total weight of all the tasks

xi Load of a node i which is defined as the total weight of the
tasks assigned to i

`i `i := xi/si; makespan of node i which is defined as its load
divided by its speed

x̄i x̄i := si · w/s; the desired load of the node i

x̄ x̄ := m/n; the common value for x̄i in a homogeneous net-
works

xP(t) xP(t) := (xP1 (t), . . . , xPn (t)); the load vector at the beginning
of round t of process P. When clear from the context, the
process superscript may be omitted.

yPi,j(t) the load transferred from node i to node j during the round t
of process P. When clear from the context, the process
superscript may be omitted.

T Convergence time of various processes, depending on the
context

{a} For a ∈ R, we define {a} := a− bac

CHAPTER 1. INTRODUCTION 6

Table 1.2: Terms Used Throughout the Thesis

Continuous process A process in which tasks may be broken into smaller parts
arbitrarily before being transferred

Discrete process A process that only transfers tasks atomically without
breaking them into smaller parts

Homogeneous network A network of processors with identical speeds

Heterogeneous network A network of processors with different speeds

Token A single load unit in the uniform task model

Discrepancy of a vector v maxi vi −mini vi

Discrepancy Makespan discrepancy; the discrepancy of the makespan
vector

Load Discrepancy Discrepancy of the load vector; for homogeneous networks
this is equal to the makespan discrepancy.

Convergence time of a process The number of rounds a process needs to reach a state with
constant discrepancy

w.h.p. An event occurs with high probability (w.h.p) if its probabil-
ity is at least 1−O(n−α) for some constant α > 0.

CHAPTER 1. INTRODUCTION 7

viewed as a discrete load balancing algorithm, the rotor walk model exhibits the bounded-

error property on any graph (Theorem 4.1). Hence, similar to the process of [41], we

get deviation bounds of O(log3/2 n) for hypercubes and O(1) for constant-degree tori.

Since our analysis is based on the analysis of [41], due to the same technical limitations

in that paper we were not able to obtain improved bounds for other graph classes. In

Section 4.2, we analyze a randomized rotor walk model, as a discrete load balancing

scheme with randomized rounding. This algorithm still distributes tokens in a round-

robin fashion, with the slight change that token allocation in each each round starts from

a random neighbour (in contrast, the original deterministic algorithm which continues

the allocation based on which neighbour got the token in the previous round). Though

this new algorithm uses much fewer number of random bits compared to the random

walk model and also previous randomized discrete load balancing algorithms [10, 41],

it achieves deviation bounds of O(d log logn/(1 − λ)) for regular graphs, Θ(log n) for

hypercubes, and O(
√

log n) for tori. These bounds are at least as good as those obtained

in [10, 41] (see Table 4.2).

In Chapter 5 we introduce an abstract view — defined in the following – of a ran-

domized discrete process2.

We note that each balancing process A can be regarded as a function that, given

the current state of the network, determines for every edge e and round t the amount

of load that has to be transferred over e in t. Hence, we can regard yA(t) as the result

of applying a function A, i.e. yA(t) = A(xA(t)). Using this we formally define discrete

processes:

Definition 1.1. Let C be a continuous process. A process D is said to be a discrete

version of C with rounding scheme RD if for every vector x, we have D(x) = RD(C(x))

where RD is a function that rounds each entry of the matrix to an integer.

Applying the abstract view defined above to the analysis techniques in previous

works, we obtained general bounds for the case of heterogeneous networks. The above

result combined with some linear algebraic analysis for the particular case of second-

order diffusion, provided first results for the randomized second-order diffusion algorithm

(SOS) defined by our framework.

2Although not all discrete algorithms fit into this definition (flow imitation is an example), the
definition covers a rather large class of discrete algorithms in the heterogeneous network model.

CHAPTER 1. INTRODUCTION 8

We show that randomized SOS has a deviation of O
(
d·log smax·

√
logn

(1−λ)3/4

)
, where λ is the

second largest eigenvalue and smax is the maximum speed.

In second-order processes a node may attempt to send out more load than its available

load. To address this issue, we provide bounds on the minimum load of any node which

is sufficient to prevent such conditions. We show that the continuous SOS scheme will

not generate negative load if (at t = 0) the minimum load of every node is at least

O
(√
n ·∆(0)/

√
1− λ

)
. Here ∆(0) is the difference between the minimum and maximum

load at t = 0. For discrete SOS schemes we show a bound of O
(√
n ·∆(0) + d2/

√
1− λ

)
.

To the best of our knowledge these are the first results specifying the sufficient minimum

load to avoid negative load.

Chapter 2

Related Work

There is a vast amount of literature about load balancing. In this chapter, we first give

an overview of the results on continuous (Section 2.1) and discrete neighbourhood load

balancing (Section 2.2). When not stated otherwise, the results are for the uniform case

without speeds and weights. After that we explore farther related models in Section 2.3.

2.1 Continuous Load Balancing

The first diffusion algorithm (also called first order schedule, FOS) was independently

introduced by Cybenko [20] and Boillat [14]. Their results were later generalized to the

case of heterogeneous networks in [29]. To introduce the FOS process we first need some

additional notation. Let xi(t) be the load of resource i at the beginning of round t > 0

of the process. We define x(t) = (x1(t), . . . , xn(t)) as the load vector in the beginning of

round t. For an arbitrary node i let N(i) be the set of neighbours of i. Furthermore,

let di be the degree of node i and recall that si is the speed of resource i. For j ∈ N(i)

let yi,j(t) be the (positive) amount of load transferred from node i to node j in round t.

Then the FOS process is defined as follows.

yi,j(t) =
αi,j
si
· xi(t), (2.1)

xi(t+ 1) = xi(t)−
∑
j∈N(i)

αi,j

(
xi(t)

si
−
xj(t)

sj

)
, (2.2)

where for j ∈ N(i), αi,j = αj,i are positive parameters to be chosen with the re-

striction that for all i, we must have
∑

j∈N(i) αi,j < si. Common choices for αi,j

9

CHAPTER 2. RELATED WORK 10

are 1/(2 max(di, dj)) or 1/(max(di, dj) + 1). The process can also be defined using a so-

called diffusion matrix P , where for all i we have Pi,i = 1−
∑

j αi,j/si and for j ∈ N(i),

we have Pi,j = αi,j/si. Then we have

x(t+ 1) = x(t) · P, (2.3)

where P is a right stochastic matrix1 that can be viewed as the transition matrix of an

ergodic2 Markov chain with a unique steady-state distribution (s1/s, . . . , si/s, . . . , sn/s).

This holds regardless of the specific choice of αi,j ’s, as long as they satisfy the mentioned

constraints. Hence, repeatedly applying Equation (2.3) leads to the perfectly balanced

state. Let K denote the initial discrepancy and λ the second-largest eigenvalue in abso-

lute value of the diffusion matrix. Here and throughout, we use the variable T to denote

the balancing time of various continuous processes. When not clear from the context,

we redefine T explicitly. Then [29, 57, 62] use the above approach to show that

T = O
(

log(Kn)

1− λ

)
,

where the result of [29] is for the case of non-uniform speeds.

Muthukrishnan et al. [57] introduced the second order schedule (SOS). Later, the

SOS was generalized by Elsässer et al. [29] to the case of non-uniform speeds. The SOS

method is inspired by a numerical iterative method called successive over-relaxation. In

SOS, the amount of load transmitted over each edge depends on the current state of the

network as well as the load transferred in the previous round. The first round equation

is similar to FOS Equations (2.1) and (2.2), and subsequent rounds are defined by

yi,j(t) = (β − 1) · yi,j(t− 1) + β · αi,j
si
· xi(t), (2.4)

where αi,j ’s are as in Equation (2.1) and 0 < β 6 2. For some choices of β SOS converges

faster than FOS [57]. The optimal choice for β is known to be 2/(1 +
√

1− λ2) [29, 57],

which leads to

T = O
(

log(Kn)√
1− λ

)
.

Here again, the result of [29] is for the case of non-uniform speeds.

1A real square matrix, with each row summing to 1.
2An ergodic Markov chain is a Markov chain which is both irreducible (every state is reachable from

every other state) and aperiodic (for which, a sufficient condition is to have at least one non-zero loop
probability).

CHAPTER 2. RELATED WORK 11

For SOS it can happen that the total outgoing demand
∑

j∈N(i) yi,j exceeds the load

xi, which results in so-called negative load.

The dimension exchange model which we will also refer to as the matching based

model is motivated by single-port architectures as opposed to the diffusion model which

necessitates multi-port communication [20, 44, 45, 62]. In the matching based model

every node balances its load with only one neighbour. More formally, the load transfer

in each round is restricted to a – not necessarily perfect – matching of the underlying

graph. Let (i, j) be an edge in the matching of round t. Then resource i and resource

j calculate yi,j and yj,i such that their makespans are equalized. This can be done by

the following equations, which can be regarded as a special case of the Equations (2.1)

and (2.2)).

yi,j(t) =
αi,j
si
· xi(t), (2.5)

xi(t+ 1) =
si

si + sj
·
(
xi(t) + xj(t)

)
,

where αi,j = αj,i = sisj/(si + sj).

Similar to the diffusion load balancing, the process can be defined using a sequence of

matrices {P (0), P (1), . . .}, where P (t) represents a modification of the adjacency matrix

of the matching that is used in step t, as follows. If (i, j) is in the matching of the round t

then Pi,j(t) = αi,j/si and Pi,i(t) = 1 − Pi,j(t). If i is not matched then Pi,i(t) = 1. All

other entries are zero.

Several publications assume that a fixed set of matchings (usually roughly maximum

degree many) is given and the matchings are used periodically. Hence, for all t we

have P (t) = P (t mod d̃) where d̃ is the length of the period. The model was originally

introduced in [49], together with a distributed edge-colouring algorithm (see also [58, 59])

that can be used to construct the matchings. As far as we know, the algorithms in the

matching model have been analyzed only for the case of uniform tasks and speeds. The

analysis for the algorithms using periodic matchings is very similar to the analysis of

FOS. The convergence was first analyzed in [20] for hypercubes and in [50] for arbitrary

graphs. Define

P := P (0) · P (1) · . . . · P (d̃− 1)

and let λ be the second-largest eigenvalue in absolute value of the matrix P 3. If we

3For the case where the matrix P is not symmetric, we need to define λ as the second-largest eigenvalue
in absolute value of the matrix P · PT (see the discussion in [62, Section 3] for more details).

CHAPTER 2. RELATED WORK 12

consider a group of d̃ consecutive rounds together, we have x((t+ 1) · d̃) = x(t · d̃) · P,

which is similar to the Equation (2.3) of the first order diffusion. Consequently, we

have [62]

T = O

(
d̃ · log(Kn)

1− λ

)
.

Another approach is to use in every step t a randomly generated matching. In [44],

it is shown that w.h.p.

T = O
(
d · log(Kn)

γ

)
,

where γ 6 d is the second-smallest eigenvalue of the Laplacian matrix of the original

graph G.

2.2 Discrete Load Balancing

As far as we know, existing papers consider only discrete algorithms in the uniform task

model. Many publications consider uniform processors [10, 9, 27, 28, 41, 39, 44, 57, 62,

64], while a few others incorporate processor speeds into the model [2, 30]. There are

two main approaches for analyzing discrete neighbourhood load balancing processes. The

first one is to use potential functions and the second one is to compare the performance

of a discrete process with that of a continuous version of that process.

The first approach is used in [44] for the random matching model and in [57] for

the diffusion model. In both papers the discrete process calculates the amount of load

to be transmitted over every edge as in the continuous process (as in Equations (2.1)

and (2.2)), which is then rounded down. The potential function used in [44, 57] is defined

as follows,

Φ(t) :=
∑
i∈V

(
xi(t)−

m

n

)2
(2.6)

It is shown in [57] that in every round of the continuous FOS, Φ(t) drops at least

by a multiplicative factor of λ2. Furthermore, in the discrete process, for any choice of

parameter ε < 1, if Φ(t) > 16 d2n2/ε2 then Φ(t+1) 6 (1+ε) ·λ2 ·Φ(t). Thus, the discrete

process mostly behaves similarly to the continuous process as long as the potential is

large enough. More precisely, the authors of [57] show that the potential is reduced to

O
(
d2n2

ε2

)
within O

(
log Φ(0)

1− (1 + ε)λ2

)
rounds. (2.7)

CHAPTER 2. RELATED WORK 13

For FOS schemes, [57] left it as an open question to analyze the potential drop when the

potential is smaller than O(d2n2). Ghosh and Muthukrishnan [44] consider the random

matching model with the same potential function as defined in Equation (2.6). They

show that as long as Φ(t) = Ω(dn), the potential drops by at least a multiplicative factor

of Ω(γ/d) per round, where γ is the second smallest eigenvalue of the Laplacian of the

graph. For a smaller potential they were still able to show an additive drop of Ω(1/d)

per round. Using this fact, they prove that the max-min discrepancy is reduced to

O(diam(G)) within O
(
d log Φ(0) + d2n

γ

)
rounds,

w.h.p. Note that analyzing algorithms in the matching model is easier since in this

model the potential never increases.

The discrete SOS process was first analyzed in [27]. The authors of that paper

measure the distance to the balanced state by the second norm of the difference between

the load vector and the balanced vector. This measure is equal to
√

Φ, where Φ is defined

in Equation (2.6). The authors show that in sufficiently many rounds
√

Φ(t) is reduced

to O((d ·
√
n)/(1− λ)).

The above results for FOS and SOS are generalized in [30] to the case of non-uniform

speeds. Note that for non-uniform speeds, the balanced allocation is (w/s) · (s1, . . . , sn),

where w := w1 + . . .+wm is the total task weight and s := s1 + . . .+sn is the total speed

of the processors. Hence, the optimal load of processor i is si · w/s, and the potential

function defined in Equation (2.6) becomes

Φ(t) :=
∑
i∈V

(xi(t)− si · w/s)
2 .

In [30] the authors measure the distance to the balanced state by the second norm of the

difference between the load vector and the balanced load vector (s1, . . . , sn)w/s. They

show that after a sufficient number of rounds t,
√

Φ(t) is reduced to O((d·√n · smax)/(1−
λ)) in an FOS or SOS process.

The second analysis technique was introduced by Rabani et al. [62] and was later

used in [10, 41, 39, 64]. In [62], the authors introduce a framework to analyze a large

class of discrete neighbourhood load balancing algorithms. They transform a continuous

algorithm Ac into a discrete version Ad that tries to stay as close to Ac as possible.

Assume we apply both algorithms on a load vector x. Then, for every edge e, both

Ac and Ad calculate the amount of load ye that Ac would send over e. Ac will send

CHAPTER 2. RELATED WORK 14

exactly ye tokens over e and Ad will round down ye to an integer y′e. The difference

between ye and the amount of load y′e that is transferred in reality is called rounding

error, which we denote by

∆ye := ye − y′e (2.8)

They show that the max-min discrepancy at time T is bounded by

O
(
d log n

1− λ

)
.

See Tables 2.1 and 2.2 for the results of [62] for different graph classes. Their analysis

framework applies to both FOS and dimension-exchange processes, and the results hold

for a wide class of rounding schemes, as long as the rounding errors are bounded by a

constant.

Another technique using the potential function of Equation (2.6) is proposed in [9],

where the potential drop is estimated using a sequentialization technique. In this tech-

nique, all the edges are assigned weights proportional to their scheduled load transfer.

To estimate the potential drop, they consider a sequentialized version of the process in

which edges are activated sequentially in increasing order of weight. Berenbrink et al.

[9] show that under certain conditions the potential drop of the sequentialized and the

original FOS process differ only by a constant factor. They show that

Φ(t) = O(d3 · n/γ) within O
(
d

γ
· log

(
Φ(0) · γ
d3 · n

))
rounds.

Adolphs and Berenbrink [2] present a potential function based analysis of FOS for

resources with non-uniform speeds. The analysis has two steps. First the authors show

that

Φ(t) = O
(
d3 · s3

max ·
n

γ

)
after O

(
d · s2

max log(m/n)

γ

)
rounds.

In comparison with the result of [57] (see Equation (2.7)), they use fewer rounds when m

is small compared to n and the potential bound is better for graphs with good expansion.

In the second step, they use a different potential function to show that the max-min

discrepancy is reduced to

O(diam(G) · d · smax)

after O
(
n · d3 · s3

max

γ

)
additional rounds.

CHAPTER 2. RELATED WORK 15

Both [9] and [2] employ techniques from spectral graph theory by representing the po-

tential drop as a function of a quadratic from.

There are also several results showing lower bounds. When the continuous flow is

rounded down, the final discrepancy is Ω(d · diam(G)) for a discrete FOS process [41,

44] and Ω(diam(G)) for a discrete process in the matching model [44]. Friedrich and

Sauerwald [39] consider the matching model and show that for any graph the discrepancy

is at least Ω(log n/ log log n) afterO(log n) rounds if the rounding decisions and the initial

load distribution are determined by an adversary.

2.2.1 Improved Processes for Discrete Load Balancing

The next three subsections discuss three different approaches that were used in order

to reduce the difference (caused by the rounding error) in the load distribution between

discrete and continuous balancing processes.

Random Walk Approach. Algorithms that use this approach [27, 30, 28] are de-

veloped in the uniform task model. These algorithms consist of two phases. The first

phase uses the discrete diffusion approach of [62]. In the second phase it is assumed that

the nodes know the average load m/n (which can be easily obtained by simulating the

continuous diffusion algorithm on any node in Phase 1).

The second so-called fine balancing phase is not a simple neighbourhood load bal-

ancing strategy. Every token above α = m/n + c is marked as a positive token, and

nodes with fewer than α tokens generate a negative token for every hole they have. The

negative and positive tokens then perform one random walk step in each round. In re-

ality, the movement of a negative token from node i to node j is translated as a token

movement from node j to node i. Hence, whenever a negative token hits a positive

token, both are eliminated. Note that this method can create negative loads when in

one round too many negative tokens move to the same node. The tightest analysis of

the algorithm is due to Elsässer and Sauerwald [28] where the authors achieve constant

max-min discrepancy in O(T) rounds.

Randomized Rounding. This technique applies randomized rounding on yi,j in order

to improve the bounds on the discrepancy for discrete neighbourhood load balancing. It

was suggested in [66] and first analyzed by [39]. In the latter paper the authors consider

a discrete dimension exchange algorithm for the matching model. Every node i that

CHAPTER 2. RELATED WORK 16

is connected to a matching edge (i, j) first calculates yi,j as in Equation (2.5). If that

value is positive, it rounds it up or down, each with a probability one half. The authors

combine the approach of [62] with analysis techniques for randomized algorithms to show

improved discrepancy bounds for general graphs. For expanders, they provide a separate

analysis that shows constant discrepancy is achieved by slightly increasing the running

time. See Table 2.2 for a detailed statement of their results.

For arbitrary regular graphs the results of [39] were further improved in [64]. One

of the main ideas of this paper is to show negative dependence [25] among the token

locations, which enables them to use simple Chernoff bounds for their proofs. They

show that a constant final discrepancy can be achieved within O(T) rounds for regu-

lar graphs in the random matching model, and constant-degree regular graphs in the

periodic matching model. Note that the constant hidden in the asymptotic notation

is large and the bounds can be achieved with probability 1 − exp(− logc n) for some

constant c < 1. See Table 2.2 for more detailed results.

A randomized rounding FOS process is considered in [41]. Similar to [39, 64] the

process rounds yi,j up or down, with a probability such that the expected load forwarded

over edge (i, j) is exactly yi,j . Again, the analysis is based on the framework of [62]. See

Table 2.1 for a detailed statement of the results. Note that, if a node rounds up for too

many edges, it may not have sufficiently many tokens. This can lead to negative load on

some of the nodes. In contrast, Berenbrink et al. [10] propose an FOS process that uses

randomized rounding but avoids this problem. Again, every node i calculates for every

edge (i, j) the amount of load yi,j that would be transferred in the continuous case (see

Equation (2.1)) and rounds it down. The remaining
∑

j∈N(i)∪{i} (yi,j − byi,jc) so-called

excess tokens are then distributed as follows. Instead of rounding yi,j for every edge,

node i forwards its excess tokens to randomly chosen neighbours (without replacement).

Note that it is possible to get similar results if the excess tokens are sent to neigh-

bours chosen randomly with replacement or if the neighbours are chosen in a round-robin

fashion with a random starting point [4]. The max-min discrepancy results of the ran-

domized algorithms in [10, 41] are further improved by applying the results from [64],

where tighter bounds are obtained for certain graph parameters used in discrepancy

bounds of [10, 41]. See Table 2.1 for more detailed statement of the results.

CHAPTER 2. RELATED WORK 17

Deterministic Rounding. Friedrich et al. [41] follow up on the rounding idea sug-

gested in [66], raising the question whether this randomized algorithm can be deran-

domized without sacrificing its performance. Instead of randomized rounding, they use

a deterministic rounding scheme. For each edge (i, j) they define the accumulated round-

ing error at the end of round t as

∆̂yi,j(t) :=

t∑
`=1

∆yi,j(`),

where the error ∆yi,j(`) is defined in Equation (2.8). Then, in round t + 1 each node i

calculates

min
{∣∣∣∆̂yi,j(t) + yi,j − byi,jc

∣∣∣ , ∣∣∣∆̂yi,j(t) + yi,j − dyi,je
∣∣∣} .

If the first term is the minimum, node i sends byi,jc many tokens over (i, j), otherwise

it sends dyi,je many tokens. First the authors show that their process has the property

that for every edge and in every round the accumulated rounding error is bounded

by a constant, which they call the bounded-error property. Then they show that for

hypercubes and tori4, any process with bounded-error property achieves final discrepancy

ofO(log3/2 n) andO(1), respectively. Note that this algorithm might also create negative

load on some of the nodes.

4Torus graphs (tori) are grids with same side length and wrap-around edges in all dimensions (e.g.
two-dimensional torus is a doughnut-shaped graph).

CHAPTER 2. RELATED WORK 18

T
ab

le
2.

1:
F

in
a
l
d

is
c
re

p
a
n

c
y

o
f

d
is

c
re

te
d

iff
u

si
o
n

p
ro

c
e
ss

e
s

fo
r

d
iff

e
re

n
t

g
ra

p
h

c
la

ss
e
s.

T
h

e
ru

n
n

in
g

ti
m

e
of

ea
ch

p
ro

ce
ss

is
T

=
O

(lo
g
K
n

1
−
λ

).

D
is

c
re

te
P

ro
c
e
ss

e
s

A
rb

it
ra

ry

G
ra

p
h

s

E
x
p

a
n

d
e
rs

w
it

h
d

=
O

(1
)

H
y
p

e
rc

u
b

e
s

r-
d

im
to

ri

r
=
O

(1
)

D
e
te

rm
in

is
ti

c
R

o
u

n
d

in
g

R
ab

an
i

et
al

.
[6

2]
O
(dlo

g
n

1
−
λ

)
O

(l
o
g
n

)
O

(l
o
g
2
n

)
O

(n
1
/
r
)

F
ri

ed
ri

ch
et

al
.

[4
1]

(d
et

er
m

in
is

ti
c)

–
–

O
(l

o
g
3
/
2
n

)
O

(1
)

R
a
n

d
o
m

iz
e
d

R
o
u

n
d

in
g

F
ri

ed
ri

ch
et

al
.

[4
1]

(r
an

d
om

iz
ed

)

O
(dlo

g
lo
g
n

1
−
λ

)
O

(l
o
g

lo
g
n

)
O

(l
o
g
2
n

lo
g

lo
g
n

)
O

(n
1
/
r

lo
g

lo
g
n

)

B
er

en
b

ri
n

k
et

al
.

[1
0]

O
(dlo

g
lo
g
n

1
−
λ

) ,
a
n

d

O
(d
√

lo
g
n

+
√ lo

g
n
lo
g
d

1
−
λ

)O
(l

o
g

lo
g
n

)
O

(l
o
g
n

)
O

(√
lo

g
n

)

S
au

er
w

al
d

an
d

S
u

n
[6

4]

ap
p

li
ed

to
al

go
ri

th
m

of
[1

0]

O
(d
√
d

lo
g
n

)
O

(√
lo

g
n

)
O

(l
o
g
3
/
2
n

)
O

(√
lo

g
n

)

S
au

er
w

al
d

an
d

S
u

n
[6

4]

ap
p

li
ed

to
al

go
ri

th
m

of
[4

1]

O
(√
d

lo
g
n

)
O

(√
lo

g
n

)
O

(l
o
g
n

)
O

(√
lo

g
n

)

CHAPTER 2. RELATED WORK 19

T
ab

le
2.

2:
F

in
a
l

d
is

c
re

p
a
n

c
y

o
f

d
is

c
re

te
p

ro
c
e
ss

e
s

in
th

e
m

a
tc

h
in

g
m

o
d

e
l.

T
h

e
ru

n
n

in
g

ti
m

e
of

ea
ch

p
ro

ce
ss

is
t

=
T

u
n

le
ss

ot
h

er
w

is
e

sp
ec

ifi
ed

.

D
is

c
re

te
P

ro
c
e
ss

e
s

A
rb

it
ra

ry

G
ra

p
h

s

E
x
p

a
n

d
e
rs

w
it

h
d

=
O

(1
)

H
y
p

e
rc

u
b

e
s

r-
d

im
to

ri

r
=
O

(1
)

P
e
ri
o
d
ic

M
a
tc
h
in

g
s

R
o
u

n
d

-D
o
w

n

R
ab

an
i

et
al

.
[6

2]
O
(dlo

g
n

1
−
λ

)
O

(l
o
g
n

)
O

(l
o
g
2
n

)
O

(n
1
/
r
)

R
a
n

d
o
m

iz
e
d

R
o
u

n
d

in
g

F
ri

ed
ri

ch
an

d
S

au
er

w
al

d
[3

9
]
O
(dlo

g
lo
g
n

1
−
λ

) ,
a
n

d

O
(√ d

lo
g
n

1
−
λ

)
O

(l
o
g

lo
g
n

),
a
n

d

O
(1

)†
O

(l
o
g
3
/
2
n

)
O

(n
1
/
2
r
√

lo
g
n

)

S
au

er
w

al
d

an
d

S
u

n
[6

4]
O

(l
o
g
ε
n

)∗
,

a
n

d

O
(l

o
g

lo
g
n

)¶
O

(1
)∗

O
(l

o
g
ε
n

)∗
O

(1
)∗

R
a
n
d
o
m

M
a
tc
h
in

g
s

R
o
u

n
d

-D
o
w

n

R
ab

an
i

et
al

.
[6

2]
O
(dlo

g
n

1
−
λ

)
O

(l
o
g
n

)
O

(l
o
g
2
n

)
O

(n
1
/
r
)

R
a
n

d
o
m

iz
e
d

R
o
u

n
d

in
g

F
ri

ed
ri

ch
an

d
S

au
er

w
al

d
[3

9
]
O
(√ lo

g
3
n

1
−
λ

)
O

(1
)†

O
(l

o
g
2
n

)
O

(n
1
/
2
r

lo
g
n

)

S
au

er
w

al
d

an
d

S
u

n
[6

4]
O

(l
o
g
ε
n

)∗
,

a
n

d

O
(l

o
g

lo
g
n

)¶
O

(1
)∗

O
(1

)∗
O

(1
)∗

∗
U

n
li
k
e

o
th

er
p
ro

b
a
b
il
is

ti
c

b
o
u
n
d
s

th
a
t

h
o
ld

w
it

h
p
ro

b
a
b
il
it

y
1
−
n
−

Ω
(1

)
,

th
es

e
b

o
u
n
d
s

h
o
ld

w
it

h
p
ro

b
a
b
il
it

y
1
−

ex
p
(−

(l
o
g
n

)c
),

fo
r

so
m

e
c
�

1
†

in
t

=
O

(T
·l

o
g

3
lo

g
n

)
ro

u
n
d
s

¶
in
t

=
O

(T
·l

o
g

lo
g
n

)
ro

u
n
d
s

CHAPTER 2. RELATED WORK 20

2.3 Other Related Models

2.3.1 The Game-Theoretic Model

In the models we have discussed so far, each processor has control over its tasks and

can decide where to send each of the tasks. In contrast, in the game theoretic model –

which we will refer to as the network load balancing game – tasks are autonomous selfish

agents that can decide independently to which neighbor to migrate. The decisions are

made based on the cost of residing on the processors which are non-decreasing functions

of the processors’ load (or simply their makespan). The aim is to design a mechanism

by following which agents migrate from overloaded to underloaded resources until the

allocation is more-or-less balanced. Two closely related models are congestion games [63]

and job scheduling games [54]. The two models (which are equivalent in some special

cases) are defined below:

Definition 2.1 (Congestion Game). A congestion game consists of a set E of n facil-

ities, and m players where each player i has a set si ⊆ 2E of possible strategies5. Each

facility e, has a positive non-decreasing cost function de : N → R. For a strategy vec-

tor (P1, P2, . . . , Pm), load of a facility e is xe := |{i : e ∈ Pi}| and the cost experienced

by each player i is
∑

e∈Pi de(xe).

When the graph is complete and tasks and processors are identical, the network

load balancing game becomes a special kind of singleton congestion game [51] where for

all i, si is the set of all singleton subsets of facilities (processors).

Definition 2.2 (Job-Scheduling Game6). In a job-scheduling game, a set of m jobs

(players) J = j1, j2, . . . , jm is to be assigned to a set of n machines M = M1, . . . ,Mn,

using an assignment or schedule function A : J → M. Each job jk has size wk and

each machine Mi has speed si. The running time of jk on a machine of speed s is wk/s.

The completion time of the machine Mi is
∑

k:A(jk)=Mi
wk/si. The cost experienced by

each player is the completion time of the machine on which this job is running.

In complete graphs, network load balancing games are equivalent to job-scheduling

games.

5A player’s strategy is the subset of facilities the player chooses.
6Here we define the job-scheduling on uniformly related machines. The general job-scheduling game

considers unrelated machines model which means that there is an m×n matrix indicating the processing
time of job i if executed on machine j.

CHAPTER 2. RELATED WORK 21

In both of the models defined above, the social cost of a strategy vector (schedule)

is the maximum cost experienced by any player. Next, we outline the existing results

in both areas, focusing on the results they imply in the area of network load balancing

games (hence, only for complete graphs). After that we mention results in the area

of network load balancing games (general graphs). When considering a network load

balancing game, there are two important factors to be analyzed: first, how far the

equilibria (if there is any) could be from the balanced state; and second, the time to

reach an equilibrium (convergence time).

Quality of Equilibria. Rosenthal [63] showed that congestion games are potential

games and therefore possess pure Nash Equilibria (NE). The potential function used

in [63] was Φ =
∑

e∈E
∑xe

k=1 de(k).

The criterion to measure the quality of equilibria is price of anarchy (POA) which

is the worst case ratio between the cost of a pure Nash equilibrium and the cost of

an optimal schedule. As Czumaj and Vöcking [21] showed, in job-scheduling games on

uniformly related machines, the POA is Θ(log n/ log logn). Feldmann et al. [36] proved

that the POA for n = 2 and n = 3 are (
√

5 + 1)/2 and 2, respectively. In [31], the

exact POA for two machines is obtained as a function of machine speeds. For n identical

machines, it can be deduced from the results of [65, 37] that the POA is 2n/(n+ 1) [32].

Convergence Rate. Here, we first consider centralized algorithms for finding the

equilibria, and then move to distributed algorithms designed to reach equilibria.

Convergence in the Centralized Model. In congestion games, Fabrikant et al.

[35] show that finding pure Nash equilibria is generally PLS-complete, but for symmetric

network congestion games 7 polynomial-time algorithms exist through a reduction to

min-cost flow. For matroid congestion games8, Ackermann et al. [1] show that best-

response sequences have length polynomial in the number of players, resources, and

rank of the matroids (which is 1 in case of a load balancing game). Ieong et al. [51]

give polynomial bounds for best-response and better-response sequences in singleton

congestion games. All these results can be regarded as convergence time bounds in a

“sequential” model called the elementary step system (ESS). In ESS, at most one move

7A class of congestion games in which facilities represent different paths between a fixed pair of nodes
in a network. Load balancing games on complete graphs falls into this class.

8A class of congestion games where each si consists of the bases of a matroid over the set of resources

CHAPTER 2. RELATED WORK 22

is performed in each step. Chien and Sinclair [15] study a version of the ESS in the

context of approximate NE, and show that in some cases the ε-Nash dynamics may find

an ε-NE where finding an exact NE is PLS-complete.

For job-scheduling games, it is shown in [38] that pure Nash equilibria can be found

in polynomial time, while computing a pure Nash equilibrium with minimum social

cost is NP-hard. There is, however, a PTAS for approximating the cost of the best

equilibrium [42]. Feldmann et al. [36] show how to find in polynomial-time, a sequence

of (not necessarily selfish) moves that lead to a Nash equilibrium. For identical machines,

they give exponential lower bound ofO(2
√
m) and upper bound ofO(2m−1) on the length

of the best-response sequences. If additionally job weights are integers, any sequence of

selfish moves converges in O(w +m) moves where w =
∑

i∈J wi.

The choice of which job to move next has a significant impact on the convergence

time. For identical machines, it has been shown [34] that the number of moves made

by an algorithm that always moves the lowest-weight task, may be exponential while an

algorithm in which higher-weight tasks are favoured and performs best-response moves

is guaranteed to converge within m steps. If on the other hand, the next job is selected

from among the candidates at random or in a FIFO manner, the (expected) length of

the best-response sequence becomes of O(m2) [34]. In the general case of machines

with speeds, convergence time to ε-Nash equilibrium9 is known to be of O(w2s2
max/ε)

where smax is the maximum speed [34].

Convergence in Distributed Control. The convergence rate results mentioned

above are centralized solutions. However, implementing a centralized controller is usually

difficult and undesirable in a truly distributed system. This gives a strong motivation to

think of distributed algorithms. For the identical machine model, a distributed algorithm

is given in [46] in which each job repeatedly samples a random neighbor to perform a

selfish move after delay periods of random length. Assuming the continuous time model,

Goldberg [46] shows that the algorithm’s behavior is similar to a centralized algorithm

that randomly chooses the next job to move. This leads to an expected sequence length

of O(w2
maxn

4m5 log(mn)) where wmax is the maximum job weight. When wmax 6 m,

this bound reduces to O(n2mwmax). Furthermore, for n = 2, a tight bound of Θ(m2) is

obtained [46]. Although distributed, the algorithm in [46] follows the ESS model which

9The system is in ε-Nash equilibrium when no job can benefit more than ε from unilaterally migrating
to another machine.

CHAPTER 2. RELATED WORK 23

allows at most one user to reroute in each stage. The convergence time is therefore Ω(n).

This is an efficiency drawback since networks normally support concurrent moves.

Even-Dar and Mansour [33] identify two types of equilibria that should be present

in concurrent job-scheduling games (job scheduling games which work in synchronous

rounds). First, the Nash equilibrium which the algorithm should eventually converge to.

Second, a Nash equilibrium among the users’ rerouting policies which should be present

in all rounds. In other words, no greedy user should have any incentive to deviate from

her policy. Such set of policies is referred to as Nash rerouting policies [33]. Even-Dar

and Mansour [33] consider synchronous concurrent decisions where jobs migrate proba-

bilistically from overloaded to underloaded resources with probabilities proportional to

deviation of destination’s load from its target value. The expected convergence time

is O(log logm+ log n). This logarithmic convergence holds for a general class of rerout-

ing algorithms that among other properties, support jumps only from overloaded to

underloaded resources. Hence, the logarithmic convergence time comes at the price of

requiring a relatively big amount of global knowledge because in each round, a job on

an overloaded resource is required to know which resources are overloaded.

Berenbrink et al. [8] consider two protocols for the case of identical resources and

agents in which jobs only need to know their current resource load and the load of a

randomly chosen alternative. In the first (resp. second) protocol, each agent residing

on resource i examines the load of a uniformly sampled resource j. If xi > xj (resp.

xi > xj+1), the agent moves from i to j with probability 1−xj/xi. The second protocol

is different from the first in which it does not allow neutral moves10. Their analyzes show

that for m1/3 > n, both protocols converge to an ε-NE11 in expected time O(log logm).

Moreover, the second protocol reaches an NE in expectedly O(n4) many additional

rounds, while for a particular initial configuration, the first protocol expectedly needs

about exp(Θ(
√
n)) rounds to reach an NE. Therefore, disallowing neutral moves results

in fast convergence from an ε-NE to NE. For both protocols, carefully chosen initial states

require expectedly Ω(log logm+n) many rounds to converge to an NE. A similar protocol

has been considered in [11] for weighted jobs, in which job b moves from the machine i

to the machine j with probability ρ(1− xj/xi) if xi > xj + (1 + ε)wb. Here, ρ = ε/8 is a

10Neutral moves occur when strategy changes do not change the cost.
11Here, ε-NE is a state in which no user can reduce her cost by a multiplicative factor of less than

1− ε by unilaterally changing strategy.

CHAPTER 2. RELATED WORK 24

slowdown factor. The expected convergence time to an ε-NE is O(n ·m · w3
maxε

−2). In

the special case of identical jobs and ε = 1, an NE – which corresponds to a perfectly

balanced state as in [8] – is reached in expectedly O(logm + n log n) and Ω(logm + n)

rounds. The slowed-down protocol has faster convergence compared to the protocol in

[8] only when the state is close to equilibrium. Therefore, as shown in [11], by combining

the two protocols in two phases, a faster protocol with expected convergence time of

O(log logm+ n log n) can be obtained.

Convergence Results for General Graphs. The results mentioned so far in the

area of congestion games and job-scheduling games can imply results for the network

load balancing game only on complete graphs. The reason is in these two models one

can move from any processor or resource to another. The first paper to consider the

general case of arbitrary network topology and heterogeneous jobs or machines was

[12]. By potential analysis, they obtain bounds on the expected time to achieve exact or

approximate NE’s. The potential function used is Φr(t) :=
∑

i∈V x
RD
i (t)·(xRDi (t)+r)/si.

They show an expected multiplicative potential drop, to bound the convergence time to

an approximate Nash equilibrium. From there, a constant drop is used to achieve a Nash

equilibrium. [3] improved the bounds of [12] by analyzing the same potential function.

The obtained expected convergence time bounds are polynomial in d, smax, and 1/(1−γ)

for approximate/exact NE. There is also a factor of log(m/n) for the convergence time

to an approximate NE. For additional rounds leading to an exact NE, the extra factor

is linear in n.

2.3.2 The Balls-into-Bins Model

In a balls-into-bins process, m balls are thrown into n bins, each ball landing in a

bin chosen independently and uniformly at random [56]. There are several interesting

random variables one may want to estimate, such as the number of empty bins and the

maximum number of balls in any bin. In general one might be interested to know how

the distribution of bin loads looks like.

Many of these questions are frequently revisited in design and analysis of algorithms.

For instance, the birthday paradox states that for m = Ω(
√
n), w.h.p., there exists a

bin with more than one ball. Also, according to the coupon collector’s problem, for

m = Θ(n log n), w.h.p. no bin remains empty.

CHAPTER 2. RELATED WORK 25

Considering the tasks as balls and the resources as bins, some variants of the dis-

tributed load balancing problem meet the balls-into-bins model. For instance, in the

process analyzed in [64], after mixing time many steps each token ends up on a random

node with probability distribution close to uniform. Although not independent, for a

fixed node the Bernoulli random variables that indicate whether or not each token ends

up on that node are negatively associated. Hence, many balls-into-bins results on the

maximum load carry over [64]. In this context, the most relevant balls-into-bins results

are bounds on the maximum bin load.

It is well-known that the maximum load is (1 +o(1)) · log n/ log logn when m = n [6]

and m/n+Θ(
√
m log n/n) when m > n log n, w.h.p. Tighter bounds have been obtained

in [61] specifying the precise deviation from the mean in different cases ofm as a functions

of n. In a more general model of balls-into-bins [22, 6, 67], each ball is placed in the

least loaded of d randomly chosen bins (ties broken arbitrarily), allocating one ball after

the other. For this model, it is known that for d > 2 the maximum load becomes

Θ(m/n) + (1 + o(1)) ln lnn/ ln d) w.h.p [22, 6].

2.3.3 Propp Machines and Rotor-Router Walks

Originally introduced in [60], the rotor walk model was employed by Jim Propp for

derandomizing the random walk, thereby frequently appearing under the names of Propp

machines and deterministic random walks [17, 19, 24, 40, 52]. The rotor walk model works

as follows: Given a graph along with an arbitrary distribution of tokens over its nodes,

the process works in rounds and in every round each node distributes all of its tokens to

its neighbours. We assume that every node is equipped with a rotor and its neighbours

are arranged in a fixed circular list. One token is allocated to the neighbour indicated

by the rotor, then the rotor is directed to the next neighbour in the circular list, and so

on, until no token remains. The idea of the rotor walks is to get a token distribution

that is similar to that resulting when the tokens perform independently random walks,

while avoiding the high variance of random walks.

It has been shown that the rotor walks capture the average behaviour of random walks

in a variety of respects such as hitting probabilities and hitting times [48]. Early works

consider the single-walker model where only one token walks over a graph G = (V,E)

where V is the set of nodes and E is the set edges of the graph. This includes results on

derandomizing random walks in the context of graph exploration [7, 13, 43, 68, 69, 71],

CHAPTER 2. RELATED WORK 26

where a single agent with only local information wants to explore the whole graph. The

parameters of interest are the cover time of the graph and the traversal frequency of

its edges. In this model [68, 69] showed that starting from an arbitrary configuration

the agent covers all edges of the graph within O(n|E|) steps. Later, Bhatt et al. [13]

showed that within O(n|E|) steps the agent also enters an Eulerian cycle. This bound

was improved in [71] to 2|E| · diam(G) steps, where diam(G) is the diameter of G.

Klasing et al. [53] consider parallel rotor-router walk of multiple agents on rings. They

obtain upper and lower bounds on the cover time which closely resembles to that of

random walks. They also show that once the system stabilizes, all the nodes of the

ring are always visited by some agent every Θ(n/k) steps. This bound on the number

of step the expected time between successive visits to a node. These bounds hold as

long as the number of agents is less than n1/11. The model was also analyzed in the

presence of dynamic edge and pointer changes [7]. Cooper et al. [16] study two so-called

equitable strategies for graph exploration which attempt to mimic the fairness properties

of random walks with respect to the use of edges. The agent is always directed to the

least often used, or the longest unused, from among the adjacent edges. The latter

strategy is equivalent to the rotor-router model.

Several publications address the question of how closely rotor walks approximate the

expected token distributions of random walk models. The closeness of the two models

is usually measured by comparing the number of tokens a node has in the two models,

taking the maximum difference between the two values over every node and every round.

Note that is is assumed that initially both models start with the same token distribution.

This difference will be referred to as the deviation12 between the two models.

Cooper and Spencer [18] consider rotor walks on infinite grids with constant di-

mensions; they bound the deviation by a constant which depends on the dimension of

the grid. For one and two dimensions, the constants are calculated in [17] and [24].

For infinite d-regular trees Cooper et al. [19] show that there exists an initial token

distribution and direction of the rotors that results in a deviation of Ω(
√
dt) for an ar-

bitrary round t. Note that the initial token distribution and rotor directions depend

on t. Kijima et al. [52] obtain a general deviation bound of O(n|E|) for arbitrary graphs

and 1.5 log3 n+O(log2 n) for hypercubes. The general O(n|E|) bound holds only for lazy

12In the literature of rotor-router walks, this is notion is called discrepancy. However, here and through-
out the thesis we use the word deviation to avoid confusion with the discrepancy measure introduced in
the load balancing literature.

CHAPTER 2. RELATED WORK 27

random walks while the latter hypercube bound holds both in case of lazy and non-lazy

random walks. Note that for expanders and constant-degree tori, the deviation bound

implied by the general O(n|E|) bound is not better than O(n2).

It should be noted that the concept of rotor walks can be generalized to a wide class of

non-standard random walks (where the neighbours are not chosen uniformly at random

and tokens are also allowed to remain at the same node), resulting in deterministic

versions of time-homogeneous Markov chains [48].

Chapter 3

Flow Imitation

In this chapter1 we present two new discretization schemes: one is deterministic and the

other is randomized.

The Deterministic Algorithm. In Section 3.3 we present Algorithm 3.1; a general

framework that translates a continuous load balancing process into a discrete version.

In every round the discrete algorithm imitates the continuous algorithm as closely as

possible by trying to send the same amount of load over every edge as the continuous

algorithm. To be more detailed, let f ce (t) and fde (t), respectively, be the total load sent

over edge e during the first t rounds of the continuous process and its discrete version.

Then the discrete version of the algorithm tries to send a load of bf ce (t) − fde (t − 1)c2

over e in round t. Note that it might not be possible for the discrete algorithm to send

the required amount of load over all the edges since the load of the nodes might not

be sufficiently large. In that case the node will create some dummy tokens to fulfil all

demands. These dummy tokens will be regarded as ”normal” tokens for the rest of the

balancing process. At the end of the balancing process they will be eliminated, which

reduces the makespan of the resources who were holding some of the dummy token at

the end of the process. See Algorithm 3.1 for details.

Recall from Section 1.1 that max-min discrepancy is defined as the difference between

1A preliminary version of the material in this chapter was published in the proceedings of the 2012
ACM symposium on principles of distributed computing (PODC’12) [5]. The paper was also one of the
PODC papers chosen for publication in the Distributed Computing journal (DIST).

2The discrete version of the algorithm has to know the continuous flow fce (t) for every edge e = (u, v).
This knowledge is easy to gather by simulating the continuous load balancing process in parallel on every
node.

28

CHAPTER 3. FLOW IMITATION 29

the maximum and minimum makespan and the max-avg discrepancy is defined as the

difference between the maximum and the average makespan. Let T be the convergence

time of the continuous process. Then in Theorem 3.3 we show that the following holds

for the discrete version of the continuous process using Algorithm 3.1.

(1) At time T the max-avg discrepancy is O(d · wmax).

(2) If the initial makespan of any node is at least d ·wmax, then the above bound holds

on the final max-min discrepancy as well.

Our general framework can be applied to a wide class of continuous algorithms that

we called additive terminating algorithms (see Definitions 3.2 and 3.3).

An additive algorithm, starting with a load vector D = D1 +D2, transmits the same

amount of tasks over every edge as the sum of the amounts it would transmit in the case

that it were started with D1 and D2. A terminating algorithm does not do any load

balancing actions on a completely balanced load distribution. The class of supported

algorithms includes first and second order diffusion algorithms [57], dimension exchange

algorithms, and random matchings models [44] as introduced in Chapter 2. This work

is the first to analyze a discretization scheme supporting such a wide class of continuous

algorithms. The analysis holds for arbitrary graphs, weighted tasks and resources with

speed, whereas most existing papers consider only discrete algorithms in the uniform

task model. Also, except a few publications [2, 30] the majority of the previous results

assume uniform resource speeds.

The Randomized Algorithm. We present another transformation based on ran-

domized rounding (Algorithm 3.2). Again, let f ce (t) and fde (t), respectively, be the total

load sent over edge e during the first t rounds of the continuous process and its discrete

version. Then, according to Algorithm 3.2, the discrete version of the process sends

either bf ce (t)− fde (t− 1)c or df ce (t)− fde (t− 1)e tasks over edge e in round t.

Algorithm 3.2 reaches a max-avg discrepancy of

d

4
+O(

√
d log n)

after T steps (Theorem 3.8). If the initial makespan of every node is at least d/4 +

O(
√
d log n), then the result improves to a max-min discrepancy of O(

√
d log n). For

large values of d these bounds improve the results of the deterministic transformation

presented above.

CHAPTER 3. FLOW IMITATION 30

3.1 Definitions

Recall that yi,j(t) represents the non-negative load transferred from node i to node j at

round t > 0. We define fi,j(t) as the cumulative total load transferred from i to j by the

end of the round t, which is

fi,j(t) =

t∑
τ=0

(yi,j(τ)− yj,i(τ)).

We assume fi,j(−1) = 0. We will use A for a continuous algorithm and D(A) for

its discrete counterpart (following the transformation introduced by Algorithm 3.1 in

Section 3.3 or Algorithm 3.2 in Section 3.4, depending on the context). We define

ei,j(t) = fAi,j(t)− f
D(A)
i,j (t)

as the difference in the flow forwarded over the edge (i, j) by A and D(A) at the end of

the round t. Note that

ei,j(t) = −ej,i(t)

and

fi,j(t) = −fj,i(t).

In the following, we follow up with a few definitions to be used in the statement of

our new results.

Consider a continuous process A. For the transformations introduced by Algo-

rithm 3.1 and Algorithm 3.2, we require initial load vectors that do not lead to negative

load in the continuous case; that is, we need to ensure that when executing A, the out-

going demand of a node never exceeds its available load. This notion is formalized in

the definition below:

Definition 3.1. We say A does not induce negative load on x when the following holds:

If xA(0) = x, then for all i ∈ V and t > 0 we have:3

xAi (t)−
∑
j∈N(i)

yAi,j(t) > 0.

3For randomized processes such as the random matchings model, the statement should hold w.h.p.
over the probability space.

CHAPTER 3. FLOW IMITATION 31

Note that among the processes mentioned in Section 2.1, only SOS may induce

negative load, depending on the given graph structure and load distribution.

Our framework works for additive and terminating processes, as defined below. For

brevity, we will not repeat these requirements throughout in the statement of the results.

A balancing process is terminating when starting with a balanced load vector, the net

load transfer over each edge is always zero. One can see that this is a very natural

property of a load balancing process.

Definition 3.2 (Terminating). We say A is terminating when for any ` > 0, if xA(0) =

` · (s1, . . . , sn) then yAi,j(t) = 0 for all nodes i, j and round t.

Consider a load balancing process A. Let x′, and x′′ be non-negative load vectors.

Let x = x′ + x′′, and suppose we start three instances of A with x,x′, and x′′, and

that A does not induce negative load on x, x′, or x′′. Let yi,j(t), y′i,j(t), and y′′i,j(t),

respectively, be the amount of load transferred from i to j in the round t of the three

instances of the process. Then,

Definition 3.3 (Additive). A is said to be additive if the equation yi,j(t) = y′i,j(t) +

y′′i,j(t) holds for all nodes i, j and round t > 0 regardless of the choice of x′, x′′.4

3.2 Establishing Basic Facts

The next lemma shows that the class of additive terminating processes includes several

well known existing processes.

Lemma 3.1. The following processes as defined in Section 2.1 are both additive and

terminating:

– First order diffusion

– Second order diffusion

– Matching-based processes (using periodic/ random matchings)

Proof. Consider a sequence of matrices 〈P (0), P (1), . . .〉 and 0 6 β 6 2. Observe that

all the processes listed in the observation can be described by the following general

equations (see Equations (2.1), (2.4), and (2.5)):

yi,j(0) = Pi,j(0) · xi(0) (3.1)

4For randomized processes, the three runs are coupled with the same sequence of outcomes.

CHAPTER 3. FLOW IMITATION 32

yi,j(t) = (β − 1) · yi,j(t− 1) + β · Pi,j(t) · xi(t) for t > 1, (3.2)

where in diffusion cases, for all t > 0 we have P (t) = P .

Proof of Additivity. Let x′, x′′ be arbitrary load distributions. Let x(t), x′(t),

and x′′(t) denote the load vector at round t starting A from x = x′ + x′′, x′, and x′′

respectively. Let y, y′, and y′′ denote their corresponding load transfer variables.

By induction on t, we prove that the following hold for arbitrary nodes i, j and

round t:

(a) xi(t) = x′i(t) + x′′i (t).

(b) yi,j(t) = y′i,j(t) + y′′i,j(t)

For t = 0, (a) holds because of the assumptions, and consequently (b) holds by Equa-

tion (3.1).

Suppose that for some t > 0 both x(t) = x′(t) + x′′(t) and y(t) = y′(t) + y′′(t) hold

for every round 6 t. We show in the following that (a) and (b) must be true for t+ 1 as

well. To prove (a), we use the fact that A does not induce negative load on x, x′, or x′′

to apply Equation (1.1) and write for arbitrary i:

xi(t+ 1) = xi(t)−
∑
j∈N(i)

(yi,j(t)− yj,i(t))

= x′(t) + x′′(t)−
∑
j∈N(i)

(
y′i,j(t) + y′′i,j(t)− y′j,i(t)− y′′j,i(t)

)
= x′i(t)−

∑
j∈N(i)

(
y′i,j(t)− y′j,i(t)

)
+ x′′i (t)−

∑
j∈N(i)

(
y′′i,j(t)− y′′j,i(t)

)
= x′i(t+ 1) + x′′i (t+ 1). (3.3)

Now, we proceed to prove (b). For arbitrary nodes i, j we have:

yi,j(t+ 1)

= (β − 1) · yi,j(t) + β · Pi,j(t) · xi(t+ 1)

= (β − 1) ·
(
y′i,j(t) + y′′i,j(t)

)
+ β · Pi,j(t) ·

(
x′i(t+ 1) + x′′i (t+ 1)

)
(3.4)

= (β − 1) · y′i,j(t) + β · Pi,j(t) · x′i(t+ 1) + (β − 1) · y′′i,j(t) + β · Pi,j(t) · x′′i (t+ 1)

= y′i,j(t+ 1) + y′′i,j(t+ 1)

where Equation (3.4) follows from Equation (3.3) and the induction hypothesis.

CHAPTER 3. FLOW IMITATION 33

Proof of being Terminating. Suppose for some ` we have xi(0) = si · ` for every

node i. We prove inductively that yi,j(t) = yj,i(t) and x(t+ 1) = x(0) for all i, j, and t.

In case of the matching model, we only need to consider the matching edges. For the

remaining of the proof, αi,j is defined as in Equations (2.1), (2.4), and (2.5), depending

on the process. The only property of αi,j ’s we rely on here is that αi,j = αj,i which holds

in all three cases.

For t = 0, from Equation (3.1) we get

yi,j(0) = (αi,j/si) · si · `

= αj,i · `

= (αj,i/sj) · sj · `

= yj,i(0).

Therefore, the load vector remains unchanged and we have x(1) = x(0).

Now suppose that for all 1 6 τ 6 t− 1, we have x(τ + 1) = x(0) and yi,j(τ) = yj,i(τ)

for all neighbours i, j. We prove that this yields yi,j(t) = yj,i(t) for all i, j, from which it

follows that x(t+ 1) = x(0). From Equation (3.2), for arbitrary neighbours i, j we get:

yi,j(t) = (β − 1) · yi,j(t− 1) + β · Pi,j(t) · xi(t)

= (β − 1) · yj,i(t− 1) + β · (αi,j/si) · si · `

= (β − 1) · yj,i(t− 1) + β · (αj,i/sj) · sj · `

= yj,i(t).

Hence x(t+ 1) = x(t) = x(0) and the proof follows.

The next lemma establishes a fact which we will later need to show that under certain

conditions our discrete algorithms do not induce negative load.

Lemma 3.2. Let x′ be an arbitrary load vector on which A does not induce negative

load. Suppose xA(0) = x′ + x′′ such that x′′ = ` · (s1, . . . , sn) for some ` > 0. Then

for i ∈ V , t > 0, and any L ⊆ N(i) we have:

xAi (t)−
∑
j∈L

(
yAi,j(t)− yAj,i(t)

)
> si · `.

Proof. By additivity, we have xAi (t) = x′i(t) + x′′i (t) and yAi,j(t) = y′i,j(t) + y′′i,j(t). Thus,

xAi (t)−
∑
j∈L

(
yAi,j(t)− yAj,i(t)

)
= x′i(t)−

∑
j∈L

(
y′i,j(t)− y′j,i(t)

)
+ x′′i (t)−

∑
j∈L

(
y′′i,j(t)− y′′j,i(t)

)

CHAPTER 3. FLOW IMITATION 34

= x′i(t)−
∑
j∈L

(
y′i,j(t)− y′j,i(t)

)
+ x′′i (t) (A is terminating)

= x′i(t)−
∑
j∈L

(
y′i,j(t)− y′j,i(t)

)
+ si · `

> x′i(t)−
∑
j∈L

y′i,j(t) + si · `

> x′i(t)−
∑
j∈N(i)

y′i,j(t) + si · `

> si · `,

where the last equation follows from the fact that A does not induce negative load

on x′.

3.3 Deterministic Flow Imitation

In this section, we present and analyze an algorithm that transforms a continuous pro-

cess A into its discrete counterpart which we call D(A). To distinguish between the two

processes we will use A and D(A) as superscripts in the definitions of Section 1.1.

The algorithm (see Algorithm 3.1) keeps track of the total flow fAi,j(t) that is sent

over the edge (i, j) by the continuous algorithm. It calculates the difference in the flow

forwarded over the edge by the continuous and the discrete algorithm which we define

as

ŷAi,j(t) := fAi,j(t)− f
D(A)
i,j (t− 1).

It then tries to find a set Sij of tasks with a total weight |Sij | of that difference. These

tokens will be forwarded over the edge (i, j). In the case of identical tasks, the amount

of load sent from i to its neighbour j is

y
D(A)
i,j (t) =

⌊
fAi,j(t)− f

D(A)
i,j (t− 1)

⌋
.

In the general case of weighted tasks, Sij is chosen in a way that fAi,j(t)−f
D(A)
i,j (t) 6 wmax.

It might happen that the node i does not contain enough load. In that case the

algorithm will create new, artificial tasks and send them to the corresponding neighbours

(or equivalently, we may think of an attached infinite source of tokens from which the

node gets some tokens). Later we will show that this never happens if the initial load of

the resources is large enough.

CHAPTER 3. FLOW IMITATION 35

The following theorem states our result about the transformation introduced by

Algorithm 3.1.

Theorem 3.3. Suppose the discrete process D(A) is obtained by transforming a contin-

uous process A using Algorithm 3.1. Then the following hold:

(1) If A does not induce negative load on xA(0), then for all t > TA, the max-avg

discrepancy of xD(A)(t) is at most 2d · wmax + 2.

(2) If xA(0) = x′ + x′′ such that x′′ = d · wmax · (s1, . . . , sn), and A does not induce

negative load on x′, then the max-min discrepancy of xD(A)(t) is at most 2d·wmax+

1.

Note that among the algorithms mentioned in Section 2.1, only SOS may induce

negative load. For other algorithms, the result in part (1) of the above theorem au-

tomatically holds, and the condition in part (2) can be translated as having sufficient

initial load.

For the special case of identical tasks, the above theorem gives a bound of 2d + 1

on the max-avg discrepancy. Compared to the deterministic algorithm of [41] that has

been analyzed only for hypercubes and tori, we obtain improved bounds for hypercubes

while our analysis is more general with respect to network topology, and heterogeneity of

tasks and resources. Besides, it also works for the matching-based models and the second

order diffusion. See Tables 3.1 and 3.2 for a more detailed comparison of discrepancy

bounds.

Before proving the theorem, we need to establish some preliminary results.

Observation 3.4. As long as Algorithm 3.1 is allowed to access the infinite source we

have |ei,j(t)| < wmax for every (i, j) ∈ E and t > 0.

Proof. Recall that ei,j(t) = fAi,j(t)− f
D(A)
i,j (t). We observe that ei,j(t) = −ej,i(t). Thus,

it suffices to prove the inequality holds for an arbitrary edge direction. In the following,

we prove that fAi,j(t)− f
D(A)
i,j (t) < wmax.

Fix an edge (i, j) and observe that

fAi,j(t)− f
D(A)
i,j (t− 1) = (−1) ·

(
fAj,i(t)− f

D(A)
j,i (t− 1)

)
.

Assume fAi,j(t)− f
D(A)
i,j (t− 1) > 0 (otherwise we switch i and j). From the definition of

Algorithm 3.1, it follows that y
D(A)
j,i (t) = 0 since fAj,i(t)− f

D(A)
j,i (t− 1) 6 0. Therefore,

f
D(A)
i,j (t) = f

D(A)
i,j (t− 1) + y

D(A)
i,j (t).

CHAPTER 3. FLOW IMITATION 36

Algorithm 3.1 D(A): Discretized A using flow imitation: the process on node i at
round t

for each neighbour j of i
Compute fAi,j(t)

ŷAi,j(t)← fAi,j(t)− f
D(A)
i,j (t− 1)

while ŷAi,j(t)− |Sij | > wmax

if i has no unallocated tasks then
q ← a unit weight task generated by the attached infinite source

else
q ← arbitrary task removed from the set of unallocated tasks of i

Add q to Sij
y
D(A)
i,j (t)← |Sij |

After exiting the loop for node i, we have:

fAi,j(t)− f
D(A)
i,j (t− 1)−‖∫ij‖ < wmax,

or equivalently,

fAi,j(t)− f
D(A)
i,j (t− 1)− yD(A)

i,j (t) < wmax,

which yields:

fAi,j(t)− f
D(A)
i,j (t) < wmax. (3.5)

Let w be the weight of the last task added to Sij . Before adding this task, the loop

condition was fulfilled. Hence we have:

fAi,j(t)− f
D(A)
i,j (t) + w > wmax,

and thus:

fAi,j(t)− f
D(A)
i,j (t) > wmax − w > 0. (3.6)

Combining Equations (3.5) and (3.6), we get∣∣∣fAi,j(t)− fD(A)
i,j (t)

∣∣∣ < wmax,

as needed.

Observation 3.5. For every (i, j) ∈ E and t > 0 the following holds:

If y
D(A)
i,j (t) > 0, then we have

y
D(A)
i,j (t) 6 yAi,j(t)− yAj,i(t) + ei,j(t− 1).

CHAPTER 3. FLOW IMITATION 37

Proof. First observe that:

yAi,j(t)− yAj,i(t) + ei,j(t− 1) = yAi,j(t)− yAj,i(t) + fAi,j(t− 1)− fD(A)
i,j (t− 1)

= fAi,j(t)− f
D(A)
i,j (t− 1)

= ŷAi,j(t).

It remains to prove y
D(A)
i,j (t) 6 ŷAi,j(t). Let w be the weight of the last task added to Sij

in round t. Before adding this task, the loop condition of Algorithm 3.1was fulfilled and

we had

ŷAi,j(t)− (|Sij | − w) > wmax.

After the loop, we have:

y
D(A)
i,j (t) = |Sij |.

Consequently,

ŷAi,j(t)− y
D(A)
i,j (t) > wmax − w > 0.

The next lemma is used to prove the discrepancy bound assuming no token is bor-

rowed from the infinite source.

Lemma 3.6. For i ∈ V and τ > 0, suppose i does not use its infinite source by the end

of the round τ − 1. Then for any t 6 τ the following hold:

(1) x
D(A)
i (t) = xAi (t) +

∑
j∈N(i) ei,j(t− 1).

(2)
∣∣∣xD(A)
i (t)− xAi (t)

∣∣∣ < d · wmax.

Proof. The proof of (1) is by induction on t. For t = 0, we have x
D(A)
i (0) = xAi (0) and

for all i, j, Ei,j(−1) = 0. Therefore the equation holds.

Suppose for some t > 0 we have

x
D(A)
i (t) = xAi (t) +

∑
j∈N(i)

ei,j(t− 1).

It remains to prove that the statement holds for t+ 1 as well. As long as t+ 1 6 τ , we

can apply Equation (1.1) to get:

x
D(A)
i (t+ 1) = x

D(A)
i (t) +

∑
j∈N(i)

(y
D(A)
j,i (t)− yD(A)

i,j (t))

CHAPTER 3. FLOW IMITATION 38

= xAi (t) +
∑
j∈N(i)

ei,j(t− 1) +
∑
j∈N(i)

(
y
D(A)
j,i (t)− yD(A)

i,j (t)
)

= xAi (t) +
∑
j∈N(i)

(
fAi,j(t− 1)− fD(A)

i,j (t− 1) + y
D(A)
j,i (t)− yD(A)

i,j (t)
)

=

xAi (t+ 1)−
∑
j∈N(i)

(yAj,i(t)− yAi,j(t))

+
∑
j∈N(i)

(
fAi,j(t− 1)− fD(A)

i,j (t)
)

= xAi (t+ 1) +
∑
j∈N(i)

(
fAi,j(t− 1) + yAi,j(t)− yAj,i(t)− f

D(A)
i,j (t)

)
= xAi (t+ 1) +

∑
j∈N(i)

(
fAi,j(t)− f

D(A)
i,j (t)

)
= xAi (t+ 1) +

∑
j∈N(i)

ei,j(t).

This finishes the proof of (1). For (2), we apply (1) to get

∣∣∣xD(A)
i (t)− xAi (t)

∣∣∣ =

∣∣∣∣∣∣
∑
j∈N(i)

ei,j(t− 1)

∣∣∣∣∣∣ 6
∑
j∈N(i)

|ei,j(t− 1)|.

Now, the result can be obtained using Observation 3.4.

The following lemma shows that if there is initially sufficient amount of load on each

node, then D(A) does not induce negative load on xD(A)(t).

Lemma 3.7. Suppose x(0) = x′+ x′′ such that x′′ = d ·wmax · (s1, . . . , sn), and A does

not induce negative load on x′.

Then for all i ∈ V and t > 0, the following holds:

x
D(A)
i (t)−

∑
j∈N(i)

y
D(A)
i,j (t) > 0.

Proof. For the sake of contradiction, let us assume there is some round t1 in which we

use the infinite source for the first time. Let i be an arbitrary node with insufficient

load, so that we have x
D(A)
i (t1)−

∑
j∈N(i) y

D(A)
i,j (t1) < 0. Define

L := {j ∈ N(i) : y
D(A)
i,j (t1) > 0}

to be the set of neighbours of node i to which i transfers load in the round t1. We get:

x
D(A)
i (t1)−

∑
j∈N(i)

y
D(A)
i,j (t1)

CHAPTER 3. FLOW IMITATION 39

= x
D(A)
i (t1)−

∑
j∈L

y
D(A)
i,j (t1)

> xAi (t1) +
∑
j∈N(i)

ei,j(t1 − 1)−
∑
j∈L

(
yAi,j(t1)− yAj,i(t1) + ei,j(t1 − 1)

)
(3.7)

= xAi (t1)−
∑
j∈L

(
yAi,j(t1)− yAj,i(t1)

)
+

∑
j∈N(i)−L

ei,j(t1 − 1)

= d · si · wmax +
∑

j∈N(i)−L

ei,j(t1 − 1) (3.8)

> d · si · wmax − |N(i)− L| · wmax (3.9)

> d · si · wmax − d · wmax > 0, (since si > 1)

where in Equation (3.7) we use Observation 3.5 and Lemma 3.6, and the fact that

no infinite source has been used before the round t1. Equation (3.8) follows from the

Lemma 3.2 using x(0) = x′ + x′′ and the conditions on x′ and x′′ mentioned in the

statement of the lemma, and by setting ` = d · wmax. Also, Equation (3.9) results from

Observation 3.4.

This contradicts our initial assumption that

x
D(A)
i (t1)−

∑
j∈N(i)

y
D(A)
i,j (t1) < 0,

and the proof follows.

We are now ready to prove Theorem 3.3.

Proof. First we prove part (2). Suppose xA(0) = x′ + x′′ such that x′′ = d · wmax ·
(s1, . . . , sn), and A does not induce negative load on x′. Then by Lemma 3.7 we know

that negative load never occurs. Therefore, no infinite source is used and the total load

remains intact. Hence, by part (2) of the Lemma 3.6, we have:∣∣∣xD(A)
i (t)− xAi (t)

∣∣∣ < d · wmax.

This fact together with the fact that after the balancing time we have∣∣xAi (t)− w · si/s
∣∣ 6 1,

yield ∣∣∣xD(A)
i (t)− w · si/s

∣∣∣ < d · wmax + 1.

CHAPTER 3. FLOW IMITATION 40

Since si > 1, we have
∣∣∣xD(A)
i (t)/si − w/s

∣∣∣ < d·wmax+1, which holds for arbitrary node i.

Hence, for any pair of nodes i, j we get
∣∣∣xD(A)
i (t)/si − xD(A)

j (t)/sj

∣∣∣ < 2d ·wmax +2 which

gives the desired max-min discrepancy bound.

In the general case, to get the bound of part (1) the algorithm first adds d · si ·wmax

dummy unit weight tasks to each resource i before the process begins. Note that this

does not affect the convergence time of the continuous process, because the extra load is

completely balanced. In the rest of the proof, we use x to refer to the new load vectors.

Let w′ and w denote the original and the new total load, respectively. We have:

w = w′ +
∑
i

d · si · wmax

= w′ + d · s · wmax.

Hence,

w/s 6 w′/s+ d · wmax

At the end, the dummy tokens can be simply ignored. Nevertheless we can still

use x
D(A)
i (t) as an upper bound on the final load of the node i excluding the dummy

tokens. Following steps similar to the max-min discrepancy case, we get

x
D(A)
i (t)/si − w/s < d · wmax + 1,

as required.

3.4 Randomized Flow Imitation

In this section we analyze a randomized version of Algorithm 3.1 that can be applied

for balancing identical tasks. Instead of always rounding down the flow that has to be

sent over an edge, Algorithm 3.2 uses randomized rounding. The notation we use in this

section is the same notation used in Section 3.3, except here we use uppercase letters

to express random variables. As an example fAi,j(t) is the flow sent over edge (i, j) in

round t by the continuous process, while F
D(A)
i,j (t) is the corresponding random variable

for the discrete process.

Algorithm 3.2 calculates the flow

Ŷi,j(t) := fAi,j(t)− F
D(A)
i,j (t− 1)

CHAPTER 3. FLOW IMITATION 41

that has to be sent over edge (i, j) as before. To calculate the flow that is actually

sent, Ŷi,j(t) is randomly rounded up or down, with a probability depending on the value

of its fractional part. Suppose Ŷi,j(t) > 0 in some round t. Then the discrete flow

Y
D(A)
i,j (t) that is sent over the edge is a random variable determined by the following

randomized rounding scheme. So we have

Y
D(A)
i,j (t) =

{
bŶi,j(t)c+ 1 with probability {Ŷi,j(t)},
bŶi,j(t)c otherwise.

In Algorithm 3.2 we use Zi,j(t), which is a zero-one random variable indicating whether

we should round up. Once we know all the random choices in round t, we can calculate

the load of processor i as before using

X
D(A)
i (t+ 1) = X

D(A)
i (t)−

∑
j∈N(i)

(Y
D(A)
i,j (t)− Y D(A)

j,i (t)).

Algorithm 3.2 D(A): Discretized A using randomized flow imitation: the process on
node i at round t

for each neighbour j of i in parallel
Compute fAi,j(t)

Ŷi,j(t)← fAi,j(t)− F
D(A)
i,j (t− 1)

if Ŷi,j(t) > 0 then

Toss a coin with head probability {Ŷi,j(t)}

Zi,j(t)←
{

1 if head comes up;
0 otherwise.

Y
D(A)
i,j (t)← bŶi,j(t)c+ Zi,j(t)

Send Y
D(A)
i,j (t) tokens to j

if there are not enough tokens then
generate the required amount using the attached infinite source

We will show that with high probability the roundings errors sum up to a small

value. The following theorem states our result about the transformation introduced by

Algorithm 3.2.

Theorem 3.8. Suppose the discrete process D(A) is obtained by transforming a contin-

uous process A using Algorithm 3.2 and that TA 6 nκ for some constant κ. Then the

following hold:

CHAPTER 3. FLOW IMITATION 42

(1) If A does not induce negative load on xA(0), then the max-avg discrepancy of

XD(A)(TA) is at most d/4 +O(
√
d log n) w.h.p.

(2) If xA(0) = x′ + x′′ such that x′′ = (d/4 + 2c ·
√
d log n) · (s1, . . . , sn) for a properly

chosen constant c > 0 and A does not induce negative load on x′, then w.h.p. the

max-min discrepancy of XD(A)(TA) is O(
√
d log n).

Note that among the algorithms mentioned in Section 2.1, only SOS may induce

negative load. For other algorithms, the result in part (1) of the above theorem au-

tomatically holds, and the condition in part (2) can be translated as having sufficient

initial load.

The next observation provides useful tools for proving the above theorem.

Lemma 3.9. For i ∈ V , j ∈ N(i) and t > 0 the following hold:

(1) Ei,j(t) = yAi,j(t)− yAj,i(t) + Ei,j(t− 1)− (Y
D(A)
i,j (t)− Y D(A)

j,i (t)).

(2) If Y
D(A)
i,j (t) > 0 then Y

D(A)
j,i (t) = 0.

(3) If Ŷi,j(t) > 0, then we have5:

Ei,j(t) =

{
{Ŷi,j(t)} − 1 if Zi,j(t) = 1

{Ŷi,j(t)} otherwise.

Proof. To prove the first statement, recall that Ei,j(t) = fAi,j(t) − F
D(A)
i,j (t). The right

side of the equation can be simplified as below:

yAi,j(t)− yAj,i(t) + Ei,j(t− 1)−
(
Y

D(A)
i,j (t)− Y D(A)

j,i (t)
)

=
(
yAi,j(t)− yAj,i(t) + fAi,j(t− 1)

)
−
(
F

D(A)
i,j (t− 1) + Y

D(A)
i,j (t)− Y D(A)

j,i (t)
)

= fAi,j(t)− F
D(A)
i,j (t)

= Ei,j(t).

For the second statement, note that if Y
D(A)
i,j (t) > 0 then according to Algo-

rithm 3.2, Ŷi,j(t) > 0 must be satisfied; therefore fAj,i(t) − F
D(A)
j,i (t − 1) < 0 which

yields Y
D(A)
j,i (t) = 0.

5Recall that for a real number a, {a} := a− bac

CHAPTER 3. FLOW IMITATION 43

Now we prove the third statement. Since Ŷi,j(t) > 0, we have Ŷj,i(t) = −Ŷi,j(t) < 0

and therefore Y
D(A)
j,i (t) = 0 by part (2) of the observation. Thus, using part (1) we get

Ei,j(t) = yAi,j(t)− yAj,i(t) + Ei,j(t− 1)− Y D(A)
i,j (t)

= Ŷj,i(t)− Y D(A)
i,j (t)

= Ŷj,i(t)− bŶi,j(t)c − Zi,j(t),

where the last equation follows from the way Y
D(A)
i,j (t) is obtained in Algorithm 3.2,

and the proof follows from the fact that Zi,j(t) can be either zero or one.

Note that part (3) of the Lemma 3.9 shows that Ex [ei,j(t)] = 0.

Now we show that w.h.p. the discrete process does not deviate much from the

continuous process. We identify some undesirable events as listed in the Lemma 3.10

and show in that each of these events happens only with a small probability. In our

proofs, we make use of Lemma A.3 in the appendix which is a simple adaptation of the

Hoeffding’s bound [47] for sums of randomized rounding errors.

Before stating the lemma, we introduce some notation. Define

Hi(t) := {j ∈ N(i) : yAi,j(t)− yAj,i(t) + Ei,j(t− 1) > 0}

as the set of neighbours of i to which i may send tokens in round t. Let

Li(t) := N(i)−Hi(t)

be the rest of i’s neighbours.

Lemma 3.10. Suppose there is a constant κ > 0 so that TA 6 nκ. Then for any

constant α > 0 there is a constant c(κ, α) > 06 such that for any node i and round t 6

TA, each of the following events occurs with probability at most (nα+1 · TA)−1:

(1) |
∑

j∈N(i)Ei,j(t)| > c ·
√
d log n,

(2) |
∑

j∈Hi(t)Ei,j(t)| > c ·
√
d log n,

(3)
∑

j∈Li(t+1)Ei,j(t) 6 −
d
4 − c ·

√
d log n.

6It is sufficient to choose c(κ, α) ≈
√
κ+ α.

CHAPTER 3. FLOW IMITATION 44

Proof. First we prove statement (1). Define ∆ :=
∑

j∈N(i)Ei,j(t).

Assume Ei,j(t − 1) is fixed for all the edges (i, j). Then each of the random vari-

ables Ei,j(t) can assume at most two different values and rounding up or down is inde-

pendent of other edges (see part (3) of Lemma 3.9). Let the random variable ei(t) be a

vector denoting the error values of the edges connected to i at the end of the round t.

By the law of total probability we have:

Pr
[
|∆| > δ

]
=
∑
Ei

Pr
[
|∆| > δ | ei(t− 1) = Ei

]
·Pr

[
ei(t− 1) = Ei

]
.

Note that each Ei,j(t) is the random variable indicating the error in the randomized

rounding of Ŷi,j(t) (part (3) of Lemma 3.9). We can apply Lemma A.3 in the appendix

to bound ∆, which yields

Pr [|∆| > δ | ei(t− 1) = Ei] 6 2 exp (−2δ2/d).

Hence,

Pr
[
|∆| > δ

]
=
∑
Ei

Pr
[
|∆| > δ | ei(t− 1) = Ei

]
·Pr

[
ei(t− 1) = Ei

]
6
∑
Ei

2 exp (−2δ2/d) ·Pr
[

ei(t− 1) = Ei
]

= 2 exp (−2δ2/d).

As TA 6 nκ, setting δ = c ·
√
d log n >

√
d log (2nα+1TA)/2 for some constant c yields

the desired bound.

The proof of statement (2) is similar to the proof of (1). Here we define

∆ :=
∑

j∈Hi(t)

Ei,j(t).

Recall the definition of Hi(t) = {j ∈ N(i) : yAi,j(t) − yAj,i(t) + Ei,j(t − 1) > 0}. Observe

that |Hi(t)| 6 d. Conditioned on ei(t − 1) = Ei, the set Hi(t) is fixed. Hence we can

apply Lemma A.3 to obtain:

Pr [|∆| > δ | ei(t− 1) = Ei] 6 2 exp (−2δ2/d).

Following the same steps as in (1) we get the desired result.

Now we proceed with the proof of statement (3). Recall that

Li(t+ 1) = {j ∈ N(i) : yAi,j(t+ 1)− yAj,i(t+ 1) + Ei,j(t) 6 0},

CHAPTER 3. FLOW IMITATION 45

so intuitively the set is biased toward containing lower values of Ei,j(t). However, we

can change the summation and use different random variables so that we can still apply

Hoeffding’s bounds. Define E−i,j(t) := min{Ei,j(t), 0}. We have:∑
j∈N(i)

E−i,j(t) 6
∑

j∈Li(t+1)

Ei,j(t). (3.10)

Fix an arbitrary node i, let ∆ =
∑

j∈N(i)E
−
i,j(t) and pij = {Ŷi,j(t)}. We have:

Ex
[
E−i,j(t)

∣∣∣ ei(t− 1) = Ei
]

= −pij · (1− pij) + 0 · pij > −1/4.

The last step follows from a simple minimization of f(pij) = (1−pij)+0·pij . Conditioned

on a fixed ei(t−1), the random variables E−i,j(t) are independent ranging over intervals of

length no more than one. Again, we can apply Hoeffding’s bounds using δ = c·
√
d log n >√

d log (2nα+1TA)/2 with the same constant c as in the previous parts. Hence,

Pr

[
∆ < −d

4
− c ·

√
d log n

∣∣∣∣ ei(t− 1) = Ei
]
6

1

2nα+1 · TA
. (3.11)

By Equation (3.10), we can replace ∆ with
∑

j∈Li(t+1)Ei,j(t) in the Equation (3.11) to

obtain the desired bound.

The next lemma provides the two main ingredients for proving the Theorem 3.8.

First, the discrete process stays close to the continuous process; and second, that this

happens without accessing the infinite sources.

Lemma 3.11. Suppose there is a constant κ > 0 so that TA 6 nκ. Further sup-

pose xA(0) = x′ + x′′ such that x′′ = (d/4 + 2c ·
√
d log n) · (s1, . . . , sn), and A does not

induce negative load on x′. Then for any constant α > 0 there is a constant c(κ, α) > 0

such that the following holds:

(1) Pr
[∣∣∣∑j∈N(i)Ei,j(t)

∣∣∣ 6 c ·
√
d log n holds for all i ∈ V and t 6 TA

]
> 1− n−α,

(2) No infinite source is used, i.e.,

Pr
[
X

D(A)
i (t) −

∑
j∈Hi(t) Y

D(A)
i,j (t) > 0 holds for all t 6 TA and i ∈ V

]
>

1− 2n−α.

Proof. To prove statement (1), we choose the value of c as computed by Lemma 3.10 for

the same value of α and t1 = TA. The proof of the first statement follows by applying

the union bound to part (1) of Lemma 3.10.

CHAPTER 3. FLOW IMITATION 46

To prove statement (2), we need to show that the load of every node i at the

beginning of every round t 6 TA is large enough to satisfy their outgoing demands.

We prove by contradiction, assuming there is a first round t′ 6 TA in which some

node i has insufficient load. Recall that Hi(t) is defined so that no load is trans-

ferred from i to any of its neighbours not in Hi(t). In the following we prove

that X
D(A)
i (t′) −

∑
j∈Hi(t′) Y

D(A)
i,j (t′) > 0, contradicting the initial assumption that i

does not have sufficient load in round t′.

X
D(A)
i (t′)−

∑
j∈Hi(t′)

Y
D(A)
i,j (t′)

= X
D(A)
i (t′)−

∑
j∈Hi(t′)

(
yAi,j(t

′)− yAj,i(t′) + Ei,j(t
′ − 1)− Ei,j(t′)

)
(3.12)

= xAi (t′) +
∑
j∈N(i)

Ei,j(t
′ − 1)−

∑
j∈Hi(t′)

(
yAi,j(t

′)− yAj,i(t′) + Ei,j(t
′ − 1)− Ei,j(t′)

)
(3.13)

= xAi (t′)−
∑

j∈Hi(t′)

(
yAi,j(t

′)− yAj,i(t′)
)

+
∑

j∈Li(t′)

Ei,j(t
′ − 1) +

∑
j∈Hi(t′)

Ei,j(t
′)

> si · (d/4 + 2c ·
√
d log n) +

∑
j∈Li(t′)

Ei,j(t
′ − 1) +

∑
j∈Hi(t′)

Ei,j(t
′), (3.14)

where in Equation (3.12) we use parts (1) and (2) of the Lemma 3.9, Equation (3.13)

follows from the part (1) of the Lemma 3.6 using the fact that no infinite source is

used before the round t′. Also, Equation (3.14) is obtained by applying Lemma 3.2

using ` = (d/4 + 2c ·
√
d log n).

To complete the proof, it suffices to consider si > 1 and apply the parts (2) and (3)

of the Lemma 3.10 to the above equation using the union bound.

We are now ready to prove the Theorem 3.8.

Proof. First we prove part (2). Suppose xA(0) = x′ + x′′ such that x′′ = (d/4 + 2c ·
√
d log n) ·(s1, . . . , sn), and A does not induce negative load on x′. Consider an arbitrary

constant α > 0, and let c = 2c′ where c′ is the constant computed in Lemma 3.11

using the same α. Applying the union bound to combine both parts of the Lemma 3.11

we get with probability of at least 1 − 3n−α that no infinite source is ever used and

CHAPTER 3. FLOW IMITATION 47

that |
∑

j∈N(i)Ei,j(t)| < c′ ·
√
d log n. As no infinite source is used, by part (1) of the

Lemma 3.6 7 we also get |XD(A)
i (t)− xAi (t)| < c′ ·

√
d log n.

On the other hand, using the definition of the balancing time we get |xAi (t) − w ·
si/s| 6 1. Hence, we can conclude that∣∣∣XD(A)

i (t)− w · si/s
∣∣∣ < c′ ·

√
d log n+ 1.

Since si > 1, we have |XD(A)
i (t)/si−w/s| < c′ ·

√
d log n+1 which holds for every node i.

Hence, for any pair of nodes i, j we get∣∣∣XD(A)
i (t)/si −XD(A)

j (t)/sj

∣∣∣ < 2c′ ·
√
d log n+ 2,

yielding the desired max-min discrepancy bound.

To get the bound of part (1), the algorithm first adds (d/4 + 2c ·
√
d log n) · si dummy

unit weight tasks to each resource i before the process begins. Note that this does

not affect the convergence time of the continuous process, because the extra load is

completely balanced. In the rest of the proof, we use x to refer to the new load vectors.

Let w′ and w denote the original and the new total load, respectively. We have: w =

w′ + (d/4 + 2c ·
√
d log n) · s. Hence,

w/s 6 w′/s+ d/4 + 2c ·
√
d log n.

At the end, the dummy tokens can be simply ignored. Though, we can still

use X
D(A)
i (t) as an upper bound on the final load of the node i excluding the dummy

tokens. Following steps similar to the max-min discrepancy case, we get X
D(A)
i (t)/si −

w/s < d/4 +O(
√
d log n), which yields the desired max-avg discrepancy bound.

3.5 Comparison with Other Results

Tables 3.1 and 3.2 compare our algorithms with previous results. For easier comparison,

our results are translated to the case of uniform tasks and speeds. Table 3.1 compares

our algorithms with other diffusion algorithms. Algorithm 3.1 achieves a final max-

min discrepancy independent of n and graph expansion, and in particular, the only

algorithm achieving constant max-min discrepancy for all constant-degree graphs. In

7It is easy to see that Lemma 3.6 also holds for the randomized scheme.

CHAPTER 3. FLOW IMITATION 48

the matching model (Table 3.2), Algorithm 3.1 is the only algorithm that achieves final

max-min discrepancy independent of n for an arbitrary, possibly non-regular graph.

Algorithm 3.2 improves over the results of [10, 41, 62] by reaching a max-min discrep-

ancy independent of graph expansion for arbitrary graphs (see Table 3.2). Compared to

the results of [64] for randomized diffusion, Algorithm 3.2 saves a factor of
√
d when the

loop probability is 1/2 and a factor of d if the loop probability is 1/(d + 1). Similarly,

in the matching model, Algorithm 3.2 achieves max-min discrepancy bounds indepen-

dent of graph expansion, thus giving improved bounds compared to [39, 62, 64] for

low-expansion graphs. Note that the probability of achieving the bounds is also better

than [64].

Compared to the existing results on non-uniform speeds [2, 30], both Algorithm 3.1

and Algorithm 3.2 achieve max-min discrepancy bounds independent of global graph

parameters while previous bounds depend on the expansion [2, 30] or the diameter of

the graphs [2].

CHAPTER 3. FLOW IMITATION 49

T
ab

le
3.

1:
F

in
a
l

d
is

c
re

p
a
n

c
y

o
f

o
u

r
a
lg

o
ri

th
m

s
c
o
m

p
a
re

d
to

o
th

e
r

d
is

c
re

te
d

iff
u

si
o
n

p
ro

-
c
e
ss

e
s

fo
r

d
iff

e
re

n
t

g
ra

p
h

c
la

ss
e
s.

T
h

e
ru

n
n

in
g

ti
m

e
of

ea
ch

p
ro

ce
ss

is
T

=
O

(lo
g
K
n

1
−
λ

).

D
is
c
re

te
P
ro

c
e
ss
e
s

A
rb

it
ra

ry

G
ra

p
h
s

E
x
p
a
n
d
e
rs

w
it
h
d

=
O

(1
)

H
y
p
e
rc

u
b
e
s

r-
d
im

to
ri

r
=
O

(1
)

D
e
te

rm
in
is
ti
c
R
o
u
n
d
in
g

R
a
b
a
n
i

et
a
l.

[6
2
]

O
(dlo

g
n

1
−
λ

)
O

(l
o
g
n

)
O

(l
o
g

2
n

)
O

(n
1
/
r
)

F
ri

ed
ri

ch
et

a
l.

[4
1
]

(d
et

er
m

in
is

ti
c)

–
–

O
(l

o
g

3
/
2
n

)
O

(1
)

A
lg

.
3

.1
(T

h
eo

re
m

3
.3

)
O

(d
)

O
(1

)
O

(l
o
g
n

)
O

(1
)

R
a
n
d
o
m
iz
e
d

R
o
u
n
d
in
g

F
ri

ed
ri

ch
et

a
l.

[4
1
]

(r
a
n
d
o
m

iz
ed

)

O
(dlo

g
lo

g
n

1
−
λ

)
O

(l
o
g

lo
g
n

)
O

(l
o
g

2
n

lo
g

lo
g
n

)
O

(n
1
/
r

lo
g

lo
g
n

)

B
er

en
b
ri

n
k

et
a
l.

[1
0
]

O
(dlo

g
lo

g
n

1
−
λ

) ,
a
n
d

O
(d
√

lo
g
n

+
√ lo

g
n

lo
g
d

1
−
λ

)
O

(l
o
g

lo
g
n

)
O

(l
o
g
n

)
O

(√
lo

g
n

)

S
a
u
er

w
a
ld

a
n
d

S
u
n

[6
4
]

a
p
p
li
ed

to
a
lg

o
ri

th
m

o
f

[1
0
]

O
(d
√
d

lo
g
n

)
O

(√
lo

g
n

)
O

(l
o
g

3
/
2
n

)
O

(√
lo

g
n

)

S
a
u
er

w
a
ld

a
n
d

S
u
n

[6
4
]

a
p
p
li
ed

to
a
lg

o
ri

th
m

o
f

[4
1
]

O
(√
d

lo
g
n

)
O

(√
lo

g
n

)
O

(l
o
g
n

)
O

(√
lo

g
n

)

A
lg

.
3

.2
(T

h
eo

re
m

3
.8

)
O

(√
d

lo
g
n

)
O

(√
lo

g
n

)
O

(l
o
g
n

)
O

(√
lo

g
n

)

CHAPTER 3. FLOW IMITATION 50

T
ab

le
3.

2:
F
in
a
l
d
is
c
re

p
a
n
c
y

c
o
m
p
a
re

d
to

o
th

e
r
d
is
c
re

te
p
ro

c
e
ss
e
s
in

th
e
m
a
tc
h
in
g
m
o
d
e
l.

D
is
c
re

te
P
ro

c
e
ss
e
s

A
rb

it
ra

ry

G
ra

p
h
s

E
x
p
a
n
d
e
rs

w
it
h
d

=
O

(1
)

H
y
p
e
rc

u
b
e
s

r-
d
im

to
ri

r
=
O

(1
)

P
e
ri
o
d
ic

M
a
tc
h
in

g
s

R
o
u
n
d
-D

o
w
n

R
a
b
a
n
i

et
a
l.

[6
2
]

O
(dlo

g
n

1
−
λ

)
O

(l
o
g
n

)
O

(l
o
g

2
n

)
O

(n
1
/
r
)

R
a
n
d
o
m
iz
e
d

R
o
u
n
d
in
g

F
ri

ed
ri

ch
a
n
d

S
a
u
er

w
a
ld

[3
9
]

O
(dlo

g
lo

g
n

1
−
λ

) ,
a
n
d

O
(√ d

lo
g
n

1
−
λ

)
O

(l
o
g

lo
g
n

),
a
n
d

O
(1

)†
O

(l
o
g

3
/
2
n

)
O

(n
1
/
2
r
√

lo
g
n

)

S
a
u
er

w
a
ld

a
n
d

S
u
n

[6
4
]

O
(l

o
g
ε
n

)∗
,

a
n
d

O
(l

o
g

lo
g
n

)¶
O

(1
)∗

O
(l

o
g
ε
n

)∗
O

(1
)∗

R
a
n
d
o
m

M
a
tc
h
in

g
s

R
o
u
n
d
-D

o
w
n

R
a
b
a
n
i

et
a
l.

[6
2
]

O
(dlo

g
n

1
−
λ

)
O

(l
o
g
n

)
O

(l
o
g

2
n

)
O

(n
1
/
r
)

R
a
n
d
o
m
iz
e
d

R
o
u
n
d
in
g

F
ri

ed
ri

ch
a
n
d

S
a
u
er

w
a
ld

[3
9
]

O
(√

lo
g
3
n

1
−
λ

)
O

(1
)†

O
(l

o
g

2
n

)
O

(n
1
/
2
r

lo
g
n

)

S
a
u
er

w
a
ld

a
n
d

S
u
n

[6
4
]

O
(l

o
g
ε
n

)∗
,

a
n
d

O
(l

o
g

lo
g
n

)¶
O

(1
)∗

O
(1

)∗
O

(1
)∗

P
e
ri
o
d
ic
/
R
a
n
d
o
m

M
a
tc
h
in

g
s

A
lg

.
3

.1
:

R
o

u
n

d
-D

o
w

n
O

(d
)

O
(1

)
O

(l
o
g
n

)
O

(1
)

A
lg

.
3

.2
:

R
a

n
d

o
m

iz
ed

R
o

u
n

d
in

g
O

(√
d

lo
g
n

)
O

(√
lo

g
n

)
O

(l
o
g
n

)
O

(√
lo

g
n

)

∗
U

n
li
k
e

o
th

er
p
ro

b
a
b
il
is

ti
c

b
o
u
n
d
s

th
a
t

h
o
ld

w
it

h
p
ro

b
a
b
il
it

y
1
−
n
−

Ω
(1

)
,

th
es

e
b

o
u
n
d
s

h
o
ld

w
it

h
p
ro

b
a
b
il
it

y
1
−

ex
p
(−

(l
o
g
n

)c
),

fo
r

so
m

e
c
�

1
†

in
t

=
O

(T
·l

o
g

3
lo

g
n

)
ro

u
n
d
s

¶
in
t

=
O

(T
·l

o
g

lo
g
n

)
ro

u
n
d
s

Chapter 4

Propp Machines

In this chapter1 we consider the rotor walk model on regular graphs, which works as

follows: A d-regular graph is given, along with an arbitrary distribution of tokens over

its nodes. The process works in rounds and in every round each node distributes all of

its tokens to its neighbours. We assume that every node is equipped with a rotor and its

neighbours are arranged in a fixed circular list. At the beginning of a round, the rotor

is pointing toward the neighbour that got the last token in the previous round. Then

the rotor is directed to the next neighbour in the circular list, one token is allocated to

that neighbour, and so on, until no token remains. A rotor walk can be regarded as a

derandomized version of a random walk. Several publications address the question of

how closely rotor walks approximate the expected token distributions of random walk

models. The closeness of the two models is usually measured by comparing the number

of tokens a node has in the two models, taking the maximum difference between the

two values over every node and every round (see Section 2.3.3 for the related work on

this model). In this chapter, we analyze the behaviour of rotor walks as diffusion load

balancing schemes2. To the best of our knowledge, our work is the first to analyze Propp

machines in the context of load balancing. Though the idea of distributing tokens in

a round-robin fashion was mentioned before [62], it was never analyzed. We consider

two rotor walk models, a deterministic model called D Propp and a randomized model

1An extended abstract of the material in this chapter has been published in the proceedings of the
twenty-fifth annual ACM symposium on parallelism in algorithms and architectures (SPAA’13) [4].

2This is reason the why we only discuss regular graphs. If the graph is not regular, the rotor walk
will not converge to the uniform distribution which is not in line with the goal of load balancing.

51

CHAPTER 4. PROPP MACHINES 52

called R Propp3. We obtain deviation bounds for the rotor walk model. These can be

compared to discrepancy bounds in the diffusion model for the following reason: One

well-known technique to analyze a discrete process is to bound the deviation between

the discrete process and a continuous counterpart which is equivalent to a Markov chain

with uniform steady-state distribution. After the convergence time of the continuous

process, the deviation of the two processes captures the discrepancy of the discrete

process. Hence, in this context one can use deviation bounds and discrepancy bounds

(almost) interchangeably.

D Propp. In Section 4.1 we study a deterministic discrete diffusion algorithm based

on the Propp machines. Similar to [41], D Propp follows a lazy continuous process where

every node keeps half of the tokens and distributes the other half using a rotor. The

rotor points to neighbour i+ 1 at the beginning of a round when the rotor stopped at i

in the previous round. Our analysis relies on the result by Friedrich et al. [41], which

is based on the unimodality of transition probabilities, a property that requires loop

probabilities of at least 1/2.

Our main contribution in analyzing D Propp is proving that it exhibits the bounded-

error property on any graph (Theorem 4.1). Hence, similar to the process of [41], we get

deviation bounds of O(log3/2 n) for hypercubes and O(1) for constant-degree tori. Since

our analysis is based on the analysis of [41], due to the same technical limitations in that

paper we were not able to obtain improved bounds for other graph classes. Compared

to the process of [41], our algorithm is simpler and avoids negative loads, thus achieving

double-sided bounds. Compared to [5] the algorithm has the same deviation bounds for

tori but avoids negative load. Note that for hypercubes, the O(log n) deviation bound

of [5] is better than ours.

There are not many deviation results for rotor walks for finite graphs. Recall from

Section 2.3.3 that [52] shows results for arbitrary graphs but gives weaker bounds than

[62] for graph classes such as tori, expanders, and hypercubes. Compared to [62]

3One might wonder why we randomize a model which is itself a derandomized version of the random
walk model. To answer this question, it should be noted that our randomized scheme still needs much
fewer number of random bits compared to the random walk model, while we leverage randomness to
overcome the complexity of analyzing a purely deterministic model.

CHAPTER 4. PROPP MACHINES 53

Table 4.1: Comparison of D Propp with existing deterministic algo-
rithms.

Deviation Bounds

Algorithm Regular Graphs Hypercubes Tori (d = O(1))

Arbitrary

Rounding [62]
O
(
d logn
1−λ

)
O(log2 n) O(n1/2d)

Bounded-Error

Rounding [41]
O
(
d logn
1−λ

)
O(log3/2 n) O(1)

Flow-based

Rounding Down [5]
O(d) O(log n) O(1)

D Propp

Analysis of [52] O(n|E|) O(log3 n) O(n2)

Our Analysis O
(
d logn
1−λ

)
O(log3/2 n) O(1)

our bound of O(log3/2 n) improves their bound of O(log2 n) for hypercubes (see Ta-

ble 4.1). For finite constant-degree tori, our deviation bound of Θ(1) extends the con-

stant deviation results for infinite grids [18] and significantly improves the existing bound

of O(n1/2d) in [62].

The immediate question is, whether the bounded-error property results in deviation

bounds independent of n for finite graphs other than hypercubes and tori. As we observe

in Remark 4.3, this does not hold for finite trees where discrepancies of Ω(
√
d logd n) can

arise. This follows from the result of [19] on infinite regular trees (see also Section 2.3.3).

R Propp. In Section 4.2, we analyze a randomized rotor walk model, called R Propp,

as a discrete load balancing scheme with randomized rounding. R Propp distributes all

but a 1/(d+ 1) fraction of tokens to the neighbours using a rotor that chooses its initial

position randomly at the beginning of every round.

We obtain deviation bounds of O(d log log n/(1−λ)) for regular graphs, Θ(log n) for

hypercubes, and O(
√

log n) for tori. All the bounds hold with high probability. R Propp

achieves the same discrepancy bounds as the process of [10] where the extra tokens are

sent to randomly chosen neighbours without replacement. We noticed that the same dis-

crepancy bounds as the ones in [10] hold when the extra tokens are sent to neighbours

CHAPTER 4. PROPP MACHINES 54

Table 4.2: Comparison of R Propp with existing randomized algorithms.

Random Bits

per node
deviation Bounds

Algorithm per round Regular Graphs Hypercubes Tori (d = O(1))

Rounding

Independently [41]
O(d) O

(
d log logn

1−λ

)
O(log2 n log log n) O(n

1
2d log log n)

Flow-based

Independent

Rounding [5]

O(d) O(
√
d log n) O(log n) O(

√
log n)

Rounding by

Sampling [10]
O(d log d) O

(
d log logn

1−λ

)
O(log n) O(

√
log n)

R Propp O(log d) O
(
d log logn

1−λ

)
Θ(log n) O(

√
log n)

chosen randomly with replacement4. Hence, our algorithm achieves the same results as

both processes (with and without replacement), but with a smaller amount of random-

ization (see Table 4.2). Compared to [5, 41], R Propp does not create negative load.

Our results for hypercubes and tori improve the results of [41]. Note that the deviation

bounds of [5] are better for large d or large λ.

Bounded-Error Processes

For a discrete process P based on a diffusion matrix P, the directional rounding error

on edge (i, j) in round t is defined as:

ei→j(t) := xPi (t) ·Pi,j − yPi,j(t).

We define the rounding error on edge (i, j) in round t as

ei,j(t) := ei→j(t)− ej→i(t).

We also define

Λi,j(t) :=

t∑
τ=1

ei,j(τ),

4In this case, the difference between the rounded value and the original value can be more than one.

CHAPTER 4. PROPP MACHINES 55

as the accumulated rounding error on edge (i, j) in round t, which is the sum of all the

rounding errors on (i, j) up to the end of round t.

Definition 4.1 (Bounded-Error Process). A discrete process is said to have the

bounded-error property if for some constant α, and all (i, j) ∈ E and t > 0, the inequal-

ity
∣∣∣Λi,j(t)∣∣∣ 6 α holds regardless of the network topology and initial load distribution.

4.1 The Deterministic Propp Process

In this section, we introduce and analyze the D Propp process. D Propp mimics the

continuous diffusion process RW(2). RW(2) is similar to a lazy random walk with loop

probabilities of 1/2; i.e., it is governed by the matrix P, where Pi,i = 1/2 for every

node i, and for all pairs of adjacent nodes i, j we have Pi,j = 1/(2d). When not clear

from the context, we use the superscript D for D Propp.

Algorithm D Propp. Our algorithm works in rounds, in every round every node i

distributes all its tokens among itself and its neighbours. A round, in turn, consists of

steps. In each step, i assigns one token to itself or a neighbour. Hence, if a node i has

load xi(t) at the beginning of round t, from the viewpoint of i the round consists of xi(t)

steps.

The rotor of each node i has 2d states 0, . . . , 2d− 1. The states 0, . . . , d− 1 point to

the neighbours of i in an arbitrary fixed order, and the rest of the states point to i itself.

Let ri(t) be the state of i’s rotor in the beginning of round t. Let ri(t, s) and r̂i(t, s)

denote the state of i’s rotor in the beginning of step s of round t, and its target node,

respectively. In each step, a rotor assigns one token to the node it is pointing to, and

then it moves the pointer to the subsequent state (Equations (4.2) and (4.3)). Once

every token is assigned, the actual load transfer is performed at the end of the round

synchronously (Equation (4.5)).

After feeding 2dbxi(t)/2dc tokens to the rotor, each state is visited bxi(t)/2dc times

and the rotor reaches the same state ri(t) as it was in the beginning of the round. At

this point, (xi(t) mod 2d) tokens are still left. Let us call these tokens extra tokens. A

node j ∈ N(i) receives an extra token if and only if one of the (xi(t) mod 2d) rotor states

starting from ri(t) points to j (Equation (4.4)).

Our analysis of the D Propp process in Section 4.1.1 shows the following results:

CHAPTER 4. PROPP MACHINES 56

rDi (t) = (rDi (t− 1) + xDi (t− 1)) mod 2d (4.1)

rDi (t, 1) = rDi (t) (4.2)

rDi (t, s+ 1) = (rDi (t, s) + 1) mod 2d (4.3)

yDi,j(t) =

⌊
xDi (t)

2d

⌋
+ 1 if r̂Di (t, s) = j, for some s between 1 and

(xDi (t) mod 2d)⌊
xDi (t)

2d

⌋
otherwise.

(4.4)

xDi (t+ 1) = xDi (t)−
∑

(i,j)∈E

(yDi,j(t)− yDj,i(t)) (4.5)

Figure 4.1: The D Propp diffusion process: Equations of round t.

Theorem 4.1. The D Propp diffusion scheme exhibits the bounded-error property.

Let the variable T denote the convergence time of RW(2), and r be a constant.

Then Theorem 4.1 yields:

Corollary 4.2. The deviation between D Propp and RW(2) (hence, the discrepancy at

every round t > T) is O(log3/2 n) for hypercubes and O(1) for r-dimensional tori.

According to Theorem 4.1, rotor walks have bounded-error property on any graph,

while Corollary 4.2 gives deviation results only for torus and hypercube. This raises the

question whether the bounded-error property results in deviation bounds independent

of n for finite graphs other than hypercubes and tori. For trees, Remark 4.3 answers

this question negatively:

Remark 4.3. As proved in [19]5, for an arbitrary parameter t, there exist initial token

distribution and rotor directions such that in round t a high deviation is enforced at the

5The following theorem (quoted from [19] with slight changes to match the terminology of the thesis)
was stated for Propp machines following random walks with zero loop probabilities:

Theorem 4.4 ([19, Theorem 3]). For any initial direction of the rotors and any T > 0, there is an
initial configuration such that the deviation between the Propp machine and the rotor walk model after
T time steps is Ω(

√
dT).

CHAPTER 4. PROPP MACHINES 57

root (Section 2.3.3). Though the originial construction of [19] is for infinite trees, we

note that it can be truncated at depth t and still cause the same deviation at the root.

This yields a deviation lower bound of Ω(
√
d logd n) which depends on the order of the

graph.

4.1.1 Analysis of D Propp

To prove the bounded-error property for D Propp, we first derive a formula for the edge

errors in the observation below (recall that {a} := a− bac).

Observation 4.5. For arbitrary (i, j) ∈ E and t > 0 we have:

ei→j(t) =

{
xDi (t)

2d

}
− 1 if r̂i(t, s) = j, for some s between 1 and (xDi (t) mod 2d){

xDi (t)
2d

}
otherwise.

Proof. Recall ei→j(t) is defined as xi(t) ·Pi,j − yi,j(t), which yields:

ei→j(t) =
xDi (t)

2d
− yDi,j(t).

The proof now follows from Equation (4.4).

We define the directional accumulated error on edge (i, j) in round t as

Λi→j(t) :=
t∑

τ=1

ei→j(τ).

The key ingredient of our analysis is switching from the global round-oriented view of

the process to a local view from an arbitrarily fixed node. Define

Si(t) :=
t∑

τ=1

xDi (τ)

with Si(0) := 0 . For every edge (i, j), we define λi,j(t) inductively as follows. De-

fine λi,j(0) := 0 and for every k, Si(t) < k 6 Si(t+ 1) define:

λi,j(k) :=

{
λi,j(k − 1) + 1

2d − 1 if r̂i(t, k − Si(t)) = j,

λi,j(k − 1) + 1
2d otherwise.

(4.6)

The intuition behind this definition is that when allocating a single token we expect

that every neighbour receives 1/2d tokens on average. The amount received in reality is

either zero or one token. Hence, at each step the newly added error is either 1/2d − 1

or 1/2d. We note that

CHAPTER 4. PROPP MACHINES 58

Observation 4.6. For arbitrary (i, j) ∈ E and arbitrary t, we have |λi,j(t)| < 1.

Proof. From the definition of λi,j(t), it follows that for arbitrary (i, j) ∈ E, λi,j(.) is a

periodic function with period 2d and amplitude 1− 1/2d, with λi,j(0) = 0. Thus

max
t
λi,j(t)−min

t
λi,j(t) = 1− 1

2d
< 1,

where

max
t
λi,j(t) > 0

and

min
t
λi,j(t) 6 0.

Therefore we must have

min
t
λi,j(t) > −1

and

max
t
λi,j(t) < 1,

which yields |λi,j(t)| < 1, as required.

The following lemma provides a method for translating Λi→j(.) to λi,j(.):

Lemma 4.7. For arbitrary edge (i, j) and t > 0 we have:

Λi→j(t) = λi,j(Si(t)).

Proof. The proof is by induction on t. The base case Λi→j(0) = λi,j(0) = 0 is triv-

ial. It suffices to prove that λi,j(Si(k)) − Λi→j(k) = 0 holds, assuming Λi→j(k − 1) =

λi,j(Si(k − 1)). The assumption yields:

λi,j(Si(k))− Λi→j(k) = λi,j(Si(k))− (Λi→j(k − 1) + ei→j(k))

= λi,j(Si(k))− λi,j(Si(k − 1))− ei→j(k). (4.7)

We express λi,j(Si(k))−λi,j(Si(k − 1)) in Equation (4.7) as a telescoping sum. Observe

that λi,j(.) is a periodic sequence with period 2d. Hence, for arbitrary integers q, ` > 0

we have:
q+2d`∑
s=q+1

(λi,j(s)− λi,j(s− 1)) = λi,j(q + 2d`)− λi,j(q) = 0.

CHAPTER 4. PROPP MACHINES 59

This is used to simplify the summation below by separating a multiple of 2d terms (the

second sum) from it:

λi,j(Si(k))− λi,j(Si(k − 1))

=

Si(k)∑
s=Si(k−1)+1

(λi,j(s)− λi,j(s− 1))

=

Si(k)−2dbxi(k)/(2d)c∑
s=Si(k−1)+1

(λi,j(s)− λi,j(s− 1)) +

Si(k)∑
s=Si(k)−2d·bxi(k)/(2d)c+1

(λi,j(s)− λi,j(s− 1)),

(4.8)

Note that the second sum is 0. We now consider two cases:

(I) For some 1 6 s 6 (xi(k) mod 2d), we have r̂i(k, s) = j.

(II) Case (I) does not happen.

In case (I), we use Equation (4.6) and Observation 4.5 to write:

λi,j(Si(k))− λi,j(Si(k − 1)) =

Si(k−1)+(xi(k) mod 2d)∑
s=Si(k−1)+1

(λi,j(s)− λi,j(s− 1))

=
1

2d
· ((xi(k) mod 2d)− 1) +

(
1

2d
− 1

)
=

{
xi(k)

2d

}
− 1 = ei→j(k), (4.9)

Similarly, in case (II) as well, we get

λi,j(Si(k))− λi,j(Si(k − 1)) = ei→j(k).

Combined with Equations (4.7) and (4.9), this finishes the proof.

Proof of Theorem 4.1. We show that |Λi,j(t)| < 2 for all t > 0 and (i, j) ∈ E. Recall

that Λi,j(t) :=
∑t

τ=1 ei,j(τ), where ei,j(τ) = ei→j(τ)− ej→i(τ). Thus we have

Λi,j(t) = Λi→j(t)− Λj→i(t).

Hence, to prove |Λi,j(t)| < 2, it suffices to show |Λi→j(t)| < 1. For the sake of contradic-

tion, suppose for some t1 > 0 and (i1, j1) ∈ E, we have |Λi1→j1(t1)| > 1. By Lemma 4.7,

it holds that

Λi1→j1(t1) = λi1,j1(Si1(t1));

therefore |λi1,j1(Si1(t1))| > 1. This contradicts Observation 4.6, and the proof follows.

CHAPTER 4. PROPP MACHINES 60

Proof of Corollary 4.2. We apply Theorems A.5 and A.6 by Friedrich et al. [41] to The-

orem 4.1. This shows that the deviation between D Propp and RW(2) is O(log3/2 n)

for hypercube, and O(1) for r-dimensional torus with r = O(1), as required.

4.2 The Randomized Propp Process

In this section, we analyze a randomized rotor walk, called R Propp, which randomly

repositions the rotors at the beginning of each round. We view R Propp as a randomized

rounding diffusion process. R Propp mimics the standard diffusion process RW(d+ 1);

RW(d+ 1) is similar to a random walk with self-loop probability of 1/(d+ 1), governed

by the diffusion matrix P, where for all neighbouring nodes i, j,Pi,j = 1/(d+ 1)6.

We use superscripts R for R Propp, S for standard diffusion and capitalized letters

for loads and flows, to emphasize these variables are now random. When clear from the

context, we omit the superscripts.

Algorithm R Propp. The algorithm works, similar to D Propp, in rounds consisting

of one step for each token. Each rotor has d + 1 states, corresponding to the nodes

in N(i) ∪ {i}. In the beginning of each round, each rotor is directed to a random

state (Equation (4.10)). Let Ri(t) be the state of i’s rotor in the beginning of round t.

Let Ri(t, s) denote the state of i’s rotor in the beginning of step s of round t, and and

let R̂i(t, s) be the node it is pointing to. Upon feeding it a token, a rotor assigns the

token to the node it is pointing to, and moves to the subsequent state (Equations (4.11)

and (4.12)). A node j receives an extra token if and only if one of the (xi(t) mod (d+1))

rotor states starting from Ri(t) points to j (Equation (4.13)). Once every token is

assigned, the actual load transfer is performed at the end of each round synchronously

(Equation (4.14)).

Note that, similar to D Propp, R Propp avoids the negative load which can occur

due to independent rounding in the randomized rounding algorithms of [5, 41, 39], while

achieving the same bounds on the discrepancy (double-sided).

6Here, there is no technical limitation for choosing this particular loop probability; it can be chosen
differently, and the proofs can be adjusted accordingly without changing the asymptotic bounds. In
contrast to D Propp in which deviation bounds hold only with loop probability of 1/2, in R Propp we
chose this particular loop probability to be more similar to other randomized algorithms.

CHAPTER 4. PROPP MACHINES 61

RRi (t) = an integer in [0, d] chosen independently and uniformly

at random; (4.10)

RRi (t, 1) = RRi (t) (4.11)

RRi (t, s+ 1) = (RRi (t, s) + 1) mod (d+ 1) (4.12)

Y Ri,j (t) =

⌊
XRi (t)
(d+1)

⌋
+ 1 if R̂Ri (t, s) = j, for

some s between 1 and(XRi (t) mod (d+ 1))⌊
XRi (t)
(d+1)

⌋
otherwise.

(4.13)

XRi (t+ 1) = XRi (t)−
∑

(i,j)∈E

(Y Ri,j (t)− Y Rj,i (t)) (4.14)

Figure 4.2: The R Propp diffusion process: Equations of round t.

To analyze R Propp, we first consider general graphs (Theorem 4.8), and then we

show improved bounds for hypercubes and tori (Theorem 4.9). In both theorems, the

variable T denotes the convergence time of RW(d+1). We assume that the discrepancy

of the initial distribution is O(exp(nκ)) for some constant κ.

Theorem 4.8. The deviation between R Propp and RW(d+ 1) (hence, the discrepancy

at t = T) is O(d log logn/(1− λ)) w.h.p.

Note that for d-regular expander, the deviation between R Propp and RW(d + 1)

is O(d log log n).

Theorem 4.9. The deviation between R Propp and RW(d+ 1) (hence, the discrepancy

at time t = T) is w.h.p., O(
√

log n) if G is an r-dimensional torus with r = O(1)

and O(log n) if G is a hypercube. Furthermore, the hypercube bound is tight.

4.2.1 Definitions and Basic Facts

For arbitrary node k at round t, let

Ek(t) := XRk (t)− xSk (t)

CHAPTER 4. PROPP MACHINES 62

denote the difference between the loads of R Propp and RW(d + 1). It is known [62]

that

Ek(t+ 1) =

t∑
s=0

∑
(i,j)∈E

Ei,j(t− s)
(
Ps
i,k −Ps

j,k

)
.

For our proofs, we slightly reformulate this expression:

Ek(t+ 1) =
t∑

s=0

∑
i∈V

∑
j∈N(i)

Ei→j(t− s)
(
Ps
i,k −Ps

j,k

)
.

For each edge (i, j) we define the Bernoulli random variable Z
(t)
i,j which is one if an extra

token is sent from i to j in round t and zero otherwise. More formally,

Zi,j(t) :=

 1 if R̂Ri (t, s) = j, for some s between 1 and (XRi (t) mod (d+ 1))

0 otherwise.

(4.15)

The rounding error on edge (i, j) in round t, denoted by Ei→j(t) is obtained by the

following formula (recall that {a} := a− bac):

Ei→j(t) :=

{
XRi (t)

d+ 1

}
− Z(t)

i,j (4.16)

Thus we have:

XRi (t+ 1) = XRi (t) +
∑
j∈N(i)

(
XRj (t)−XRi (t)

d+ 1
+ Ei→j(t)− Ej→i(t)

)
. (4.17)

We now observe the following facts:

Observation 4.10. For every edge (i, j) and round t, we have

1. Ex
[
Z

(t)
i,j

∣∣∣ XR(t)
]

=
{
XRi (t)
d+1

}
;

2. Ex
[
Ei→j(t)

∣∣ XR(t)
]

= 0.

Proof. To prove the first part, we simply note that Equation (4.15) implies Zi,j(t) is 1

with probability (XRi (t) mod (d+1))/(d+1) and 0 otherwise. To prove the second part,

we write:

Ex
[
Ei→j(t)

∣∣ XR(t)
]

= Ex

[{
XRi (t)

d+ 1

}
− Z(t)

i,j

∣∣∣∣ XR(t)

]
(Using Equation (4.16))

CHAPTER 4. PROPP MACHINES 63

=

{
XRi (t)

d+ 1

}
−Ex

[
Z

(t)
i,j

∣∣∣ XR(t)
]

= 0 (Using the first part)

4.2.2 A General Bound for Arbitrary Graphs

In this section we provide an analysis of R Propp for general graphs, proving Theo-

rem 4.8.

The Proof Outline. To bound Ek(t + 1), we first find a probabilistic bound on the

error on arbitrary node k and round t. Fix a node k and round t. Define

Sk(s) :=
∑
i∈V

∑
j∈N(i)

Ei→j(t− s)
(
Ps
i,k −Ps

j,k

)
. (4.18)

We break the summation at t0 := min
{
C log logn

1−λ , t
}

, where C > 1 is an arbitrary

constant:

|Ek(t+ 1)| 6

∣∣∣∣∣
t0−1∑
s=0

Sk(s)

∣∣∣∣∣+

∣∣∣∣∣
t∑

s=t0

Sk(s)

∣∣∣∣∣ (4.19)

It is easy to bound the first sum deterministically (Observation 4.11). To bound the

second sum, we first use the method of averaged bounded differences (Theorem A.4) to

obtain a concentration result for Sk(s) for arbitrary s. We consider the Doob sequence

of the function Sk(s) with respect to the sequence of randomly chosen rotor states in

round s (Lemma 4.12). A similar technique is used in [10], but their function and random

variables span several rounds and the Lipschitz constants are estimated quite differently.

In Lemma 4.13 we bound each Sk(s) by a properly chosen δs. Then we argue that

the whole sum is bounded by the sum of δs values w.h.p.

The first summation of Equation (4.19) can be easily bounded as follows:

Observation 4.11. For arbitrary node k we have∣∣∣∣∣
t0−1∑
s=0

Sk(s)

∣∣∣∣∣ 6 2 Cd log log n/(1− λ).

Proof. We have∣∣∣∣∣∣
∑
i∈V

∑
j∈N(i)

Ei→j(t− s)
(
Ps
i,k −Ps

j,k

)∣∣∣∣∣∣ =

∣∣∣∣∣∣
t0−1∑
s=0

∑
(i,j)∈E

Ei,j(t− s)
(
Ps
i,k −Ps

j,k

)∣∣∣∣∣∣

CHAPTER 4. PROPP MACHINES 64

6
t0−1∑
s=0

∑
(i,j)∈E

|Ei,j(t− s)|
∣∣Ps

i,k −Ps
j,k

∣∣
6

t0−1∑
s=0

∑
(i,j)∈E

∣∣Ps
i,k

∣∣+
∣∣Ps

j,k

∣∣
6 2 d

t0−1∑
s=0

∑
i∈V

∣∣Ps
i,k

∣∣
= 2 d

t0−1∑
s=0

1

= 2 C d log log n/(1− λ).

Now we give the bound for a fixed round:

Lemma 4.12. For fixed node k, round s, and δ > 0,

Pr [Sk(s) > δ] 6 2 exp (−δ2/16 d2λ2s).

Proof. Note that by the definition of Sk(s) (Equation (4.18)), for a fixed XR(t − s),

the function Sk(s) depends only on the randomly chosen rotor states Ri(t − s), for

1 6 i 6 n. We represent these random variables as a sequence U1,U2, . . . ,Un, such

that for any ` > 1, we have U ` = R`(t − s). Let U ` denote U1,U2, . . . ,U `. Consider

the martingale sequence Ex [Sk(s) | X (t− s),U `] , 1 6 ` 6 n. To apply the method of

averaged bounded differences (Theorem A.4), we first provide a bound on the following

expression:

c` :=

∣∣∣∣Ex [Sk(s) | X (t− s),U `]−Ex [Sk(s) | X (t− s),U `−1]

∣∣∣∣ (4.20)

We have:

Ex [Sk(s) | X (t− s),U `]−Ex [Sk(s) | X (t− s),U `−1]

6
∑
i∈V

∑
j∈N(i)

(
Ps
i,k −Ps

j,k

)
·

(
Ex [Ei→j(t− s) | X (t− s),U `]−Ex [Ei→j(t− s) | X (t− s),U `−1]

)
6
∑
i∈V

∑
j∈N(i)

(
Ps
i,k −Ps

j,k

)
·

CHAPTER 4. PROPP MACHINES 65

(
Ex

[{
Xi(t− s)
d+ 1

}
− Zi,j(t− s)

∣∣∣∣ X (t− s),U `

]
−

Ex

[{
Xi(t− s)
d+ 1

}
− Zi,j(t− s)

∣∣∣∣ X (t− s),U `−1

])
6
∑
i∈V

∑
j∈N(i)

(
Ps
i,k −Ps

j,k

)
·

(
Ex [Zi,j(t− s) | X (t− s),U `]−Ex [Zi,j(t− s) | X (t− s),U `−1]

)
(4.21)

=
∑
i∈V

∑
j∈N(i)

(
Ps
i,k −Ps

j,k

)
·∆i,j(t− s), (4.22)

where

∆i,j(t− s) := Ex [Zi,j(t− s) | X (t− s),U `]−Ex [Zi,j(t− s) | X (t− s),U `−1] .

Note that Equation (4.21) holds since conditioned on X (t − s) the variables Xi(t − s)
are obtained deterministically.

To bound Equation (4.22) we consider
∑

j∈N(i)

∣∣∆i,j(t− s)
∣∣ for i = ` and i 6= `

separately:

Case i = `. Let

b := (X`(t− s) mod (d+ 1))

be the number of extra tokens of ` in round t − s. Knowing U ` determines the b

destinations of the extra tokens, namely j1, . . . , jb ∈ N(i) ∪ {i}. Prior to this, for all

j ∈ N(i) we had

Ex [Zi,j(t− s) | X (t− s),U `−1] = b/(d+ 1)

After U ` is determined, we have Ex [Zi,j(t− s) | X (t− s),U `] = 1 if j ∈ {j1, . . . , jb},
and Ex [Zi,j(t− s) | X (t− s),U `] = 0 otherwise. Thus, ∆i,j(t− s) = 1 − b/(d + 1)

if j ∈ {j1, . . . , jb} − {i} and ∆i,j(t− s) = −b/(d+ 1) otherwise.

Case i 6= `. In this case U ` corresponds to R`(t−s), which is the randomly chosen

rotor state on node ` in round t− s. Given X (t− s), the random variable Zi,j(t− s) is

independent of U `. Hence,

∑
j∈N(i)

∣∣∆i,j(t− s)
∣∣ =

∑
j∈N(i)

∣∣∣∣∣Ex
[
Zi,j(s) | X (t− s),U `

]
−Ex

[
Zi,j(s) | X (t− s),U `−1

]∣∣∣∣∣
= 0.

CHAPTER 4. PROPP MACHINES 66

Combining the two cases, we obtain:∑
i∈V

∑
j∈N(i)

∆i,j(t− s) ·
(
Ps
i,k −Ps

j,k

)
=
∑

j∈N(`)

∆`,j(t− s) ·
(
Ps
`,k −Ps

j,k

)
=

∑
j∈{j1,...,jb}

∆`,j(t− s) ·
(
Ps
`,k −Ps

j,k

)
+

∑
j∈N(`)\{j1,...,jb}

∆`,j(t− s) ·
(
Ps
`,k −Ps

j,k

)
=

∑
j∈{j1,...,jb}

(1− b/(d+ 1)) ·
(
Ps
`,k −Ps

j,k

)
+

∑
j∈N(`)\{j1,...,jb}

(−b/(d+ 1)) ·
(
Ps
`,k −Ps

j,k

)
.

(4.23)

Combining Equations (4.20), (4.22), and (4.23), and using the Cauchy–Schwarz inequal-

ity, we have:

c2
` 6 d ·max

{
(1− b/(d+ 1))2 , (−b/(d+ 1))2

}
·
∑

j∈N(`)

(
Ps
`,k −Ps

j,k

)2
6 d ·

∑
j∈N(`)

(
Ps
`,k −Ps

j,k

)2
.

To apply Theorem A.4, we consider
∑

16`6n c
2
` :∑

16`6n

c2
` 6 d ·

∑
16`6n

∑
j∈N(`)

(
Ps
`,k −Ps

j,k

)2
6 4 d ·

∑
16`6n

∑
j∈N(`)

(
Ps
`,k −

1

n

)2

6 8 d2λ2s. (Lemma A.7) (4.24)

Using Equation (4.18), Observation 4.10 and linearity of expectation, we get

Ex [Sk(s) | X (t− s)] = 0.

Therefore, by Theorem A.4, for any δ > 0 we have:

Pr [|Sk(s)| > δ | X (t− s)] 6 2 exp
(
− δ2

/
16 d2λ2s

)
. (4.25)

Applying the law of total probability to Equation (4.25), completes the proof.

Lemma 4.13. For arbitrary node k we have:

Pr

[∣∣∣∣∣
t∑

s=t0

Sk(s)

∣∣∣∣∣ > 8 d
√

7C

1− λ

]
= O(n−2C).

CHAPTER 4. PROPP MACHINES 67

Proof. We prove the bound by providing different bounds for different elements of the

sum, bounding each Sk(s) by a properly chosen δs. Define δs := 4 d
√

7C log nλs. We

have:

t∑
s= log logn

1−λ

δs =

t∑
s= log logn

1−λ

4d
√

7C log nλs/2

6 4 d
√

7C log n
λlog logn/(2(1−λ))

1−
√
λ

6 4 d
√

7C log n
1/
√

log n

1−
√
λ

= 4 d
√

7C
1 +
√
λ

1− λ

6
8 d
√

7C

1− λ
(Since λ 6 1). (4.26)

Therefore, we have:

Pr

[∣∣∣∣∣
t∑

s=t0

Sk(s)

∣∣∣∣∣ > 8d
√

7C

1− λ

]
6

t∑
s= log logn

1−λ

Pr [|Sk(s)| > δs]

6 2 n−6C
∞∑
s=1

λs

log n

= O(n−2C),

where we use 1/(1− λ) = O(n4) [10, Lemma 2.1].

Proof of Theorem 4.8. Now, using Equation (4.19), Observation 4.11 and Lemma 4.13

we get for arbitrary 1 6 k 6 n and arbitrary constant C > 1, with probability at

least 1−O(n−2C),

|Ek(t+ 1)| 6 Cd log log n

1− λ
+

8 d
√

7C

1− λ

= O
(
d log logn

1− λ

)
. (4.27)

Using the results in [62], we have T = O(log(Kn)/1 − λ) = O(nκ+5). We choose C >

κ+ 6. By the union bound we have for all k and t 6 T

|Ek(t+ 1)| = O(d log log n/(1− λ))

with probability at least 1−O(n−C).

CHAPTER 4. PROPP MACHINES 68

4.2.3 Graph-specific Bounds

In this section we prove Theorem 4.9 which for hypercubes and tori improves the bounds

of Theorem 4.8.

The Proof Outline. We provide a probabilistic bound on Ek(t + 1) for arbitrarily

fixed round t and node k. We follow the martingale argument of [10] (with slight changes)

up to deriving the expression for the sum of squared Lipschitz constants, which in our

case has an additional factor of d compared to that of [10]. Though this is not an

issue when d = O(1) (e.g. constant degree tori (Lemma 4.14)), for hypercubes we

have to reformulate the sum to a new expression (Equation (4.28)) and estimate it in a

different way compared to [10], so that we obtain the same deviation bound of O(log n)

(Lemma 4.15).

Proof of Theorem 4.9 . Fix arbitrary round t and node k. The variable Ek(t + 1) de-

pends on the random rotor states in the first t rounds. We denote these variables

by U1,U2, . . . ,U tn, such that for any ` > 1, we have

U ` := Ri(s) iff ` = (s− 1) n+ i.

We apply the method of averaged bounded differences (Theorem A.4) on the martingale

Ex [Ek(t+ 1) | U `] , (1 6 ` 6 tn), where U ` is again defined as U1,U2, . . . ,U `. Let

c` :=
∣∣Ex [Ek(t+ 1) | U `]−Ex [Ek(t+ 1) | U `−1]

∣∣.
Following steps generally similar to [10], we write:

tn∑
`=1

c2
` =

t∑
s=0

n∑
i=1

(∑
j∈N(i)

∆i,j(t− s) ·
(
Ps
i,k −Ps

j,k

))2

, (4.28)

where we used

∆i,j(s) := Ex [Zi,j(s) | U `]−Ex [Zi,j(s) | U `−1]

with ` = (s−1)n+ i. By Observation 4.10, linearity of expectation, and the law of total

probability, we get

Ex [Ek(t+ 1)] = 0.

By Theorem A.4, if we choose δ2 = (α+ κ+ 6) log n ·
∑tn

`=1 c
2
` for arbitrary α > 0, then

for every node k and a fixed round t 6 T , with probability 1 − O(n−(α+κ+6)) we have

CHAPTER 4. PROPP MACHINES 69

|Ek(t+ 1)| 6 δ. Since T = O(nκ+5), with probability 1 − O(n−α), for every k ∈ V and

round t 6 T , we have

|Ek(t+ 1)| 6 δ.

As
∑tn

`=1 c
2
` is of O(1) for torus and O(log n) for hypercube (Lemmas 4.15 and 4.14), the

proof holds.

We now establish the tightness of the bound for hypercubes. To do this, we show

that there is an initial load vector for the hypercube with d = 2κ−1 dimensions (κ > 1),

such that the deviation between R Propp and RW(d + 1) is Ω(log n) with probability

1− nΩ(1).

The construction uses the notion of 2-vertex colouring (2-VC) of graphs. In a 2-VC,

no two nodes with distance of at most two have the same colour. The minimum number

of colours required by any 2-VC of G is denoted by χ2̄(G). It is known [70] that for a

d-dimensional hypercube, d+ 1 6 χ2̄(G) 6 2dlog2(d+1)e. Hence, if d = 2κ − 1, we have

χ2̄(G) = d+ 1.

Let {C1, . . . , Cd+1} denote the partitioning of V induced by the colour assignment, and

V1 := C1 ∪ . . . ∪ C(d+1)/2.

We choose X0() such that Xi
0() = (d+1)/2 if i ∈ V1 and Xi(0) = 0 otherwise. RW(d+1)

sends a load of 1/2 from every node in V1 to its neighbours in the first round. For

arbitrary node i, the set {i} ∪ N(i) contains exactly (d + 1)/2 such nodes. Hence,

RW(d + 1) balances the load in one round. In R Propp, an arbitrary node i receives

a token on the edge (i, j), j ∈ V1 with probability 1/2. For fixed i these events are

independent, thus we have:

Pr

[
Xi(1) >

3

8
(d+ 1)

]
>

(
(d+ 1)/2

3(d+ 1)/8

)
2−(d+1)/2

>

(
4

3

)3(d+1)/8

· 2−(d+1)/2

> n−1+α,

for some constant α > 0. To achieve independence, we consider only a subset of V with

pairwise distance of at least 3. Since all nodes have degree log n, there exists s ⊂ V of

size at least n/ log3 n with this property. This yields:

Pr

[
∃u ∈ s : Xu(1) >

3

8
(d+ 1)

]
> 1− (1− n−1+α)|s|

CHAPTER 4. PROPP MACHINES 70

> 1− n−β,

for some constant β. Also, in RW(d+ 1) for arbitrary node u we have xu2 () = (d+ 1)/4.

Hence, with probability at least 1− n−β, R Propp has deviation of (d+ 1)/8 = Ω(log n)

from RW(d+ 1).

Lemma 4.14. For an r-dimensional torus with r = O(1) , we have
∑tn

`=1 c
2
` = O(1).

Proof.

tn∑
`=1

c2
` =

t∑
s=0

n∑
i=1

(∑
j∈N(i)

∆i,j(t− s) ·
(
Ps
i,k −Ps

j,k

))2

6
t∑

s=0

n∑
i=1

(
max
j∈N(i)

∣∣Ps
i,k −Ps

j,k

∣∣ · ∑
j∈N(i)

∣∣∆i,j(t− s)
∣∣)2

. (4.29)

Consider an arbitrary round s and node i. Let b = (X`(s) mod (d+ 1)) be the number

of extra tokens of i in round s and U ` with ` = (s − 1)n + i be the randomly chosen

rotor state of node i in round s. Knowing U ` determines the b destinations of the extra

tokens, namely j1, . . . , jb ∈ N(i) ∪ {i}. Prior to knowing U `, for all j ∈ N(i), we had

Ex [Zi,j(s) | X (s),U `−1] = b/(d+ 1).

After U ` is determined, we have Ex [Zi,j(s) | X (s),U `] = 1 if j ∈ {j1, . . . , jb}−{i}, and

Ex [Zi,j(s) | X (t− s),U `] = 0 otherwise. Hence, we get∑
j∈N(i)

∣∣∆i,j(t− s)
∣∣ = O(d).

Therefore, it follows from Equation (4.29) that:

tn∑
`=1

c2
` 6 O(d2)

t∑
s=0

n∑
i=1

(
max
j∈N(i)

∣∣Ps
i,k −Ps

j,k

∣∣)2

= O((Υ2(G))2)

= O(1), (By [10, Theorem 4.2])

where

Υ2(G) := max
k∈V

(
1

2

∞∑
t=0

n∑
i=1

max
j∈N(i)

∣∣Pt
i,k −Pt

j,k

∣∣2)1/2

is the refined local divergence measure introduced in [10].

CHAPTER 4. PROPP MACHINES 71

Lemma 4.15. For a hypercube,
∑tn

`=1 c
2
` = O(d).

Proof. Without loss of generality, let k = 0d (for simplicity, we denote 0d by 0). It

suffices to prove that the following three statements hold for a properly chosen t′ =

O
(

log d
1−λ2

)
= O(d log d):

(1)
∑∞

s=t′
∑n

i=1

(∑
j∈N(i) ∆i,j(t− s) ·

(
Ps
i,0 −Ps

j,0

))2
= O(1),

(2)
∑t′−1

s=0

∑
‖i‖>5

(∑
j∈N(i) ∆i,j(t− s) ·

(
Ps
i,0 −Ps

j,0

))2
= O(d),

(3)
∑t′−1

s=0

∑
‖i‖64

(∑
j∈N(i) ∆i,j(t− s) ·

(
Ps
i,0 −Ps

j,0

))2
= O(d),

where ‖i‖ denotes the distance of node i from node 0d.

By symmetry of the hypercube, for any two nodes i, j with ‖i‖1 = ‖j‖1 and any

round s, we have Ps
i,0 = Ps

j,0. Thus, we can define Ps
h to denote Ps

i,0 for arbitrary node

i with ‖i‖ = h.

Proof of statement (1).

∞∑
s=t′

∑
i

 ∑
j∈N(i)

∆i,j(t− s) ·
(
Ps
i,0 −Ps

j,0

)2

6 d
∞∑
s=t′

∑
i

∑
j∈N(i)

(
Ps
i,0 −Ps

j,0

)2
(Cauchy–Schwarz)

6 d
∞∑
s=t′

dλ2s
2

= O(1), for a properly chosen t′ = O
(

log d

1− λ2

)
Proof of statement (2). By the Cauchy–Schwarz inequality,

t′−1∑
s=0

∑
‖i‖>5

 ∑
j∈N(i)

∆i,j(t− s) ·
(
Ps
i,0 −Ps

j,0

)2

6 d

t′−1∑
s=0

∑
‖i‖>5

∑
j∈N(i)

(
Ps
i,0 −Ps

j,0

)2
6 2 d2

d−1∑
h=4

(
d

h+ 1

)
·
t′−1∑
s=1

(
Ps
h −Ps

h+1

)2

CHAPTER 4. PROPP MACHINES 72

6 2 d2
d−1∑
h=4

(
d

h+ 1

) (t′−1∑
s=1

(
Ps
h −Ps

h+1

))2

. (4.30)

where the last inequality holds since by Lemma A.10 Ps
h > Ps

h+1. We split the outer

sum into two parts, first considering 4 6 h 6 d− 4. We have:

d−4∑
h=4

(
d

h+ 1

) (t′−1∑
s=1

(
Ps
h −Ps

h+1

))2

6
d−4∑
h=4

(
d

h+ 1

) (∞∑
s=0

(
Ps
h −Ps

h+1

))2

(Lemma A.10)

=

d−4∑
h=4

(
d

h+1

)(
d
h

)2
(

1

n
· d+ 1

d− h

d∑
`=h+1

(
d

`

))2

(Lemmas A.10 and A.9)

=

d−4∑
h=4

d− h
h+ 1

1(
d
h

) (1

n
· d+ 1

d− h

d∑
`=h+1

(
d

`

))2

6
d−4∑
h=4

d− h
h+ 1

1(
d
h

) (d+ 1

d− h

)2

Since

d∑
`=h+1

(
d

`

)
6 n

=
d−4∑
h=4

(d+ 1)2

(h+ 1)(d− h)

1(
d
h

)
6 d ·

d−4∑
h=4

1(
d
h

) (For large n)

= d ·

(
d/2∑
h=4

1(
d
h

) +
d−4∑

h=d/2+1

1(
d

d−h
))

= 2 d ·
d/2∑
h=4

1(
d
h

)
6 2 d ·

(√
d∑

h=4

(
h

d

)h
+

d/2∑
h=
√
d

(
h

d

)h)

6 2 d ·

(√
d∑

h=4

(d)−h/2 +

d/2∑
h=
√
d

2−h

)

= 2 d · O
(

1

d2
+ 2−

√
d

)
= O(1/d). (4.31)

CHAPTER 4. PROPP MACHINES 73

For the case d− 3 6 h 6 d− 1, we have:

d−1∑
h=d−3

d− h
h+ 1

1(
d
h

) (1

n
· d+ 1

d− h

d∑
`=h+1

(
d

`

))2

= O(d9/n2)

= O(n−1). (4.32)

Combining Equations (4.30), (4.31), and (4.32) the proof of the second statement follows.

Proof of statement (3). We have:

t′−1∑
s=0

∑
‖i‖64

(∑
j∈N(i)

∆i,j(t− s) ·
(
Ps
i,0 −Ps

j,0

))2

=
t′−1∑
s=0

∑
‖i‖64

((
Ps
‖i‖ −Ps

‖i‖+1

) ∑
j∈N(i),
‖j‖=‖i‖+1

∆i,j(t− s)

+
(
Ps
‖i‖ −Ps

‖i‖−1

) ∑
j∈N(i),
‖j‖=‖i‖−1

∆i,j(t− s)

)2

6 2
t′−1∑
s=0

∑
‖i‖64

(
Ps
‖i‖ −Ps

‖i‖+1

)2 (∑
j∈N(i),
‖j‖=‖i‖+1

∆i,j(t− s)
)2

+ 2

t′−1∑
s=0

∑
16‖i‖64

(
Ps
‖i‖ −Ps

‖i‖−1

)2 (∑
j∈N(i),
‖j‖=‖i‖−1

∆i,j(t− s)
)2

(4.33)

Consider an arbitrary round s and node i. Let

b := (X`(s) mod (d+ 1))

be the number of extra tokens of i in round s and U ` with ` = (s − 1)n + i be the

randomly chosen rotor state of node i in round s. Observe that ∆i,j(s) = 1− b/(d+ 1) if

j receives an extra token and ∆i,j(s) = −b/(d+ 1) otherwise. On the other hand, since

‖i‖ 6 4, the set {∆i,j(s) : j ∈ N(i), ‖j‖ = ‖i‖− 1} has size at most 4. With each ∆i,j(s)

lying in (−1, 1), we have:∣∣∣ ∑
j∈N(i),
‖j‖=‖i‖−1

∆i,j(s)
∣∣∣ 6 ∑

j∈N(i),
‖j‖=‖i‖−1

∣∣∆i,j(s)
∣∣ 6 4.

CHAPTER 4. PROPP MACHINES 74

We also observe that
∑

j∈N(i)∪{i}∆i,j(s) = 0, hence:∣∣∣ ∑
j∈N(i),
‖j‖=‖i‖+1

∆i,j(s)
∣∣∣ =

∣∣∣ ∑
j∈N(i),
‖j‖=‖i‖−1

∆i,j(s) + ∆i,i(s)
∣∣∣

6
∣∣∣ ∑

j∈N(i),
‖j‖=‖i‖−1

∆i,j(s)
∣∣∣+
∣∣∆i,i(s)

∣∣
6 5.

Therefore it follows from Equation (4.33) that:

t′−1∑
s=0

∑
‖i‖64

(∑
j∈N(i)

∆i,j(t− s) ·
(
Ps
i,0 −Ps

j,0

))2

6 5
t′−1∑
s=0

∑
‖i‖64

(
Ps
‖i‖ −Ps

‖i‖+1

)2

+ 4

t′−1∑
s=0

∑
16‖i‖64

(
Ps
‖i‖ −Ps

‖i‖−1

)2

6 5
t′−1∑
s=0

∑
‖i‖64

(
Ps
‖i‖

)2
+ 4

t′−1∑
s=0

∑
16‖i‖64

(
Ps
‖i‖−1

)2
(Lemma A.10)

6 5
4∑

h=0

((
d

h

)
+

(
d

h+ 1

))
·
t′−1∑
s=0

(Ps
h)2 (Lemma A.10)

= 5
4∑

h=0

(
d+ 1

h+ 1

)
·
t′−1∑
s=0

(Ps
h)2 . (4.34)

Observe that,

4∑
h=0

(
d+ 1

h+ 1

)
·
t′−1∑
s=0

(Ps
h)2

= d+ 1 +

(
d+ 1

1

)
·
t′−1∑
s=1

(Ps
0)2 +

(
d+ 1

2

)
·
t′−1∑
s=1

(Ps
1)2

+

4∑
h=2

(
d+ 1

h+ 1

)
·
t′−1∑
s=0

(Ps
h)2

6 d+ 1 + (d+ 1) ·
t′−1∑
s=1

1

(d+ 1)2
+

(
d+ 1

2

)
·

(
6∑
s=1

(Ps
1)2 +

t′−1∑
s=7

(Ps
1)2

)

CHAPTER 4. PROPP MACHINES 75

+

4∑
h=2

(
d+ 1

h+ 1

)
·
t′−1∑
s=0

(Ps
h)2

6 d+ 1 + t′/d+ (d+ 1)2 ·

 6∑
s=1

(Ps
1)2 +

(
t′−1∑
s=7

Ps
1

)2

+

4∑
h=2

(
d+ 1

h+ 1

)
·
t′−1∑
s=0

1(
d
h

)2 (Lemma A.11)

6 d+ 1 + t′/d+ (d+ 1)2 ·

 6∑
s=1

1

(d+ 1)2
+

(
t′−1∑
s=7

Ps
1

)2
+ 2 t′/d

= O
(
d+ d2 ·

(t′−1∑
s=7

Ps
1

)2)
. (4.35)

Now, it suffices to prove
∑t′−1

s=7 Ps
1 = O(d−1). Observe that in the step t of a random

walk starting from i, the probability that the distance from 0d does not increase is at

most (t + ‖i‖)/(d + 1). Consider a random walk of length 7 starting from an arbitrary

node i with ‖i‖ = 1. To arrive at a node j with ‖j‖ 6 2 at step 7, the random walk can

at most 4 times increase its distance to 0logn, hence there must be at least 3 steps in

which the distance does not increase: This implies for all j with ‖j‖ 6 2,

∑
j:‖j‖62

P7
i,j 6

(
7

3

)
·
(

8

d+ 1

)3

= O(d−3). (4.36)

We have:

t′−1∑
s=7

Ps
1 =

t′−1∑
s=7

Ps
i,0

6
t′−1∑
s=7

(∑
j

‖j‖62

P7
i,j ·Ps−7

j,0 +
∑
j

36‖j‖6d

P7
i,j ·Ps−7

j,0

)

6
t′−1∑
s=7

(∑
j

‖j‖62

P7
i,j ·Ps−7

j,0 +

(
1(
d
3

) · ∑
j

36‖j‖6d/2

P7
i,j

)

+

(
1(
d
d/2

) · ∑
j

d/26‖j‖6d

P7
i,j

))

CHAPTER 4. PROPP MACHINES 76

6 t′ ·

(
O(d−3) ·

(∑
j

‖j‖62

Ps−7
0,j

)
+

1(
d
3

) · 1 +
1(
d
d/2

))

= O(d−1). (Using Equation (4.36)) (4.37)

where we have used Lemmas A.11 and A.10 to simplify the expressions. Applying

Equation (4.37) to Equation (4.35) and subsequently Equation (4.34) finishes the proof.

Chapter 5

Discrete Second-Order Processes

In this chapter we show three main results.

(1) We present a general framework for rounding continuous diffusion schemes to dis-

crete schemes. Our approach (Section 5.1) estimates first the error between a con-

tinuous diffusion scheme and the rounded discrete version, similar to [62]. Then we

combine that error term with martingales techniques (similar to the ones used in

[10]) to bound the deviation between the continuous scheme and a discrete scheme

based on randomized rounding. Note that the result in [62] are only valid for a

class of homogeneous FOS schemes and [10] analyzes a fixed FOS diffusion scheme

with specific transition matrix. In contrast, we introduce an error estimation that

allows us to show results for a larger class of diffusion algorithms (see Definition

5.2) in heterogeneous networks, including SOS.

(2) We show that randomized SOS has a deviation of O
(
d·log smax·

√
logn

(1−λ)3/4

)
, where λ is

the second largest eigenvalue and smax is the maximum speed. See the right half of

Table 5.1 for detailed bounds for different networks. The results are worse than the

best results for FOS schemes, which is due to a larger upper bound on the refined

local divergence (for the definition see Section 5.1.2). Note that the runtime of

SOS is much lower than the runtime of FOS, i.e., O(log(Kn)/
√

1− λ) (assuming

optimal β) compared to O (log(Kn)/(1− λ)) many rounds for FOS.

(3) We show that the continuous SOS scheme with optimal β will not generate negative

load if (at t = 0) the minimum load of every node is at leastO
(√
n ·∆(0)/

√
1− λ

)
.

Here ∆(0) is the difference between the minimum and maximum load at t = 0.

77

CHAPTER 5. DISCRETE SECOND-ORDER PROCESSES 78

For discrete SOS schemes we show a bound of O
(√
n ·∆(0) + d2/

√
1− λ

)
. To the

best of our knowledge these are the first results specifying the sufficient minimum

load to avoid negative load.

Table 5.1: Comparison of deviation bounds of discrete FOS and SOS from their
continuous counterparts.

Arbitrary Rounding Randomized Rounding

Graph FOS [62] SOS (Theorem 5.10) FOS [10] SOS (Theorem 5.12)

Ring O(n) O(n
√
n) O(

√
log n) O(n3/4

√
log n)

2-D Torus O(
√
n) O(n) O(

√
log n) O(n3/8

√
log n)

Hypercube O(log2 n) O(
√
n log2 n) O(log n) O(log9/4 n)

Expander O(log n) O(
√
n) O(log log n) O(

√
log n)

5.1 General Framework for FOS Schemes

In this section we first generalize the framework of Rabani et al. [62] to a wider class

of processes (see Section 5.1.1) and obtain an equation estimating the deviation of the

discrete process from its continuous version. The estimation is valid as long as the

continuous process is linear (Definition 5.2). In [62] the deviation is expressed in terms

of the diffusion matrix. Here, we present an analysis from a different perspective which

allows us to obtain essentially the same deviation formula, but for a larger class of

processes. Our analysis can be applied to the second order processes and heterogeneous

models. In Section 5.1.2 we present the framework that transforms a continuous load

balancing process C into a discrete process R(C) using randomized rounding.

For simplicity we consider in this section only first order processes. In the next

section we generalize the framework to SOS.

5.1.1 Deviation between Continuous and Discrete FOS Schemes

For j ∈ N(i), we define yAi,j(t) as the amount of load sent from i to j in round t (this

value is negative if the actual direction is from j to i), where N(i) represents the set of

CHAPTER 5. DISCRETE SECOND-ORDER PROCESSES 79

neighbours of i. yA(t) is the matrix with yAi,j(t) as its entry in row i and column j. Recall

from Section 1.2 that we use the following definition and notation for rounding: each

balancing process A is regarded as a function that, given the current state of the network,

determines for every edge e and round t the amount of load that has to be transferred

over e in t. Hence, we can regard yA(t) as the result of applying a function A, i.e.

yA(t) = A(xA(t)). Using this we formally define discrete processes:

Definition 5.1. Let C be a continuous process. A process D is said to be a discrete

version of C with rounding scheme RD if for every vector x, we have D(x) = RD(C(x))

where RD is a function that rounds each entry of the matrix to an integer.

Although it may not be a necessary condition, our analysis in this section requires

the process to exhibit a linearity property in the following sense:

Definition 5.2 (linearity). A diffusion process A is said to be linear if for all x,x′ ∈ Rn

and a, b ∈ R we have A(ax + bx′) = a ·A(x) + b ·A(x′).

Let C be a continuous process and D its discrete version. Let Ŷ (t) represent

C(xD(t)). Then we can say that D always attempts to set yDi,j(t) to Ŷi,j(t). Hence,

we call Ŷ (t) the continuous scheduled load. We define the rounding error as

ei→j(t) := Ŷi,j(t)− yDi,j(t).

Note that

ei→j(t) = −ej→i(t).

Lemma 5.1. Both FOS and SOS as defined in Section 2.1 are linear.

Proof. Let M be the diffusion matrix and 0 6 β 6 2. Observe that both FOS and SOS

can be described by the following general equation (see Equations (2.1) and (2.4)):

yi,j(t) = (β − 1) · yi,j(t− 1) + β ·Mi,j · xi(t) for t > 1, (5.1)

Thus the algorithm A – where based on the choice of parameter β, A can represent

either FOS and SOS – is defined by

A(x,y) = (β − 1)y + βMx

Let x,x′ ∈ Rn,y,y′ ∈ Rn×n and a, b ∈ R. Then we have

A(ax + bx′, ay + by′) = (β − 1) (ay + by′) + βM(ax + bx′)

CHAPTER 5. DISCRETE SECOND-ORDER PROCESSES 80

= a((β − 1)y + βMx) + b((β − 1)y′ + βMx′)

= aA(x,y) + bA(x′,y′)

which shows that A is linear.

In the next definition î denotes the unit vector with 1 as its i’th entry for every i 6 n.

Definition 5.3 (Contributions). Let x and x’ be the load vectors obtained from applying

C for t rounds on î and ĵ, respectively. For two fixed nodes i and k and j ∈ N(i) the

contribution of edge (i, j) on node k after t rounds is defined as: C C
k,i→j(t) := xk − x′k.

The next theorem provides a general form of the FOS deviation formula of [62] which

has served as a basis for analyzing several discrete FOS processes.

Lemma 5.2. Consider a linear diffusion process C and its discrete version D with an

arbitrary rounding scheme. Then, for an arbitrary node k and round t we have:

xDk (t)− xCk(t) =

t∑
s=1

∑
{i,j}∈E

ei→j(t− s) C C
k,i→j(s)

Proof. Fix a node k and round t. Suppose we sequentialize the load balancing actions

of the process by imposing an arbitrary ordering on the edges. Then, t rounds in the

parallel view is equivalent to |E| · t steps in the sequentialized view. In the following, let

τ := |E|·t. With a slight abuse of notation we let C∞◦D` denote a hybrid process in which

the load balancing actions are determined by D in steps 1 to `, and by C afterwards,

where 0 6 ` 6 τ . Observe that xC
∞◦Dτ
k (t) = xDk (t) and xC

∞◦D′
k (t) = xCk(t). Thus we

can write xDk (t)− xCk(t) in the form of a telescoping sum as follows:

xDk (t)− xCk(t) = xC
∞◦Dτ
k (t)− xC∞◦D′k (t) =

τ∑
`=1

(
xC
∞◦D`
k (t)− xC∞◦D`−∞k (t)

)
(5.2)

Fix an arbitrary step ` and let {i, j} and s be the edge and the round corresponding

to the step `. Both C∞ ◦D`−1 and C∞ ◦D` start their round s+1 with load vectors that

are the same except maybe in i and j. This happens because C∞ ◦D`−1 forwards Ŷi,j(s)

over {i, j} while in C∞ ◦D` this amount is Ŷi,j(s)− ei→j(s). Thus, by the definition of

C C
k,i→j(t) and using the linearity property of the process we get:

xC
∞◦D`
k (t)− xC∞◦D`−∞k (t) = ei→j(s) C C

k,i→j(t− s),

CHAPTER 5. DISCRETE SECOND-ORDER PROCESSES 81

Plugging the above into Equation (5.2) and translating the summation index we get

xDk (t)− xCk(t) =
t−1∑
s=0

∑
{i,j}∈E

ei→j(s) C C
k,i→j(t− s) =

t∑
s=1

∑
{i,j}∈E

ei→j(t− s) C C
k,i→j(s)

5.1.2 Framework for Randomized FOS Schemes

In this section we use Lemma 5.2 to analyze a randomized rounding scheme for a general

class of continuous load balancing algorithms. Our technique is based on the results

of [10] where the authors analyzed a fixed discrete FOS process for homogeneous d-

regular graphs using randomized rounding. Their algorithm is based on a continuous

process in which every node sends a 1/(d + 1)-fraction of its load to each neighbour.

As before, to denote random variables we capitalize the previously defined notation.

Initially, the discrete algorithm rounds Xi/(d + 1) down if it is not an integer. This

leaves (d + 1) · bXi/(d + 1)c surplus tokens on node i, which they call excess tokens.

The excess tokens are then distributed by sending the tokens to neighbours which are

uniformly sampled without replacement.

Here we apply the technique in a much more general way, using Lemma 5.2 to express

the deviation between the randomized and deterministic algorithm. We introduce a

randomized framework that converts a general class of continuous processes to their

discrete versions using randomized rounding.

The Randomized Rounding Algorithm.

Fix a node i. For each edge e = {i, j} let Ŷi,j(t) = C(XR(t)) be the load that is sent over

e by the continuous process C. The rounding scheme works as follows. First, it rounds

Ŷi,j(t) down for all the edges. This leaves r :=
∑

j:Ŷi,j(t)>0
{Ŷi,j(t)} excess load on node

i. Then it takes dre additional tokens and sends each of them out with a probability of

r/dre. With the remaining probability the excess tokens remain on node i. The tokens

which do not remain on i are sent to a neighbour j with a probability of {Ŷi,j(t)}/r.
Let Zi,j(t) be a counting random variable denoting the number of excess tokens that i

sends to j in round t. Then we have:

Y Ri,j (t) =

{
bŶi,j(t)c+ Zi,j(t) if Ŷi,j(t) > 0

−Y Rj,i (t) otherwise
(5.3)

CHAPTER 5. DISCRETE SECOND-ORDER PROCESSES 82

The deviation bound is expressed based on the refined local divergence (ΥC(G))

defined below, which is a function of both the algorithm and the graph:

ΥC(G) := max
k∈V

(∞∑
s=0

n∑
i=1

max
j∈N(i)

(
C C
k,i→j(s)

)2)1/2

ΥC(G) is a generalization of the refined local divergence Υ(G) introduced in [10]. In the

next section we show the following result.

Theorem 5.3. Let C be a continuous FOS and let R = R(C) be a discrete FOS using

our randomized rounding transformation. In an arbitrary round t we have w.h.p.:∣∣XR
k (t)− xCk(t)

∣∣ = O
(

ΥC(G) ·
√
d log n

)
The proof of Theorem 5.3 relies on the fact that FOS is a linear process (Lemma 5.1)

and hence the estimation of Lemma 5.2 can be used as a basis for the randomized

analysis. The proof is similar to the proof of [10], the difference is that we use C C
k,i→j(t)’s

instead of diffusion matrix.

Proof of Theorem 5.3

Proof. We begin the proof of Theorem 5.3 with a simple observation.

Observation 5.4. The following statements are true: (Recall that {a} denotes a−bac):

(1) If Ŷi,j(t) > 0 then Ei→j(t) = {Ŷi,j(t)} − Zi,j(t);

(2) Ex
[
Ei→j(t)

]
= 0.

The first statement of the theorem holds since by definition, Ei→j(t) := Ŷi,j(t)−Y Ri,j (t)
while Y Ri,j (t) =

⌊
Ŷi,j(t)

⌋
+Zi,j(t). For the second statement, first suppose that Ŷi,j(t) > 0.

note that Zi,j(t) can be expressed as a sum of dre identically distributed Bernoulli

random variables each of which is one with probability (r/dre) ·
(
{Ŷi,j(t)}/r

)
. Thus we

have Ex
[
Zi,j(t)

]
= {Ŷi,j(t)} and from there (2) follows from (1). In the case Ŷi,j(t) < 0,

we have Ŷj,i(t) = −Ŷi,j(t) > 0. Thus by the first case we have Ex
[
Ej→i(t)

]
= 0 and

therefore Ex
[
Ei→j(t)

]
= −Ex

[
Ej→i(t)

]
= 0.

Let Fk := XR
k (t) − xCk(t) denote the difference in the load of k in round t of R and

C. In the following, we first observe that Fk is zero in expectation, and then show that

it is well concentrated around its average.

CHAPTER 5. DISCRETE SECOND-ORDER PROCESSES 83

Observation 5.5. Ex
[
Fk
]

= 0

Proof. The statement follows from Lemma 5.2 and Observation 5.4.(2) by the linearity

of expectation.

As in [10], we are going to use the method of averaged bounded differences to ob-

tain concentration results for the random variable Fk. For a fixed initial load vector

X(0) the function Fk depends only on the randomly chosen destinations of the ex-

cess tokens. There are t rounds, n nodes, and at most d excess tokens per node per

round. Similar to [10] we describe these random choices by a sequence of tnd random

variables, U1,U2, . . . ,U tnd. For any ` with 1 6 ` 6 tnd, let (s, i, b) be such that

` = s · n · d+ (i− 1) d+ b (note that (s, i, b) is the `-th largest element in the sequence).

Then U ` refers to the destination of the b-th excess token of vertex i in round s (if there

is one). More precisely,

U ` :=

j if the b-th excess token of the vertex i in round s is sent to j,

0 otherwise.

Let U ` denote U `, . . . ,U1. To apply the method of averaged bounded differences, we

need to bound the difference sequence below:∣∣Ex
[
Fk | U `

]
−Ex

[
Fk | U `−1

]∣∣ . (5.4)

As in [10], we consider a fixed ` that corresponds to (s1, i1, b1) in the lexicographic

ordering.

To bound Equation (5.4), we write

c` :=
∣∣Ex

[
Fk | U `

]
−Ex

[
Fk | U `−1

]∣∣
6

t∑
s=0

∑
{i,j}∈E

∣∣Ex
[
Ei→j(s) | U `

]
−Ex

[
Ei→j(s) | U `−1

]∣∣ · ∣∣C C
k,i→j(t− s)

∣∣
As in [10] we split the sum over s into the three parts 1 6 s < s1, s = s1, and s1 < s 6 t.

In the following we show that the sums over s < s1 and s > s1 are both zero while the

part s = s1 is upper bounded by 2 ·maxj∈N(i1)

∣∣∣C C
k,i→j(t− s)

∣∣∣ .
s < s1 : For every {i, j} ∈ E, Ei→j(s) is already determined by U `−1. Hence,

s1−1∑
s=1

∑
{i,j}∈E

∣∣Ex
[
Ei→j(s) | U `

]
−Ex

[
Ei→j(s) | U `−1

]∣∣ · ∣∣C C
k,i→j(t− s)

∣∣ = 0. (5.5)

CHAPTER 5. DISCRETE SECOND-ORDER PROCESSES 84

s = s1 : In this case, U `−1 determines Ŷi,j(t) and Ei→j(s) is only affected by Zi,j(s)’s

(see Observation 5.4):∑
{i,j}∈E

∣∣Ex
[
Ei→j(s)

∣∣U `

]
−Ex

[
Ei→j(s) | U `−1

]∣∣ · ∣∣C C
k,i→j(t− s)

∣∣
=

n∑
i=1

∑
j:Ŷi,j(t)>0

(∣∣∣Ex
[
{Ŷi,j(t)} − Zi,j(t) | U `

]
−Ex

[
{Ŷi,j(t)} − Zi,j(t) | U `−1

]∣∣∣)
·
∣∣C C
k,i→j(t− s)

∣∣
=

∑
{i,j}∈E

∣∣∣Ex
[
Z

(s)
i,j | U `

]
−Ex

[
Z

(s)
i,j | U `−1

]∣∣∣ · ∣∣C C
k,i→j(t− s)

∣∣
=

∑
{i,j}∈E

∣∣Λ(s)
i,j

∣∣ · ∣∣C C
k,i→j(t− s)

∣∣
6

n∑
i=1

(
max
j∈N(i)

∣∣C C
k,i→j(t− s)

∣∣) ∑
j∈N(i)

∣∣Λ(s)
i,j

∣∣, (5.6)

where we used Λ
(s)
i,j := Ex

[
Z

(s)
i,j | U `

]
−Ex

[
Z

(s)
i,j | U `−1

]
to simplify the notation.

As in [10], to bound Equation (5.6) we consider
∑
{i,j}∈E

∣∣Λ(s)
i,j

∣∣ for i = i1 and i 6= i1

separately.

Case 1: Let i = i1. For each j ∈ N(i1), define indicator Bernoulli random variables

Iu,j , 1 6 u 6 d, where Iu,j is one if the u’th excess token of i1 in round s1 goes to

j and zero otherwise. Note that Z
(s1)
i1,j

=
∑

16u6d Iu,j . Let r =
∑

j∈N(i1)

{
Ŷi1,j(s1)

}
so that dre > b1 be the number of excess tokens of i1 in round s1. Clearly, r and

the destinations of the excess tokens considered in the previous rounds, are already

determined by U1, . . . ,U `−1. The remaining receivers U `+1, . . . ,U `+r−b1 are chosen

independently from N(i1)∪{i1}. Hence, the choice of U ` does not affect the distribution

of Iu,j except for u = b1, and we have:

Ex
[
Zi1,j(s1) | U `

]
−Ex

[
Zi1,j(s1) | U `−1

]
= Ex

[
I1,j + · · ·+ Idre,j | U `

]
−Ex

[
I1,j + · · ·+ Idre,j | U `−1

]
= Ex

[
Ib1,j | U `

]
−Ex

[
Ib1,j | U `−1

]
Let w ∈ N(i1) ∪ {i1} be the destination of the b1-th excess token of i1 in round s1,

that is, U ` = w and hence, Λ
(s1)
i1,w

= 1 − {Ŷi1,w(t)}/r. For any j ∈ N(i1) \ {w} we have

Λ
(s1)
i1,w

= −{Ŷi1,j(t)}/r.

CHAPTER 5. DISCRETE SECOND-ORDER PROCESSES 85

Hence, ∑
j∈N(i1)

∣∣Λ(s1)
i1,j

∣∣ 6 1− {Ŷi1,w(t)}/dre+
∑

j∈N(i1)\{w}

{Ŷi1,j(t)}/dre

6 1 +
∑

j∈N(i1)

{Ŷi1,j(t)}/dre

6 2, (5.7)

where the last inequality holds since
∑

j∈N(i1){Ŷi1,j(t)} = r 6 dre.
Case 2: i 6= i1.

As ` corresponds to (s1, i1, b1), the random variable Zi,j(s1) is independent of U `

when conditioned on U `−1. Hence, similar to [10], we have∑
{i,j}∈E

∣∣Λ(s1)
i,j

∣∣ =
∑

j:{i,j}∈E

∣∣∣Ex
[
Z

(s)
i,j | U `

]
−Ex

[
Z

(s)
i,j | U `−1

]∣∣∣ = 0.

Combining Case 1 and Case 2 we obtain

(5.6) =

(
max
j∈N(i1)

∣∣C C
k,i→j(t− s)

∣∣) ∑
j:{i1,j}∈E

∣∣Λ(s)
i1,j

∣∣
+

∑
i∈V,i 6=i1

(
max
j∈N(i)

∣∣C C
k,i→j(t− s)

∣∣) ∑
{i,j}∈E

∣∣Λ(s)
i,j

∣∣
6 max
j∈N(i1)

∣∣C C
k,i→j(t− s)

∣∣ · 2 + 0. (5.8)

s > s1 : Let ˜̀be the largest integer that corresponds to round s− 1. Since s > s1, we

have s − 1 > s1 and therefore ˜̀> `. By the choice of ˜̀, U ˜̀, . . . , Y1 determine the load

vector at the end of round s1, XR(s1). By Observation 5.4, we obtain Ex
[
Ei→j(s) |

U ˜̀, . . . ,U1

]
= 0, and by the law of total expectation,

Ex
[
Ei→j(s) | U `

]
= Ex

[
Ex
[
Ei→j(s) | U ˜̀, . . . , Y1

]
| U `,U `−1, . . . , Y1

]
= Ex [0 | U `,U `−1, . . . ,U1] = 0.

With the same arguments, Ex
[
Ei→j(s) | U `−1

]
= 0, and therefore

t∑
s=s1+1

∑
{i,j}∈E

∣∣Ex
[
Ei→j(s) | U `

]
−Ex

[
Ei→j(s) | U `−1

]∣∣ · ∣∣C C
k,i→j(t− s)

∣∣ = 0. (5.9)

CHAPTER 5. DISCRETE SECOND-ORDER PROCESSES 86

This finishes the case distinction. Combining Equations (5.5), (5.8), and (5.9) for the

three cases s < s1, s = s1, and s > s1, similar to [10] we obtain that for every fixed

1 6 ` 6 t · n · d,

c` =
∣∣Ex

[
Fk | U `

]
−Ex

[
Fk | U `−1

]∣∣
6

t∑
s=0

∑
{i,j}∈E

∣∣Ex
[
Ei→j(s) | U `

]
−Ex

[
Ei→j(s) | U `−1

]∣∣ · ∣∣C C
k,i1→j(t− s1)

∣∣
=0 + max

j∈N(i1)

∣∣C C
k,i1→j(t− s1)

∣∣ · 2 + 0

=2 · max
j∈N(i1)

∣∣C C
k,i1→j(t− s1)

∣∣.
Now we consider

∑(t+1)nd
`=1 (c`)

2:

(t+1)nd∑
`=1

(c`)
2 6

t∑
s=0

n∑
i=1

d∑
b=1

(
2 max
j∈N(i)

∣∣C C
k,i→j(t− s)

∣∣)2

= 4d
t∑

s=0

n∑
i=1

max
j∈N(i)

(
C C
k,i→j(s)

)2
6 4d max

k∈V

(∞∑
s=0

n∑
i=1

max
j∈N(i)

(
C C
k,i→j(s)

)2)
= 8d

(
ΥC(G)

)2
. (5.10)

So by Theorem A.4 we have for any δ > 0, Pr [|Fk| > δ] 6 2 exp
(
− δ2

/(
2
∑tnd

`=1(c`)
2
))
.

Hence by choosing δ := ΥC(G)
√

32d lnn, the probability above gets smaller than 2n−2.

Applying the union bound we obtain

Pr [∃k ∈ V : |Fk| > δ] 6 2n−1.

This implies

Pr
[

max
i,j∈[n]

∣∣XR
i (t)− xCi (t)

∣∣ 6 δ
]
> 1− 2n−1,

which finishes the proof.

Using Theorem 5.3 we can also obtain concrete results for randomized FOS processes

as stated in the following theorem:

Theorem 5.6. Let C be a continuous FOS process and let R = R(C) be a discrete FOS

process based on the rounding algorithm applied on C. Then

CHAPTER 5. DISCRETE SECOND-ORDER PROCESSES 87

(1) ΥC(G) = O
(√

d·log smax

1−λ

)
.

(2) For any round t we have w.h.p.
∣∣XR

k (t)− xC
k (t)

∣∣ = O
(
d ·
√

logn·log smax

1−λ

)
.

Proof. The proof is similar to the proof of Theorem 5.12. We have

(
ΥFOS(G)

)2
=

∞∑
t=0

n∑
i=1

max
j∈N(i)

(
M t
k,i −M t

k,j

)2
6
∞∑
t=0

n∑
i=1

∑
j∈N(i)

(
M t
k,i −M t

k,j

)2
=

t1−1∑
t=0

n∑
i=1

∑
j∈N(i)

(
M t
k,i −M t

k,j

)2
+

∞∑
t=t1

n∑
i=1

∑
j∈N(i)

(
M t
k,i −M t

k,j

)2
(5.11)

On the other hand,

t1−1∑
t=0

n∑
i=1

∑
j∈N(i)

(
M t
k,i −M t

k,j

)2
6

t1∑
t=0

n∑
i=1

∑
j∈N(i)

2
(
(M t

k,i)
2 + (M t

k,j)
2
)

6 4 · d ·
t1−1∑
t=0

n∑
i=1

(M t
k,i)

2

6 4 · d ·
t1−1∑
t=0

‖M t k̂‖22

= 4 · d ·
t1−1∑
t=0

(
‖k̂‖2 ·max

i
λti

)2

= 4 · d ·
t1−1∑
t=0

1

6 4 · d · t1 (5.12)

Let t1 = (log smax)/(2− 2λ). Note that λ1/(1−λ) 6 1/e. Then we have

∞∑
t=t1

n∑
i=1

∑
j∈N(i)

(
M t
k,i −M t

k,j

)2
6
∞∑
t=t1

n∑
i=1

∑
j∈N(i)

2

((
M t
k,i −

sk
s

)2
+
(
M t
k,j −

sk
s

)2
)

= 4 · d ·
∞∑
t=t1

n∑
i=1

(
M t
k,i −

sk
s

)2

6 8 · d · smax ·
∞∑
t=t1

λ2t (5.13)

CHAPTER 5. DISCRETE SECOND-ORDER PROCESSES 88

6 8 · d · smax · λ2t1 · 1

1− λ

6
8 d

1− λ
(5.14)

where Equation (5.13) follows from Lemma A.8. Combining Equations (5.11), (5.14),

and (5.12) we get

(
ΥFOS(G)

)2
= O

(
d · log smax

1− λ

)
, (5.15)

which proves the first statement. The bound in the second statement follows imme-

diately from statement (1) and Theorem 5.3.

It should be noted that for the special case of homogeneous networks where for

all j ∈ N(i) we have Mi,j = 1/(γd) for γ > 1, there is a deviation bound independent

of λ which is better than the one implied by the general bound of Theorem 5.6. This

follows from an improved refined local divergence bound given in [64, Theorem 5.3] for

the restricted case mentioned above.

Observation 5.7. For Mi,j = 1/(γd) in homogeneous networks we have

(1) [64, Theorem 5.3]

ΥFOS(G) 6

√
γd

2− 2/γ

(2) The bound in (1) is minimized for γ = 2, which yields∣∣XR
k (t)− xC

k (t)
∣∣ = O(d

√
log n).

However, there is no simple adjustment of their approach to the general case of

arbitrary diffusion matrices and heterogeneous networks.

5.2 Second-Order Diffusion Processes

In this section we show that after some slight adjustments the framework of Section 5.1

can be applied to second-order processes on heterogeneous networks. All we have to do

is to state Definitions 5.2 and 5.3 in a more general way that captures the dependence

of SOS on the load transfer of the previous round. It is easy to see that Lemma 5.2 and

Theorem 5.3 still hold assuming the new definitions. (Note that by Lemma 5.1, SOS

CHAPTER 5. DISCRETE SECOND-ORDER PROCESSES 89

is linear). If C is a second order process, then yC(t) is determined based on xC(t) and

yC(t − 1). More formally, yC(t) = C(xC(t), yC(t − 1)). Thus, the new definitions also

incorporate yC(t− 1). Again, we use î to denote the unit vector with 1 as its i’th entry.

Definition 5.4 (linearity). A process A is said to be linear if for all x,x′ ∈ Rn,y,y′ ∈
Rn×n and a, b ∈ R we have A(ax + bx′, ay + by′) = aA(x,y) + bA(x′,y′).

Definition 5.5 (Contributions). Let x(0) = x′(0) = î, y(0) = 0n×n and y′(0) is also

all zero except y′i,j(0) = 1, so that x(1) = î,x′(1) = ĵ. Let x(t + 1) and x’(t+1) be

the load vectors obtained from applying C for t rounds on (x(1),y(0)) and (x′(1),y′(0)),

respectively. Then the contribution of the edge (i, j) on a node k after t rounds is defined

as: C C
k,i→j(t) := xk(t)− x′k(t).

The contributions are expressed based on a sequence of matrices Q(t) defined below,

whose role in error propagation is similar to that of the diffusion matrix in FOS:

Q(t) =

I if t = 0

β ·M if t = 1

β ·M Q(t− 1) + (1− β) ·Q(t− 2) if t > 2

(5.16)

Lemma 5.8. For t > 0, we have C SOS
k,i→j(t) = Qk,i(t− 1)−Qk,j(t− 1).

Proof. Let x(0) = x′(0) = î, y(0) = 0n×n and y′(0) is also all zero except y′i,j(0) = 1,

so that x(1) = î,x′(1) = ĵ. Let x(t+ 1) and x’(t+1) be the load vectors obtained from

applying SOS for t rounds on (x(1),y(0)) and (x′(1),y′(0)), respectively. Let C SOS
i→j (t)

be a vector that has C SOS
k,i→j(t) as its k’th entry, for 1 6 k 6 n. Let e := î− ĵ. Then we

have:

C SOS
i→j (t) = x(t)− x′(t) =

0 if t = 0

e if t = 1

β ·M C SOS
i→j (t− 1) + (1− β) · C SOS

i→j (t− 2) if t > 2

(5.17)

where the third equation holds because for all t > 2, both x(t) and x′(t) follow the same

equation x(t) = β ·Mx(t−1)+(1−β) ·x(t−2). Now, it can be proved by induction that

C SOS
i→j (t) = Q(t − 1) e. Recall that all entries of e are zero except ei = 1 and ej = −1.

Therefore, for t > 0 we get C SOS
k,i→j(t) = Qk,i(t− 1)−Qk,j(t− 1).

The following lemma provides a bound for the second norm of Q(t), which is later

used in the proofs of Theorems 5.10 and 5.12.

CHAPTER 5. DISCRETE SECOND-ORDER PROCESSES 90

Lemma 5.9. Let β = βopt = 2/(1 +
√

1− λ2). The following statements are true:

(1) Eigenvectors of Q(t) form a basis for Rn.

(2) Let γ :=
(√
β − 1

)t
(t + 1). Then γ is an upperbound on the eigenvalues of Q(t)

except the eigenvalue corresponding to the eigenvector (s1, . . . , sn).

(3) Q(t) has equal column sums.

(4) Define q(t) :=
∑

16j6nQi,j(t) for an arbitrary 1 6 i 6 n (note that by the statement

(3), this is a valid definition). Fix a 1 6 k 6 n, and let the vector a be such that

ai := Qk,i(t)− sk
s · q(t). Then we have: ‖a‖22 6 2 smax(β − 1)t(t+ 1)2.

Proof. Proof of (1). First we observe that the eigenvectors of Q(t) are the same as

the eigenvectors of M . This can be proved by an induction using the recurrence of

Equation (5.17). Also, note that M = I −LS−1 where L is the Laplacian matrix of the

graph and S is the diagonal matrix of speeds. The eigenvectors of M are the same as

those of LS−1. By [29, proof of Lemma 1] the eigenvectors of LS−1 form a basis for Rn.

Therefore the eigenvectors of M and the eigenvectors of Q(t) form a basis for Rn.

Proof of (2). From the induction in the proof of statement (1) one can see that

corresponding to each eigenvalue λj of M an eigenvalue γj(t) of Q(t) can be obtained

according to the following recursion:

γj(t) =

1 if t = 0

βλj if t = 1

βλj · γj(t− 1) + (1− β) · γj(t− 2) if t > 2

(5.18)

Solving the above recursion we get

γj(t) =

1−(β−1)t+1

2−β if λj = 1,(√
β − 1

)t
(t+ 1) if |λj | = λ,

rt

(
cos(θt) + sin(θt) · λj√

λ2−λ2
j

)
if |λj | < λ,

(5.19)

where r =
√
β − 1, and 0 < θ < π is such that sin θ =

√
λ2 − λ2

j/λ, and cos θ = λj/λ.

Note that the eigenvalue correspnding to λj = 1 belongs to the eigenvector (s1, . . . , sn).

CHAPTER 5. DISCRETE SECOND-ORDER PROCESSES 91

Hence, it suffices to prove that in Equation (5.19) the case |λj | < λ does not produce

eigenvalues bigger than those obtained in the case |λj | = λ. Note that

γj(t) = rt

cos(θt) + sin(θt) · λj√
λ2 − λ2

j

6
(√

β − 1
)t
· sin((t+ 1)θ)

sin θ
(5.20)

6
(√

β − 1
)t
· (t+ 1),

where in Equation (5.20) we use sin(nx) 6 n sinx for 0 < x < π and n ∈ N.

Proof of (3). The statement follows from a simple induction using Equation (5.17).

Proof of (4). Let â := k̂ − sk
s · 1n. Note that a = âQ(t). Let v1, . . . ,vn be the

eigenvectors of Q(t) with eigenvalues γ1, . . . , γn, and γ be defined as in the statement

(2) of the lemma. Using the fact that M = I − LS−1, it can be proved by induction

that S−1Q(t) is symmetric. Hence, for each right eigenvector vi of Q(t) there is a left

eigenvector ui = S−1vi with the same eigenvalue γi as proved in the following:

(Q(t))Tui = (Q(t))TS−1Sui = (S−1Q(t))Tvi = S−1Q(t)vi = γiS
−1vi = γiui

Also, note that S−1Q(t)Sui = S−1Q(t)vi = γiS
−1vi = γiui. As a result, ui’s are

eigenvectors of S−1Q(t)S, which is symmetric because it is the product of symmetric

matrices S−1Q(t) and S. Therefore, u1, . . . ,un form an orthonormal basis; so we can

write â =
∑n

i=1 ciui. Now we write a = âQ(t) =
∑n

i=1 ciuiQ(t) =
∑n

i=1 γiciui. There-

fore,

‖a‖22 =

n∑
i=1

γ2
i c

2
i ‖ui‖22 6 γ2

n∑
i=1

c2
i ‖ui‖22 = γ2‖â‖22 (5.21)

where the inequality uses the fact that â ⊥ (s1, . . . , sn) and part (2) of the lemma, and

the last equality follows from the fact that ui’s form an orthonormal basis. Also,

‖â‖22 6 n ·
s2
k

s2
+ 1 6

n s2
k

(n− 1 + sk)2
+ 1 6

n s2
k

2(n− 1)sk
+ 1 6 sk + 1 6 2smax

Together with Equation (5.21), this yields ‖a‖22 6 2 smax(β − 1)t(t+ 1)2.

CHAPTER 5. DISCRETE SECOND-ORDER PROCESSES 92

5.2.1 Deviation between Continuous and Discrete SOS Schemes

In this section we show a bound on the deviation between a continuous SOS and its

rounded version. The authors of [30] show a similar bound on the deviation using the

second norm, i.e., they show a bound of ||xD(SOS)(t)−xSOS(t)||2 = O
(
d
√
nsmax/(1− λ)

)
.

Theorem 5.10. Consider a discrete SOS process D = D(SOS) with optimal β and a

rounding scheme that rounds a fractional value to either its floor or its ceiling. Then for

arbitrary t > 0 we have:
∣∣xDk (t)− xSOS

k (t)
∣∣ = O

(
d
√
nsmax/1− λ

)
.

Note that the deviation bound of O(d
√
smax log n/(1− λ)) for the FOS is smaller.

Proof. We use Lemma 5.2 to obtain a deviation bound for the general case. We have:

∣∣∣xD(SOS)
k (t+ 1)− xSOS

k (t+ 1)
∣∣∣ =

∣∣∣∣∣∣
t∑

s=0

∑
{i,j}∈E

(Qk,i(s)−Qk,j(s)) · ei→j(t− s)

∣∣∣∣∣∣
6

t∑
s=0

∑
{i,j}∈E

|Qk,i(s)−Qk,j(s)|

6
t∑

s=0

∑
{i,j}∈E

(∣∣∣Qk,i(s)− sk
s
· q(s)

∣∣∣+
∣∣∣Qk,j(s)− sk

s
· q(s)

∣∣∣)

= d ·
t∑

s=0

n∑
i=1

∣∣∣Qk,i(s)− sk
s
· q(s)

∣∣∣
6 d ·

√
n ·

t∑
s=0

(
n∑
i=1

(
Qk,i(s)−

sk
s
· q(s)

)2
)1/2

(5.22)

6 4 · d ·
√
n ·
√

2smax ·
∞∑
s=0

(√
β − 1

)s
(s+ 1) (5.23)

6 4 · d ·
√

2nsmax ·
1(

1−
√
β − 1

)2
6 16 · d ·

√
2nsmax ·

1

1− λ

where Equation (5.22) follows from the Cauchy-Schwarz inequality and Equation (5.23)

follows from Lemma 5.9.(4).

CHAPTER 5. DISCRETE SECOND-ORDER PROCESSES 93

5.2.2 Framework for Randomized SOS Schemes

In the next theorem we bound the deviation between continuous and discrete SOS using

the randomized rounding scheme from Section 5.1.2. As mentioned earlier in this section,

it is easy to see that the proof of Theorem 5.3 holds for the more general definitions for

linearity and contribution of this section. Hence, we can state the following observation.

Observation 5.11. In the setting of Section 5.2 the following holds for an arbitrary

round t w.h.p.:
∣∣XR

k (t)− xCk(t)
∣∣ = O

(
ΥC(G) ·

√
d log n

)
.

Similar to Section 5.1, we can use Observation Observation 5.11 to show the next

theorem:

Theorem 5.12. Let R = R(SOS) be a randomized-rounding discrete SOS process with

optimal β obtained using our randomized rounding scheme. Then

(1) ΥSOS(G) = O
(√

d·log smax

(1−λ)3/4

)
.

(2) The deviation of R from the continuous SOS in an arbitrary round t is w.h.p.,∣∣XR
k (t)− xSOS

k (t)
∣∣ = O

(d · log smax ·
√

log n

(1− λ)3/4

)
.

Proof outline. The bound on the refined local divergence is obtained using the for-

mulation of Lemma 5.8 and the bound in Lemma 5.9. This bound together with the

parametric deviation bound of Theorem 5.3 yield the second statement of the theorem.

Proof. We write

(
ΥSOS(G)

)2
=

∞∑
t=0

n∑
i=1

max
j∈N(i)

(
Qk,i(t)−Qk,j(t)

)2
6
∞∑
t=0

n∑
i=1

∑
j∈N(i)

(Qk,i(t)−Qk,j(t))2

=

t1−1∑
t=0

n∑
i=1

∑
j∈N(i)

(Qk,i(t)−Qk,j(t))2 +

∞∑
t=t1

n∑
i=1

∑
j∈N(i)

(Qk,i(t)−Qk,j(t))2

(5.24)

In the following, we use σ := β − 1 for brevity. Note that 0 < σ < 1.

t1−1∑
t=0

n∑
i=1

∑
j∈N(i)

(Qk,i(t)−Qk,j(t))2 6
t1∑
t=0

n∑
i=1

∑
j∈N(i)

2
(
(Qk,i(t))

2 + (Qk,j(t))
2
)

CHAPTER 5. DISCRETE SECOND-ORDER PROCESSES 94

6 4 · d ·
t1−1∑
t=0

n∑
i=1

(Qk,i(t))
2 6 4 · d ·

t1−1∑
t=0

‖Q(t) k̂‖22

= 4 · d ·
t1−1∑
t=0

(
‖k̂‖2 ·max

i
γi(t)

)2

= 4 · d ·
t1−1∑
t=0

(
1− σt+1

1− σ

)2

6 4 · d · t1 ·
(

1− σt1
1− σ

)2

6 4 · d · t1 · (1− σ)−2 (5.25)

∞∑
t=t1

n∑
i=1

∑
j∈N(i)

(Qk,i(t)−Qk,j(t))2

6
∞∑
t=t1

n∑
i=1

∑
j∈N(i)

2

((
Qk,i(t)−

sk
s
· q(t)

)2
+
(
Qk,j(t)−

sk
s
· q(t)

)2
)

= 4 · d ·
∞∑
t=t1

n∑
i=1

(
Qk,i(t)−

sk
s
· q(t)

)2
6 8 · d · smax ·

∞∑
t=t1

(
σt (t+ 1)2

)
(5.26)

where the last inequality follows from part (4) of Lemma 5.9. The above summation can

be bounded as follows,

∞∑
t=t1

(
σt (t+ 1)2

)
=

d

dσ

(
σ
d

dσ

(
σt1+1

1− σ

))

6
2σt1+2

(1− σ)3 +
(2t1 + 3) ·σt1+1

(1− σ)2 +
(t1 + 1)2·σt1

1− σ
(5.27)

Let t1 = (log smax)/(1− σ). Note that σ1/(1−σ) 6 1/e. Then Equation (5.27) yields

∞∑
t=t1

(
σt (t+ 1)2

)
= O

(
log2 smax

smax · (1− σ)3

)
(5.28)

Combining Equations (5.28) and (5.26) and then Equation (5.25) we get

(
ΥSOS(G)

)2
= O

(
d · log smax

(1− σ)3

)
+O

(
d · log2 smax

(1− σ)3

)
= O

(
d · log2 smax

(1− σ)3

)
Observe that 1− σ = (1−

√
σ)(1 +

√
σ) > (1−

√
σ) = 1−

√
β − 1, where we have

1−
√
β − 1 = 1− λ

1 +
√

1− λ2
=

1− λ+
√

1− λ2

1 +
√

1− λ2
>

1

2
·
(

1− λ+
√

1− λ2
)

CHAPTER 5. DISCRETE SECOND-ORDER PROCESSES 95

>
1

2
·
√

1− λ ·
(√

1− λ+
√

1 + λ
)
>

1

2
·
√

1− λ

Therefore,

ΥSOS(G) = O

(√
d · log smax

(1− λ)3/4

)
.

This finishes the proof of the first statement. The bound in the second statement follows

immediately from statement (1) and Theorem 5.3.

5.2.3 Experimental Simulations

The second-order process was studied only in a few publications before. To the best

of our knowledge, our work is the first to analyze a randomized second-order process.

Absence of a preset baseline for comparison of the results lead us to perform simulations

and compare our analytic bounds with those suggested by experiments.

Figure 5.1: For the purpose of comparison, we simulated SOS and FOS discrete

processes in the homogeneous model (both randomized and deterministic versions) for

several graph classes. We measured the maximum deviation of each discrete process

from its continuous counterpart (maxi,t |xCi (t)−xDi (t)|) over tens of runs. The diagrams

show how this deviation varies with n, the order of the graph in each graph class.

The empirical results for the deterministic SOS are polynomially better than the cur-

rent analytic bound for all the graphs considered. This suggests that our deterministic

bound is far from being tight. On the other hand, both in the randomized and determin-

istic case, there are cases where FOS has clearly better performance compared to SOS

(rings, expanders (deterministic case), and tori (randomized case)). This means that it

might not be possible to derive SOS bounds that are in general better than FOS bounds.

However, in some cases SOS performs very similar to FOS in practice (hypercubes, and

expanders(randomized case)).

5.3 Negative Load for SOS Schemes

In the second-order diffusion nodes might not have enough load to satisfy all their neigh-

bours’ demand. This situation, which we refer to as negative load, motivates studying

by how much a node’s load may become negative. Here we study the minimum amount

of load that nodes need in order to prevent this event.

CHAPTER 5. DISCRETE SECOND-ORDER PROCESSES 96

Figure 5.1: Comparison of discrete FOS and SOS processes on different network topologies in
terms of the maximum deviation from their continuous counterpart processes. The diagrams
show the growth of deviation with respect to n.

CHAPTER 5. DISCRETE SECOND-ORDER PROCESSES 97

In the following we calculate a bound on the minimum load of every node that holds

during the whole balancing process. Note that, if every processor has minimum load at

the beginning of the balancing process, there will be no processor with negative load.

Hence, these bounds can also be regarded as bounds on the minimum load of every

processor in order to avoid negative load.

Let x̄ = (x̄1, . . . , x̄n) be the balanced load vector. Define ∆(t) := ‖x(t) − x̄‖∞, and

Φ(t) := ‖x(t) − x̄‖2, where ‖.‖ is the norm operator. Then the following observation

estimates the load at the end of every step.

Observation 5.13. In continuous SOS with β = βopt we have x(t) > −
√
n ·∆(0).

Proof. We first note that

∆(t) 6 Φ(t)
(∗)
6 λt · Φ(0) 6 λt ·

√
n ·∆(0), (5.29)

where (∗) follows from a result by Muthukrishnan et al. [57]. They show that x(t) =

M(t)x(0) for an n × n matrix M(t) defined recursively. They also show that Φ(t) 6

γ(t) ·Φ(0) where γ(t) is the second largest eigenvalue in magnitude of M(t) and γ(t) 6 λt

[57, Proof of Theorem 2]. Though they only consider homogeneous networks, their

argument also applies to the heterogeneous case. The proof now follows by considering

the facts −x(t) 6 ∆(t) and λt < 1.

It should be noted that load during a balancing step can be lower than the bound

in Observation 5.13 since Observation 5.13 considers only snapshots of the network at

the end of each round. However, it might be possible that a node has to send more load

items to some of its neighbours than it has at the beginning of round t, but its load is

still positive at the end of round t. This can happen if it also receives many load items

from other neighbours in round t. To study the negative load issue it is helpful to divide

every round in two distinct steps; in the first step, all the nodes send out their outgoing

flows. In the second step, they receive incoming flows forwarded by their neighbours in

the first step. At the end of the first step all the outgoing flows are sent out but no

incoming flow is yet received. To prevent negative load the load of every node has to be

non-negative at this point. We refer to this point as the transient state, and use x̆i(t) to

denote the load in the transient state of round t. Note that we always have x̆i(t) 6 xi(t)

and x̆i(t) 6 xi(t+ 1). The following theorem provides a lower bound on x̆i(t).

CHAPTER 5. DISCRETE SECOND-ORDER PROCESSES 98

Theorem 5.14. In a continuous SOS process with β = βopt we have

x̆i(t) > −O
(√

n ·∆(0)√
1− λ

)
.

Proof. Observe that for t > 1 and an arbitrary node i we have

yi,j(t) = (β − 1) · yi,j(t− 1) + β · αi,j ·
(
xi(t)

si
−
xj(t)

sj

)
(5.30)

Thus we have (Note that x̄i/si = x̄j/sj),∑
j∈N(i)

|yi,j(t)|

6 (β − 1) ·
∑
j∈N(i)

|yi,j(t− 1)|+ β ·
∑
j∈N(i)

αi,j ·
∣∣∣∣xi(t)si

−
xj(t)

sj

∣∣∣∣
6 (β − 1) ·

∑
j∈N(i)

|yi,j(t− 1)|+ β ·
∑
j∈N(i)

αi,j ·
(∣∣∣∣xi(t)si

− x̄i
si

∣∣∣∣+

∣∣∣∣xj(t)sj
− x̄j
sj

∣∣∣∣)

Let g(t) :=
∑

j∈N(i) |yi,j(t)|. Recall that β < 2, and for all i, si > 1 and∑
j∈N(i)∪{i} αi,j = 1. So we get

g(t+ 1) 6 (β − 1) · g(t) + 2 ·
∑
j∈N(i)

αi,j ·
(
|xi(t+ 1)− x̄i|+

∣∣xj(t+ 1)− x̄j
∣∣)

6 (β − 1) · g(t) + 4 ·∆(t+ 1) ·
∑
j∈N(i)

αi,j

6 (β − 1) · g(t) + 4 ·∆(t+ 1)

6 (β − 1) · g(t) + 4 · λt+1 ·
√
n ·∆(0) (By Equation (5.29)) (5.31)

Also note that g(0) < ∆(0). From the recurrence of Equation (5.31) we get:

g(t+ 1) 6 4
t∑

k=0

(β − 1)t−i · λi ·
√
n ·∆(0)

= 4
√
n ·∆(0) · λ

t+1 − (β − 1)t+1

λ− (β − 1)

6 4
√
n ·∆(0) · λ

λ− (β − 1)
(5.32)

where the last inequality holds because λ < 1. On the other hand, we have

λ− (β − 1) =
(1 + λ)

√
1− λ2 − (1− λ)

1 +
√

1− λ2
>

√
1− λ · λ

4

CHAPTER 5. DISCRETE SECOND-ORDER PROCESSES 99

Therefore, we can apply the above to Equation (5.32) to get: g(t) =

O
(√
n ·∆(0)/

√
1− λ

)
To complete the proof, we note that x̆i(t) > xi(t)− g(t), while by Observation 5.13

we have xi(t) > −
√
n ·∆(0). This yields the desired lower bound of −O

(√
n·∆(0)√

1−λ

)
.

Remark 5.15. We can apply a similar argument as in the proof of Theorem 5.14 to get

a lower bound for the randomized discrete second-order process (R = R(SOS)) in many

cases. For instance, if smax is polynomial in n and d/(1 − λ)3/4 = O(n0.5−ε) for some

ε > 01 then the asymptotic lower bound obtained in Observation 5.13 also holds for R.

To show this, we rewrite Equation (5.30) as follows:

Yi,j(t) 6 (β − 1) · Yi,j(t− 1) + β · αi,j ·
(
Xi(t)

si
−
Xj(t)

sj

)
+ d,

which results in the recursion

G(t+ 1) 6 (β − 1) ·G(t) + 4 · λt+1 ·
√
n ·∆(0) + d2,

Proceeding with similar steps as in the proof of Theorem 5.14 we get the following theo-

rem:

Theorem 5.16. Under the conditions of Remark 5.15, in a randomized discrete SOS

process R = R(SOS) with β = βopt we have

X̆R
i (t) > −O

(√
n ·∆(0) + d2

√
1− λ

)
.

5.3.1 Experimental Simulations

To investigate the negative load situations, we ran simulations for different graph classes

and load distributions. In our experiments, maxi xi(0) = 1 and mini xi(0) = 0. For

each network topology, we measured both maxi,t(−xi(t)) and maxi,t(−x̆i(t)) over tens

of runs with different initial load vectors (both randomly and deterministically generated

vectors). Surprisingly, for each fixed network graph, the maximum negative load over

different runs was always equal to the maximum negative transient load over those

runs. Hence, each of the diagrams in Figure 5.2 show only one data series. By their

construction, our experiments guarantee to obtain the exact value for maxi,t(−xi(t)).

1This is true, e.g., for tori with four or more dimensions, hypercubes, and expanders.

CHAPTER 5. DISCRETE SECOND-ORDER PROCESSES 100

To do this, we considered the symmetric matrix M(t) where x(t) = M(t)x(0) and

found i, t such that
∑

j:Mi,j(t)<0(−Mi,j(t)) is maximized. To construct the instance that

produces the most negative xi(t), it suffices to put a load of 1 on j : Mi,j(t) < 0 and

zero elsewhere. Unfortunately, this method works only for maxi,t(−xi(t)), and we were

not able to verify if our experiments captured the worst state in terms of the negative

transient load (maxi,t(−x̆i(t))).
Our experiments suggest that the bound in Observation 5.13 is asymptotically tight

for rings. As can be seen in Figure 5.2, for large n the experiment data lie almost in

parallel to the curve y = Θ(
√
n). However, for other graph classes such as hypercubes,

the bound in Observation 5.13 appears to be too loose compared to what suggested by

the experiment data.

Figure 5.2: Simulation results for maximum (transient) negative load (in absolute value).
The diagrams show how the negative load grows with n in different graph classes.

Appendix A

Tools

Lemma A.1 ([44, Fact 2]). From the Courant-Fischer Minimax Theorem it follows that

λ2 = min

(
xTLx

xTx

∣∣∣∣ x ⊥ u,x 6= 0

)
where u = (1, 1, . . . , 1)T is the eigenvector corresponding to λ1 = 0 and x ⊥ u denotes x

is orthogonal to u.

Lemma A.2 (Hoeffding’s bound [47, Theorem 2]). Suppose sn = X1 . . . Xn where

the Xi’s are independent random variables, and for each i = 1, . . . , n,Xi ∈ [ai, bi]. Then,

for any ε > 0,

Pr [sn −Ex [sn] > ε] 6 exp

(
−2ε2∑n

i=1(bi − ai)2

)
Lemma A.3 (Hoeffding’s Bound: Adaptation for Randomized Rounding). Let

X1, . . . , Xk be k independent random variables, and p1, . . . , pk be constants where for

all i, 0 < |pi| < 1. Suppose Xi is pi− 1 with probability pi and pi otherwise. If we define

the random variable X =
∑

16i6kXi, then we have for any δ > 0 that

Pr
[
|X| > δ

]
6 2 exp (−2δ2/k).

Proof. We first note that for each i, we have

Ex [Xi] = (pi − 1) · pi + pi · (1− pi) = 0;

Hence, by the linearity of expectation we get Ex [X] =
∑

16i6k Ex [Xi]. Also, for

each i, pi − 1 6 Xi 6 pi. Therefore, we can apply the Hoeffding’s bound [47] to

get Pr
[
|X| > δ

]
6 2 exp (−2δ2/k), as required.

101

APPENDIX A. TOOLS 102

Theorem A.4 (Method of Averaged Bounded Differences [26, p. 68]). Let U1, . . . , Un

be an arbitrary set of random variables and let f be a function of these random variables

satisfying the property that for each 1 6 ` 6 n, there is a non-negative c` such that∣∣Ex [f | U`, U`−1, . . . , U1]−Ex [f | U`−1, . . . , U1]
∣∣ 6 c`.

Then for any δ > 0 ,

Pr [|f −Ex [f] | > δ] 6 2 exp

(
− δ2

2c

)
,

where c :=
∑n

`=1 c
2
` .

Theorem A.5 ([41, Theorem 4.2]). For all initial load vectors on the d-dimensional

hypercube with n nodes, the deviation between the idealized process and a discrete process

with accumulated rounding errors at most ξ is O(ξ log3/2 n) at all times.

Theorem A.6 ([41, Theorem 5.4]). For all initial load vectors on the d-dimensional

torus with n nodes, the deviation between the idealized process and a discrete process

with accumulated rounding errors at most ξ is O(ξ) at all times.

Lemma A.7 ([57, Lemma 1]). Consider wt+1 = Mwt where M is a diffusion matrix.

We have Φt 6 λ2tΦ0 (where λ is the second largest eigenvalue in absolute value of M

and Φt :=
∑

i(w
t
i − w̄)2, where w̄ =

∑
i w

t
i/n)

Lemma A.8. For an arbitrary 1 6 k 6 n, let the vector a be such that ai := M t
k,i−

sk
s .

Then we have:

‖a‖22 6 2 smax λ
2t

Proof. Let â := k̂ − sk
s · 1n. Note that a = âM t. Let v1, . . . ,vn be the eigenvectors of

M t with eigenvalues λt1, . . . , λ
t
n, and λt be the second largest eigenvalue. Using the fact

that M = I−LS−1, it is not hard to see that S−1M t is symmetric. Hence, for each right

eigenvector vi of M t there is a left eigenvector ui = S−1vi with the same eigenvalue λti

as proved in the following:

(M t)Tui = (M t)TS−1Sui = (S−1M t)Tvi = S−1M tvi = λtiS
−1vi = λtiui

Also, note that S−1M tSui = S−1M tvi = λtiS
−1vi = λtiui. As a result, ui’s are eigen-

vectors of S−1M tS, which is symmetric because it is the product of symmetric matri-

ces S−1M t and S. Therefore, u1, . . . ,un form an orthonormal basis; so we can write

APPENDIX A. TOOLS 103

â =
∑n

i=1 ciui. Now we write

a = âM t =
n∑
i=1

ciuiM
t =

n∑
i=1

λticiui

Therefore,

‖a‖22 =

n∑
i=1

λ2t
i c

2
i ‖ui‖22 6 λ2t

n∑
i=1

c2
i ‖ui‖22 = λ2t‖â‖22 (A.1)

where the inequality uses the fact that â ⊥ (s1, . . . , sn) which is the eigenvector corre-

sponding to the largest eigenvalue. Also, the last equality follows from the fact that ui’s

form an orthonormal basis. On the other hand,

‖â‖22 6 n ·
s2
k

s2
+ 1 6

n s2
k

(n− 1 + sk)2
+ 1 6

n s2
k

2(n− 1)sk
+ 1 6 sk + 1 6 2smax

Together with Equation (A.1), this yields

‖a‖22 6 2 smaxλ
2t,

as required.

A.1 Hypercube Facts

Lemma A.9 ([10, Lemma D.1]). For the d-dimensional hypercube with n = 2d vertices

the following statements hold.

(1) For any edge (i, j) ∈ E, any node k ∈ V and any time-step ϑ ∈ N,

∞∑
t=ϑ

∣∣Pt
i,k −Pt

j,k

∣∣ =

∣∣∣∣∣
∞∑
t=ϑ

(
Pt
i,k −Pt

j,k

)∣∣∣∣∣ .
(2) Let 0 also denote the node 0logn ∈ V . For any two vertices i, j with (i, j) ∈ E,

‖i‖1 = p and ‖j‖1 = p+ 1 we have

∞∑
t=0

(
Pt
i,0 −Pt

j,0

)
=

1

n
· log n+ 1(

d
p

)
(log n− p)

·
logn∑
`=p+1

(
d

`

)
.

Proof. (1) As shown in [23, Lemma 6], it holds for all triples of vertices i, j, k with

dist(i, k) 6 dist(j, k) that for all time steps t ∈ N, Pt
i,k > Pt

j,k. This immediately

implies that

∞∑
t=ϑ

∣∣Pt
i,k −Pt

j,k

∣∣ =

∣∣∣∣∣
∞∑
t=ϑ

(
Pt
i,` −Pt

j,k

)∣∣∣∣∣ .

APPENDIX A. TOOLS 104

(2) The second claim is a slight reformulation of [55, Thm. 5]. Note that in these

statements we have δ = 1 and wu − wv = αn δ
(∑∞

t=0 Mt
0,i −Mt

0,j

)
with α =

1
logn+1 (M is the same matrix as P).

Lemma A.10 ([23, Lemma 6]). For any fixed t, Pt
p,0 is decreasing for 0 6 p 6 log n.

Lemma A.11 ([10, Lemma D.3]). For any t ∈ N>0, Pt
0,0 6 1

logn+1 . Moreover, for any

1 6 p 6 (log n)/2 and t ∈ N,

Pt
p,0 6

1(
logn
p

) ,
and for any log n/2 6 p 6 log n,

Pt
p,0 6

1(logn
logn/2

) .

Bibliography

[1] H. Ackermann, H. Röglin, and B. Vöcking. On the impact of combinatorial structure
on congestion games. J. ACM, 55(6):25:1–25:22, 2008.

[2] C. P. J. Adolphs and P. Berenbrink. Improved bounds for discrete diffusive load
balancing. In IPDPS, pages 820–826. IEEE Computer Society, 2012.

[3] C. P.J. Adolphs and P. Berenbrink. Distributed selfish load balancing with weights
and speeds. In PODC, pages 135–144. ACM, 2012.

[4] H. Akbari and P. Berenbrink. Parallel rotor walks on finite graphs and applications
in discrete load balancing. In SPAA, page to appear. ACM, 2013.

[5] H. Akbari, P. Berenbrink, and T. Sauerwald. A simple approach for adapting
continuous load balancing processes to discrete settings. In PODC, pages 271–280,
2012.

[6] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced allocations. SIAM J.
Comput., 29(1):180–200, 1999.

[7] E. Bampas, L. Gasieniec, R. Klasing, A. Kosowski, and T. Radzik. Robustness of
the rotor-router mechanism. In OPODIS, pages 345–358, 2009.

[8] P. Berenbrink, T. Friedetzky, L. A. Goldberg, P. Goldberg, Z. Hu, and R. Martin.
Distributed selfish load balancing. In SODA, pages 354–363. ACM, 2006.

[9] P. Berenbrink, T. Friedetzky, and Z. Hu. A new analytical method for parallel,
diffusion-type load balancing. J. Parallel Distrib. Comput., 69(1):54–61, 2009.

[10] P. Berenbrink, C. Cooper, T. Friedetzky, T. Friedrich, and T. Sauerwald. Random-
ized diffusion for indivisible loads. In SODA, pages 429–439. SIAM, 2011.

[11] P. Berenbrink, T. Friedetzky, I.n Hajirasouliha, and Z. Hu. Convergence to equilib-
ria in distributed, selfish reallocation processes with weighted tasks. Algorithmica,
62(3–4):767–786, 2012.

[12] P. Berenbrink, M. Hoefer, and T. Sauerwald. Distributed selfish load balancing on
networks. ACM Trans. Algorithms, 11(1):2:1–2:29, 2014.

105

BIBLIOGRAPHY 106

[13] S. Bhatt, S. Even, D. Greenberg, and R. Tayar. Traversing directed eulerian mazes.
Journal of Graph Algortihms and Applications, 6(2):157–173, 2002.

[14] J. E. Boillat. Load balancing and poisson equation in a graph. Concurrency and
Computation: Practice and Experience, 2:289–314, 1990.

[15] S. Chien and A. Sinclair. Convergence to approximate nash equilibria in congestion
games. In SODA, pages 169–178. SIAM, 2007.

[16] C. Cooper, D. Ilcinkas, R. Klasing, and A. Kosowski. Derandomizing random walks
in undirected graphs using locally fair exploration strategies. Distributed Comput-
ing, 24(2):91–99, 2011.

[17] J. Cooper, B. Doerr, J. Spencer, and G. Tardos. Deterministic random walks on
the integers. volume 28, pages 2072–2090. Academic Press Ltd., 2007.

[18] J. N. Cooper and J. Spencer. Simulating a random walk with constant error. Comb.
Probab. Comput., 15:815–822, 2006.

[19] J. N. Cooper, B. Doerr, T. Friedrich, and J. Spencer. Deterministic random walks
on regular trees. In SODA, pages 766–772, 2008.

[20] G. Cybenko. Dynamic load balancing for distributed memory multiprocessors. J.
Parallel Distrib. Comput., 7:279–301, 1989.

[21] A. Czumaj and B. Vöcking. Tight bounds for worst-case equilibria. ACM Trans.
Algorithms, 3(1):4:1–4:17, 2007.

[22] A. Czumaj, C. Riley, and C. Scheideler. Perfectly balanced allocation. In
RANDOM-APPROX, volume 2764 of Lecture Notes in Computer Science, pages
240–251. Springer, 2003.

[23] P. Diaconis, R. L. Graham, and J. A. Morrison. Asymptotic analysis of a random
walk on a hypercube with many dimensions. Random Structures Algorithms, 1(1):
51–72, 1990.

[24] B. Doerr and T. Friedrich. Deterministic random walks on the two-dimensional
grid. Comb. Probab. Comput., 18(1-2):123–144, 2009.

[25] D. Dubhashi and D. Ranjan. Balls and bins: A study in negative dependence.
Random Structures & Algorithms, 13:99–124, 1996.

[26] D. P. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of
Randomized Algorithms. Cambridge University Press, 2009.

[27] R. Elsässer and B. Monien. Load balancing of unit size tokens and expansion
properties of graphs. In SPAA, pages 266–273, 2003.

BIBLIOGRAPHY 107

[28] R. Elsässer and T. Sauerwald. Discrete load balancing is (almost) as easy as con-
tinuous load balancing. In PODC, pages 346–354, 2010.

[29] R. Elsässer, B. Monien, and R. Preis. Diffusion schemes for load balancing on
heterogeneous networks. Theory Comput. Syst., 35(3):305–320, 2002.

[30] R. Elsässer, B. Monien, and S. Schamberger. Distributing unit size workload pack-
ages in heterogeneous networks. J. Graph Algorithms Appl., 10(1):51–68, 2006.

[31] L. Epstein. Equilibria for two parallel links: the strong price of anarchy versus the
price of anarchy. Acta Inf., 47(7-8):375–389, 2010.

[32] L. Epstein and R. van Stee. The price of anarchy on uniformly related machines
revisited. Information and Computation, 212:37–54, 2012.

[33] E. Even-Dar and Y. Mansour. Fast convergence of selfish rerouting. In SODA,
pages 772–781. SIAM, 2005.

[34] E. Even-Dar, A. Kesselman, and Y. Mansour. Convergence time to nash equilibrium
in load balancing. ACM Trans. Algorithms, 3(3), 2007.

[35] A. Fabrikant, C. Papadimitriou, and K. Talwar. The complexity of pure nash
equilibria. In STOC, pages 604–612. ACM, 2004.

[36] R. Feldmann, M. Gairing, T. Lücking, B. Monien, and M. Rode. Nashification
and the coordination ratio for a selfish routing game. In ICALP, pages 514–526.
Springer-Verlag, 2003.

[37] G. Finn and E. Horowitz. A linear time approximation algorithm for multiprocessor
scheduling. BIT Numerical Mathematics, 19:312–320, 1979.

[38] D. Fotakis, S. C. Kontogiannis, E. Koutsoupias, M. Mavronicolas, and P. G. Spi-
rakis. The structure and complexity of nash equilibria for a selfish routing game.
Theor. Comput. Sci., 410(36):3305–3326, 2009.

[39] T. Friedrich and T. Sauerwald. Near-perfect load balancing by randomized round-
ing. In STOC, pages 121–130, 2009.

[40] T. Friedrich and T. Sauerwald. The cover time of deterministic random walks.
Electr. J. Comb., 17(1), 2010.

[41] T. Friedrich, M. Gairing, and T. Sauerwald. Quasirandom load balancing. SIAM
J. Comput., 41(4):747–771, 2012.

[42] M. Gairing, T. Lücking, M. Mavronicolas, B. Monien, and P. Spirakis. Structure
and complexity of extreme nash equilibria. Theor. Comput. Sci., 343(1-2):133–157,
2005.

BIBLIOGRAPHY 108

[43] L. Gasieniec and T. Radzik. Memory efficient anonymous graph exploration. In
WG, pages 14–29, 2008.

[44] B. Ghosh and S. Muthukrishnan. Dynamic load balancing by random matchings.
J. Comput. Syst. Sci., 53:357–370, 1996.

[45] B. Ghosh, F. T. Leighton, B. M. Maggs, S. Muthukrishnan, C. G. Plaxton, R. Ra-
jaraman, A. W. Richa, R. E. Tarjan, and D. Zuckerman. Tight analyses of two local
load balancing algorithms. SIAM J. Comput., 29(1):29–64, 1999.

[46] P. W. Goldberg. Bounds for the convergence rate of randomized local search in a
multiplayer load-balancing game. In PODC, pages 131–140. ACM, 2004.

[47] W. Hoeffding. Probability inequalities for sums of bounded random variables. J.
Parallel Distrib. Comput., 58(301):13–30, 1963.

[48] A. E. Holroyd and J. Propp. Rotor walks and markov chains. Algorithmic Probability
and Combinatorics, pages 105–126, 2010.

[49] S. H. Hosseini, B. E. Litow, M. I. Malkawi, and K. Vairavan. Distributed algorithms
for load balancing in very large homogeneous systems. In Proc. of the 1987 Fall
Joint Computer Conference on Exploring technology: today and tomorrow, ACM
’87, pages 397–404. IEEE Computer Society, 1987.

[50] S. H. Hosseini, B. Litow, M. Malkawi, J. McPherson, and K. Vairavan. Analysis
of a graph coloring based distributed load balancing algorithm. J. Parallel Distrib.
Comput., 10(2):160–166, 1990.

[51] S. Ieong, R. McGrew, E. Nudelman, Y. Shoham, and Q. Sun. Fast and compact: a
simple class of congestion games. In AAAI, pages 489–494. AAAI Press, 2005.

[52] S. Kijima, K. Koga, and K. Makino. Deterministic random walks on finite graphs.
In ANALCO, pages 16–25, 2012.

[53] R. Klasing, A. Kosowski, D. Paja̧k, and T. Sauerwald. The multi-agent rotor-router
on the ring: A deterministic alternative to parallel random walks. In PODC, pages
365–374. ACM, 2013.

[54] E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In STACS, pages
404–413. Springer-Verlag, 1999.

[55] H. Meyerhenke and T. Sauerwald. Analyzing disturbed diffusion on networks. In
Proceedings of the 17th international conference on Algorithms and Computation,
2006.

[56] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algo-
rithms and Probabilistic Analysis. Cambridge University Press, 2005.

BIBLIOGRAPHY 109

[57] S. Muthukrishnan, B. Ghosh, and M. H. Schultz. First- and second-order diffusive
methods for rapid, coarse, distributed load balancing. Theory Comput. Syst., 31
(4):331–354, 1998.

[58] A. Panconesi and A. Srinivasan. Improved distributed algorithms for coloring and
network decomposition problems. In STOC, pages 581–592. ACM, 1992.

[59] A. Panconesi and A. Srinivasan. Randomized distributed edge coloring via an ex-
tension of the chernoff–hoeffding bounds. SIAM J. Comput., 26(2):350–368, 1997.

[60] V. B. Priezzhev, D. Dhar, A. Dhar, and S. Krishnamurthy. Eulerian walkers as a
model of self-organised criticality. Technical Report cond-mat/9611019. TIFR-TH-
96-43, Tata Inst. Fundam. Res., 1996.

[61] M. Raab and A. Steger. ”balls into bins” - a simple and tight analysis. In RANDOM-
APPROX, pages 159–170. Springer-Verlag, 1998.

[62] Y. Rabani, A. Sinclair, and R. Wanka. Local divergence of markov chains and
the analysis of iterative load-balancing schemes. In FOCS, pages 694–703. IEEE
Computer Society, 1998.

[63] R. W. Rosenthal. A class of games possessing pure-strategy nash equilibria. Inter-
national Journal of Game Theory, 2:65–67, 1973.

[64] T. Sauerwald and H. Sun. Tight bounds for randomized load balancing on arbitrary
network topologies. In FOCS, pages 341–350. IEEE Computer Society, 2012.

[65] P. Schuurman and T. Vredeveld. Performance guarantees of local search for multi-
processor scheduling. INFORMS J. on Computing, 19(1):52–63, 2007.

[66] R. Subramanian and I. D. Scherson. An analysis of diffusive load-balancing. In
SPAA, pages 220–225. ACM, 1994.

[67] B. Vöcking. How asymmetry helps load balancing. J. ACM, 50(4):568–589, 2003.

[68] I.A. Wagner, M. Lindenbaum, and A.M. Bruckstein. Smell as a computational
resource - a lesson we can learn from the ant. In Proc. ISTCS’96 - 4th Israel
Symposium on the Theory of Computing and Systems, pages 219–230, 1996.

[69] I.A. Wagner, M. Lindenbaum, and A.M. Bruckstein. Distributed covering by ant-
robots using evaporating traces. IEEE Transactions on Robotics and Automation,
15(5):918–933, 1999.

[70] P. Wan. Near-optimal conflict-free channel set assignments for an optical cluster-
based hypercube network. J. Comb. Optim., 1(2):179–186, 1997.

[71] V. Yanovski, I. A. Wagner, and A. M. Bruckstein. A distributed ant algorithm for
efficiently patrolling a network. Algorithmica, 37(3):165–186, 2003.

	Approval
	Partial Copyright License
	Abstract
	Acknowledgments
	Contents
	Introduction
	Model and Notation
	An Overview of the Results

	Related Work
	Continuous Load Balancing
	Discrete Load Balancing
	Improved Processes for Discrete Load Balancing

	Other Related Models
	The Game-Theoretic Model
	The Balls-into-Bins Model
	Propp Machines and Rotor-Router Walks

	Flow Imitation
	Definitions
	Establishing Basic Facts
	Deterministic Flow Imitation
	Randomized Flow Imitation
	Comparison with Other Results

	Propp Machines
	 The Deterministic Propp Process
	Analysis of D_Propp

	 The Randomized Propp Process
	Definitions and Basic Facts
	A General Bound for Arbitrary Graphs
	Graph-specific Bounds

	Discrete Second-Order Processes
	General Framework for FOS Schemes
	Deviation between Continuous and Discrete FOS Schemes
	Framework for Randomized FOS Schemes

	Second-Order Diffusion Processes
	Deviation between Continuous and Discrete SOS Schemes
	Framework for Randomized SOS Schemes
	Experimental Simulations

	 Negative Load for SOS Schemes
	Experimental Simulations

	Appendix Tools
	Hypercube Facts

	Bibliography

