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Abstract

Recommender systems have become popular tools to select relevant personalized infor-

mation for users. With the rapid growth of mobile network users, the way users consume

Web 2.0 is changing substantially. Mobile networks enable users to post personal status

on online social media services from anywhere and at anytime. However, as the volume of

user activities is growing rapidly, it is getting impossible that for users to read all posts

or blogs to catch up with the trends. Similarly, it is hard for producers and manufactures

to monitor consumers and figure out their tastes. These needs inspired the emergence of

a new line of research, recommendation in location-based social networks, i.e., building rec-

ommender systems to discover and predict the behavior of users and their engagement with

location-based social networks. Extracted users’ interests and their spatio-temporal pat-

terns clearly provide more detailed information for producers to make decisions to supply

their consumers.

In this thesis, we address the problem of recommendation in location-based social net-

works and seek novel methods to improve limitations of existing techniques. We first propose

a spatial topic model for top-k POI recommendation problem, and the proposed model dis-

covers users’ topic and geographical distributions from user check-ins with posts and location

coordinates. Then we focus on mining spatio-temporal patterns of user check-ins and pro-

pose a spatio-temporal topic model to identify temporal activity patterns of different topics

and POIs. In our next work, we argue that all existing social network-based POI recom-

mendation models cannot capture the nature of location-based social network. Hence, we

propose a social topic model to effectively exploit a location-based social network. Finally,

we address the problem of determining the optimal location for a new store by considering

it as a recommendation problem, i.e., recommending locations to a new store. Latent factor

models are proposed and proved to perform better than existing state-of-the-art methods.
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“I can’t change the direction of the wind,

but I can adjust my sails to always reach my destination!”
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Chapter 1

Introduction

Millions of people now use social networking websites to enjoy online interaction with

friends and meeting new people. Social networking sites, such as Twitter1, Facebook2, and

LinkedIn3 etc, are attracting an increasing number of users, many of whom have integrated

these sites into their daily practices.

Thanks to the widespread adoption of various smart mobile devices, people can easily

post their routine status from anywhere at anytime. Consequently, we can see the unprece-

dented access to the news, events, and activities, with tons of user-generated data in highly

dynamics. Since users tend to have personalized results but are not willing to spend a lot

of time to specify their personal information needs, it becomes necessary to have tools to

select relevant part of information automatically. Recommender systems have emerged to

bridge the gaps between users and social media providing recommendations on all kinds of

products, e.g., movies, books, and music etc.

Since the early papers [55, 23] published in mid-1990s on collaborative filtering, recom-

mender systems is increasingly attracting the attention of academic and industry researchers

developing new approaches over the last decades [1].

On the one hand, [12, 59, 50, 43, 22] are the research representatives published in early

2000s at different research areas, e.g., information retrieval, web mining, and human factor

analysis. Recommender systems grows and becomes an independent research area since

the ACM Recommender System conference (RecSys) is founded in 2007. More and more

1http://www.twitter.com
2http://www.facebook.com
3http://www.linkedin.com
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researchers from areas of data mining and machine learning join the field inventing new sys-

tems and techniques, and publishing experimental results in the broad area of recommender

systems.

On the other hand, some real life recommender systems are really successful. For ex-

ample, one of the most important recommender systems is product recommendation on

Amazon [43] or similar online retailers, where recommendation engines return users with

some suggestions of products that they might like to purchase. Moreover, Netflix4 offered a

prize of one million dollars for the algorithm that could beat its own recommender system,

[39] won the prize by improving 10% recommendation accuracy (measured in terms of the

root mean square error) in 2009 after over three years of competition. Following this track,

many works [9, 58, 38, 39, 40] have been widely investigated in recent years.

In general, there are two main types of entities in the recommender system: users and

items, where items could be products, movies, or news articles etc. Each user performs

actions on a set of items, and an action indicates that the user purchases a product, rates

a movie, or reads a news article. Given a user, a recommender system learns the user

preference from the action history on items of the given user, and identifies and recommends

the relevant information (items) for that given user. The formal definition of recommender

system on Wikipedia5 is as follows:

Definition 1 Recommender System. A recommender system is a particular form of

information filtering, that exploits past behaviors and user similarities to generate a list of

information items that is personally tailored to a user’s preferences.

1.1 Demands for Recommendation

The Web has become the primary source of information, and search engines are the

primary tools that people use to find information. Different from the keyword search on

the Web, recommender systems applies personalization techniques for users in finding and

selecting products, services, or information. Although the efficiency of recommendation

can be worse than keyword search, it enables online web services to provide personalized

and accurate recommendations for users. As a result, the recommendation enhances the

4http://www.netflix.com
5http://en.wikipedia.org/wiki/Recommender system
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satisfactory of user experiences and increases the cohesiveness between users and web ser-

vices. We note that there are non-personalized recommendations that are useful in certain

applications, but they are not normally addressed in the area of recommender systems.

Ricci et al. [56] present some facts that prove the interest in recommender systems has

grown in recent years which is shown as follows:

• Recommender systems play an important role in the following highly rated websites

as Amazon, YouTube, Netflix, Yahoo, Tripadvisor, Last.fm, and IMDb. Many social

media companies are developing and deploying recommender systems as part of their

services.

• Related conferences and workshops are booming in recent years, such as, ACM Rec-

ommender System conference (RecSys), ACM SIGIR Special Interest Group on Infor-

mation Retrieval (SIGIR), User Modeling, Adaptation and Personalization (UMAP),

and ACM’s Special Interest Group on Management Of Data (SIGMOD).

In particular, Posse et al. [54] also report some interesting results of a large-scale

recommender system on LinkedIn as follows:

• 80% of a LinkedIn homepage are powered by recommendations.

• 50% of total job applications and job views by LinkedIn users are a direct result of

recommendations.

• More than 50% of social connections are from recommendations.

The era of “big data” is coming, and 3Vs (Volume, Variety and Velocity) are three

promising properties or dimensions of big data. Volume refers to the amount of data, variety

refers to the number of types of data, and velocity refers to the speed of data processing. 3Vs

of the big data demand powerful recommender systems provide personalized or customed

services for users overcoming the information overload.

In this thesis, we address the problem of recommendation in location-based social net-

works and seek novel methods to improve limitations of existing techniques. The rest of

this thesis is organized as follows. Firstly, we survey the related work of recommenda-

tion in location-based social networks in Chapter 2, which are categorized into context-free

and context-aware recommendations, and we discuss some existing state-of-the-art works

in location-based recommendation.

3



In Chapter 3, we introduced a spatial topic method for the POI recommendation prob-

lem. The proposed model extracts users’ topic distributions by mining a set of topics from

user check-ins with posts, and models coordinates of checked in POIs using a two dimen-

sional Gaussian distribution with a set of regions. In addition, each user has a probability

distribution over all the regions. Experiment results on two real life data sets from Twitter

and Yelp6 demonstrate the accuracy of the proposed model.

In Chapter 4, to exploit time information associated with user check-ins, we introduce a

spatio-temporal topic model to learn a set of spatio-temporal topics from the user check-in

data. The proposed model jointly identifies user and temporal topics. Again, the experimen-

tal evaluation on three real life data sets from Twitter, Gowalla, and Brightkite demonstrate

the substantial improvement of recommendation quality in the proposed model.

Social influence and selection together lead to similar behavior among friends. In Chap-

ter 5, we introduce a social topic model which takes advantage of a social network for POI

recommendation, but it captures the nature of location-based social network. On two real

life data sets from Foursquare7 and Yelp, experiments demonstrate that the proposed model

consistently improves the performance significantly for POI recommendation compared to

existing state-of-the-art social network-based recommendation algorithms for all users, all

POIs, cold start users, and cold start POIs.

In Chapter 6, another interesting recommendation problem in location-based social net-

works, i.e., determining the optimal location for a new store, has been studied. To the best

of our knowledge, we are the first to formulate this problem as a recommendation problem,

i.e., recommending locations to a new store of the given store chain.

Finally, we conclude this thesis and present some directions for future work in Chapter

7.

6http://www.yelp.com
7http://www.foursquare.com
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Chapter 2

Related Work

In this chapter we review the existing related works on recommender systems or rec-

ommendation, and recommendation algorithms in the location-based social networks in

the literature. Before discussing our categorization of recommendation, we present current

formulation schemas proposed in the literature.

The early works [55, 23, 7, 1] survey recommender systems, and divide this area into

three categories according to recommendation methodologies: content-based, i.e., systems

that recommend an item to a user based upon a description of the item and a profile of the

user, collaborative filtering, i.e., systems that recommend an item for a particular user based

on the items previously rated by other “similar” users, and hybrid systems, i.e., systems

that combine the content-based and collaborative filtering techniques.

Two recent books [56, 34] also define the same classes of recommendations, and they

further describe a new direction of recommender systems: context-aware recommendation,

i.e., the recommender system provides recommendations considering contextual information

such as time and location etc. For example, using the temporal context, a web content

recommender system normally recommends the news over the world for readers on weekdays,

and recommends movie posters and shopping discount news on weekends. Moreover, some

music recommender systems can even detect the listeners’ mood when providing music

recommendations that songs from different genres apply for different moods.

Here, we borrowed the definition of “context” from Oxford dictionary1 as follows:

1http://www.oxforddictionaries.com
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Definition 2 (Context) The circumstances that form the setting for an event, statement,

or idea, and in terms of which it can be fully understood.

Inspired by the above literature summary and the definition of “context”, we group

major recommendation approaches according to the data resources by the following two

categories:

• Context-free recommendation

• Context-aware recommendation

The main difference between the above two categories is the input data whether contains

contextual information. It should be noted that early and traditional recommendation

problems such as rating prediction are usually context-free, while recent recommendation

problems are often context-aware because of the booming social networking websites, which

provide us a huge volume of useful contextual information for improving the recommenda-

tion accuracy. For example, given the target user’s list of followers on Twitter, a content

recommender system can capture the user’s interests or preferences without mining the

user’s action history.

In the following sections, for both categories we will define the research problem and

review the existing state-of-the-art works.

2.1 Context-free Recommendation

As we mentioned, many traditional recommendation approaches are designed for context-

free recommendations, in which there are only two entities: users and items. Formally,

we assume that there are a set of users U = {u1, u2, ..., u|U |} and a set of items I =

{i1, i2, ..., i|I|}, where |U | and |I| represent the number of users and items, respectively.

Each user performs actions on a set of items. The actions performed by users on items are

given in a matrix A = [au,i]|U |×|I|, where au,i denotes the action of user u on item i. We

should note that normally more than 90% entries in the matrix A are missing or unknown.

For the remaining known entries, au,i can be any real number, and convey various meanings

according to varying types of recommendations. For example, in movie recommender sys-

tems, au,i can be integers normally in the range of [1, 5] to represent user ratings on items.

6



Furthermore, au,i can be binary numbers to represent whether users browse or purchase the

item in product recommendations.

We define the problem used in the area of context-free recommendation. Rating predic-

tion is by far the most common recommendation task:

Problem 1 (Rating prediction) Given an incomplete action matrix A = [au,i]|U |×|I|, for

a user u ∈ U , the recommender system learns his/her preferences, and predicts the unknown

rating au,i of item i.

Recommendations are evaluated by the quality of their predictions with respect to the

predictions of ground truth. Typically, we randomly select a percentage (e.g., 70%, 80%,

and 90%) of observed data for each user as the training data, and the remaining (e.g., 30%,

20%, and 10%) as the testing data. We train the model using the training data, and predict

the actions in the testing data.

As we discussed, rating prediction is a traditional recommendation task studied in many

works [9, 58, 38, 39, 40]. Two common metrics for computing the error of predictions are

Root Mean Squared Error (RMSE) [9, 58] in Equation 2.1 and Mean Absolute Error (MAE)

[59, 22] in Equation 2.2:

RMSE(Atest) =

√∑
u,i|Atest(au,i − ˆau,i)2

|Atest|
(2.1)

MAE(Atest) =

∑
u,i|Atest |au,i − ˆau,i|

|Atest|
(2.2)

where Atest is the test data containing a set of user-item pairs, |Atest| represents the number

of user-item pairs, and au,i and ˆau,i represent the actual rating and predicted rating of item

i by user u receptively. Note that the smaller value of RMSE or MAE indicates a better

recommendation.

Some recent works [67, 18, 41] address the problem of top-k item recommendation, which

is more natural than rating prediction in real recommendation applications because users

really need recommended items instead of predicted ratings of items. We formally define

top-k item recommendation as follows:

Problem 2 (Top-k Item Recommendation) Given a user u ∈ U and a set of items I,

the recommender system returns a top-k ranked list of unseen items in which the given user

u will be interested by using the incomplete action matrix A = [au,i]|U |×|I|.
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[67, 18, 41] have proposed models implementing learning to rank for top-k item recom-

mendation. We should note that the results of rating prediction of a user can be served for

top-k item recommendation, that is predicted top-k rated items are returned for the given

user.

For top-k item recommendation, the measurement of the RMSE or MAE is replaced by

a ranking function as the metric function. NDCG@k is by far the most commonly used

metrics to measure the performance of recommender systems [22, 67, 18] for top-k item

recommendation.

Normalized Discounted Cumulative Gain@k (NDCG@k): The NDCG@k for a

user is computed by comparing the predicted ranked list of items and the ground truth of

ranked list of items.

To compute DCG@k of the recommended list of items for a user u, we use the following

equation:

DCG@k(u) =
k∑

n=1

2rel(ln) − 1

log2(n+ 1)
(2.3)

where ln represents the recommended item index that is ranked at nth position, and rel(ln)

represents the relevance of the item. We use its relative position in the ground truth ranked

list as used in [22]:

rel(ln) =
|L| − rank(ln) + 1

|L|
(2.4)

Note that the relevance value is 1 when the item is ranked first and decreases to 0 when the

ranking goes down. The DCG@k is normalized by the iDCG@k (ideal DCG@k) as follows:

NDCG@k(u) =
DCG@k(u)

iDCG@k(u)
(2.5)

where the iDCG@k is the DCG@k score of the ranked list of ground truth.

According to the recommendation methodologies, we group context-free recommenda-

tion approaches into content-based and collaborative filtering-based categories. We discuss

them in the following subsections.

2.1.1 Content-based Recommendation

Content-based recommender systems try to recommend items similar to those items a

given user has liked in the past. In particular, a content-based approach analyzes a set

of description of items rated by users in the past, summarizes the commonalities among
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these items, and builds a model on profiling interests of the given user based on features

[56]. For example, in movie recommendations, the predicted rating ˆau,i of movie i for user

u is estimated by the ratings au,j for user u of items j ∈ I that are similar to item i. The

commonalities can be actors, directors, or genres etc [1].

A book chapter [52] describes an algorithm usually implemented in content-based recom-

mender systems, which contains two steps: item representation and user profiling. In item

representation, each item is described by a set of features from either structured databases

or unstructured data. An extreme case of unstructured data is format-free texts in the news

recommendation. After removing stop words and stemming from raw texts, each word is

represented by a feature, and each news article (item) is represented by a vector of words

(features). The Term Frequency-Inverse Document Frequency (TF-IDF) weight is used to

represent the feature value. The next step of content-based recommendation is to learn

a given user’s preferences from the user’s action history. The user action history data is

served as training data for different machine learning approaches, such as, decision tree,

nearest neighor, and naive bayes algorithms etc, that create user profiling models presented

in [1, 52]. Creating a model of the user’s preference from the user history can be simplified

as a classification problem. The training data divided into binary categories: “items that

the user likes” and “items that the user dislikes”.

Although different models can be built for content-based recommendations by learning

users’ interests, no content-based recommender systems can make accurate recommenda-

tions without sufficient item descriptions for distinguishing items that the user likes from

items that the user dislikes [52]. In such cases, collaborative filtering-based recommendation

approaches are proposed for exploiting only the user-item matrix. Besides, content-based

recommendation methods can be used as a pre-processing tool to filter some items, which

speeds up the followed up recommendation process.

2.1.2 Collaborative Filtering-based Recommendation

Collaborative filtering-based recommendation approaches try to predict the rating of

items for a user based on the known ratings of the given user and other users. Unlike

content-based recommendation methods, item descriptions are not needed in collaborative

filtering-based recommenders. A large range of works [12, 59, 9, 58, 38, 39, 40] has proposed

Collaborative Filtering (CF) methods in recommender systems for the rating prediction
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problem. According to [12, 1], there are memory-based, e.g., K Nearest Neighbor (KNN)

[59] and model-based, e.g., Matrix Factorization (MF) [58] methods. A CF method [39] won

the Netflix Prize competition, considering the temporal dynamics in a matrix factorization

model.

Memory-based approaches [12, 59, 9] make rating predictions based on previously rated

items by the entire users. The predicted rating ˆau,i of item i for user u is usually computed

as a weighted average of ratings of a small number of similar users for the same item i in

Equation 2.6.

ˆau,i =

∑
v simu,vav,i∑
v simu,v

(2.6)

where user v are normally from top-k users that are most similar to the given user u.

Now the key is that how to compute the similarity simu,v between user u and user v.

Cosine similarity and correlation similarity are two representative approaches used in the

literature [12].

Two users u and v are represented by two vectors −→u and −→v in |I| dimensional item

space. The similarity between them is measured by computing the cosine of the angle

between these two vectors −→u and −→v as shown in Equation 2.8.

simu,v = cos(−→u ,−→v ) =
−→u · −→v

||−→u ||2||−→v ||2
(2.7)

where “·” denotes dot product of two vectors and “|| ||2” denotes the L2 norm of a vector.

Correlation similarity between two users are computed by the Pearson correlation.

simu,v = corr(u, v) =

∑
i∈Iu,v(au,i − au)(av,i − av)√∑

i∈Iu,v(au,i − au)2
√∑

i∈Iu,v(av,i − av)2
(2.8)

where au represents the average rating of user u and Iu,v represents the set of items rated

by both user u and v.

The memory-based approaches are easy to implement but slow to make the recommen-

dation since they need to explore the whole ratings.

Model-based recommendation approaches [58, 38, 39, 40] learn a model with parameters

from the user-item matrix A, and make the rating prediction using learned parameters. In

contrast with memory-based approaches, model-based approaches have a time consuming

learning phase. But the advantage of model-based approaches is that the entire action

history data can be discarded after learning the model, and ratings can be predicted using

only the parameters of the model.
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Based on the assumption that ratings in the user-item matrix can be inferred from a

model with a smaller number of parameters, Latent Factor (LF) models [40] have been pro-

posed to find user and item preferences describing the latent factors. A LF model can model

the interactions between different types of entities, such as “user-item” in recommendation

problems, to discover their latent factors and relationships. LF assumes that each user and

each item share a |K| dimensional latent factor vector in [38] as follows:

• Each user u ∈ U is mapped into a latent factor vector φu from a |K|-D real number

space R|K|.

• Each item i ∈ I is mapped into a latent factor vector φi from a |K|-D real number

space R|K|.

• Each user u ∈ U is mapped into a latent bias factor bu from a 1-D real number space

R1.

• Each item i ∈ I is mapped into a latent bias factor bi from a 1-D real number space

R1.

In order to learn the latent factors of users and items, [38] assumes that the prediction

is done by taking an inner product of the user and item latent factors taking bias factors

of users and items into consideration:

âu,i = bu + bi + φTu · φi (2.9)

Conventional Singular Value Decomposition (SVD) methods can solve the factorization

problem for complete matrices, but it is undefined for incomplete matrices of rating predic-

tion. Hence Matrix Factorization (MF) is proposed as one of the most common techniques

for recommender systems to simply ignore the missing ratings.

The parameter learning process is to minimize the objective function of known ratings

defined as follows:

O =
∑

u,i|Atrain

L(au,i − âu,i) +
∑

u,i|Atrain

R(bu, bi,φu,φi) (2.10)

where u, i|Atrain represents the known user-item pairs in the training data set, and the L(.)

represents the loss function and normally the least square loss function is used. The R(.)

function represents the regularization function of the bias and latent factors, and normally
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the L2 norm is used for each single parameter. Stochastic gradient descent and alternating

least squares are two common algorithms for learning the parameters in MF models.

Another line of model-based approaches are originated from topic models for the top-k

item recommendation problem, such as Probabilistic Latent Semantic Analysis (PLSA) [24]

and Latent Dirichlet Allocation (LDA) [11] etc. Topic modeling is a classic problem and has

a long history in text mining. Topic models tackle on modeling and extracting topics from

documents. The assumption is that there are a set of topics in the documents, and each

document has a probability distribution over all the topics and each topic has a probability

distribution over all the words from a fixed set of vocabulary.

Topic models such as PLSA and LDA can be applied for the rating prediction problem if

“documents” are replaced by “users” and “words” are replaced by “items”. Latent factors

in the Matrix Factorization (MF) approaches are equivalent to “topics” in topic models.

The user-item matrix can be computed by the user and item latent factors through MF

techniques, and these user and item factors are equivalent to users’ topic distributions and

topics’ item distributions, respectively.

Let us take LDA as an example. Figure 2.1 shows the graphical model of LDA, where

θu denotes the topic distribution of user u and φz denotes the word distribution of topic z.

Items i are modeled as observed random variables, shown as shaded circles, while the latent

random variables of topics z are shown as unshaded circles. LDA is a generative model.

To generate an item i by a user u, LDA samples a topic z from a multinomial distribution

θu. Given the sampled topic z, LDA samples an item i from a multinomial distribution φz.

Both θs and φs have Dirichlet priors, which are known as hyperparameters and omitted in

the following figure.

To learn the parameters of the LDA model, the marginal log-likelihood p(i|u,Θ,Φ) of

the observed random variables i needs to be maximized. The marginalization is performed

with respect to the latent random variables z, and it is hard to be maximized directly.

Therefore, we apply the MCEM (Monte Carlo Expectation Maximization) algorithm to

maximize the complete data likelihood. p(z, i|u,Θ,Φ) in Equation 2.11.

p(z, i|u,Θ,Φ) = p(z|u,Θ)× p(i|z,Φ) =

|U |∏
u=1

|Du|∏
d=1

θu,zu,d ×
|U |∏
u=1

|Du|∏
d=1

φu,zu,d (2.11)
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Figure 2.1: The graphical model of LDA

Given the learned parameters Θ and Φ, we use Equation 2.12 to predict a rating âu,i of

item i for user u.

âu,i = p(i|u,Θ,Φ) ∝
Z∑
z

p(i, z|u,Θ,Φ) =
Z∑
z

p(z|u, θ)× p(i|z, φ) (2.12)

The predicted top-k rated items are recommended for users.

2.2 Context-aware Recommendation

In this section, we summarize the existing works in the area of context-aware recom-

mendations. The majority of existing recommendation approaches focus on recommending

most relevant items to users without considering any contextual information. However, in

many applications, like recommending a restaurant, it may not be sufficient to consider

only users and items. It is important to include contextual information, such as location,

time, and social connections, into the recommendation process. Many companies started in-

corporating some contextual information into their recommendation engines. For example,

when recommending a news article for the user, the LinkedIn’s news recommender system

takes into the consideration the colors of photos or pictures (the context) that the given

user liked.
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In this section, we discuss two areas of context-aware recommendation: social-based

recommendation, i.e., recommending items using social networks, and location-based rec-

ommendation, i.e., recommending Point-of-Interest (POI) using spatio-temporal (coordi-

nates of POIs and time) contexts. We would like to demonstrate that depending on the

application and the availability of the data, certain contextual information can be help-

ful for better recommendations. We also believe that there are many other context-aware

recommendation problems.

2.2.1 Social-based Recommendation

With the rapidly growing of social networking websites such as Facebook and LinkedIn

on the WWW, it is hard to ignore the power of social networks to help existing recom-

mender systems for better recommendations. The most common problem in social-based

recommendation is rating prediction. Formally, along with the user-item action matrix,

there are social networks available. The problem is to predict unknown ratings of users for

items. A social network is usually represented as a directed/undirected graph, where nodes

denote users and edges denote social relationships. For example, in Epinions users provide

ratings on products, and users establish a trust network, and Flixster serves as a platform

for users to rating movies and has a social network from Facebook.

Some representative works [49, 47, 32, 33, 48, 68, 62] in social-based recommendation

utilize the social network to help the recommender system make the decision. Intuitively,

friends in the social network tend to have similar rating patterns than non-friends. Social

recommendation methods have been proved successfully on rating prediction, especially on

“cold start” users.

In memory-based social recommendation approaches [49, 32], for a user they propose to

find top-k similar users as the same in the memory-based recommendation approaches of

context-free recommendation introduced in the previous sections. They also propose to find

top-k similar friends of the given user. Additionally, [32] proposes to explore not only the

1st degree friends but also the friends of nth degree, and the importance of each friend in

the social network is weighted by the random walk probability starting from the given user,

i.e., the importance of each friend is penalized by the length between the friend and the

given user. The predicted unknown rating score of a user on an item is a weighted average

of the ratings of top-k similar users and top-k similar friends.
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In model-based social recommendation approaches [47, 33, 48, 68, 62], they usually

propose to model user-item action matrix and user-user relationships.

Ma et al. [47, 48] introduce the notion of social recommendation, and assume that

friends in the social network have similar interests. To model the social relationships into

recommendations, they proposed a social regularization terms to constrain the matrix fac-

torization framework. Specifically, they extend the objective function in Equation 2.10 by

adding several regularization terms as follows:

O =
∑

u,i|Atrain

L(au,i − âu,i) +
∑

u,i|Atrain

R(bu, bi,φu,φi) +
∑
u,v|E

||φu − φv||2 (2.13)

where the last term is the individual-based social term that is designed to minimize the

difference between the latent factor for a user and his/her friends.

Based on [47], Jamali et al. [33] further consider the trust propagation in social networks.

The latent factor of a user is regularized by their direct friends at each iteration in the

learning process.

Yang et al. [68] present a friendship-interest propagation (FIP) model that integrates

the learning for interest targeting and friendship prediction into one process by defining

a coupled model to encode both interest and friendship information. Specifically, in the

training process, FIP models the interaction between the friendship network and the interest

network by introducing a shared latent factor.

Furthermore, Shen et al. [62] argue that the social network have its unique properties,

which tells that the social friendship has heterogeneity and diversity properties. Based on

this further understanding, they applied the stochastic blockmodel to handle/express those

two properties. This work provides a deeper understanding of the social network influences.

Experimental results show that all the above social recommendation approaches [49,

47, 32, 33, 48, 68, 62] consistently outperform the existing approaches of context-free rec-

ommendation, and especially the improvement is noticeably substantial for “cold start”

users.

2.2.2 Location-based Recommendation

Recently, Location-based recommendation has attracted a lot of attention. Some meth-

ods [71, 76, 75, 72, 70, 8, 20, 13, 42, 45, 44, 73] have been proposed to consider the contexts
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such as coordinates of POI, time, and texts in recommendation approaches. Since location-

based recommendation is the main research problem addressed in this thesis, we first define

the problem of location-based recommendation in detail, and then extensively review cur-

rent methods and approaches.

As we discussed, in recent years recommender systems have gained in popularity and

have become hot topics attracting the attention of academic and industrial researchers.

Meanwhile, with the rapid growth of mobile network users, the way users consume Web

2.0 is changing substantially. Mobile networks enable users to post on social media services

(e.g., Twitter) from anywhere and at anytime. This new phenomenon led to the emergence

of a new line of research, recommendation in Location-based Social Networks (LBSNs), i.e.,

building recommender systems to not only mine and discover the behavior of users but

also to take into account the rich social media aspects, such as, textual, social, and spatio-

temporal, of their engagement with location-based social networks.

In the classic recommendation framework there is a user-item matrix and each element

in the matrix represents the user’s rating of that item. To put it in the context of location-

based recommendation, Point-of-Interest (POI) can be viewed as “items”, and “user-item

ratings” can represent the frequency with which a user has visited the corresponding POIs.

Besides, location-based social networks provide rich social media containing contextual

information with user actions, such as reviews. A large number of users generate all kinds

of content in location-based social networks. These online activities (also known as “check-

ins”) of users can be typically represented as follows: a user appears at a certain POI (with

a pair of latitude and longitude coordinates) and leaves a post at a certain time. More

precisely, a check-in has the following attributes: text, author, POI, coordinates, and time.

An example of publicly available check-ins from Twitter is as follows:

• Close to the equator, perfect soil and high elevation make @CafeDAltamira produce

the perfect cup of Coffee!! # Honduras # Coffee — @XXX — 37.38 -121.90 —

“2012-04-23 12:04:09” — San Jose — CA — United States — 0befbacea94beb06.

This tweet states that a Twitter user from San Jose, California compliments the coffee

at a coffee shop, where “37.38, -121.90” are the latitude and longitude coordinates, and

“0befbacea94beb06” is the unique label of the coffee shop.
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In particular, POI recommender systems can recommend a set of POIs that users may

be interested in, based on the history of user check-ins. Similar to the problem of top-k item

recommendation in Problem 2, we formally define top-k POI recommendation as follows:

Problem 3 (Top-k POI Recommendation) Given a user u ∈ U and a set of POIs I,

the POI recommender system returns a top-k ranked list of unvisited POIs where the given

user u will be interested checking in by using the user-POI matrix and one or multiple

contexts: 1) coordinates (a pair of latitude and longitude) of POIs, 2) a social network

among users, 3) user-generated texts.

As we mentioned, user-generated texts can be tweets posted at the POIs on Twitter,

tags of venues on Foursquare, or reviews of businesses on Yelp. Here, “POIs”, “venues”, and

“businesses” are synonyms, and “tweets”, “tags”, and “reviews” are equivalent to “user-

generated texts”.

Recommendations are evaluated by the accuracy of their predictions compared to the

ground truth. NDCG@k, Precision@k, Recall@k, and perplexity are common metrics to

measure the performance of models in top-k POI recommendation. NDCG@k is defined in

the previous chapter.

Precision@k: Precision@k is another metric to measure the performance of recom-

mender systems [22]. The top-k precision for a test item is one when the ground truth item

in the top-k recommendations, and zero otherwise. The precision@k is the average top-k

precision over all test items, i.e.,

Precision@k(Dtest) =

∑|Dtest|
d=1 I(id, ˆid1, ˆid2, ..., ˆidk)

|Dtest|
(2.14)

where I(id, ˆid1, ˆid2, ..., ˆidk) is an identity function.

Recall@k is another commonly used metric to measure the performance of top-k recom-

mendations [38, 18].

In order to compute the recall@k, we first compute hit@k. For each check-in of user u

on POI i in the testing data set, hit@k is computed as follows:

1. The model randomly selects 1000 additional POIs that user u has not visited. Note

that the hypothesis is that all the 1000 randomly selected POIs that user u is not

interested in.
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2. The model predicts the probability of user u checking in at actual POI i and at the

additional 1000 POIs. The estimated probability p(id, wd|u,Θ) of observed POIs given

user u and learned parameters is computed by Equation 5.13.

3. The model ranks the 1001 POIs by their predicted probabilities.

4. The model returns top-k POIs by picking the k top ranked POIs. Let p denote the

rank of the actual test POI i. We have a hit and hit@k = 1 if p <= k, otherwise we

have a miss and hit@k = 0. Note that the best result is that the actual test POI i is

ranked higher than all other additional 1000 POIs (i.e., p = 1).

For each user u, the recall@k is computed by averaging over all user u’s test check-ins:

Recall@k(u) =
#hits

|Dtest|
(2.15)

where Dtest represents the test data set of user u, and |Dtest| is the number of test check-ins.

The recall@k of the whole test data set is computed by averaging over all users:

Recall@k(U) =

∑
u∈U Recall@k(u)

|U |
(2.16)

Finally, perplexity is introduced to evaluate the methods. We estimate the likelihood

of the test data set given the trained models. Perplexity is the standard for measuring

how well a probabilistic model fits the data [10], and is monotonically decreasing in the

likelihood of the test data set, so that a lower perplexity indicates better performance of

the model. We compute the perplexity as follows:

Perplexity(Dtest) = exp
{
−
∑|Dtest|

d=1 log p(id|u,Θ)

|Dtest|

}
(2.17)

where Dtest represents the test data set, and |Dtest| is the number of documents in the test

data set. We compute the estimated likelihood p(id|u,Θ) of observed POIs given learned

parameters of the model.

The problem of POI recommendation can be simplified as a context-free item recom-

mendation problem, so that traditional recommendation approaches discussed in previous

sections, such as, collaborative filtering [58, 38, 40], can be applied, as well as the topic

models [24, 11] if “words” are replaced by “POIs”. For example, the user-POI matrix

can be computed by the user and POI latent factors through Matrix Factorization (MF)
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techniques, and these user and POI factors are equivalent to users’ topic distributions and

topics’ POI distributions, respectively.

Although all of the traditional recommendation methods can be applied for POI rec-

ommendation, none of them considers the contextual information in location-based social

networks. Recent works [71, 76, 75, 72, 70, 8, 20, 13, 42, 45, 44, 73] propose models for POI

recommendation considering one or multiple contexts. According to different input contexts

used in their methods, we group them into the following three categories and summarize

them in Table 2.1 in a chronological order of their publication dates.

• Social network-based approaches

• Coordinates-based approaches

• Text-based approaches

Table 2.1: State-of-the-art Works for Top-k POI Recommendation.
√

represents that the
work of the corresponding row belongs to the category of the corresponding column.

Literature Social Network-based Coordinates-based Text-based

Ye et al. 2010 [71]
√

Zheng et al. 2010 [76]
√

Zheng et al. 2010 [75]
√

Ye et al. 2011 [72]
√

Bao et al. 2012 [8]
√

Gao et al. 2012 [20]
√

Cheng et al. 2012 [13]
√

Kurashima et al. 2013 [42]
√

Liu et al. 2013 [45]
√

Liu et al. 2013 [44]
√

Yin et al. 2013 [73]
√

In the following sections, we will discuss each of these categories, their strengths and

weaknesses, and the state-of-the-art methods.

2.3 Social Network-based Approaches

Most of the early works in POI recommendation are social network-based approaches

[71, 20]. In the problem 3 of POI recommendation, given a user-POI matrix, coordinates

of POIs, and a social network among users, they build a POI recommender system that

recommends POIs for users. A social network is represented as an undirected graph G =
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(U,E), where U denotes the set of users, and an undirected edge (u, v) ∈ E, u ∈ U, v ∈ U

from user u to user v represents the fact that u and v are friends.

In general, given a target user, these approaches [71, 20] search his/her friends in the

social network, and recommend POIs visited by his/her friends for the given user. Their

theoretical foundation is based on the prominent phenomenons of homophily and social

influence in social networks, i.e., the homophily phenomenon suggests that similar users

are more likely to connect to each other, and the social influence phenomenon indicates

that friends tend to influence each other’s preferences and actions. Basically, the latent

factors of users and POIs are learned from the user-POI matrix using collaborative filtering

approaches, and the users’ latent factors are influenced by their friends. Moreover, based on

coordinates of POIs, they compute the social influence weight between two friends by the

distance of their historical POIs, and short distances indicate large social network weights.

Experimental results in [71, 20] show that social network-based approaches outperform

those approaches without social networks, but the top-k POI recommendation accuracy

improvement is not as substantial (∼5%) as in the top-k movie recommendation (∼30%)

in [69]. We argue the reason is that check-in actions require users’ physical commitment

to POIs, which are more serious than actions of rating a movie online. In this case, the

co-occurrences of friends at POIs are less than the movies that friends co-like. How to

accurately profile users for POI recommendation becomes the major challenge for social

network-based approaches.

2.3.1 Ye’s Model (2010)

Ye et al. [71] propose a Friend-based Collaborative Filtering (FCF) method in 2010,

which is the first work to tackle the problem of POI recommendation. This method is

originated from a memory-based collaborative filtering approach. For a specific user, the

traditional collaborative filtering approach computes the similarity between the given user

and all other users using the cosine similarity in Equation 2.8, and chooses top-k most

similar users as k nearest neighbors. The score of a POI for the given user is calculated as

the weighted average score of the chosen top-k similar users for that POI (Equation 2.6).
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Instead of computing similarities for every pair of users, FCF computes similarities only

for pairs of friends, and the predicted POI score is computed as follows:

ˆau,i =

∑
v simu,v|(u,v)∈Eau,i∑
v simu,v|(u,v)∈E

(2.18)

where simu,v|(u,v)∈E represents the similarity of friends u and v. Moreover, they extend

the FCF model by modifying the similarity computation simu,v|(u,v)∈E . The intuition is

that geographically close friends are more important than the ones far away. They propose

to model the similarity simu,v|(u,v)∈E between friends by their distance, and accordingly

propose Geo-Measured Friend-based Collaborative Filtering (GM-FCF) which uses linear

regression method on power-law distribution of distances between friends to learn a friend

similarity model. The similarity is computed as follows:

simu,v|(u,v)∈E = αd(u, v)β (2.19)

where d(u, v) denotes the average distance of every pair of POIs of friends u and v, and α

and β are parameters learned from the training data.

Since the number of pairs of friends is far less than the number of pairs of users, the FCF

and GM-FCF model is more efficient than the traditional collaborative filtering method.

However, the effectiveness of the FCF and GM-FCF models will be largely reduced because

many non-friend similar users are ignored during the training process.

Gao’s Model (2012)

Gao et al. analyze the geo-social correlation in location-based social networks in [20].

There are two types of check-ins: “existing check-ins”, i.e., users check in at a previous

visited POI, and “new check-ins”, i.e., users check in at a new POI that the user has never

checked in before.

For a given user, they argue that the effect of “new check-ins” largely depends on

their social connections other than users with similar historical POIs. Particularly, for a

specific user all other users can be divided into four groups: local friends (friends in short

geographical distance) and distant friends (friends with long geographical distance), and

local non-friends and distant non-friends. In order to model the geo-social correlations of

“new check-in”, the probability Pu(i)t of a users u checking in at a new POI i at time t is

computed as follows:

P tu(i) = w1P1tu(i) + w2P2tu(i) + w3P3tu(i) + w4P4tu(i) (2.20)
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where with respect to the user u’s four groups P1, P2, P3, P4 represent the conditional

probability and w1, w2, w3, w4 represent the correlation strengths. Regression methods are

proposed to learn P s and ws accordingly. Experiments are conducted on a Foursquare data

set, and a little improvement of POI recommendation accuracy is achieved. This approach

explores the social network for POI recommendation to users, but their ad-hoc proposed

model cannot improve the performance of standard collaborative filtering methods by much.

We argue that location-based social networks are different from social networks for movie

recommendation, e.g., Flixster, and how to interpret and model the location-based social

network remains a challenge.

2.4 Coordinates-based Approaches

Given a user-POI matrix and coordinates of POIs, [72, 13, 42, 44] build a POI recom-

mender system that recommends POIs for users. Note that social networks are also given

as input data in [72, 13], and we put them in this category because the modeling of social

networks is exactly the same in social network-based approaches [71, 20].

[72, 13, 42, 44] focus on a prominent phenomenon of geographical clustering in location-

based social networks. This geographical clustering phenomenon shows that a significant

percentage of check-ins by the same user are within short distance, and indicates that there

is geographical influence between users and POIs, i.e., users tend to visit nearby POIs.

In this line of work, the major contribution is to model the distance between users and

POIs. In particular, each user is represented by a set of coordinates associated with POIs

that she/he visited before. A probability Pu(i) of a user u checking in a POI i is modeled

as a power-law distribution as follows:

Pu(i) = αd(u, i)β (2.21)

where α and β are parameters, and d(u, i) represents the average distance between user u’s

historical POIs and POI i and is usually computed by the L2 norm.

Furthermore, [72, 13, 42, 44] propose Collaborative Filtering (CF) approaches incorpo-

rating the modeling of geographical influence. Interestingly, experimental results show that

CF approaches considering geographical influence significantly improve the recommenda-

tion accuracy over basic CF methods. The geographical influence factor is very important

in location-based social networks.
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2.4.1 Ye’s Model (2011)

In [72] Ye et al. continue their previous work [71], and fuse the factors of user pref-

erences, social influence, and geographical influence for POI recommendation. The factor

of user preference is learned by a traditional memory-based collaborative filtering method

introduced in Chapter 2 on the user-POI matrix. Besides, the factor of social influence

indicates that the predicted score of an unvisited POI by a given user is computed by the

weighted average score of the given user’s friends as exactly the same in [71].

The major contribution of this paper is that they model the geographical influence

between users and POIs suggesting POIs closer to the user’s whereabout are more likely

recommended to the user than distant POIs. Moreover, they propose an unified model

linearly fusing the factors of user preferences, and social and geographical influences.

The same authors propose an extension model in [70] for POI recommendation to a

group of users.

2.4.2 Cheng’s Model (2012)

The authors of [13] have proposed a matrix factorization model considering geograph-

ical influence for POI recommendation in location-based social networks. Their model

detects multiple centers for each user based on their history of POIs, and each center has

2-dimensional coordinates. In other words, the probability of a user’s check-in at a POI is

modeled as a Multi-center Gaussian distribution.

Motivated by the effect of geographical influence mentioned in [72], the probability of

recommending a POI is inversely proportional to the distance between the POI and the

user’s center. Besides, the proposed model considers social influence, i.e., users tend to

check in the POIs visited by their friends, and regularizes the users’ latent factor by their

friends.

2.4.3 Kurashima’s Model (2013)

A recent work [42] extends Latent Dirichlet Allocation (LDA) for POI recommendation

and addresses the spatial aspects of user check-ins by capturing the phenomenon of geo-

graphical influence in [72, 13]. Geographical influence suggests that POIs that are closer to

the user’s visited POIs are recommended with higher probabilities. The proposed Geo LDA
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(GLDA) model assumes that the POI recommendations to a user should be geographically

regularized by the set of all of the user’s check-ins.

Compared to the model framework of [72, 13], the major contribution of this paper is

to incorporate the geographical influence seamlessly into recommendation in a probabilistic

way. Similar to LDA [11] as shown in Figure 2.1, the topic of check-ins is considered as a

latent random variable. Topic distributions of users θuser model the latent user interests,

from which the topics of check-ins are sampled. Topics are associated with POI distributions

φtopic, which model the latent POI factors. Given the sampled topic, POIs are drawn from

the POI distribution of that topic.

Figure 2.2: The graphical model of GLDA

GLDA extends LDA as shown in Figure 2.2, where lu represents the set of all check-ins

by user u, and the generated POI index is regularized by lu. The regularization function is

in Equation 2.22.

P (i|lu) =
∑
j∈lu

exp
(
− β

2
d(li, lj)

)
(2.22)

where d(li, lj) represents the distance between POI i and j, and β is a parameter controlling

the importance of the factor of geographical influence.

2.4.4 Liu’s Model (2013)

Liu et al. propose a matrix factorization model in [44] for POI recommendation. Similar

to [13], the proposed model considers multiple centers for each user based on their POI
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history, and POI recommendations to a user should be geographically regularized by the

their geographical centers. The major difference between this work and [13] is that the

geographical modeling of users is a part of the recommendation model, and the users’

geographical modeling and POI recommendation are mutually reinforced by each other.

2.5 Text-based Approaches

Given a user-POI matrix and user-generated texts, [76, 75, 45, 73] build a POI recom-

mender system that recommends POIs for users.

Early work [76, 75] is the first to address the POI recommendation problem using col-

laborative filtering methods. They propose recommender systems with data collection,

extraction, offline modeling, and online recommendation. Textual labels such as “food and

drinks” and “shopping” of POIs are used to group POIs into different types, and to study

the recommendation results. For example, in [76], the recommendation results on POIs of

“food and drinks” are more satisfying than the one on POIs of “shopping”.

Recent work [45, 73] takes the advantage of online social media (e.g., Foursquare and

Twitter), and they incorporate fruitful textual information such as tweets into collaborative

filtering methods. In these works, texts are used to tackle the sparsity issue in location-based

social networks, where many “cold start” users have few check-ins. These cold start users’

preferences are not reliable due to insufficient training data. For example, a user checks in

at a cinema. A basic collaborative filtering method ignores the texts like “movie, pop corn,

and coke” associated with the cinema, and can barely learn a reliable user preference based

on only one check-in. A text-based recommendation approach can detect the user interests

of “movie”, “pop corn”, and “coke” from the text, and recommend cinemas and recreation

centers for the given user with higher probabilities. Therefore, texts are considered as

additional information for profiling user preferences.

2.5.1 Zheng’s Model (2010)

Zheng et al. [76] propose a system in the architecture level for POI recommendation

including data collection, extraction, and modeling. Their work focuses on GPS trajectory

data, and they define a “stay point” as a region where a user stayed over a time threshold

and within a distance range, and a “POI” is equivalent to a region that contains at least
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one stay points. They also extract activities from user posts or comments. For example,

“delicious food” indicates an activity in the restaurant category. Consequently, a POI-

activity matrix can be obtained through data extraction as well as a POI-feature matrix

and an activity-activity matrix.

Activity recommendation for POIs and POI recommendation for activities are studied

in their experiments. Based on the location-activity matrix, POI specific and activity

specific latent factors are factorized by a collective matrix factorization model, and further

regularized by the corresponding latent factors learned from the additional POI-feature

matrix and activity-activity matrix.

The same authors propose a similar tensor factorization model for POI recommendation

to users in [75].

2.5.2 Bao’s Model (2012)

Bao et al. propose a recommendation model detecting user preferences and social opin-

ions about POIs in [8]. In this paper, a user-POI matrix is given and POIs are associated

with a category hierarchy, e.g., “Food”, “Chinese Food”, and “Sichuan Food” are the cate-

gories from the higher level to lower one. Offline modeling and online recommendation are

two parts of the proposed model.

The goal of offline modeling is to learn the social knowledge and personal preference.

Firstly, the model is to learn the social knowledge, i.e., the local experts per POI per

category. For each category, there is a user-POI matrix. A Hypertext Induced Topic Search

(HITS)-based inference model is used on the user-POI matrix to infer hub scores of users

and authority scores of POIs. Hence the expertise of users is obtained by summing up

all authority scores of the user visited POIs. Secondly, the model is to learn the personal

preference. Since each POI is associated with a category, each user is associated with a set of

category labels, e.g., “Food” and “Chinese Food”, and “Arts” and “Metro Museum”. Users

are equivalent to documents. The normalized TF-IDF (Term Frequency-Inverse Document

Frequency) of a category label is computed denoting the importance of the given category

to the user.

In the online recommendation, the model selects POIs based on users’ preferences, and

uses a collaborative filtering method using the similarity comparison between the user and

selected local experts.
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2.5.3 Liu’s Model (2013)

In [45] Liu et al. propose a two-stage model for topic modeling and POI recommendation.

In the first stage, a topic model (LDA) is applied to detect topic distributions of users θu

and POIs θi. In the second stage, they propose a probabilistic matrix factorization model

incorporating the topic distribution of users and POIs. Specifically, the probability of a

user u checking in a POI i is computed as follows:

Pu(i) = φTu · φi + θu · θi (2.23)

where φu and φi are the latent factors of user u and POI i introduced in Equation 6.2, and

θu and θi are topic distributions of user u and POI i.

2.5.4 Yin’s Model (2013)

Yin et al. propose a generative graphical model extending LDA in [73]. The generating

probability of a POI by a user depends on the user preference and the POI’s popularity.

The sparsity issue mentioned in this paper is that few check-ins exist when users visit a new

city other than their hometown. In this case, users’ preferences are not reliable so that the

model resorts POIs’ popularity. Moreover, textual information of POIs are included in the

model similar to [45]. Consequently, the user preferences are enhanced even the user only

contains a few check-ins. Different from separate models in [45], this paper merges topic

modeling of users and POIs and recommendation modeling into a single model.

2.6 Other Models

There are other models [6, 14, 15, 21, 16, 60, 51, 57] related to user movement analysis

in location-based social networks. In this line of work, location prediction is the major

task, i.e., given a set of geo-tagged check-ins from many users, the proposed model predicts

the locations that users check in in the future. A difference from POI recommendation in

Problem 3 is that the predicted locations can be either visited or unvisited by the users.

Another difference is that these works focus on mining the user movement pattern using

machine learning algorithms, such as Support Vector Machine or Markov Random Field,

while the POI recommendation approaches profile user preferences using collaborative fil-

tering methods. We should note that their study covers some interesting phenomenons in
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location-based social networks, such as the analysis of social and geographical influence in

[6, 16], which are valuable for the study of POI recommendation.

The early work [6] analyzes the movement of Facebook users. After examining the

relationship between proximity and friendship they find out that the likelihood of friendship

drops monotonically as a function of distance, which indicates that friends tend to be

geographically close to each other. Therefore, they propose a model to predict the user

location by using their friends’ locations, and the performance of the proposed model is

better than the existing IP-based geolocation method.

Since most tweets are not associated with coordinates on Twitter, these works [14, 15, 21]

address the following problem: given a set of geo-tagged posts from many users, learn a

model of region specific words, and apply this model to predict the user location of un-

tagged posts based on their content. Cheng et al. [14, 15] develop probabilistic methods

to identify local words in tweets, and they predict user locations based on the local words

in their tweets. Similarly, [21] proposes a Multinomial Naive Bayes model to predict the

Twitter user profile’s location at the granularity of the city level.

[16] studies the problem of modeling human mobility and location prediction in social

networks. One of their interesting findings is that short-ranged travel is periodic and not

affected by the social network, while long-distance travel is more influenced by social ties.

Another interesting finding is that users tend to move within a small number of regions, e.g.,

around their home and office. Furthermore, [57] presents a probabilistic model incorporating

social networks and achieves better performance for tweet location prediction. A recent work

[51] proposes machine learning algorithms, such as, SVM and Decision Tree, tackling the

location prediction problem.
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Chapter 3

Spatial Topic Model

3.1 Introduction

Most of the location-based social networks such as Twitter and Yelp provide some

additional information on top of the check-ins, including a set of user-generated texts related

to the users and POIs. However, the existing collaborative-based recommendation methods

[13, 42] ignore this additional information. We believe that using these user-generated texts

(tweets or reviews) can improve the accuracy of POI recommendation.

The activities of users involve three major entities: user, post, and POI as described

in Chapter 2. The interaction of these entities is the key to answer questions such as

who will post a message where and on what topic? In this chapter’s work, we address the

problem of profiling mobile users by modeling their activities, i.e., we explore topic modeling

considering the spatial and textual aspects of user posts, and predict future user POIs.

Several works in the literature have addressed some of the above aspects. In recom-

mender systems, [71, 13, 42] have proposed probabilistic matrix factorization models mining

latent user and POI preferences to predict user POIs, but they totally ignore one of the key

components: user posts. Another line of works [63, 74] has focused on user posts and pro-

posed topic models to analyze geographical topics. Most recently, Hong et. al. [25] proposed

a geographical topic model to capture language patterns of different regions and different

users. Note that the users’ distributions over regions are assumed to be independent from

each other.

We observe that user movements sometimes correlate if two users have similar lifestyle

or living routine. For example, many students from New York University live in the same
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neighborhood near the campus, and their movement trajectories correlate to each other.

They may go to the same restaurants, coffee shops and grocery stores. Therefore, we argue

that considering the movements of different users independently as in [25] is not the best

way, and that we can predict a user’s movement more accurately taking into account the

movements of similar users. This idea underlies the paradigm of collaborative filtering.

A second observation is that user interest affects user movement not at the “syntactic”

level of 2-dimensional coordinates but at the “semantic” level of places with a certain

function. Existing spatial topic models with 2-dimensional coordinates do not distinguish

the following two scenarios: 1) two users appear in the same POI, like a hockey themed

bar, and 2) two users appear in two different POIs that are adjacent to each other, where

one is a hockey themed bar and the other one is a facial salon. Intuitively, male users who

are interested in sports often go to sport bars and watch games, while female users often

go to facial salons. Two users in the first scenario share the same interest, while two users

have totally different interests in the second scenario. As a result, without considering the

fact that user movements are influenced not only by the coordinates of a POI but also by

its function, the predictive ability of the model will be greatly reduced.

Motivated by the above observations, this chapter’s work explores the following two

questions:

1. How are user movements correlated to each other?

2. How does user interest affect user movement at the “semantic” level of POIs?

We propose a spatial topic model, called ST (Spatial Topic), that takes the correlation

of users’ movements, and the correlation of user movement and user interest into account.

As in existing models, a post is represented as an unordered collection of words (a bag-

of-words assumption) associated with user and POI, which are all considered as observed

random variables. Different from existing works [63, 74, 25], a POI in this chapter’s work

is defined as a place with a semantic functionality and with its 2D coordinates. A set of

latent random variables is also defined, i.e., regions and topics are latent, and each post is

assigned to a region and a topic. We assume that each POI is assigned to one and only

one region, and its coordinates are generated by a 2-dimensional Gaussian distribution.

For example, in New York City, regions could be areas that corresponded to community

districts, such as Manhattan, Brooklyn, and Queens etc. Different from existing models,
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in order to generate a POI of a post by a particular user, the model considers the user’s

interest and the POIs of “similar” users. We develop a MCEM (Monte Carlo Expectation

Maximization) method to learn the latent random variables and parameters that maximize

the likelihood of the observed random variables, and the sparse coding technique is used to

improve the efficiency of the learning method.

We perform experiments on two real life data sets from Twitter and Yelp. All posts

(tweets and reviews) in the data sets are annotated with corresponding users and POIs. We

evaluate the effectiveness of our proposed model and of state-of-the-art models in terms of

accuracy of POI prediction, i.e., given a post and its author, we recommend top-k POIs to

the user.

The major contributions of this chapter’s work are as follows:

• We propose the first spatial topic model to capture the correlation between users’

movements and between user interests and the function of POIs.

• We employ the sparse coding technique which greatly speeds up the learning process.

• Through comprehensive experiments, we demonstrate that our proposed model con-

sistently improves the average precision@1,5,10,15,20 for POI recommendation by at

least 50% (Twitter) and 300% (Yelp) compared to existing state-of-the-art recommen-

dation algorithms and geographical topic models.

3.2 Spatial Topic Model

In this section, we first introduce the problem definition and then present our proposed

ST (Spatial Topic) model.

We assume that all the check-ins with attached documents are authored by a user from

a fixed set of size U and all the words are from a fixed vocabulary V . We associate each

user with a set of posts, and the set of posts of user u is denoted as Du. Each post is

represented by a set of words (the number of its words is denoted as Nu,d), and a pair of

latitude and longitude coordinates. For convenience, we consider “tweet”, “review”, “post”

and “document” as synonyms in this chapter’s work. Formally, a document d is defined by

d = {w, u, i}, where w, u, i represents set of (index of) words, the index of user and POI

respectively. li represents the coordinates of POI i. A document collection D is defined
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as a set of documents from all users. We assume that there is a set of latent topics and

a set of latent regions in the document collection D. Each document d is assigned to one

of the topics zd and regions rd. We use Z and R to denote the sets of topics and regions,

respectively.

A semantically coherent topic in the document collection D is associated with a prob-

ability distribution over all words in the vocabulary, and a probability distribution over all

POIs. A region has a geographical center, and it is comprised of a set of documents, which

are coherent in topics and close to the center geographically. We assume that different

users show different distributions over topics and regions. All notations described above are

listed in Table 3.1. Note that we use capital letters to represent the sets and the |.| sign to

represent the size of the sets.

Table 3.1: Notations of input and output data

Variable Interpretation

wu,d,n nth word of the dth document posted by the uth user
iu,d POI index of the dth document posted by the uth user
li latitude and longitude coordinates of the ith POI
zu,d topic assignment of the dth document posted by the uth user
ru,d region assignment of the dth document posted by the uth user
Z set of topics
R set of regions
U set of users
I set of POIs
Du set of documents of user u
Nu,d set of words in document d of user u
V set of the vocabulary

Based on the above definitions, we formalize our research problem as follows:

Problem 4 (Spatial topic modeling) Given a document collection D, and numbers |Z|

of topics and |R| of regions, the task is to model and extract a set of topics and a set of

regions.

3.2.1 Model

To address our research problem, we propose a spatial topic model, called ST (Spatial

Topic), that takes the correlation of users’ movements, and the correlation of user movement

and user interest into account. Figure 3.1 shows the graphical model of ST.
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Figure 3.1: The graphical model of ST

We first introduce the notations of our model and listed in Table 3.1. Our input data,

i.e., words and POIs, are modeled as observed random variables, shown as shaded circles in

Figure 3.1, and we use wu,d,n and iu,d to denote them. li is a pair of latitude and longitude

real values of ith POI. Similar to existing models as in [74, 25], the topic and region index

of documents are considered as latent random variables, which are denoted as zu,d and ru,d

respectively. Users are associated with topic and region distributions, i.e., θuser and ηuser,

from which the topics and regions of posts are sampled. Topics are associated with word

distributions φtopic. Given the sampled topic, words are drawn from the word distribution

of that topic. The background distributions of words, topics, and regions are denoted as

φ0, θ0, and η0. All parameters are listed in Table 6.4.

Table 3.2: Notations of parameters

Variable Interpretation

θ0 topic distribution of the background
θuseru topic distribution of the uth user
φ0 word distribution of the background

φtopicz word distribution of the zth topic
η0 region distribution of the background
ηuseru region distribution of the uth user
ψ0 POI distribution of the background

ψtopicz POI distribution of the zth topic
µr region mean POI of the rth region
Σr region POI covariance of the rth region
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An important change of existing models is that in addition to generating the coordinates

of posts, ST generates the index of the POI of posts. Another major change is that, to

model the impact of user interest on user movement, ST assumes that the POI depends not

only on the region but also on the topic. Consequently, it adds a POI distribution ψtopic

for each topic. Existing models assume that the 2D Gaussian distribution with center µ

and covariance Σ of the sampled region governs the choice of POIs visited, i.e., the closer

a POI to the center, the higher the probability of visiting that POI, and ST has the same

assumption. Additionally, ST assumes that another important reason why the user visits

the POI can be attributed to the user interests. Since POIs with different functions can

have very similar coordinates, this assumption is much more meaningful when considering

“semantic” POIs.

Particularly, users have different topic distributions, and topics have different POI dis-

tributions, so that the dependency between user interests and user POIs is transferred

through the topic. ST captures the correlation between movements of different users, such

that users who have similar movements share the same topics. Note that the topics serve a

similar role as the latent factors in MF (Matrix Factorization). Different from the existing

MF methods [13, 42], ST associates a word distribution with a topic so that it can describe

the latent user and POI factors. Intuitively, collaborative filtering assumes that POIs A

and B should both have high probabilities in POI distributions of some topic(s) in our case

if many users frequently co-occur in both A and B. POI A and B do not necessarily have

the same functionality. However, ST further assumes that POIs with high probabilities for

the same topic should be cohesive in their functions, e.g., a topic with high probabilities

for words like “coffee”, “Java”, and “mocha” should have high probability only for coffee

shops. This design enables ST to detect users with similar interests and POIs with similar

functions, and enables ST to better deal with “cold start” users, i.e., users who have very

few posts, since the words of their few posts are more informative than their POIs.

Next, we describe the generative process of the ST model for a single document d.

• Draw a region index ru,d

– ru,d ∼ p(ru,d|u, η0, ηuser)

• Draw a topic index zu,d

– zu,d ∼ p(zu,d|u, θ0, θuser)
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• Draw a POI index iu,d, given the region index ru,d and topic index zu,d

– iu,d ∼ p(iu,d|ru,d, zu,d, ψ0, ψtopic, µ,Σ)

• Draw each word in d given the topic index zu,d

– wu,d,n ∼ p(wu,d,n|zu,d, φ0, φtopic)

For each document, the ST model generates the POI and words consecutively. To

generate a POI, the model first samples a region from the set of regions. To generate a

region r, we use a multinomial distribution as follows:

p(ru,d|u, η0, ηuser) = p(ru,d|η0 + ηuseru ) (3.1)

where η0 is the global distribution of regions and ηuseru is the region distribution of user

u. To simplify the notations, we use p(r|η0 + ηuseru ) = βu,r. This approach employs the

sparse coding technique introduced in the SAGE (Sparse Additive Generative) model [19].

The major advantage of SAGE is that it does not require additional latent “switching”

variables when the model needs to take multiple factors into account. For example, in

order to model topics, based on the background word distribution, for each topic SAGE

models the difference in log-frequencies from the background word distribution instead of

the log-frequencies themselves.

Each POI i is drawn depending on its corresponding region r and corresponding topic

z. Given the sampled topic z and sampled region r, ST draws the POI iu,d as follows:

iu,d ∼ p(iu,d|ru,d, zu,d, ψ0, ψtopic, µ,Σ) = p(iu,d|ψ0 + ψtopiczu,d
)× p(liu,d |µru,d ,Σru,d) (3.2)

where p(i|ψ0 + ψtopicz ) = δz,i and p(li|µr,Σr) = N (li|r, µ,Σ), which is the PDF of the

Multivariate Gaussian distribution. This is the product of the probability of drawing the

coordinates of the POI from the 2D Gaussian distribution µr,Σr of that region, and the

probability of drawing the index of the POI from the POI distribution ψtopicz of that topic.

Similarly, for generating the topic and word index, the model uses a multinomial distribu-

tion considering the background and user topic distributions together, and the background

and topic word distributions together, respectively as follows:

p(zu,d|u, θ0, θuseru ) = p(zu,d|θ0 + θuseru ) (3.3)
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p(wu,d,n|zu,d, φ0, φtopic) = p(wu,d,n|φ0 + φtopiczu,d
) (3.4)

where p(z|θ0 + θuseru ) = αu,z and p(wu,d,n|φ0 + φtopicz ) = γz,w.

3.2.2 Parameter Learning

Our goal is to learn parameters that maximize the marginal log-likelihood of the ob-

served random variables i,w. The marginalization is performed with respect to the la-

tent random variables z, r, and it is hard to be maximized directly. Therefore, we apply

the MCEM (Monte Carlo Expectation Maximization) algorithm to maximize the com-

plete data likelihood p(z, r,w, i|Θ) in Equation 5.5 (see Figure 3.2), where Θ = {µ,Σ, θ0,

θuser, φ0, φtopic, η0, ηuser, ψ0, ψtopic}.

p(z, r,w, i|Θ) = p(z|θ0, θuser)× p(r|η0, ηuser)× p(w|z, φ0, φtopic)× p(i|r, z, µ,Σ, ψ0, ψtopic)

=
∏|U |
u=1

∏|Du|
d=1 αu,zu,d ×

∏|U
u=1

∏|Du|
d=1 βu,ru,d ×

∏|U |
u=1

∏|Du|
d=1

∏|Nu,d|
n=1 γzu,d,wu,d,n

×
∏|U |
u=1

∏|Du|
d=1 δzu,d,iu,d ×

∏|U |
u=1

∏|Du|
d=1 N (liu,d |ru,d, µ,Σ)

(3.5)

αu,z =
exp(θ0

z + θuseru,z )∑|Z|
zz=1 exp(θ0

zz + θuseru,zz )
, βu,r =

exp(η0
r + ηuseru,r )∑|R|

rr=1 exp(η0
rr + ηuseru,rr )

(3.6)

γz,w =
exp(φ0

w + φtopicz,w )∑V |
ww=1 exp(φ0

ww + φtopicz,ww)
, δz,i =

exp(ψ0
i + ψtopicz,i )∑|I|

ii=1 exp(ψ0
ii + ψtopicz,ii )

(3.7)

Figure 3.2: The joint probability of random variables given parameters in the ST model

According to the MCEM method, we sample the latent variables r, z in the E step and

maximize the parameters Θ in the M step. To sample a single variable ru,d given all other

variables fixed, we use Equation 4.5. After r is sampled, we sample zu,d similarly according

to Equation 5.6.

p(ru,d|z, r−u,d,w, i,Θ) ∝ βu,ru,d × δzu,d,iu,d ×N (li|r, µ,Σ) (3.8)

p(zu,d|z−u,d, r,w, i,Θ) ∝ αu,zu,d ×
Nu,d∏
n=1

γzu,d,wu,d,n × δzu,d,iu,d ×N (li|r, µ,Σ) (3.9)

Figure 3.3: The sampling formulas for latent variables r,z in the ST model
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In the M step, fixing all the latent variables r, z that are sampled in the E step, we

maximize the log likelihood of Equation 5.5 with respect to the parameters Θ. For variables

µ and Σ, to obtain the maximum likelihood estimate, we take the derivative of its log

likelihood with respect to µr and Σr, and set it to zero. Only one term in Equation 5.5

contains µr, so we use Equation 4.7 to update µr, where I(.) is an identity function, i.e.

one where ru,d equals to r and zero otherwise, and d(r) represents the number of documents

assigned to region r. µr denotes the mean coordinates of POIs of the documents assigned

to region r in the E step. We use Equation 3.11 to update the parameter Σr.

µr =
1

d(r)

|U |∑
u=1

|Du|∑
d=1

I(ru,d == r)liu,d (3.10)

Σr =
1

d(r)− 1

|U |∑
u=1

|Du|∑
d=1

I(ru,d == r)(liu,d − µr)
T (liu,d − µr) (3.11)

To update the other parameters, we use the gradient descent learning algorithm PSSG

(Projected Scaled Sub-Gradient) [61], which is designed to solve optimization problems with

L1 regularization on the parameters. More importantly, PSSG is scalable because it uses the

quasi-Newton strategy with line search that is robust to common functions. According to

the limited-memory BFGS [46] updates for the quasi-Newton method, the partial derivative

functions of the parameters η0, ηuser are provided in the following Equations 4.8 and 4.9,

where d(u, r) represents the number of documents assigned to region r by user u, and d(u)

represents the number of documents by user u.

∂L

∂η0
r

=

|U |∑
u=1

d(u, r)−
|U |∑
u=1

(
d(u)× βu,r

)
(3.12)

∂L

∂ηuseru,r

= d(u, r)− d(u)× βu,r (3.13)

In Figure 5.2, where d(u, z) represents the number of documents assigned to topic z

by user u, n(z, w) represents the number of words assigned to topic z, n(z) represents

the number of words assigned to topic z, and d(z, i) represents the number of documents

assigned to topic z at location i.

3.2.3 POI Recommendation

The ST model can be employed for POI recommendation as follows. Given a document

with a user, our task is to recommend top-k “new ” POIs, i.e., the POIs that the user has
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∂L

∂θ0
z

=

|U |∑
u=1

d(u, z)−
U∑
u=1

(
d(u)× αu,z

)
(3.14)

∂L

∂θuseru,z

= d(u, z)− d(u)× αu,z (3.15)

∂L

∂φ0
w

=

|Z|∑
z=1

n(z, w)−
Z∑
z=1

(
n(z)× γz,w

)
(3.16)

∂L

∂φtopicz,w

= n(z, w)− n(z)× γz,w (3.17)

∂L

∂ψ0
i

=

|Z|∑
z=1

d(z, i)−
Z∑
z=1

(
d(z)× δz,i

)
(3.18)

∂L

∂ψtopicz,i

= d(z, i)− d(z)× δz,i (3.19)

Figure 3.4: The derivative equations for parameters θ0, θuser, φ0, φtopic, ψ0, ψtopic in the ST
model

not visited in the training data set, which that user will visit. More precisely, given the

words and author of a document d, the probability that author u visits POI i is computed

as in Equation 5.13:

p(i|w,Θ) ∝
R∑
r

Z∑
z

p(w, i, z, r|Θ)

=
∑R

r

∑Z
z p(z|θ0, θuser)× p(r|η0, ηuser)

×p(w|z, φ0, φtopic)× p(i|z, r, µ,Σ, ψ0, ψtopic)
(3.20)

We rank the POIs in descending order of p(i|w,Θ).

3.3 Experiments

In this section, we experimentally evaluate the effectiveness of the ST (Spatial Topic)

model, and we compare it against some baseline methods, one of the state-of-the-art POI

recommendation methods [42], and one of the state-of-the-art geographical topic models

[25]. We report our experimental results on Twitter and Yelp data sets, using the top-k

average precision of POI recommendation for measuring the quality.
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3.3.1 Data Sets

We report our experimental results on a Twitter data set downloaded from [14]1. We

extract a data set from a representative city in the US: NYC (New York City), where all

tweets contain a POI label and geographical coordinates. To determine the coordinates of

the POI, we use the mean of the coordinates of all tweets associated with a POI. Hence

each POI corresponds to a unique mean coordinate, and each tweet of that POI has the

same coordinates. Another data set is from Yelp, and it is publicly available2. It is from

a US city – Phoenix. In the Yelp data set, each review has a POI (being reviewed) that

is associated with a unique pair of latitude and longitude coordinates. Note that Twitter

users often check in at the same POI multiple times, while Yelp users write reviews for a

POI only once.

In the pre-processing steps, texts are processed by tokenizing on whitespace and punc-

tuations, while we remove the URLs starting with “http” and user names starting with

“@”. Then we remove all texts with non-latin characters, followed by removing stop words,

and the words with occurrences less than 100. To reduce noise, we remove both users and

POIs with less than 10 posts. Some statistics about the data sets are presented in Table

6.1.

Table 3.3: Statistics of data sets from New York City on Twitter and Phoenix on Yelp.

# Twitter Yelp

Unique users 9,508 3,963
Posts 607,885 107,981
POIs 3,518 2,951
Avg. posts/user 64.93 27.24
Avg. posts/POI 172.79 36.59

Note that our data sets are much larger than the ones used in [42]. Another related

work [25] uses data sets from all over the world, while our data sets are at the city level.

From this point of view, the size of these two data sets is comparable or larger than the

ones in [25].

1http://infolab.tamu.edu/data/
2https://www.yelp.com/dataset challenge/
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3.3.2 Experimental Setup

In our data sets, we randomly select 70% of observed data for each user as the training

data, and the remaining 30% as the test data. We focus on the task of POI recommendation

for users based on each document, which is by far the most commonly used performance

measure for spatial topic model in the literature [71, 13, 42]. In particular, we train models

in the training data set, and recommend the POIs based on posts by users in the test

data set. Precision@k (top-k average precision, As introduced in Chpater 3, is used to

evaluate the methods. The top-k precision for a test post is 1
k if its POI is among the top-k

recommendations, and zero otherwise. The precision@k is the average top-k precision over

all test posts.

Comparison Partners. In our experiments, we evaluate the following comparison

partners, which all model (can predict) either the coordinates or index of POIs:

• Probabilistic Matrix Factorization (PMF ). This is a well-known model in matrix

factorization in [58].

• Geo Latent Dirichlet Allocation (GLDA). This is the modified LDA model, which is

one of the state-of-the-art methods for POI recommendation proposed in [42].

• Geographical Topic (GT ). This is one of the state-of-the-art geographical topic models

proposed in [25].

• STlocation (STloc for short). This is a simplified version of the ST model, where we

remove the posts, and the only observed variable is the index of POIs i and the only

latent variable is the topic z. Note that this model is equivalent to an LDA model

that generates index of POIs instead of words.

• STcoordinate (STcoo for short). This is a simplified version of the ST model. Similar to

STloc, we remove the posts from the data. Instead of generating the index of POIs,

STcoo generates the coordinates of POIs l, and the only latent variable is the region

r.

• STcoordinate+location (STloc+coo for short). This is another simplified version of the ST

model, that generates both the coordinates and index of POIs, and the latent variables

are the topic z and region r. The only difference between this model and the full ST

model is the lack of words.
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• ST . This is the spatial topic model proposed in this chapter’s work.

Note that there are other existing models [64, 63, 74] proposed for geographical topic mod-

eling. We do not compare against them because the GT model proposed in [25] is a gener-

alization of the existing models, and it performs better than the existing models in terms

of location prediction in the experiments of [25]. We do not compare against [13], since it

is similar to GLDA, which is the most recent work [42] on POI recommendation.

3.3.3 Experimental Results

For POI recommendation, Figure 3.5(a) and 3.5(b) show the precision@1,5,10,15,20

results of the comparison partners in the Twitter and Yelp data sets. Note that the number

of topics and regions is set to 30 and 20. We observe that our ST model consistently and
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(a) Twitter data set.
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(b) Yelp data set.

Figure 3.5: Precision@1,5,10,15,20 of comparison partners.

drastically outperforms all other models on both data sets. Compared to the state-of-the-

art methods, GLDA and GT, in the areas of recommender systems and geographical topic

modeling, ST improves the precision@20 by 50% (Twitter) and 300% (Yelp), and the gain

is even higher for smaller values of k. This indicates that modeling the user interests and

the correlation of user movements can help improve the accuracy of POI recommendation.

We also observe that the precision difference between ST and other models on Yelp is

much larger than on Twitter. We argue that this is because 1) the posts on Yelp are much

longer than on Twitter; 2) the words used on Yelp are more formal than on Twitter. As a

result, it is easier to capture the user interests on Yelp than on Twitter.
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We further analyze the contributions of different components in ST, by comparing the

performance of ST and its simplified versions: STloc, STcoo, and STloc+coo. We observe that

modeling the index (semantics) of POIs in STloc is much more precise than modeling the

coordinates of POIs in STcoo. Comparing ST and STloc+coo, we see that the user interests

expressed in the posts indeed enable more accurate POI recommendation. Furthermore,

we observe that STloc+coo clearly outperforms STcoo, demonstrating the contribution of

exploiting the correlation of user movements.

To analyze the impact of the input parameters, we show the precision@10 of the com-

parison partners for different numbers of regions (see Figure 3.6(a) and 3.6(b)) and topics

(see Figure 3.7(a) and 3.7(b)). The results for precision@1,5,15,20 are similar to the results

for precision@10. We observe that ST consistently outperforms the other comparison part-

ners for all number of regions and topics. Furthermore, as the number of regions increases,

the precision@10 of ST and GT increases and reaches a peak at first, and it plateaus when

the number of regions reaches 10 or 20. Similarly, as the number of topics increases, the

precision of ST increases. Some models, such as PMF , GLDA and STloc, do not take the

number of regions as their input, so that their precision is constant in Figure 3.6. Overall,

the results of ST are relatively robust to the choice of the input parameters.
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Figure 3.6: Precision@10 of the comparison partners for different number of regions. The
number of topics is set to 30.
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Figure 3.7: Precision@10 of the comparison partners for different number of topics. The
number of regions is set to 20.

3.4 Conclusion

In this chapter’s work, we address the problem of spatial topic modeling in online social

media, such as Twitter and Yelp, for user-generated content with POI. Previous work has

explored topic models and recommendation algorithms that model either user and POI, or

user and post, but they do not consider all of them together. We propose the first spatial

model to capture spatial and textual aspects of posts, as well as user profiles in a single

topic model, called Spatial Topic (ST) model. ST exploits the interdependencies between

user movements, and between user interests and user movements. More specifically, ST is

based on the intuition that 1) users’ movements correlate with each other; 2) users’ interests

affect the movements of users. We argue that taking the correlation of users’ movements,

and the correlation of user movement and user interest into account enables a more accurate

discovery of relevant regions and topics. We present the graphical model of ST and a corre-

sponding method of parameter learning. We perform an experimental evaluation on Twitter

and Yelp data sets from New York City and Phoenix. We compare ST against a state-of-

the-art geographical topic model and a state-of-the-art recommendation method in terms

of POI recommendation. Our experiments demonstrate drastically improved performance

in POI recommendation.
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Chapter 4

Spatio-Temporal Topic Model

4.1 Introduction

A recent work [42] extends LDA (Latent Dirichlet Allocation) for POI recommendation

and addresses the spatial aspects of user check-ins by capturing the phenomenon of geo-

graphical influence [72]. Geographical influence suggests that POIs that are closer to the

user’s visited POIs are recommended with higher probabilities, and the existing methods

[72, 42] assume that the POI recommendations to a user should be geographically regu-

larized by the set of all of the user’s check-ins. However, this assumption does not hold

when the check-ins of a user are spread over multiple regions. Let us take an example of a

user, who commutes between two cities (regions). A good recommendation should be one

of those POIs in either one of the regions, but the existing models will recommend POIs

along the commute route, since they are on average closer to the user’s check-ins in both

regions.

Thus, our first observation is that users may have multiple visited regions. To further

illustrate this point, let us take an example of a collection of check-ins from NYC (New York

City) on Twitter with 9,508 users, 3,518 POIs and 607,885 check-ins (the details of the data

set are presented in Section 5.3.1). Figure 4.1(a) shows an example of a user with all his/her

check-ins, which shows that this user has three frequently visited regions (Newark, Jersey

City and Lower Manhattan). To further analyze the number of regions that users have

visited, we cluster all check-ins into 100 regions by k-means based on their coordinates and

plot the histogram in Figure 4.1(b), where the x-asis represents the number of regions and
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the y-asis represents the number of users. We observe that users have visited 14 regions on

average, and most users have visited 10 to 20 regions.

(a) Check-ins of a sample user are from three regions
(Newark, Jersey City and Lower Manhattan).
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(b) The histogram of the number of users versus the
number of regions that users have visited. X-asis rep-
resents the number of regions and y-asis represents the
number of users.

Figure 4.1: An example of check-ins in New York City on Twitter.

Our second observation is that different POIs have different “temporal activity pat-

terns”, i.e., probability distributions of check-ins over relative timestamps. For example, we

use 1-24 to represent the time of the day in hours. Business, residence, and entertainment

POIs have different daily activity patterns, and their daily activity normally peaks in the

morning, evening, and late night, respectively. With temporal activity patterns, we can

more accurately discover and profile POIs. In Figure 4.2(a), we plot the entropies of the

daily activity patterns of all POIs in NYC from the same Twitter data set. Note that higher

entropies indicate more uncertainty (more Uniform distribution of check-ins over the day)

than lower ones, and the top red curve represents the entropies of Uniform distributions

(maximum entropies). The figure shows that a large number of POIs have very small en-

tropies, which implies that daily activity patterns do affect the check-ins at these POIs.

Figure 4.2(b) shows the entropies of the distribution of check-ins over POIs for the 24 dif-

ferent hours, indicating that user movements are more predicable in the period from 5AM

to 12AM than in the rest of the day. The reason is that users are likely to be at home or

at work during that period of time. To sum up, we observe that different temporal activity

patterns affect the decision of user check-ins at different POIs.
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Figure 4.2: Another example of check-ins in New York City on Twitter.

Based on the above observations, we propose the Spatio-Temporal Topic (STT) model

of check-ins that takes the geographical influence and temporal activity patterns into ac-

count, defining a probabilistic generative model. Basically, a check-in is represented by a

user, a POI with a pair of coordinates, and a relative timestamp, which are all considered

as observed random variables. Note that we can use 1-24 to represent relative timestamps

in a day, and/or 1-7 to represent relative timestamps in a week. Similar to LDA, a set of

latent topics is defined. Each user is associated with a probability distribution over topics,

which captures the user interests, and each topic has a probability distribution over POIs,

which captures the semantic relationship between POIs. Topics are assumed to represent

sets of POIs that have similar functions such as parks, night clubs, or restaurants. Each

check-in is assigned to a topic. [42] extends LDA and generates the POI of a check-in based

on the POI distribution of the assigned topic and the regularization of the coordinates of

all the user’s check-ins. To model multiple regions of users, STT assumes that there is a set

of latent regions, and each user is associated with a probability distribution over regions.

Instead of regularizing POIs to be close to all the user’s check-ins, STT regularizes them to

the center of the sampled region. Additionally, STT considers temporal activity patterns.

It selects a topic of a check-in based on its user’s and time’s topic distributions, and it

generates (recommends) a POI based on the topic and time dependent POI distributions.

46



We propose an EM (Expectation-Maximization) algorithm to learn the latent random

variables and parameters of STT that maximizes the likelihood of observed random vari-

ables. We perform experiments on real life data sets from Twitter, Gowalla and Brightkite.

We evaluate the effectiveness of STT and of state-of-the-art models in terms of the perplex-

ity of the test data set, and the precision of POI and time recommendation.

The major contributions of this chapter’s work are as follows:

• We propose the first spatio-temporal topic model for POI and time recommendation,

capturing the geographical influence between user regions and POIs, and temporal

activity patterns of different topics and POIs.

• We employ the sparse coding technique which greatly speeds up the learning process.

• Through comprehensive experiments, we demonstrate that the proposed STT model

consistently improves the test perplexity, the average precision@1,5,10 for POI rec-

ommendation, and the average precision@1,2,3 of time recommendation compared to

existing state-of-the-art recommendation algorithms and geographical and temporal

topic models.

4.2 Spatio-Temporal Topic Model

In this section, we first introduce the problem definition and then present our proposed

STT (Spatio-Temporal Topic) model.

4.2.1 Problem Definition

We first introduce the notations needed in our problem and listed in Table 6.4. We

assume that all the check-ins are authored by a user from a fixed set U with size |U |. We

associate each user u with a set of check-ins Du, and each check-in is represented by a user,

a POI with a pair of latitude and longitude coordinates, and a timestamp. Formally, a

check-in d is defined by d = {u, i, li, t}, where u, i, t represents the (index of) user, POI,

and timestamp, respectively. li represents the coordinates of POI i, and the values of t are

discrete, e.g., 1-7 represent Sunday, Monday, ..., Saturday in a week and 1-24 represent hour

1, 2, ..., 24 in a day. A check-in collection D is defined as a set of check-ins from all users.
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We assume that there is a set of latent topics Z and a set of latent regions R in the

collection D. Each check-in d is assigned to one of the topics (zd) and regions (rd). To

model user interests and movements, users are associated with topic distributions θuser and

region distributions ηuser. A “semantically” coherent topic in the collection D is associated

with a probability distribution over all POIs ψtopic. Additionally, we use θtime to represent

time dependent topic distributions, e.g., check-ins from a night club topic usually happen

on weekends and at late hours of the day, and ψtime to represent time dependent POI

distributions. A region has a geographical center µ, and it is associated with a set of check-

ins, which are coherent in topics and close to the center geographically. Finally, θ0, η0, and

ψ0 represent the background distributions for topics, regions, and POIs, respectively.

Table 4.1: Notations of parameters

Variable Interpretation

iu,d POI index of the dth check-in by the uth user
li latitude and longitude coordinates of the ith POI
tu,d relative timestamp in the dth check-in by the uth user
zu,d topic assignment of the dth check-in by the uth user
ru,d region assignment of the dth check-in by the uth user
U set of users
I set of POIs
T set of times
Z set of topics
R set of regions
Du set of check-ins of the uth user
θ0 topic distribution of the background
θuseru topic distribution of the uth user
θtimet topic distribution of the tth timestamp
η0 region distribution of the background
ηuseru region distribution of the uth user
ψ0 POI distribution of the background

ψtopicz POI distribution of the zth topic
ψtimet POI distribution of the tth timestamp
µr region mean of the rth region

Based on the above definitions, we formalize our research problem as follows:

Problem 5 (Spatio-Temporal Topic Modeling for POI and Time Recommendation)

Given a check-in collection D, and numbers |Z| of topics and |R| of regions, the task is to

model and learn the spatio-temporal parameters of users, topics, regions and POIs for POI

and time recommendation.
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4.2.2 Model

Figure 4.3(c) shows the graphical model of STT. POIs i and timestamps t are modeled

as observed random variables, shown as shaded circles, while the latent random variables of

topics z and regions r and all parameters listed in Table 6.4 are shown as unshaded circles.

(a) LDA. (b) GLDA. (c) STT.

Figure 4.3: The graphical models

Similar to LDA [11] as shown in Figure 4.3(a), the topic of check-ins is considered as a

latent random variable. Topic distributions of users θuser model the latent user interests,

from which the topics of check-ins are sampled. Topics are associated with POI distributions

φtopic, which model the latent POI factors. Given the sampled topic, POIs are drawn from

the POI distribution of that topic. GLDA [42] extends LDA as shown in Figure 4.3(b),

where lu represents the set of all check-ins by user u, and the generated POI index is

regularized by lu.

We observe that users have visited multiple regions, which has not been considered by

existing models. Therefore, as shown in Figure 4.3(c), an important difference between

STT and existing models is that users are associated with region distributions ηuser, and

the regions of check-ins are sampled from the mixture of users’ region distributions ηuser

and a background region distribution η0. Instead of regularizing POIs to be close to all the

user’s check-ins, STT regularizes them to the sampled region center µr. This model design

is more meaningful when observing that users have visited multiple regions.
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Another major difference in STT is that it models the impact of temporal activity

patterns on POI recommendations. Given a timestamp t of check-in d, STT assumes that

the topic zu,d depends not only on the user u’s topic distribution θuseru but also on the

time’s topic distribution θtimet . Moreover, the probability of generating (recommending)

the index of POI iu,d depends on the given time’s POI distribution φtimet . STT also models

the popularity of POIs by using the background distribution of POIs ψ0.

Next, we describe the generative process of the STT model for a single check-in d of a

given user u and time tu,d.

• Draw a topic index zu,d

– zu,d ∼ p(zu,d|u, tu,d, θ0, θuser, θtime)

• Draw a region index ru,d

– ru,d ∼ p(ru,d|u, η0, ηuser)

• Draw a POI index iu,d, given the region index ru,d and topic index zu,d

– iu,d ∼ p(iu,d|ru,d, zu,d, tu,d, ψ0, ψtopic, ψtime, µ)

For each check-in, the STT model first samples a topic from the set of topics. To

generate a topic z, the model uses multinomial distributions of the background, user, and

time’s topic together as follows:

p(z|u, t, θ0, θuser, θtime) =
exp(θ0

z + θuseru,z + θtimet,z )∑|Z|
zz=1 exp(θ0

zz + θuseru,zz + θtimet,zz )
(4.1)

where θ0 is the background topic distribution, and θuser and θtime are the topic distributions

of user u and time t, respectively. To simplify the notations, we use p(z|u, t, θ0, θuser, θtime) =

αu,t,z. This approach employs the sparse coding technique introduced in the SAGE (Sparse

Additive Generative) model [19]. The major advantage of SAGE is that it does not require

additional latent “switching” variables when the model needs to take multiple factors into

account. For example, in order to model a mixture topic distribution of background, user,

and time factors, based on the background topic distribution θ0, it models the difference in

log-frequencies, e.g., θtopic and θtime, from the background topic distribution θ0, instead of

the log-frequencies themselves.
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Similarly, for generating the region index, we use a multinomial distribution as follows:

p(r|u, η0, ηuser) =
exp(η0

r + ηuseru,r )∑|R|
rr=1 exp(η0

rr + ηuseru,rr )
(4.2)

where η0 is the global distribution of regions and ηuseru is the region distribution of user u.

To simplify the notations, we use p(r|u, η0, ηuser) = βu,r.

Each POI index i is drawn depending on the sampled topic z and sampled region r as

follows:

p(i|r, z, t, ψ0, ψtopic, ψtime, µ)

= p(i|ψ0, ψtopicz , ψtimet )× p(li|µr)

=
exp(ψ0

i+ψtopicz,i +ψtimet,i ) exp(− ρ
2
||µr−li||)∑|I|

ii=1 exp(ψ0
ii+ψ

topic
z,ii +ψtimet,ii ) exp(− ρ

2
||µr−lii||)

(4.3)

where p(i|r, z, t, ψ0, ψtopic, ψtime, µ) = δz,r,t,i. The probability of a POI index is the product

of the probability of drawing the index of the POI from the mixture of POI distributions

ψ0 + ψtopicz + ψtimet , and the probability of drawing the coordinates li of the POI i, which

is inversely proportional to the distance between µr and liu,d , i.e., the L2-norm ||µr − li||.

ρ controls the trade-off between the geographical factor and the topic and time factors.

By increasing the value of ρ, the model gradually puts more weights on the geographical

influence and recommends more POIs nearby. When the value of ρ decreases, the model

recommends more POIs based on the topic and time factors.

4.2.3 Parameter Learning

Our goal is to learn parameters that maximize the marginal log-likelihood of the observed

random variables i, t. The marginalization is performed with respect to the latent random

variables z, r, and it is hard to be maximized directly. Therefore, we apply the MCEM

(Monte Carlo Expectation Maximization) algorithm to maximize the complete data likeli-

hood p(z, r, i|t,u,Θ) in Equation 5.5, where Θ = {θ0, θuser, θtime, η0, ηuser, ψ0, ψtopic, ψtime, µ}.

p(z, r, i|t,u,Θ)

= p(z|u, t, θ0, θuser, θtime)× p(r|u, η0, ηuser)

×p(i|r, z, t, µ, ψ0, ψtopic, ψtime)

=
∏|U |
u=1

∏|Du|
d=1 αu,tu,d,zu,d ×

∏|U |
u=1

∏|Du|
d=1 βu,ru,d

×
∏|U |
u=1

∏|Du|
d=1 δzu,d,ru,d,tu,d,iu,d,

(4.4)
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where αu,t,z, βu,r, δz,r,t,i are shown in Equation 5.2, 5.3, and 5.4.

According to the MCEM method, we sample the latent variables r, z in the E step and

maximize the parameters Θ in the M step. To sample a single variable ru,d given all other

variables fixed, we use Equation 4.5. After r is sampled, we sample zu,d similarly according

to Equation 5.6.

p(ru,d|z, r−u,d, i, t,Θ) ∝ βu,ru,d × δzu,d,ru,d,tu,d,iu,d (4.5)

p(zu,d|z−u,d, r, i, t,Θ) ∝ αu,tu,d,zu,d × δzu,d,ru,d,tu,d,iu,d (4.6)

In the M step, fixing all the latent variables r, z that are sampled in the E step, we

maximize the log likelihood of Equation 5.5 with respect to the parameters Θ. To update

the parameters, we use the gradient descent learning algorithm PSSG (Projected Scaled

Sub-Gradient) [61].

For variable µ, we take the derivative of its log likelihood L = log(p(z, r, i|t,u,Θ)) with

respect to µr. Only one term p(i|r, z, t, µ, ψ0, ψtopic, ψtime) in Equation 5.5 contains µr, so

we use Equation 4.7 to compute the partial derivative of µr, where d(z, r, t, i) represents the

number of check-ins assigned to topic z, region r, time t, and POI i, and exp(ψ) denotes

the exponential summation of ψ0, ψtopic and ψtime, i.e., exp(ψ) = exp(ψ0
i +ψtopicz,i +ψtimet,i ).

∂L

∂µr
=

|Z|∑
z=1

|R|∑
r=1

|T |∑
t=1

|I|∑
i=1

d(z, r, t, i)× (
−ρ

2(µr − li)
||µr − li||

)−
|Z|∑
z=1

|R|∑
r=1

|T |∑
t=1

d(z, r, t)

×
∑|I|

i=1 exp(ψ) exp(−ρ
2 ||µr − li||)(

− ρ
2

(µr−li)
||µr−li|| )∑|I|

ii=1 exp(ψ) exp(−ρ
2 ||µr − lii||)

(4.7)

Figure 4.4: The derivative equation for parameter µr.

According to the limited-memory BFGS [46] updates for the quasi-Newton method,

the partial derivative functions of the parameters η0, ηuser are provided in the following

Equations 4.8 and 4.9, where d(u, r) represents the number of documents assigned to region

r by user u, and d(u) represents the number of documents by user u.

∂L

∂η0
r

=

|U |∑
u=1

d(u, r)−
|U |∑
u=1

(
d(u)× βu,r

)
(4.8)
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∂L

∂ηuseru,r

= d(u, r)− d(u)× βu,r (4.9)

Similarly, we get derivative functions for the remaining parameters in Figure 5.2, where

d(u, z) represents the number of documents assigned to topic z by user u, n(z, w) represents

the number of words assigned to topic z, n(z) represents the number of words assigned to

topic z, and d(z, i) represents the number of documents assigned to topic z at location i.

∂L

∂θ0
z

=

|U |∑
u=1

d(u, z)−
|U |∑
u=1

(
d(u)× αu,z

)
(4.10)

∂L

∂θuseru,z

= d(u, z)− d(u)× αu,z (4.11)

∂L

∂ψ0
i

=

|Z|∑
z=1

d(z, i)−
|Z|∑
z=1

(
d(z)× δz,i

)
(4.12)

∂L

∂ψtopicz,i

= d(z, i)− d(z)× δz,i (4.13)

Figure 4.5: The derivative equations for parameters θ0, θuser, ψ0, ψtopic in the STT model.

Good initializations of parameters can speed up the learning process towards the con-

vergence of the objective function by reducing the number of iterations. We cluster all the

check-ins into |R| regions by k-means based on their coordinates, and initialize each region

mean µr to the center of region r. According to the region assignment of each check-in,

we set the background region distribution η0
r to the log-frequency of check-ins of the region

r. Similarly, the background POI distribution ψ0
i is set to the log-frequency of check-ins of

each POI i.

4.2.4 POI and Time Recommendation

The STT model can be employed for POI recommendation as follows. Given a check-in

with a user, our task is to recommend top-k POIs, that user will visit in the future. More

precisely, given the user u and time t of a check-in d, the probability that user u visits POI
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i at time t is computed as in Equation 5.13:

p(i|t, u,Θ) ∝
R∑
r

Z∑
z

p(i, z, r|t, u,Θ)

=
∑R

r

∑Z
z p(z|θ0, θuser, θtime)× p(r|η0, ηuser)

×p(i|z, r, t, ψ0, ψtopic, ψtime, µ)
(4.14)

For time recommendation, given the user u and POI i of a check-in d, the probability

that user u visits POI i at time t is in Equation 4.15, where p(t) is a prior and set to the

log-frequency of check-ins of time t.

p(t|i, u,Θ) ∝ p(i|t, u,Θ)× p(t|u,Θ) = p(i|t, u,Θ)× p(t) (4.15)

We rank the POIs and times in descending order of p(i|t, u,Θ) and p(t|i, u,Θ), respectively.

4.3 Experiments

In this section, we experimentally evaluate the effectiveness of the STT (Spatio-Temporal

Topic) model. We also compare it against some baseline methods, e.g., PMF and LDA,

one of the state-of-the-art POI recommendation methods [42], and one of the state-of-

the-art geographical topic models [25] and temporal topic models [66]. We report our

experimental results on Twitter, Gowalla, and Brightkite data sets, and we evaluate them

using the perplexity of the test data sets, and the top-k average precision for POI and time

recommendation.

4.3.1 Data Sets

We used three publicly available data sets: a Twitter data set from [15]1, and Gowalla

and Brightkite data sets from [16]2. We generate subsets from a representative city NYC

(New York City) in the US for Twitter, Gowalla, and Brightkite, where all check-ins contain

a POI label and geographical coordinates. On Twitter, the coordinates of check-ins at the

same POI may have some variance, so we use the mean of these coordinates to create the

coordinates of the POI. Hence each POI corresponds to a unique mean coordinate, and each

check-in of that POI has the same coordinates. Since our task is to recommend POIs to

1http://infolab.tamu.edu/data/
2http://snap.stanford.edu/data/
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users, uninteresting POIs, such as home, should be removed. Therefore, in all three data

sets we remove POIs checked in by less than 5 different users. Some statistics about the

data sets are presented in Table 6.1.

Table 4.2: Statistics of data sets from New York City on Twitter, Gowalla and Brightkite.

# Twitter Gowalla Brightkite

Unique users 9,508 5,588 1,820
POIs 3,518 4,358 348

Check-ins 607,885 89,294 34,710
Avg. check-ins/user 64.93 15.97 19.07
Avg. check-ins/POI 172.79 20.48 99.74

4.3.2 Experimental Setup

In our data sets, we randomly select 70% of observed data for each user as the training

data, and the remaining 30% as the test data. We focus on the tasks of POI and time

recommendation for users. POI recommendation is by far the most commonly used perfor-

mance measure for spatial models in the literature [71, 42]. We train models in the training

data set. For every check-in in the test set, we recommend a POI given the user and time

of the check-in, and compare the recommended POI against the actual POI of the check-

in. Additionally, making the recommendation at the right time (time recommendation) is

important in recommender systems as mentioned in a pioneer work [65]. For time recom-

mendation, for every check-in in the test set, we recommend a time for the user and POI of

the check-in, and compare the recommended time against the actual time of the check-in.

Comparison Partners. In our experiments, we evaluate the following comparison

partners, which all model (and can predict) either the coordinates or the index of POIs:

• Multi-Region (MR). This is a simplified version of the STT model. It assumes that

users are associated with region distributions, and the coordinates of POIs are drawn

from 2D Gaussian distributions. As a result, it generates the coordinates of POIs l,

and the only latent variable is the region r. Intuitively, the MR model recommends

closest POIs to users based on their regions.

• Probabilistic Matrix Factorization (PMF ). This is a well-known matrix factorization

model proposed in [58].
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• Latent Dirichlet Allocation (LDA). This is a modified LDA model, where the only

observed variable is the index of POIs i and the only latent variable is the topic z.

Note that this model is equivalent to the original LDA model that generates index of

POIs instead of words.

• Geographical Topic (GT ). This is one of the state-of-the-art geographical topic models

proposed in [25].

• Topics Over Time (TOT ). The TOT model is a temporal topic models proposed in

[66], and it assumes that the continuous timestamp of a document is drawn from a

topic-specific Beta distribution. Since we consider only relative timestamps in hours

or days, the modified model assumes the timestamp is drawn from a Multinomial

distribution.

• Geo LDA (GLDA). This is a spatial extension of the LDA model, which is one of the

state-of-the-art methods for POI recommendation proposed in [42].

• Spatio-Temporal Topic (STT ). This is the full spatio-temporal topic model proposed

in this chapter’s work. The default number of relative timestamps is 24 (hours).

Optionally, we use STTweek to denote the model considering 7 timestamps (7 days).

Note that we do not compare against [71, 72, 13], since they are similar to GLDA [42],

which is the most recent work on POI recommendation. Also, there are other existing

models [64, 63, 74] proposed for geographical topic modeling. We do not compare against

them because the GT model proposed in [25] is a generalization of the existing models, and

it performs better than the existing models in terms of POI prediction in the experiments

of [25]. GT cannot be applied to the Gowalla and Brightkite data sets, since they do not

have texts associated with check-ins, which are the input of GT.

4.3.3 Experimental Results

Perplexity

Figure 4.6 shows the perplexity of the comparison partners for different numbers of

topics. For all models, the number of regions is set to 50 for the Twitter and Gowalla data

sets and to 30 for the Brightkite data set. Figure 4.7 shows the perplexity of the comparison
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partners for different numbers of regions. The number of topics is set to 30 for all three

data sets. To establish a fair comparison, we only compare the LDA, TOT, GLDA, and

STT models, as they have the same observed random variables (the index of POIs and

timestamps).
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(a) Twitter data set.
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(b) Gowalla data set.
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(c) Brightkite data set.

Figure 4.6: Perplexity of the comparison partners for 5,10,20,30,40,50 topics.

We observe that the STT model consistently achieves the smaller (better) perplexity

than the LDA, TOT, and GLDA models in all the three data sets for different numbers of

topics and regions, which means that the STT model fits the data better than the other

models. As expected, we observe that the perplexity of all models decreases as the number

of topics and regions increases.
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(a) Twitter data set.
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(b) Gowalla data set.
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(c) Brightkite data set.

Figure 4.7: Perplexity of the comparison partners for 5,10,20,30,40,50 regions.

POI Recommendation

Figure 4.8(a), 4.8(b), and 4.8(c) show the precision@1,5,10 results for POI recommen-

dation in the Twitter, Gowalla and Brightkite data sets, respectively.

We observe that our STT and STTweek models consistently outperform all other models

on all the three data sets. PMF and LDA yield similar results in all the data sets since they

are conceptually analogous (as discussed in Chapter 2). Both MR and GT perform worse

than PMF and LDA, because they do not consider the “semantic” meaning of the POIs and

do not model the correlation between user movements. TOT is sometimes better or worse

than PMF and LDA, because only the temporal aspect is considered, and it is dependent

on only topics (not on both topics and POIs as in STT). GLDA outperform PMF and LDA,

because it considers the spatial aspect of user check-ins. Compared to the most competitive
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(b) Gowalla data set.
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(c) Brightkite data set.

Figure 4.8: Precision@1,5,10 of POI recommendation.

and state-of-the-art method in the area of recommender systems, GLDA, STT improves the

precision@1 by 19% (Twitter), 30% (Gowalla), and 12% (Brightkite). This indicates that

modeling the multiple regions of users and the impact of temporal activity patterns can

help improve the precision of POI recommendation. The results of STT are slightly better

than those of STTweek, indicating that the timestamps in hours produce more distinctive

temporal activity patterns than the ones in days.

We also observe that the precision difference between STT and the other models on

Twitter and Gowalla is larger than on Brightkite. We argue that as the number of POIs in

the Brightkite data set is much smaller than in the other two data sets, the performance of

baseline methods, such as MR, PMF, and LDA, is sufficiently good, so that the room for

improvement is limited.
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To analyze the impact of the input parameters, Figure 4.9 shows the precision@5 of the

comparison partners for different numbers of topics, and Figure 4.10 shows the precision@5

of the comparison partners for different numbers of regions. The results for precision@1,10

are similar to the results for precision@5.

We observe that STT consistently outperforms the other comparison partners for all

numbers of topics and regions. Furthermore, as the number of topics increases, the preci-

sion@5 of all the models increases and then plateaus when the number of topics reaches 20

or 30. Similarly, as the number of regions increases, the precision of STT increases. Some

models, such as PMF, LDA, TOT, and GLDA, do not take the number of regions as their

input, so that their precision is constant in Figure 4.10. Overall, the results of STT are

fairly robust to the choice of the input parameters.
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(b) Gowalla data set.
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(c) Brightkite data set.

Figure 4.9: Precision@5 of POI recommendation for different number of topics.
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(b) Gowalla data set.
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Figure 4.10: Precision@5 of POI recommendation for different number of regions.

Time Recommendation

Figure 4.11(a), 4.11(b), and 4.11(c) show the precision@1,2,3 results of time recommen-

dation in the Twitter, Gowalla and Brightkite data sets, respectively. We only compare

the TOT and STT models, since all the other models cannot predict (or recommend) time.

Both TOT and STT model the correlation of user movements and the temporal aspect of

user check-ins. The major difference is that STT models user regions and regularizes the

user POIs by their regions. This facilitates not only the improvement of POI recommenda-

tion as shown in the last section but also the improvement of time recommendation. STT

improves the time recommendation precision@1 of TOT by 19% (Twitter), 38% (Gowalla),

and 45% (Brightkite).
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Figure 4.11: Precision@1,2,3 of time recommendation.

4.4 Conclusion

In this chapter’s work, we address the problem of spatio-temporal topic modeling in

mobile social media for POI and time recommendation. Previous work has explored rec-

ommendation algorithms and geographical and temporal topic models that model either

spatial or temporal aspects of user check-ins, but do not consider all of them together. We

propose the first spatio-temporal topic model to capture the spatial and temporal aspects

of check-ins, as well as user profiles (topic and region distributions) in a single probabilistic

model, called Spatio-Temporal Topic (STT) model. STT exploits the interdependencies

between users’ regions and their POIs, and between temporal activity patterns and POIs.

More specifically, STT is based on the intuitions that 1) users have visited multiple regions

and their activities are restricted by these regions; 2) temporal activity patterns of POIs
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affect the decision of user check-ins. We argue that taking the users’ region distributions,

and the time-specific topic and POI distributions into account enables a more accurate

discovery of relevant topics and regions. We present the graphical model of STT and a

corresponding method of parameter learning. We perform an experimental evaluation on

Twitter, Gowalla, and Brightkite data sets from New York City. We compare STT against

state-of-the-art methods in the areas of recommender systems, and geographical and tem-

poral topic modeling. Our experiments demonstrate substantially improved performance in

POI and time recommendation.
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Chapter 5

Social Topic Model

5.1 Introduction

Based on the well-known effects of social influence and selection, several social network-

based methods for item recommendation [47, 33, 48, 69] have been proposed. These methods

assume that friends in the social network tend to have more similar behavior patterns than

non-friends. Since the problem of POI recommendation in LBSNs can be understood as

item recommendation using social networks, several works [71, 72, 13, 20] applied similar

social network-based methods for POI recommendation in LBSNs. In particular, for a target

user, the existing social network-based approaches [71, 72, 13, 20] search his/her friends in

the social network and recommend POIs visited by his/her friends. Their experimental

results show that social network-based approaches outperform those approaches without

social networks, but the improvement of top-k recommendation accuracy for POIs (∼3%)

is far smaller than for movies (∼20%) [69].

We argue the reason is that the nature of POIs is quite different from the nature of

items such as movies. Firstly, to know and rate a POI, a user has to physically visit that

POI, and this commitment is more serious than rating a movie online. Even if a user makes

the effort to visit the POI, s/he often does not check in due to privacy or safety concerns.

Secondly, POIs are specific to a neighborhood or city and are not shared between users

from different neighborhoods or cities. Since friends usually live in different neighborhoods

or cities, co-check-ins of friends at POIs are less common than movies that friends co-like.

To understand the nature of location-based social networks, let us take an example of a

Foursquare data set, which contains 9,672 users, 32,291 POIs, 375,646 check-ins, and 40,470
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undirected social relations among users (mutually following relations) from a Twitter social

network. We observe that only 20.6% (8,376/40,470) of pairs of friends co-check in at POIs.

In other words, approximately 80% of friends do not have any POIs in common, and similar

results are reported in [20, 60]. These results verify that the performance improvement of

social network-based approaches over those approaches without social networks should be

insignificant for POI recommendation. We conduct the same analysis on a Flixster data

set used in movie recommendations [33, 69], where its undirected social network is from

Facebook. We observe that approximately 40% of friends have watched common movies,

which is twice the percentage of friends with common POIs in the Foursquare data set.

Social networks of both data sets are acquaintance social networks, which are essentially

the same but friends’ behaviors are quite different. Therefore, modeling social networks for

POI recommendation should be different from that for movie recommendation.

We assume that the effects of social influence and selection exist in social networks

for POI recommendation. Unlike in movie recommendation, these effects cannot influence

friends’ check-in behaviors directly but can influence them indirectly. We hypothesize that

friends living in different neighborhoods or cities have similar interests, such as watching

movies, and they most likely do not check in the same POI, but (the categories of) their

POIs should be semantically similar, i.e., cinema or video stores. In the Foursquare data set,

each POI is associated with a set of tags, i.e., “music”, “shopping”, or “mexican food” etc.

To test our hypothesis, we build a topic model using Latent Dirichlet Allocation (LDA) [11]

of all POIs assuming that POIs are “documents” and tags are “words”. For 100 topics, we

observe that a very high percentage (80.3%) of friends in the social network shares topics,

which is four times as high as the percentage of friends who share POIs.

Motivated by the above observations, we propose a novel social topic model for POI

recommendation in social networks. The intuition of our proposed model is that friends

tend to check in POIs with similar semantic meanings. Basically, a check-in is represented

by a user and a POI with a bag of words (e.g., from user-generated text such as tags,

posts or reviews), which are considered as observed random variables. Similar to LDA,

a set of latent topics is defined. Each user is associated with a probability distribution

over topics, which captures the user interests, and each topic has a probability distribution

over POIs and words, which captures the semantic meaning of POIs. Topics are assumed

to represent sets of POIs that have similar meaning/function such as parks, night clubs,
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or restaurants. Additionally, we model the social network to regularize the users’ topic

distribution/interests by those of their friends, and to indirectly influence the users’ check

in patterns. This modeling strategy is different from the one used in the existing social

network-based POI recommendation approaches [71, 72, 13, 20].

We propose an EM (Expectation-Maximization) algorithm to learn the latent random

variables and parameters of the social topic model that maximizes the likelihood of observed

random variables. We perform experiments on large scale real life data sets from Foursquare

and Yelp, and we evaluate the effectiveness of the proposed model and of state-of-the-art

models in terms of the accuracy of top-k POI recommendation.

The major contributions of this chapter’s work are as follows:

• We comprehensively analyze the nature of POIs and the benefits of a social network

for POI recommendation.

• We propose a novel social topic model for POI recommendation using social networks.

• Through comprehensive experiments, we demonstrate that the proposed model con-

sistently improves the average recall@1,2,...,20 significantly for POI recommenda-

tion compared to existing state-of-the-art social network-based recommendation algo-

rithms on Foursquare and Yelp data sets. We also demonstrate that the location-based

social network is very useful for improving the performance of non social network-

based model when it is appropriately modeled.

5.2 Social Topic Model

In this section, we first introduce the problem definition of top-k POI recommendation,

and then present our proposed ST (Social Topic) model.

5.2.1 Problem Definition

We assume that there are a set of users U = {u1, u2, ..., u|U |} and a set of POIs I =

{i1, i2, ..., i|I|}, and each user performs actions on a set of POIs. The actions performed by

users on items are given in a matrix D = [du,i]|U |×|I|, where du,i denotes the action of user

u on POI i. Normally, each action contains a post or document on Twitter or Yelp. Since

we will apply topic models which process on “documents”, we must define the concept of
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“documents”. The first option is to define each user-generated text as a document du,i. We

could also define a document di and du as a set of all user-generated texts of a POI i and

a user u, respectively. For the time being, we consider the set of all user-generated texts

of a POI as a document di, because most of the user-generated texts such as tweets from

Twitter or reviews from Yelp tend to discuss the properties of the POI. In other words, each

document di contains a set of user-generated texts describing the POI i, and each check-in

du,i of user u on POI i contains a document of POI i.

In addition, there is a social network among users, which is represented as an undirected

graph G = (U,E), where an undirected edge (u, v) ∈ E, u ∈ U, v ∈ U from user u to user v

represents the fact that u and v are friends.

POI recommender systems can recommend a set of POIs that users may be interested

in, based on the history of user check-ins. The problem of top-k POI recommendation is

defined in Chapter 2.

5.2.2 Assumptions

Latent factor models [12, 59, 58, 38, 39, 40] are widely used in recommender systems to

model the interactions between users and items. Based on the nature of location-based social

networks that we mentioned in the introduction section, we make the following assumptions.

• Assumption 1. Most friends cannot influence a user’s decisions to check in at POIs.

This is a counter-intuitive assumption, because social influence and correlation are exploited

in many social network-based recommender systems. However, in the context of POI recom-

mendation, we cannot directly adopt the modeling of social influence and correlation from

traditional item recommendation. For example, unlike traditional movie recommendation

in which all the interactions between users and movies only take place in a virtual network,

check-ins at POIs require real-world physical commitments, which means users will check

in at POIs in person. Intuitively, users are likely to check in at nearby POIs, and friends

living in different neighborhoods check in at different POIs.

• Assumption 2. Friends tend to share similar interests.

This is a common assumption, which is motivated by the theory of “homophily”, which

states that users connect to similar users, and by the theory of “social influence” which
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claims that connected users become more similar to each other. These phenomenons of

homophily and social influence interact with each other, and their collective effect is referred

to as “social correlation”. Together with assumption 1, we argue that the social network

can be useful when it is modeled properly.

• Assumption 3. Users’ interests play a major role in users’ decisions to check in at

POIs.

This is also a common assumption. However, we list it here because in our context, this

phenomenon is even stronger. We assume that users’ interests can be captured by analyz-

ing user-generated texts, which are associated with POIs, and that user interests greatly

influence user check-ins. For example, in Yelp, users who like sushi will check in at sushi

restaurants frequently.

All the above assumptions will be tested and verified in the experiments.

5.2.3 Model

In this section we describe our proposed ST (Social Topic) model. We first introduce

the notations of the ST model which are listed in Table 6.4. Our input data, i.e., POIs and

user-generated texts are modeled as observed random variables, shown as shaded circles in

Figure 5.1(c), and we use iu,d and wu,d,n to denote them. The topic (index) of documents

is considered as a latent random variable, which is denoted as zu,d. Users are associated

with topic distributions, i.e., θ, from which the topics of documents are sampled. Topics

are associated with both POI distributions ψ and word distributions φ. Given the sampled

topic, POIs are drawn from the POI distribution and words are drawn from the word

distribution of that topic.

A standard latent factor model LDA [11] can be applied for modeling user check-ins.

Figure 5.1(a) shows the graphical model of LDA. Specifically, LDA assumes that there is

a latent topic distribution θu for user u, and a latent POI distribution ψz for topic z. The

dependency between user preferences and their POIs is transferred through the topic. LDA

captures the correlation between preferences of different users, such that users who have

similar preferences share the same topics. Note that the topics play a similar role as the

latent factors in MF (Matrix Factorization).

68



Table 5.1: Notations

Variable Interpretation

iu,d POI index of the dth document posted by the uth user
wu,d,n nth word of the dth document posted by the uth user
zu,d topic assignment of the dth document posted by the uth user
Z set of topics
U set of users
I set of POIs
Du set of documents of the uth user
Nu,d set of words in the dth document of the uth user
V set of the vocabulary
θ0 topic distribution of the background
θu topic distribution of the uth user
ψ0 POI distribution of the background
ψz POI distribution of the zth topic
φ0 word distribution of the background
φz word distribution of the zth topic
Fu set of friends of the uth user

Equivalent to [13, 48], SLDA (Social LDA) extends LDA as shown in Figure 5.1(b),

where Fu represents the set of friends of user u. SLDA models both user check-ins and

the social network, and the intuition is that a user’s topic distribution is regularized by the

topic distribution of his/her friends.

Different from the existing latent factor models such as LDA and MF, we propose a novel

ST (Social Topic) model as shown in Figure 5.1(c), which associates a word distribution

with a topic so that it can describe the latent user and POI factors. Intuitively, collaborative

filtering assumes that POIs A and B should both have high probabilities in POI distributions

of some topic(s) if many users frequently co-occur in both A and B. POIs A and B do not

necessarily have the same functionality. However, ST further assumes that POIs with high

probabilities for the same topic should be cohesive in their functions, e.g., a topic with high

probabilities for words like “coffee”, “Java”, and “latte” should have high probability only

for coffee shops. This design enables ST to detect users with similar interests and POIs

with similar functions, and enables ST to better deal with “cold start” users, i.e., users who

have very few check-ins, since the words of their few check-ins are more informative than

their POIs. This model design is based on assumption 3 that users’ interests influence their

check-ins.
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(a) LDA. (b) Social LDA. (c) Social Topic.

Figure 5.1: The graphical models. The background parameters θ0, ψ0, φ0 are omitted.

As formulated in assumption 1, we observe that POIs are hardly shared by friends

who live in different neighborhoods or cities due to the nature of location-based social

networks. It means that the SLDA model does not capture the nature of location-based

social networks, and theoretically cannot boost the recommendation accuracy over LDA by

much. Therefore, in our proposed ST model an important difference compared to existing

social network-based models such as SLDA is that topics are associated not only with POIs

but also with user-generated texts, which implies that the user topic distribution θ takes

both the user check-in behavior and user interest into account. The topics z of documents

are sampled from the users topic distributions θ. POIs i and words w are sampled from the

POI distribution and the word distribution, respectively, of the sampled topic z. Based on

assumption 2, we keep the social regularization part as in SLDA, and the social network

should be boosting the recommendation accuracy as it influences both the user check-in

behavior and user interests directly.

Next, we describe the generative process of the ST model for a single check-in du,i of a

given user u:

• Compute a topic distribution of user u

– θu ∼ p(θu|Fu, θ)

• Draw a topic index zu,d

– zu,d ∼ p(zu,d|u, θ0, θ)
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• Draw a POI index iu,d, given the topic index zu,d

– iu,d ∼ p(iu,d|zu,d, ψ0, ψ)

• Draw each word in d given the topic index zu,d

– wu,d,n ∼ p(wu,d,n|zu,d, φ0, φ)

The ST model first computes a topic distribution of user u by averaging the topic

distributions from u’s friends fu.

p(θu|Fu, θ) =

∑
v∈Fu θv

|Fu|
(5.1)

where Fu represents the set of friends of user u, and |Fu| denotes the number of friends.

For each check-in by user u, the ST model then samples a topic from the set of topics.

To generate a topic z, the model uses multinomial distributions of the background and

user’s topic together as follows:

p(z|u, θ0, θ) =
exp(θ0

z + θu,z)∑|Z|
zz=1 exp(θ0

zz + θu,zz)
(5.2)

where θ0 is the background topic distribution, and θ is the topic distributions of user u. To

simplify the notations, we use p(z|u, θ0, θ) = αu,z. This approach employs the sparse coding

technique introduced in the SAGE (Sparse Additive Generative) model [19]. The major

advantage of SAGE is that it does not require additional latent “switching” variables when

the model needs to take multiple factors into account. For example, in order to model a

mixture topic distribution of background and user factors, based on the background topic

distribution θ0, it models the difference in log-frequencies, e.g., θ from the background topic

distribution θ0, instead of the log-frequencies themselves.

Each POI index i is drawn depending on the sampled topic z as follows:

p(i|z, ψ0, ψ) =
exp(ψ0

i + ψz,i)∑|I|
ii=1 exp(ψ0

ii + ψz,ii)
(5.3)

where ψ0 is the global distribution of POIs and ψz is the POI distribution of topic z. To

simplify the notations, we use p(i|z, ψ0, ψ) = βz,i.

Similarly, for generating the word index, we use a multinomial distribution as follows:

p(w|z, φ0, φ) =
exp(φ0

w + φz,w)∑|V |
ww=1 exp(φ0

ww + φz,ww)
(5.4)

where φ0 is the global distribution of words and φz is the word distribution of topic z. To

simplify the notations, we use p(w|z, φ0, φ) = δz,w.

71



5.2.4 Parameter Learning

Our goal is to learn parameters that maximize the marginal log-likelihood of the ob-

served random variables i,w. The marginalization is performed with respect to the latent

random variable z, and it is hard to be maximized directly. Therefore, we apply the MCEM

(Monte Carlo Expectation Maximization) algorithm to maximize the complete data likeli-

hood p(z,w, i|u,Θ) in Equation 5.5, where Θ = {θ0, θ, ψ0, ψ, φ0, φ}.

p(z,w, i|u,Θ)

= p(z|u, θ0, θ)× p(w|z, φ0, φ)× p(i|z, ψ0, ψ)

=
∏|U |
u=1

∏|Du|
d=1 αu,zu,d ×

∏|U |
u=1

∏|Du|
d=1 βzu,d,iu,d

×
∏|U |
u=1

∏|Du|
d=1

∏|Nu,d|
n=1 δzu,d,wu,d,n

(5.5)

where αu,z, βz,i, δz,w are shown in Equation 5.2, 5.3, and 5.4.

According to the MCEM method, we sample the latent variables z in the E step and

maximize the parameters Θ in the M step. To sample a single variable zu,d given all other

variables fixed, we use Equation 5.6.

p(zu,d|z−u,d, i,Θ) ∝ αu,zu,d × βzu,d,iu,d ×
|Nu,d|∏
n=1

δzu,d,wu,d,n (5.6)

In the M step, we maximize the log likelihood of Equation 5.5 with respect to the

parameters Θ with the fixed latent variable z that is sampled in the E step. To update the

parameters, we use the gradient descent learning algorithm PSSG (Projected Scaled Sub-

Gradient) [61], which is designed to solve optimization problems with L1 regularization

on the parameters. More importantly, PSSG is scalable because it uses the quasi-Newton

strategy with line search that is robust to common functions.

According to the limited-memory BFGS [46] updates for the quasi-Newton method, we

get the derivative functions of the parameters θ0, θ, ψ0, ψ, φ0, φ in the following equations

in Figure 5.2, where |d(u, z)| represents the number of check-ins assigned to topic z by user

u, and |d(z, i)| represents the number of check-ins assigned to topic z of POI i, |d(z, w)|

represents the number of words assigned to topic z, |d(u)| represents the number of check-

ins of user u, and |d(z)| represents the number of words assigned to topic z. In Equation

5.8, the model regularizes θu by friends θFu , and η is the learning rate.

Good initializations of parameters can speed up the learning process towards the conver-

gence of the objective function by reducing the number of iterations. We set the background
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∂L

∂θ0
z

=

|U |∑
u=1

|d(u, z)| −
|U |∑
u=1

(
|d(u)| × αu,z

)
(5.7)

∂L

∂θu,z
= |d(u, z)| − |d(u)| × αu,z − η ×

Fu∑
v

(θu,z − θv,z) (5.8)

∂L

∂ψ0
i

=

|Z|∑
z=1

|d(z, i)| −
|Z|∑
z=1

(
|d(z)| × βz,i

)
(5.9)

∂L

∂ψz,i
= |d(z, i)| − |d(z)| × βz,i (5.10)

∂L

∂φ0
w

=

|Z|∑
z=1

|d(z, w)| −
|Z|∑
z=1

(
|d(z)| × δz,w

)
(5.11)

∂L

∂φz,w
= |d(z, w)| − |d(z)| × δz,w (5.12)

Figure 5.2: The derivative equations for parameters θ0, θ, ψ0, ψ, φ0, and φ in the ST model.

POI distribution ψ0
i to the log-frequency of check-ins of the POI i, and the background word

distribution φ0
w to the log-frequency of the word w.

5.2.5 Top-k POI Recommendation

The ST model can be employed for top-k POI recommendation as follows. Given a user,

our task is to recommend top-k new POIs, that user will visit in the future. More precisely,

given the user u and all POIs with user-generated texts, the probability that user u visits

POI i is computed in Equation 5.13:

p(i,w|u,Θ) ∝
Z∑
z

p(i, z,w|u,Θ)

=
∑Z

z p(z|θ0, θuser)× p(i|z, ψ0, ψ)

×
∏
n p(wn|z, φ0, φ)

(5.13)

5.3 Experiments

In this section, we experimentally evaluate the effectiveness of our proposed ST (Social

Topic) model. We are in particular interested in 1) how the proposed ST model performs

in comparison with state-of-the-art social network-based POI recommenders; and 2) how
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the social network contributes in the ST model. We report the experimental results on

Foursquare and Yelp data sets, and we evaluate the comparison partners using the recall@k

for top-k POI recommendation.

5.3.1 Experimental Setup

Data Sets

In this chapter’s work, we take two location-based social networking websites Foursquare

and Yelp, which contain users, POIs, and a social network, as our case studies.

Foursquare is one of the most popular location-based social networking websites, where

users “check in” at venues. We crawled a data set from Foursquare using its API1, and

we collect public Foursquare check-in data (tweets) from Sept. 2010 to Jan. 2011 through

Twitter with the same crawling strategy as proposed in [20, 60]. We also collect the user

friendships from the Twitter follower-followee relationships. Note that this data set is

available on one author’s homepage2.

Yelp was launched in 2005, and it has quickly become a popular website providing

services for writing reviews on businesses. We use a publicly available data set from the

competition of a Yelp data set challenge3. It is a deep data set from a US city – Phoenix,

and it covers a square region of 50×50 km around the center of Phoenix.

For both data sets, in the pre-processing user-generated texts (e.g., tweets from Foursquare

and reviews from Yelp) are processed by tokenizing on whitespace and punctuations, while

we remove the URLs starting with “http” and user names starting with “@”. Then we

remove all texts with non-latin characters, followed by removing stop words, and the words

with occurrences less than 100. The statistics about the data sets are presented in Table

6.1. Note that our data sets are larger or comparable to the ones used in the literature

[71, 72, 20, 13].

The user-POI check-in matrix is very sparse, i.e., it has a sparsity of 99.99% on both

data sets. On average, each user checked in only at a very small fraction of all the POIs,

and each POI is checked in only by a very small fraction of all the users. Figure 5.3 and

Figure 5.4 show the histograms of number of check-ins in the Foursquare and Yelp data sets

1https://developer.foursquare.com
2http://www.sfu.ca/b̃oh
3https://www.yelp.com/dataset challenge/
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Table 5.2: Statistics of data sets from on Foursquare and Yelp.

# Foursquare Yelp

Users 29,117 70,817
POIs 364,259 15,585

Check-ins 785,249 335,022
Friendships 89,693 151,516
Vocabulary 3,417 3,456

Avg. check-ins/user 26.96 4.73
Avg. check-ins/POI 2.15 21.49

Avg. friendships/user 3.08 2.14

by users and POIs, respectively. We observe that they follow the Power-law distribution,

which means that a few users/POIs get most of the check-ins while a large number of

users/POIs get few check-ins. Users/POIs with few check-ins (less than 10 check-ins) are

referred as “cold start” or “long-tail” users/items in recommender systems. We are in

particular interested in cold start users/POIs because more than 90% of users/POIs are

cold start.
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Figure 5.3: Histograms of number of check-ins of users.

Comparison Partners

In our experiments, we evaluate and compare our proposed ST model with the following

comparison partners.
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Figure 5.4: Histograms of number of check-ins of POIs.

• Popularity (POP ). This is a naive baseline that ranks POIs according to their popu-

larity, i.e., the number of check-ins in the given training set. The more check-ins the

POI has, the higher its position in the recommendation list. Note that it is a non-

personalized recommendation approach: for any given user, the recommendations are

always the same.

• Probabilistic Matrix Factorization (PMF ). This is a well-known matrix factorization

model proposed in [58]. The users’ and POIs’ factors are obtained by factorizing the

user-POI check-in matrix, and the recommendation probability of a user on a given

POI is multiplied by the given user and POI factors.

• Latent Dirichlet Allocation (LDA). This is an LDA model, where the only ob-

served variable is the index of POI i and the only latent variable is the topic z. Note

that this model is equivalent to the original LDA model that generates words instead

of indexes of POIs, and LDA is equivalent to PMF according to the model section as

we described.

• Probabilistic Matrix Factorization with Social Regularization (PMFSR).

This is an extension of the Probabilistic Matrix Factorization model fused with regu-

larization in the social network as proposed in [13, 48], which achieves the best top-k

item recommendation performance among social network-based recommendation al-

gorithms in [69].
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• Social Latent Dirichlet Allocation (SLDA). This is an extension of the LDA

model, where social regularization is included, which is described in Section 6.4.3 and

is equivalent to the social regularization of MF in [13, 48].

• Social Topic with Text only (STT ). This is a simplified version of the ST model,

where we remove the social network part. The observed variables are the index of

POI i and the index of word w, and the latent variable is the topic z.

• Social Topic (ST ). This is the full social topic model proposed in this chapter’s

work.

Note that we do not compare against [33, 47, 49, 72], since they are similar to PMFSR,

which achieves the best recommendation accuracy on top-k item recommendation in the

experiments of [69].

5.3.2 Experimental Results

For all comparison partners, we present the performance results with well tuned param-

eters. Figure 5.5(a) and 5.5(b) show the recall@[1,2,...,20] results for POI recommendation

for all users using 10 topics/latent factors in the Foursquare and Yelp data sets, respec-

tively. Similarly, Figure 5.6(a) and 5.6(b) show the results using 20 topics/latent factors.

Note that the POP results are identical in both figures since POP is independent of the

number of topics/latent factors. Larger values of k are usually not that important for the

top-k recommendation task. There is not a big difference whether a POI is placed within

the top 100 or the top 200, because neither of them will be presented to the user.

We observe that our ST models consistently outperform all other models on both

Foursquare and Yelp data sets. PMF and LDA (as well as PMFSR and SLDA) yield

similar results in both data sets since they are conceptually equivalent. Both PMFSR

and SLDA perform the same or slightly better than PMF and LDA respectively, because

their assumption is that friends check in at the same POIs. This assumption is invalid in

location-based social networks as discussed before, since a large percentage of friends live

in different neighborhoods or cities and usually do not check in at the same POIs. POP

performs slightly better than PMF, LDA, PMFSR, and SLDA, which is consistent with

the literature on item recommendation [4], and surprisingly has never been studied in the

literature on POI recommendation [13, 44, 29, 73]. POP is a tough baseline method, but
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Figure 5.5: Recall@k of comparison partners (# topics = 10) for top-k POI recommendation
for all users on Foursquare and Yelp data sets.

our ST models clearly outperform POP, in particular on the Yelp data set. Compared to

the most competitive state-of-the-art method for social network-based item recommenda-

tion (PMFSR or SLDA), STT improves the recall@10 on average by approximately 30%

(Foursquare) and 100% (Yelp), which indicates that modeling the user interests can help

improving the accuracy of top-k POI recommendation significantly. Furthermore, the ST

model performs clearly and consistently better than STT, and this indicates that the social

network is able to improve the recommendation accuracy if the model captures the na-

ture of location-based social networks as ST does, i.e., the interests of friends are mutually

influenced and eventually affect the users check-ins. Finally, we observe that all compar-

ison partners achieve slightly better performance with 20 topics/latent factors than with

10 topics/latent factors. We also tested different numbers of topics/latent factors such as,

[30,40,...,100], and the results are similar to the results for 20 topics.

Figure 5.7(a) and 5.7(b) show the recall@[1,2,...,20] results for POI recommendation of

cold start users in the Foursquare and Yelp data sets, respectively. The recall@[1,2,...,20]

values of all comparison partners for cold start users are lower than the ones for all users

in Figure 5.5(a) and 5.5(b), which confirms that cold start users are harder to predict than

regular users since there are fewer check-ins in the training data set. However, the relative

performance of all comparison partners is consistent for all users and for cold start users.

In real life POI recommender systems, user experience is the ultimate metric for the

system performance. For example, if a list of popular POIs is recommended in Yelp, it is
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Figure 5.6: Recall@k of comparison partners (# topics = 20) for top-k POI recommendation
for all users on Foursquare and Yelp data sets.

quite probable that a user will like (rate highly) the recommended POIs. However, such a

recommendation is clearly not very useful because it lacks novelty, since popular POIs are

relatively well-known, and a recommender system is probably not even required. In that

sense cold start (unpopular) POIs are often more important than non-cold start (popular)

POIs. Figure 5.8(a) and 5.8(b) show the recall@[1,2,...,20] results for POI recommendation

of cold start POIs to all users in the Foursquare and Yelp data sets, respectively. Not

surprisingly, we observe that POP performs worst among all comparison partners since all

test POIs are unpopular. The relative performance of all comparison partners is consistent

for all POIs and cold start POIs. We notice that the recall gains for the ST models relative

to the other comparison partners are significantly larger for cold start POIs than for all

POIs, because the ST models exploit user-generated texts which are more informative than

POIs alone.

We conclude that all the above experimental results verify our assumptions in Section

5.2.2. The proposed ST model performs consistently and substantially better than all other

comparison partners for all users, all POIs, cold start users, and cold start POIs. The ST

model is the only comparison partner that outperforms the popularity baseline method for

all users and all POIs.
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Figure 5.7: Recall@k of comparison partners (# topics = 20) for top-k POI recommendation
for cold start users on Foursquare and Yelp data sets.

5.4 Conclusion

In this chapter’s work, we address the problem of recommending top-k Point-of-Interest

(POI) for users in location-based social networks. State-of-the-art work has explored

location-based social networks based on the assumption that friends check in at the same

POIs. To the best of our knowledge, we are the first to propose different theories that 1)

friends’ check-in behaviors are not mutually influenced when they live in different neighbor-

hoods or cities; 2) friends’ interests are influenced by each other and affect their check-in

behaviors. Based on the above theories, we propose a model to capture the nature of

location-based social networks as well as user profiles (topic distributions) in a single prob-

abilistic model, called Social Topic (ST) model. ST exploits the interdependencies between

the interests of friends and between user interests and POIs.

We present the ST model and an EM learning algorithm. We perform an experimental

evaluation on Foursquare and Yelp data sets, and compare our proposed ST models against

the existing state-of-the-art methods. Our experiments demonstrate substantially improved

performance in top-k POI recommendation for all users, especially cold start users, and

justify the assumptions or theories we proposed.
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Figure 5.8: Recall@k of comparison partners (# topics = 20) for top-k POI recommendation
for cold start POIs on Foursquare and Yelp data sets.
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Chapter 6

Location Recommendation for New Stores

6.1 Introduction

Determining the optimal location for a new store has been studied in a wide range of

research areas (e.g., land economy and urban settlement) for the past few decades. Tra-

ditional methods [53, 5] are limited to big retail store chains, due to the fact that data

collection and customer surveys are time and money consuming. Moreover, as shown in

[35], the accuracy of these predictive models decreases as the size of stores decreases, be-

cause smaller store chains have far less collected information from customers, stores, and

locations, which greatly compromises the prediction accuracy.

In recent years, with the rapid growth of mobile networks, more and more information

useful for determining store locations is becoming available online. Mobile networks enable

users to post on social media services, e.g., Yelp, Foursquare and Twitter, from anywhere

and anytime. Creating large scale data sets of customers, stores, and locations requires

relatively small costs. The scale and finer granularity of these data sets, i.e., a large number

of individual user check-ins on stores, has the potential to support more accurate location

prediction models for new stores.

The pioneering work of [36] proposes to take advantage of the user check-ins from online

location-based social services. A set of locations, i.e., circular areas with 200 meters radius

on the map, is generated in advance and considered as potential locations for new stores.

Based on the explicit geographic features of locations, such as the number of stores etc, and

the mobility features, such as the intensity of user check-ins’ inside the location, a regression
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model is presented to predict the optimal location for new stores of a given store chain, i.e.,

the location where a store of this chain will attract the highest number of user check-ins.

In spite of its effectiveness on retail store chains, the proposed method has the following

limitations. Since the proposed method learns separate regression models for each store

chain independently from each other, its success strongly depends on having a sufficient

number of stores in each store chain. Therefore, the method is likely to fail for a newly

founded and growing store chain with a small number of stores, which is known as the “cold

start” problem in the literature [2, 33]. Given the fact that more than 75% of store chains

in the Yelp and Foursquare data sets (refer to Section 6.3) have less than 10 stores, this

issue is critical and needs to be handled.

We argue that store chains share some implicit patterns of the number of check-ins with

other chains. Therefore, we formulate the determination of the optimal location for a new

store as a recommendation problem. We propose a latent factor model with different varia-

tions to model the implicit patterns of the store chains and the locations that collaboratively

govern the interactions between store chains and locations.

In the classic recommendation framework, there is a user-item matrix and each element

in the matrix represents the user’s rating of that item. To put it in the context of location

recommendation for a new store, store chains can be viewed as “users”, locations can be

viewed as “items”, and “user-item ratings” can represent the store specific information, e.g.,

the number of check-ins at this location for a specific store chain. Different from the simple

area definition of locations in [36], we cluster all the stores based on their coordinates and

define each cluster as a location. This is much more meaningful when different areas, e.g.,

downtown and residence areas have greatly varying densities of stores.

Given a store chain (e.g., Starbucks) and a list of locations, our goal is to recommend

top-k locations where a new store of the given chain will attract the highest number of

check-ins. Without domain knowledge or content analysis, a location recommender system

can recommend a set of locations to a store chain by predicting the number of check-ins of

stores of the given chain at all locations and recommending top-k locations with the highest

number of check-ins. This approach exploits implicit patterns shared by store chains of the

same type as well as different types. For example, a small coffee chain can benefit from this

setting, because it can learn from other competitors, such as Starbucks. It is also beneficial

for Starbucks that it resorts to other types of store chains, such as Walmart, since their
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popularity may be correlated. Moreover, we include the observed features of locations to

overcome the “cold start” problem on locations, i.e., locations with few stores. For example,

locations have explicit geographical features, such as the number of stores of the location.

Our experiments on two real life data sets from Yelp and Foursquare demonstrate the

ability of our proposed models to accurately recommend locations for different types and

sizes of store chains. We also show the robustness of our model to both sparsely (Phoenix)

and densely (Manhattan) populated areas. The major contributions of this chapter’s work

are as follows:

• We formulate the problem of determining the optimal location for a new store as a

recommendation problem, and we propose a Latent Factor (LF) model for its solution.

This approach enables us to tackle store chains with different types and different sizes.

• We also propose a Feature based Latent Factor (FLF) model, which incorporates

available features of locations. In the FLF model, we propose to model the observed

location features that strengthens the latent factors of “cold start” locations.

• Through comprehensive experiments, we demonstrate that our proposed models con-

sistently improves the average top-k NDCG@1 (Normalized Discounted Cumulative

Gain) of the existing methods by 17% on Yelp and 27% on Foursquare.

6.2 Related Work

In this section, we briefly review related work. There are two lines of related work, which

are (a) optimal store placement, which addresses the same problem, and (b) recommender

systems, which employs similar methods.

Optimal Store Placement. The problem of optimal store placement has been studied

in the research area of land economy for the past decades. Traditional methods [53, 5] are

limited to big retail store chains, because data collection and customer surveys are time

and money consuming. Moreover, as shown in [35], the accuracy of these predictive models

decreases as the size of stores decreases, because smaller store chains have far less collected

information from customers, stores, and locations, which greatly compromises the prediction

accuracy.
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Benefiting from the increasing number of mobile users, a recent work of [36], collects the

history of user check-ins from Twitter and Foursquare for three store chains, i.e., Starbucks,

McDonald’s, and Dunkin Donuts, which are the top 3 biggest retail store chains in the

Manhattan area of New York City. A set of locations, i.e., circular areas with 200 meters

radius on the map, is generated in advance and considered as potential locations for new

stores. Based on the explicit geographic features of locations, such as, location density

(the number of stores) and location entropy (the diversity of stores) etc, and the mobility

features, such as, area popularity (the total number of check-ins) and transition density

(the intensity of user check-ins’ transitions inside the location) etc, a regression model is

trained, which predicts the number of user check-ins for a new store of a given chain at a

given location. The optimal location is determined as the one with the highest predicted

number of check-ins. Since the features of successful locations vary for different store chains,

separate prediction models need to be built for each store chain. The method of [36] assumes

that these models are independent of each other, and builds a set of regression models.

To the best of our knowledge, we are the first to formulate optimal store placement as

a recommendation problem.

6.3 Data

In this section, we will first introduce our data sets, and then show some statistic analysis

results of the data sets.

6.3.1 Data Collection

Yelp was launched in 2005, and it has quickly become a popular website providing ser-

vices for writing reviews on stores. We use a publicly available data set from the competition

of a Yelp data set challenge1. It is a deep data set from a US city – Phoenix, and it covers

a square region of 50×50 km around the center of Phoenix. In the Yelp data set, there are

totally 43,873 users, 11,537 stores, and 229,907 reviews. Each store is associated with a

unique id and a unique pair of latitude and longitude coordinates as well as the store name,

type (category), and number of user check-ins.

1https://www.yelp.com/dataset challenge/
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Foursquare is one of the most popular location-based social networking websites, where

users “check in” at venues. We crawled a data set from Foursquare using its venue API2,

which is based a snapshot of data collected on August 15th 2013. Our goal was to collect a

data set comparable to the one used in [36], which contains a set of all the stores within a

square region of 10×10 km around the Manhattan area (the center of New York City). Since

the venue search API returns up to 50 venues per query, we first compose a set of grid cells

with the size of 50 meters on the map. For each grid cell, we query the API for 50 venues

with the coordinates of that cell and a 25 meters radius. After removing unverified and

duplicate venues, there are totally 11,627 stores from Foursquare. Based on our estimates,

we note that more than 90% of all the publicly available stores from Foursquare are included

in this data set.

6.3.2 Statistics

Many factors influence the popularity (number of user check-ins) of a store. In addition

to the location factor, the properties of stores, such as, brand reputation, quality, price, and

environment etc, are important. However, such information is often unavailable. In order to

focus on the location factor, we standardize all other factors by considering only stores from

store chains, such as, Starbucks (coffee shop), Panda Express (American Chinese cuisine),

and LA Fitness (health club) etc, and compare the number of check-ins of different stores

of the same store chain at different locations.

Particularly, a store chain is denoted as a store brand (name) that has at least two stores

at different locations in the data sets. We consider two stores are in the same chain if they

share the same store name. After manually combining similar store names, like “Starbucks”

and “Starbucks coffee shop”, there are 3,514 stores from 697 store chains in the Yelp data

set, and 3,747 stores from 528 store chains in the Foursquare data set. Some statistics about

the data sets are presented in Table 6.1.

We further analyze the types (categories) of store chains. In the Yelp data set, there

are multiple category labels on each store. For example, a Starbucks shop is associated

with two category labels “Food” and “Coffee & Tea”, which correspond to the category

and subcategory of the store type. For the sake of calculating the statistics, we only use

2https://developer.foursquare.com/overview/venues
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Table 6.1: Statistics of the Yelp and Foursquare data sets.

# Yelp Foursquare

Stores 11,537 11,627
Stores from chains 3,514 3,747
Store chains 697 528
Average stores/chain 5.04 7.09
Starting date 2005-11-23 NA
Ending date 2013-01-05 2013-08-15

the least commonly used label, which normally corresponds to the subcategory label, i.e.,

“Coffee & Tea” in this case. We believe that subcategory labels are more meaningful to

describe stores than higher level category labels. We process the Foursquare data set in

the same way. Table 6.2 presents the top 10 most popular types of store chains from Yelp

and Foursquare. We observe that all kinds of restaurants and fast food shops dominate the

popular store chains in the Yelp data set, which is not surprising because more than 80% of

reviews from Yelp are food related. In addition to restaurants, as a fashion city, New York

City, especially the Manhattan area, contains many clothing and cosmetics stores.

Table 6.2: Top 10 most popular types of store chains in the Yelp and Foursquare data sets.
“#” represents the number of chains.

Yelp # Foursquare #

Mexican 61 Clothing Store 44
Restaurant 40 Coffee Shop 20
Fast Food 37 Building 19
Pizza 34 Bank 18
American 33 Women’s Store 17
Grocery 32 Misc Shop 17
Burgers 28 Cosmetics Shop 17
Department Store 27 Bakery 17
Sandwiches 24 Sandwich Place 17
Italian 23 American 17

Next, we present some statistic results on the size of store chains. Figure 6.1 shows

histograms of the number of stores of different store chains in the Yelp and Foursquare data

sets. We observe that most store chains from both data sets have few stores, i.e., more

than 75% (539 out of 697 on Yelp and 398 out of 531 on Foursquare) store chains have

less than 10 stores. Since regression models might fail due to having insufficient training

data, the problem of how to improve the prediction accuracy on these store chains becomes

significant and challenging.
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(a) Phoenix from Yelp. (b) Manhattan from Foursquare.

Figure 6.1: Histogram of the number of stores of different store chains from Yelp and
Foursquare.

Furthermore, Table 6.3 presents the top 10 biggest store chains from Yelp and Foursquare.

We observe that the biggest store chains are Starbucks and Dunkin Donuts, which contain

109 and 191 stores in the Yelp and Foursquare data sets, respectively. Note that some store

chains, such as, Starbucks, McDonald’s, and Dunkin Donuts, occur in both data sets. In

general, the chains from Foursquare contain more stores than the ones from Yelp since the

Foursquare (Manhattan) data set covers a more densely populated area and contains more

stores for chains.

Table 6.3: Top 10 biggest store chains from Yelp and Foursquare.

Yelp # Foursquare #

Starbucks 109 Dunkin Donuts 191
Subway 65 Starbucks 189
McDonald’s 58 Duane Reade 167
Taco Bell 39 Chase Bank 138
Discount Tire 36 Citi Bank 84
Dunkin Donuts 31 McDonald’s 84
Walgreens 29 Citi Bike Station 61
Panda Express 29 Rite Aid 56
Warlmart 28 TD Bank 47
Chipotle Mexican Grill 27 7-Eleven 46
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6.3.3 Geographical Analysis

To illustrate geographical features of Phoenix and Manhattan in the Yelp and Foursquare

data sets, we take an example of stores from Starbucks and Dunkin Donuts, which are pop-

ular and big store chains in both data sets. Figure 6.2 shows the geographical distribution

of Starbucks and Dunkin Donuts stores in Phoenix and Manhattan. Note that the covered

area (Phoenix) in the Yelp data set is approximately 25 times the size of the one (Manhat-

tan) in the Foursquare data set. We can conclude that stores in Foursquare are much more

crowded than the ones on Yelp because there are similar numbers of stores in both data

sets. This is supported by the observation in Figure 6.2 that the average distance between

Starbucks stores in Manhattan is far shorter than in Phoenix.

(a) Phoenix from Yelp. (b) Manhattan from Foursquare.

Figure 6.2: The geographical distribution of Starbucks and Dunkin Donuts stores from
Yelp and Foursquare. Each red circle represents a Starbucks shop, and each green square
represents a Dunkin Donuts shop.

Based on the different geographical features in the Yelp and Foursquare data sets, the

definition of locations in [36], i.e., circular areas with a 200 meters radius, is not appro-

priate, because the locations in Yelp might contain far less stores and cannot convey their

“semantic” meaning, i.e., a representative of a community or neighborhood. Therefore, we

propose to cluster all the stores in the data sets based on their coordinates, and define each

cluster as a location. The average radius of locations (clusters) varies inversely with the

varying number of locations (clusters). Particularly, the average radius of locations is 500

and 200 meters in Phoenix and Manhattan when the number of clusters is set to 1000 and

500, respectively. The 200 meter radius in Manhattan from Foursquare is consistent to the
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one used in [36]. We observe that the areas of locations in the downtown of Phoenix are

much smaller than the ones in the residence areas. Figure 6.2 also shows that many store

chains (e.g., Starbucks and Dunkin Donuts) co-occur in different locations in both data sets.

Figure 6.3 shows the histogram of the popularity (number of check-ins) of different

locations from Yelp and Foursquare. We note that it is consistent in both data sets that

most locations attract small numbers of check-ins while a few locations attract large numbers

of check-ins.

(a) Phoenix from Yelp. (b) Manhattan from Foursquare.

Figure 6.3: Histogram of the popularity (number of check-ins) of different locations from
Yelp and Foursquare.

6.4 Location Recommendation for New Stores

In this section, we first formulate our research problem of determining the optimal

location for a new store in the context of recommendations. After defining the research

problem, we introduce some existing regression models addressing the problem, propose

a latent factor model that captures both the observed and latent features of store chains

and locations, and then propose a feature based latent factor model with regularization to

tackle the problem of store chains having few stores. Finally, a stochastic gradient descent

algorithm is proposed to learn the model parameters.

6.4.1 Problem Definition

We formally define a store and a location as follows:
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Definition 3 (Store) A store is denoted by a set of attributes: store id (unique), name, a

pair of latitude and longitude coordinates, type (category), and number of user check-ins.

Definition 4 (Location) A location is defined by a cluster that contains a set of stores,

which are geographically cohesive to each other.

After clustering all the stores, each store is assigned to a specific location. In particular,

an example of a publicly available store is as follows:

• “MkbsldEHTRUwDed–bMHIg” (store id), “33.507, -112.275” (coordinates), “1” (lo-

cation id), “Starbucks” (name), “Food, Coffee & Tea” (type), “1088” (# of check-ins).

which states that a Starbucks shop at the location “1” has attracted 1088 user check-ins.

Moreover, we define a store chain as follows:

Definition 5 (Store chain) A store chain is defined as a set of stores (at least two stores),

which have the same store name.

Note that stores with a unique name is not considered as a store chain. Moreover, we assume

that there is only one store of the given store chain at a specific location. Occasionally, big

store chains, e.g., Starbucks, open two and more stores at the same location. In this case,

we consider the stores of the given store chain at the same location as one store, and the

corresponding number of check-ins is averaged.

We first introduce the notations needed in our problem definition. We assume that all

the store chains are from a fixed set S with size |S| and all the locations are from a fixed

set L with size |L|. Note that we use capital letters to represent the sets and the |.| sign

to represent the cardinality (size) of the sets. We denote the number of user check-ins by

store chain s at the location l as csl. All the notations are listed in Table 6.4.

Based on the above definitions and notations, we formalize our research problem as

follows:

Problem 6 Location Recommendation for a New Store (LRNS). Given a store

chain s, and a list of candidate locations, our task is to predict the number of check-ins

csl for a new store of chain s at one of these locations l. In other words, the goal is to

recommend top-k locations where a new store of the given chain s will attract the highest

number of check-ins.
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Table 6.4: Notations of parameters

Variable Interpretation

s store chain index
l location index
csl number of check-ins of the sth store chain at the lth location
ĉsl estimate of csl
S set of store chains
L set of locations
C set of numbers of check-ins given store chains and locations
f s observed feature vector of the sth store chain
f l observed feature vector of the lth location
bs bias factor of the sth store chain
bl bias factor of the lth location
φs latent factor vector of the sth store chain
φl latent factor vector of the lth location
W weight coefficient of observed features for the locations

6.4.2 Regression Model

In this subsection, we discuss a simple regression model to tackle the problem of LRNS

introduced in [36]. For a given store chain s, we have a set of numerical responses, i.e., the

number of check-ins Cs = {csl|l ∈ Ls} of the stores of the given chain s at different locations

Ls, where Ls is the set of locations where the store chain s already has a store. Since we

are recommending a new location to a store chain, the key factors affecting the number of

check-ins of each store are the features of the store location.

We use a vector f l to represent the observed features of location l. Thus, for each

chain s, the method of [36] treats the problem of LRNS of the given chain s as a regression

problem, which trains a model based on the features f l of the location l and responses csl

in the training data set, and predicts the number of check-ins csl of the store chain s at a

new location l based on the regression model and the features of the new location. Some

representative features proposed by [36] are: 1) density, i.e., the number of stores of the

location; 2) neighbor entropy, i.e., an entropy measurement for the frequency of store types

of the location; 3) popularity, i.e., the total number of user check-ins from all the stores

of the location. Other features include “competitiveness”, “quality by Jensen”, “transition

density”, “incoming flow”, and “transition quality” (please refer to [36]). All these location

features will be used later in our proposed models.
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A Linear Regression (LR) model that can be applied to the problem of LRNS for the

store chain s is as follows:

ĉsl = αTs f l (6.1)

Note that αs is a chain specific coefficient vector that corresponds to the feature vector fl

and will be learned from the training data set.

6.4.3 Latent Factor Model

Although these regression models are simple and easy to be applied to the problem of

LRNS, the assumption behind them, i.e., the independence of feature coefficients on store

chains, lacks modeling latent factors of locations that can be learned from the interactions

between store chains and locations, and compromises the prediction accuracy as shown in

the experiment section.

Latent factor models are widely used in recommender systems [22, 9, 38, 39, 40]. A

latent factor model can model the interactions between different types of entities, such as

“user-item” in recommendation problems, to discover their latent factors and relationships.

In this subsection, we propose a latent factor model to address our problem of LRNS.

Specifically, we assume that there is a set of latent factor vectors φs for store chain s and

φl for location l, and the length of latent factor vectors is a model parameter with typical

values ranging from 10 to 50. We also assume that there is a bias factor, i.e., bs and bl

for the store chain s and the location l, respectively, which shows the different levels of the

popularity of store chains and locations. Formally, latent factor representations are defined

as follows:

• Each store chain s is mapped into a latent factor vector φs from a |K|-D real number

space R|K|.

• Each location l is mapped into a latent factor vector φl from a |K|-D real number

space R|K|.

• Each store chain s is mapped into a latent bias factor bs from a 1-D real number space

R1.

• Each location l is mapped into a latent bias factor bl from a 1-D real number space

R1.
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Based on the above definitions, we propose our first Latent Factor (LF) model as follows:

ĉsl = bs + bl + φTs φl (6.2)

where ĉsl denotes the estimated number of check-ins.

Equation 6.2 presents the exact form of the traditional matrix factorization [40] for

collaborative filtering, where the response of the number of user check-ins csl depends on

the inner product between the respective latent factor vectors φs for the sth store chain

and φl from the lth location, and the bias factors bs for the sth store chain and bl for the

lth location.

Different from the regression approach, our proposed LF model does not establish sep-

arate models for each store chain, and collaboratively learns the parameters from all store

chains. The intuition of LF is that if two store chains are similar in the training data set,

i.e., numbers of user check-ins are correlated at some locations, they act in a correlated

manner in the testing data set.

We define the objective function of the model as follows:

O =

|S|∑
s

|L|∑
l

L(csl − ĉsl) +

|S|∑
s

|L|∑
l

R(bs, bl,φs,φl) (6.3)

where L(.) represents the loss function and we use the least square loss function in our

experiments. Note that we do not use a ranking loss function because the differences

between the corresponding results are trivial according to the work of [68]. TheR(.) function

represents the regularization function of the bias and latent factors, and we normally use

the L2-norm.

6.4.4 Feature based Latent Factor Model

The proposed latent factor model does not incorporate observed location features used in

the regression models, which have proven helpful for predicting the response of the number

of check-ins. Therefore, we introduce a Feature based Latent Factor (FLF) model similar

to [17] to capture not only the latent factors of store chains and locations but also their

observed features. The basic idea is that the response of the number of check-ins depends

on both observed and latent features (factors) of store chains and locations. We define it
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formally in the following equation:

ĉsl = bs + bl + φTs (φl +Wf l)

= bs + bl + φTs φl + φTsWf l

(6.4)

where W is a weight coefficient matrix of the size of |K| × |F | for locations, and |K| is the

length of latent factors and |F | is the number of observed location features. The purpose

of these coefficients is to transform and re-weight the observed location features from the

observed feature space to the latent feature space. A new objective function is obtained

when we plug Equation 6.4 into Equation 6.3 as follows:

O =

|S|∑
s

|L|∑
l

L(csl − bs − bl − φTs φl − φTsWf l)

+

|S|∑
s

R(bs) +

|L|∑
l

R(bl) +

|S|∑
s

R(φs) +

|L|∑
l

R(φl)

(6.5)

The major difference between FLF and LF is the fourth term in the second row of

Equation 6.4, i.e., φTs (Wf l), which basically models the interactions between observed

features of locations and latent factors of store chains. The advantage of FLF is that “cold

start” locations can resort to their observed features when they cannot establish reliable

latent factors.

Compared to the separate linear regression model in Equation 6.1, the part of FLF, i.e.,

φTs (Wf l), is similar to a model that we establish a separate regression model for each chain,

and then add their objective functions up and learn the parameters together. The major

difference is that FLF offers to convert the observed location features into a latent factor

space using (Wf l), which is shared with all store chains. Conceptually, knowledge can be

transferred from one chain to the other through this feature space conversion. The idea is

that “cold start” store chains can “borrow” the latent factors from other store chains.

6.4.5 Parameter Learning

Our goal is to learn the parameters Θ = {bs, bl,φs,φl,W } that minimizes the objective

function O(Θ, C). We use a stochastic gradient descent algorithm to learn the parameters

at tth iteration as follows:

Θt = Θt−1 − τ ∗ ∂O
∂Θ

(6.6)
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where the values of parameters at current iteration Θt is based on the values of parameters

at the last iteration Θt−1, and the partial derivative of the objective function ∂O
∂Θ with

respect to the specific parameter multiplied by the learning rate τ .

We present the partial derivative functions of the parameters bi, vi and w in Equation

6.5 as follows:
∂O
∂bs

= −(csl − ĉsl) + λbs (6.7)

∂O
∂φs

= −(csl − ĉsl)(φl +Wf l) + λφs (6.8)

∂O
∂W

= −(csl − ĉsl)(φsfTl ) + λW (6.9)

Similarly, we get derivative functions for the remaining parameters, which are omitted

because of the page limit.

6.5 Experiments

In this section, we experimentally evaluate the effectiveness of our proposed latent factor

models. We also compare it against some baseline methods, e.g., a randomization method

and an unsupervised method, and an existing state-of-the-art model [36], i.e., linear regres-

sion model. We report our experimental results on Yelp and Foursquare data sets, and we

evaluate them using the top-k average accuracy for location recommendation.

6.5.1 Experimental Setup

Data Split. In our data set, we randomly select 10 stores for each store chain as the

test data, and the remaining as the training data. This train and test split guarantees a suf-

ficient number of test stores, which is critical for the top-k NDCG (Normalized Discounted

Cumulative Gain) computation because a too small number of test data misleads to an

unreasonably high NDCG. For example, to rank a list of length 2, the top-2 NDCG (ranges

from 0 to 1) is 0.7 even if the list is randomly permuted. Another advantage of that split

is that we can compare the NDCG results across all the store chains, because the length of

their test data is the same. Note that this split strategy is different from the one in [36],

because we evaluate all store chains while they consider only three large retail store chains.
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We train models in the training data set. For every 10 stores from the store chains

in the test set, the ground truth of ranked list of locations is ordered by the number of

check-ins on corresponding stores. To make a recommendation, we rank the locations in

decreasing order of their predicted number of check-ins. To evaluate the performance of

the comparison partners, we compare the ranked list of recommended locations against the

ground truth of ranked list of locations.

Evaluation Metrics. NDCG@k (top-k average NDCG) is used to evaluate the models.

NDCG@k is by far the most commonly used metric to measure the performance of recom-

mender systems [22]. The top-k NDCG for a test store chain is computed by comparing

the predicted ranked list of locations and the ground truth of ranked list of locations.

To compute DCG@k of the recommended list of location for a specific store chain s, we

use the following equation:

DCG@k(s) =
k∑

n=1

2rel(ln) − 1

log2(n+ 1)
(6.10)

where ln represents the recommended location index that is ranked at nth position, and

rel(ln) represents the relevance of the location. We use its relative position in the ground

truth ranked list as used in [36]:

rel(ln) =
|L| − rank(ln) + 1

|L|
(6.11)

Note that the relevance value is 1 when the location is ranked first and decreases to 0 when

the ranking goes down. The DCG@k is normalized by the iDCG@k (ideal DCG@k) as

follows:

NDCG@k(s) =
DCG@k(s)

iDCG@k(s)
(6.12)

Finally, the NDCG@k is computed by averaging over all store chains:

NDCG@k(Stest) =

∑|Stest|
s NDCG@k(s)

|Stest|
(6.13)

Comparison Partners. In our experiments, we evaluate the following comparison

partners:

• Rand (Randomization). This is a baseline method that randomly permutes the loca-

tions in the test data set.
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• Pop (Popularity). This is an unsupervised method that ranks the locations by their

total number of check-ins in the training data set.

• LR (Linear Regression). This is a well-known Linear Regression method proposed in

[36], which builds an independent linear regression model for each store chain.

• LF (Latent Factor). This is a well-known matrix factorization model, and we adopt

it to handle the location recommendation for new stores in this chapter’s work.

• FLF (Feature based Latent Factor). The FLF model is a featured based latent factor

model proposed in this chapter’s work, and we use the same location features used in

[36].

6.5.2 Experimental Results

Table 6.5 and 6.6 show the NDCG@1,5,10 of the comparison partners in the Yelp and

Foursquare data sets, respectively. The number of latent factors is set to 10 for LF and

FLF. All the values of parameters, i.e., Θ = {bs, bl,φs,φl,W }, are initialized by a Gaussian

distribution with zero mean and 0.01 variance. All results are obtained by taking the average

results from repeating the training and testing 100 times.

Table 6.5: NDCG@1,5,10 on store chains in Phoenix. Best results are in bold.

Models @1 @5 @10

Rand 0.49 0.61 0.81
Pop 0.66 0.71 0.86
LR 0.58 0.66 0.83
LF 0.64 0.71 0.85

FLF 0.68 0.73 0.87

Table 6.6: NDCG@1,5,10 on store chains in Manhattan. Best results are in bold.

Models @1 @5 @10

Rand 0.49 0.61 0.81
Pop 0.67 0.75 0.87
LR 0.58 0.68 0.85
LF 0.65 0.71 0.86

FLF 0.74 0.78 0.90

We observe that the results from both data sets are consistent with each other, and

that the performance of all models improves as k increases. The performance gain of
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all models over the baseline method, Rand, decrease with increasing k, because Rand is

sufficiently good at a large k so that the room for improvement is limited. We note that the

popularity method (Pop) works very well and outperforms Rand by a big margin. Some

what surprisingly, the LR model performs significantly worse than Pop. We argue that this

is due to the fact that the LR model has insufficient training data for cold start store chains,

and the majority of chains is cold start.

On the contrary, our proposed latent factor models address the cold start problem. The

experimental results show that LF lifts the performance of LR in NDCG@1 by 10% on Yelp

and by 12% on Foursquare, and FLF improves LR in NDCG@1 by 17% on Yelp and by

27% on Foursquare. As expected, the gains in NDCG@5 and NDCG@10 are smaller. These

results confirm that modeling the latent factors of store chains and locations can improve

the accuracy of location recommendation, and additionally modeling the observed location

features can further boost the accuracy.

As pointed out already, Pop is a surprisingly strong baseline method. Our hypothesis is

that store chains open their first stores in popular locations so that location recommendation

for cold start chains can be made quite accurately using the popularity feature only. It

turns out that LF cannot outperform it because of the large number of cold start chains

and locations. However, FLF consistently outperforms Pop. This demonstrates the power

of the location features, that have been proposed in the linear regression model, in the

latent factor model. To conclude, our FLF model consistently outperforms all other models

in NDCG@1,5,10 on both data sets.

We note that the accuracy gain of FLF compared to the other models is larger on

Foursquare than on Yelp. We believe that the values of the location features in the

Foursquare data set are more robust and reliable than the ones in the Yelp data set, because

there are far more users on Foursquare than on Yelp and consequently more stores have

been verified on Foursquare than reviewed on Yelp.

Table 6.5 and 6.6 report the results averaged over all store chains. To analyze the impact

of the size of the store chain (number of stores of that chain), Table 6.7 and 6.8 show the

NDCG@1, i.e., finding the optimal location, of the comparison partners for store chains

with different sizes in the Yelp and Foursquare data sets. The tables represent the average

performance for chains with a size (in the training data) of 1 to 5, 6 to 10, 11 to 15, 16

to 20, and 20 and more, respectively. The number in brackets denotes the number of store
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chains in that size category. Note that the results for NDCG@5,10 are similar to the results

for NDCG@1.

Table 6.7: NDCG@1 on store chains with different sizes in Phoenix. Best results are in
bold.

Models 1-5
(35)

6-10
(16)

11-15
(8)

16-20
(4)

20+
(6)

Rand 0.49 0.49 0.49 0.49 0.49
Pop 0.62 0.74 0.54 0.87 0.69
LR 0.55 0.55 0.67 0.50 0.76
LF 0.59 0.61 0.80 0.60 0.81
FLF 0.63 0.70 0.77 0.73 0.81

Table 6.8: NDCG@1 on store chains with different sizes in Manhattan. Best results are in
bold.

Models 1-5
(31)

6-10
(11)

11-15
(6)

16-20
(7)

20+
(16)

Rand 0.49 0.49 0.49 0.49 0.49
Pop 0.69 0.70 0.73 0.51 0.66
LR 0.58 0.53 0.59 0.62 0.66
LF 0.59 0.61 0.70 0.61 0.76
FLF 0.70 0.87 0.82 0.68 0.73

We note that the results for Rand depend only on the values of k, and are identical for

all size categories. Pop achieves similar performance across the different sizes, because this

method is unsupervised so that its performance is independent of the size of the store chains.

On the contrary, the NDCG@1 of LR shows an overall increasing trend with increasing size.

The low NDCG@1 values of LR compared to the other models for cold start store chains

(1-5 and 5-10) support our hypothesis that the LR model fails when there is not sufficient

training data. Similarly, the performance of LF and FLF improves as the size of the store

chain increases.

The performance of LF and FLF for cold start store chains shows that our proposed

methods are fairly robust to the number of training stores. Finally note that the perfor-

mance gain of FLF over Pop on large chains (11-15, 16-20, 20+) is greater than on small

chains. To conclude, we observe that FLF consistently outperform the other comparison

partners for all sizes in the Foursquare data set but not in the Yelp data set. Again, we

believe that the quality of the generated location features in the Foursquare data set is

better than the one in the Yelp data set.
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[36] used only three “non cold start” store chains (Starbucks, Dunkin Donuts and Mc-

Donald’s) in their experiments and reported that for these store chains LR outperformed

Pop. This is consistent with our results for “non cold start” chains. They also reported

experiments for Pop and showed that it can outperform LR, which is also consistent in our

experiments.

6.6 Conclusion

In this chapter’s work, we address the problem of finding the optimal location for a new

store of the given store chain. Previous work has explored establishing separate regression

models for each store chain. To the best of our knowledge, we are the first to formulate

this problem as a recommendation problem, i.e., recommending locations to a new store

of the given store chain. Hence, store chains can be viewed as “users” and locations can

be viewed as “items” in the context of recommendations. The advantage of this problem

setting is that 1) it can collaboratively learn the model parameters for all store chains; 2)

it can capture the latent factors from the interactions between store chains and locations.

As a result, we propose the first Latent Factor (LF) model and Feature based Latent

Factor (FLF) model to capture the latent factors of store chains and locations as well as the

observed location features, and consider all store chains together in a single probabilistic

model. Specifically, the intuitions behind the models are 1) the number of check-ins of dif-

ferent store chains are correlated to each other at different locations; 2) observed location

features can strengthen the latent factors for both store chains and locations. We present

the model of LF and FLF, and a stochastic gradient descent method of parameter learning.

We perform an experimental evaluation on Yelp and Foursquare data sets. We compare

our proposed latent factor models against the existing state-of-the-art methods. Our ex-

periments demonstrate substantially improved performance in location recommendation for

new stores.
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Chapter 7

Conclusion

Data mining in location-based social networks has become a fascinating research area due

to the availability of a huge volume of user-generated content empowered by mobile phones,

e.g., reviewing or checking in Point-Of-Interests (POIs). Recommendation in location-based

social networks, which aims to recommend items such as POIs in location-based social

networks, is a relatively new sub-area that attracted a great deal of attention recently. In

this thesis, we focused on this problem because of its key role in the area of location-based

social networks. The extracted users’ and POIs’ topics not only help the POI recommender

system but also can be applied to other recommender systems. In Chapter 2, we defined this

problem formally and reviewed the state-ofthe-art approaches presented in the literature.

In this thesis, we proposed several probabilistic methods for recommendation in location-

based social networks. In Chapter 3, we introduced a spatial topic method [29] for top-k

POI recommendation problem. The proposed spatial topic model finds users’ topic and

region distributions by mining a set of topics and regions from user check-ins with posts

and location coordinates, and models coordinates of checked in POIs using a two dimen-

sional Gaussian distribution. Previous works just extract the user preferences on POIs,

the proposed model further extracts user preferences on regions and topics. Evaluation of

results showed that the proposed model can effectively improve the accuracy of top-k POI

recommendation.

Time information associated with check-ins is normally ignored in the existing works, as

a result, in Chapter 4 we proposed a spatio-temporal topic model, called STT [31], to learn

a set of spatio-temporal topics from the user check-in data. In comparison to the previous

102



works which ignore the time information, STT jointly identifies topics from both the spa-

tial and temporal aspects. In addition, STT captures the geographical influence between

user regions and POIs, and temporal activity patterns of different topics and POIs. The

experimental evaluation on three real life data sets from Twitter, Gowalla, and Brightkite

shows the superiority of STT over the existing state-of-the-art recommendation algorithms

and geographical and temporal topic models in terms of likelihood of the test data set and

accuracy of top-k POI and time recommendations.

In Chapter 5, we argued that all existing social network-based POI recommendation

models cannot capture the nature of location-based social network for top-k POI recom-

mendation. We comprehensively analyzed the nature of POIs and the benefits of a social

network for POI recommendation. Then we addressed this problem by proposing a social

topic model, called ST [30], which effectively exploits a location-based social network for

POI recommendation. In particular, ST models the check-ins with posts and a social net-

work and extracts a set of latent topics. Users’ topic distributions are mutually influenced

by their friends. On two real life data sets from Foursquare and Yelp, we demonstrated that

the ST model consistently improves the performance significantly for POI recommendation

compared to existing state-of-the-art social network-based recommendation algorithms for

all users, all POIs, cold start users, and cold start POIs.

In Chapter 6, we discussed another interesting recommendation problem in location-

based social networks, i.e., determining the optimal location for a new store. To the best

of our knowledge, we are the first to formulate this problem as a recommendation problem,

i.e., recommending locations to a new store of the given store chain. We proposed latent

factor models to solve the recommendation problem, which perform better than existing

regression models.

The research of this thesis suggests many promising directions for future work. In this

section, we briefly discuss such directions:

• Cold start users or POIs:

Most of the current methods are effective on non-cold start users or POIs. However,

they are not effective on cold start users or POIs, which play a big part in location-

based social networks in terms of quantity. Although social network-based methods
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such as the ST model proposed in Chapter 6 address the problem, further research is

still needed.

• Sparsity problem:

Most check-in data of location-based social networks are from different cities. On the

one hand, it is inappropriate to build a single model on top of all the data because

users rarely visit multiple cities. On the other hand, building seperate models for

different cities may face a sparsity problem, i.e., some cities might have few check-in

data, due to various reasons e.g., data corruption. Further research is needed.

• Additional contexts:

There are some additional contexts that can improve the existing methods, e.g., sen-

timent analysis or ratings of reviews on POIs. Particularly, the first step could test

whether sentiments/ratings of reviews affect other users’ check-in behavior, and the

second step could model this effect.

• Comprehensive model:

A comprehensive model should be explored so that each context can be used as a plug

and play component.

• User or POI dependent geographical influence:

Geographical influence has been proved an important factor that affects a user whether

checks in a POI. The current computation of geographical influence depends on the

distance between the user and POI, and is independent of users or POIs. However,

different users or POIs should have different geographical influence coefficients. For in-

stance, some users like visiting POI in the long distance. Further analysis or modeling

should be investigated.

• Evaluation on different contexts:

The impact of different input contexts in topic modeling approach (e.g., user-generated

content, coordinates, time, and social network) should be explored. A comprehensive

performance comparison is needed to clarify the impact of each input context in

improving the performance.
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