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Abstract

For the numerical solution of differential equations spectral methods typically give excellent accu-

racy with relatively few points (small N ), but certain numerical issues arise with larger N . This

thesis focuses on spectral collocation methods, also known as pseudo-spectral methods, that rely

on interpolation at collocation points. A relatively new class of interpolants will be considered,

namely the Floater-Hormann family of rational interpolants. These interpolants and their properties

will be studied, including their use in differentiation by means of differentiation matrices based on

rational interpolants in the barycentric form. Then, consideration will be given to the solution of sin-

gularly perturbed boundary value problems through the use of boundary layer resolving coordinate

transformations. Finally, coupled systems of singularly perturbed boundary value problems will be

investigated, though only with the standard Chebyshev collocation method.
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“...there is nothing either good or bad, but thinking makes it so.”

—Shakespeare, Hamlet
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f + 10−12 and f − 10−12 were used, alternating for each value of d. . . . . . . . . . . 16

3.1 Log-log plot of the max-norm error in first and second derivatives of FH and EFH

interpolants of the function f(x) = sin(x). Also 20 ≤ N ≤ 1000, d = 4, Ñ = 11, d̃ = 7,
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Chapter 1

Introduction

In scientific computing, spectral methods are one of many methods used when solving differen-

tial equations numerically. They are methods that typically give excellent error for relatively small

values of N (“points”), but also usually have numerical issues associated with their differentia-

tion matrices. Spectral methods are usually thought of as numerical methods which have ba-

sis functions with support over the entire computational domain (or global basis functions). One

solves the differential equations by choosing the coefficients of the basis functions. For example,

with the equation Lu(x) = f(x), where L is a differential operator, we would assume a solution

uN (x) =
N∑
0
akφk(x). Plugging this form of the solution into the differential equation, we can look a

the residual, R = f −Lu. One can then minimize the residual in different ways, such as setting the

error to zero at certain collocation points equal in number to the undetermined coefficients (pseu-

dospectral or collocation method) or choosing basis functions orthogonal to the residual (Galerkin).

There is much more to be said about these and other spectral methods; see [14] for more.

In this thesis, we only consider spectral collocation methods. First, we look at a relatively new

class of interpolating functions, the Floater-Hormann family of rational interpolants. We will inves-

tigate their properties and their use in differentiation in conjunction with the differentiation matrices

based on rational interpolants in the barycentric form. We then turn our attention to solving sin-

gularly perturbed boundary value problems (BVPs), making use of a technique developed by Tang

and Trummer (boundary layer resolving spectral collocation, BLRSC, method) [34]. Here, the com-

bination of the Floater-Hormann interpolants and BLRSC method is a new contribution. Finally, we

look at systems of coupled singularly perturbed BVPs, though only using the standard Chebyshev

points. We compare the BLRSC method (extended to coupled systems) to current methods in the

relevant literature. A brief investigation into nonlinear systems is conducted as well and this is also

a new contribution. We also pay attention to numerical issues and their remedies throughout the

paper.
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Chapter 2

Interpolation

2.1 Polynomial Interpolation

The basic idea of interpolation consists of using known values of a function to determine unknown

ones in-between the known values. This typically involves creating a ”simple“ function that takes

prescribed values at a finite set of discrete data points which can then be used to determine inter-

mediate values.

−1 −0.5 0 0.5 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 2.1: Illustrative example of interpolation. Red dots represent known values, through which a

function (represented by the blue line) interpolates them, and then allows for evaluation at intermediate

points.

This simple function is often a polynomial, which is easy to work with in problems such as

2



CHAPTER 2. INTERPOLATION 3

solving differential equations. Polynomial interpolation is a very useful starting approach since

there always exists an unique interpolation polynomial of degree less than or equal to N for N + 1

points, as described in the following well known theorem.

Theorem 1. Given N +1 distinct nodes x0, x1, . . . , xN and N +1 corresponding values f0, f1, . . . , fN ,

there exists an unique polynomial pN (x) of degree at most N for which

pN (xj) = fj for j = 0, 1, . . . , N.

There are a number of ways of constructing and representing this polynomial. One of the most

common forms is the Lagrangian, which is

pN (x) =

N∑
j=0

lj(x)fj (2.1)

where

lj(x) =

N∏
k=0
k 6=j

x− xk
xj − xk

therefore

lj(xi) =


1 if j = i

0 if j 6= i

thus satisfying the interpolating condition. In this thesis, we will assume that the fj are values of

some underlying function and thus also use the notation f(xj).

Another common way of expressing this interpolating polynomial is the Newton form. The poly-

nomial is expressed as

pN (x) =

N∑
j=0

aj

j−1∏
k=0

(x− xk)

where the aj are the divided differences

a0 = [f0] = f0, aj = [f0, f1, . . . , fj ] =
[f1, f2, . . . , fj ]− [f0, f1, . . . , fj−1]

xj − x0
= . . . .

With just two points, the divided difference is

[f0, f1] =
f1 − f0
x1 − x0

which is equal to the slope of the linear interpolant. There are also other ways of expressing this

polynomial, as seen in [17]. This form of the polynomial has one obvious advantage, that being that
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the addition of another point xN+1 is not as costly as in the Lagrangian form. This is due to the fact

that in the Lagrangian form one needs to recalculate the entire polynomial. For the Newton form,

one simply needs to calculate one new term. Also, aside from some pre-calculation (the Newton

tableau of divided differences), this evaluation form of the interpolating polynomial only requires

O(N) FLOPS (floating-point operations). However, the Newton form has some disadvantages, one

of which is that the nodes have to be ordered in a specific way. Certain orderings and large values

of N can lead to instabilities [12]. Also, the O(N2) pre-calculations that have to be performed

depend on the f(xj) values. This means that for fixed collocation points but new function values

fnew(xj), one has to reconstruct the entire polynomial. The Lagrangian form which was already

discussed is better than the Newton form in this regard, but an even better representation exists.

Another, and in many ways superior, representation is the barycentric form. Although this form

has existed for many years, only recently has it garnered much attention. To obtain the barycentric

form one needs to rearrange the Lagrangian form as follows

pN (x) =

N∑
j=0

N∏
k=0
k 6=j

x− xk
xj − xk

f(xj)

=

N∏
k=0

(x− xk)

N∑
j=0

1

x− xj

N∏
k=0
k 6=j

1

xj − xk
f(xj)

= L(x)

N∑
j=0

wj
x− xj

fj (2.2)

where

wj :=

N∏
k=0
k 6=j

1

xj − xk
and L(x) =

N∏
k=0

(x− xk). (2.3)

This is the first barycentric form of the interpolating polynomial. Commonly, and in this thesis, the

wj are referred to as weights. This form allows one to evaluate pN (x) in O(N) FLOPS, as opposed

to O(N2) FLOPS in the Lagrangian form (assuming that one pre-calculates the weights, which

normally requires O(N2) operations). As mentioned in [12], the barycentric form also allows one to

more easily include additional points and is more stable than the Lagrangian form for a given point

distribution. To add a new data point xN+1 and its corresponding value fN+1, one needs to update

the current weights and calculate the new weight as follows

w
(new)
j =

w
(old)
j

xj − xN+1
, for j = 0, 1, . . . , N

wN+1 =

N∏
k=0

k 6=N+1

1

xN+1 − xk
.
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As mentioned before, Equation (2.2) is only the first barycentric form. To further simplify this

form, one can use the polynomial interpolation of the function f(x)=1 (all fj = 1)

p∗N (x) = L(x)

N∑
i=0

wj
x− xj

= 1.

Then one can divide pN (x) by p∗N (x), cancelling the L(x) function from the numerator and denomi-

nator. This yields the true barycentric form

pN (x) =

N∑
j=0

wj
x− xj

fj

/ N∑
j=0

wj
x− xj

. (2.4)

The previously mentioned advantages still hold. Furthermore one should note that, in this form,

one can multiply the weights by a constant without changing the interpolating function.

The weights have been defined in Equation (2.3) for any distribution of interpolation points. For

certain common distributions (such as equidistant and Chebyshev) the computation of the weights

can be further simplified. For equidistant points the weights are

wj = (−1)j
(
N

j

)
.

For Chebyshev points of the second kind (xj = cos jπN , j = 0, 1, . . . , N ), the weights are

wj =


(−1)j j = 1, 2, . . . N − 1

(−1)j

2
j = 0, N.

The term Chebyshev points will be used to refer to Chebyshev points of the second kind in this

thesis.

2.2 Rational Interpolation

One of the main deficiencies of polynomial interpolation is the limited interval of convergence in

some instances, such as in Runge’s famous example, where one is interpolating

f(x) =
1

1 + x2
x ∈ [−5, 5]

with equidistant points. For this function, the polynomial interpolant will fail to converge near the

ends of the interval. As seen in [35], using potential theory illustrates how one can visualize these

regions of convergence in the complex plane. With equidistant points, these regions look like

American footballs (prolate spheroids with pointed ends), with the largest region of convergence
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not including any poles. Therefore, the convergence region for f(x) as given above will not include

the entire interval [−5, 5]. One way to remedy this is to choose a different point distribution, as is

explained in [35], where Chebyshev points are used. However, another method of dealing with this

problem is to use rational, instead of polynomial, interpolants.

Given a set of points {x0, x1, . . . , xN} in an interval x ∈ [a, b] the basic rational interpolant is the

quotient of two polynomials

r(x) =
pM̃ (x)

qÑ (x)
, r(xj) = fj

where Ñ , M̃ represent the degrees of the polynomials. Classical rational interpolation stipulates

that one chooses M̃ and Ñ such that M̃ + Ñ = N . One can, however, approach rational inter-

polation differently. As Schneider and Werner did in their paper [33], one can define the rational

interpolant by its barycentric form. For the data rN (xj) = fj , let

rN (x) =

N∑
j=0

wj
x− xj

fj

/ N∑
j=0

wj
x− xj

(2.5)

where

lim
x→xj

rN (x) = fj if wj 6= 0 ∀j.

The rational interpolant described in (2.5) is linear in fj , since its denominator does not depend

on the function values fi. Conversely, a non-linear rational interplant would have some dependence

on the function values in both the numerator and denominator. This dependence usually arises from

the weights wi depending on the function values (see [8] for more information). We only consider

linear rational interpolants.

Benefits of this barycentric form were already mentioned in regards to polynomial interpolation.

However, with rational interpolation this form has another benefit. For polynomial interpolation, the

weights wj are determined by the distribution of points; with rational interpolants, they no longer

have this restriction. This allows one to not only choose how the points are distributed, but also

how to specify the weights.

Specifying the weights is a non-trivial task, as in addition to optimizing the rational interpolant

(perhaps in the sense of minimizing error in the max-norm) one also wants to avoid unattainable

points and poles in the interval under consideration. In this barycentric form, one can easily avoid

unattainable points by utilizing the simple theorem (Theorem 2) given by Schneider and Werner,

[33].

Theorem 2. A point (xi, fi) is unattainable if and only if wi = 0.

Aside from avoiding unattainable points, one can also control the existence of poles. For a given

interval [a, b], one needs to ensure, as mentioned by Berrut and Mittelmann [11], that not only do
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the weights alternate in sign, but also that the weights are “similar enough” in magnitude (such that

|wj/(x − xj)| decreases on both sides of any x). The proof below is an extension of a proof by

Berrut [7], where he considers the specific case of wk = (−1)k. Here, the proof is extended beyond

the case where the weights are one in absolute value, but uses many of the ideas in Berrut’s proof.

Theorem 3. Let x0, x1, . . . , xN be N + 1 distinct points with x0 < x1 < . . . < xN . For clarity, let

I0 := (−∞, x0), Ik := (xk−1, xk) for k = 1, 2, ...N, and IN+1 := (xN ,∞). Let w0, w1, . . . , wN be

the N + 1 corresponding weights, such that:

• wk 6= 0 for k = 0, 1, . . . , N

• sign(wk) = −sign(wk−1) for k = 1, 2, . . . N (the weights are alternating in sign)

• For an arbitrary interval Ia, (a = 0, 1, . . . , N ),

∣∣∣∣∣∣∣
∑

0≤k≤N−a
k is even

wa+k
x− xa+k

∣∣∣∣∣∣∣ >
∣∣∣∣∣∣∣
∑

1≤k≤N−a
k is odd

wa+k
x− xa+k

∣∣∣∣∣∣∣
and ∣∣∣∣∣∣∣

∑
1≤k≤a
k is odd

wa−k
x− xa−k

∣∣∣∣∣∣∣ >
∣∣∣∣∣∣∣
∑

0≤k≤a
k is even

wa−k
x− xa−k

∣∣∣∣∣∣∣

Then the rational interpolant rN (x), where

rN (x) =

N∑
j=0

wj
x− xj

fj

/ N∑
j=0

wj
x− xj

has no poles in R.

Proof. We shall prove the above statement by showing that
N∑
k=0

wk
x− xk

6= 0 k = 0, 1, . . . , N. (2.6)

Looking at the terms in (2.6) we see the term corresponding to the interpolating point xk is a

hyperbola with a vertical asymptote at x = xk. The intervals defined previously, Ik, denote the

intervals between these asymptotes. Also, we define

sk :=


wk

x− xk
x < xk

0 x > xk

rk :=


0 x < xk
wk

x− xk
x > xk
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and consider sk and rk separately. We have
n∑
k=0

wk
x− xk

= s(x) + r(x)

where

s(x) :=

N∑
k=0

sk(x) r(x) :=

N∑
k=0

rk(x).

For x ∈ Ia,

s(x) =

N∑
k=a

sk(x) r(x) =

a−1∑
k=0

rk(x).

Therefore, due to the assumptions, the sign of the resulting sum of these series will be determined

by the sign of the sa(x) and ra−1(x) terms respectively. Thus,

sign(s(x)) = sign(sa) = −sign(wa) = sign(wa−1) = sign(ra−1) = sign(r(x))

which implies that the sum s(x) + r(x) will either be positive or negative, but not zero.

2.3 Floater-Hormann Family of Barycentric Rational Interpolants

2.3.1 Construction

Two of problems with general linear rational interpolation for arbitrary points (including equidistant

points) are the slow rate of convergence and possibility of poles. However, Floater and Hormann

[18] show that there exists a family of linear rational interpolants (which we will refer to as FH

interpolants) which have arbitrarily high rates of convergence for most point distributions, including

equidistant, which do not include any poles in R (which greatly reduces the issue of poles, even

for general barycentric rational interpolants). They construct the interpolant as follows. Given an

integer N , choose an integer d, 0 ≤ d ≤ N . For each i = 0, 1, 2, . . . , N − d let pi be the unique

polynomial of degree at most d which interpolates the function f at nodes xi, xi+1, . . . , xi+d. Then

let

r(x) =

N−d∑
i=0

λi(x)pi(x)

N−d∑
i=0

λi(x)

(2.7)

where

λi(x) =
(−1)i

(x− xi)(x− xi+1) . . . (x− xi+d)
.
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As can be seen, with d = N , this simply represents polynomial interpolation. Floater and Hormann

describe this rational interpolant r as “a blend of the polynomial interpolants p0, . . . , pN−d with

the λ0, . . . , λN−d acting as the blending functions.” (Floater and Hormann, 2007, p. 317) Each

rational interpolant described here, one for each d, has no poles in R. Also, for a given d ≥ 1 and

f ∈ Cd+2[a, b], r(x) has approximation order O(hd+1) as h → 0, where h is the maximum spacing

between any two adjacent nodes.

Floater and Hormann also show that this can be represented in barycentric form. One starts by

writing the polynomial interpolants pi(x) in Equation (2.7) in the Lagrange form,

pi(x) =

i+d∑
k=i

i+d∏
j=i
j 6=k

x− xk
xi − xk

f(xk). (2.8)

Then, substituting Equation (2.8) into Equation (2.7) and using the definition of λi(x) we have
N−d∑
i=0

λi(x)pi(x) =

N−d∑
i=0

(−1)i
i+d∑
k=i

1

x− xk

i+d∏
j=i
j 6=k

1

xk − xj
f(xk)

=

N∑
k=0

wk
x− xk

f(xk)

with

wk =
∑
i∈Jk

(−1)i
i+d∏
j=i
j 6=k

1

xk − xj
(2.9)

Jk := {i ∈ {0, 1, . . . , N − d} : k − d ≤ i ≤ k}.

Following this same process, and using the fact that

1 =

i+d∑
k=i

i+d∏
j=i
j 6=k

x− xk
xi − xk

one can similarly rewrite the denominator of Equation (2.7) as
N−d∑
k=0

λi(x) =

N∑
k=0

wk
x− xk

.

Therefore, one now has the following rational interpolant in barycentric form

rN (x) =

N∑
k=0

wk
x− xk

f(xk)

N∑
k=0

wk
x− xk

(2.10)
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with weights wk defined in Equation (2.9).

Floater and Hormann also give another form of the weights, that being

wk = (−1)k−d
∑
i∈Jk

i+d∏
j=1
j 6=k

1

|xk − xj |
. (2.11)

One can see how this is obtained by looking at the factors of each term. First we see that for each

term in the sum, there can be factors before and after the k value which is omitted. For example, if

i = 0, d = 6, k = 4, there would be two factors after the k value, or

1

x4 − x5
1

x4 − x6
.

These would be negative. All factors before the k value are positive and therefore will not affect the

sign of the term.

We now look at a few cases. If i is even, and k and d are both even or both odd, then there will

be an even number of negative factors, and the product will be positive. If, however, k is even and

d is odd (or k is odd and d is even) then there will be an odd number of negative factors, and the

resulting product will be negative.

Alternatively, if i is odd and k and d are both even or both odd, then there will be an odd number

of negative products, and the resulting product (with the (−1)i considered) will be be positive. If k is

odd and d is even (or k is even and d is odd) then there will be an even number of negative factors,

resulting in negative product. This can all be summarised as follows

wk =
∑
i∈Jk

(−1)i
i+d∏
j=i
j 6=k

1

xk − xj

=
∑
i∈Jk

(−1)i(−1)i+(k−d)
i+d∏
j=i
j 6=k

1

|xk − xj |

= (−1)k−d
∑
i∈Jk

i+d∏
j=1
j 6=k

1

|xk − xj |
.

This form is especially useful in easily seeing that the weights alternate in sign.

In [18] Floater and Hormann also give a simplified formula for the weights of equispaced points

wk = (−1)k−d
∑
i∈Jk

(
d

k − i

)
. (2.12)

To re-emphasize, these weights have a new degree of freedom compared to the polynomial inter-

polant. Given a certain distribution of points, one can now choose the weights. In the case of the

FH interpolants, aside from the interpolation points, the weights depend on the value of d. Floater
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and Hormann discuss some of the properties of this parameter d, such as its optimal value (in

minimizing the max-norm of an interpolation problem) for specific functions and various values of

N .

Floater and Hormann gave a sampling of the absolute value of the weights for the first few

values of d. They have divided all the weights by d!hd, so that they are all integer values:

1, 1, . . . , 1, 1 d = 0

1, 2, 2, . . . , 2, 2, 1 d = 1

1, 3, 4, 4, . . . , 4, 4, 3, 1 d = 2

1, 4, 7, 8, 8, . . . , 8, 8, 7, 4, 1 d = 3

1, 5, 11, 15, 16, 16, . . . , 16, 16, 15, 11, 5, 1 d = 4

(2.13)

It may be of interest to note the similarity of this pattern to Pascal’s Triangle.

As stated in [13], one has an even simpler form of the weights, which is (where we are only

looking at the absolute value of the integer form, and for N ≥ 2d)

|wk| =



k∑
j=0

(
d
k

)
k ≤ d

2d d ≤ k ≤ N − d

|wN−k| k ≥ N − d

(2.14)

As mentioned in [13], using the pattern in (2.13) or Equation (2.14) for N < 2d results in incorrect

weights. This is seen in the following example, where the absolute value of the weights for 0 ≤ d ≤ 4

are given for N = 4:

1, 1, 1, 1, 1 d = 0

1, 2, 2, 2, 1 d = 1

1, 3, 4, 3, 1 d = 2

1, 4, 6, 4, 1 d = 3

1, 4, 6, 4, 1 d = 4

2.3.2 Properties

No Poles in R, Floater-Hormann Method

In [18] Floater and Hormann show the absence of poles for the family of rational interpolants de-

scribed by first rewriting the rational interpolant by multiplying both the numerator and denominator
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of (2.7) by (−1)N−d(x− x0) . . . (x− xN ), yielding

rN (x) =

N−d∑
j=0

µj(x)pj(x)

N−d∑
j=0

µj(x)

(2.15)

with

µj(x) = (−1)N−d(x− x0) . . . (x− xN )λj(x) (2.16)

=

j−1∏
i=0

(x− xi)
N∏

k=j+d+1

(xk − x). (2.17)

They then proceed to show that, given a value of d ∈ [0, N ], the summation
∑N−d
j=0 µj is positive for

all values of x. See [18] for details of proof.

Convergence Rate

The following theorems are found in [18]. ‖ · ‖ represents the maximum absolute value over [a, b].

Theorem 4. Suppose d ≥ 1 and f ∈ Cd+2[a, b], and let

h := max
0≤i≤N−1

(xi+1 − xi).

Then

‖rN − f‖ ≤ hd+1(b− a)
‖fd+2‖
d+ 2

if N − d is odd

‖rN − f‖ ≤ hd+1

(
(b− a)

‖fd+2‖
d+ 2

+
‖fd+1‖
d+ 1

)
if N − d is even.

Theorem 5. Suppose d = 0 and f ∈ C2[a, b] and let

β := max
1≤i≤N−2

min

{
xi+1 − xi
xi − xi−1

,
xi+1 − xi
xi+2 − xi+1

}
(and where h is defined as in Theorem 4). Then

‖rN − f‖ ≤ h(1 + β)(b− a)
‖f ′′‖

2
if N is odd

‖rN − f‖ ≤ h(1 + β)

(
(b− a)

‖f ′′‖
2

+ ‖f ′‖
)

if N is even.

The proofs of these theorems use, in part, the Newton divided difference form to derive the error

bounds. See [18] for complete proof.
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2.3.3 Numerical Results

The results of [18], wherein three functions were tested to see if the experimentally predicted con-

vergence rate was achieved in practice, are reproduced here. Also investigated and reproduced

here are various optimal d values for certain values of N (for the function 1/(1 + x2)).

Table 2.1: Convergence Rates

f1 = 1
(1+x2) , d = 3 f2 = sin(x), d = 4 f3 = |x|, d = 3

N Error Order Error Order Error Order

10 6.88× 10−2 1.75× 10−2 1.79× 10−1

20 2.82× 10−3 4.6 3.87× 10−4 5.5 9.01× 10−2 1.0

40 4.29× 10−6 9.4 7.10× 10−6 5.8 4.52× 10−2 1.0

80 5.10× 10−8 6.4 1.32× 10−7 5.8 2.27× 10−2 1.0

160 3.00× 10−9 4.1 2.65× 10−9 5.6 1.13× 10−2 1.0

320 1.82× 10−10 4.0 5.99× 10−11 5.5 5.68× 10−3 1.0

640 1.11× 10−11 4.0 1.51× 10−12 5.3 2.84× 10−3 1.0

Reproduced results of Floater and Hormann, [18]. For all functions we have x ∈ [−5, 5] and the maximum

absolute error was calculated using 3N equispaced points. The order of convergence is computed in the

standard way.

Table 2.1 shows the estimated convergence rates for three functions. As predicted in [18], these

greatly depend on the smoothness of the function. For the first two functions we have f1 ∈ C3+2

and f2 ∈ C4+2, and thus we can use the originally stated rate of convergence O(hd+1), where the

expected rates of 4 and 5 (respectively) are very close to the calculated rates. For the third function,

f3 ∈ C0, and as is seen here, the convergence rate is 1, as opposed to 4 for a C5 function.
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Table 2.2: Optimal d Values

N d Error

10 1 3.60× 10−2

20 2 1.53× 10−3

40 4 4.27× 10−6

80 8 2.04× 10−10

160 10 1.78× 10−15

Reproduced results of Floater and Hormann, [18]. Optimal d values for the function f1 = 1/(1 + x2) with

x ∈ [−5, 5].

In Table 2.2 we see the optimal values of d for various values of N for Runge’s example. More

will be said about finding optimal d values, but here we simply look for the minimum of the maximum

absolute error. This was done using 10N points (compared to the originalN+1 interpolation nodes)

to compare the interpolant and the original function. One can see that d increases withN ; howewer,

there is no simple expression to calculate the optimal d value.

2.4 Extended Floater-Hormann Method

Although the family of rational interpolants described by Floater and Hormann are much better than

polynomial and general rational interpolants at interpolation, Klein and Berrut in [10] and Klein in

[20] saw room for improvement. They noted that, when looking at the Lebesgue constant (see

appendix) there was noticeable error in the interpolation function near the end points when using

equidistant points. To remedy this, an extension of the Floater-Hormann family of interpolants was

given (referred to as EFH). The idea is to extend the region in which the interpolant is constructed

by d points on either end while maintaining the interval on which the interpolant is to be used. This

eliminates the error at the ends.

For fixed N and d, one constructs the EFH interpolants by first choosing an Ñ � N , and a

d̃ ≤ Ñ . Next, one needs to extend the interval [a, b] by adding d points on each side, with the

original spacing h. Let these points be x−d, x−d+1, . . . , x−1 and xN+1, xN+2, . . . , xN+d. Now, one

needs to approximate the 2d new function values f−d, f−d+1, . . . , f−1 and fN+1, fN+2, . . . , fN+d,

which correspond to the new points just created. This will be done in steps. First, one will calculate

r
(k)

Ñ
[f ](x0), k = 1, 2, . . . , d̃, or the rational interpolant of the values f0, f1, . . . , fÑ evaluated at x0 with

the parameter d̃. Also, one will calculate r(k)
Ñ

[f ](xN ), k = 1, 2, . . . , d̃ using fN−Ñ , fN−Ñ+1, . . . , fN .
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Next, one can define the extended function values f̃j as

f̃j :=



f0 +

d̃∑
k=1

r
(k)

Ñ
[f ](x0)

(xj − x0)k

k!
−d ≤ j ≤ −1

fj 0 ≤ j ≤ N

fN +

d̃∑
k=1

r
(k)

Ñ
[f ](xN )

(xj − xN )k

k!
(N + 1) ≤ j ≤ (N + d).

.

Using these extended values (x̃j , f̃j) one can now define the extended interpolant as

r̃N [f ](x) :=

N+d∑
k=−d

wk
x− xk

f̃k

N+d∑
k=−d

wk
x− xk

where this interpolant is only valid for x ∈ [a, b]. This construction relies upon equidistant points,

and is not easily adapted to non-equidistant points (such as Chebyshev).

10
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⋅
||

∞

 

 

FH

EFH

Figure 2.2: Maximum absolute differences between interpolants and the function f(x) = 1
1+x2 on the

interval x ∈ [−5, 5]. For each value of N , the interpolants and function are evaluated at 2000 equispaced

points and the error is then measured using these values. Parameters used are: 20 ≤ N ≤ 1000 and N

is even, d = 4, Ñ = 11, d̃ = 7.

As can be seen in Figure 2.2, results are reproduced almost exactly as in the literature. They
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indicate that the EFH interpolants are only slightly better in terms of reducing maximum absolute

error. As seen in Figure 2.3 though, the EFH interpolants are more stable, in the sense that if the

function values are perturbed the choice of the parameter d does not yield large errors. The original

FH interpolant can become very sensitive to perturbed data for larger values of d.
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||

∞
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Figure 2.3: Maximum absolute differences between interpolants and the function f(x) = 1
1+x2 on the

interval x ∈ [−5, 5]. For each value of d, the interpolants and function are evaulated at 2000 equispaced

points and the error is then measured using these values. Parameters: 0 ≤ d ≤ 50, N = 1000 Ñ =

11, d̃ = 7. Perturbations of f + 10−12 and f − 10−12 were used, alternating for each value of d.

Of note, the results obtained here are similar to the results obtained in [10], [20], except that in

these sources, the error in the FH interpolant begins increasing linearly after d ≈ 4. The difference

could possibly be attributed to a more careful implementation of the FH algorithm in Matlab.



Chapter 3

Differentiation Matrices

3.1 Derivatives of Linear Rational Interpolants in Barycentric

Form

3.1.1 Formulas and Matrices

The usefulness of the barycentric form, aside from the previously mentioned reasons, is mainly due

to the work done by Schneider and Werner. In their 1986 paper (see [33]) they give simple formulas

for differentiating rational interpolants in barycentric form, both at the nodes and at non-nodal points.

The formula for the kth derivative using (2.5) is, at non-nodal points and nodes respectively,

r
(k)
N (ξ)

k!
=

N∑
i=0

wi
ξ − xi

rN
[
(ξ)k, xi

]/ N∑
i=0

wi
ξ − xi

for ξ 6= xi, i = 0, 1, . . . , N, k ≥ 0

r
(k)
N (xj)

k!
=−

 N∑
i=0
i6=j

wirN
[
(xj)

k, xi
]/wj for 0 ≤ j ≤ N, k ≥ 1

where rN [(α)k, xi] represents a divided difference with a k-fold argument of α. A number of sources

([7], [10], [21], as well as others) have defined differentiation matrices for the derivatives of rN (x) at

17



CHAPTER 3. DIFFERENTIATION MATRICES 18

the nodes. For the 1st and kth derivatives, they are

D
(1)
ij :=



wj
wi

1

xi − xj
, i 6= j

−
N∑
l=0
l 6=i

D
(1)
il , i = j

(3.1)

(3.2)

D
(k)
ij :=



k

xi − xj

(
wj
wi
D

(k−1)
ii −D(k−1)

ij

)
, i 6= j

−
N∑
l=0
l 6=i

D
(k)
il , i = j.

(3.3)

Klein and Berrut give an alternate expression for evaluating the non-diagonal elements of the kth

order differentiation matrix, as

D
(k)
ij = k

(
D

(1)
ij D

(k−1)
ii −

D
(k−1)
ij

xi − xj

)
for i 6= j

This allows one to forgo redoing the wj/wi operation already performed in finding the first order

differentiation matrix (for faster performance).

Due to the extended x̃j and f̃j values, where −d ≤ j ≤ N + d, more attention must be given to

the EFH differentiation matrix. One computes the (N + 2d+ 1)× (N + 2d+ 1) differentiation matrix

and then uses all columns only from the (d + 1)th row to the (N + d + 1)th row, resulting in the

(N + 1)× (N + 2d+ 1) matrix

D̃(k) =

D
(k)
0,−d . . . . . . D

(k)
0,N+d

...
...

D
(k)
N,−d . . . . . . D

(k)
N,N+d



 (3.4)

which can then be used to compute

d(k)f(x)

dx(k)

∣∣∣∣
xi

≈ d(k)

dx(k)
r̃N [f ](xi) =

N+d∑
j=−d

D
(k)
ij f̃j = D̃(k)f̃

where the “weights” D(k)
ij are the entries of the non-square differentiation matrix in (3.4).
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3.1.2 Convergence Rates of FH and EFH derivatives

In [9], Berrut, Floater, and Klein prove convergence rates of the first and second derivatives and

speculate about convergence rates of higher order derivatives. In the following two theorems, C is

a constant depending on the blending parameter d, derivatives of the function f , and the spacing

between nodes. For the first and second derivatives, the error at the nodes is as follows:

Theorem 6. For the FH interpolants, if d ≥ k − 1 and f ∈ Cd+1+k[a, b], then

|e(k)(xj)| ≤ Chd−k+1 0 ≤ j ≤ N, k = 1, 2

where

e(x) := f(x)− rN (x).

Although they did not prove it (due to the complexity of the formulas for e(k), k > 2), the authors of

[9] speculate that this error bound remains true for k > 2. Tables 3.1 and 3.2 below show computed

convergence rates for both the FH and EFH derivatives. Despite the fact that Berrut et al. only

proved Theorem 6 in [9] for the FH interpolants, one can see that the EFH method converges at

about the same rate, but is slightly more accurate in the first derivative and much more accurate in

the second derivative (especially for larger N ). This can be seen more clearly in Figure 3.1.

Table 3.1: Error and Convergence Rates, FH derivatives

N
1st Derivative 2nd Derivative

Error Order Error Order

20 5.2394e-03 4.4661e-02

40 1.9325e-04 4.8 3.3298e-03 3.7

80 7.2223e-06 4.7 2.5130e-04 3.7

160 2.9347e-07 4.6 2.0619e-05 3.6

320 1.3345e-08 4.5 1.8922e-06 3.4

640 6.7722e-10 4.3 1.9344e-07 3.3

Max-norm errors and numerical convergence rates for sin(x), x ∈ [−5, 5] using the FH differentiation

matrices with d = 4 and equidistant points.
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Table 3.2: Error and Convergence Rates, EFH derivatives

N
1st Derivative 2nd Derivative

Error Order Error Order

20 6.1165e-04 2.1454e-03

40 2.3537e-05 4.7 6.8857e-05 5.0

80 4.7902e-07 5.6 1.6357e-06 5.4

160 4.9421e-08 3.3 3.4414e-08 5.6

320 3.7181e-09 3.7 2.1629e-09 4.0

640 2.5153e-10 3.9 1.4310e-10 3.9

Max-norm errors and numerical convergence rates for sin(x), x ∈ [−5, 5] using the EFH differentiation

matrices with d = 3, Ñ = 11, d̃ = 7.
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Figure 3.1: Log-log plot of the max-norm error in first and second derivatives of FH and EFH interpolants

of the function f(x) = sin(x). Also 20 ≤ N ≤ 1000, d = 4, Ñ = 11, d̃ = 7, x ∈ [−5, 5].
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As was seen in [20] and reproduced here in Figure 3.1, the EFH method gives a better approx-

imation of the first and second derivatives of sin(x), the difference being especially noticeable in

the second derivative. The results in [20] for the second derivative of the EFH are smoother than

seen here. However, in [20], the second derivative of the EFH only achieved an error of about 10−9,

whereas here we achieve an error of approximately 10−10. This difference may be attributable to

better implementation in Matlab.

3.2 Chebyshev Differentiation Matrices

Although not immediately relevant, in subsequent chapters Chebyshev differentiation matrices, DN ,

(or differentiation matrices based upon polynomial interpolation of Chebyshev points) will be used

in solving boundary value problems. These will be referred to as the standard Chebyshev differen-

tiation matrices. The following formulas are found in many references, including [35],

(DN )00 = −(DN )NN =
2N2 + 1

6

(DN )jj =
−xj

2(1− x2j )
, j = 1, . . . , N − 1

(DN )ij =
ci
cj

(−1)i+j

xi − xj
, i 6= j, i, j = 1, . . . , N − 1

where ci = 1 for i = 1, . . . , N − 1 and c0 = cN = 2. One can also use the negative sum trick with

sorting (see appendix) for the computation of the diagonal elements.

It is interesting here to compare the Chebyshev differentiation matrix just described with the

differentiation matrix obtained from the FH interpolants with d = N . These two matrices should

be the same, since using d = N is just polynomial interpolation. Looking at the first and second

differentiation matrices, we see the following maximum differences below:
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Table 3.3: Maximum Absolute Relative Differences of entries between Chebyshev Differentiation Matri-

ces

N D(1) D(2)

8 2.704e-16 1.035e-15

16 7.100e-15 2.390e-14

32 1.601e-14 5.288e-14

64 1.726e-14 7.047e-14

128 8.341e-14 2.138e-13

256 3.998e-13 9.967e-13

512 1.196e-12 3.025e-12

1024 5.057e-12 1.527e-11

Maximum absolute relative differences differences between first and second differentiation ma-

trices from the FH interpolants with d = N and from polynomial interpolation. Specifically,(
maxi,j |(D(k)

std)i.j − (D
(k)
FH)i,j |

)
/maxi,j |(D(k)

std)i,j |,

These matrices should be identical, but numerical effects based on the different ways of com-

puting each matrix lead to small differences. The maximum differences between the differentiation

matrices occurred in the top left and bottom right corners. In each differentiation matrix, this is

also where the largest values occur (usually within a 4 × 4 submatrix). For instance, in the case

of N = 1024, the maximum difference between the first order and second order differentiation ma-

trices occurs in the first row second column; this is also where the largest values in each matrix

occur.



Chapter 4

Boundary Value Problems (BVPs)

4.1 Two-Point Linear BVPs

After observing the good interpolation and differentiation accuracy of the FH interpolants, one pos-

sible extension is to investigate their use in solving two-point boundary value problems (BVPs).

Although the EFH interpolants share this high accuracy in interpolation and differentiation, they are

not well suited for BVPs for a couple of reasons. Firstly, their differentiation matrices are rectangu-

lar, which can cause numerical issues. Secondly, they require an extension of the function values

which could be especially troublesome for singularly perturbed BVPs (which will be investigated).

Thus, testing is performed solely on the FH interpolants. We first look at their performance in

solving second order linear BVPs of the form

u′′(x) + p(x)u′(x) + q(x)u(x) = f(x)

with coefficients p(x), q(x), f(x), and boundary conditions u(−1) = α, u(1) = β.

For the discretization of the differential equation, the aforementioned differentiation matrices

were used as follows

D(2)u+ diag(p)D(1)u+ diag(q)u = f(
D(2) + diag(p)D(1) + diag(q)

)
u = f

Au = f

One example is BV P1

u′′ + 2u′ + u = 0, u(−1) = −1, u(1) = 1 (4.1)

with exact solution

u(x) =
1

2
e−x−1

(
xe2 + e2 + x− 1

)
.

23
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Using N = 64 and d = 1, the FH method (the spectral collocation method using FH interpolation)

is tested to see how well it performs in regards to maximum absolute error. Figure 4.1 shows the

numerical solution using the FH method and the exact solution.
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Exact

FH

Figure 4.1: Solution profiles (FH approximation as well as exact) for the BVP u′′ + 2u′ + u = 0 with

N = 64, d = 5, x ∈ [−1, 1], and equidistant points.

As Figure 4.1 shows, the numerical solution using the FH interpolants is very good; the maxi-

mum absolute error using 64 collocation points is 8.10× 10−10.

4.2 Optimal d Value

Using the FH interpolants to solve BVPs, it was investigated what d value would be optimal in the

sense of minimizing the maximum absolute error. The previous BVP was used, equation (4.1), with

N = 20, along with two other simple examples, namely BV P2

u′′ = e4x, u(−1) = 0, u(1) = 0

whose exact solution is

u(x) =
e4x − sinh(4)x− cosh(4)

16

(this example is from [35]) and BV P3

u′′ + u′ =
−2(x3 − 3x2 + x+ 1)

(x2 + 1)3
, u(−1) =

1

2
, u(1) =

1

2

whose exact solution is

u(x) =
1

1 + x2
.



CHAPTER 4. BOUNDARY VALUE PROBLEMS (BVPS) 25

Figure 4.2 is a plot of d values versus maximum absolute error, allowing us to determine the

optimal d value (the minimum error).
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Figure 4.2: Maximum absolute differences between the exact and numerical solutions, with N = 20 and

equidistant points, for 0 ≤ d ≤ N . The black dot marks the minimum error.

One can see that the optimal d value is not the same for all examples. There is some discussion

of optimal d values in the literature in relation to minimizing interpolation error, such as in [20] and

[10]. However, these results do not necessarily hold true for the present work in solving BVPs and

there are additional restrictions (which will be discussed) in choosing d values in this case.

Consideration is also given to whether using a different distribution of points would alter the

results. Figure 4.3 shows the results:
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Figure 4.3: Maximum absolute differences between the exact and numerical solutions, with N = 20 and

Chebyshev points, for 0 ≤ d ≤ N . The black dot marks the minimum error.

Again there is no clear choice, though larger values of d seem to be better. However, as will be

elaborated later, there are numerical issues with using larger d values when N becomes large, pri-

marily due to the calculation of the weights, wj . This can be seen by choosing N = 128. Figures 4.4

and 4.5 show the new optimal d values.
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Figure 4.4: Maximum absolute differences between the exact and numerical solutions, with N = 128

and equidistant points, for 0 ≤ d ≤ N . The black dot marks the minimum error.
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Figure 4.5: Maximum absolute differences between the exact and numerical solutions, with N = 128

and Chebyshev points, for 0 ≤ d ≤ N . The black dot marks the minimum error.

As can be seen from Figures 4.4 and 4.5, numerical instability begins to play an important

role, even for a relatively small value of N (compared to say N = 1024). This is largely due to

numerical issues in the differentiation matrices and the FH weights. Figures 4.6 and 4.7 illustrate

this by showing the largest weights (in absolute value) for each value of d, as well as the condition

numbers of the first and second derivative matrices.
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Figure 4.6: Maximum of the absolute value of scaled weights (wj/min
i

(wi)) for each value of d, with

N = 128, for both equidistant and Chebyshev points.
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Figure 4.7: Condition numbers of the first and second derivative matrices for each value of d, with

N = 128, for both equidistant and Chebyshev points.
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Especially for the equidistant points, it is now obvious that a smaller value of d is optimal. This is

due to the large value of the weights when calculating the differentiation matrices, as these matrices

become very ill-conditioned. In the case of Chebyshev points, a very small or very large value of d

seems to be acceptable, but with preference to values of d nearer to N . In the following work, two

things will be investigated. Firstly, for a small value of d, 0 ≤ d ≤ 10, these differentiation matrices

are used in solving singularly perturbed BVPs; this will be discussed more. Although not optimal for

the Chebyshev points, this is a near optimal value for the equidistant points. Secondly, in the case

of Chebyshev points, it is investigated how the use of the FH interpolants with d ≈ N compares to

the standard Chebyshev differentiation techniques using polynomial interpolation.

4.3 Boundary Layers

A further interesting application of the Floater-Hormann interpolants is to see their use in solving

BVPs with boundary layers. For the purposes of this thesis, we will restrict our use of the term

boundary layer to second order BVPs with a singular perturbation of the second derivative term, or

equations of the form

εu′′(x) + p(x)u′(x) + q(x)u(x) = f(x).

BVPs of this form can have both interior and boundary layers. Unless otherwise stated, we will be

considering only boundary layers, i.e. layers which occur at the endpoints of the interval in question.

4.3.1 FH Interpolants Approach

Firstly, looking simply at the techniques we have already developed, one can see that even with the

Chebyshev points, certain singularly perturbed BVPs cannot be solved numerically (in the sense

that the boundary layer cannot be resolved). This can be seen in Figure 4.8 below using the first

example from [34], which is

εu′′ − xu′ − u =

(
x+ 1

ε
− 1

)
e(x+1)/ε − 2

(
x− 1

ε
+ 1

)
e(x−1)/ε, u(−1) = 1, u(1) = 2 (4.2)

having the exact solution

u(x) = e−((x+1)/ε) + 2e((x−1)/ε).
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Figure 4.8: Solution to BVP in equation 4.2 with N = 64 and ε = 10−4 using Chebyshev points and

d = 0.

Here, Chebyshev points are used (which cluster around the endpoints and thus are better suited

to solving BVPs with boundary layers) with FH interpolation. It was found that d = 0 gave the

minimum max-norm error, and this best-case result is the one shown. With larger values of ε

(ε ≈ 10−2), adequate results can be obtained simply using Chebyshev points; however, for smaller

values of ε an alternative approach is required.

4.3.2 Combined FH Interpolants and BLRSC Approach

One solution to the inability of the FH interpolant approach to solving singularly perturbed BVPs

lies in a paper by Tang and Trummer, [34]. In this paper, a method is developed which allows

one to use any point distribution to resolve even a very small boundary layer. This method will be

referred to as the Boundary Layer Resolving Spectral Collocation, or BLRSC, method. The basic

idea is to use a coordinate transformation to cluster the points at the boundaries. This allows one

to resolve boundary layers for very small value of ε. As stated in [34], good numerical results in

solving the singularly perturbed BVP require that at least one collocation point lies in the boundary

layer. The BLRSC method ensures that this will happen. First, to describe the method we start with

the general second order BVP

εu′′(x) + p(x)u′(x) + q(x)u(x) = f(x), x ∈ (−1, 1), u(−1) = α, u(1) = β (4.3)
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with 0 < ε � 1, we then iteratively apply sine functions. These sine transformations, x = gm(y),

m = 0, 1, . . . are defined as

g0(y) := y, gm(y) = sin

(
π

2
gm−1(y)

)
, m ≥ 1. (4.4)

With this transformation (and using the Chebyshev collocation points), [34] gives the spacing be-

tween the boundary point and first interior point asO(N−4), O(N−8), andO(N−16) for one, two, and

three sine transformations respectively. Thus, even for relatively small N , we can be sure that at

least one point lies in any given boundary layer with sufficient sine transformations. Using equidis-

tant points, the spacing between the boundary point and first interior point is O(N−2m), which is not

as close as the Chebyshev points. This implies that, typically, more transformations are needed for

equidistant points given for given N and ε; this is also seen in results. However, as is also evident,

for m ≥ 4 using equidistant points, even relatively small N would ensure at least one collocation

point lies in the boundary layer. For example, with N = 32 and m = 4, this method could resolve

BVPs with boundary layers of width ≈ 10−12.

The transformed equation (via the variable transformation x=x(y)) is

εv′′(y) + p̃(y)v′(y) + q̃(y)v(y) = f̃(y)

where v is the transplant of u, v(y) = u(x(y)). The coefficients p̃, q̃, f̃ are given by

p̃(y) :=
p(x)

y′(x)
+ ε

y′′(x)

y′(x)2
, q̃(y) :=

q(x)

y′(x)2
, f̃(y) :=

f(x)

y′(x)2
.

In [34], computational forms for
1

y′(x)2
and

y′′(x)

y′(x)
are given.
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Figure 4.9: A useful representation of the effect of the transformation on Chebyshev and equidistant

points, respectively.

4.3.3 Results of Combined FH Interpolants and BLRSC Approach

Returning to the previous example, Equation 4.2, we now use the BLRSC method. As already

mentioned, we will also use the standard Chebyshev differentiation matrices, based on polynomial

interpolation, as in [34]. This allows a comparison to the FH interpolants. Below are the solution

profiles on the physical and computational domains when using the FH interpolants with d = 4 and

Chebyshev points, as well as an error plot of three methods (FH interpolants using Chebyshev and

equidistant points, and polynomial interpolation using Chebyshev points).
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Figure 4.10: Solution to Equation (4.2) with ε = 10−4 and three sine transformations in the physical

domain using FH interpolants and Chebyshev points, with d = 4 and N = 128.
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Figure 4.11: Solution to Equation (4.2) with ε = 10−4 and three sine transformations in the computational

domain using FH interpolants and Chebyshev points, with d = 4 and N = 128.
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Figure 4.12: Maximum absolute error in solving Equation (4.2) with ε = 10−4, three sine transformations,

and d = 4 for the FH interpolants methods.

There are a few important things to note. Firstly, combining the FH interpolants and corre-

sponding differentiation matrices allows one to successfully compute the numerical solution of the

singularly perturbed BVP. Now, the solution closely approximates the exact solution and spectral

accuracy can be seen in Figure 4.12. Also, in terms of the maximum absolute error, the different

methods are fairly similar for small N , but quite different for larger N . The parameters here are

chosen simply to illustrate the success in combining the FH interpolants with the BLRSC method.

Further testing was done to find optimal parameters for this particular BVP for each method.

Four cases were looked at. First, equidistant points with FH interpolants and d ∈ [0, 10]. Second,

Chebyshev points with FH interpolants and d ∈ [0, 10]. Third, Chebyshev points with FH inter-

polants, and d ∈ [N − 9, N ]. Lastly, Chebyshev points with polynomial interpolants. Figure 4.13

shows the best case errors (minimum of the max-norm errors) and Table 4.1 shows which values

of d and m produce these best case errors.
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Figure 4.13: Minimum max-norm error in solving Equation (4.2) with ε = 10−4. The appropriate param-

eters for each of the four methods are shown in the following table.

Table 4.1: Error in Solving BVP

N
FH Equi. FH Cheb. FH Cheb.* Poly. Cheb.

m d m d m d m

16 0 10 3 0 2 16 2

32 1 10 3 0 3 31 3

64 3 2 2 4 2 64 2

128 3 4 3 3 2 127 2

256 3 10 3 5 1 248 1

512 5 7 5 3 1 508 1

1024 6 5 3 3 0 1023 0

Optimal m and d values to obtain minimum error (absolute maximum differences). The third set of

columns, titled FH Cheb*, is testing values of d near N as opposed to smaller values of d.

Figure 4.13 and Table 4.1 show a few important things. Firstly, using Chebyshev points with

small values of d is far from optimal for larger values of N . The other two methods using Chebyshev

points (using FH interpolants with values of d near N , and using polynomial interpolation) are very
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similar. Although the FH method gives slightly better error for larger values of N , these results

suggest that there is no major advantage between these methods in terms of max-norm error.

However, since the polynomial interpolation method is more easily implemented and runs slightly

quicker (both because the weights do not have to be calculated and because the implementation of

differentiation matrices can take advantage of the known symmetry), the polynomial interpolation

method is preferable.

Looking at the FH method with equidistant points, there is a slight advantage to using the FH

method over the polynomial interpolation with Chebyshev points for small N . For N = 16 and

N = 32 the error using the FH method with equidistant points was about one to two orders of

magnitude smaller than the other methods. It was tested to see if the error would continue to

decrease further if more values of d were tested. For N = 16 and N = 32, it decreased further, but

only slightly (the error was still O
(
10−2

)
). However, the error did not decrease further for N = 64,

meaning that numerical issues began to dominate (the size of the weights and the condition number

of the differentiation matrices). For larger values of N , this method was about the same as the

standard Chebyshev method.

The other interesting thing to note is the optimal number of sine iterations. For the two viable

methods using Chebyshev points (the FH interpolants with high d values and the method using

polynomial interpolation) the number of sine iterations decreased as N increased. This was prob-

ably due to error in the interior. As can be seen in Figure 4.9, the effect of the sine transformations

on the Chebyshev points causes a large gap between points in the interior. This was seen to be

true when plotting the error for a given N against the domain to see where it occurred. In contrast,

the optimal number of sine transformations decreased when using equidistant points. For large

enough values of ε, this phenomenon seemed to allow equidistant points to outperform Chebyshev

points (in terms of reducing maximum absolute error).



Chapter 5

Coupled System of Singularly
Perturbed Linear BVPs

5.1 Background

Singularly perturbed boundary value problems have been extensively studied, whereas systems

of coupled singularly perturbed boundary value problems have received less attention. Real world

applications of these problems include the modelling of electrochemical reactions, various problems

within optimal control theory, certain resistance-capacitor electrical circuits, and certain predator-

prey models (see [22], [30], [28]).

In much of the mathematical literature dedicated to numerical methods for solving second order

singularly perturbed linear BVPs problems for very small ε, the approach has been to use layer-

adapted meshes, usually Shishkin or Bakhvaov meshes, and then to employ a finite difference or

finite element scheme. This layer-adapted mesh divides the domain into two (or more) subdomains,

one coarser and the other(s) finer, the finer mesh(es) capturing the boundary layer. Other methods

include spectral collocation methods, a category to which our method belongs. There are other

methods which are more general, but which can be applied to these specific problems. For a

comprehensive review of singularly perturbed BVPs and a variety of numerical methods for solving

them, see [2]. This thesis will focus on methods specifically designed for solving second order

singularly perturbed linear BVPs problems with very small ε.

Here, we provide a ”new“ spectral collocation method for solving coupled systems of second

order linear boundary value problems. We use the iterated sine transformations in conjunction with

a spectral collocation method. Although this method was implemented in [16], their implementation

was suboptimal, as discussed later. As seen in the results of this section, this method is spec-

trally accurate and can resolve systems with extremely small boundary layers. Also, this method is

37
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very flexible, allowing one to solve a system of second order singularly perturbed BVPs with any

type of strong and/or weak coupling. Often, methods in the literature investigated focus only on

one form of a second order singularly perturbed system of boundary values problems, such as a

reaction-diffusion equation. Additionally, as discussed later, this new method also allows for differ-

ent perturbation parameters in each system of equations, whereas much of the literature reviewed

required problems with equal perturbation parameters.

There are a few caveats. Firstly, the layers in these problems are assumed to be boundary

layers, occurring at either or both ends of the domain; this is also true in the literature reviewed.

Secondly, results in this thesis only include systems of two coupled boundary value problems; the

method has been extended to systems of three coupled BVPs, and further extension to even larger

systems seems straightforward, but these results are not included here.

As of yet, these results have only been computed using the standard Chebyshev method (using

polynomial interpolation). A few tests have been conducted to see the benefit of using FH interpo-

lation and equidistant points. For very small values of ε, the standard Chebyshev method seems to

be better.

5.2 Method

The BLSRM for a single BVP was described in the previous chapter. Now, we consider a system

of coupled boundary value problems
ε1u
′′
1(x) + p11(x)u′1(x) + p12(x)u′2(x) + q11(x)u1(x) + q12(x)u2(x) = f1(x)

ε2u
′′
2(x) + p21(x)u′1(x) + p22(x)u′2(x) + q21(x)u1(x) + q22(x)u2(x) = f2(x).

Making the transformation x = x(y), we find that our equations become

ε1v
′′
1 (y)y′(x)2 + ε1v

′
1(y)y′′(x) + p11(x)v′1(y)y′(x) + p12(x)v′2(y)y′(x)

+q11(x)v1(y) + q12(x)v2(y) = f1(x)

ε2v
′′
2 (y)y′(x)2 + ε2v

′
2(y)y′′(x) + p21(x)v′1(x)y′(y) + p22(x)u′2(y)y′(x)

+q21(x)v1(y) + q22(x)v2(y) = f2(x)
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where v1 is the transplant of u1, v1(y) = u1(x(y)) and v2 is the transplant of u2, v2(y) = u2(x(y)).

After some rearranging, we have
ε1v
′′
1 (y) + p̃11(y)v′1(y) + p̃12(y)v′2(y) + q̃11(y)v1(y) + q̃12(y)v2(y) = f̃1(y)

ε2v
′′
2 (y) + p̃21(y)v′1(y) + p̃22(y)v′2(y) + q̃21(y)v1(y) + q̃22(y)v2(y) = f̃2(y)

where

p̃11(y) = ε1
y′′(x)

y′(x)2
+
p11(x)

y′(x)
, p̃12(y) =

p12(x)

y′(x)
,

p̃21(y) =
p21(x)

y′(x)
, p̃22(y) = ε2

y′′(x)

y′(x)2
+
p22(x)

y′(x)
,

q̃11(y) =
q11(x)

y′(x)2
, q̃12(y) =

q12(x)

y′(x)2
,

q̃21(y) =
q21(x)

y′(x)2
, q̃22(y) =

q22(x)

y′(x)2
,

f̃1(y) =
f1(x)

y′(x)2
f̃2(y) =

f2(x)

y′(x)2
.

We now compare the results of our method against some of the results found in the literature.

5.3 Numerical Results

All systems (two coupled linear second order BVPs) will be of the form

E~u′′ + P~u′ +Q~u = ~f

where E, P, and Q are 2× 2 matrices of the form

E =


ε1 0

0 ε2

 , P =


p11(x) p12(x)

p21(x) p22(x)

 , Q =


q11(x) q12(x)

q21(x) q22(x)


with

~u′′ =


u′′1(x)

u′′2(x)

 , ~u′ =


u′1(x)

u′2(x)

 .
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5.3.1 Comparison with Z. Cen

The system used here is

−E~u′′ + P~u′ +Q~u = ~f

with

P =

(
−1 0

0 −2

)
, Q =

(
2 −1

−1 4

)

and ~f given as the result of the exact solution being

u1(x) =
1− e−x/ε1
1− e−1/ε1

+
1− e−x/ε2
1− e−1/ε2

− 2 sin

(
πx

2

)
u2(x) =

1− e−x/ε2
1− e−1/ε2

− xex−1

along with boundary conditions

u1(0) = u1(1) = u2(0) = u2(1) = 0.
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Figure 5.1: Numerical solution profile on physical and computational domain, with ε1 = ε2 = 10−8, three

sine iterations, and N = 128.
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Table 5.1: Error Using BLRSC Method, Example from Z. Cen

ε1 = 10−8

N ε2 = 10−1 ε2 = 10−4 ε2 = 10−8

16 1.17 8.78e-01 2.54

32 6.31e-01 6.63e-01 1.31

64 2.59e-02 2.67e-02 5.19e-02

128 9.20e-04 9.21e-04 1.85e-03

256 1.20e-06 1.20e-06 2.40e-06

512 6.64e-09 2.96e-09 5.47e-09

1024 2.71e-09 2.71e-09 5.41e-09

BLRSC method results in solving example from Z. Cen [15]. Three sine transformations are used for

each trial. Errors shown are the maximum of u1 and u2 errors.
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Figure 5.2: Log-log plot of maximum absolute error, with ε1 = ε2 = 10−8 and 3 sine tranformations.

In comparison to the last row of Table 5.1, results obtained by [15] were (for N = 1024 and

ε1 = 10−8), 1.230e − 02, 2.999e − 02, and 1.899e − 02 for ε2 = 10−1, 10−4, and 10−8 respectively.

Referring to [15] for more error results, it can be seen that results obtained in this thesis for N ≥ 128



CHAPTER 5. COUPLED SYSTEM OF SINGULARLY PERTURBED LINEAR BVPS 42

are far more accurate than those in [15], even for very small ε1, ε2.

5.3.2 Comparison with Matthews, Miller, O’Riordan, and Shishkin

The system being considered here has

P =

(
0 0

0 0

)
, Q =

(
3 −1

−1 3

)
, ~f =

(
2

3

)

with boundary conditions

u1(0) = u1(1) = u2(0) = u2(1) = 0

In this example, no exact solution was given. Instead, [27] compares their computed solutions

using N = 8, 16, 32, . . . , 1024 to a finest mesh solution of N = 4096. The same was done here. Our

results are seen in Figures 5.3 and 5.4 and Table 5.2 below:
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Figure 5.3: Solution profile on computational and exact domains, with ε1 = ε2 ≈ 2−24 and two sine

iterations.
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Figure 5.4: Log-log plot of maximum absolute error, with ε1 = ε2 = 2−24 and two sine iterations.
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ForN ≥ 32, results are as accurate or more accurate. ForN ≥ 128 and for all values of ε, results

are at least six orders of magnitude more accurate. Table 5.2 was reproduced for comparison

purposes, as this table appears in [27].

5.3.3 Example Illustrating Non-Constant Advection Coupling

The system being considered here has

P =


2 +

(
x+ 1

4

)
e(x+1)/2 −1− x

2

−
(

1 +
x+ 1

2

)
/2 1 +

(x+ 1)2

8

 , Q =

(
0 0

0 0

)

and ~f given as the result of the exact solution being

u1(x) =
3

4
e−(x+1)/ε1 +

x2 + 6x+ 25

16

u2(x) =
−5

8
e−(x+1)/ε2 +

9x2 + 6x+ 49

32

with boundary conditions

u1(−1) = u1(1) = u2(1) = 2, u2(−1) = 1.

Figures 5.5, 5.6, and 5.7 show results for various values of ε1, ε2, and m. In Figure 5.6 we have

ε1 = 10−2 and ε2 = 10−4 with m = 1, 2, 3, and 4. In Figure 5.7 we have ε1 = 10−6 and ε2 = 10−8

with m = 2, 3, 4, and 5.
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Figure 5.5: Solution, numerical and exact, on computational domain, with ε1 = ε2 = 10−8 and three sine

iterations.
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Figure 5.6: Log-log plot of maximum absolute error, with ε1 = 10−2, ε2 = 10−4 and various sine trans-

formations.
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Figure 5.7: Log-log plot of maximum absolute error, with ε1 = 10−6, ε2 = 10−8 and various sine trans-

formations

A number of things are evident from these results. Most obviously, we see spectral accuracy for

both sets of perturbation parameters. In Figure 5.6 we see that additional sine iterations (beyond

m = 1) actually result in higher error. The reason for this, as discussed earlier, is most likely due to

larger errors in the interior of the computational domain. For the second case, as seen in Figure 5.7,

we see that for most values of N the error is not too sensitive to additional sine transformations.

However, if one were to use only one sine transformation in the second case, the error would be

much larger for all values of N (not shown). This implies that a general rule of thumb in deciding

the number of sine transformations is sufficient in producing results that are reasonably close to

optimal results.

5.4 Method/Implementation Comparison to Chen et al.

In a recent paper by Chen, Wang, and Wu [16], a spectral collocation method for solving coupled

systems of singularly perturbed boundary value problems is developed. This method, the RSC-

sinh method, involves mapping the Chebyshev points to a set of transformed points which are

determined by the coupling present in the system and the value of ε. The method then employs

rational interpolation and the differentiation matrices from rational interpolants in barycentric form

(the same as those mentioned earlier in this thesis).

In their results, the authors also implement the BLRSC method, although without much explana-

tion and in a way which is not optimal. After reproducing results from their first numerical example,
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the maximum absolute error in the BLRSC method was lower than reported in their paper, espe-

cially for smaller values of ε. This was partially due to their use of an inappropriate number of sine

transformations for certain perturbation parameters (for example, with ε = 10−8 they only used one

sine transformation). Another reason for the smaller error in our examples is perhaps due to better

implementation in Matlab. Specifically, this may be the result of how the differentiation matrices are

constructed, since the difference was most noticeable for small values of ε and large values of N .

Figures 5.8, 5.9, and 5.10 show the first three cases of example one in [16], where ε =

10−6, 10−8, and 10−12. The error for their RSC-sinh method has been read off the graphs in their pa-

per (as this was the only form it is given in), and thus is only approximate. Even if only approximate,

it is useful in seeing the true relative error between methods these two methods.
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Figure 5.8: Semi-log plot (in the vertical axis) of maximum absolute error, with ε1 = ε2 = 10−6 and one

sine transformation.
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Figure 5.9: Semi-log plot (in the vertical axis) of maximum absolute error, with ε1 = ε2 = 10−8 and two

sine transformations.
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Figure 5.10: Semi-log plot (in the vertical axis) of maximum absolute error, with ε1 = ε2 = 10−12 and

two sine transformations.

Additionally, [16] failed to mention the major upsides of the BLRSC method, most notably its

ease of implementation and flexibility. For their method, special attention needs to be given to the

type of coupling in the system of BVPs. For the BLRSC method, it can handle any type of coupled

system of BVPs, with convective and/or reactive coupling without any changes required. Also,
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there is no need to know anything about the boundary layer or location. As well, it is extremely

computationally efficient. Also, the RSC-sinh method presented in the paper by Chen et al. does

not allow for different values of εj , the perturbation parameter, which (according to certain papers

in the literature) seems to be an important feature of these coupled systems and their relation to

real world examples. The BLRSC method does allow for different values of εj .



Chapter 6

Coupled System of Singularly
Perturbed Nonlinear BVPs

In this chapter we briefly investigate nonlinear systems of singularly perturbed BVPs. One differ-

ence from the previous chapter is the greater variety of nonlinear second order BVPs. This means

that the calculations for the coordinate stretching transformation will need to be done on a case by

case scenario. Additionally, these results are simply to prove that the BLRCS method is applicable

to nonlinear systems; they do not represent an optimal implementation of the method.

6.1 Method

Here, we simply extend the method described in the previous chapter and apply it to nonlinear

systems. The coordinate transformation will largely remain the same, but with the details of the

coordinate transformation being dependent upon the specific system being considered. We will

employ Newton’s method to resolve the nonlinearity. Specifically, once the original problem has

been transformed to the appropriate domain of x ∈ [−1, 1] (if necessary) and the appropriate sine

transformations applied to the equation (as described at the beginning of the previous chapter), we

will compute the Jacobian. We define our system (which is now in v(y) after the sine transforma-

tions) as follows, temporarily writing the two functions v1 and v2 as v and w, where ~V = [v w]T :

G = ε1v
′′ + f1 (v′, w′, v, w, y, ε1, ε2)

H = ε2w
′′ + f2 (v′, w′, v, w, y, ε1, ε2) .

(6.1)
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Replacing the derivatives with differentiation matrices we have

G(v, w) = ε1D
(2)v + f̃1 (Dv,Dw, v, w, y, ε1, ε2)

H(v, w) = ε2D
(2)w + f̃2 (Dv,Dw, v, w, y, ε1, ε2) .

We then define our Jacobian as

J =


∂Gi
∂vj

∂Gi
∂wj

∂Hi

∂vj

∂Hi

∂wj


where vj = v(yj) and wj = w(yj). We can thus state Newton’s method as

~V new = ~V old − J−1[G H]T . (6.2)

We define our stopping criterion as

‖~V new − ~V old‖2 ≤ tol

where tol is a user defined tolerance.

It was found that this method did not always converge for certain problems. Therefore, we use

a slightly modified version of Newton’s method as follows

~V new = ~V old − αJ−1[G H]T (6.3)

where 0 < α ≤ 1. As discussed in [29] and [32], this is simply taking a smaller step length.

Although more sophisticated methods exist for calculating an optimal step length, here we use a

simple backtracking method when needed (see [29], [32]). Thus, convergence rates are not always

optimal (in the sense of speed of convergence).

6.2 Numerical Results

6.2.1 Example 1, Modified Burgers’ Equation

We slightly modify the Burgers’ equation example from [34] to obtain
ε1u
′′
1(x) + u1(x)u′1(x) + u2(x)− tanh

(
x

2ε2

)
= 0

ε2u
′′
2(x) + u2(x)u′2(x) + u1(x)− tanh

(
x

2ε1

)
= 0

(6.4)
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where

x ∈ (0, 1), u1(0) = u2(0) = 0, u1(1) = u2(1) = tanh(1/(2ε)).

For this example, we have an exact solution which is

u1(x) = tanh

(
x

2ε1

)
, u2(x) = tanh

(
x

2ε2

)
.

In this example, we take ~u0 = 1 as our initial guess. For this system, α = 1 is acceptable and a

tolerance of 10−10 is used. In Table 6.1 and Figures 6.1 and 6.2, we see the spectral accuracy of

our results.

Table 6.1: Error in Numerical Results, Example 1

ε1 = 10−4, ε2 = 10−6 ε1 = 10−6, ε2 = 10−8

N u1 u2 u1 u2

16 2.74 3.04 1.00 1.00

32 2.43 4.60 2.42 5.26

64 1.19e-02 5.90e-02 3.14e-02 4.02e-02

128 8.36e-05 1.21e-03 9.15e-04 5.60e-03

256 7.93e-09 2.00e-07 1.66e-07 5.34e-06

512 1.44e-13 1.38e-11 1.35e-11 1.35e-09

1024 1.89e-13 1.38e-11 1.35e-11 1.35e-09

Absolute maximum error of simple coupled nonlinear system based on Burgers’ equation example from

[34]. For the first case, where ε1 = 10−4 and ε2 = 10−6, two sine transformations are used. For the

second case, three sine transformations are used.
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Figure 6.1: Log-log plot of maximum absolute error, with ε1 = 10−4, ε2 = 10−6, and two sine iterations.
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Figure 6.2: Log-log plot of maximum absolute error, with ε1 = 10−6, ε2 = 10−8 and three sine iterations.
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6.2.2 Example 2, Comparison with Gracia et al.

We now look at an example from [19]ε1u′′1(x)− u1(x) + 1 + (1− u1(x))3 − eu1(x)−u2(x) = 0

ε2u
′′
2(x)− u2(x) + 0.5 + (0.5− u2(x))5 − eu2(x)−u1(x) = 0

(6.5)

where

x ∈ (0, 1), ~u(0) = ~u(1) = 0.

For this example, we do not have an exact solution. Instead, we look at the differences between

solutions at successive values of N , as was done in [19]. This is a different way of dealing with

no exact solution than was done previously; it was done intentionally to more closely mimic the

procedure in [19]. For N = 16, 32, 64, . . . , 1024, we interpolate the solution at N and then compare

this to the previously computed solution at N/2 at the nodes used in computing the solution at N/2.

We will refer to these differences as ∆EN , such that ∆EN is the maximum absolute error between

solutions computed at N and N/2.

For this example, we need to employ values of α < 1 in order for the Newton iterations to

converge. This makes the convergence much slower and as such we increase our tolerance level

to 10−4. Additionally, we use a continuation approach for our initial guess. More specifically, for

given values of ε1 and ε2, we use a solution to the system with 10ε1 and 10ε2. For ε1 = ε2 = 100,

we use ~u0 = 0 as our initial guess. Although results were obtained using ~u0 = 0 for all values of

ε1, ε2, these took a very long time to converge, especially for ε1,2 � 1

Comparing our results against those of [19] was somewhat difficult in that they do not report a

specific perturbation parameter for their error. Since they are looking more at convergence rates,

they give their error as a maximum over a set of perturbation parameters which are, approximately,

100 ≤ ε1 ≤ 10−9 and 100 ≤ ε2 ≤ 10−5. As such, two cases were looked at here for comparison.

In the first case, we use ε1 = 10−4, ε2 = 10−2. In the second case, we use ε1 = 10−9, ε2 = 10−5.

The second case is roughly a worst case scenario, and thus most comparable to results in [19]. In

Figure 6.3 we see the solution profile for the first perturbation parameters. In Figures 6.4 and 6.5

we see the error for the first and second case respectively.



CHAPTER 6. COUPLED SYSTEM OF SINGULARLY PERTURBED NONLINEAR BVPS 56

0 0.5 1

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Physical

x

 

 

u
1

u
2

0 0.5 1

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Computational

y

Figure 6.3: Solution profile on physical and computational domains with ε1 = 10−2 and ε2 = 10−4, one

sine iteration and N = 128.
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Figure 6.4: Log-log plot of maximum absolute error between successive solutions, with ε1 = 10−2 and

ε2 = 10−4 and one sine iteration.
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Figure 6.5: Log-log plot of maximum absolute error between successive solutions, with ε1 = 10−9 and

ε2 = 10−5 and one sine iteration.

As can be seen in Figure 6.5 and 6.4, the BLRSC method is able to achieve much more accurate

results for larger N . However, there are a few things to note. Firstly, results in [19] were obtained

using far fewer iterations of the Newton’s method. Our method requires step sizes smaller than one

for many iterations and thus the convergence of the Newton iteration is slow. A more sophisticated

method of choosing the step size would help improve this; also, a different method of solving the

nonlinear equations may be more appropriate. Additionally, it appears that more sine transforma-

tions exacerbated the issues with the convergence of Newton’s method. Thus, for the second case

in example two, even with relatively small values of ε1 and ε2, only one sine transformation is used.

Despite these shortcomings, the results for both examples one and two do show that the BLRSC

method is applicable to singularly perturbed systems of nonlinear BVPs.



Chapter 7

Conclusion

This investigation has produced several interesting findings. First, the FH interpolants have been

demonstrated to be excellent in interpolation and differentiation and, in conjunction with the BLRSC

method, can be useful in solving singularly perturbed BVPs. Perhaps the numerical issues encoun-

tered with this FH method reduces its utility (in the sense of minimizing max-norm error) in solving

singularly perturbed BVPs; but, it does provide greater flexibility in choosing collocation points.

Also, especially for larger perturbation parameters, the FH method seems to be viable and compet-

itive (compared to the standard Chebyshev method).

Second, in looking at the coupled systems of singularly perturbed BVPs, the BLRSC approach

seems to be an excellent method, given its ease of implementation, efficiency in computation

speeds, and ability to deal with a wide variety of systems with solutions having boundary layers,

including different perturbation parameters. Not only does it outperform the methods based on

Shishkin meshes and finite difference schemes in terms of absolute maximum error, but it is also is

very competitive compared to other specialized spectral methods, such as the RSC-sinh method.

A number of avenues are available for future work. The first is to further test the FH inter-

polation method in solving coupled systems of BVPs. Along this vein, one can also improve the

BLRSC method by incorporating greater adaptivity– by automatically choosing the number of sine

transformations based on the value of ε and N . Perhaps, one could even automate which type of

interpolation to use, depending on the blending parameter, the value of N , and the perturbation

parameter. Finally, more work needs to be done with the nonlinear systems, particularly with how

the nonlinear equation is solved.
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Appendix A

Supplemental Mathematical Material

A.1 Lebesgue Constant

In a basic sense, the Lebesgue constant provides an error bound or condition number for linear

interpolants (polynomial, rational, etc.) as will be shown. Given the set of n + 1 distinct nodes

a = x0 < x1 < · · · < xn−1 < xn = b in the interval x ∈ [a, b] and their corresponding values

f(x0), f(x1), . . . , f(xn), we define the interpolant g(x) in terms of the Lagrangian polynomials

lj(x) =

n∏
i=0
j 6=i

x− xi
xj − xi

as

g(x) =

n∑
j=0

lj(x)f(xj).

As such, we can define the Lebesgue function associated with the function g(x) as

Λn(x) =

n∑
j=0

|lj(x)|

and the Lebesgue constant as

Λn = max
a≤x≤b

Λn(x).

As mentioned in Bos et al. [13], if every f(xj) value is given an absolute error or perturba-

tion of at most ε, then the maximum distance between the perturbed interpolated data h(x) and

unperturbed interpolated data g(x) in the interval [a, b] is bounded as

max
a≤x≤b

|h(x)− g(x)| ≤ εΛn(x).

Since g(x) is linear, and since Λn is an upper bound on the amplification error, the Lebesgue

constant is also the condition number for the interpolation.
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A.2 Condition Number

The condition number of a matrix gives an indication of how accurate or inaccurate a solution will be

due to loss of precision or rounding error in matrices. The condition number of a matrix A ∈ Cm×n,

κ(A) is given as:

κ(A) = ‖A‖‖A−1‖

and can alternatively be given in terms of the singular values (as the ratio of the largest to the

smallest singular values) if one uses the 2-norm. In this thesis, the 2-norm is used.

Computations with a matrix that is ill-conditioned (κ(A) is “large”) can be very sensitive to per-

turbations, i.e. it can cause large errors in solving the system Ax = b. However, the condition

number is an upper bound for amplifications of such errors; as such, actual computations may yield

smaller errors.



Appendix B

Numerical Stability Considerations

B.1 Considerations for Differentiation Matrices

B.1.1 General Differentiation Matrices

One important numerical implementation consideration of these formulas, as noted by Baltensperger

in [3], is (for the diagonal elements) to sum the terms from least to greatest, in absolute value; this

is sometimes referred to as the negative sum trick, or NST, with sorting. This avoids “smearing”, or

cancellation, errors.

B.1.2 Chebyshev Differentiation Matrices

The formulas for the Chebyshev differentiation matrix are:

Dij =
ci
cj

(−1)i+j

xi − xj
, i 6= j (B.1a)

Dii = − xi
2(1− x2i )

, i 6= 0, N (B.1b)

D00 = −DNN =
2N2 + 1

6
. (B.1c)

where

xj = cos

(
πj

n

)
, j = 0, 1, . . . , N

One way to improve the stability, and to slightly reduce the computations needed in implemen-

tation, is to use the symmetry of the matrix

DN−i,N−j = Di,j .
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Also, as mentioned before, one can also use the identity

Dii =

N∑
j=0
j 6=i

Dij .

Finally, one can use the definition of the Chebyshev points and trigonometric identities to trans-

form the above equations to

Dij =
ci
cj

(−1)i+j

sin ((i+ j)π/(2N)) sin ((i− j)π/(2N))
.

As mentioned in [34], computing the upper left hand section of the differentiation matrix, then using

the symmetry property to compute the other part is more efficient and more accurate. However,

the benefit, in terms of greater accuracy, only appears for relatively large values of N . In [12] it is

shown that it is best to use the original formulas, Equation B.1b and the negative sum trick.

B.2 Other Numerical Considerations

B.2.1 Summing Large Numbers

As mentioned before, one of the main tricks is to sum numbers from smallest to largest (in absolute

value). This avoids smaller numbers being ignored if very large numbers appear first.

When calculating the FH weights for large N , especially when using the Chebyshev points, the

weights become extremely large. For certain values of d, they produced values of±Inf in Matlab. To

avoid numerical errors, a number of tricks were employed to make the calculations more accurate.

In some cases this resulted in much smaller values, values which Matlab could calculate. One

technique, recommended by Piers Lawrence, is to use logarithms to avoid multiplication of large

numbers. Instead of multiplication, one can sum (using ordering again) the log of each number and

then exponentiate this sum, as seen below

N∏
i=0

αi = e
∑N

j=0 log(αj).
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