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ABSTRACT

Neutropenia is a blood disorder characterized by low levels of neutrophils and is a common

side effect of chemotherapy. Administration of granulocyte-colony stimulating factor (G-CSF)

is a typical treatment that helps stabilize the level of neutrophils. However, it is not known

if changes to the frequency and dosage of administered G-CSF will lead to better treatment.

We analyze a nonlinear hyperbolic system of coupled integro-differential equations aimed at

quantifying the effect of treatment plans on patients with chemotherapy-induced neutropenia.

We show how this age-structured model can be decoupled for short time. We then investigate

the equivalence of an integral equation with a related nonlinear PDE and prove existence and

uniqueness of solutions of the integral equation. This is used to finally demonstrate existence

and uniqueness of solutions to the full PDE system.

Keywords: neutropenia; hyperbolic partial differential equations; age-structure models
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Chapter 1

Introduction and Motivation

This thesis is concerned with the well-posedness of a mathematical model of a particular blood

disorder. We focus on some theoretical results of this model, which consists of a system of

nonlinear hyperbolic integro-differential equations. This model was developed by C. Foley [5]

to describe various cell populations in an individual with chemotherapy-induced neutropenia.

Each dependent variable in the system represents a density of some cell type. The coupling

between components of the system, along with the nonlocal nature of the partial differential

equation (PDE), renders establishing existence and uniqueness of solutions challenging. These

challenges are typical of age-structured population models.

We start this chapter by investigating a much simpler population model. Let us first

examine a single population whose total population at time t is given by P (t). Velhurst in [16]

used the following model to describe the growth of the population P (t):

dP

dt
= rP

(
1−

P

K

)
, P (0) = P0.

Here K is the so-called carrying capacity and r is related to the growth rate of the population.

This model assumes all individuals are identical and that the rate of growth of the population

is related to the total population as well as to the amount of available resources. We can solve

the ODE exactly:

P (t) =
KP0e

r t

K + P0 (er t − 1)
, for t ≥ 0.

We see that in the limit as t →∞ we have

lim
t→∞

P (t) = K.

It is clear now why K is called the carrying capacity: for any starting value of P (t) we see that

the population will tend toward the steady state K. This is the stable size of the population.

Unfortunately, the model assumption that all individuals are identical is too strong for our
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context. We will be examining populations of cells whose death rate and ability to reproduce

is dependent on their level of maturation. A model which takes into account the influence of

maturation is said to have age-structure.

1.1 Age-Structured Populations

Let us examine a population divided into n classes and follow their dynamics at discrete points

in time, 0,∆t, 2∆t, . . . . Let ui(t) denote the amount of individuals of class i at time t. The

population of individuals in all classes at time t can be represented as the vector

~u = (u1(t), u2(t), . . . , un(t))T .

Between every two states we define a probability, pi j , of an individual changing from some

state j to state i . Similarly let bi j denote the amount of offspring of state i from state j .

Generally pi j , bi j can be time dependent. See Figure 1.1 for an illustration of the notation.

Letting P = (pi j) and B = (bi j) we can write the following update formula for ~u:

~u(t + ∆t) = (P + B)~u.

The Leslie matrix model has particularly simple forms for P and B:

~u(t + ∆t) =



0 0 · · · 0 0

p21 0 · · · 0 0

0 p32 · · · 0 0
...

...
. . .

...
...

0 0 · · · pn,n−1 0


~u +



b11 b12 · · · b1,n−1 b1,n

0 0 · · · 0 0

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0


~u.

1 2 3
p21

b11

p32

b12

b13

Figure 1.1: Simple state diagram for a population of 3 states demonstrating notation.

In this model individuals in each state produce offspring of state 1 and only transition to
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‘older’ states. The long term behavior of this model can be investigate by looking at the

spectral properties of the matrix (P + B). If we examine the number of individuals that do

not survive transitioning to state j + 1 from j per unit time, ∆t, we see that:

uj(t)− uj+1(t + ∆t)

∆t
=
uj(t)− pj+1,juj(t)

∆t
,

=
1− pj+1,j

∆t
uj(t).

Recall that pj+1,j is the probability that an individual survives transitioning from state j to

j + 1, the quantity 1− pj+1,j is the probability that an individual does not survive this process.

It is not difficult to see that we can arrive at a continuum model by taking appropriate limits.

This limiting process can be seen in Chapter 2 of the text [3].

Some of the earliest and most referenced work on continuum age-structured models can

be seen in [6] where population models of the following form were studied:

∂ρ

∂t
+
∂ρ

∂a
+ λ(a, P (t))ρ(t, a) = 0, (t, a) ∈ R+ × R+, (1.1a)

ρ(t, 0) =

∫ ∞
0

β(a, P (t))ρ(t, a) da, t > 0, (1.1b)

ρ(0, a) = ρ0(a), 0 ≤ a ≤ ∞, (1.1c)

P (t) =

∫ ∞
0

ρ(t, a) da, t ≥ 0. (1.1d)

This integro-PDE, referred to in this thesis as the Gurtin-MacCamy model, is defined for

(t, a) ∈ R+ ×R+ where a represents an individual’s age and t represents time. The unknown

function ρ(t, a), which we will refer to as the population density, represents the number of

individuals of age a at time t. The total population, P (t), takes the form of an integral of the

density ρ(t, a) with respect to age. It is reasonable to assume that the number of individuals in

a population that die and reproduce are dependent on the amount of resources available, which

will depend in turn on the total population. We see that the total population, P (t) appears

in Equation (1.1a) and Equation (1.1b) as arguments for the functions λ(a, P ) and β(a, P )

respectively. The term λ(a, P (t)) is referred to as the death modulus. Similarly, β(a, P (t)) is

called the birth modulus.

Equation (1.1b) is called the renewal equation. The number of offspring of age zero is

assumed to be well modeled by a weighted average, with weights given by the birth modulus

of the population density ρ(t, a). We note that this boundary condition for ρ(t, 0) is unusual

as it is not known a priori. It is unclear whether such a boundary condition makes sense in a

mathematical context, and we investigate this issue for a specific system.

The existence of solutions to Equations (1.1) is established in [6] by the use of a fixed

point argument on a related integral formulation of the problem. Defining B(t) := ρ(t, 0),
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the integral formulation in [6] is given by the following coupled integral equations

P (t) =

∫ t

0

K(t − a, t;P )B(a) da +

∫ ∞
0

L(a, t;P )ρ0(a) da

B(t) =

∫ t

0

β(t − a, P (t))K(t − a, t;P )B(a) da

+

∫ ∞
0

β(a + t, P (t))L(a, t;P )ρ0(a) da

where K and L are smooth kernels related to the death modulus of (1.1).

In this thesis we will provide a similar treatment of a mathematical model of chemotherapy-

induced neutropenia. However, our model does not fall into the form of Equations (1.1).

Many generalizations of the Gurtin-MacCamy model have been proposed, see [4][8][13][14].

In [8], models of the following form are studied:

∂ρ

∂t
+
∂

∂a
(V (t, a)ρ) = G(ρ(t, ·))(a), a ∈ [0, l), 0 ≤ t ≤ T, (1.2a)

V (t, 0)ρ(t, 0) = C(t) + F (ρ(t, ·)), 0 ≤ t ≤ T, (1.2b)

ρ(0, a) = ρ0(a), a ∈ [0, l). (1.2c)

By G(ρ(t, ·)(a) we mean that for a fixed a and t, G is a functional over the variable suppressed

by (·). If we let:

F (ρ(t, ·)) =

∫ l

0

β(a, P )ρ(t, a) da, G(ρ(t, ·))(a) = −λ(a, P (t))ρ(t, a), V (t, a) ≡ 1,

with P (t) =
∫ l

0 ρ(t, a)da, we arrive at the Gurtin-MacCamy model (1.1) for populations with

finite age l . Compared to the Gurtin-MacCamy model, (1.2) allows more general forms of the

death and birth terms as well as allowing for variable maturation rates.

The population model given by (1.2) is for a single population in the domain [0, l)× [a, T ]

and has a forcing term C(t) in the renewal equation (1.2b). Solutions of (1.2) are shown to

exist in [8] for short time under suitable assumptions on the functions F,G, V and C.

Another generalization of the Gurtin-MacCamy model can be seen in [14]. A time lag

between conception and birth is allowed, denoted as τ ≥ 0, which gives the following form for

the renewal equation:

ρ(t, 0) =

∫ l

0

β(a, P (t − τ), t − τ)ρ(t − τ, a) da. (1.3)

Here the populations are assumed to have a finite age l and the birth modulus is a function of

the total population τ units of time in the past. An integral formulation of the population model
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is derived in [14], though the time lag, τ , introduces challenges. Again, existence of solutions

to the time lag model is proved using a fixed point argument. Of particular interest is the

existence of periodic solutions, as they represent a limiting behavior of a population. Whether

models with a renewal equation of the form (1.3) admit periodic solutions is investigated and

answered by Swick in [15].

Another form of time delay in the renewal condition is explored in [4] where averages over

past information are used. The renewal equation is as follows:

ρ(t, 0) =

∫ ∞
0

∫ 0

−r
β(a, P (t + s))ρ(t + s, a) dsda, t > 0, (1.4a)

ρ(s, a) = φ(s, a), s ∈ [−r, 0] ≥ 0, (1.4b)

We see that instead of simply integrating over age as in (1.1), we have an additional integral

which takes into account the past total population up to r units of time. This same model

is put into a semigroup framework in [12], similar to the treatment in Chapter 2 of the

text [17]. This renewal equation is generalized for multiple populations . A model for multiple

populations with delays similar to (1.4a) is explored in [13]. Once again, existence of solutions

to this system is proved through a fixed point argument on a related integral operator.

As these models are aimed to quantify the behavior of populations, numerical methods

to compute solutions are of interest. Various numerical methods have been developed to

compute solutions of age-structure models. An upwinding scheme in [9] is shown to be stable

and convergent under suitable assumptions on the data. Both discontinuous and continuous

finite element methods have been employed in [10] and [11] respectively on an age-structured

model. In summary, many generalizations of the Gurtin-MacCamy model have been studied.

The common strategy for showing existence of solutions to these models is to formulate an

integral operator related to the original PDE. These integral operators are then shown to admit

a fixed point, under suitable assumptions, which are related to solutions of the PDE. We will

employ similar techniques to an age-structured model, which does not fall into the above

categories of models, aimed at quantifying treatment of chemotherapy-induced neutropenia.

1.2 Background: Neutropenia

White blood cells are vital to the immune system. Neutrophils are the most common type of

white blood cell in the innate immune system, sometimes referred to as the first line of defence.

Cyclical neutropenia is a hematological disease that prevents neutrophils from maintaining a

constant cell count. The oscillatory behavior seen in individuals with the disease prevents the

immune response from functioning properly. This disease, although rare, is the subject of a

large amount of research.
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Altering the rate of cell death of the neutrophils, as achieved with treatments of granulocyte

colony stimulating factor (G-CSF), is one method of attempting to stabilize the neutrophil

count. Effective usage of G-CSF requires treatment some time after the neutrophil count

starts to decline. The period between injections of G-CSF should be chosen to minimize

oscillations and consequently stabilize the neutrophil count.

The aim of the mathematical model of chemotherapy-induced neutropenia developed by [5]

is to predict the influence of G-CSF treatment on the relevant cell populations. The model

consists of five cell compartments each governed by a PDE. The cell compartments are as

follows: resting stem cells, proliferative stem cells, proliferative precursor cells, non-proliferative

precursor cells, and neutrophils. We discuss this model in detail in the following chapter, and

examine its well-posedness in subsequent chapters.

1.3 Goals

The main focus of this thesis is to establish existence and uniqueness of solutions to an age-

structured model developed by C. Foley in [5]. There is also some investigation of steady

states of the model. Chapters 3 and 4 are novel contributions.

This thesis is arrange as follows.

• Chapter 2 - Overview of chemotherapy-induced neutropenia and the important biological

processes involved in the PDE model. Steady states of system are investigated.

• Chapter 3 - An analytical look at the PDE model. A method for decoupling the system

for short time is derived. This is a novel contribution.

• Chapter 4 - The existence and uniqueness of solutions to the full PDE model for global

time is established. This is a novel contribution.

• Chapter 5 - A summary of the work in this thesis, possible future work.
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Chapter 2

Mathematical Model

In this chapter, we investigate a mathematical model of chemotherapy-induced neutropenia.

We begin by introducing the biological factors of the production of neutrophils that are im-

portant to capture in the modeling process. We then introduce a model, developed in [5],

that captures the dynamics of the neutrophils and G-CSF concentration seen in patients with

chemotherapy-induced neutropenia. We then end the chapter by examining steady states of

the PDE system.

2.1 Biology of Neutropenia

The number of neutrophils, the most common type of white blood cell, can reach dangerously

low levels when patients undergo chemotherapy. The pathological state of low levels of neu-

trophil counts is referred to as neutropenia. Granulocyte-colony stimulating factor (G-CSF)

is produced naturally in the body and stimulates the production of neutrophils in bone mar-

row. For this reason, G-CSF is a common treatment for chemotherapy-induced neutropenia

and cyclical neutropenia (CN). Periodic subcutaneous (under the skin) injections of G-CSF

have been shown to help stabilize levels of neutrophils in individuals with CN. However, these

injections can be very expensive ($45, 000 a year for a 70kg adult given daily injections [5]).

Changing the dosage and period between injections might lead to better, cheaper treatment

plans. For patients who undergo chemotherapy, two forms of G-CSF are used for treatment:

filgrastim (daily doses) and pegfilgrastim (one time dosage per chemotherapy cycle).The de-

sire for better treatment is a leading motivator for quantifying the effect of G-CSF on the

population of neutrophils.

The production of blood cells, called hematopoiesis, takes place in the bone marrow.

Stem cells in the bone marrow can differentiate (change cell types) into many types of cells,

including neutrophils. We are mainly interested in how the concentration of G-CSF affects

the following processes: differentiation of hematopoietic stem cells (HSCs) into neutrophils
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as well as the creation of HSCs through proliferation and replication. HSCs that have begun

the differentiation process and have yet to become a mature neutrophils are called neutrophil

precursors. These cells mature and divide at a rate dependent on the G-CSF concentration.

The time the neutrophil precursors take to become mature neutrophils is called the transit

time. The HSCs that do not differentiate into neutrophils enter the proliferative cycle and

either die or produce two daughter HSCs.

2.2 Mathematical Model

The mathematical model developed by C. Foley in [5] tracks the population of five different

types of cells. In addition to the total population of these cells, we are interested in their age

distribution. The independent variables in this model are time and age, denoted as t and a

respectively. The types of cells in the model are the following:

• Proliferative stem cells, denoted m(t, a),

• Resting stem cells, denoted s(t, a),

• Proliferative precursor cells, denoted p(t, a),

• Non-proliferative precursor cells, denoted n(t, a),

• White blood cells, denoted w(t, a).

Note that the neutrophil precursor cells are split into two kinds: proliferative precursor cells,

p(t, a), and non-proliferative precursor cells, n(t, a). The total populations of all five types

of cells can be represented as integrals over age. We denote the total populations of the five

different cells as follows:

M(t) =

∫ τs

0

m(t, a) da, S(t) =

∫ ∞
0

s(t, a) da, P (t) =

∫ τp

0

p(t, a) da,

N(t) =

∫ τn

0

n(t, a) da, W (t) =

∫ ∞
0

w(t, a) da.

Note that the integrals have different limits of integration depending on the type of cell. Cell

types m, p, n have a finite terminal age (τs , τp, and τn respectively) while cells of types s, w

can be of any age. The amount of circulating G-CSF is denoted as G(t).

The model assumptions given by [5] can be summarized by the following:

• Apoptosis (cell death) takes place in every type of cell, except the resting stem cells

(s(t, a)), and is affected by the amount of circulating G-CSF. For cell compartments

8



i = m, p, n the apoptosis rate has the form:

γi(G(t)) =
(
γmini − γmaxi

) G(t)

8
+ γmaxi .

This is a decreasing linear function of the argument G(t). The higher the G-CSF

concentration, the lower the apoptosis rates. The apoptosis rate of the neutrophils, γw
is assumed to be constant.

• Cell maturation is assumed to be constant in all cell types except the non-proliferative

precursor cells, n(t, a), where the maturation rate is assumed to have the form:

Vn(G(t)) = (Vmax − 1)
G(t)

G(t) + bv
+ 1.

The maturation rate of the non-proliferative precursors becomes larger as the G-CSF

concentration increases. This insures that the transit time decreases as G-CSF increases.

This function is bounded between 1 and Vmax . The parameter bv > 0 determines how

quickly the function Vn(G(t)) saturates to the fastest maturity rate, Vmax .

• Resting stem cells can reenter proliferation at a rate of β(S) or differentiate into prolifer-

ative precursor cells at a rate of δ(W ). These functions are assumed to be Hill functions

of the following forms:

β(S) = k0
θ2

2

θ2
2 + S2

, and δ(W ) = f0
θ1

θ1 +W
.

Note that β(S) is a decreasing function of S. More resting stem cells, s(t, a), enter

the proliferation cycle if their number is low. The function β(S) is bounded above by

k0 which means k0 is the highest rate at which resting stem cells reenter proliferation.

Similarly, for δ(W ), the rate that HSCs enter the neutrophil line increase when the

neutrophil count is low and is bounded above by f0.

• Proliferative stem cells, m(t, a), exiting the proliferation phase, m(t, τs), split into two

daughter cells and become resting stem cells, s(t, 0).

• The number of cell divisions between the proliferative precursor compartment and the

non-proliferative precursor compartment is assumed to have the form:

A(G(t)) = (Amax − Amin)
G(t)

G(t) + bA
+ Amin.

Here A(G(t)) is an increasing function of G-CSF. Higher amounts of circulating G-CSF

increases the number of cell divisions in the neutrophil line.
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The PDE governing these cells and their interactions is the following age-structured population

model

∂m

∂t
+
∂m

∂a
= −γs(G(t))m, t > 0, a ∈ [0, τs ], (2.1a)

∂s

∂t
+
∂s

∂a
= −δ(W )s − β(S)s, t > 0, a ∈ [0,∞), (2.1b)

∂p

∂t
+
∂p

∂a
= −γp(G(t))p, t > 0, a ∈ [0, τp], (2.1c)

∂n

∂t
+ Vn(G(t))

∂n

∂a
= −γn(G(t))n, t > 0, a ∈ [0, τn], (2.1d)

∂w

∂t
+
∂w

∂a
= −γww, t > 0, a ∈ [0,∞). (2.1e)

with initial and boundary conditions of the form

m(0, a) = φm(a), m(t, 0) = β(S(t))S(t), t > 0, a ∈ [0, τs ], (2.2a)

s(0, a) = φs(a), s(t, 0) = 2m(t, τs), t > 0, a ∈ [0,∞), (2.2b)

p(0, a) = φp(a), p(t, 0) = δ(W (t))S(t), t > 0, a ∈ [0, τp], (2.2c)

n(0, a) = φn(a), n(t, 0) = A(G(t))p(t, τp), t > 0, a ∈ [0, τn], (2.2d)

w(0, a) = φw (a), w(t, 0) = n(t, τn), t > 0, a ∈ [0,∞). (2.2e)

The boundary conditions in the second column of (2.2) are called the renewal equations. The

right hand sides of the renewal equations in (2.2) contain terms which are initially unknown,

e.g. m(t, τs), p(t, τp), n(t, τn). For an illustration of the renewal equations and the coupling

of the system see Figure 2.2.

2.3 Granulocyte Colony Stimulating Factor (G-CSF)

We have yet to describe what governs the level of circulating G-CSF in the blood stream.

Injections of G-CSF are modeled by an input function I(t) for t ∈ [ta, tb]. The dosage of

injection is given by
∫ tb
ta
I(t) dt. We aim to keep track of concentration of G-CSF in the

tissue as well as the circulating concentration. The concentration of G-CSF in the tissue is

denoted X(t) and measured in units of µg/kg (body weight) while the circulating G-CSF in

the blood is denoted G(t) and measured in units µg/mL. These two quantities are coupled

by the following system:

10



dX

dt
= I(t) + kT VBG − kBX, (2.3)

dG

dt
= Gprod +

kBX

VB
− kTG − (γG + σWF (G))G. (2.4)

The subcutaneous injection of G-CSF, I(t), enters the tissue and is absorbed into the

bloodstream at a rate kB. Similarly, the G-CSF in the blood, G(t), is absorbed back into the

tissue at a rate kT . Since X(t) is measured in µg/kg (body weight) and G(t) is measured

in µg/mL the exchange between compartments needs to be scaled by a volume, denoted VB.

Gprod represents the G-CSF naturally produced in the body. The clearance rate of circulating

G-CSF is given by γG + σWF (G). The clearance of G-CSF in the blood stream is modeled

to incorporate two factors: degradation of G-CSF by the kidneys at a rate γG , and binding of

G-CSF to free receptors on neutrophils. An illustration of the coupling between the levels of

G-CSF in the tissue and blood can be seen in Figure 2.1.

Note that the right hand side of (2.4) depends on the number of neutrophils, W (t). The

parameter σ and the function F (G) are assumed to be nonnegative; thus the term −σWF (G)

is always nonpositive.

The terms −σWF (G)G and −γGG (from (2.4)) both cause exponential decay in the

amount of circulating G-CSF. This term will not change the overall dynamics of the G-CSF

concentration as it will only further stabilize G(t). In this thesis, we will assume G(t) is given,

continuous, and uncoupled from W (t).

2.4 Equilibrium Age Distributions

It is of interest to know the possible steady states of the PDE system (2.1), if any. In this

section, assuming parameter values from Foley [5], we show the existence of two possible

steady states. One of these is the trivial case where all cell compartments are empty. Showing

the existence of a unique nontrivial steady state is a relatively straightforward calculation.

Some details are omitted from the algebra for the sake of readability.

In the steady state, all parameters and cell compartments will be independent of time. We

use the notation s̃(a) to denote the cell density s(t, a) in steady state, i.e., s̃ = limt→∞ s(t, a).

Similarly, let m̃, p̃, ñ, and w̃ denote the steady states of their respective cell densities. Further-

more, we denote G̃ = limt→∞ G(t), Ã = A(G̃), Ṽn = Vn(G̃), and γ̃i = γi(G̃) for i = m, p, n, w .

In the steady state, the total populations of the resting stem cells and the neutrophils (S(t)

and W (t)) will be constant and denoted S̃ and W̃ respectively. In steady state the PDE

11



G(t)Gprod

X(t)

I(t)

σWF (G) + γG

kB kT

Figure 2.1: Schematic of model of Granucolyte-colony stimulating factor (G-CSF). G(t) de-
notes the amount of circulating G-CSF. X(t) denotes the amount of G-CSF in the tissue.
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m(t, a) s(t, a)

p(t, a)

n(t, a)

w(t, a)

2m(t, τs)

γs(G)

β(S)S

β(S) + δ(W )

δ(W )S

A(G)p(t, τp)

γp(G)

n(t, τn)

γn(G)

γw (G)

Figure 2.2: Diagram of cell compartments with renewal equations.The γi represent the apopto-
sis rates of the respective cells. Arrows between compartments represent the renewal equations
given by the system (2.1). The white compartments, m, p, n, represent cells with a terminal
age. Arrows between compartments represent the renewal equations given by the system.
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system (2.1) reduces to the following:

∂am̃ = −γ̃sm̃, m̃(0) = β(S̃)S̃ (2.5)

∂as̃ = −
(
β(S̃) + δ(W̃ )

)
s̃ , s̃(0) = 2m̃(τs) (2.6)

∂ap̃ = −γ̃pp̃, p̃(0) = δ(W̃ )S̃ (2.7)

∂añ = −
γ̃n

Ṽn
ñ, ñ(0) = Ãp̃(τp) (2.8)

∂aw̃ = −γ̃w w̃ , w̃(0) = ñ(τn). (2.9)

Solving the above ODEs and applying the Cauchy conditions give the following forms of

solutions:

m̃(a) = β(S̃)S̃e−γ̃sa, (2.10a)

s̃(a) = 2β(S̃)S̃e−γ̃sτse−(β(S̃)+δ(W̃ ))a, (2.10b)

p̃(a) = δ(W̃ )S̃e−γ̃pa, (2.10c)

ñ(a) = Ãδ(W̃ )S̃e−γ̃pτpe
− γ̃n
Ṽn
a
, (2.10d)

w̃(a) = Ãδ(W̃ )S̃e−γ̃pτpe
− γ̃n
Ṽn
τne−γ̃wa. (2.10e)

Note that these solutions are not explicit since the total population of resting stem cells S̃

appears on the right hand side for the solution of s̃(a). It is also worth noting that the amount

of cells leaving finite age cell compartments is proportional to the amount of cells entering the

compartment. We define πs as the proportion of cells that become resting stem cells after

reentering proliferation. This ratio can be expressed as:

πs := 2e−γ̃sτs .

Similarly we define πw to be the proportion of cells that differentiate from the population of

stem cells and survive to become a neutrophil. This quantity has the expression:

πw := Ãe
−γ̃pτp− γ̃n

Ṽn
τn .

The equations for s̃(a) and w̃(a) become:

s̃(a) = πsβ(S̃)S̃e−(β(S̃)+δ(W̃ ))a (2.11)

w̃(a) = πwδ(W̃ )S̃e−γ̃wa. (2.12)
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Next we integrate s̃(a) and w̃(a) with respect to a to arrive at the equations:

S̃ =
πsβ(S̃)S̃

β(S̃) + δ(W̃ )
, (2.13)

W̃ =
πw
γ̃w
δ(W̃ )S̃. (2.14)

Recall that the functions δ(W̃ ), β(S̃) have the following forms:

β(S̃) := k0
θ2

2

θ2
2 + S̃2

, (2.15)

δ(W̃ ) := f0
θ1

θ1 + W̃
. (2.16)

If we are able to find solutions S̃ and W̃ to (2.13) and (2.14) then from Equations (2.10)

we can construct explicit solutions for the equilibrium age distribution. We show that there

are solutions to (2.13) and (2.14) using the specific forms of β, δ. As mentioned before, there

is a steady state where all compartments are empty which would require S̃ = 0. Assuming

S̃ 6= 0, we can simplify Equation (2.13) to

δ(W̃ ) = (πs − 1)β(S̃). (2.17)

Since both δ(W̃ ) and β(S̃) are positive when S̃ and W̃ are positive, we need πs > 1 for the

above equation to be satisfied and physically relevant. For parameter values from Foley [5],

namely τs = 2.8 and γ̃s = 0.05, we have that πs ≈ 1.7. We can now explicitly solve

Equation (2.14) for S̃ in terms of W̃ ,

S̃ =
γ̃w
πw

W̃

δ(W̃ )
. (2.18)

Substituting (2.18) into (2.14) we get a single equation in terms of W̃ :

δ(W̃ ) = (πs − 1)β

(
γ̃w
πw

W̃

δ(W̃ )

)
. (2.19)

Using (2.15) and (2.16), the reciprocal of Equation (2.19) becomes:

θ1 + W̃

f0θ1
= (πs − 1)−1

(
k0θ

2
2

)−1

θ2
2 +

γ̃2
w

π2
w

(
W̃ (θ1 + W̃ )

f0θ1

)2
 . (2.20)

Equation (2.20) is a fourth degree polynomial in W̃ . We are interested in positive real roots

of this polynomial as they represent the possible limiting levels of neutrophils. Note that the
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right hand side of Equation 2.20 has no linear term and the quadratic, cubic and quartic terms

have positive coefficients. If we expand the above polynomial and move everything to the right

hand side we get:

c4W̃
4 + c3W̃

3 + c2W̃
2 + c1W̃ + c0 = 0 (2.21)

where c4, c3, c2, c1, c0 are combinations of parameters in the model. We know that c4, c3, c2

are positive from Equation (2.20). Furthermore, we know that c1 is negative since the only

linear term in the polynomial comes from the left hand side of Equation (2.20). The constant

term has the form:

c0 =
1

(πs − 1)k0
−

1

f0
.

Substituting parameter values from Foley [5] gives c0 ≈ −1.5 < 0. We emphasize the sign of

the coefficient as the sequence c4, c3, c2, c1, c0 only has one sign change. This is important

because we can claim existence of a unique positive W̃ that satisfies Equation (2.20) by using

Descartes’ Rule of Signs [1]. Descartes’ Rule of Signs states that the number of sign changes

in the sequence of coefficients is an upper bound for the number of positive real roots and it

also states that the difference in the number of sign changes and the number of positive roots

must be even. As there is only one sign change in our polynomial, the number of positive roots

must be one.

The condition c0 < 0 can be rewritten as

πs −
f0
k0
> 1. (2.22)

Note that (2.22) is a necessary and sufficient condition for the existence of a nontrivial steady

state of (2.1). A similar result is available in [5] where the condition

πs −
2f0
k0

> 1 (2.23)

is found to be sufficient for the existence of a nontrivial steady state.
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Chapter 3

Model Decoupling and Solution
Strategy

3.1 Introduction

The mathematical model of chemotherapy-induce neutropenia (2.1) consists of five first order

hyperbolic equations. Neglecting the Cauchy conditions, the PDE governing the cells m, n, p

and w from (2.1) are linear. As these compartments are governed by first order linear hyperbolic

equations, in theory, they can be solved explicitly in terms of their Cauchy conditions. We will

show, for some short time, that enough Cauchy conditions are known initially to solve the linear

equations for m, p, n, w for short time. Using the solutions of m, p, n, w, we can specify the

Cauchy conditions and death modulus for the PDE governing s(t, a). This procedure ensures

we can decouple the PDE system (2.1), at least for short time. The cell compartments with

dependence on other cell densities are shown in Figure 2.2.

3.2 Method of Characteristics

As Equations (2.1) are first order hyperbolic PDE, a natural method to try and solve the

system is the method of characteristics. Consider the following variable aging PDE:

∂x

∂t
+Q(t)

∂x

∂a
= −P (t)x, (t, a) ∈ R+ × [0, τx ]. (3.1a)

x(t, 0) = Bx(t), t ∈ R+, (3.1b)

x(0, a) = φx(a), a ∈ [0, τx ]. (3.1c)

Assuming Q(t) is nonnegative and bounded, recall we can solve Equations (3.1) using the

method of characteristics. Let (t(s), a(s)) denote a curve parameterized by s in the upper
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right quadrant. Then we have

dx(t(s), a(s))

ds
=
dt(s)

ds

∂x

∂t
+
da(s)

ds

∂x

∂a
. (3.2)

If we have

dt

ds
= 1,

da

ds
= Q(t(s)), (3.3)

then we obtain the characteristic equation for x given by

dx

ds
= −P (t(s))x. (3.4)

Solving Equations (3.3) with initial conditions t(0) = t0, a(0) = a0 gives:

t(s) = s + t0, a(s) =

∫ s

0

Q(t(α)) dα+ a0

from which we get

a(s) =

∫ t

t0

Q(α) dα+ a0. (3.5)

From Equation (3.4) we have a solution of PDE (3.1) of the form:

x(s) = x0 exp

{
−
∫ s

0

P (t(α)) dα

}
, (3.6)

where x0 depends on the curve (t(s), a(s)).

Given that our domain is {(t, a)|t ≥ 0, a ≥ 0}, the characteristic curves must originate at

either the t-axis or the a-axis. We define the following sets:

R1 :=

{
(t, a)

∣∣∣∣ a − ∫ t

0

Q(α) dα ≥ 0

}
, R2 :=

{
(t, a)

∣∣∣∣ a − ∫ t

0

Q(α) dα < 0

}
.

The set R1 represents the set of points in the upper right quadrant whose characteristic curves

originate at the a-axis. This can be seen from setting t0 = 0 in Equation (3.5) and enforcing

the resulting a0 to be nonnegative. Similar reasoning can be applied to R2, which represents

the set of points whose characteristic curves originate at the t-axis. Note that if (t, a) ∈ R2

we have a0 = 0 and a unique t0 ≥ 0 that satisfies

a =

∫ t

t0

Q(α) dα, (3.7)

(from the definition of R2 and our assumptions on Q(t) being nonnegative and bounded). This

ensures that characteristics do not cross. We can now write a solution of Equations (3.1) as
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follows

x(t, a) =

φx(a0) exp
{
−
∫ t

0 P (α) dα
}
, (t, a) ∈ R1,

Bx(t0) exp
{
−
∫ t
t0
P (α) dα

}
, (t, a) ∈ R2,

(3.8)

where (t0, a0) satisfy Equation (3.5). We note that (3.8) suggests we can still make sense

of a solution to (3.1) if the data φx , Bx is non smooth. If x(t, a) satisfies (3.8) almost

everywhere we say x(t, a) is a weak solution to (3.1). We will require Bx and φx to be piece-

wise continuous and will call x(t, a) a solution of (3.1) if x(t, a) satisfies (3.8). This notion

of a solution only requires x(t, a) to be smooth along characteristics, not necessarily between

them.

We also note that solutions of (3.1) are unique. To see this, suppose by contradiction

x1(t, a), x2(t, a) are both solutions to (3.1). Letting e(t, a) = x1(t, a)− x2(t, a) we see that

e(t, a) satisfies

de

dt
+Q(t)

de

da
= −P (t)e, (t, a) ∈ R+ × [0, τx ],

e(t, 0) = 0, t ∈ R+,

e(0, a) = 0, a ∈ [0, τx ].

We see that this is of the form (3.1) and hence admits solutions of the form (3.8), which

simply gives e = 0. It follows that x1(t, a) = x2(t, a), a contradiction.

3.3 Decoupled Problem

The cell density s(t, a) is governed by the following PDE:

∂s

∂t
+
∂s

∂a
= − (β(S(t)) + δ(W (t))) s, (t, a) ∈ R+ × R+, (3.9a)

S(t) =

∫ ∞
0

s(t, a) da, t ∈ R+, (3.9b)

W (t) =

∫ ∞
0

w(t, a) da, t ∈ R+, (3.9c)

s(0, a) = φs(a), a ∈ R+, (3.9d)

s(t, 0) = Bs(t) = 2m(t, τs), t ∈ R+. (3.9e)

Here we see that s(t, a) depends only on m(t, a) and w(t, a) explicitly. The renewal equa-

tion Bs(t) is dependant solely onm, and the death modulus depends on s and w . As mentioned

earlier, the PDE governing m and w are linear. We show that we can decouple m(t, a), s(t, a),

and w(t, a), for short time. First we show m(t, a) and s(t, a) can be decoupled. Then we

decouple w(t, a) and s(t, a) using a similar method.
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3.3.1 Renewal Equation

Here we will write Bs(t) from Equation (3.9e) explicitly in terms of φm. We do this by using

the method of characteristics on the linear PDE governing m(t, a) to write out m(t, τs) in

terms of known quantities. The cell density m(t, a) is governed by the following linear problem:

∂m

∂t
+
∂m

∂a
= −γs(G(t))m(t, a), (t, a) ∈ R+ × [0, τs ],

m(t, 0) = Bm(t) = β(S(t))S(t), t ∈ R+,

m(0, a) = φm(a), a ∈ [0, τs ].

From Equation (3.8) we can write the solution for m(t, a) as:

m(t, a) =

φm(a − t) exp
{
−
∫ t

0 γs(G(α)) dα
}
, a − t ≥ 0,

β(S(t − a))S(t − a) exp
{
−
∫ t
t−a γs(G(α)) dα

}
, a − t < 0.

In particular, for 0 ≤ t ≤ τs , we can write the solution of m at its terminal age as

m(t, τs) = φm(τs − t) exp

{
−
∫ t

0

γs(G(α)) dα

}
.

Consequently we can write Bs(t) in Equation (3.9e) explicitly in terms of known quantities

for 0 ≤ t ≤ τs as

Bs(t) = 2m(t, τs) = 2φm(τs − t) exp

{
−
∫ t

0

γs(G(α)) dα

}
.

We define the set:

A1 := {(t, a) | 0 ≤ t ≤ τs , t ≤ a ≤ τs} .

This is precisely the set of points whose characteristic curves originate at the a-axis for the

cell density m(t, a). We can solve for m(t, a) in terms of φm (the initial data) for (t, a) ∈ A1.

We also define the set:

A2 := {(t, a) | 0 ≤ t ≤ τs , a ≥ 0} .

The set A2 is the region where the birth condition for s(t, a) (namely Bs in Equation (3.9e))

is known. An illustration of these sets can be seen in Figure 3.1.
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Bm(t)

t

φm(a) φs(a) aτs

Bs(t)

t

t = τs

m(a, t) s(a, t)

A1
A2

Figure 3.1: Domains for cell densities m and s shown side by side. Resting stem cells (s(t, a))
entering the proliferative phase (m(t, 0)) take τs units of time to become resting stem cells
again ((s(t, 0)).

3.3.2 Death Modulus

The death modulus in Equation (3.9a) is a function of w(t, a) which is initially unknown. In a

similar manner to the preceding subsection, we will use the method of characteristics to build

a solution w(t, a) for short time in terms of known quantities. As was seen in Figure 2.2,

the cells entering the differentiation process from compartment s enter compartment p, then

go to compartment n, and finally enter compartment w . We will show that w(t, a) can be

written in terms of φp and φn for some short time.

Bp(t)

t

φp(a) φn(a) φw aτp

Bn(t)

t

t = τp

A4

A3

p(t, a) n(t, a) w(t)

τn

Bw (t)

t

Figure 3.2: Domains for cell densities p, n and w shown side by side. A4 represents the domain
where n can be solved in terms of φn. Terminal data of p can be used to solve for n in A3.

Recall the entire PDE system given by Equations (2.1). The PDE governing the compart-

ments for p and n are given by

∂p

∂t
+
∂p

∂a
= −γp(G(t)), t > 0, a ∈ [0, τp], (3.11a)

p(0, a) = φp(a), a ∈ [0, τp], (3.11b)

p(t, 0) = δ(W (t))S(t), t > 0, (3.11c)
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and

∂n

∂t
+ Vn(G(t))

∂n

∂a
= −γn(G(t))n, t > 0, a ∈ [0, τn], (3.12a)

n(0, a) = φn(a), a ∈ [0, τn], (3.12b)

n(t, 0) = A(G(t))p(t, τp), t > 0. (3.12c)

Note that Equation (3.12c) depends on the terminal age of cell density p. From Equation (3.8)

we can write the solution of (3.11) as

p(t, τp) = φp(τp − t) exp

{
−
∫ t

0

γp(G(α)) dα

}
, 0 ≤ t ≤ τp. (3.13)

We define the following sets:

A3 =

{
(t, a)

∣∣∣∣a − ∫ t

0

Vn(G(α)) dα ≥ 0, t ≤ τp, a ≤ τn
}
, (3.14)

A4 =

{
(t, a)

∣∣∣∣a − ∫ t

0

Vn(G(α)) dα < 0, t ≤ τp, a ≤ τn
}
. (3.15)

An illustration of these sets can be seen in Figure 3.2.

Equations (3.12) are of the form Equations (3.1) for 0 ≤ t ≤ τp. There exists a solution

to Equations (3.12) for given (t, a) ∈ [0, τp]× [0, τp] of the form:

n(t, a) =

φn(a0) exp
{
−
∫ t

0 γn(G(α)) dα
}
, (t, a) ∈ A3,

A(G(t0))p(t0, τp) exp
{
−
∫ t

0 γp(G(α)) dα
}
, (t, a) ∈ A4,

(3.16)

where (t0, a0) satisfy the following:

a =

∫ t

t0

Vn(G(α)) dα+ a0. (3.17)

We have successfully constructed, albeit in terms of G, a solution n(t, a) for 0 ≤ t ≤ τp.

From Equations (2.1) we can readily see for 0 ≤ t ≤ τp:

w(t, a) =

φw (a − t)e−γw t , a − t ≥ 0,

n(t − a, τn)e−γw (t−a), a − t < 0.
(3.18)

We have shown w(t, a) is dependent only on known quantities up to t = τp. Consequently

the total population of w(t, a),

W (t) =

∫ ∞
0

w(t, a) dα, (3.19)
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is also dependent only on known quantities. As W (t) is known and independent of s(t, a), up

to t = τp, the death modulus of Equation (3.9a) can be thought of as solely dependent on

S(t).

3.3.3 Summary

We have used the method of characteristics on the linear PDE in Equations (2.1) to show

existence of m(t, τs) and W (t) independent of s(t, a) up to time τs and τp respectively. We

now define:

τ = min(τs , τp). (3.20)

For 0 ≤ t ≤ τ we have existence of m(t, τs) andW (t) independent of s. We can then examine

the following system for s where the dependence of m and w are suppressed,

∂s

∂a
+
∂s

∂t
= −λs(S(t))s(t, a), (t, a) ∈ [0, τ ]× R+, (3.21a)

s(t, 0) = Bs(t), 0 ≤ t ≤ τ, (3.21b)

s(0, a) = φs(a), a ≥ 0, (3.21c)

S(t) =

∫ ∞
0

s(t, a) da, 0 ≤ t ≤ τ. (3.21d)

We will refer to this system as the decoupled problem for s. Supposing we can solve the

system (3.21), we can then solve for m(t, a) and p(t, a) for 0 ≤ t ≤ τ using the method

of characteristics. After doing so all five compartments in the model will be known up to

time t = τ . We can then repeat this process using terminal data as initial data and solve for

compartments up to t = 2τ . The next chapter is devoted to proving existence of solutions to

Equations (3.21) and consequently (2.1) .
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Chapter 4

Existence

Typically, first order hyperbolic PDEs have a priori prescribed Cauchy conditions. One of the

main difficulties in working with age-structured models is dealing with a renewal condition that

is dependent on the solution in the domain. Since the solution is not known before hand,

neither is the renewal condition. Solutions for the Gurtin-MacCamy model (see [6]) exist for

suitable conditions on various functions and parameters. The model for chemotherapy-induced

neutropenia developed by C. Foley in [5] is more complex. The PDE system governs five cell

compartments whose renewal conditions are coupled through the birth conditions at a = 0.

Existence of solutions to this PDE system is unknown due to the coupling of the unknown

Cauchy conditions as well as the non-local nature of the death modulus. In this chapter we

prove existence of solutions to the full PDE model (2.1) for global time.

4.1 System

We aim to show existence of solutions to the following equations:

∂m

∂t
+
∂m

∂a
= −γs(G)m, t > 0, a ∈ [0, τs ], (4.1a)

∂s

∂t
+
∂s

∂a
= −δ(W )s − β(S)s, t > 0, a > 0, (4.1b)

∂p

∂t
+
∂p

∂a
= −γp(G)p, t > 0, a ∈ [0, τp], (4.1c)

∂n

∂t
+ Vn(G)

∂n

∂a
= −γn(G)n, t > 0, a ∈ [0, τn], (4.1d)

∂w

∂t
+
∂w

∂a
= −γww, t > 0, a > 0, (4.1e)
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given the initial and renewal conditions:

m(0, a) = φm(a), m(t, 0) = β(S(t))S(t), t > 0, a ∈ [0, τs ],

s(0, a) = φs(a), s(t, 0) = 2m(t, τs), t > 0, a ∈ [0,∞),

p(0, a) = φp(a), p(t, 0) = δ(W (t))S(t), t > 0, a ∈ [0, τp],

n(0, a) = φn(a), n(t, 0) = A(G(t))p(t, τp), t > 0, a ∈ [0, τn],

w(0, a) = φw (a), w(t, 0) = n(t, τn), t > 0, a ∈ [0,∞).

We do this by using the method described in Chapter 3 to decouple the full system (4.1),

leading to the decoupled problem (3.21). In this chapter, we first focus on the decoupled

problem for s(t, a) given by (3.21). We create an integral operator related to (3.21) and

prove it admits a fixed point. This fixed point is then used to create a solution of (3.21),

which is only valid until t = τ , with τ given by (3.20). We then show we can use the solution

of the reduced problem up until t = τ to update the remaining cell compartments. Finally, we

show can repeat this process and build solutions to (4.1) for global time.

Letting A = diag(1, 1, 1, Vn(G(t)), 1), note that (4.1) can be written as

~ut + A~ua = ~f (u, G) (4.3)

where ~u = [m, s, p, n, w ]T . This PDE system is hyperbolic as the matrix A is diagonalizable

with real eigenvalues.

4.2 Existence

In this section we show existence of solutions, s(t, a), to the reduced problem (3.21). The

proof uses a fixed point argument on an integral operator related to Equation (4.1). First we

define the following operator:

Ds(t, a) := lim
h→0

s(t + h, a + h)− s(t, a)

h
.

Note that for s ∈ C1 we have Ds = ∂s
∂t + ∂s

∂a . However, we would like to relax our assumptions

on the regularity of s to allow for more general types of initial data. We require that the

initial data, φi , i = m, s, p, n, w , be piece-wise continuous and integrable on their respective

domains. We will assume this for the remainder of the chapter.
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4.2.1 Integral Equation Formulation

We restate the reduced problem for s(t, a) up to time T .

Ds(t, a) = −λs(S(t))s(t, a), (t, a) ∈ [0, T ]× R+, (4.4a)

s(t, 0) = Bs(t), 0 ≤ t ≤ T, (4.4b)

s(0, a) = φs(a), a ≥ 0, (4.4c)

S(t) =

∫ ∞
0

s(t, a) da, 0 ≤ t ≤ T. (4.4d)

Recall that the reduced problem is only valid for T ≤ τ as defined in (3.20). We also note

that we require λs to be a continuous function. Next we define what we mean by a solution

to (4.4).

Definition 4.2.1. A function s : [0, T ]×R+ → R+ with the following properties is a solution

of (4.4) up to time T :

1. s(t, ·) ∈ L1(R+) for all t ∈ [0, T ],

2. Ds(t, a) exists for (t, a) ∈ [0, T ]× R+,

3. Equations (4.4) are satisfied.

The above definition is similar to the notion of a solution of the Gurtin-MacCamy model

in [6]. Our first theorem establishes an integral equation formulation of the PDE (4.4).

Theorem 1. A solution s(t, a) to (4.4) up to time T ≤ τ satisfies the following integral

equation:

S(t) =

∫ t

0

K(t − a, t;S)Bs(a) da +

∫ ∞
0

L(a, t;S)φs(a) da, (4.5)

where the kernels K and L are given by:

K(α, t;S) = exp

{
−
∫ t

t−α
λs(S(τ)) dτ

}
, (4.6a)

L(α, t;S) = exp

{
−
∫ t

0

λs(S(τ)) dτ

}
. (4.6b)

Proof. If S(t) is known, then (4.4) is of the form (3.1) and admits solutions of the form (3.8).

That is, for t ≤ T ≤ τ we have

s(t, a) =

φs(a − t) exp
{
−
∫ t

0 λs(S(α)) dα
}
, a > t,

Bs(t − a) exp
{
−
∫ a

0 λs(S(t − a + α)) dα
}
, t < a.

(4.7)
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Therefore,

S(t) =

∫ ∞
0

s(t, a) da,

=

∫ t

0

s(t, a) da +

∫ ∞
t

s(t, a) da,

=

∫ t

0

Bs(t − a) exp

{
−
∫ a

0

λs(S(t − a + α)) dα

}
da (4.8)

+

∫ ∞
t

φs(a − t) exp

{
−
∫ t

0

λs(S(α)) dα

}
da.

A change of variables, a∗ = t − a, ā = a − t for the first and second terms respectively gives

the result.

Next we show that the total population S(t) can be used to recreate s(t, a).

Theorem 2. Suppose S(t) ≥ 0 and satisfies (4.5) up to time T < τ , then s(t, a) defined

by (4.7) satisfies (4.4)

Proof. We prove this directly. Equation (4.7) show s(t, a) satisfies the conditions: s(0, a) =

φs(a) and s(t, 0) = Bs(t). We have S(t) =
∫∞

0 s(t, a) da from (4.8). Next we show s(t, a)

satisfies the PDE (4.4).

Letting s0(h) = s(t + h, a + h) and λ0(h) = λs(S(t + h)) for a > t and t < T we have:

s0(h) = φs(a − t) exp

{
−
∫ t+h

0

λs(S(α)) dα

}
ds0

dh
= φs(a − t) exp

{
−
∫ t+h

0

λs(S(α)) dα

}
[−λs(S(t + h))] = −s0(h)λ0(h)

For a < t, similarly we have:

ds0

dh
= Bs(t − a) exp

{
−
∫ a+h

0

λs(S(t − a + α)) dα

}
[−λs(S(t + h))] = −s0(h)λ0(h)

The characteristic equations are satisfied; hence s(t, a) defined by (4.7) satisfies (4.4).

4.2.2 Local Existence

Let us first state and prove a lemma that will be used shortly.

Lemma 4.2.1. For x ∈ R, the following inequality is true:

|ex − 1| ≤ |x |e |x |
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Proof. We prove this directly. Recall the power series for the exponential function,

ex = 1 + x +
x2

2
+ · · · .

We then have:

|ex − 1| =

∣∣∣∣(1 + x +
x2

2
+ · · ·

)
− 1

∣∣∣∣
=

∣∣∣∣x +
x2

2
+ · · ·

∣∣∣∣
= |x |

∣∣∣∣1 +
x

2
+
x2

6
+ · · ·

∣∣∣∣
≤ |x |

(
1 + |x |+

∣∣∣∣x2

2

∣∣∣∣+ · · ·
)

= |x |e |x |.

Let C+[0, T ] denote the set of nonnegative continuous functions on the interval [0, T ].

We define the integral operator ST on C+[0, T ] by,

ST (S)(t) =

∫ t

0

K(t − a, t;S)Bs(a) da +

∫ ∞
0

L(a, t;S)φs(a) da (4.9)

We aim to show local existence by showing the integral operator ST (S)(t) admits a fixed

point for sufficiently small T . To show this we need to impose some conditions on the death

modulus, λs(S(t)), and the birth modulus, Bs(t). For given T ≥ 0 and r ≥ 0 we define the

following:

Φ =

∫ ∞
0

φs(a) da, (4.10a)

Ψt =

∫ t

0

Bs(a) da, (4.10b)

|| · ||T = sup
0≤t≤T

| · |, (4.10c)

ΣT =
{
f ∈ C+[0, T ] | ||f − (Ψt + Φ) ||T ≤ r

}
, (4.10d)

λ1 = sup
S≥0
|λs(S))|, (4.10e)

λ2 = sup
S,S̄≥0

∣∣∣∣λs(S)− λs(S̄)

S − S̄

∣∣∣∣ , (4.10f)

β1 = ||Bs ||T . (4.10g)
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The quantity Ψt + Φ is the total number of cells introduced into the system up to time t.

ΣT is the set of nonnegative continuous functions that are ‘close’ to the total number of cells

introduced to the compartment. λ1 is an upper bound for λs and λ2 is the Lipschitz constant.

We are now ready to prove the integral operator defined by (4.9) admits a point.

Theorem 3. Suppose λ1, λ2 < ∞ and Ψt < ∞,∀ t ≤ τ where λ1, λ2 and Ψt are as defined

in (4.10). Then there exists a time T , 0 < T ≤ τ , such that the operator ST (S)(t) :

C+[0, T ]→ C+[0, T ] defined by (4.9) admits a unique fixed point.

Proof. C[0, T ] with || · ||T is a Banach Space. For given r > 0, we want to use the Banach

Fixed Point Theorem. To invoke this theorem, we need to find a T such that ΣT is closed,

ST maps ΣT into itself, and is contractive.

First we show ΣT is closed. Suppose {fn} ⊂ ΣT such that fn → f with respect to || · ||T .
Then the fn are converging uniformly and hence converge to a continuous function f . We also

have for all n ∈ N
||fn − (Φ + Ψt)||T ≤ r.

Taking the limit as n →∞ gives f ∈ ΣT .

Let S ∈ ΣT , we show ||ST (S)(t) − (Ψt + Φ) ||T is arbitrarily small with respect to a

particular choice of T .

|ST (S)(t)− (Ψt + Φ) | =

∣∣∣∣ ∫ t

0

K(t − a, t;S)Bs(a) da +

∫ ∞
0

L(a, t;S)φs(a) da

−
∫ t

0

Bs(a) da −
∫ ∞

0

φ(a) da

∣∣∣∣
≤
∫ t

0

|K(t − a, t;S)− 1|Bs(a) da +

∫ ∞
0

[L(a, t;S)− 1]φ(a) da

≤ Ψt sup
a≥0,0≤t≤T

|K(t − a, t;S)− 1|+ Φ sup
(a≥0,0≤t≤T )

|L(a, t;S)− 1| .

The last step uses boundedness of Bs (by assumption) and Hö lders inequality.

Using the following inequality from Lemma 4.2.1,

|ez − 1| ≤ |z |e |z |

we obtain:

|L(a, t;S)− 1| ≤
∣∣∣∣∫ t

0

λs(τ + a, S(τ)) dτ

∣∣∣∣ exp

{∫ t

0

λs(τ + a, S(τ)) dτ

}
≤ λ1Te

{λ1T}.
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Similarly,

|K(a − t, t;S)− 1| ≤
∣∣∣∣∫ t

a

λs(τ − a, S(τ)) dτ

∣∣∣∣ exp

{∫ t

a

λs(τ − a, S(τ)) dτ

}
≤ λ1Te

λ1T .

Since λ1 <∞ by hypothesis,

|ST (S)(t)− (Ψt + Φ) | ≤ Ψt sup
a≥0,0≤t≤T

|K(a − t, t;S)− 1|+ Φ sup
(a≥0,0≤t≤T )

|L(a, t;S)− 1| ,

≤ λ1Te
λ1T (Ψt + Φ) .

Therefore, for any r we can find a T such that ST : ΣT → ΣT . Now we show that there is a

T such that the mapping ST (S)(t) is a contraction on ΣT . Letting S, S̄ ∈ ΣT , we have

∣∣ST (S)(t)−ST (S̄)(t)
∣∣ ≤ ∣∣∣∣∣∣∣∣∫ t

0

(
K(t − a, t;S)−K(t − a, t; S̄)

)
Bs(a) da

∣∣∣∣∣∣∣∣
T

+

∣∣∣∣∣∣∣∣∫ ∞
0

(
L(a, t;S)− L(a, t; S̄)

)
φs(a) da

∣∣∣∣∣∣∣∣
T

.

We bound the first term,

∣∣L(a, t;S)− L(a, t; S̄)
∣∣ =

∣∣∣e− ∫ t
0 λs(S(τ)) dτ − e−

∫ t
0 λs(S̄(τ)) dτ

∣∣∣
≤
∣∣∣∣1− exp

{∫ t

0

[
λs(S(τ))− λs(S̄(τ))

]
dτ

}∣∣∣∣
≤
∣∣∣∣∫ t

0

[
λs(S(τ))− λs(S̄(τ))

]
dτ

∣∣∣∣ exp

{∣∣∣∣∫ t

0

[
λs(S(τ))− λs(S̄(τ))

]
dτ

∣∣∣∣}
≤
∫ T

0

λ2

∣∣∣∣S − S̄∣∣∣∣
T
dτe

∫ T
0 2λ1 dτ

= λ2T
∣∣∣∣S − S̄∣∣∣∣

T
e2λ1T .

The third step uses Lemma 4.2.1. Similarly, for the second term we have:

∣∣K(t − a, t;S)−K(t − a, t; S̄)
∣∣ ≤ ∣∣∣1− e∫ ta λs(S(τ))−λs(S̄(τ)) dτ

∣∣∣
≤
∣∣∣∣∫ t

a

[
λs(S(τ))− λs(S̄(τ))

]
dτ

∣∣∣∣ e2λ1T

≤ λ2T
∣∣∣∣S − S̄∣∣∣∣

T
e2λ1T .
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Combining these inequalities we get:

|ST (S)(t)−ST (S)(t)| ≤
∣∣∣∣∣∣∣∣∫ t

0

(
K(t − a, t;S)−K(t − a, t; S̄)

)
Bs(a) da

∣∣∣∣∣∣∣∣
T

+

∣∣∣∣∣∣∣∣∫ ∞
0

(
L(a, t;S)− L(a, t; S̄)

)
φs(a) da

∣∣∣∣∣∣∣∣
T

≤ λ2T
∣∣∣∣S − S̄∣∣∣∣

T
e2λ1T (ΨT + Φ) .

Since λ1, λ2,ΨT < ∞, the operator ST is a contraction on ΣT for sufficiently small T .

By the Banach Fixed Point Theorem ST admits a unique fixed point in ΣT [0, T ]. We have

shown uniqueness of a solution S only in ΣT [0, T ], not in C+[0, T ].

Note that Theorem 3 does not use a particular value of r from 4.10. A special value of r

will be used in a later theorem to establish existence of solutions up to t = τ .

Theorem 4. A solution S(t) of (4.5) up to time T < τ satisfies the following inequality:

S(t) ≤ Ψt + Φe−λt (4.11)

where Ψt and Φ are defined in (4.10) and

λ := inf
S≥0

λs(S).

Proof. We show this directly. Recall the kernels L and K, given by (4.6), we have:

L(α, t;S) = exp

{
−
∫ t

t−α
λs(S(τ)) dτ

}
≤ e−λt ,

K(α, t;S) = exp

{
−
∫ t

0

λs(S(τ)) dτ

}
≤ 1.

Recall from (4.5) we have

S(t) =

∫ t

0

K(t − a, t;S)Bs(a) da +

∫ ∞
0

L(a, t;S)φs(a) da

≤ Ψt +

∫ ∞
t

φ(a)e−λt da

≤ Ψt + Φe−λt .

Now that we have shown that a solution s(t, a) to (4.4) exists for t ≤ T (Theorems 3,
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and 2) we want to use s(T, a) as initial data for the interval of time [T, 2T ]. However, since

the choice of T from Theorem 3 depends on the Cauchy data, there is no guarantee that the

integral operator will be a contraction on [T, 2T ]. In the next theorem we use (4.11) to pick

a T ∗ such that the integral operator given by (4.9) will be a contraction on each interval of

length T ∗ even if the Cauchy data changes between intervals.

Theorem 5. Suppose the conditions of Theorem 3 are satisfied. Then there is a solution S(t)

of (4.5) up to t = τ .

Proof. By Theorem 4 we have:

S(t) ≤ Ψτ + Φ, ∀ t ∈ [0, τ ].

Recall that definitions 4.10a-4.10g depend on a choice of r . Let r = Ψτ + Φ. From the proof

of Theorem 3 we have the following inequalities for t ∈ [0, T ]:

||ST (S)(t)− (Ψt + Φ) ||T ≤ λ1Te
λ1T (ΨT + Φ) , (4.12)

||ST (S)(t)−ST (S̄)(t)||T ≤ λ2T
∣∣∣∣S − S̄∣∣∣∣

T
e2λ1T (ΨT + Φ) . (4.13)

The right hand side of Equation (4.12) being less than r means that ST : ΣT → ΣT .

The right hand side of Equation (4.13) being less than 1 means that the mapping ST is a

contraction mapping on ΣT . We choose a value T ∗ such that the following hold:

λ1T
∗eλ1T

∗
(Ψτ + Φ) ≤ r,

λ2T
∗e2λ1T

∗
(Ψτ + Φ) < 1.

Note that instead of ΨT ∗ + Φ as before we have Ψτ + Φ which is larger and independent of T .

This T ∗ ensures the existence of a solution S(t) for t ≤ T ∗ by construction. Using terminal

data of S at time T ∗ as initial data, we see that in the interval t ∈ [T ∗, 2T ∗] the integral

operator is still a contraction as

||ST ∗(S)(t)−ST ∗(S̄)(t)||T ∗ ≤ λ2T
∗ ∣∣∣∣S − S̄∣∣∣∣

T ∗
e2λ1T

∗
(ΨT ∗ + Φ)

≤ λ2T
∗ ∣∣∣∣S − S̄∣∣∣∣

T ∗
e2λ1T

∗
(Ψτ + Φ) <

∣∣∣∣S − S̄∣∣∣∣
T ∗
.

Repeating this bootstrapping process clearly terminates in a finite number of steps; hence

there exists a solution S(t) of (4.5) for 0 ≤ t ≤ τ .

Theorem 6. Under the same assumptions as in Theorem 3, solutions s(t, a) of (4.4) up to

time τ are unique.
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Proof. Since we used a fixed point argument in Theorem 3 for existence we are guaranteed

local uniqueness. In Theorem 5 we use Theorem 3 repeatedly on intervals of length T ∗

and hence we have local uniqueness in each interval. Consequently we have uniqueness for

t ∈ [0, τ ].

To summarize, under reasonable assumptions on λ1, λ2 and Bs we have a solution s(t, a)

up to time t = τ by Theorem 5 and Theorem 2 . We would like to use s(t, a), 0 ≤ t ≤ τ to

update the other cell densities and use Theorem 5 to give existence of a solution s(t, a) up

to time 2τ . This second level of bootstrapping is possible if there is no finite time blow up.

The next section is devoted to finding bounds on the growth of the system and concludes in

stating a theorem giving global existence of solutions to the full PDE system.

4.3 Bounded Growth

Below is a summary of ideas that we will use to show that solutions to the full PDE system (4.1)

do not blow up in finite time.

• Show that removing death and prescribing larger Cauchy data will result in larger popu-

lations.

• Derive bounds on growth of system without death. Show that the original system will

also be bounded by this growth.

• Conclude growth of populations is bounded by exponential growth.

Lemma 4.3.1. Solutions of the following PDE increase when γi(t) decreases, φi(a) increases

and B(t)i increases.

∂ρi
∂t

+
∂ρi
∂a

= −γi(t)ρi(t, a), (a, t) ∈ [0, τρ]× R+, (4.14a)

ρi(0, a) = φi(a), (4.14b)

ρi(t, 0) = Bi(t). (4.14c)

Proof. We know from Equation (3.8) that solutions to the above PDE have the form:

ρ(a, t) =

φi(a − t) exp
{
−
∫ t

0 γi(α) dα
}
, t < a,

Bi(t − a) exp
{
−
∫ a

0 γi(t − a + α) dα
}
, t > a.

Let ρ1 and ρ2 be solutions of (4.14) for i = 1, 2 respectively. If γ1(t) ≤ γ2(t), B1(t) ≥ B2(t),
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and φ1(a) ≥ φ2(a), (a, t) ∈ [0, τρ]× R+, we have for t < a,

ρ1 − ρ2 = φ1(a − t)e−
∫ t

0 γ1(α) dα − φ2(a − t)e−
∫ t

0 γ2(α) dα

= (φ1 − φ2) e−
∫ t

0 γ1(α) dα + φ2

(
e−

∫ t
0 γ2(α) dα − e−

∫ t
0 γ1(α) dα

)
≥ 0, since φ1(a) ≥ φ2(a), γ1(t) ≤ γ2(t)

Similarly, for t > a we have

ρ1 − ρ2 = B1(t − 1)e−
∫ t

0 γ1(t−a+α) dα − B2(t − a)e−
∫ t

0 γ2(t−a+α) dα

= (B1 − B2) e−
∫ t

0 γ1(t−a+α) dα + B2

(
e−

∫ t
0 γ2(t−a+α) dα − e−

∫ t
0 γ1(t−a+α) dα

)
≥ 0, since B1(t) ≥ B2(t), γ1(t) ≤ γ2(t).

It is clear that this result also holds for cell densities without a terminal age (compartments

s and w) as well as cell densities with variable maturation rates (compartment n). We intend

to examine a system where the death moduli are set to 0, thereby eliminating death from the

system. We will show this gives an upper bound on the growth of solutions to the original

system (4.1).

∂tm
∗ + ∂am

∗ = 0, (4.15a)

∂ts
∗ + ∂as

∗ = 0, (4.15b)

∂tp
∗ + ∂ap

∗ = 0, (4.15c)

∂tn
∗ + Vn(G(t))∂an

∗ = 0, (4.15d)

∂tw
∗ + ∂aw

∗ = 0, (4.15e)

with initial and renewal conditions given by:

m∗(0, a) = φm(a) m∗(t, 0) = β1S
∗(t) t > 0, a ∈ [0, τs ]

s∗(0, a) = φs(a) s∗(t, 0) = 2m∗(t, τs) t > 0, a ∈ [0,∞)

p∗(0, a) = φp(a) p∗(t, 0) = δ1S
∗(t) t > 0, a ∈ [0, τp]

n∗(0, a) = φn(a) n∗(t, 0) = A1p
∗(t, τp) t > 0, a ∈ [0, τn]

w∗(0, a) = φw (a) w∗(t, 0) = n∗(t, τn) t > 0, a ∈ [0,∞),
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where β1, δ1 and A1 are given by:

β1 = sup
S≥0

β(S), δ1 = sup
W≥0

δ(W ), A1 = sup
G≥0

A(G). (4.17)

Lemma 4.3.2. If solutions m, s, p, n, w exist to the full PDE system (4.1) up to t = τ and

β1, δ1, and A1 as defined in (4.17) are finite then m∗ ≥ m, s∗ ≥ s, p∗ ≥ p, n∗ ≥ n, and

w∗ ≥ w (up to t = τ), where the cell densities (·)∗ are solutions to (4.15).

Proof. The system for cell densities (·)∗ are of the form (3.1); therefore, solutions exist up to

t = τ . Supposing that S∗(t) ≥ S(t), we have

p∗(t, 0) = δ1S
∗(t) ≥ δ(W (t))S(t) = p(t, 0),

m∗(t, 0) = β1S
∗(t) ≥ β(S(t))S(t) = m(t, 0).

Then from Lemma 4.3.1 we see that p∗ ≥ p, n∗ ≥ n, m∗ ≥ n, w∗ ≥ w . Next we prove

S∗(t) ≥ S(t). Let B∗s (t) denote the renewal condition for s∗(t, a). Note that B∗s (t) ≥ Bs(t)
for t ≤ τ . By Theorem 1 we have:

S∗(t)− S(t) =

∫ t

0

B∗s dt +

∫ ∞
0

φ∗s(a) da −
∫ t

0

K(t − a, t;S)Bs(a) da −
∫ ∞

0

L(a, t;S)φs(a) da

=

∫ t

0

[(B∗s (a)− Bs(a))K(t − a, t;S) + (1−K(t − a, t;S))B∗s (t)] da

+

∫ ∞
0

(1− L(a, t; s))φ∗s(a) da +

∫ ∞
0

(φ∗s(a)− φs(a))L(a, t;S) da

≥ 0, since each term is non-negative

It remains to show s∗(t, a) ≥ s(t, a), this follows directly from (4.7).

Lemma 4.3.2 gives that the cell densities which are solutions to (4.15) are larger than the

corresponding solutions of (4.1) up to time t = τ . The following theorem will prove this result

up to an arbitrary time T .

Theorem 7. If solutions m, s, p, n, and w exist to (4.1) up to an arbitrary time T and β1, δ1,

and A1 <∞ then m∗ ≥ m, s∗ ≥ s, p∗ ≥ p, n∗ ≥ n, and w∗ ≥ w up to t = T , where the cell

densities (·)∗ are solutions to (4.15).

Proof. Neglecting the Cauchy conditions, the PDE governing each compartment of (4.15)

are of the form (3.1). Using the decoupling method from Chapter 3 we can use the method

of characteristics to find solutions to (4.15) up until t = τ . We would like to use terminal

values of the cell densities (·)∗ at t = τ and repeat this process on the interval [τ, 2τ ], but we

need to ensure there is no finite time blow-up in any compartment.
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To show the growth of s∗ and w∗ are bounded it is sufficient to show the growth of S∗,W ∗

are bounded by exponentials. First we show S∗(t) has bounded growth. By Theorem 1 we

have:

S∗(t) = Φs +

∫ t

0

B∗s (a) da. (4.18)

The renewal equation for S∗ has the form:

B∗s (t) =

2φ∗m(τs − t), t ≤ τs ,

2β1S
∗(t − τs), t > τs .

S∗ is monotonically increasing in time. Hence for t > τs , S∗(t) ≥ S∗(t − τs). Let

B̄s(t) :=

2φ∗m(τs − t), t ≤ τs ,

2β1S
∗(t), t > τs .

Since B̄s ≥ B∗s , from (4.18) we have

S∗(t) ≤ φ∗s +

∫ t

0

B̄s(a) da.

For t ≤ τs , S∗ is simply given by (4.18). For t > τs , we have:

S∗(t) ≤ Φ∗s + 2Φ∗m + 2β1

∫ t−τ

0

S∗(a) da

≤ Φ∗s + 2Φ∗m + 2β1

∫ t

0

S∗(a) da

≤ (Φ∗s + 2Φ∗m) e2β1t , by Gronwall’s inequality [2].

To show W ∗(t) has bounded growth we have a similar argument.

W ∗(t) ≤ Φ∗w + A1Φ∗p + Φ∗n + δ1A1

∫ t

0

S∗(a) da

≤ Φ∗w + A1Φ∗p + Φ∗n + A1δ1
Φ∗s + 2Φ∗m

2β1
e2β1t .

Since the growth of S∗(t), W ∗(t) can be bounded by exponentials, we can use the decoupling

method described in Chapter 3 along with (3.8) to build solutions to (4.15) in intervals of

length τ .

Lemma 4.3.2 give s∗ ≥ s up to t = τ . Then we have

m∗(t, 0) = β1S
∗(t) ≥ β(S(t))S(t) = m(t, 0), t = τ.
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It follows that by m∗ ≥ m and t ≤ 2τ by Lemma 4.3.1. Similarly we have

s∗(t, 0) = m(t, τs) = β1S
∗(t − τs) ≥ m(t, τs) = s(t, 0), t ∈ [τ, 2τ ].

It follows that s∗ ≥ s for t ∈ [τ, 2τ ] from Lemma 4.3.2. As growth of s is bounded, we can

repeat this process without fear of finite-time blow up and conclude that s∗ ≥ s up to t = T .

The inequalities for the other cell densities follow similarly.

Theorem 8. Suppose λ1, λ2, β1, δ1, and A1 as defined in (4.10) and (4.17) are finite and all

initial data, φi for i = m, s, p, n, and w , of (4.1) are piece-wise continuous and integrable.

Then there are solutions of the full PDE (4.1) up to arbitrary time T .

Proof. The conditions of Theorem 5 are satisfied by assumption so we have a solution S(t) up

to t = τ to the integral formulation (4.5). This S is then used to specify the renewal conditions

for compartments m and p. Compartments for m, n, p and w all have linear governing PDE

and can be solved up to t = τ using S. Considering the terminal data at t = τ as initial data

we can repeat this argument as S(t) has bounded growth by Theorem 7.

4.4 Summary of theoretical results

Note that the forms of β(S), δ(W ), γi(G) (i = m, s, p, n, w) and A(t) have not been used

in the previous results. The actual forms of these functions, given in Chapter 2, satisfy the

conditions of every theorem in this chapter. That is β(S), δ(W ), γi(G) (i = m, s, p, n, w)

and A(G) are Lipschitz continuous and bounded. Therefore, we have established existence of

solutions to the full PDE system (4.1) for global time.
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Chapter 5

Conclusion

In this thesis, we have discussed an age-structured model of chemotherapy-induced neutrope-

nia. In Chapter 2, we gave necessary and sufficient conditions for the existence of a nontrivial

steady state of the PDE system. In Chapter 3, we used the method of characteristics to

decouple the system for short time. In Chapter 4, the existence of solutions to the decoupled

problem for the resting stem cells was proved using a fixed point argument on a related integral

operator. The solution to the decoupled problem was then used to find all cell densities up to

time t = τ . We then showed we can repeat this process due to bounds on the growth of the

entire system.

As solutions are not necessarily continuous between characteristics, and the death modulus

governing the resting stem cells is nonlocal, developing numerical methods for the full PDE

system is difficult. Many assumptions were made about the full PDE system for the sake

of numerical computation in [5]. Under similar assumptions, a variety of numerical methods

were implemented in [7]. Future work might include developing a discontinuous finite element

method to solve the full system without these assumptions.bioi
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