
Systematic Support of Parallel Bit Streams in LLVM

by

Meng Lin

B.Eng., University of Science and Technology of China, 2012

Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Science

in the

School of Computing Science

Faculty of Applied Sciences

© Meng Lin 2014

SIMON FRASER UNIVERSITY

Fall 2014

All rights reserved.

However, in accordance with the Copyright Act of Canada, this work may be

reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,

research, criticism, review and news reporting is likely to be in accordance

with the law, particularly if cited appropriately.

APPROVAL

Name: Meng Lin

Degree: Master of Science

Title of Thesis: Systematic Support of Parallel Bit Streams in LLVM

Examining Committee: Dr. Nick Sumner

Chair

Dr. Robert D. Cameron,

Professor, Computing Science,

Simon Fraser University

Senior Supervisor

Dr. Thomas C. Shermer,

Professor, Computing Science,

Supervisor

Dr. Fred Popowich,

Professor, Computing Science,

Supervisor

Dr. Arthur (Ted) Kirkpatrick,

Associate Director & Professor, Computing Science,

External Examiner

Date Approved: November 25th, 2014

ii

Partial Copyright Licence

iii

Abstract

Parabix (parallel bit stream) technology uses the single-instruction multiple-data (SIMD) capabilities

of commodity processors for high-performance text processing. LLVM is a widely-used compiler-

infrastructure that includes support for SIMD operations on vectors. This thesis investigates the

feasibility of modifying LLVM to incorporate all the SIMD processing requirements of Parabix both

to increase the portability of applications and to create additional opportunities to optimize those

operations in the context of code generation. Our modifications include redefining type legality

and lowering for vectors of small elements as well as insertion of logic to recognize and properly

handle Parabix-critical operations. Experiments on the X86/SSE2 architecture show a speedup

over the unmodified LLVM of about 300 times for some micro-benchmarks and demonstrate Parabix

application performance substantially better than with the unmodified LLVM. We also demonstrate

performance scaling in switching from X86/SSE2 to X86/AVX2 without any change in source code.

Key words: Parabix, LLVM, SIMD Optimization, Application Portability.

iv

Acknowledgments

It is a great honor and pleasure for me to have my Master study in Simon Fraser University. I would

like to give a big thanks to Dr. Robert Cameron for all of his earnest instructions. I learnt a lot from

him during these two years.

I would also like to thank Dr. Nick Sumner for his deep knowledge on LLVM and his great

patience in assisting my thesis work. I would like to thank Dr. Thomas Shermer and Dr. Fred

Popowich for early feedback on my thesis draft. I would like to give another big thanks to Ken Herdy,

who gave me a lot of support in those late nights in the lab. Nigel Medforth helped me with the

experiments on icgrep as well as the Parabix tool chain. Linda Lin helped me on Parabix tools too.

I would like to thank all the committee members for their precious time spent on my thesis. I

would like to thank Simon Fraser University and Dr. Cameron again for providing me this awesome

chance of studying computing science in Canada as well as providing financial support. I would like

to thank my parents and all my friends in Canada that encouraged me and supported me during

this journey.

v

Contents

Approval ii

Partial Copyright License iii

Abstract iv

Acknowledgments v

Contents vi

List of Tables viii

List of Figures ix

List of Programs xi

1 Introduction 1

2 Background 4
2.1 SIMD and SWAR . 4

2.2 Parabix Technology . 5

2.2.1 IDISA Library . 7

2.2.2 Critical Parabix Operations . 9

2.3 LLVM Basics . 10

2.4 LLVM Target-Independent Code Generator . 11

2.5 Summary . 13

3 Design Objectives 14

4 Vector of i2k 22
4.1 Redefine Legality . 23

vi

4.2 In-place Lowering Strategy . 24

4.2.1 Lowering for vXi2 . 25

4.2.2 Inductive Doubling Principle For i4 Vector . 27

4.3 LLVM Vector Operation of i2k . 31

4.4 Long Stream Addition . 33

5 Implementation 36
5.1 Standard Method For Custom Lowering . 38

5.1.1 Custom Lowering Strategies . 38

5.1.2 DAG Combiner . 39

5.2 Templated Implementation . 43

5.2.1 Code Generation For i2 Vector . 43

5.2.2 Test Code And IR Library Generation . 44

6 Performance Evaluation 47
6.1 Vector of i2k Performance . 47

6.1.1 Methodology . 47

6.1.2 Performance Against IDISA . 49

6.1.3 Performance Against LLVM . 52

6.2 Parabix Critical Operations . 53

6.2.1 Ideal 3-Stage Transposition on the Intel Haswell 54

6.2.2 Long Stream Addition And Shift . 55

7 Conclusion 60

Bibliography 61

Appendix A Example Code From The IR Library 63
A.1 Transposition With Byte-Pack Algorithm . 63

A.2 Transposition With Ideal 3-Stage Algorithm . 67

vii

List of Tables

4.1 Supported operations and its semantics. 24

4.2 Legalize operations on vXi1 with iX equivalence. 26

4.3 Truth-table of ADD on 2-bit integers and the minimized Boolean functions for C. . . . 26

4.4 Algorithm to lower v32i4 operations. 29

4.5 Rearranging index for BUILD VECTOR on v64i2 . 31

4.6 Example of spreading v2i1 to v2i64 . 34

6.1 Hardware Configuration . 49

6.2 Software Configuration . 49

6.3 Performance against LLVM native support for i2k vectors 53

6.4 XML Document Characteristics. Taken from [13]. 53

6.5 Performance comparison of XML Validator (xmlwf) 54

6.6 Performance comparison of UTF-8 UTF-16 Transcoder 54

6.7 Ideal 3-Stage Transposition with PEXT . 55

6.8 Micro benchmarks for long stream addition against LLVM’s original implementation. 55

viii

List of Figures

2.1 Basis and Character Class Streams . 6

2.2 ScanThru Using Bitstream Addition and Mask . 7

2.3 MatchStar Using Bitstream Addition and Mask . 7

2.4 Horizontal Operations in IDISA . 8

2.5 Expansion Operations in IDISA . 8

3.1 Implement hsimd<32>::packh with shufflevector . 16

3.2 Implement esimd<16>::mergeh with shufflevector . 17

3.3 Tool chain diagrams for compiling and incorporating the IR library with Parabix . . . 19

4.1 Type legalize process for v32i1 vector . 23

4.2 Comparison between LLVM default legalize process and in-place lowering. 25

4.3 Addition of two v32i4 vectors. 28

4.4 LLVM default type legalization of v8i4 to v8i8. 28

5.1 System overview: modified instruction selection process 37

5.2 Long stream shifting . 39

5.3 A better algorithm for long stream shift. 39

5.4 The DAG combiner for long stream shift. 41

5.5 Test system overview. 45

6.1 Test Performance with XOR . 48

6.2 Total CPU cycles against IDISA library . 50

6.3 Reciprocal instruction throughput against IDISA library 51

6.4 Vector of i2 tested in a loop . 52

6.5 Improvement with long stream addition and the new intrinsic in instruction count . . 57

6.6 Improvement with long stream shifting in instruction count 57

6.7 Improvement of icgrep on machines with 256-bit SIMD registers 58

6.8 Improved scalability of icgrep . 59

ix

6.9 Improved scalability of icgrep in CPU cycles . 59

x

List of Programs

3.1 Implementation of simd<8>::add for X86 SSE2 . 14

3.2 Implementation of simd<8>::add for ARM NEON . 15

3.3 Implementation of simd<8>::add with LLVM IR . 15

3.4 Implementation of simd<8>::eq with LLVM IR . 15

3.5 Implementation of simd<8>::max with LLVM IR . 15

3.6 Shufflevector implementation of packh. 17

3.7 Shufflevector implementation of mergeh. 18

3.8 Clang-generated IR for hsimd<8>::packh from compiling the IDISA function 19

4.1 The function generated to lower ADD on v64i2. 27

4.2 Comparison of the compiled machine code of v16i8 multiplication between LLVM 3.4

and the inductive doubling principle. 30

5.1 The optimized assembly code for hsimd<16>::packh on SSE2 40

5.2 Implementation of hsimd<2>::packh with PEXT. 42

5.3 Minimum boolean function for v64i2 addition . 44

5.4 Custom lowering function template for v64i2 . 44

5.5 Templates for the IR Libray . 46

6.1 Signature of uadd.with.overflow.carryin . 56

6.2 Pseudo code for ”add with carry” logic in with unmodified LLVM 56

xi

Chapter 1

Introduction

Nowadays Single Instruction Multiple Data (SIMD) instructions are broadly built in for most com-

modity processors. Compared with the traditional Single Instruction Single Data (SISD) instruc-

tions, SIMD provides an intra-register form of parallel computing by performing the same operation

on many elements at the same time [17]. SIMD instructions are widely used for multimedia pro-

cessing, digital signal processing or other compute-intensive applications [23, 26].

The recent method of parallel bit streams (Parabix) accelerates text processing using SIMD

instructions, in applications such as UTF-8 to UTF-16 transcoding [11, 10], XML parsing [25, 13] and

regular expression matching [28]. For these applications, byte streams of the input text characters

are first transposed into 8 bit streams, one for each bit value of the character byte, and then loaded

into SIMD registers so that 128 or 256 consecutive code units can be processed at once [14]. SIMD

bitwise logic, shift operations, bit scans and other bit-based operations form the foundation of this

programming model.

Although Parabix applications achieve substantial acceleration compared to sequential (SISD)

equivalents, the Parabix tool chain needs to handle SIMD programming carefully. It is challenging

for the following two major reasons:

1. SIMD instructions vary greatly among different instruction-set architectures (ISAs) which makes

it hard to write portable SIMD programs. Some operations in Intel SSE may not exist in Pow-

erPC AltiVec and vice versa. For example, integer comparison intrinsic pcmpgtq in SSE4 does

not have correspondence in PowerPC AltiVec.

2. Even within one specific SIMD instruction set, most operations are only available for some

pre-chosen data sizes. This is referred to as ”sparse” instruction set in [9] and they gave a

good example: in Intel SSE4, to shift-left a vector was implemented, but to shift-right was not.

The 32-bit and 16-bit shift operations were available, but 64-bit shift was not [9].

1

CHAPTER 1. INTRODUCTION 2

The current Parabix tool chain uses the Inductive Doubling Instruction Set Architecture (IDISA)

as an idealized computing model to overcome these two difficulties. Based on this model a library

with the same name has been developed. It works well, but still has two shortcomings:

1. IDISA requires different header files for different architectures. Although it has a uniform

API for portability, each header depends heavily on target-specific implementation details to

provide the best implementation of each operation.

2. The IDISA generator [18] chooses the best implementation within the scope of a single func-

tion. This may be not the best when considering the context of this function. For example,

when performing addition, we may know all the high bits of each field in a SIMD register is

zero, making simplification possible.

This motivates us to find a better back end and currently, the most promising back end framework

is LLVM. LLVM promises to enable out-sourcing of low-level and target-specific aspects of code

generation [29, 21]. Switching to an LLVM back end benefits Parabix tool chain in the following

ways:

1. LLVM provides a target-independent intermediate representation (IR) with a vector-of-integer

type system that matches IDISA requirements closely. Parabix operations can be expressed

with IR and hence can be ported, in principle, to any platform that LLVM supports, including

X86, ARM, PowerPC, MIPS, SPARC and many more.

2. LLVM provides inter-procedural whole program analysis and optimization [22]. By using a

built-in type system in the low level representation, LLVM keeps more static information to the

back end and helps optimize Parabix operation with meaningful context.

3. LLVM provides just-in-time compilation which allows runtime source generation. This is critical

to some applications such as regular expression matching, which generates sequences of

Parabix operations on the fly according to the input regular expression.

However, the native back end of LLVM has a number of gaps in its support for parallel bit streams.

SIMD support for 2-bit and 4-bit field width are not available; 1-bit field width is supported slowly.

Packing high bits on 16-bit field width which is one of the four key elements in the IDISA model and

critical for transposition does not produce proper machine code on X86. In this thesis, we extend

LLVM to systematically support parallel bit streams and achieve high-performance code generation

on the X86 target. We make the following contributions:

• We port the critical Parabix operations to the LLVM back end thus bringing all the benefits of

LLVM discussed above into the Parabix technology.

CHAPTER 1. INTRODUCTION 3

• We redefine type legality in LLVM and extend the LLVM type system with the inductive doubling

principle so that vectors of small element types are properly supported.

• We insert logic in the LLVM back end to recognize and handle key Parabix operations. This

allows efficient code generation while keeping the whole source code in target-independent

IR.

• We add a dedicated LLVM intrinsic for the long stream addition and enable high-performance

chained addition on the unbounded integer model which can be applied in broader applica-

tions.

• We evaluate the new LLVM back end with both micro benchmarks on single Parabix operation

and application level profiles. We get the same performance on X86 platform as the well-tuned

IDISA library.

The remainder of this thesis is organized as follows. Chapter 2 provides an overview of Parabix

and LLVM. Chapter 3 shows the overall design goal; examples of the IR implementation are pre-

sented and compared with the IDISA library. Algorithms for machine code generation are discussed

in Chapter 4 and the implementation details are in Chapter 5. Chapter 6 evaluates our work with

both per-instruction benchmarks and application level profiles. Chapter 7 gives the conclusion.

Chapter 2

Background

2.1 SIMD and SWAR

SIMD is a parallel computing concept that performs the same instruction on different data to exploit

data parallelism. Most of today’s commodity processors supports SIMD within a register (SWAR).

In this model, SIMD operations are applied within general-purpose or special registers that may be

considered to be partitioned into fields. Operations on each field are independent from each other.

This means for example, carry bits generated by addition could not pass to the next field.

The other important feature of the SWAR model is that the partition is not physical but rather a

logical view of the register, so that different views are available on the same register. For a 128-bit

SIMD register, a valid partition can be sixteen 8-bit fields as well as four 32-bit fields. There is no

penalty from switching the logical view.

Some popular SIMD instructions sets are listed here:

• Intel MultiMedia eXtension (MMX). It defines eight 64-bit registers known as MM0 to MM7

which are aliases of the existing IA-32 Floating-Point Unit (FPU) stack registers. MMX only

provides integer operations for early graphical applications thus is not a general purpose in-

struction set for SIMD programming [18].

• Intel Streaming SIMD Extensions (SSE) series. SSE extends the MMX instructions set and

it introduces eight new independent 128-bit SIMD registers known as XMM0 to XMM7. Its

successor SSE2 adds a rich set of integer instructions to the 128-bit XMM registers which

makes it a useful SIMD programming model. AMD added support for SSE2 in its AMD64

architecture soon after the Intel released SSE2, making SSE2 broadly available across the

desktop computers. Intel then released SSE3, SSSE3, SSE4 and AMD released SSE4a as

the following SSE generations.

4

CHAPTER 2. BACKGROUND 5

• Intel Advanced Vector Extensions (AVX). AVX extends the size of SIMD registers from 128

bits to 256 bits. It introduces 16 new registers YMM0 to YMM15 but still supports the 128-bit

SSE instructions. More importantly, AVX shifts the two-operand operations towards the non-

destructive three-operand form. Three-operand operation preserves the content in operand

registers and could reduce the potential movement of data between registers. AVX supports

a number of floating point operations on 256-bit registers, but does not support many of the

integer operations that exist in SSE. Its successor AVX2 fills this gap and ensures the tran-

sition from SSE to AVX instructions with the same programming model. AVX2 is available on

the Intel Haswell architecture. Its successor AVX512 has been announced to support 512-bit

SIMD registers.

• ARM NEON. ARM as a popular mobile platform introduces its own SIMD extension named

NEON in their Cortex-A series processors. It has thirty-two 64-bit registers (D0 to D31) as

well as sixteen 128-bit registers (Q0 to Q15). In fact, D2×i and D2×i+1 are mapped to the

same physical location of the register Qi. Some operations like multiplication on the 64-bit D

registers can return result in the 128-bit Q register [18]. NEON supports the field width of 8

bits, 16 bits, 32 bits and 64 bits integer operations as well as 32-bit floating point operations.

In this thesis, we use SSE2 as main ISA target with 128-bit registers because SSE2 is broadly

available on both Intel and AMD CPUs. We use AVX2 as main ISA target with 256-bit SIMD registers

because AVX lacks support of integer SIMD operations.

2.2 Parabix Technology

Parabix technology is a programming framework for high-performance text processing that can

utilize both SIMD and multi-core parallel processing facilities. It is built on top of the parallel bit

streams concept. Byte-oriented input stream is first transposed into 8 bit streams with each stream

corresponds to one bit location in the byte stream. For encodings that requires more than one byte,

more bit streams can be introduced: one bit of the input code unit for one bit stream. Figure 2.1

gives an example of the transposition, B0 to B7 are the bit streams of the ASCII encoded input data.

Zero bits are marked as periods (.) for clarity.

After the transposition, the character class bit streams are generated using bitwise logic, e.g.

[a], [z9] and [0-9] in the figure. With SIMD operations on the 128-bit register, 128 input code

unit can be classified at the same time. Parabix defines a set of primitives on the arbitrary length bit

stream, called the Pablo Language, which is usually applied on the character class bit streams to

generate a number of Marker Streams. Marker Streams mark meaningful locations such as where

a tag starts and ends in the XML document, matching positions of a partial regular expression. A

CHAPTER 2. BACKGROUND 6

input data a453z--b3z--az--a12949z--ca22z7--

B7

B6 1...1..1.1..11..1.....1..11..1...

B5 111111111111111111111111111111111

B4 .1111...11...1...111111....1111..

B3111..111.111...1.1111....1.11

B2 .11..11...11..11....1..11.....111

B1 ...11..111...1....1...1..1.1111..

B0 1.11.11.1.111.1111.1.1.1111...111

[a] 1...........1...1.........1......

[z9]1....1...1.....1.11......1...

[0-9] .111....1........11111.....11.1..

Figure 2.1: Basis and Character Class Streams, taken from [28].

simple counting or scanning through the marker streams are usually the final step in the Parabix

technology.

Some useful Pablo primitives are listed below [12]:

1. Bitwise logic: AND, OR, XOR and NOT on arbitrary length bit streams.

2. Advance: shift forward the whole bit stream for 1 bit. In a little endian system, shift forward is

to shift left because the bytes that comes first in the input stream reside in the lower memory

address.

3. ScanThru: s(M,C) denotes the operation of scanning from the marker stream M as the initial

positions through the spans of ones in the stream C. Figure 2.2 shows an example of it.

s(M,C) = (M + C) ∧ ¬C

One example of ScanThru is in XML well-formedness checking, to check if a <tag> is written

in correct syntax, M marks all the start positions of tags e.g. the next position after the opening

angle bracket (<) and C is the marker stream for all legal tag content. s(M,C) should mark all

the positions of the closing angle bracket (>) which close tags. Say M0 denotes the character

class of >, then if s(M,C) ∧ ¬M0 is not all zero, some tag is not closed properly with the

> symbol. Note that all the tags in the stream are checked simultaneously in parallel in the

unbounded bit streams model.

4. MatchStar: m(M,C) returns all positions that can be reached by scanning from the initial

positions marked in M along the spans of ones in the stream C for zero or more steps.

MatchStar gets its name from the star operator (*) in the regular expression. It also has

important application in long stream addition. Figure 2.3 shows an example of it.

CHAPTER 2. BACKGROUND 7

input data ----173942---654----1----49731----321--

M01........1......1......1...........

D =[0-9]111111...111....1....11111....111..

M0 +D1.....1....1...11...1...111..

M1 = (M0 +D) ∧ ¬D1.....1....1........1........

Figure 2.2: ScanThru Using Bitstream Addition and Mask, taken from [12] and slightly modified. In
the original figure, the digits are arranged in the natural order, which means the digits on the left
have higher significance. To be consistent with other related figures, we reverse this arrangement
in the modified figure.

input data a453z--b3z--az--a12949z--ca22z7--

M1 .1...........1...1.........1.....

C = [0-9] .111....1........11111.....11.1..

T0 = M1 ∧ C .1...............1.........1.....

T1 = T0 + C1...1.............1......11..

T2 = T1 ⊕ C .1111............111111....111...

M2 = T2 ∨M1 .1111........1...111111....111...

Figure 2.3: MatchStar primitive, where M2 = MatchStar(M1, C), taken from [28].

The Pablo language is defined over unbounded bit streams which of course need to be translated

into a block-at-a-time processing for real applications [28]. The Pablo compiler is used to support

the translation, taking care of the carry bits across block boundaries with a carry queue. A block-at-

a-time C++ code is generated as a result.

2.2.1 IDISA Library

To actually execute the C++ code, a runtime library is necessary. Cameron proposed the Inductive

Doubling Instructions Set Architecture in [14]. It provides a simple, systematic model with uniform

treatment of SIMD operations of all power-of-2 field widths. As he wrote, ”inductive doubling refers to

a general property of certain kinds of algorithm that systematically double the values of field widths

or other data attributes with each iteration.” [14]. There are four key elements of this architecture:

• A core set of binary functions on SIMD registers, for all field width equals to 2k. To work with

parallel bit streams, the operation ADD, SUB, SHL (shift left), SRL (logic shift right) and ROTL

(rotate left) comprise the set.

• A set of half-operand modifiers that make possible the inductive processing of field width 2W

CHAPTER 2. BACKGROUND 8

in terms of combinations of field width W . These modifiers select either the lower half of the

field or the higher half.

• Packing operations that compress two vectors of field width W into one vector of field width

W/2. For example, collecting all the higher half bits of fields from two vectors into one.

• Merging operations that produce one vector of field width W with two vectors of field width

W/2.

A C++ library is then developed after this model and it is called the IDISA library. To be clear,

in the following sessions the abstract architecture is called the IDISA model to distinguish from the

IDISA library. An interesting fact about the IDISA library is that it is actually generated automatically

from a pool of strategies to avoid duplicated human work among different targets. When targeting a

new platform, the natively supported SIMD instructions need to be mapped to proper operations in

the IDISA model. This is sparse in the sense that many other operations defined in the model are

still not available. The IDISA generator could fill the gaps with a pool of strategies which basically

tells how to implement instruction C given instruction A and B are available. Multiple strategies

for the same operation may exist and the generator chooses based on the least instruction count

heuristic [18].

Figure 2.4: The logic of IDISA Horizontal Operations, cited from [18].

Figure 2.5: The logic of IDISA Expansion Operations, cited from [18].

The IDISA library divides SIMD operations into the following categories [2]:

CHAPTER 2. BACKGROUND 9

• Vertical Operations (Template Class simd<w>): They are the most common SIMD operations

between two registers where w is the field width. For example, simd<8>::add(A, B) aligns

registers A and B vertically and adds up the aligned 8-bit fields. Different fields are indepen-

dent of each other.

• Horizontal Operations (Template Class hsimd<w>): Operations like packing align the two

operands horizontally, extract a portion of the bits in operands and concatenate into one full

SIMD register. (Figure 2.4)

• Expansion Operations (Template Class esimd<w>): Operations that double the width of fields

like merging which takes the higher 64 bits of the two operands (A and B), concatenates the

first field from A and the first field from B to get a new field with the width doubled. Do the

same to the following fields until a full SIMD register C is generated. (Figure 2.5)

• Field Movement Operations (Template Class mvmd<w>): Operations that copy and move the

entire fields. The content of these fields should not change.

• Full Register Operations (Template Class bitblock): Operations that work with the contents

of the whole SIMD registers. They are special vertical operations that has only one field.

The IDISA library claims to have better performance compared to the hand-written libraries. In

the evaluation chapter, we will compare the performance of our LLVM back end with the IDISA

library.

2.2.2 Critical Parabix Operations

There are at least five critical Parabix operations that can be the performance bottleneck and need

special attention:

• Transposition. This is the first step of every Parabix application and it can be the primary over-

head of some Parabix application. There are two major algorithms: the ideal three-stage

implementation and the byte-pack implementation. The byte-pack implementation utilizes

packing on 16-bit field width which is widely available on commodity processors. The ideal

three-stage implementation uses the minimum number of packing instructions, but it requires

packing on 2-bit, 4-bit and 8-bit field width which are not available on most of the commodity

processors. Details of these two algorithms can be found in [14]. We implement both of the

algorithm with the modified LLVM and compare their performance in Chapter 6.

• Inverse transposition. For some applications like the UTF-8 to UTF-16 transcoding, parallel bit

streams need to be modified and translated back into byte streams, thus an inverse transpo-

sition is needed. As the inverse operation to the transposition, there are also two algorithms

available which mirror the transposition algorithms. A detailed discussion can be found in [11].

CHAPTER 2. BACKGROUND 10

• Long stream shift. Unbounded bit stream shift is translated into block-at-a-time shift. This

operation shifts the whole SIMD register with the potential shift-in bits from the last block. We

implement a peephole optimization in Chapter 5 that can improve the performance signifi-

cantly.

• Long stream addition. The Pablo compiler deals with addition between unbounded bit streams

using chained long stream additions, which adds two numbers as wide as the SIMD register

with a carry-in bit and generates a carry-out bit. The naive approach chains 64-bit additions

together to emulate 128-bit, 256-bit or 512-bit additions. Its time complexity grows linearly

with the SIMD register size. A better algorithm is proposed in [28] which could add up to 4096

bits wide integers in constant time. We implement the constant-time algorithm in Chapter 4.

• Parallel deletion. This operation deletes bits from one bit stream at the positions identified by

a deletion marker. Three different inductive doubling algorithms can be used for it. Refer to

[11] for further detail.

These operations take most of the run time in the application level profile, so a slight improve-

ment could benefit the application greatly. We study the LLVM support of the first four operations in

this work and leave the parallel deletion to be future work.

2.3 LLVM Basics

The Low Level Virtual Machine (LLVM) is an open-source, well developed compiler tool that is

dedicated to the compiler writers. It originates in 2000 with Lattner’s Master thesis [21] and has

been gaining popularity ever since. Today it is developed into a high-performance static compiler

back end with just-in-time compilers and life-long program analysis and optimization, which means

program analysis and optimization in compile time, link time and run time [29, 22]. It supports

a variety of targets from Intel X86, PowerPC to the ARM mobile platform and hides the low-level

target-specific issues for the compiler writers.

LLVM defines an intermediate representation (IR) as its virtual instruction set and IR is used as

not only the input code to the LLVM tool chain but also the internal representation for analysis and

optimization passes. This enables the programmer to use LLVM as a pipeline and to inspect output

from each step. For example, with the C/C++ compiler of LLVM, Clang, source code in C/C++ is

compiled into IR with different level of front end optimization. IR files are then linked together with

link-time optimizations. The resulting IR is put through a good number of LLVM passes. LLVM

optimizations are organized into passes. There are three types of passes [5]: analysis passes that

collect information for other passes, transform passes that change the program and utility passes

that provide general helper functionality for other passes. Each of the passes consumes LLVM IR

CHAPTER 2. BACKGROUND 11

as input and generates IR output. The improvements they make to the file can be easily checked

by running these passes alone.

Although the IR is low-level, it preserves high-level static information through the strong type

system and static single assignment (SSA) form. SSA form guarantees only one assignment to

every variable. SSA helps calculate the high-level data flow [15]. The main design goal of the IR is

to be low-level enough so that most programming languages can target to it while maintaining the

most high-level information to make aggressive back end optimization possible [29].

LLVM IR defines instructions and intrinsic functions. There are terminator instructions which

produce control flow (return, branch, etc.), binary instructions (add, subtract, etc.), bitwise binary

instructions (shift left/right, logic operations, etc.), memory instructions (load, store, etc.) and other

instructions. Intrinsic functions are extension of IR instructions. Their names must all start with a

”llvm.” prefix [1]. Example intrinsic functions are standard C library intrinsics (memcpy, sqrt, sin,

floor, etc.), bit manipulation intrinsics (population count, byte swap, etc.), debugger intrinsics, ex-

ception handling intrinsics and so on. They can be general operations for all the platforms as well

as target-specific; e.g. llvm.x86.sse2.psrli.w corresponds to SSE2 native instruction psrlw. To

achieve portability, we use none of these target-specific intrinsics in our work.

After optimization passes, the IR code is processed through the target-independent code gener-

ator and the machine code (MC) layer to become the native machine code. We describe the code

generation process in detail in the next section as it is the major piece of logic we extend for parallel

bit streams.

2.4 LLVM Target-Independent Code Generator

Although the name of the LLVM code generator contains “target-independent”, it is not. There are

genetic strategies that can be applied across different targets, but target specific information is

heavily required throughout the code generation process. We want to clarify this point before we

start to describe the LLVM code generator.

The first stage for code generation is Instruction Selection, which translates LLVM code into

the target-specific machine instructions. After that, there are machine level optimizations like live-

interval analysis and register allocation. Instruction Selection is done by the following steps [4] (we

describe each step in the following text):

• Initial SelectionDAG Construction: generate SelectionDAG from LLVM IR.

• DAG Combine 1

• Type Legalization Phase

• Post Type Legalization DAG Combine

CHAPTER 2. BACKGROUND 12

• Operation Legalization Phase

• DAG Combine 2

• Instruction Select Phase

• Scheduling and Formation Phase

LLVM internally constructs a graph view of the input code called SelectionDAG where DAG is

short for directed acyclic graph. Each node in the DAG represents an operation with an opcode,

a number of operands and a number of return values. If the DAG node A uses the return value of

another DAG node B, there will be an edge from B to A. The SelectionDAG enables a large variety

of very-low-level optimization. And it also benefits the instruction scheduling process by recording

the instruction dependency in the graph.

There are DAG combine passes after the initial construction and each legalization phase [4],

discussed shortly. DAG combine passes clean up SelectionDAG with both general and machine-

dependent strategies, making the work easier for initial constructor and legalizers: they can focus on

generating accurate SelectionDAG, good and legal operations with no worries of the messy output.

Instruction Select Phase is the bulk of target-specific logic that translates a legal SelectionDAG

into a new DAG of target code with pattern matching facility. For example, a node of floating point

addition followed by a floating point multiplication could be merged into one FMADDS node on the

target that supports floating point multiply-and-add (FMA) operations [4].

The Scheduling and Formation Phase assigns an order to each target instruction following the

target’s constraints. After that, a list of machine instructions are generated and the SelectionDAG is

no longer needed.

Now we look at how LLVM deals with SIMD instructions. SIMD data are grouped into vectors and

LLVM uses the notation <N x iX> to represent a vector of N elements, where each of the element

is an integer of X bits [1, 9]. <N x iX> is also denoted as vNiX as vNiX is the internal type

name used in the LLVM source code; e.g. <4 x i32> is the same with v4i32. Various operations

can be applied on vectors and the LLVM back end knows how to lower them into proper machine

instructions.

In LLVM IR, programmers can write any kind of vectors, even v1024i3. Those vectors may not

be supported by the target machine. LLVM has the notion of ”legal” vs. ”illegal” types. Legality is a

target-specific concept. A DAG node is legal if it only uses the supported operation on the supported

types. Unsupported types are illegal types for the target. For example, i1 is not supported in X86, it

is illegal together with all the operations that take i1 operands or return i1 values. Addition on v16i8

is legal for X86 SSE2 but multiplication on v16i8 is not since there is no native support of it. The

type v16i8 is considered to be legal in this case. LLVM code generator has all the target details. It

uses type legalization and operation legalization phases to turn illegal type or DAG into legal[4].

CHAPTER 2. BACKGROUND 13

Type legalization phase has three ways to legalize vector types[9]: Scalarization, Vector Widen-

ing and Vector Element Promotion.

• Scalarization splits the vector into multiple scalars. It is often used for the transformation from

v1iX to iX.

• Vector Widening adds dummy elements to make the vector fit the right register size. It does

not change the type of the elements, e.g. v4i8 to v16i8.

• Vector Element Promotion preserves the number of elements, but promotes the element

type to a wider size, e.g. v4i8 to v4i32.

After type legalization, we may still have an illegal DAG node. This is because some operation

on the legal type is not supported by the target. We need the operation legalization phase. There

are three strategies in this phase:

• Expansion: Use another sequence of operations to emulate the operation. Expansion strat-

egy is often general in the sense that it may use slow operations such as memory load and

store, but it generates native code with correct outcomes.

• Promotion: Promote the operand type to a larger type that the operation supports.

• Custom: Write target-specific code to implement the legalization. This is similar to Expansion,

but with a specific target in mind.

No illegal type should be introduced in the operation legalization phase which puts a limitation

on the machine-independent legalize strategies: i8 is the minimum integer type on X86 and pro-

grammer needs to extend every integer less than 8 bits to i8 before returning it to the DAG. On

the other hand DAG combine is different, you can choose the combine timing on your own. If you

choose to combine before type legalization phase, you can freely introduce illegal types into your

combined results.

The current legalization mechanism of LLVM is not sufficient to handle Parabix code efficiently.

We propose new strategies and redefine legality in Chapter 4.

2.5 Summary

In this chapter we reviewed the Parabix technology which is a parallel text processing model and

IDISA library which is a C++ library for SIMD programming. We also provided LLVM basics and

described its target-independent code generator. The IDISA library has to maintain target-specific

header files and is hard to further optimize outside the function scope. So we propose to replace

the IDISA library with a LLVM back end in the next chapter.

Chapter 3

Design Objectives

In this chapter we discuss our overall goal for using LLVM as a new Parabix back end. First, we

show that the IDISA library could be replaced by a pure target-independent IR library.

To start, let us look at one IDISA vertical operation: simd<8>::add. IDISA library implements this

function with the compiler intrinsic that directly translates into the assembly code, so different header

files have to be maintained for different instruction sets such as Program 3.1 and Program 3.2.

However, with the LLVM IR, we can implement it as Program 3.3; no low level detail is specified

here.

Most of the IDISA vertical operations can be expressed with a few lines of IR code. A bit more

examples are listed here:

• Vector addition, subtraction, multiplication and shifting. There are IR instructions that corre-

spond one-to-one with them.

• Integer comparison such as equality, greater than and unsigned less than. In IR, there is one

instruction called ‘icmp’ which does the comparison. The only difference is that for vector type

<N x iX>, the comparison result of ‘icmp’ is in type <N x i1> while IDISA requires it to be in

type <N x iX> (All ones in an element means true and all zeros means false). We need to

perform a sign extension by coping the sign bit of the i1 result until it reaches the size of iX

(Program 3.4).

template <> bitblock128_t simd<8>::add(bitblock128_t arg1, bitblock128_t arg2)

{

return _mm_add_epi8(arg1, arg2);

}

Program 3.1: Implementation of simd<8>::add for X86 SSE2

14

CHAPTER 3. DESIGN OBJECTIVES 15

template <> bitblock128_t simd<8>::add(bitblock128_t arg1, bitblock128_t arg2)

{

return (bitblock128_t)vaddq_u8((uint8x16_t)(arg1), (uint8x16_t)(arg2));

}

Program 3.2: Implementation of simd<8>::add for ARM NEON

define <16 x i8> @simd_add_8(<16 x i8> %arg1, <16 x i8> %arg2) {

entry:

%r = add <16 x i8> %arg1, %arg2

ret <16 x i8> %r

}

Program 3.3: Implementation of simd<8>::add with LLVM IR

define <16 x i8> @simd_eq_8(<16 x i8> %arg1, <16 x i8> %arg2) {

entry:

%r1 = icmp eq <16 x i8> %arg1, %arg2

%r2 = sext <16 x i1> %r1 to <16 x i8>

ret <16 x i8> %r2

}

Program 3.4: Implementation of simd<8>::eq with LLVM IR. Sext is the instruction for sign exten-
sion.

define <16 x i8> @simd_max_8(<16 x i8> %a, <16 x i8> %b) {

entry:

%m = icmp sgt <16 x i8> %a, %b

%r = select <16 x i1> %m, <16 x i8> %a, <16 x i8> %b

ret <16 x i8> %r

}

Program 3.5: Implementation of simd<8>::max with LLVM IR. Select selects elements according

to the first operand: ri =

{
ai if mi = 1

bi otherwise
.

CHAPTER 3. DESIGN OBJECTIVES 16

• Operations that have no IR correspondence such as simd::min and simd::max. They can be

emulated with a sequence of IR, e.g. simd<8>::max in Program 3.5.

For horizontal operations, IDISA also needs to maintain target-specific logic. For example, to im-

plement hsimd<16>::packh, it uses unsigned saturation packuswb for X86 SSE2 and uses vuzpq u8

for NEON; for X86 SSE series after SSSE3, it uses the instruction pshufb. The author of the IDISA

library needs to know these instruction sets very well. On the other hand, LLVM IR introduces a

powerful instruction which can express most of the horizontal and expansion operations. It is the

shufflevector.

<result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask>

; yields <m x <ty>>

The first two operands are vectors of the same type and their elements are numbered from

left to right across the boundary. In other words, the element indices are 0 . . .n − 1 for v1 and n

. . . 2n− 1 for v2. The mask is an array of constant integer indices, which indicates the elements we

want to extract to form the result. Shufflevector is often used together with the bitcast operation.

Bitcast converts between integer, vector and FP-values and changes the data type without moving

or modifying the data, thus requiring the source and result type to have the same size in bits. With

shufflevector and bitcast, we could write hsimd<32>::packh in Program 3.6. Figure 3.1 explains the

indices used in the shuffle mask.

Figure 3.1: Shufflevector and hsimd<32>::packh. The vectors are bitcasted into v8i16 and the
indices for the shuffle mask are drawn in the cell.

Program 3.6 can be easily generalized for packing high on any power-of-two field width. For

other horizontal operations:

• Packing low: the same bitcast needs to be done but shufflevector with a different mask. For

example, hsimd<32>::packl can be implemented with the mask 0, 2, 4, 6, 8, 10, 12,

14.

CHAPTER 3. DESIGN OBJECTIVES 17

define <8 x i16> @hsimd_packh_32(<4 x i32> %a, <4 x i32> %b) {

entry:

%aa = bitcast <4 x i32> %a to <8 x i16>

%bb = bitcast <4 x i32> %b to <8 x i16>

%rr = shufflevector <8 x i16> %bb, <8 x i16> %aa, <8 x i32> <i32 1, i32 3,

i32 5, i32 7, i32 9, i32 11, i32 13, i32 15>

ret <8 x i16> %rr

}

Program 3.6: Shufflevector and hsimd<32>::packh in LLVM IR. Horizontal operations half the width
of fields and that effect is reflected in the return value type.

• Packing sign mask: it packs together all the sign bits from each field of the operand. This can

be implemented with the less than comparison. For example, hsimd<32>::signmask(a) is

equivalent to icmp slt <4 x i32> %a, <4 x i32> <i32 0, i32 0, i32 0, i32 0> which

returns a <4 x i1> sign mask vector.

• Other operations require coding a sequence of IR like hsimd<32>::add hl(a, b). They are

less frequently used in the Parabix application.

Shufflevector and bitcast could also cover IDISA expansion operations. We list the IR code for

esimd<16>::mergeh in Program 3.7 and explain the indices in Figure 3.2. This program divides

the high-half of each SIMD register into 16-bit fields and merges them together. IR program is

self-explanatory; programmers who understand shufflevector can understand its behaviour.

Figure 3.2: Shufflevector and esimd<16>::mergeh. The indices for the shuffle mask are drawn in
the cell.

The rest of the expansion operations can be implemented as the following:

CHAPTER 3. DESIGN OBJECTIVES 18

define <4 x i32> @esimd_mergeh_16(<8 x i16> %a, <8 x i16> %b) {

entry:

%rr = shufflevector <8 x i16> %b, <8 x i16> %a, <8 x i32> <i32 4, i32 12,

i32 5, i32 13, i32 6, i32 14, i32 7, i32 15>

%rr1 = bitcast <8 x i16> %rr to <4 x i32>

ret <4 x i32> %rr1

}

Program 3.7: Shufflevector and esimd<16>::mergeh in LLVM IR. Expansion operations double the
width of fields.

• Merge low: similar to merge high with a different mask. For example, esimd<16>::mergel

uses the mask 0, 8, 1, 9, 2, 10, 3, 11.

• Unary operations like sign extension and zero extension: LLVM has built-in instructions with

the same function.

For field movement operations:

• Field extract or insert: IR offers two vector instructions insertelement and extractelement

for them.

• Constant fill: it fills each field with an integer constant. In IR this can be coded with vector

constants such as <4 x i32> <i32 1, i32 10, i32 30, i32 99>.

• Unary and binary movement: those operations move fields within one register or among two

registers and they can be implemented with shufflevector.

The full register operations could be coded in large-size integers like i128 and i256. You can

add / multiply / shift it as a normal integer. In fact, all the integer instructions LLVM support can be

applied to them thus enabling more complexed operations that IDISA does not support.

To sum up, we are able to replace the IDISA library with pure IR implementation. However, there

is still one question to answer: since LLVM has its own C++ compiler called Clang and we could

compile the C++ IDISA library into IR, what is the difference between the Clang-generated IR and

our hand-written IR library? We show a tool chain diagram in Figure 3.3 which explains what is a

Clang-generated IR and how the IR library is compiled against the Parabix applications. There are

at least three major differences:

1. Clang could not remove all the target-dependency from the C++ source. Not every IR in-

struction is target-independent. For example, IDISA function hsimd<8>::packh compiles to

Program 3.8 and all the functions that start with @llvm.x86.sse2 are only available on ISAs

that support X86 SSE2. This is inherent to the use of direct compiler intrinsic in IDISA.

CHAPTER 3. DESIGN OBJECTIVES 19

Figure 3.3: Tool chain diagrams for compiling and incorporating the IR library with Parabix. The IR
library header is used to declare external functions.

define <2 x i64> @hsimd_packh_8(<2 x i64> %a, <2 x i64> %b) #4 {

entry:

%0 = bitcast <2 x i64> %a to <8 x i16>

%1 = tail call <8 x i16> @llvm.x86.sse2.psrli.w(<8 x i16> %0, i32 8) #1

%2 = bitcast <2 x i64> %b to <8 x i16>

%3 = tail call <8 x i16> @llvm.x86.sse2.psrli.w(<8 x i16> %2, i32 8) #1

%4 = tail call <16 x i8> @llvm.x86.sse2.packuswb.128(<8 x i16> %3,

<8 x i16> %1) #1

%5 = bitcast <16 x i8> %4 to <2 x i64>

ret <2 x i64> %5

}

Program 3.8: Clang-generated IR for hsimd<8>::packh from compiling the IDISA function

CHAPTER 3. DESIGN OBJECTIVES 20

2. Illegal operations are handled in different levels. Compare the following IR implementation for

simd<4>::add:

add <32 x i4> %a, %b

With the Clang-generated IR from the IDISA SSE2 file:

%and.i.i.i = and <2 x i64> %b, %m0

%0 = bitcast <2 x i64> %a to <16 x i8>

%1 = bitcast <2 x i64> %and.i.i.i to <16 x i8>

%add.i.i10.i = add <16 x i8> %0, %1

%2 = bitcast <16 x i8> %add.i.i10.i to <2 x i64>

%3 = bitcast <2 x i64> %b to <16 x i8>

%add.i.i.i = add <16 x i8> %0, %3

%4 = bitcast <16 x i8> %add.i.i.i to <2 x i64>

%and.i.i.i.i = and <2 x i64> %2, %m0

%and.i.i7.i.i = and <2 x i64> %4, %m1

%or.i.i.i.i = or <2 x i64> %and.i.i.i.i, %and.i.i7.i.i

ret <2 x i64> %or.i.i.i.i

Given that addition on v32i4 is not supported by this target, the latter implements it with v16i8

addition and a few logic operations in the source code level. Target information is required.

And even if the latter code is migrated to a target that supports v32i4 addition natively, it could

not use that ability unless some optimization could recognize the intention behind these 12

lines.

On the other hand, the former one-line code is not extended until the legalization phase. The

target-specific details are thus left to the LLVM code generator.

3. Since the illegal operation is not extended until the legalization phase, more optimizations are

available. The high-level intention of the IR instruction is better preserved. For simd<4>::add,

if one of the operand is all zero, the IR optimizer could remove the single line of add <32 x i4>

more easily than removing the 12 lines of code in the Clang-generated IR. It is useful for

constant combination as well as other peephole optimizations because it simplifies the pattern

recognition. We give an example of peephole optimization on the long integer shifting in

Chapter 5.

This comparison explains our design goal: to replace the IDISA library with a high-level target-

independent IR library. It is different from the IDISA library fundamentally in the way that it tries not

to instruct the compiler how to implement this operation, but rather tell what to implement.

CHAPTER 3. DESIGN OBJECTIVES 21

Could LLVM compile the IR library to efficient machine code? Experiments on X86 suggests no.

Simple functions that directly correspond to native instructions like simd add 8 in Program 3.3 can

be compiled correctly, but for some more complex instructions like shufflevector, where no target so

far has native support for it, poor machine code might be generated (e.g. pack high for 16-bit fields).

Furthermore, LLVM does not have good support for vectors of small elements, simple code like

add <128 x i1> %a, %b would generate a large amount of memory operations and eight additions

on SIMD registers. To achieve a better code generation, we bring many of the strategies from IDISA

to the LLVM back end. The next two chapters describe this in detail.

Chapter 4

Vector of i2k

Parabix operations work on full range of vector types. For the 128-bit SIMD register, Parabix sup-

ports v128i1, v64i2, v32i4, . . . , v1i128, which we refer to as the vector of i2k. Vector types vXi8,

vXi16, . . . , vXi64 are widely used for multimedia processing, digital signal processing and Parabix

technology. They are well supported by the LLVM infrastructure, but the remaining vector types with

smaller elements are not well-supported. For instance, vXi1 is a natural view of many processor

operations, like AND, OR, XOR; they are bitwise operations. However, v32i1, v64i1 and v128i1

are all illegal on the current LLVM 3.5 back end for X86 architecture. The default type legalization

process could not handle them efficiently.

For example, after seeing a v128i1 vector, the type legalization phase decides i1 is not natively

supported, so it promotes the element type i1 to i8. Now it gets v128i8 which is 1024-bit in size and

too large to fit in any register. The type legalizer then splits the vector into 8 v16i8 vectors to fit the

128 bits register size. If we think about doing bitwise-and on 2 v128i1 vectors, we find that LLVM

produces 8 pairs of bitwise-and on v16i8. On the other hand, we can simply bitcast v128i1 to any

legal 128-bit vector like v4i32, perform the bitwise-and and bitcast the result back to v128i1. The

performance penalty of type legalization is high in this example. Another type legalization example

of v32i1 can be found in Figure 4.1.

LLVM applies the same promote element strategy to vectors of i2 and i4, which leads to huge

SelectionDAG generation and thus poorly performing machine code. On the other hand, i1, i2 and

i4 vectors are important to Parabix performance-critical operations, such as transposition and dele-

tion; Parabix applications, such as DNA sequence (ATCG pairs) matching which can be encoded

into i2 vectors most efficiently, requires a better support of small element vectors. The inductive

doubling instruction set architecture (IDISA) which is the ideal model for Parabix needs a core set

of functions on the i2k vectors as the first key element. All these reasons motivate us to find better

implementation of i1, i2 and i4 vectors.

22

CHAPTER 4. VECTOR OF I2K 23

Figure 4.1: Type legalize process for v32i1 vector

4.1 Redefine Legality

From Chapter 2 we know that LLVM has three ways to legalize vector types: Scalarization, Vector

Widening and Vector Element Promotion. None of these strategies could legalize small element

vectors properly. Think about v32i1: it fits in the general 32-bit registers, and we can not benefit

from extending or splitting the vector in wider or more registers, not to mention scalarizing it. It is

best to store v32i1 vectors just in the general 32-bit register and properly handle the operations on

them.

So we want to redefine the type legality inside LLVM. Instead of having direct hardware intrinsic

on it, we define a vector type which has the same size in bits with one of the target’s registers to be

a legal vector type. The definition of the illegal operation remains the same. Under this definition,

v32i1 is legal on any 32-bit platform, v64i1 is legal on any 64-bit platform and v64i2 is legal on any

platform with 128-bit SIMD registers. However, as more types are legal, we need to handle more

illegal operations that are not directly supported by the processor.

We implement every IR instruction that works on small i2k vectors except: (1) floating point

instructions, because Parabix use integer operations exclusively, (2) division and remainder, be-

cause no Parabix operation require it, (3) shufflevector for vectors of small elements, because a

general high-performance implementation of them is hard and unnecessary; instead we optimize

some special cases that are used in the Parabix operations. To sum up, we implement the following

instructions for the i2k vectors: (1) common binary functions listed in Table 4.1; (2) basic vector

operations like INSERT VECTOR ELT, EXTRACT VECTOR ELT and BUILD VECTOR.

LLVM has the facility to ”expand” an illegal operation, so that some operations we did not im-

plement are still available. Consider v32i1, we did not lower its shufflevector but we can still write

CHAPTER 4. VECTOR OF I2K 24

Operation Semantics
ADD ci = ai + bi
SUB ci = ai − bi
MUL ci = ai ∗ bi
AND, OR, XOR Common logic operations.
NE Integer comparison between vectors. ci = 1 if ai is not equal to bi.
EQ ci = 1 if ai is equal to bi
LT ci = 1 if ai < bi. ai and bi is viewed as signed integer
GT ci = 1 if ai > bi. ai and bi is viewed as signed integer
ULT Same with LT, but numbers are viewed as unsigned integer
UGT Same with GT, but numbers are viewed as unsigned integer
SHL ci = ai << bi. Element wise shift left
SRL ci = ai >> bi. Element wise logic shift right
SRA ci = ai >> bi. Element wise arithmetic shift right

Table 4.1: Supported operations and its semantics. A,B is the operands, C is the result. ai, bi, ci is
the ith element.

shufflevector on v32i1 in IR. LLVM could expand it into a sequence of extracting and inserting vec-

tor elements. Unfortunately, the performance is not good. Efficient shufflevector support is possible

with the new instructions PEXT and PDEP introduced in the Intel Haswell BMI2. According to [24],

arbitrary n-bit permutation can be done using no more than lg n GRP instructions. It means for

arbitrary v32i1 shufflevector, no more than 10 PEXTs, 5 ORs and 5 SHIFTs are needed.

4.2 In-place Lowering Strategy

With the redefined legality, we provide the fourth way to legalize vector type: In-place Lowering. It is

called ”in-place” because we do not rearrange the bit value of the vector data, we look at the same

data with a different type. A trivial example is the logical operations on <32 x i1>; we can simply

bitcast <32 x i1> to i32 and perform the same operation. Almost all the operations on vXi1 can be

simulated with a few logic operations on iX (except the basic insert and extract vector operations)

as listed in Table 4.2. Figure 4.2 shows the overall process of lowering v32i1 addition.

In-place Lowering allows us to copy the vector between registers or shift the vector within the

register boundary. But it is different from vector element promotion. Refer to the Figure 4.4, vector

element promotion requires shifting different element with different offsets.

CHAPTER 4. VECTOR OF I2K 25

Figure 4.2: Comparison between LLVM default legalize process (left) and in-place lowering (right).
The right marks v32i1 type legal and handles the operation ADD in the operation legalization phase.
This keeps the data in the general registers without being promoted or expanded.

4.2.1 Lowering for vXi2

Vector type vXi2 has important role in the IDISA model and Parabix transposition and inverse

transposition. Ideal Three-Stage Parallel Transposition [6] requires hsimd<4>::packh and

hsimd<4>::packl, which can be implemented with shufflevectors on v64i2. Shufflevectors of v64i2

are also required by Ideal Inverse Transposition, for esimd<2>::mergeh and esimd<2>::mergel.

Transposition is the first step of every parabix application[14]. It is also a significant overhead

for some application like regular expression matching[28]. So good code generation for vXi2 is

important.

Lowering vXi2 is harder than vXi1, so we propose a systematic framework using logic and 1-bit

shifting operations. Consider A,B as two i2 integers, A = a0a1 and B = b0b1, we can construct

a truth table for every operation C = OP (A,B). We then calculate the first bit and the second

bit of C separately with the logic combinations of a0, a1, b0, b1 and turn this into the Circuit Mini-

mization Problem: find minimized Boolean functions for c0 and c1. We use the Quine-McCluskey

algorithm[19] to solve it; an example can be found in Table 4.3.

Once we get the minimized Boolean functions, we can apply it onto the whole vXi2 vector. To

do this, we need IFH1(Mask, A, B) which selects bits from vector A and B according to the Mask.

If the ith bit of Mask is 1, Ai is selected, otherwise Bi is selected. IFH1(Mask, A, B) simply equals

(Mask ∧ A) ∨ (¬Mask ∧ B). With IFH1, if we have calculated the all high bits (c0 for all the element)

and low bits (c1 for all the element), we can combine them with special HiMask, which equals to

101010 . . . 10, 128 bits long in binary. To calculate all the high bits of each i2 element, we bitcast A,

B into full register type (e.g. v32i1 to i32, v64i2 to i128 or v2i64) and then do the following substitution

on the minimized Boolean functions:

CHAPTER 4. VECTOR OF I2K 26

Operation on vXi1 iX equivalence
ADD(A, B) XOR(A’, B’)
SUB(A, B) XOR(A’, B’)
MUL(A, B) AND(A’, B’)
AND(A, B) AND(A’, B’)
OR(A, B) OR(A’, B’)

XOR(A, B) XOR(A’, B’)
NE(A, B) XOR(A’, B’)
EQ(A, B) NOT(XOR(A’, B’))

LT(A, B), UGT(A, B) AND(A’, NOT(B’))
GT(A, B), ULT(A, B) AND(B’, NOT(A’))

SHL(A, B), SRL(A, B) AND(A’, NOT(B’))
SRA(A, B) A’

Table 4.2: Legalize operations on vXi1 with iX equivalence. A, B are vXi1 vectors, A’, B’ are iX
bitcasted from vXi1. For v128i1, we use v2i64 instead of i128 since LLVM supports the former
better.

A B C
00 00 00
00 01 01
00 10 10

. . .
11 11 10

c0 = (a0 ⊕ b0)⊕ (a1 ∧ b1)
c1 = a1 ⊕ b1

Table 4.3: Truth-table of ADD on 2-bit integers and the minimized Boolean functions for C.

• For a0 and b0, replace it with A and B.

• For a1 and b1, replace it with A << 1 and B << 1.

• Keep all the logic operations.

So c0 = (a0 ⊕ b0) ⊕ (a1 ∧ b1) becomes (A ⊕ B) ⊕ ((A << 1) ∧ (B << 1)), which simplifies to

(A⊕ B)⊕ ((A ∧ B) << 1). We use shifting to move every a1 and b1 in place. For all the lower bits

of each i2 element, the rules are similar:

• For a1 and b1, replace it with A and B.

• For a0 and b0, replace it with A >> 1 and B >> 1.

• Keep all the logic operations.

CHAPTER 4. VECTOR OF I2K 27

static SDValue GENLowerADD(SDValue Op, SelectionDAG &DAG) {

MVT VT = Op.getSimpleValueType();

MVT FullVT = getFullRegisterType(VT);

SDNodeTreeBuilder b(Op, &DAG);

if (VT == MVT::v64i2) {

SDValue A = b.BITCAST(Op.getOperand(0), FullVT);

SDValue B = b.BITCAST(Op.getOperand(1), FullVT);

return b.IFH1(/* 10101010...10, totally 128 bits */

b.HiMask(128, 2),

/* C0 = (A0 ^ B0) ^ (A1 & B1) */

b.XOR(b.XOR(A, B), b.SHL<1>(b.AND(A, B))),

/* C1 = (A1 ^ B1)*/

b.XOR(A, B));

}

llvm_unreachable("GENLower of add is misused.");

return SDValue();

}

Program 4.1: The function generated to lower ADD on v64i2.

Program 4.1 is the actual custom code to lower v64i2 addition. One thing to mention here is that

we employ a template system to automatically generate custom lowering code and the correspond-

ing testing code. We describe the template system later in Chapter 5.

4.2.2 Inductive Doubling Principle For i4 Vector

Now we have better code generation for vXi1 and vXi2, vXi4 vectors are our next optimization

target. Shufflevectors of vXi4 are used in hsimd<8>::packh, packl and esimd<4>::mergeh, which

are required by Ideal Three-Stage Transposition / Inverse Transposition; vXi4 is also a critical part

of the IDISA model. But unfortunately, the strategies discussed above cannot be applied to vXi4

efficiently.

Circuit Minimization Problem is NP-hard[27, 20]. For vXi4, 4 Boolean functions of 8 variables

are necessary: ci = fi(a0, a1, a2, a3, b0, b1, b2, b3), i ∈ {0, 1, 2, 3}. It is known that most Boolean

functions on n variables have circuit complexity at least 2n/n [20] and we need 1-bit, 2-bit, 3-bit

shifting on A, B. So the framework on vXi2 could not generate efficient code for us at this time.

Instead, we introduce the Inductive Doubling Principle [14] and we show that this general principle

can be applied for vXi4 and even wider vector element types, e.g. multiplication on v16i8, to get

better performance.

CHAPTER 4. VECTOR OF I2K 28

Figure 4.3: To add 2 v32i4 vectors, a and b, we bitcast them into v16i8 vectors. The lower 4 bits of
A0 + B0 gives us c1. We then mask out a1 and b1 (set them to zero), do add again, and the higher
4 bits of the sum is c0.

Figure 4.4: LLVM default type legalization of v8i4 to v8i8. a0 to a7 are i4 elements and they are
shifted with different offsets during the element type promotion.

We use v32i4 as an example to illustrate the Inductive Doubling Principle. To legalize v32i4,

LLVM promotes this type into v32i8, widens every element to i8 then shifts every element except

the first one. Figure 4.4 shows an example of widening v8i4 into v8i8, we can see unnecessary

movement of vector elements during widening. On a platform with a 128 bits SIMD register, v32i8

is further divided into two v16i8 and requires 2 registers to hold, while the original type v32i4 has

128 bits in size and should be able to reside in only 1 register. The Inductive Doubling Principle

could achieve the latter for us. It bitcasts the vector in-place, views the same register as v16i8 type

and emulates i4 operations with i8; e.g. in Figure 4.3, to get add <32 x i4> %a, %b, we calculate

c0, c2, . . . , c30 (high 4 bits in each i8 element) and c1, c3, . . . , c31 (low 4 bits in each i8 element)

separately with 2 v16i8 additions:

CHAPTER 4. VECTOR OF I2K 29

C = IFH1(HiMask8, A ∧HiMask8 +B ∧HiMask8, A+B) (4.1)

HiMask8 = (1111000011110000 . . . 11110000)2 (4.2)

So we can emulate SIMD operations on iX vectors with iX/2 or i2X vector operations. We im-

plemented all the operations on vXi4 with this principle and the algorithm is listed in Table 4.4. One

thing that needs to be explained is SETCC, which is the internal representation of integer compari-

son in LLVM. It has a third operand to determine comparison type, such as SETEQ (equal), SETLT

(signed less than), and SETUGE (unsigned greater or equal to). The third operand preserves in our

algorithm.

C = IFH1(HiMask8, HiBits, LowBits)
Operation

v32i4
HiBits LowBits

All operation is on v16i8
MUL MUL(A >> 4, B >> 4) << 4 Default
SHL SHL(A ∧HiMask8, B >> 4) SHL(A,B ∧ LowMask8)
SRL SRL(A,B >> 4) SRL(A ∧ LowMask8, B ∧ LowMask8)
SRA SRA(A,B >> 4) SRA(A << 4, (B ∧ LowMask8)) >> 4

SETCC Default SETCC(A << 4, B << 4)
Default OP OP (A ∧HiMask8, B ∧HiMask8) OP (A,B)
In the table:

A >> 4: logic shift right every i8 element by 4 bits
A << 4: shift left of every i8 element by 4 bits
HiMask8 = (11110000 . . . 11110000)2
LowMask8 = (00001111 . . . 00001111)2

Table 4.4: Algorithm to lower v32i4 operations. The legalization input is c = OP (a, b), where a, b, c
are v32i4 vectors. A,B,C is the bitcasted results from a, b, c. They are all v16i8 type.

Furthermore, this method is applicable to vectors of wider element type. Multiplication on v16i8,

for example, generates poor code on LLVM 3.4 (Program 4.2): the vectors are finally scalarized and

16 multiplications on i8 elements are generated. With in-place promotion, we bitcast the operands

into v8i16 and generate 2 SIMD multiplications (pmullw) instead.

However, the algorithm in Table 4.4 cannot guarantee the best performance. Addition on v32i4

requires 2 v16i8 additions, but we can actually implement it with one. Looking back to Figure 4.3,

we need to mask out a1, b1 and do add again, because a1 + b1 may produce a carry bit to the high

4 bits. If we mask out only the high bit of a1 and b1, still we do not produce a carry and we can

calculate c0 and c1 together in one v16i8 addition. All we need to solve is how to put the high bit

back. The following equations describe the 1-add algorithm:

CHAPTER 4. VECTOR OF I2K 30

define <16 x i8> @mult_8(<16 x i8> %a, <16 x i8> %b) {

entry:

%c = mul <16 x i8> %a, %b

ret <16 x i8> %c

}

LLVM 3.4 default:

pextrb $1, %xmm0, %eax

pextrb $1, %xmm1, %ecx

mulb %cl

movzbl %al, %ecx

pextrb $0, %xmm0, %eax

pextrb $0, %xmm1, %edx

mulb %dl

movzbl %al, %eax

movd %eax, %xmm2

pinsrb $1, %ecx, %xmm2

pextrb $2, %xmm0, %eax

pextrb $2, %xmm1, %ecx

mulb %cl

movzbl %al, %eax

pinsrb $2, %eax, %xmm2

pextrb $3, %xmm0, %eax

pextrb $3, %xmm1, %ecx

mulb %cl

movzbl %al, %eax

pinsrb $3, %eax, %xmm2

pextrb $4, %xmm0, %eax

pextrb $4, %xmm1, %ecx

...

...

(16 mulb blocks in total)

(a)

Inductive doubling result:

movdqa %xmm0, %xmm2

pmullw %xmm1, %xmm2

movdqa .LCPI0_0(%rip), %xmm3

movdqa %xmm3, %xmm4

pandn %xmm2, %xmm4

psrlw $8, %xmm1

psrlw $8, %xmm0

pmullw %xmm1, %xmm0

psllw $8, %xmm0

pand %xmm3, %xmm0

por %xmm4, %xmm0

retq

(b)

Program 4.2: LLVM 3.4 generates poor machine code for v16i8 multiplication. (a) is the generated
code from LLVM 3.4. It pextrb every i8 field and multiply them with mulb. The overall process in
(a) is sequential. (b) is the generated code from the inductive doubling principle. In (b), two pmullw
which is the multiplication on v8i16 are used to improve performance.

CHAPTER 4. VECTOR OF I2K 31

m = (10001000 . . . 1000)2 (4.3)

Ah = m ∧A (4.4)

Bh = m ∧B (4.5)

z = (A ∧ ¬Ah) + (B ∧ ¬Bh) (4.6)

r = z ⊕Ah ⊕Bh (4.7)

Equation (4.6) uses only one v16i8 addition and equation (4.7) put the high bit back. Our vector

legalization framework is flexible enough that we can choose to legalize v32i4 addition with the 1-

add algorithm while keeping the remaining v32i4 operations under the general in-place promotion

strategy. We discuss our framework implementation in Chapter 5.

4.3 LLVM Vector Operation of i2k

In addition to the binary operations listed in Table 4.1, LLVM provides convenient vector operations

like insertelement, extractelement and shufflevector, internally, they are DAG node INSERT VEC-

TOR ELT, EXTRACT VECTOR ELT and VECTOR SHUFFLE. Another important internal node is

BUILD VECTOR. In this section, we discuss how to custom lower these nodes on i2k vectors.

BUILD VECTOR takes an array of scalars as input and returns a vector with these scalars

as elements. Take the v64i2 vector on the X86 SSE2 architecture for an example; ideally, the

input provides an array of 64 i2 scalars and they are then assembled into a v64i2 vector. More

specifically, since i2 is illegal on all X86 architectures, the legal input is actually 64 i8 scalars. The

naive approach is to create an ”empty” v64i2 vector, truncate every i8 into i2 and insert them into

the proper location of the ”empty” vector. We propose a better approach by rearranging the index.

Let us denote the input array as a0, a1, . . . , a63, ai are all i8. We rearrange them with v16i8

BUILD VECTOR according to Table 4.5 and build 4 v16i8 vectors V1, V2, V3, V4. The final build result

is:

V = V1 ∨ (V2 << 2) ∨ (V3 << 4) ∨ (V4 << 6) (4.8)

a60 . . . a12 a8 a4 a0 V1

a61 . . . a13 a9 a5 a1 V2

a62 . . . a14 a10 a6 a2 V3

a63 . . . a15 a11 a7 a3 V4

Table 4.5: Rearranging index for BUILD VECTOR on v64i2

SIMD OR and SHL are used in this formula, thus improving the performance by parallel com-

puting. Rearranging index approach can be easily generalized to fit BUILD VECTOR of v128i1 and

CHAPTER 4. VECTOR OF I2K 32

v32i4.

EXTRACT VECTOR ELT takes 2 operands, a vector V and an index i. It returns the ith element

of V . On the X86 architecture, there are built-in intrinsics to extract vector elements, such as pextrb

(i8), pextrw (i16), pextrd (i32) and pextrq (i64); for smaller element types, we could extract the

wider integer that contains it, shift the small element to the lowest bits and truncate. Following

algorithm gives an example of extracting the ith element from the v64i2 vector V.

• Bitcast V to v4i32 V’ and extract the proper i32 E. Since every i32 contains 16 i2 elements, the

index of E is bi/16c.
V’ = bitcast <64 x i2> V to <4 x i32>

E = extract element V’,bi/16c

• Shift right E, to put the element we want in the lowest bits.

E’ = E >>(2× (i mod 16))

• Truncate the high bits of E’ to get the result.

R = truncate i32 E’ to i2

The choice of v4i32 does not make a difference, we can use any of the wider element vector

types mentioned above. On the X86 architecture, the support of extraction on v8i16 starts at SSE2,

while others start at SSE4.1, so we choose v8i16 extraction in our code to target a broader range

of machines.

INSERT VECTOR ELT is similar, it takes 3 operands, a vector V , an index i and an element

e. It inserts e into the ith element of V and returns the new vector. Same as EXTRACT VECTOR

ELT, X86 SSE2 supports v8i16 insertion (pinsrw), SSE4.1 supports v16i8 (pinsrb), v4i32 (pinsrd)

and v2i64 (pinsrq); for smaller element types, we could extract the wider integer that contains the

element, modify the integer and insert it back. Following algorithm gives an example of inserting e

into the ith element of the v64i2 vector V.

• Bitcast V to v4i32 V’ and extract the proper i32 E.

V’ = bitcast <64 x i2> V to <4 x i32>

E = extract element V’,bi/16c

• Truncate e and shift it to the correct position.

e’ = zero extend (e ∧ (11)2) to i32

f = e’ <<(2× (i mod 16))

CHAPTER 4. VECTOR OF I2K 33

• Mask out old content in E, put in the new element.

m = (11)2 << (2× (i mod 16))

E’ = (E ∧ ¬m) ∨ f

• Insert back E’ to generate the new vector R.

R = insert element V’, E’,bi/16c

We have discussed VECTOR SHUFFLE in Chapter 3. We did not develop a general lowering

strategy for the small element VECTOR SHUFFLE. An efficient general lowering requires better

machine instructions such as PEXT. Instead, we focused more on special cases that matter to

Parabix critical operations, we optimized those cases to match performance of the hand-written

library.

4.4 Long Stream Addition

Parabix technology has the concept of adding 2 unbounded streams, which must be translated

into a block-at-a-time implementation[28]. One important operation is unsigned addition of 2 SIMD

registers with carry-in and carry-out bit e.g. add i128 %a, %b or add i256 %a, %b with i1 carry-in

bit c_in and generates i1 carry-out bit c_out. Cameron et al.[28] developed a general model using

SIMD methods for efficient long-stream addition up to 4096 bits.

In this section, we replace the internal logic of wide integer addition (i128, i256 etc.) of LLVM

with the Parabix long-stream addition. Following Cameron et al.[28], we assume the following SIMD

operations legal on the target:

• add <N x i64> X, Y, where N = RegisterSize/64. SIMD addition on each corresponding

element of the i64 vectors, no carry bits could cross the element boundary.

• icmp eq <N x i64> X, -1: compare each element of X with the all-one constant, returning

an <N x i1> result.

• signmask <N x i64> X: collect all the sign bit of i64 elements into a compressed <N x i1>

vector. From the LLVM speculation, this operation is equivalent to icmp lt <N x i64> X, 0,

which is the signed less-than comparison of each i64 element with 0. In the real implementa-

tion we use target-specific operations for speed, e.g. movmsk pd for SSE2 and movmsk pd 256

for AVX.

• Normal bitwise logic operations on <N x i1> vectors. For small N, native support may not

exist, so we bitcast <N x i1> to iN and then zero extend it to i32. This conversion could also

help with the 1-bit shift we use later.

CHAPTER 4. VECTOR OF I2K 34

• zext <N x i1> m to <N x i64>: this corresponds to simd<64>::spread(X) in [28]. The

internal logic of LLVM zero extension for vNi1 is not good enough, so we implement our own.

An example of v2i1 is in Table 4.6.

Spread 2-bit value (ab)2 to v2i64
M0 ab

M1 = M0 × 0x8001ab.............ab

M2 = M1 ∧ 0x10001a...............b

M3 = bitcast M2 to v2i16 <2 x i16> <i16 a, i16 b>

M4 = zext M3 to v2i64 <2 x i64> <i64 a, i64 b>

Table 4.6: Example of spreading v2i1 to v2i64

We then present the long stream addition of 2 N × 64 bit values X and Y with these operations

as follows:

1. Get the vector sums of X and Y.

R = add <N x i64> X, Y

2. Get sign masks of X, Y and R.

x = signmask <N x i64> X

y = signmask <N x i64> Y

r = signmask <N x i64> R

3. Compute the carry mask c, bubble mask b and the increment mask i.

c = (x ∧ y) ∨ ((x ∨ y) ∧ ¬r)

b = icmp eq <N x i64> R, -1

i = MatchStar(c*2+c in, b)

MatchStar is a key Parabix operation which is developed for regular expression matching:

MatchStar(M,C) = (((M ∧ C) + C)⊕ C)|M

4. Compute the final result Z and carry-out bit c out.

S = zext <N x i1> i to <N x i64>

Z = add <N x i64> R, S

CHAPTER 4. VECTOR OF I2K 35

c out = i >> N

One note here for the mask type: c and i are literally all <N x i1> vectors, but we actually

bitcast and zero extend them into i32. This is useful in the formula c*2+c in, MatchStart and

i >> N; in fact, after we shift left c by c*2, we already have an N + 1 bit integer which does

not fit in <N x i1> vector. The same is true for i; so when we write zext <N x i1> i to <N

x i64>, there is an implicit truncating to get the lower N bits of i, but when we shift right i by

i >> N, we do not do such truncation.

LLVM internally implements long integer addition with a sequence of ADDC and ADDE, which

is just chained 64-bit additions (or 32-bit additions on 32-bit target). We replace that with the long

stream addition model thus improving the performance by parallel computing. As the hardware

evolves, wider SIMD registers will be introduced, like the 512-bit register in Intel AVX512, our gen-

eral implementation could easily adopt this change in hardware and add two i512 in constant time.

During our implementation, we found there was no intrinsic in IR for addition with carry-in and

carry-out bit, there was only one intrinsic uadd.with.overflow for addition with carry-out bit. To

realize unbounded stream addition, the ability to take the carry-in bit is necessary, otherwise we

would end up with two uadd.with.overflow to include the carry-in bit. So we introduced a new

intrinsic uadd.with.overflow.carryin and backed it with the long stream addition algorithm.

Chapter 5

Implementation

In this Chapter, we describe our realization of Parabix technology inside the LLVM facility. LLVM is

a well-structured open source compiler tool chain which is under rapid development. So during our

implementation, we tried our best to follow its design principles while keeping our code modularized

and isolated to be able to easily integrate with new versions of LLVM. Our goal of code design is to:

1. Use general strategies across different types and operations to reduce repeated logic.

2. Minimize code injection in the existing source and put Parabix logic in a separate module.

3. Check correctness of every operation we implement. Since most of the test code follows the

same pattern, they should be generated automatically to reduce repeated human work.

Most of our code reside in LLVM Target-Independent Code Generator[4]. From Chapter 4, we

know that the current type legalization process of LLVM has a big performance penalty for small

element vectors. So our approach marks i1, i2 and i4 vector legal type first, and then handles them

in the operation legalization phase. For convenience, we name this set of vector types the Parabix

Vector.

We walk through the following steps to mark a type legal on a certain target:

• Add new register class in target description file. LLVM uses TableGen (.td files) to describe

target information which allows the use of domain-specific abstractions to reduce repetition [4].

Registers are grouped into register classes which further tie to a set of types. We introduced

GR32X for 32-bit general register like EAX EBX for v32i1, GR64X for 64-bit general register

like RAX RBX for v64i1, VR128PX for 128-bit vector register like XMM0 to XMM15 for v128i1,

v64i2, v32i4 Types within the same register class can be bitcasted from one to the other, since

they can actually reside in the same register.

36

CHAPTER 5. IMPLEMENTATION 37

• Set calling convention. They are two kinds of calling convention to set: return value and

argument calling convention. For example, we instruct LLVM to assign v64i2 type return value

to XMM0 to XMM3 registers, assign v64i2 argument type to XMM0 to XMM3 registers if SSE2

is available or to 16-byte stack slots otherwise.

Now the type legalization phase recognizes our i1, i2, i4 vectors as legal and passes them

onto the operation legalization phase. We have two major methods to handle i2k vectors: Custom

Lowering and DAG Combining.

Figure 5.1: Overview of the modified instruction selection process. Logic for Parabix vectors are
hooked into two places: the operation legalization phase and DAG Combine Phases. They are
coloured with grey background.

Figure 5.1 gives an overview of our implementation. LLVM constructs a SelectionDAG with the

input IR source code and then puts it through DAG Combine 1 for cleaning up and optimization. The

optimized DAG is fed into the type legalization phase. We mark the Parabix Vectors type-legal so

that they could pass through this phase without being changed. There is another DAG combining

phase after the type legalization. Then, the resulting DAG is fed into the operation legalization phase

which is done by iteration. Custom Lowering for Parabix resides in this phase. In each iteration,

CHAPTER 5. IMPLEMENTATION 38

the legalizer checks every DAG node for its legality. If the node is illegal and performs operation

on some Parabix vector, the Parabix Custom Lowering code will be called to legalize this node;

otherwise the default LLVM logic will handle this illegal node. The iteration terminates when every

DAG node is legal. Through iteration, the legalizer could introduce new illegal nodes into the graph.

After the operation legalization phase, there is another DAG combining to clean up the messy

output. The last two steps for machine code generation remain the same. There is Parabix DAG

Combine logic in all the three DAG combining phases. Each DAG combining phase maintains a

work list. It traverses the DAG graph for specific operations. If the operation works with Parabix

vectors and it fits a certain pattern, the Parabix DAG Combine logic will replace the node with a new

node or a new sub-tree of nodes. Examples of DAG patterns can be found in Section 5.1.2. Part(or

all) of the new nodes can be appended to the work list so that the legalizer knows to combine it

further later. There is no built-in iteration for DAG combining, but the iteration can be emulated by

keeping appending the processed nodes to the work list if necessary.

In the following sections, we discuss some custom lowering strategies and how they are orga-

nized to fit our design goal. Then we give some examples of the Parabix DAG Combiner which are

usually special cases for a certain operation. Finally we show how we use templates to generate

code and test cases for the sake of DRY (don’t repeat yourself).

5.1 Standard Method For Custom Lowering

5.1.1 Custom Lowering Strategies

After the type legalization phase, one shall not generate illegal types again. This means all the

phases after type legalization are target-specific. But in practice, almost all the targets support i8,

i32 and i64, so there are still general strategies we can apply across targets. For different types

like v32i1 and v128i1, general strategies also exist to lower both of them. We define three legalize

actions as the following:

1. Bitcast to full register and replace the operation code. This is useful for all i1 vectors, we need

to specify the new operation code when defining the action, e.g. XOR for ADD on v32i1.

2. In-place promotion. Automatically apply i2X vector operations on an iX vector following the

Inductive Doubling Principle.

3. Custom. Same concept with LLVM Custom Lowering, manually replace an illegal DAG node

with a sequence of new DAG nodes. They can be illegal nodes, but they cannot introduce

illegal types. All i2 vectors are lowered here, also the 1-add version of the v32i4 addition.

CHAPTER 5. IMPLEMENTATION 39

5.1.2 DAG Combiner

DAG Combiner is the supplement to the custom lowering facility. It often focuses on special cases

e.g. one operation and a subset of possible operands. We give a few examples of Parabix DAG

Combiner here.

Figure 5.2: Long stream shifting

Figure 5.3: A better algorithm for long stream shift.

We first show a peephole optimization that greatly improves the performance of long stream

shifting. Long stream shifting shifts left one whole SIMD register with potential shift-in bits from the

other SIMD register. Refer to Figure 5.2, we want to shift left A by n bits and shift-in the highest

n bits from B. For simplicity, we assume n = 1 and the SIMD register is 128-bits wide. The most

straight-forward implementation is listed below:

A1 = shl i128 A, 1

B1 = lshr i128 B, 127

CHAPTER 5. IMPLEMENTATION 40

R = or i128 A1, B1

This algorithm is called double shift. It describes clearly what we want to implement so it is the

preferred IR code in the library. Since shift on i128 is not natively supported, double shifts of v2i64

and one shufflevector are needed to implement the i128 shift. Thus, we need 4 v2i64 shifts, 2

shufflevectors and 3 logic or operations. These shufflevectors are further lowered into one or two

instructions which are machine dependent.

A better algorithm that uses 2 v2i64 shifts, 1 shufflevector and 1 logic or is implemented. Refer

to Figure 5.3, the algorithm is listed below:

M = shufflevector <2 x i64> A, B, <2 x i32> <i32 1, i32 2>

D = shl <2 x i64> A, <2 x i64> <i32 1, i32 1>

E = lshr <2 x i64> M, <2 x i64> <i32 63, i32 63>

R = or <2 x i64> D, E

M is the key to this algorithm. When we shift left A as v2i64, we create holes (1-bit shift-in zeros)

in the lower end of each field. The correct fill-in data for these holes are just the highest bit in each

field of M. So we shift right M as v2i64 to align the bits into correct positions and use logic or operation

to fill the holes. This algorithm can be generalized to long stream shift of an arbitrary amount.

Once the back end recognizes the double-shift code, it re-implements with the latter algorithm.

The DAG combining process is described in Figure 5.4.

The next example is shufflevector for hsimd<16>::packh. With the similar code described in

Chapter 3, LLVM 3.5 does not generate the best assembly code. It generates a sequence of pextrw

and pinsrw. Even the newest LLVM trunk generates 27 lines of assembly. We create the following

DAG Combiner and get the 5 lines of equivalent assembly code in Program 5.1.

• Pattern: shufflevector on v16i8 with mask = 1, 3, 5, . . . , 31. The target supports SSE2.

• Combine Result: one PACKUS node, which unsigned saturates two v8i16 into v8i8 vectors

and concatenates them into one v16i8.

psrlw $8, %xmm0

psrlw $8, %xmm1

packuswb %xmm0, %xmm1

movdqa %xmm1, %xmm0

retq

Program 5.1: The optimized assembly code for hsimd<16>::packh on SSE2

CHAPTER 5. IMPLEMENTATION 41

Figure 5.4: The DAG combiner for long stream shift. When the above pattern is recognized, it gets
replaced with the better implementation below.

CHAPTER 5. IMPLEMENTATION 42

The efficient implementation of packh on vectors of small elements are possible with the PEXT

instruction introduced by the Intel Haswell BMI2. PEXT is a useful instruction for bit manipulation on

i32 and i64. Given the i8 variable A = (abcdefgh)2, Mask = (10101010)2, PEXT(A, Mask) returns R

= (aceg)2. PEXT extracts bits from A at the corresponding bit locations specified by the mask. With

this in mind, we can implement hsimd<2>::packh as Program 5.2 (in pseudo IR for readability).

define <2 x i64> @packh_2(<2 x i64> A, <2 x i64> B) {

entry:

; extract lower 64 bits (A0) and higher 64 bits (A1)

A0 = extractelement <2 x i64> A, i32 0

A1 = extractelement <2 x i64> A, i32 1

Mask = 0xAAAAAAAAAAAAAAAA ; 1010...1010 in binary

P0 = PEXT(A0, Mask) | (PEXT(A1, Mask) << 32)

; same for B

B0 = extractelement <2 x i64> B, i32 0

B1 = extractelement <2 x i64> B, i32 1

P1 = PEXT(B0, Mask) | (PEXT(B1, Mask) << 32)

ret <2 x i64> <i64 P0, i64 P1>

}

Program 5.2: Implementation of hsimd<2>::packh with PEXT.

According to Program 5.2, we create the following DAG Combiner:

• Pattern: shufflevector on v128i1, v64i2 or v32i4 with mask = 0, 2, 4, . . . , NumElt × 2 − 2 or

mask = 1, 3, 5, . . . , NumElt × 2 − 1. NumElt is the number of elements for each type e.g.

NumElt = 32 for v32i4.

• Combine Result: four PEXT nodes combined with OR and SHL.

To summarize, this kind of DAG Combiner provides a shortcut for the programmer to do peep-

hole optimization. It can co-exist with a full custom lowering, like the relationship between immediate

shifting and arbitrary shifting. Immediate shifting shifts all the vector elements by the same amount,

allowing efficient realization for v32i4 with v4i32 shifts, while we apply the In-place Promotion strat-

egy for v32i4 arbitrary shifting in the Parabix custom lowering.

DAG Combiner can optimize operations with illegal types in the phase DAG Combine 1, while

for the custom lowering all the types must be legal. But we cannot simply put all the Parabix

Custom Lowering logic inside the DAG Combiner. First, it is against LLVM design; DAG Combiner

is designed for cleaning up, either the initial code or the messy code generated by the legalization

passes [4]. Second, DAG Combiner cannot utilize the legalization iteration; in custom lowering,

CHAPTER 5. IMPLEMENTATION 43

general strategies may introduce new illegal operations which are hard to avoid since “illegal” is

a target-specific concept. The DAG Combiner, on the other hand, 1) should not generate illegal

operations in the phases after the operation legalization phase, 2) although it can also work in

iteration, most of the lowering logic for common operations are not programmed in this module, we

would end up with illegal non-Parabix operations.

5.2 Templated Implementation

During our implementation, we encountered a lot of duplicated code, especially in the test cases;

Such duplication is against software design principles and is hard to maintain, sometimes even hard

to write; a thorough test file for i2k vector contains more than two thousand lines of code, most of

which are in the same pattern. To keep DRY and save programmer time, we introduced the Jinja

template engine [3]. According to [7], Jinja belongs to the Engines Mixing Logic into Templates, it

allows embedding logic or control-flow into template files. We use Jinja because:

• We can write all pieces of the content in one file, so it is easier to understand. Where in

the Engines using Value Substitution, the driver code usually contains many tiny pieces of

content. The reader must read the driver code as well as the template file to understand the

output. One template example can be found in Program 5.5.

• Like the standard Model-View-Controller structure in the web design, our driver code needs

only provide abstract data (like operation names in IR and the corresponding C++ library calls).

How to present these data is not its responsibility. In the other words, we can have significant

changes in the template without changing the driver.

• Jinja uses python and python is easy and quick to use.

5.2.1 Code Generation For i2 Vector

In Chapter 4, we legalized i2 vector operations with boolean functions. In our implementation, with

the Quine-McCluskey solver, we got 11 sets of formulas which reside in one compact data script.

We wrote template files to generate 11 C++ functions for them. This approach has the following

benefits:

• It collects all the critical formula together so that possible future updates are easy to deploy.

• Implementation details only reside in the template file, so we are able to change the code

structure easily. For now we create one function for each formula, but it is possible that we

could create one big switch statement and generate one case for each formula instead. This

can be done with only a few lines of change in the template.

CHAPTER 5. IMPLEMENTATION 44

Example formula of v64i2 addition as well as the function template is listed in the Program 5.3

and Program 5.4.

"add_2": r’’’

tmp = simd_xor(arg1, arg2)

return simd_ifh1(simd_himask(fw),

simd_xor(tmp, simd_slli(1, simd_and(arg1, arg2))), tmp)

’’’

Program 5.3: Minimum boolean function for v64i2 addition.

{% for name in FunctionNames %}

/* Generated function */

static SDValue GENLower{{ name.op }}(SDValue Op, SelectionDAG &DAG) {

MVT VT = Op.getSimpleValueType();

MVT FullVT = getFullRegisterType(VT);

SDNodeTreeBuilder b(Op, &DAG);

if (VT == MVT::v64i2) {

SDValue A1 = b.BITCAST(Op.getOperand(0), FullVT);

SDValue A2 = b.BITCAST(Op.getOperand(1), FullVT);

{% for line in Implement[name.c] %}

{{ line | trim }};

{% endfor %}

}

llvm_unreachable("GENLower of {{ name.op }} is misused.");

return SDValue();

}

{% endfor %}

Program 5.4: Custom lowering function template for v64i2. This template file generates one function
for each operation.

5.2.2 Test Code And IR Library Generation

The IDISA library is mature and well tested. It is thoroughly tested against the IDISA+ Tester [18]

and its correctness is also proved by many of the Parabix applications. So we test correctness of

our modified LLVM by comparing results with the IDISA library. For example we extend LLVM to

support i1 vectors, but does the extension work? We answer this question by first constructing a IR

CHAPTER 5. IMPLEMENTATION 45

library of all the functions defined on i1 such as the add 1 listed in the top left corner in Figure 5.5.

We then write a driver to generate random test data, put them through the IR functions as well as

the corresponding IDISA functions, and check if the results are the same.

There is one problem in this approach. The driver and IDISA are both written in C++ but the IR

library is in low-level representation. How to mix them together? We solve the problem by compiling

the IR code into object files. A separate header file of IR-function signatures is maintained so that

the driver code can call IR functions as external functions. The overview of the test system can be

found in Figure 5.5. We use templates for both the IR library and the driver, some sample templates

can be found in Program 5.5.

Figure 5.5: Test system overview. The pure IR library is first compiled into the native object file and
then linked with the driver. The driver call functions from the both side to check correctness.

CHAPTER 5. IMPLEMENTATION 46

{% for name in FunctionNamesI4 %}

define <32 x i4> @{{name.c}}(<32 x i4> %a,

<32 x i4> %b)

{

entry:

%c = {{ name.op }} <32 x i4> %a, %b

{% if "icmp" in name.op %}

%d = sext <32 x i1> %c to <32 x i4>

ret <32 x i4> %d

{% else %}

ret <32 x i4> %c

{% endif %}

}

{% endfor %}

define <32 x i4> @add_4(<32 x i4> %a,

<32 x i4> %b)

{

entry:

%c = add <32 x i4> %a, %b

ret <32 x i4> %c

}

define <32 x i4> @eq_4(<32 x i4> %a,

<32 x i4> %b)

{

entry:

%c = icmp eq <32 x i4> %a, %b

%d = sext <32 x i1> %c to <32 x i4>

ret <32 x i4> %d

}

Program 5.5: Templates for the IR Library. On the top is the template, and two different output are
listed below. We use embedded for loop and if statements.

Chapter 6

Performance Evaluation

In this chapter, we focus on the performance evaluation to assess whether our LLVM back end

matches the performance of the hand-written library and whether back end optimizations provide

performance advantages. We first validate our vector of i2k approaches, and then present the

performance of some critical Parabix operations via an application-level profile.

6.1 Vector of i2k Performance

In Chapter 4, we presented different approaches to lower i1, i2, i4 and some i8 operations within

one SIMD register. In this section, we validate our approaches by showing the improved run-time

performance.

6.1.1 Methodology

Testing small pieces of critical code can be tricky, since the testing overhead can easily overwhelm

the critical code and make the result meaningless. Agner Fog provides a test program which uses

the Time Stamp Counter for clock cycles and Performance Monitor Counters for instruction count

and other related events [8]. We measure the reciprocal throughput, the CPU cycles and the instruc-

tions count. The reciprocal throughput is measured with a sequence of same instructions where

subsequent instructions are independent of the previous ones. In Fog’s instruction table, he noted

that a typical length of the sequence is 100 instructions of the same type and this sequence should

be repeated in a loop if a larger number of instructions is desired.

The reciprocal throughput is an important attribute of instructions, but it is not directly related

to the run time. So we also measure the CPU cycles and the instructions count. The less CPU

cycles means less program run time. We found the CPU cycles and the instructions count behave

47

CHAPTER 6. PERFORMANCE EVALUATION 48

consistently, that less CPU cycles usually leads to less instructions count. The only difference is

that the instructions count are more stable. We show the improvement of performance by showing

improved CPU cycles or instructions count.

We did one simple experiment with SIMD XOR (xorps) to validate this program. In Figure 6.1,

we show the measured performance of executing different number of XOR instructions; they are

organized into one for loop. We have checked the assembly code to make sure the XOR operations

are not optimized away.

Figure 6.1: Test performance with XOR. The dotted line is instruction count and the other line is
core CPU cycles.

From the figure, we can see the instruction count and CPU cycles grows linearly with the number

of XOR instructions. So we can conclude that Fog’s test program can be used to compare two

pieces of critical code: the one with more measured CPU cycles is more complex and has more

instructions. Note that from the figure, it seems the throughput of xorps is 4, which is different from

Intel’s document (3.0 in document). We found this may be related to the compiler optimization on

the loop; when we flattened the loop we got the throughput around 2.7. In order to eliminate this

undesired effect, we flatten all the test code in the following sections.

In the following sections, we write micro benchmarks with Agner Fog’s test program and compare

performance between different implementation. Our test machine is X86 64-bit Ubuntu with Intel

Haswell, and the detailed configuration can be found in Table 6.1. In order to inline pure IR functions

(instead of a function call into one object file), we compile all the test code into LLVM bit code (binary

form of LLVM IR) and then link / optimize them together. The default compile flag is to use Intel SSE2

instruction set on the 64-bit OS.

CHAPTER 6. PERFORMANCE EVALUATION 49

CPU Name Intel(R) Core(TM) i5-4570 CPU
CPU MHz 3200

FPU Yes
CPU(s) enabled 4 cores

L1 Cache 32 KB D + 32KB I
L2 Cache 256 KB
L3 Cache 6 MB
Memory 8GB

Table 6.1: Hardware Configuration

Operating System Ubuntu (Linux X86-64)
Compiler Clang 3.5-1ubuntu1, GCC 4.8.2

LLVM LLVM 3.5
File System Ext4

Table 6.2: Software Configuration

6.1.2 Performance Against IDISA

We compare our lowering on pure IR functions with the IDISA Library [18] which is written in C++.

To test each operation, we generate a sequence of 500 such operations where none them has to

wait for the previous one. 100 operations which are suggested by Agner seems too short for a

stable result. This test sequence is generated by a template file.

For completeness, we choose all the operations listed in Table 4.1 except: NE (not equal), be-

cause IDISA does not support this operation; arbitrary shifts (SRL, SRA, SHL) because IDISA only

supports immediate shifts; bitwise-logic (AND, OR, XOR), because the underline implementation

are exactly the same and as simple as one line of machine code; we remove them to simplify the

test code. Finally, we get eight operations for the micro-benchmark: ADD, SUB, MULT, EQ, LT, GT,

ULT and UGT.

The performance comparison is listed in Figure 6.2 and Figure 6.3. From Figure 6.2, we can

see for i1 and i4 vectors, the IR library has the similar CPU cycles with IDISA but it performs better

with i2 vectors, especially on integer comparison.

The underlying logic for both libraries is the same, but it is implemented in different levels. For

the IDISA library, simd<2>::ugt is inline-extended immediately by the compiler front end and its

semantics of integer comparison lost ever after, while in the IR library, for the whole life cycle before

the instruction selection, ugt 2 keeps its semantics. The extension of ugt 2 is delayed until the

instruction selection phase, right before machine code generation. And the delayed extension may

help the compiler optimize as we discussed in Chapter 3. We checked that the IDISA function

simd<2>::ugt and IR function ugt 2 (whose underlying code is just icmp ugt <64 x i2> %a, %b)

generated different assembly code.

CHAPTER 6. PERFORMANCE EVALUATION 50

Figure 6.2: Total CPU cycles against IDISA library; for i1 and i4 vectors, IR library has the similar
performance with IDISA but it performs better with i2 vectors, especially on integer comparison.

CHAPTER 6. PERFORMANCE EVALUATION 51

Figure 6.3: Reciprocal instruction throughput against IDISA library. IR and IDISA share almost
identical throughput.

CHAPTER 6. PERFORMANCE EVALUATION 52

However, the delay in expansion is not always good. Take multiplication on the i2 vector for

an example, we can see our IR library has slightly bettered total CPU cycles, but if we write our

instructions sequence with a loop, IDISA library wins (Figure 6.4). Loop optimization is responsible

for this difference; we did observe lines of assembly code hoisted outside the loop. Because all the

operations tested here take two operands and the same constant value is used for all the second

operand for simplicity, there is duplicated logic in each loop iteration that can be hoisted and shared.

Hoisting was not done with the IR library. So early expansion in IDISA provides some optimization

opportunity to the compiler.

From the reciprocal throughput comparison (Figure 6.3), the IR library loses on i1 vectors but

wins most of the cases in i2 and i4; it relates to a better instruction selection. IDISA library is

generated from a strategy pool based on the number of machine instructions which are treated

equally with cost 1. But machine instructions actually have different throughput in the real hardware,

and the LLVM back end has more knowledge of that, thus selecting better instructions.

Figure 6.4: The same benchmark for i2 vectors with the instruction in a loop. Code in Figure 6.2
can be seen as the flattened version of this figure. We find IDISA here wins in the multiplication on
i2, while IR wins it in Figure 6.2. Loop optimization should be responsible for it.

6.1.3 Performance Against LLVM

We compare our lowering with native LLVM. LLVM could not handle i2, i4 vectors but could handle

i1 vectors slowly. Detailed performance data can be found in Table 6.3. We can see that our

approach fills the gap of the LLVM type system.

CHAPTER 6. PERFORMANCE EVALUATION 53

i1 i2 i4 i8
add 302 X X 1
sub 310 X X 1
mult X X X 10
eq 273 X X 1
lt X X X 1
gt X X X 1
ult 349 X X 1
ugt 290 X X 1

Table 6.3: Performance against LLVM native support of i2k vectors. ‘X’ means compile error or
compile too slowly (longer than 30s), the remaining number means the ratio of CPU cycles speed
up: add takes 302 times of cycles that our lowering needs. For i8, we apply the inductive doubling
strategy on the multiplication, which explains the 10 times speed up.

6.2 Parabix Critical Operations

In this section, we evaluate our work by replacing Parabix critical operations with the IR library.

We first choose transposition and inverse transposition as two representative operations and then

measure performance in two Parabix applications: XML validator and UTF-8 to UTF-16 transcoder.

Note that we did not rewrite the whole application with an IR library, part of the application is still

IDISA but some critical operations are replaced. The default compile flag is to use the Intel SSE2

instruction set on a 64-bit OS.

To compare performance, we use the same data files used in [13]. The description of these files

can be found in Table 6.4.

File Name dew.xml jaw.xml roads-2.gml po.xml soap.xml
File Type document document data data data

File Size (MB) 66 7 11 76 3
Markup Item Count 406k 74k 280k 4634k 18k

Attribute Count 18k 3k 160k 463k 30k
Avg. Attribute Size 8 8 6 5 9

Markup Density 0.07 0.13 0.57 0.76 0.87

Table 6.4: XML Document Characteristics. Taken from [13].

Table 6.5 shows the performance of the XML Validator. The only difference of xmlwf0 and xmlwf1

is their transposition code. The one in xmlwf1 is written in pure IR with the byte-pack algorithm (the

source code can be found in Appendix A.1). We can see xmlwf0 and xmlwf1 share almost identical

performance. LLVM 3.5 cannot handle packing on 16-bit field width very well so we custom lower

the shufflevector and generate PACKUS instructions for X86 to get this good performance.

Another interesting observation is, when we re-compiled the same code on the Intel Haswell

platform, we got almost no improvement for xmlwf0, since the IDISA library linked in is written with

CHAPTER 6. PERFORMANCE EVALUATION 54

dew.xml jaw.xml roads-2.gml po.xml soap.xml
xmlwf0 3.93 4.36 4.55 4.89 5.18

xmlwf0 on Haswell 3.92 4.36 4.55 4.87 5.17
xmlwf1 3.92 4.37 4.56 4.86 5.18

xmlwf1 on Haswell 3.56 3.97 4.16 4.45 4.78

Table 6.5: Performance comparison of XML validator (xmlwf), in a thousand CPU cycles per thou-
sand byte. In the table, xmlwf0 is implemented with full IDISA library and xmlwf1 is a copy of xmlwf0
with the transposition replaced.

dew.xml jaw.xml roads-2.gml po.xml soap.xml
U8u16 0 281.46 37.11 40.06 244.94 10.20

U8u16 0 Haswell 272.68 34.21 39.84 242.56 10.11
U8u16 1 284.17 36.71 41.65 255.57 10.60

U8u16 1 Haswell 267.14 34.64 38.53 237.66 9.98

Table 6.6: Performance comparison of UTF-8 UTF-16 transcoder, in a million CPU cycles. U8u16 0
is written in IDISA, U8u16 1 has the transposition and inverse transposition part replaced.

direct SSE2 intrinsic so only SSE2 instructions can be generated. But we got a slightly better

performance for xmlwf1, because the IR library is target-independent. LLVM back end knows AVX2

is available so it generates VEX prefixed operations with three-operand form.

Similar performance data on the UTF-8 to UTF-16 transcoder is listed in Table 6.6. U8u16 0 is

written in IDISA and U8u16 1 has both the transposition and inverse transposition part replaced.

Since our modified LLVM could not generate machine code for inverse transposition as good as

IDISA, there are performance drops from U8u16 0 to U8u16 1. We also tried to compile them on

the full Haswell, which gave us similar performance benefit from using AVX2 VEX operations. The

feature of being target-independent helps Parabix to enjoy the improvement of hardware without

changing its source code.

6.2.1 Ideal 3-Stage Transposition on the Intel Haswell

Intel Haswell architecture introduces the PEXT operation which can be used for the ideal 3-stage

transposition (source code in Appendix A.2). We evaluated its performance in Table 6.7. The perfor-

mance dropped with PEXT, but the major reason is that PEXT can only work on i32 or i64 integers

for the current architecture. As the hardware evolves, we may have PEXT on SIMD registers di-

rectly. At that time, we can expect a better performance in xmlwf2, may be better than both xmlwf0

and xmlwf1 since 3-stage transposition is proved to be optimal under the IDISA model [14]. Our

approach provides a new chance to exploit future hardware improvements.

CHAPTER 6. PERFORMANCE EVALUATION 55

dew.xml jaw.xml roads-2.gml po.xml soap.xml
xmlwf0 on Haswell 3.92 4.36 4.55 4.87 5.17
xmlwf1 on Haswell 3.56 3.98 4.16 4.45 4.78
xmlwf2 on Haswell 4.11 4.49 4.69 4.97 5.30

Table 6.7: Performance of the ideal 3-stage transposition in a thousand CPU cycles per thousand
byte. Xmlwf2 uses the ideal 3-stage transposition algorithm. Xmlwf1 uses byte-pack algorithm in
IR, xmlwf0 uses the same algorithm in IDISA.

6.2.2 Long Stream Addition And Shift

We replaced the internal logic of big integer addition in Chapter 4 and introduced a new intrinsic:

uadd.with.overflow.carryin. We evaluate them in this section by first comparing the long-stream

addition algorithm with LLVM’s original implementation and then some application level profiles for

the new intrinsic.

We wrote micro benchmarks with Fog’s test program. We put 200 independent additions on

i128 and i256. We choose 200 because 200 is a small number that can give us stable performance

results. It was tricky to make the test program right; we generated random data for the operands

and carefully inserted the carry-out bit back to the return value so that LLVM knows to use the

long-stream-addition logic. In order to be consistent throughout the comparison, we used the same

compiler flag for all the runs (-mavx2 for gcc and -mattr=+avx2,+bmi2 for LLVM tool chain). The

result is listed in Table 6.8.

Core CPU Cycles Instructions
LLVM on i128 1455 4199

Long stream addition on i128 2416 6552
LLVM on i256 4234 9798

Long stream addition on i256 2656 6959

Table 6.8: Micro benchmarks for long stream addition against LLVM’s original implementation.

Long stream addition does not perform well on i128. Since there are only two sequential ad-

ditions involved (1 addq and 1 adcq), parallel computing does not save much but introduces new

complexity. However, on i256 long stream addition has much better performance than the sequen-

tial one which generates 1 addq and 3 adcq. As the width of the operand doubles, the CPU cycles

from LLVM increases to the rate of 2.91, while in the long stream addition, the rate is only 1.10.

This is because the time complexity of our algorithm is independent of the operand size while the

sequential one has the time complexity linear to the operand size. Our algorithm scales better when

the width of SIMD registers grows. We can confidently predict that on the Intel AVX512, long stream

addition on i512 would out-perform the sequential one significantly.

An important Parabix application is regular expression matching. A grep-like tool was written

recently with bitwise data parallelism called ‘icgrep’ [16]. Icgrep uses LLVM just-in-time compiling

CHAPTER 6. PERFORMANCE EVALUATION 56

facility to generate IR code on the fly according to the input regular expression. We use icgrep to

evaluate our new intrinsic for long stream addition. Its signature is in Program 6.1 and it is used for

the ”add with carry” logic in icgrep.

{i128, i1} @llvm.uadd.with.overflow.carryin.i128(i128 %a, i128 %b, i1 %carryin)

; return a pair of sum and carry-out bit

Program 6.1: Signature of uadd.with.overflow.carryin.

To compare with the unmodified LLVM, we need to emulate this new intrinsic. LLVM supports

uadd.with.overflow which does not take the carry-in bit into account. The pseudo code for ”add

with carry” is listed in Program 6.2. Then we can compare our back end with the unmodified LLVM.

The same regular expressions and data files are used in [28]. Since we only care about the im-

provement between back ends, the details of the regular expressions are not important. We show

the relative instructions count in Figure 6.5 and we get around 20 percent improvement. The exper-

iment was done with 128-bit SIMD registers. Most of the improvement comes from the fact that our

back end only requires one addition. We also measured the relative CPU cycles. There are around

10 percent reduction in CPU cycles with our new intrinsic, which implies that the sequential addition

has higher throughput (instructions per cycle).

declare {i128, i1} @llvm.uadd.with.overflow.i128(i128 %a, i128 %b)

;return a pair of sum and carry-out bit

{i128, i1} @add_with_carry(i128 %a, i128 %b, i1 %carryin) {

entry:

cin = zext %carryin to i128

{s1, c1} = @llvm.uadd.with.overflow.i128(%a, %b)

{sum, c2} = @llvm.uadd.with.overflow.i128(s1, cin)

cout = or i1 c1, c2

ret {sum, cout}

}

Program 6.2: Pseudo code for ”add with carry” logic in with unmodified LLVM.

We then compare the long stream shifting algorithms. We discussed two algorithms in Sec-

tion 5.1.2; we implemented a DAG combiner in our back end. IR code of double shift can be

compiled on the unmodified LLVM, so it is convenient that no new source code needs to be written.

We used exactly the same code on both of the back ends. To avoid a difference in ”add with carry”,

we used a logic that generates the same machine code on both back ends. The comparison of long

CHAPTER 6. PERFORMANCE EVALUATION 57

Figure 6.5: Improved instruction count with long stream addition. The number in the figure is the
ratio of the instruction count in our back end to the count in unmodified LLVM. 27 pairs of regular
expressions and data files are evaluated.

stream shifting with 128-bit SIMD registers is listed in Figure 6.6. We can see a reduction of 10 to

20 percent in instructions. For CPU cycles, a reduction of 20 percent is achieved. The reduction

in CPU cycles equals to, if not greater than, the reduction in instructions count. It means the long

stream shifting uses less instructions as well as maintaining a good throughput.

Figure 6.6: Improvement with long stream shifting in instruction count. The number in the figure is
the ratio of the instruction count in our back end to the count in unmodified LLVM.

Next, we study the behaviour of long stream addition and shifting with 256-bit SIMD registers.

We turned on both of the optimizations for icgrep. The relative instruction count is listed in Fig-

ure 6.7. From the micro-benchmark we already know that long stream addition works better than

the sequential addition on this wider SIMD register. Together with long stream shifting, we achieved

CHAPTER 6. PERFORMANCE EVALUATION 58

a substantial 30 to 40 percent instruction reduction against the unmodified LLVM. We also achieved

around 40 percent reduction in CPU cycles.

Figure 6.7: Improvement of icgrep on machines with 256-bit SIMD registers. Both long stream
shifting and addition are used. The instruction count is compared with the unmodified LLVM with
256-bit SIMD registers.

Finally, we study the scalability of the modified LLVM. We want to check the improvement we can

get by switching from 128-bit SIMD to 256-bit SIMD programming. We show the relative instructions

count in Figure 6.8. Extended LLVM can always benefit around 30 percent from using the wider

SIMD registers, but the original LLVM sometimes even has performance drops. Figure 6.9 shows

the same comparison on a different metric: CPU cycles. Extended LLVM benefit around 20 percent

from the wider SIMD registers. So we conclude that our LLVM back end has better scalability.

CHAPTER 6. PERFORMANCE EVALUATION 59

Figure 6.8: Improved scalability of icgrep. With the modified LLVM, icgrep gets more instructions
count improvement by switching from 128-bit SIMD to 256-bit SIMD registers. Both long stream
addition and shifting are used.

Figure 6.9: Improved scalability of icgrep in CPU cycles.

Chapter 7

Conclusion

In this thesis, LLVM as a new back end is introduced to the Parabix technology. A target-independent

IR library of critical Parabix operations is also developed. LLVM brings in mature inter-procedure

optimization, just-in-time compilers and outsources the machine-level code generation from the

Parabix framework.

A systematic support for the vector of i2k is developed to extend the LLVM code generator with

the IDISA model. A new LLVM intrinsic is added to enable chained additions on unbounded bit

streams, which can be used for a broad category of applications. Long stream addition as well as

shifting algorithms are built into the LLVM back end. In one specific target, Intel X86, efficient native

code has been generated and the performance is as good as the well-tuned IDISA library. In some

micro-benchmarks, it even achieves 300 times speed up over the unmodified LLVM. Performance

improvement over different sub-targets (e.g. X86 SSE2 and AVX2) has been witnessed without any

change in the IR library.

Although we tried hard to keep our extension to LLVM modularized and separated, our code

is not able to merge with the newest LLVM trunk. One of the major reasons is that we redefined

legality which involves small code changes in many places. We need to further track these changes

in the future.

For more future work, new optimization passes for the Parabix can be developed. As one of

the major reasons for its high performance, Parabix uses long sequence of bitwise logic and shift

operations without any branch or loop statement. Specific optimization like a new register allocation

algorithm may benefit this style of programming very much. More peephole optimizers may be

added to LLVM to combine sequences of operations into compact SIMD intrinsics.

Parabix with LLVM has better chances to target different platforms efficiently such as the SPARC

servers from Sun and the ARM mobile platform. Further extension of the LLVM code generator can

be done in the future for these platforms.

60

Bibliography

[1] LLVM Language Reference Manual . http://llvm.org/docs/LangRef.html. 11, 12

[2] IDISA toolkit project. http://parabix.costar.sfu.ca/wiki/IDISAproject. 8

[3] Jinja documentation. http://jinja.pocoo.org/. 43

[4] The LLVM target-independent code generator. http://llvm.org/docs/CodeGenerator.html.
11, 12, 36, 42

[5] LLVM’s Analysis and Transform Passes. http://llvm.org/docs/Passes.html. 10

[6] The parabix transposition. http://parabix.costar.sfu.ca/wiki/ParabixTransform. 25

[7] Python templating. https://wiki.python.org/moin/Templating. 43

[8] Test programs for measuring clock cycles and performance monitoring. http://www.agner.

org/optimize/. 47

[9] Yosi Ben Asher and Nadav Rotem. Hybrid type legalization for a sparse SIMD instruction set.
ACM Trans. Archit. Code Optim., 10(3):11:1–11:14, September 2008. 1, 12, 13

[10] Robert D Cameron. u8u16–a high-speed utf-8 to utf-16 transcoder using parallel bit streams.
Technical report, Technical Report TR 2007-18, Simon Fraser University, Burnaby, BC,
Canada, 2007. 1

[11] Robert D Cameron. A case study in simd text processing with parallel bit streams: Utf-8 to
utf-16 transcoding. In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and
practice of parallel programming, pages 91–98. ACM, 2008. 1, 9, 10

[12] Robert D Cameron, Ehsan Amiri, Kenneth S Herdy, Dan Lin, Thomas C Shermer, and Fred P
Popowich. Parallel scanning with bitstream addition: An xml case study. In Euro-Par 2011
Parallel Processing, pages 2–13. Springer, 2011. 6, 7

[13] Robert D Cameron, Kenneth S Herdy, and Dan Lin. High performance xml parsing using par-
allel bit stream technology. In Proceedings of the 2008 conference of the center for advanced
studies on collaborative research: meeting of minds, page 17. ACM, 2008. viii, 1, 53

[14] Robert D. Cameron and Dan Lin. Architectural Support for SWAR Text Processing with Parallel
Bit Streams: The Inductive Doubling Principle. SIGPLAN Not., 44(3):337–348, March 2009. 1,
7, 9, 25, 27, 54

61

 http://llvm.org/docs/LangRef.html
 http://parabix.costar.sfu.ca/wiki/IDISAproject
 http://jinja.pocoo.org/
 http://llvm.org/docs/CodeGenerator.html
http://llvm.org/docs/Passes.html
 http://parabix.costar.sfu.ca/wiki/ParabixTransform
https://wiki.python.org/moin/Templating
 http://www.agner.org/optimize/
 http://www.agner.org/optimize/

BIBLIOGRAPHY 62

[15] Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and F Kenneth Zadeck. Ef-
ficiently computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems (TOPLAS), 13(4):451–490, 1991. 11

[16] Dale Denis. High-Performance Regular Expression Matching with Parabix and LLVM. Master’s
thesis, Simon Fraser University, November 2014. 55

[17] Randall James Fisher. General-purpose Simd Within a Register: Parallel Processing on Con-
sumer Microprocessors. PhD thesis, West Lafayette, IN, USA, 2003. AAI3108343. 1

[18] Hua Huang. IDISA+: A portable model for high performance SIMD programming. Master’s
thesis, Simon Fraser University, December 2011. 2, 4, 5, 8, 44, 49

[19] E.D. Johnson. Quine-McCluskey: A Computerized Approach to Boolean Algebraic Optimiza-
tion. Massachusetts Institute of Technology, Department of Electrical Engineering and Com-
puter Science, 1981. 25

[20] Valentine Kabanets and Jin-Yi Cai. Circuit minimization problem. In Proceedings of the thirty-
second annual ACM symposium on Theory of computing, pages 73–79. ACM, 2000. 27

[21] Chris Lattner. LLVM: An Infrastructure for Multi-Stage Optimization. Master’s thesis, Com-
puter Science Dept., University of Illinois at Urbana-Champaign, Urbana, IL, Dec 2002. See
http://llvm.cs.uiuc.edu. 2, 10

[22] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Program Analysis
& Transformation. In Proceedings of the 2004 International Symposium on Code Generation
and Optimization (CGO’04), Palo Alto, California, Mar 2004. 2, 10

[23] Ruby B. Lee. Accelerating multimedia with enhanced microprocessors. IEEE Micro, 15(2):22–
32, 1995. 1

[24] Ruby B Lee, Zhijie Shi, and Xiao Yang. Efficient permutation instructions for fast software
cryptography. Micro, IEEE, 21(6):56–69, 2001. 24

[25] Nigel Woodland Medforth. icxml: Accelerating xerces-c 3.1. 1 using the parabix framework.
Master’s thesis, Simon Fraser University, 2013. 1

[26] Huy Nguyen and Lizy Kurian John. Exploiting simd parallelism in dsp and multimedia algo-
rithms using the altivec technology. In Proceedings of the 13th International Conference on
Supercomputing, ICS ’99, pages 11–20, New York, NY, USA, 1999. ACM. 1

[27] Willard V Quine. The problem of simplifying truth functions. American mathematical monthly,
pages 521–531, 1952. 27

[28] Arrvindh Shriraman Kenneth S. Herdy Dan Lin Benjamin R. Hull Meng Lin Robert D. Cameron,
Thomas C. Shermer. Bitwise data parallelism in regular expression matching. 1, 6, 7, 10, 25,
33, 34, 56

[29] David A Terei and Manuel MT Chakravarty. An llvm backend for ghc. In ACM Sigplan Notices,
volume 45, pages 109–120. ACM, 2010. 2, 10, 11

Appendix A

Example Code From The IR Library

A.1 Transposition With Byte-Pack Algorithm

1 define <4 x i32 > @packh_16 (<4 x i32 > %a, <4 x i32 > %b) alwaysinline {

2 entry:

3 %aa = bitcast <4 x i32 > %a to <16 x i8>

4 %bb = bitcast <4 x i32 > %b to <16 x i8>

5 %rr = shufflevector <16 x i8 > %bb, <16 x i8> %aa , <16 x i32 > <i32 1,

6 i32 3, i32 5, i32 7, i32 9, i32 11, i32 13, i32 15, i32 17,

7 i32 19, i32 21, i32 23, i32 25, i32 27, i32 29, i32 31>

9 %rr1 = bitcast <16 x i8 > %rr to <4 x i32 >

10 ret <4 x i32 > %rr1

11 }

13 define <4 x i32 > @packl_16 (<4 x i32 > %a, <4 x i32 > %b) alwaysinline {

14 entry:

15 %aa = bitcast <4 x i32 > %a to <16 x i8>

16 %bb = bitcast <4 x i32 > %b to <16 x i8>

17 %rr = shufflevector <16 x i8 > %bb, <16 x i8> %aa , <16 x i32 > <i32 0,

18 i32 2, i32 4, i32 6, i32 8, i32 10, i32 12, i32 14, i32 16,

19 i32 18, i32 20, i32 22, i32 24, i32 26, i32 28, i32 30>

21 %rr1 = bitcast <16 x i8 > %rr to <4 x i32 >

22 ret <4 x i32 > %rr1

23 }

25 define <4 x i32 > @ifh_1(<4 x i32 > %cond , <4 x i32 > %b, <4 x i32 > %c)

26 alwaysinline {

27 entry:

28 %not_cond = xor <4 x i32 > %cond , <i32 -1, i32 -1, i32 -1, i32 -1>

30 %t0 = and <4 x i32 > %cond , %b

31 %t1 = and <4 x i32 > %not_cond , %c

32 %r = or <4 x i32 > %t0, %t1

63

APPENDIX A. EXAMPLE CODE FROM THE IR LIBRARY 64

34 ret <4 x i32 > %r

35 }

37 define <4 x i32 > @srli_16(<4 x i32 > %a, <8 x i16 > %shift_mask)

38 alwaysinline {

39 entry:

40 %aa = bitcast <4 x i32 > %a to <8 x i16 >

41 %r0 = lshr <8 x i16 > %aa, %shift_mask

42 %rr = bitcast <8 x i16 > %r0 to <4 x i32 >

43 ret <4 x i32 > %rr

44 }

46 define <4 x i32 > @slli_16(<4 x i32 > %a, <8 x i16 > %shift_mask)

47 alwaysinline {

48 entry:

49 %aa = bitcast <4 x i32 > %a to <8 x i16 >

50 %r0 = shl <8 x i16 > %aa , %shift_mask

51 %rr = bitcast <8 x i16 > %r0 to <4 x i32 >

52 ret <4 x i32 > %rr

53 }

55 define void @s2p_step_ir (<4 x i32 > %s0 , <4 x i32 > %s1,

56 <4 x i32 > %hi_mask , <8 x i16 > %shift_mask , <4 x i32 >* %p0 ,

57 <4 x i32 >* %p1) alwaysinline {

58 entry:

59 %t0 = call <4 x i32 > @packh_16(<4 x i32 > %s0, <4 x i32 > %s1)

60 %t1 = call <4 x i32 > @packl_16(<4 x i32 > %s0, <4 x i32 > %s1)

62 %t2 = call <4 x i32 > @srli_16(<4 x i32 > %t1, <8 x i16 > %shift_mask)

63 %q0 = call <4 x i32 > @ifh_1(<4 x i32 > %hi_mask , <4 x i32 > %t0,

64 <4 x i32 > %t2)

65 %t3 = call <4 x i32 > @slli_16(<4 x i32 > %t0, <8 x i16 > %shift_mask)

66 %q1 = call <4 x i32 > @ifh_1(<4 x i32 > %hi_mask , <4 x i32 > %t3,

67 <4 x i32 > %t1)

69 store <4 x i32 > %q0, <4 x i32 >* %p0

70 store <4 x i32 > %q1, <4 x i32 >* %p1

72 ret void

73 }

75 define <8 x i16 > @const16_1 () alwaysinline {

76 entry:

77 ret <8 x i16 > <i16 1, i16 1, i16 1, i16 1, i16 1, i16 1, i16 1, i16 1>

78 }

80 define <8 x i16 > @const16_2 () alwaysinline {

81 entry:

82 ret <8 x i16 > <i16 2, i16 2, i16 2, i16 2, i16 2, i16 2, i16 2, i16 2>

83 }

85 define <8 x i16 > @const16_4 () alwaysinline {

86 entry:

87 ret <8 x i16 > <i16 4, i16 4, i16 4, i16 4, i16 4, i16 4, i16 4, i16 4>

88 }

APPENDIX A. EXAMPLE CODE FROM THE IR LIBRARY 65

90 define <4 x i32 > @himask_2 () alwaysinline {

91 entry:

92 ret <4 x i32 > <i32 -1431655766 , i32 -1431655766 ,

93 i32 -1431655766 , i32 -1431655766 >

94 }

96 define <4 x i32 > @himask_4 () alwaysinline {

97 entry:

98 ret <4 x i32 > <i32 -858993460 , i32 -858993460 ,

99 i32 -858993460 , i32 -858993460 >

100 }

102 define <4 x i32 > @himask_8 () alwaysinline {

103 entry:

104 ret <4 x i32 > <i32 -252645136 , i32 -252645136 ,

105 i32 -252645136 , i32 -252645136 >

106 }

108 define void @s2p_bytepack_ir (<4 x i32 > %s0 , <4 x i32 > %s1, <4 x i32 > %s2 ,

109 <4 x i32 > %s3 , <4 x i32 > %s4, <4 x i32 > %s5 , <4 x i32 > %s6,

110 <4 x i32 > %s7 , <4 x i32 >* %p0, <4 x i32 >* %p1, <4 x i32 >* %p2 ,

111 <4 x i32 >* %p3 , <4 x i32 >* %p4, <4 x i32 >* %p5, <4 x i32 >* %p6,

112 <4 x i32 >* %p7) {

113 entry:

114 %bit00224466_0 = alloca <4 x i32 >, align 16

115 %bit00224466_1 = alloca <4 x i32 >, align 16

116 %bit00224466_2 = alloca <4 x i32 >, align 16

117 %bit00224466_3 = alloca <4 x i32 >, align 16

118 %bit11335577_0 = alloca <4 x i32 >, align 16

119 %bit11335577_1 = alloca <4 x i32 >, align 16

120 %bit11335577_2 = alloca <4 x i32 >, align 16

121 %bit11335577_3 = alloca <4 x i32 >, align 16

122 %bit00004444_0 = alloca <4 x i32 >, align 16

123 %bit22226666_0 = alloca <4 x i32 >, align 16

124 %bit00004444_1 = alloca <4 x i32 >, align 16

125 %bit22226666_1 = alloca <4 x i32 >, align 16

126 %bit11115555_0 = alloca <4 x i32 >, align 16

127 %bit33337777_0 = alloca <4 x i32 >, align 16

128 %bit11115555_1 = alloca <4 x i32 >, align 16

129 %bit33337777_1 = alloca <4 x i32 >, align 16

131 %call10 = call <4 x i32 > @himask_2 ()

132 %call11 = call <8 x i16 > @const16_1 ()

133 call void @s2p_step_ir (<4 x i32 > %s0 , <4 x i32 > %s1,

134 <4 x i32 > %call10 ,

135 <8 x i16 > %call11 , <4 x i32 >* %bit00224466_0 ,

136 <4 x i32 >* %bit11335577_0)

137 %call14 = call <4 x i32 > @himask_2 ()

138 %call15 = call <8 x i16 > @const16_1 ()

139 call void @s2p_step_ir (<4 x i32 > %s2 , <4 x i32 > %s3,

140 <4 x i32 > %call14 ,

141 <8 x i16 > %call15 , <4 x i32 >* %bit00224466_1 ,

142 <4 x i32 >* %bit11335577_1)

143 %call18 = call <4 x i32 > @himask_2 ()

APPENDIX A. EXAMPLE CODE FROM THE IR LIBRARY 66

144 %call19 = call <8 x i16 > @const16_1 ()

145 call void @s2p_step_ir (<4 x i32 > %s4 , <4 x i32 > %s5,

146 <4 x i32 > %call18 ,

147 <8 x i16 > %call19 , <4 x i32 >* %bit00224466_2 ,

148 <4 x i32 >* %bit11335577_2)

149 %call22 = call <4 x i32 > @himask_2 ()

150 %call23 = call <8 x i16 > @const16_1 ()

151 call void @s2p_step_ir (<4 x i32 > %s6 , <4 x i32 > %s7,

152 <4 x i32 > %call22 ,

153 <8 x i16 > %call23 , <4 x i32 >* %bit00224466_3 ,

154 <4 x i32 >* %bit11335577_3)

155 %p23 = load <4 x i32 >* %bit00224466_0 , align 16

156 %p24 = load <4 x i32 >* %bit00224466_1 , align 16

157 %call24 = call <4 x i32 > @himask_4 ()

158 %call25 = call <8 x i16 > @const16_2 ()

159 call void @s2p_step_ir (<4 x i32 > %p23 , <4 x i32 > %p24 ,

160 <4 x i32 > %call24 ,

161 <8 x i16 > %call25 , <4 x i32 >* %bit00004444_0 ,

162 <4 x i32 >* %bit22226666_0)

163 %p25 = load <4 x i32 >* %bit00224466_2 , align 16

164 %p26 = load <4 x i32 >* %bit00224466_3 , align 16

165 %call26 = call <4 x i32 > @himask_4 ()

166 %call27 = call <8 x i16 > @const16_2 ()

167 call void @s2p_step_ir (<4 x i32 > %p25 , <4 x i32 > %p26 ,

168 <4 x i32 > %call26 ,

169 <8 x i16 > %call27 , <4 x i32 >* %bit00004444_1 ,

170 <4 x i32 >* %bit22226666_1)

171 %p27 = load <4 x i32 >* %bit11335577_0 , align 16

172 %p28 = load <4 x i32 >* %bit11335577_1 , align 16

173 %call28 = call <4 x i32 > @himask_4 ()

174 %call29 = call <8 x i16 > @const16_2 ()

175 call void @s2p_step_ir (<4 x i32 > %p27 , <4 x i32 > %p28 ,

176 <4 x i32 > %call28 ,

177 <8 x i16 > %call29 , <4 x i32 >* %bit11115555_0 ,

178 <4 x i32 >* %bit33337777_0)

179 %p29 = load <4 x i32 >* %bit11335577_2 , align 16

180 %p30 = load <4 x i32 >* %bit11335577_3 , align 16

181 %call30 = call <4 x i32 > @himask_4 ()

182 %call31 = call <8 x i16 > @const16_2 ()

183 call void @s2p_step_ir (<4 x i32 > %p29 , <4 x i32 > %p30 ,

184 <4 x i32 > %call30 ,

185 <8 x i16 > %call31 , <4 x i32 >* %bit11115555_1 ,

186 <4 x i32 >* %bit33337777_1)

188 %p31 = load <4 x i32 >* %bit00004444_0 , align 16

189 %p32 = load <4 x i32 >* %bit00004444_1 , align 16

190 %call32 = call <4 x i32 > @himask_8 ()

191 %call33 = call <8 x i16 > @const16_4 ()

192 call void @s2p_step_ir (<4 x i32 > %p31 , <4 x i32 > %p32 ,

193 <4 x i32 > %call32 ,

194 <8 x i16 > %call33 , <4 x i32 >* %p0, <4 x i32 >* %p4)

195 %p33 = load <4 x i32 >* %bit11115555_0 , align 16

196 %p34 = load <4 x i32 >* %bit11115555_1 , align 16

197 %call36 = call <4 x i32 > @himask_8 ()

198 %call37 = call <8 x i16 > @const16_4 ()

APPENDIX A. EXAMPLE CODE FROM THE IR LIBRARY 67

199 call void @s2p_step_ir (<4 x i32 > %p33 , <4 x i32 > %p34 ,

200 <4 x i32 > %call36 ,

201 <8 x i16 > %call37 , <4 x i32 >* %p1, <4 x i32 >* %p5)

202 %p35 = load <4 x i32 >* %bit22226666_0 , align 16

203 %p36 = load <4 x i32 >* %bit22226666_1 , align 16

204 %call40 = call <4 x i32 > @himask_8 ()

205 %call41 = call <8 x i16 > @const16_4 ()

206 call void @s2p_step_ir (<4 x i32 > %p35 , <4 x i32 > %p36 ,

207 <4 x i32 > %call40 ,

208 <8 x i16 > %call41 , <4 x i32 >* %p2, <4 x i32 >* %p6)

209 %p37 = load <4 x i32 >* %bit33337777_0 , align 16

210 %p38 = load <4 x i32 >* %bit33337777_1 , align 16

211 %call44 = call <4 x i32 > @himask_8 ()

212 %call45 = call <8 x i16 > @const16_4 ()

213 call void @s2p_step_ir (<4 x i32 > %p37 , <4 x i32 > %p38 ,

214 <4 x i32 > %call44 ,

215 <8 x i16 > %call45 , <4 x i32 >* %p3, <4 x i32 >* %p7)

217 ret void

218 }

A.2 Transposition With Ideal 3-Stage Algorithm

1 define <4 x i32 > @packh_8(<4 x i32 > %a, <4 x i32 > %b) alwaysinline {

2 entry:

3 %aa = bitcast <4 x i32 > %a to <32 x i4>

4 %bb = bitcast <4 x i32 > %b to <32 x i4>

5 %rr = shufflevector <32 x i4 > %bb, <32 x i4> %aa , <32 x i32 >

6 <i32 1, i32 3, i32 5, i32 7, i32 9, i32 11, i32 13, i32 15,

7 i32 17, i32 19, i32 21, i32 23, i32 25, i32 27, i32 29,

8 i32 31, i32 33, i32 35, i32 37, i32 39, i32 41, i32 43,

9 i32 45, i32 47, i32 49, i32 51, i32 53, i32 55, i32 57,

10 i32 59, i32 61, i32 63>

12 %rr1 = bitcast <32 x i4 > %rr to <4 x i32 >

13 ret <4 x i32 > %rr1

14 }

16 define <4 x i32 > @packl_8(<4 x i32 > %a, <4 x i32 > %b) alwaysinline {

17 entry:

18 %aa = bitcast <4 x i32 > %a to <32 x i4>

19 %bb = bitcast <4 x i32 > %b to <32 x i4>

20 %rr = shufflevector <32 x i4 > %bb, <32 x i4> %aa , <32 x i32 >

21 <i32 0, i32 2, i32 4, i32 6, i32 8, i32 10, i32 12, i32 14,

22 i32 16, i32 18, i32 20, i32 22, i32 24, i32 26, i32 28,

23 i32 30, i32 32, i32 34, i32 36, i32 38, i32 40, i32 42,

24 i32 44, i32 46, i32 48, i32 50, i32 52, i32 54, i32 56,

25 i32 58, i32 60, i32 62>

27 %rr1 = bitcast <32 x i4 > %rr to <4 x i32 >

28 ret <4 x i32 > %rr1

29 }

APPENDIX A. EXAMPLE CODE FROM THE IR LIBRARY 68

31 define <4 x i32 > @packh_4(<4 x i32 > %a, <4 x i32 > %b) alwaysinline {

32 entry:

33 %aa = bitcast <4 x i32 > %a to <64 x i2>

34 %bb = bitcast <4 x i32 > %b to <64 x i2>

35 %rr = shufflevector <64 x i2 > %bb, <64 x i2> %aa , <64 x i32 > <i32 1,

36 i32 3, i32 5, i32 7, i32 9, i32 11, i32 13, i32 15, i32 17,

37 i32 19, i32 21, i32 23, i32 25, i32 27, i32 29, i32 31,

38 i32 33, i32 35, i32 37, i32 39, i32 41, i32 43, i32 45,

39 i32 47, i32 49, i32 51, i32 53, i32 55, i32 57, i32 59,

40 i32 61, i32 63, i32 65, i32 67, i32 69, i32 71, i32 73,

41 i32 75, i32 77, i32 79, i32 81, i32 83, i32 85, i32 87,

42 i32 89, i32 91, i32 93, i32 95, i32 97, i32 99, i32 101,

43 i32 103, i32 105, i32 107, i32 109, i32 111, i32 113,

44 i32 115, i32 117, i32 119, i32 121, i32 123, i32 125, i32 127>

46 %rr1 = bitcast <64 x i2 > %rr to <4 x i32 >

47 ret <4 x i32 > %rr1

48 }

50 define <4 x i32 > @packl_4(<4 x i32 > %a, <4 x i32 > %b) alwaysinline {

51 entry:

52 %aa = bitcast <4 x i32 > %a to <64 x i2>

53 %bb = bitcast <4 x i32 > %b to <64 x i2>

54 %rr = shufflevector <64 x i2 > %bb, <64 x i2> %aa , <64 x i32 >

55 <i32 0, i32 2, i32 4, i32 6, i32 8, i32 10, i32 12, i32 14,

56 i32 16, i32 18, i32 20, i32 22, i32 24, i32 26, i32 28,

57 i32 30, i32 32, i32 34, i32 36, i32 38, i32 40, i32 42,

58 i32 44, i32 46, i32 48, i32 50, i32 52, i32 54, i32 56,

59 i32 58, i32 60, i32 62, i32 64, i32 66, i32 68, i32 70,

60 i32 72, i32 74, i32 76, i32 78, i32 80, i32 82, i32 84,

61 i32 86, i32 88, i32 90, i32 92, i32 94, i32 96, i32 98,

62 i32 100, i32 102, i32 104, i32 106, i32 108, i32 110,

63 i32 112, i32 114, i32 116, i32 118, i32 120, i32 122,

64 i32 124, i32 126>

66 %rr1 = bitcast <64 x i2 > %rr to <4 x i32 >

67 ret <4 x i32 > %rr1

68 }

70 define <4 x i32 > @packh_2(<4 x i32 > %a, <4 x i32 > %b) alwaysinline {

71 entry:

72 %aa = bitcast <4 x i32 > %a to <128 x i1 >

73 %bb = bitcast <4 x i32 > %b to <128 x i1 >

74 %rr = shufflevector <128 x i1 > %bb, <128 x i1 > %aa, <128 x i32 >

75 <i32 1, i32 3, i32 5, i32 7, i32 9, i32 11, i32 13, i32 15,

76 i32 17, i32 19, i32 21, i32 23, i32 25, i32 27, i32 29, i32

77 31, i32 33, i32 35, i32 37, i32 39, i32 41, i32 43, i32 45,

78 i32 47, i32 49, i32 51, i32 53, i32 55, i32 57, i32 59, i32

79 61, i32 63, i32 65, i32 67, i32 69, i32 71, i32 73, i32 75,

80 i32 77, i32 79, i32 81, i32 83, i32 85, i32 87, i32 89, i32

81 91, i32 93, i32 95, i32 97, i32 99, i32 101, i32 103, i32

82 105, i32 107, i32 109, i32 111, i32 113, i32 115, i32 117,

83 i32 119, i32 121, i32 123, i32 125, i32 127, i32 129, i32

84 131, i32 133, i32 135, i32 137, i32 139, i32 141, i32 143,

APPENDIX A. EXAMPLE CODE FROM THE IR LIBRARY 69

85 i32 145, i32 147, i32 149, i32 151, i32 153, i32 155, i32

86 157, i32 159, i32 161, i32 163, i32 165, i32 167, i32 169,

87 i32 171, i32 173, i32 175, i32 177, i32 179, i32 181, i32

88 183, i32 185, i32 187, i32 189, i32 191, i32 193, i32 195,

89 i32 197, i32 199, i32 201, i32 203, i32 205, i32 207, i32

90 209, i32 211, i32 213, i32 215, i32 217, i32 219, i32 221,

91 i32 223, i32 225, i32 227, i32 229, i32 231, i32 233, i32

92 235, i32 237, i32 239, i32 241, i32 243, i32 245, i32 247,

93 i32 249, i32 251, i32 253, i32 255>

95 %rr1 = bitcast <128 x i1 > %rr to <4 x i32 >

96 ret <4 x i32 > %rr1

97 }

99 define <4 x i32 > @packl_2(<4 x i32 > %a, <4 x i32 > %b) alwaysinline {

100 entry:

101 %aa = bitcast <4 x i32 > %a to <128 x i1 >

102 %bb = bitcast <4 x i32 > %b to <128 x i1 >

103 %rr = shufflevector <128 x i1 > %bb, <128 x i1 > %aa, <128 x i32 >

104 <i32 0, i32 2, i32 4, i32 6, i32 8, i32 10, i32 12, i32

105 14, i32 16, i32 18, i32 20, i32 22, i32 24, i32 26, i32

106 28, i32 30, i32 32, i32 34, i32 36, i32 38, i32 40, i32

107 42, i32 44, i32 46, i32 48, i32 50, i32 52, i32 54, i32

108 56, i32 58, i32 60, i32 62, i32 64, i32 66, i32 68, i32

109 70, i32 72, i32 74, i32 76, i32 78, i32 80, i32 82, i32

110 84, i32 86, i32 88, i32 90, i32 92, i32 94, i32 96, i32

111 98, i32 100, i32 102, i32 104, i32 106, i32 108, i32

112 110, i32 112, i32 114, i32 116, i32 118, i32 120, i32

113 122, i32 124, i32 126, i32 128, i32 130, i32 132, i32

114 134, i32 136, i32 138, i32 140, i32 142, i32 144, i32

115 146, i32 148, i32 150, i32 152, i32 154, i32 156, i32

116 158, i32 160, i32 162, i32 164, i32 166, i32 168, i32

117 170, i32 172, i32 174, i32 176, i32 178, i32 180, i32

118 182, i32 184, i32 186, i32 188, i32 190, i32 192, i32

119 194, i32 196, i32 198, i32 200, i32 202, i32 204, i32

120 206, i32 208, i32 210, i32 212, i32 214, i32 216, i32

121 218, i32 220, i32 222, i32 224, i32 226, i32 228, i32

122 230, i32 232, i32 234, i32 236, i32 238, i32 240, i32

123 242, i32 244, i32 246, i32 248, i32 250, i32 252, i32

124 254>

126 %rr1 = bitcast <128 x i1 > %rr to <4 x i32 >

127 ret <4 x i32 > %rr1

128 }

130 define void @s2p_ideal_ir (<4 x i32 > %s0, <4 x i32 > %s1 , <4 x i32 > %s2,

131 <4 x i32 > %s3 ,

132 <4 x i32 > %s4 , <4 x i32 > %s5, <4 x i32 > %s6 ,

133 <4 x i32 > %s7 ,

134 <4 x i32 >* %p0 , <4 x i32 >* %p1 ,

135 <4 x i32 >* %p2 , <4 x i32 >* %p3 ,

136 <4 x i32 >* %p4 , <4 x i32 >* %p5 ,

137 <4 x i32 >* %p6 , <4 x i32 >* %p7) {

138 entry:

APPENDIX A. EXAMPLE CODE FROM THE IR LIBRARY 70

140 %bit0123_0 = call <4 x i32 > @packh_8(<4 x i32 > %s0 , <4 x i32 > %s1)

141 %bit0123_1 = call <4 x i32 > @packh_8(<4 x i32 > %s2 , <4 x i32 > %s3)

142 %bit0123_2 = call <4 x i32 > @packh_8(<4 x i32 > %s4 , <4 x i32 > %s5)

143 %bit0123_3 = call <4 x i32 > @packh_8(<4 x i32 > %s6 , <4 x i32 > %s7)

144 %bit4567_0 = call <4 x i32 > @packl_8(<4 x i32 > %s0 , <4 x i32 > %s1)

145 %bit4567_1 = call <4 x i32 > @packl_8(<4 x i32 > %s2 , <4 x i32 > %s3)

146 %bit4567_2 = call <4 x i32 > @packl_8(<4 x i32 > %s4 , <4 x i32 > %s5)

147 %bit4567_3 = call <4 x i32 > @packl_8(<4 x i32 > %s6 , <4 x i32 > %s7)

149 %bit01_0 = call <4 x i32 > @packh_4(<4 x i32 > %bit0123_0 ,

150 <4 x i32 > %bit0123_1)

151 %bit01_1 = call <4 x i32 > @packh_4(<4 x i32 > %bit0123_2 , <4 x i32 >

152 %bit0123_3)

153 %bit23_0 = call <4 x i32 > @packl_4(<4 x i32 > %bit0123_0 , <4 x i32 >

154 %bit0123_1)

155 %bit23_1 = call <4 x i32 > @packl_4(<4 x i32 > %bit0123_2 , <4 x i32 >

156 %bit0123_3)

157 %bit45_0 = call <4 x i32 > @packh_4(<4 x i32 > %bit4567_0 , <4 x i32 >

158 %bit4567_1)

159 %bit45_1 = call <4 x i32 > @packh_4(<4 x i32 > %bit4567_2 , <4 x i32 >

160 %bit4567_3)

161 %bit67_0 = call <4 x i32 > @packl_4(<4 x i32 > %bit4567_0 , <4 x i32 >

162 %bit4567_1)

163 %bit67_1 = call <4 x i32 > @packl_4(<4 x i32 > %bit4567_2 , <4 x i32 >

164 %bit4567_3)

166 %pp0 = call <4 x i32 > @packh_2(<4 x i32 > %bit01_0 , <4 x i32 > %bit01_1)

167 %pp1 = call <4 x i32 > @packl_2(<4 x i32 > %bit01_0 , <4 x i32 > %bit01_1)

168 %pp2 = call <4 x i32 > @packh_2(<4 x i32 > %bit23_0 , <4 x i32 > %bit23_1)

169 %pp3 = call <4 x i32 > @packl_2(<4 x i32 > %bit23_0 , <4 x i32 > %bit23_1)

170 %pp4 = call <4 x i32 > @packh_2(<4 x i32 > %bit45_0 , <4 x i32 > %bit45_1)

171 %pp5 = call <4 x i32 > @packl_2(<4 x i32 > %bit45_0 , <4 x i32 > %bit45_1)

172 %pp6 = call <4 x i32 > @packh_2(<4 x i32 > %bit67_0 , <4 x i32 > %bit67_1)

173 %pp7 = call <4 x i32 > @packl_2(<4 x i32 > %bit67_0 , <4 x i32 > %bit67_1)

175 store <4 x i32 > %pp0 , <4 x i32 >* %p0

176 store <4 x i32 > %pp1 , <4 x i32 >* %p1

177 store <4 x i32 > %pp2 , <4 x i32 >* %p2

178 store <4 x i32 > %pp3 , <4 x i32 >* %p3

179 store <4 x i32 > %pp4 , <4 x i32 >* %p4

180 store <4 x i32 > %pp5 , <4 x i32 >* %p5

181 store <4 x i32 > %pp6 , <4 x i32 >* %p6

182 store <4 x i32 > %pp7 , <4 x i32 >* %p7

184 ret void

185 }

	Approval
	Partial Copyright License
	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	List of Programs
	Introduction
	Background
	SIMD and SWAR
	Parabix Technology
	IDISA Library
	Critical Parabix Operations

	LLVM Basics
	LLVM Target-Independent Code Generator
	Summary

	Design Objectives
	Vector of i2k
	Redefine Legality
	In-place Lowering Strategy
	Lowering for vXi2
	Inductive Doubling Principle For i4 Vector

	LLVM Vector Operation of i2k
	Long Stream Addition

	Implementation
	Standard Method For Custom Lowering
	Custom Lowering Strategies
	DAG Combiner

	Templated Implementation
	Code Generation For i2 Vector
	Test Code And IR Library Generation

	Performance Evaluation
	Vector of i2k Performance
	Methodology
	Performance Against IDISA
	Performance Against LLVM

	Parabix Critical Operations
	Ideal 3-Stage Transposition on the Intel Haswell
	Long Stream Addition And Shift

	Conclusion
	Bibliography
	Appendix Example Code From The IR Library
	Transposition With Byte-Pack Algorithm
	Transposition With Ideal 3-Stage Algorithm

