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ABSTRACT

Group opinion dynamics shape our world in innumerable ways. Societal aspects ranging from the
political parties we support to the economic decisions we make in our daily lives are all directly af-
fected in some way by group opinion dynamics. This makes understanding and potentially being able
to predict the complex inter-relationships between individuals’ opinions and group opinion dynam-
ics invaluable both scientifically and economically. We propose an aggregation model incorporating
ingroup-outgroup dynamics, as well as media influence, to establish potential causal relationships
between various types of social interaction and social phenomena such as the occurrence of group
consensus and the hostile media effect. We further apply our model to simplified commercial appli-
cations relating to advertisement optimization to determine the optimal proportion of a population
to target with advertising in order to maximize opinion shift while fixing cost.
Keywords: Opinion dynamics, aggregation, differential equations, media, ingroup-outgroup dynam-
ics, open-mindedness
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Chapter 1

Introduction

1.1 Opinion dynamics

There are two main forces which shape opinion dynamics: Social forces such as the beliefs of one’s
peers and exogenous forces such as media influence [8, 28, 4, 6]. Self-thinking behavior also plays an
important role in opinion dynamics though for simplicity we will neglect it in our model. Here self-
thinking denotes individual’s spontaneous thoughts and emotions which are not directly attributable
to either the actions of other individuals, or other exogenous inputs. This is perhaps not the most
unrealistic decision, since in many situations peers and media dynamics play a larger role than self-
thinking [21, 30, 3, 50]. Hence, our modeling effort will focus exclusively on the effects of peer and
media influence. In order to model these social factors, we must first understand their nature.

Consensus seeking

One component of peer social influence is the general tendency of many individuals to change their
own opinion to align with those of their peers [4]. This phenomenon was famously demonstrated
by Asch using his landmark line experiment, in which individuals were asked to compare the relative
lengths of lines while surrounded by a group of paid confederates who would give either accurate or
false statements about the relative lengths of said lines [4]. It was found that when an individual was
in the presence of two or more confederates, 75% of individuals tended to adopt the confederates’
opinion and give false statements about the relative lengths of the lines. This trend persisted even
when the difference in line lengths was obvious [4]. This consensus-seeking behavior is a feature of
virtually all theoretical work on opinion dynamics to date [20, 38, 7, 8, 46, 51, 39, 35].

The tendency to seek consensus with one’s peers does not apply evenly to all interactions.
Individuals have a greater tendency to change their opinions to align with those more similar to
themselves [6, 25]. One of the earlier demonstrations of this phenomenon was made by Berscheid
[6]. She designed a setup in which subjects were tricked into observing a confederate argue in favor
of a particular opinion slightly different than that of the subject. Prior to this, the subject had either
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been told or had perceived the confederate holding a similar belief to their own, on either the subject
matter being debated or a different subject matter. It was found that individuals were more persuaded
by the confederate’s arguments when the confederate appeared similar to them, particularly if that
similarity was in the subject matter which was being discussed.

This trend of individuals being more susceptible to peer influence from those similar to them
has been documented in numerous areas [30, 3, 25, 27, 6]. In the area of American politics it has
been found that individuals are in most cases either unresponsive or hostilely responsive to media
which has a bias different than their own, but shift in the partisan direction of media which shares
their political beliefs [30, 3, 27]. This trend of individuals being affected by opinions similar to their
own even extends to indirect messages such as those of hostile sexism found in certain types of
pornography [25]. It was found by Hald et al. that experimental exposure to pornography fosters
hostilely sexist beliefs, but only amongst subjects with low levels of pretest agreeableness [25].

The above implies that any modeling endeavor should have have a feature incorporated within
it, in which individuals are most responsive to other individuals within a certain window of opinion
space. This is the case for many models, such as that proposed in [38].

Mathematical consensus-seeking models

In [38] Motsch and Tadmor investigate the requirements for consensus of a broad class of opinion
alignment models with properties similar to flocking models used in animal aggregation such as [12].
Opinions of individuals were defined as n-tuples, (n ≥ 1) on a scale from zero to ten. Using this
framework, Motsch and Tadmor use analytical techniques borrowed from graph theory to establish a
requirement for consensus. Additionally they numerically demonstrate that when individuals interact
in a heterophilious manner the occurrence of consensus is enhanced. Here ‘heterophily’ is defined as
the tendency of individuals to be more responsive to peer influence of those with different opinions
relative to their own. We will discuss this model in greater detail at the beginning of Chapter 2, since
it is of special importance to our modeling endeavor.

Other models, such as the class outlined in Section 1 of [20], use the idea of consensus to
make direct predictions about results such as elections. By starting from a generally category-based
classification of individual’s opinions, Galam constructs a bottom up hierarchy from the population
based on local majority rules. From this, tree-like networks are built which make deterministic
predictions about the outcome at the top based on a random selection of agents at the bottom layer
[21, 20].

Another discrete opinion-based model proposed by Galam describes opinion dynamics as an Ising
ferromagnetic system, where the alignment of agents between two particular groups is defined anal-
ogously to the state classification of atoms in a substance [20]. Here social influence and individual
differences are represented in terms of external and internal fields which impact the magnitude and
sign of the Hamiltonian function H as shown below:
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H = −
∑
i, j

Ji,jkikj − g
∑

i

ki −
∑

i

fiSi , (1.1)

and
P (K) = eβH(K)/Z where Z =

∑
K

eβH(K). (1.2)

This function H determines the relative probability P of a certain state of alignments K. Here
ki represents the alignment of the ith individual, the terms fi, β and g are weighting constants and
Si = ±1. Galam uses this model to offer a potential explanation of the social phenomenon of group
extremism found in [15, 50]. In the aforementioned experiments, groups which were forced to reach
a consensus opinion tended towards choosing an extreme opinion, relative to the mean opinion of the
individuals in the group prior to group interaction. Galam demonstrates that when individuals are
forced to choose between distinct sides while additionally trying to align with their peers, extremism
tends to result [22, 20]. In this thesis we will demonstrate that by incorporating this dynamic of
group allegiance coupled with peer alignment through population heterogeneity, the same result can
be found when individual’s opinions are represented continuously, as will be shown in Chapters 2 and
3.

Ingroup-outgroup dynamics

The potential explanation for group extremism we shall propose is not without basis as the relationship
describing an individual’s response to peer opinions is not homogeneous within a population. It has
been noted in [30, 27] that when the majority of individuals experience cross-cutting media (media
differing in partisan bias from their own belief), individuals tend to either not change their opinion,
or become more extreme in their beliefs upon exposure. There is however a minority of individuals
who moderate when exposed to media which expresses a different partisan perspective than their
own [27, 30]. This implies that treating all individuals as equivalent is inadequate to fully describe
opinion dynamics.

In order to model this heterogeneous response, we must first consider the psychological mechanism
behind its occurrence. Specifically, this means that we must consider the sociological phenomenon of
ingroup-outgroup dynamics. Ingroup-outgroup dynamics is the process in which individuals identify
themselves and others based on their inclusion or lack thereof in a particular group. The process of
ingroup-outgroup dynamics is governed by an area in the social sciences known as self-categorization
theory [26]. Self-categorization theory holds that under certain circumstances, individuals will cate-
gorize themselves as members of an ingroup, with a particular set of social norms and beliefs [26].
This tendency increases under certain circumstances, such as when individuals feel threatened [37].
Individuals who do not share the group’s beliefs, are viewed as being part of the outgroup.

Individuals who view themselves as part of an ingroup tend to behave closed-mindedly with respect
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to those with opposing views associated with the outgroup [26, 50, 15, 30]. When exposed to views
belonging to their ingroup, closed-minded individuals feel more certain in their beliefs and become
more extreme. This opinion shift still occurs even if the like-minded opinion which they are exposed
to is more moderate than their own. Additionally, exposing closed-minded individuals to outgroup
opinions heightens their sense of group identity, causing them to counter-argue against the outgroup
opinion and feel more certain of their previous belief [50, 26, 37]. This phenomenon explains why
clearly identified groups become more extreme when exposed to both like-minded and cross-cutting
opinions [26, 50].

One case of this phenomenon documented by Doise was amongst students at an alternative
architectural school [15]. In this study by Doise, individuals were exposed to one of two stimuli.
The first was a group discussion amongst their fellow students about the merits of their school as
compared to a more prestigious school. The second stimulus was a video of members of said more
prestigious school discussing the subject’s school. In both cases individuals became more polarized in
their beliefs about the areas where their school was superior and the areas where the other school was
superior. Since this pioneering study, similar results of dual polarization have been noted amongst
issues as diverse as: friends’ marriage decisions, risk management in business, feminism and verdict
determination amongst jurors. In all of these cases the collective belief of a group of individuals after
discussion was more extreme than the mean individual opinion pre-discussion [50]. It is additionally
worth noting that individual extremism is under some circumstances a prerequisite for closed-minded
behavior [52].

Mathematical modeling of non-open-minded individuals

A variation of this type of interaction in the absence of media has been modeled by Boudin et al.
and Galam [19, 7]. Galam considers closed-minded individuals in the context of the bottom-up voter
model previously discussed [19]. He demonstrates that a minority of closed-minded individuals have
the potential to reduce the emergence of a consensus, and postulates that this type of phenomenon
could be a potential explanation for the Bush-Gore stalemate in the 2000 American presidential
election. This model has minimal relevance to our own other than the psychological dynamics which
it incorporates, since it is more of an algorithm for determining a vote as opposed to a model for
directly simulating group opinion dynamics over time.

Boudin et al. consider this dynamic using an Eulerian modeling approach [7]. Specifically, this
means that rather than considering individuals with specific opinions (a Lagrangian modeling ap-
proach), Boudin et al. represent evolving opinion dynamics as a distribution of a population density
function in opinion space, whose evolution in time is based on certain assumed binary interactions
between individuals. Their model is more similar to ours than Galam’s though it differs in that the
secondary class of individuals exhibits contradictory behavior rather than closed-minded behavior.
Specifically this means that individuals tend to move towards the extreme furthest from their inter-
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acting partner. This differs from our closed-minded behavior (which will be explained in detail in
Chapter 2) in that in our model, closed-minded individuals move towards the same extreme for all
interactions. It should be noted that when we refer to individual interactions in the model of Boudin
et al., we are referring to the binary interactions implicit in their model.

Using these contradictory dynamics, Boudin et al. find that consensus does not result in general
[7]. This is an interesting result in that it offers a potential explanation for hung elections, though it
also raises the potentially more interesting question, namely: How can consensus result when some
individuals exhibit these types of consensus-opposing behaviors? This is an important question since,
in order for conflicts to be resolved, some sort of consensus must be reached between opposing
parties, and in almost all cases some individuals belonging to either party will behave in a closed-
minded or contradictory fashion. This will be one of the key questions which we will investigate in
this thesis.

Social norms of open-mindedness

One area of opinion interaction where these types of consensus-opposing behaviors are quite common
is American politics [3, 30]. Survey data in the social sciences demonstrates that political questions
containing the word ‘Obama’ elicit vastly polarized responses relative to similar questions which lack
obvious partisan markers [3]. Additionally, many past and present real world political-military conflicts
involved closed-minded individuals on either side [11]. Since several of these conflicts have reached
a peaceful consensus of sorts, it is clear that consensus can, under certain circumstances, result even
in the presence of closed-minded individuals.

Understanding what these circumstances are is critical to resolving other real world conflicts, and
hence will be the primary focus of this thesis. This question has yet to be explored mathematically
to the best of our knowledge, but some potential explanations have been given in the social sciences
[56, 57, 36]. For example [56] found, through interviewing two forest company managers about
grievance resolution, that cooperative norms and open-minded interaction lead to consideration of
opposing views and general resolution of conflicts [36, 56]. However this was not the case when
competitive, closed-minded norms were present [56]. This implies that open-minded individuals may
have the potential to encourage closed-minded individuals to behave open-mindedly through social
pressure caused by open-mindedness social norms. We will investigate whether this mechanism has
the potential to cause consensus in presence of various degrees of ingroup-outgroup dynamics.

1.2 Media dynamics

Two additional questions which the above suggests, are: (1) what role do exogenous social forces such
as media play in shaping opinion dynamics in the presence of ingroup-outgroup dynamics, and (2)
can social norms of open-mindedness cause consensus in the presence of media? These questions are
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particularly intriguing since the perception of news media is often influenced by a social phenomenon
known as the hostile media effect [60].

The hostile media effect

The hostile media effect is a phenomenon in which highly partisan individuals on either side of a
conflict will perceive the media to be hostilely biased against them [9, 13, 10, 33, 60]. First observed
by [60] in the Arab-Israeli conflict, it was found that when pro-Arab and pro-Israeli sympathizers were
shown the identical news coverage of the 1982 Beirut massacre, each side perceived the coverage to
be biased in favor of the other side’s beliefs. Since then this phenomenon has been documented to
play an important role in conflicts as diverse as: American elections, the Bosnian conflict and the
US parcel workers strike of 1997 [10, 9, 13]. Due to this impact on a diverse set of conflicts, it is
critical to understand how conflicts in general can be resolved in the presence of the hostile media
effect. This resolution process can be represented mathematically as the formation of consensus.

Mathematical modeling of media

Mathematically there has not been much research to date in modeling the effect of closed-minded
or consensus-resisting behavior in the presence of media. Most opinion dynamic modeling endeavors
incorporating the effect of media primarily focus on the interplay between consensus-seeking behavior
and media [8, 35].

One such modeling effort by Boudin et al. represents media opinion interaction using a kinetic
model in which individuals seek a consensus [8]. Here media is represented as a background noise
which potentially varies in time. Using this framework they demonstrate numerically that an extremist
media source can often defeat its own purpose and fail to attract individuals. In addition, they
investigate the effect of media in a three party political system.

Another Eulerian modeling effort was carried out by Bullo et al. [35]. They investigated analyti-
cally the conditions required for consensus in the presence of media, and find a somewhat analogous
sufficiency condition (individuals must be sufficiently close in opinion to interact with each other) to
that found in [38] in the absence of media.

In addition to Eulerian techniques for modeling media influence there have also been lattice
model-based techniques [46], as well as even SIR modeling endeavors wherein the spread of ideas
is represented analogously to the spread of a disease [58]. One such SIR media influence model
proposed by Tweedle and Smith? investigates the media’s influence on ‘Bieber Fever’ (the spread of
the popularity of the teen idol Justin Bieber). They find that a sustained negative media influence
(referred to as the ‘Lindsay Lohan effect’) would be required to reduce the popularity of Justin Bieber.
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1.3 Advertising

Another question which we will consider, is what role do ingroup-outgroup dynamics play in the
commercial success of various advertising strategies? This may at first seem like an odd question,
since one does not typically imagine consumer preference to be shaped by group identity. That
this could occur should not be surprising, though, since numerous studies link product preference
to various group-identifying features such as sex, age, personality and political affiliation [40, 59,
41, 32, 61]. Hence, since product preference is correlated with group identity, one can expect that
under certain circumstances, individuals would embrace products closed-mindedly for reasons similar
to those discussed previously for which they embrace group-identifying opinions in a closed-minded
fashion [26]. This idea is further supported anecdotally by the cultural tendency to equate certain
beverages with group-identifying traits, such as the perceived manliness of beer [41]. For these
reasons it is critical to understand the role which ingroup-outgroup dynamics plays in shaping the
commercial success of advertisements.

One specific sub-area of advertising where ingroup-outgroup dynamics is of critical importance
is that of guerrilla marketing. Guerrilla marketing is an advertising technique in which the advertiser
attempts to have maximal impact with minimal investment by creating a novel ad which as a re-
sult of its novelty is spread along consumer social networks [5]. These techniques are of increasing
importance in recent times due to the rise of social media leading to increased consumer-consumer
interactions [47]. Due to this growing importance we will attempt to characterize some of the group
psychological regimes under which such techniques are likely to be successful.

Mathematical modeling

Many previous advertising models model the relationship between advertising cost and sales [31]. We
will instead use a similar method to that described in [46, 49] and assume that creating consumer
preference for one’s product is equivalent to generating sales.

As mentioned above, one example of this type of modeling effort was proposed in [46]. Schulze
proposes an advertising model using a variation of the Sznajd opinion model originally proposed in
[51]. Here opinions are represented as integers on a lattice and individuals are chosen at random
for updating. Individuals have their opinions updated to those of their neighbors if and only if all of
their neighbors have an identical opinion. Schulze modifies this model to incorporate multiple lattice
layers representing aging in the population. Advertising influence is modeled as a global convincing
force which probabilistically changes individuals’ opinions to that of the advertised opinion. He finds
that in this case that under some circumstances advertising can induce a consensus on the advertised
opinion.

We will take this idea further in the case of our model and investigate the role of ingroup-outgroup
dynamics on the optimal advertising strategy.
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1.4 Outline of thesis

In general this thesis will propose an ODE model for opinion dynamics of N individuals in the
presence of media, and use this model as a general tool for conducting numerical experiments which
lend insight into the general effect of open-mindedness and other social phenomena on opinion
dynamics and advertising optimization. These numerical experiments will be supplemented with
relevant mathematical and statistical analyses.

Specifically, Chapter 2 will propose our model in the absence of media and demonstrate that
under the assumptions of our model, social norms of open-mindedness have the potential to cause
consensus in the presence of ingroup-outgroup dynamics.

Chapter 3 will introduce our model in the presence of media and show that, given certain as-
sumptions, consensus can still be caused by social norms of open-mindedness when individuals are
also exposed to a single media source and the influence of the hostile media effect.

Chapter 4 will modify the model proposed in Chapter 3 to be relevant for simulating the effect
of advertising. Using this modeling framework we will investigate the effect of ingroup-outgroup
dynamics on the optimal advertising strategy, and show a variety of associated results.

Our final results chapter, Chapter 5, will analyze the data set found in [30] to estimate realistic
parameter values and gain some insight into the causes of the hostile media effect. We will additionally
demonstrate the relative validity of our model assumptions by replicating a portion of the Levendusky
data through fitted simulation.
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Chapter 2

How open-mindedness norms cause
consensus in the absence of media

The purpose of this section is to investigate whether open-mindedness social norms have the potential
to cause consensus in the presence of ingroup-outgroup dynamics. As mentioned in the Introduction,
consensus can under some circumstances result in the presence of ingroup-outgroup dynamics [50].
This is unintuitive since ingroup-outgroup dynamics typically cause individuals to blindly approach
the extreme opinion of their respective groups [50]. In this manuscript we propose a mechanism
for consensus in which a minority of open-minded individuals facilitate open-mindedness amongst
closed-minded individuals in the short term through the creation of an open-mindedness social norm.
As mentioned previously the existence of said social norm is supported by [56, 57, 36]. Here we will
demonstrate that this can under some circumstances directly cause consensus when the proportion
of open-minded individuals is large enough.

For reference, all constants and function mentioned below and in subsequent chapters are stated
in Tables A.1 to A.3 in Appendix A.

2.1 Previous research and simulations

The modeling of group opinion dynamics using ODE and PDE aggregation models has grown in
popularity over the last few years [38, 16, 8, 35, 39, 7, 1]. Our model is based on that recently
proposed by Motsch and Tadmor [38]. Here, opinion dynamics amongst N individuals are modeled
as a system of N ODEs of the following form:

dxi

dt
= α

∑
j

aij(xj − xi), i = 1, ..., N (2.1)
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where
aij = φ(|xj − xi|)/φi , with φi =

∑
j

φ(|xj − xi|). (2.2)

Here xi denotes the opinion of the ith individual. As was mentioned in the introduction Motsch and
Tadmor define opinions of individuals as n-tuples, (n ≥ 1) on a scale from zero to ten. In our own
model, which is closely related to Motsch and Tadmor’s, this scale is compressed and shifted to the
interval [-1,1] in order to classify individual’s group allegiance based on sign.

Motsch and Tadmor demonstrate that when the interaction function φ in (2.2) is heterophilious,
(this occurs when φ is positive and increasing over some domain), the occurrence of consensus
increases (Fig. 2.1 and 2.2). Here consensus is interpreted mathematically as a long-time equilibrium
with a single value. This foreshadows the general principle that consensus is more likely when
individuals are more open-minded. The aforementioned is evident by noting that heterophilious
interactions like those modeled by Motsch and Tadmor imply that individuals are more persuaded
to change their opinion when in contact with those somewhat different than themselves. This is
equivalent to individuals being more open-minded. Motsch and Tadmor modeled this numerically by
taking φ in (2.2) to be a step function, or a linear combination of two step functions with varying
support. The size of this support determines how willing an individual is to considering opinions
different than their own. This can be thought of as a measure of open-mindedness. An example of
each of these step functions is shown in Fig. 2.3. We will assume a similar form for the interaction
function in our model.

We will extend the results in [38] to our own more complex model and demonstrate that through
the creation of open-mindedness social norms, open-minded individuals can cause consensus even in
the presence of individuals who possess the propensity to be closed-minded.

It is worth noting explicitly here that aij (the interaction coefficient) is equal to φ evaluated
at |xj − xi| normalized by the sum over all k of φ evaluated at |xk − xi|. This normalization
term is denoted by φi in the above equation. Due to this normalization the strength of the general
interactions between individuals can be represented by the magnitude of α. This will be taken to be
1 in all simulations unless explicitly specified otherwise.

It should be noted explicitly here that Fig. 2.1 depicts the time evolution of each individual’s
opinion as a separate curve which merges with other individuals’ associated curves as the individuals
reach an agreement. Observing Fig. 2.1, we see that the heterophilious interaction function results in
consensus at equilibrium whereas the simple step function interaction function leads to two clusters
of individuals at equilibrium.
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Figure 2.1: The effect of a heterophilious interaction function on consensus: Time series evolution
of (2.1) for two different interaction functions a) φ = 0.1χ[0,as/

√
2] +χ[as/

√
2,as], b)φ = χ[0,as]. Here

χ is the characteristic function, as = 0.4 and N = 80. Uniform random initial conditions were used.
The heterophilious interaction function in (a) results in a consensus whereas the simple step function
interaction function in (b) does not.

Figure 2.2: Parameter space plot: Average number of clusters when individual-individual interactions
are governed by a) heterophilious interaction function φ = 0.1χ[0,as/

√
2] + χ[as/

√
2,as] and b) a

standard step function interaction function φ = χ[0,as]. Averaged over 5 sets of uniform random
initial conditions. N = 80. The heterophilious interaction function in (a) leads to consensus for a
greater range of parameter values.
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It should noted explicitly that Fig. 2.2 represents a parameter sweep where the support of φ is
varied. Specifically, we see that as as is decreased more clusters form. Further the heterophilous
interaction function used in Fig. 2.2 (a) results in fewer clusters than the step function interaction
function (shown in Fig. 2.2 (b)). This implies that heterophilious interaction can lead to increased
consensus.
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Figure 2.3: Sample interaction function (φ): a) Sample step function, this is used in all of the simu-
lations in this manuscript unless explicitly specified otherwise. b) Sample heterophilious interaction
function, used in many simulations in [38]. Note that the heterophilious interaction function leads
to greater interaction amongst individuals with differing opinions as compared to the step function.

In Fig. 2.3 we see the two general types of interaction functions used in [38]. In addition it should
be noted, that the larger the support of φ the more responsive open-minded individuals are to the
opinions of others.

Numerically the above figures and all other time series in this thesis are simulated using a 4th
order Runge-Kutta method for the first three times steps followed by a 4th order Adams-Bashforth
method for the remaining time steps. This is done as to limit our evaluation of the right-hand side
of the ODE.

2.2 Modeling open-mindedness and closed-mindedness

We will begin our analysis by first defining our model. Using (2.1) to capture the consensus-seeking
behavior of open-minded individuals we will incorporate an additional class of individuals who rather
than seeking the mean of the group, instead seek the extreme opinion. To account for the fact
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that this type of closed-minded behavior is usually only possible amongst extremist individuals [52]
we will introduce a critical threshold Xc, below which all individuals behave in an open-minded
fashion. Numerous studies in the social sciences show that for many issues (including politics),
these extreme opinion seeking, closed-minded individuals comprise the majority of the population
[30, 50, 26, 15]. We will denote the total number of open-minded individuals by m and the total
number of individuals with the propensity to be closed-minded by N −m, where N represents the
total number of individuals.

Model with open-mindedness social norm

Incorporating the aforementioned features we arrive at the following model stated below:

dxi
dt

= fi, (2.3)

where, fi represents the social force from peer pressure and is defined as follows:

fi =


α2(N −m− 1)âi(1− xi) + α3

∑
j∈O

âij(xj − xi) if xi > Xc and i ∈ Ĉ

α2(N −m− 1)âi(−1− xi) + α3
∑
j∈O

âij(xj − xi) if xi < −Xc and i ∈ Ĉ

α1
∑

j aij(xj − xi) otherwise

(2.4)

The fundamental idea of this model is that we distinguish between the set ofm ≤ N open-minded
individuals whose associated indices i belong to the set O, and the N −m individuals who have the
propensity to behave closed-mindedly whose associated indices i belong to the set Ĉ. For simplicity
we will use the statements of ‘an individual belonging to the set of non-open-minded individuals or
set of open-minded individuals’ and ‘i ∈ Ĉ or i ∈ O’ interchangeably. Our convention is to use
superscript ‘hat’ for closed-minded individuals whose indices are in Ĉ. The individuals whose indices
are in Ĉ in fact act closed-mindedly when their opinions are sufficiently extreme |xi| > Xc. It is also
important to note that the term non-closed-minded refers to individuals in O and individuals in Ĉ
whose opinions are not sufficiently extreme as to be closed-minded.

The normalized interaction function for the open-minded interaction between the ith and jth
individual is represented by aij as in (2.1). Additionally we will explicitly note that the definition of
aij given in (2.4) is defined by (2.2), where the functional form of φ is assumed to be a step function
with support as as is depicted in Fig. 2.3 (a).

We will define âi in (2.4) similarly, except that we must account for the fact that the psychological
forces shaping âi are not equivalent to those shaping aij . This is due to the fact that when an
individual’s response to peer influence is driven by ingroup-outgroup dynamics, they are driven towards
their group’s associated extreme opinion, irrespective of whether the said influencing peer is perceived
to be a member of their perceived ingroup or a member of their perceived outgroup (this is in the
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absence of social norms of open-mindedness) [15, 26, 50]. Further, the rate at which they approach
this extreme for each interaction will only be function of their distance from said extreme, and
possibly of the sign of xj [52], where the sign of the jth individual’s opinion represents the perceived
group categorization of the jth individual. For simplicity, though, we will assume that the magnitude
of âi is independent of xj . This is equivalent to assuming that the two psychological responses
discussed in Chapter 1 which lead to closed-minded individuals seeking their group’s extreme opinion
are equivalent in the magnitude of their influence.

Taking the above into account we arrive at the following definition for âi in (2.4):

âi = φ̂(|sgn(xi)−xi|)/φ̂i , with φ̂i = (N−m−1)φ̂(|sgn(xi)−xi|)+
∑
j∈O

φ(|xj−xi|). (2.5)

For simplicity we will take φ̂(|sgn(xi) − xi|) = 1 in all of our simulations unless explicitly stated
otherwise. For theoretical purposes though this need not be the case. For example, φ̂ could be
defined as the step function depicted in Fig. 2.3 (a) with an associated support of âs; in fact, we
will use this as our assumed form in several of our stability results stated below.

It should also be noted that âij is almost identical in form to aij except that it has a different
normalization term as shown in (2.6). This is done so as to weight all individual influences strictly
in terms of the magnitudes of α3, α2 and α1 .

âij = φ(|xj − xi|)/φ̂i where φ̂i is as defined in (2.5) (2.6)

Additionally it should also be noted that when m = 0 (that is O is empty: all individuals belong
to the set of non-open-minded individuals and possess the predisposition to closed-mindedness) φ̂i is
independent of xj for j 6= i.

Continuing to consider (2.4) we note that the critical threshold (Xc) is included in our model as
a certain degree of extremism is a prerequisite for closed-minded behavior [52]. This is due to the
fact that extremist individuals are better able to counter-argue against outgroup opinions [52]. This
transition between open-minded and close-minded behavior in reality is a continuous process in many
circumstances (as we will see is supported by Fig. 5.1). For simplicity, though, we will approximate
this behavioral transition with a discrete threshold.

The most significant novel feature of (2.4) in terms of our research is the inclusion of the
effect of an open-mindedness social norm. We model this effect by having extremist closed-minded
individuals behave open-mindedly when and only when they interact with open-minded individuals.
As was mentioned previously in Chapter 1, it has been demonstrated empirically in the social sciences
that through acting open-mindedly, individuals can prompt open-minded behavior in others through
social pressure caused by social norms of open-mindedness [36, 57, 56]. In this chapter we will
demonstrate that under the assumptions of our model this mechanism has the potential to cause
consensus for a wide range of parameters.

14



Model without open-mindedness social norm

In the absence of an open-mindedness social norm our model described by (2.4) becomes the model
depicted in (2.7). It is easy to see that this differs from (2.4) in that individuals who are acting
closed-mindedly move to the extreme, regardless of the open-mindedness of their interacting peers.
This difference is implemented mathematically through the removal of the sum term in the cases
when |xi| > Xc and the ith individual belongs to the set of non-open-minded individuals. That is fi
in (2.3) is defined by:

fi =


α2(N − 1)âi(1− xi) if xi > Xc and i∈ Ĉ ,

α2(N − 1)âi(−1− xi) if xi < −Xc and i ∈ Ĉ ,

α1
∑
j
aij(xj − xi) otherwise

(2.7)

Again the interaction coefficient aij represents the function φ described in (2.2) evaluated at
|xj−xi| and normalized. The function âi will similarly be defined analogously to that in (2.5) except
that its normalization will vary slightly. Specifically âi will be defined as:

âi = φ̂(|sgn(xi)− xi|)/φ̂i, with φ̂i = (N − 1)φ̂(|sgn(xi)− xi|) (2.8)

Considering (2.8) we see that âi is independent of xj when j 6= i. Further âi is simply 1/(N−1).
Again it is also worth noting here that all of our numerical simulations in this manuscript use

the step functions shown in Fig. 2.3 (a) as the interaction function φ unless specified otherwise.
Additionally it is worth noting that unless specified otherwise we will assume that α3 = α1 = α2 = 1

in all of our numerical simulations. This is fairly reasonable in terms of choosing parameters relevant
to politics, although our analysis in later chapters shows that perhaps α1 ≈ 2α2 in order to be
relevant to American politics (see Chapter 5).

2.3 Equilibria and stability analysis

Before we consider the stability of equilibria analytically it should first be noted that all equilibrium
solutions of Motsch and Tadmor’s model [38] are neutrally stable in that perturbations result in the
system relaxing to a slightly different equilibrium. In our own model we find numerically, that there
seem to exist no unstable equilibria in our simulations in this chapter, or in later chapters (or at
least none with a finite basin of attraction). We will demonstrate below that unlike the equilibria
in the model proposed in [38], our model does under some circumstances allow for asymptotically
stable equilibria. We will not however prove non-existence of other long-term oscillatory states. Some
typical equilibria are shown in Fig. 2.4.
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Figure 2.4: Time series showing the approach to various typical equilibrium solutions, with N = 80 a)
Central consensus equilibrium: m = 60, Xc = 0.5, as = 1.2. b) Multi-cluster equilibrium: as = 1.2,
m = 10, Xc = 0.25. c) Strong polarization in the absence of a social norm of open-mindedness:
Xc = 0.5, as=1, m = 0. d) Polarization persists in the absence of a social norm of open-mindedness
even when m increases: Xc = 0.5, as=1, m = 40.

These equilibria solutions of (2.3) can be classified macroscopically into three broad classes of
equilibrium.

1. The first class (Type 1) consists of consensus solutions where x∗i = x̄ for all i. Here x∗i
is the equilibrium associated with the ith individual and x̄ represents the mean over all x∗i .
These solutions tend to occur when the majority of the population is open-minded or when
Xc is large (corresponding to low levels of ingroup-outgroup dynamics) and when as is large
(see Fig. 2.8 for example of such parameters). These consensus equilibria can occur at
moderate values such as in Fig. 2.4 (a) or extreme values such as in Fig. 2.5 (b). The latter
case is more common when a relatively larger proportion of the population is closed-minded
and when ingroup-outgroup dynamics play a larger role in interactions (smaller Xc). This is
in agreement with the psychological literature where extremist consensuses tend to result in
group scenarios where individuals have some sort of group-identifying feature associated with
their belief [50, 15]. This phenomenon has previously been explored theoretically in [22] using a
discrete model. As Fig. 2.5 (b) demonstrates, we are able to replicate this extremist consensus
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dynamic using our continuous model when certain constraints are met. Regrettably we do not
directly categorize these constraints.

2. The second general class of equilibria (Type 2) consists of polarization equilibria in which
x∗i = +1 for some i and x∗i = −1 for the remaining i. These equilibria tend to occur in
the relative absence of open-minded individuals and at very high levels of ingroup-outgroup
dynamics; see Fig. 2.4 (c) and 2.5 (a) for examples. Psychologically this type of equilibria
would represent cases where there exist two hostilely opposed groups who are unwilling to
listen to each other. These equilibria tend to have relatively large basins of attraction as we
will investigate below.

3. The third class of equilibria (Type 3) consists of multiple cluster solutions in which there
are several (more than two) different groups of individuals at equilibrium each with a distinct
belief on the particular issue being considered. Mathematically this class of equilibria can be
characterized as the case when x∗i takes on at least two distinct values at equilibrium where
at least one of these values is not ±1. These equilibria tend to occur when as is small.
Physically this corresponds to when open-minded individuals are relatively un-open-minded (as
the support of the interaction function is small). For examples of such equilibria see Fig. 2.4
(b).

Before delving into the analysis we must introduce several definitions. The first concerns a
graph-theoretic analogue to our model originally made in reference to the models discussed in [38].

Two individuals are said to be connected if there exist a path linking them, where path in this
instance, is defined as a chain of non-zero interaction coefficients. For example, if a12, a24 and a47

were all nonzero, one would say that individuals 1, 2, 4 and 7 were all connected. If this relationship
holds for all individuals in a population, the population is said to be connected. We will denote the
path between the ith and jth individual with the strongest minimum link as Γij , where ‘strongest
minimum’ refers to the magnitude of the minimum aij in a path. If no such path exists between
two individuals then they are not connected. Using this definition we can more formally state the
definition of connected as:

Definition 1. (Connected) A group of individuals governed by an alignment dynamics such as in
(2.1) is said to be connected if there exists a z(t) such that for all paths Γij : min(apk)

over apk∈Γij

≥ z(t) >

0 for all i, j.Further it is said to be uniformly connected if z(t) > z > 0, where z is a constant [38].
Continuing to consider graph-theoretic analogues to our model, it is important to note that we can

associate an adjacency matrix with a population of individuals governed by our model. Specifically
we will let this adjacency matrix be
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D =


a11 a12 a13 ...

a21 a22 ... ...
. . . . . . . . . . . .


(2.9)

where the entry aij inD is the interaction coefficient between the ith individual and the jth individual.
If the ith and jth individual do not interact (or if the interaction between the ith and jth individual
is ignored by the ith individual due to closed-mindedness) then the ijth entry in the matrix D is
zero.

The next definition we will consider will be irreducibility where stated more formally:

Definition 2. (Irreducible) A matrix D is said to be irreducible if its associated directed graph is
strongly connected.

It should be noted here that due to the symmetry of our interaction function φ, when a population
of individuals is connected as is defined in Definition 2.3, they’re also strongly connected when fi is
defined by (2.4). This implies that when fi is defined by (2.4) and a population is also connected
the associated adjacency matrix shown in (2.9) will be irreducible. This is not the case when fi is
defined by (2.7) as all rows associated with closed-minded individuals will be zero.

Theorem 1. If a matrix A is weakly diagonally dominant, with strict dominance holding for at least
one row then it is nonsingular if it is irreducible [53, Theorem 2].

Definition 3. (Problem 1) We will define problem 1 to be (2.3), where fi is defined by (2.4), with
aij defined as in (2.2) and âi as in (2.5). Here φ and φ̂ are step functions of the general form
depicted in Fig. 2.3 with arbitrary supports as and âs respectively.

Definition 4. (Class 1) Let {x∗i } be an equilibrium solution to Problem 1. Then {x∗i } is said to
be Class 1 if φ(x∗j − x∗i ), φ̂(x∗i ),

∂a∗ij
∂xi

, ∂â
∗
i

∂xi
and

∂â∗ij
∂xi

are well-defined for all i and j and xi 6= Xc for
i ∈ Ĉ. Here a∗ij is defined to be the interaction coefficient evaluated at the equilibrium, with â∗ij and
â∗i defined similarly.

Having established the above definitions we can now propose and prove our first theorem. The
general idea will be that when open-minded individuals interact with closed-minded individuals this
causes neutrally stable equilibria to become attracting. This is proved using an argument which
considers the Jacobian associated with Problem 1 as defined in Definition 3 and argues using the
Gershgorin circle theorem [24, pg 320] and Theorem 1 that since the Jacobian is irreducible (or rather
one of its principal minors is irreducible) and weakly diagonally dominant with negative diagonal
elements and strict diagonal dominance holding in at least one row, all of it’s eigen values must have
negative real parts. Stated more formally we have the following:

18



Theorem 2. Assume that the equilibrium solution to Problem 1 is Class 1 as is defined in Definitions
3 and 4. Then said equilibrium solution of (2.3) is linearly stable if all non-closed-minded individuals
are connected at equilibrium as defined above, at least one open-minded individual is connected to
a closed-minded individual at equilibrium and α3 > 0.

Proof. Before we begin we will first clarify some of our terminology. In the above stated theorem
(and in this thesis in general) closed-minded individuals refers to individuals who exist in Ĉ and have
opinion values |xi| > Xc. All individuals not satisfying this criteria are referred to as non-closed-
minded. This group of individuals includes open-minded-individuals (who lack the predisposition to
closed-mindedness) and moderate opinioned individuals who do possess the tendency to be closed-
minded.

Now that we have clarified our definitions we will begin by computing the associated Jacobian
for (2.3) when fi is defined based on (2.4).

It is worth noting explicitly that:

∂aij
∂xk

=

∂φ
∂xk

φi − φ ∂φi∂xk

φ2
i

(2.10)

Considering the above, it follows from our assumption that x∗i is Class 1 for all i, that (2.10)
must be well-defined at equilibrium (this is a direct requirement for an equilibrium to be Class 1 so
it follows trivially from the assumptions). A less trivial implication of our equilibrium being Class 1
is that ∂aij

∂xk
will in fact be zero at equilibrium for all k. This follows by noting that φ is assumed

to be a step function and equilibrium is assumed to not occur at its jump discontinuity. Therefore,
∂φ(xj−xi)

∂xi
will be zero since φ(xj − xi) will be constant at equilibrium. A nearly identical argument

follows when we consider ∂âij
∂xk

and ∂âij
∂xk

. Hence, we see that at equilibrium all interaction coefficient
partial derivative terms in our Jacobian are zero. Hence, the Jacobian simplifies to:
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J =


Diag1 Non diag12 Non diag13 ...

Non diag21 Diag2 Non diag23 ...
. . . . . . . . . . . .


where,

Diagi =


−α2(N −m− 1)â∗i − α3

∑
j∈O

â∗ij if |x∗i | > Xc and i ∈
Ĉ

−α1
∑
j
a∗ij otherwise

and

Non diagij =



0 if |x∗i | > |Xc|, i ∈ Ĉ and j ∈
Ĉ

α3a
∗
îj

if |x∗i | > |Xc|, i ∈ Ĉ and j 6∈
Ĉ

α1a
∗
ij otherwise

(2.11)

where as mentioned above a∗ij , â
∗
i and â∗ij represent the interaction coefficients between the ith and

jth individual evaluated at the equilibrium state.
Next without loss of generality we will arbitrarily define the isolated closed-minded individuals in

the system as individuals 1 through f , here isolated implies that their associated row and column
in J is zero except for the diagonal entry and f is a constant describing how many closed-minded
individuals meet this criterion. By using this numbering of individuals and by additionally noting that
âij and âi are normalized as to sum to 1 (see (2.5) and (2.6) for specifics) , the above Jacobian can
be written as

J =


−α2 0 ... ...

0 −α2 0 ...
. . . . . . . . . . . .

0 0 ... A

 ,

(2.12)

where A is defined to be the nonzero portion of the Jacobian corresponding to derivatives with
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respect to the xi’s which are associated with non-closed-minded individuals, and closed-minded
individuals with whom open-minded individuals interact (note: if all closed-minded individuals interact
with at least one open-minded individual, A = J). Further, since J has negative diagonal entries
and is weakly diagonally dominant, it’s eigenvalues ei ≤ 0 for all i [24, pg 320]. The weak diagonal
dominance follows by noting that if the ith individual is open-minded

−Diagi =
∑
j

Non diagij (2.13)

(see (2.11) for details) and if the ith individual behaves closed-mindedly

−Diagi =
∑
j

Non diagij + α2(N −m− 1)â∗i . (2.14)

Due to this diagonal dominance, (2.11) will have non-negative eigenvalues if and only if its determi-
nant is zero. This follows by applying the Gershgorin circle theorem [24, pg 320] and noting that the
diagonal entries of J are negative. Next we can see by performing a cofactor expansion on (2.12)
that det(J) = (−α2)f det(A). Therefore, det(J) = 0 if and only if det(A) = 0.

At this point for clarity we will note explicitly what we will establish in the below argument.
Specifically, we wish to apply Theorem 1 to A to argue that since A is irreducible and weakly
diagonally dominant, with strict diagonal dominance holding for at least one row it necessarily must
be non-singular. This with the result stated above will give us that all eigen values of J have negative
real parts.

For simplicity we will address the diagonal dominance of A first.

Diagonal dominance of A

Considering A more closely we note that (2.13) and (2.14) still apply to the rows of A. Hence, A will
be weakly diagonally dominant with at least one strictly diagonally dominant row (this follows from
the assumption that at least one open-minded individual interacts with at least one closed-minded
individual). Therefore, the weak diagonal dominance of A with strict diagonal dominance holding
for at least one row follows trivially from (2.13) and (2.14). Hence, to establish stability we merely
must show that A is irreducible.

Irreducibility of A

At this point we will without loss of generality label the closed-minded individuals in A as the first q−f
individuals, where q in this instance represents the number of closed-minded individuals (q ≤ N−m).
It should be noted here that q > f by assumption. This is implicit in the assumption that at least
one open-minded individual is connected to a closed-minded individual.
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To establish that A is irreducible we will apply the assumption that all open-minded individuals
are connected at equilibrium where connected is defined as in Definition 2.3. Specifically we will note
that since all open-minded individuals are connected the adjacency matrix defined in 2.9 must be
irreducible, (see definition 2 and related discussion for clarification).

Contrasting this adjacency matrix with the matrix A we see that:

A =



−α2 0
...

...
... ...

0
. . . 0 ... α3â

∗
ij

[f+1≤i≤q
q+1≤j≤N

]

...

... 0 −α2 ... ...

... α1a
∗
ij

[q+1≤i≤N
f+1≤j<i

]

... −α1 α1a
∗
ij

[(q+1≤i≤N
i<j≤N

]

...

...
...

. . . . . . . . .

... ... ... −α1



,

(2.15)

where rows q + 1 to N contain identical entries to rows q + 1 to N of the adjacency matrix
defined in (2.9) aside from the diagonal entries and the multiplicative constant. Further we know by
assumption that each individual in rows f + 1 to q is connected to at least one individual in rows
q + 1 to N . Due to the symmetry of our assumed interaction function φ, we see that A must be
strongly connected. Hence, A is irreducible.

Hence, by Theorem 1 A is non-singular. This paired with the aforementioned weak diagonal
dominance implies that all eigenvalues are negative. Therefore when fi is defined by (2.4) our
assumed equilibria are asymptotically stable.

At this point we will now extend Theorem 2 to the case when fi is defined by (2.7). Before we
do this though we must define the concepts of block diagonal dominance and block irreducibility.
Specifically let A be a w × w block diagonal matrix defined as follows:

A =


D11 D12 D13 ...

D21 D22 ... ...
. . . . . . . . . . . .

 ,

(2.16)
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where, Dii is a ni× ni square matrix and Dij is a sij ×mij rectangular matrix (where s = m if
i = j), where w, ni, sij and mij are all positive integers.

Definition 5. (Block diagonal dominance) Let A be a block matrix of the form described in (2.16).
Then A is said to be block diagonally dominant if:

(‖D−1
ii ‖)

−1 ≥
∑
j 6=i
‖Dij‖

for all i. It is strictly block diagonally dominant if the above inequality is strict. Further we will note
that ||s|| represents an arbitrary matrix norm associated with the subspace to which the matrix s
belongs. For our applications we will exclusively use the infinity norm. See [17] for more details.

It is useful to note that in the event that Dii is a single entry, the above definition reduces the
normal definition of diagonal dominance under the infinity norm.

Definition 6. (Block irreducible) Let B be a block matrix of the form described in (2.16). Then B
is said to be block irreducible if

B =


‖D11‖ ‖D12‖ ‖D13‖ ...

‖D21‖ ‖D22‖ ... ...
. . . . . . . . . . . .


(2.17)

is irreducible where, ‖Dij‖ represents an arbitrary matrix norm associated with the subspace
containing the matrix Dij . See [17] for more details.

It should be noted that in the case of any Dij being a matrix consisting of a single entry the
above is still well defined.

Theorem 3. If a matrix A is weakly block diagonally dominant, with strict block diagonal dominance
holding for at least one row then it is nonsingular if it is block irreducible [17, Theorem 1].

Definition 7. (Problem 2) We will define problem 2 to be (2.3), where fi is defined by (2.7), with
aij defined as in (2.2) and âi as in (2.8). Here φ and φ̂ are step functions of the general form
depicted in Fig. 2.3 with arbitrary supports as and âs respectively.

Definition 8. (Class 2) Let {x∗i } be an equilibrium solution to Problem 2. Then {x∗i } is said to be
Class 2 if φ(x∗j − x∗i ), φ̂(x∗i ),

∂a∗ij
∂xi

and ∂â∗i
∂xi

are well-defined for all i and j and x∗i 6= Xc for i ∈ Ĉ.
Here a∗ij is defined to be the interaction coefficient evaluated at the equilibrium, with â∗i defined
similarly.
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It should be noted that the definition of Class 2 is identical to Class 1 except that Class 2
represents equilibrium solutions where fi is defined by (2.7) instead of (2.4).

Now that we have laid the framework we can now extend Theorem 2 to the case when fi is
defined by (2.7). The argument will follow much the same as before but in this case the analogous
principal minor to (2.15) will no longer be irreducible under our assumptions. Hence instead we
must demonstrate that it is block irreducible and invoke an analogous result to Theorem 1 for block
irreducibility and block diagonal dominance (specifically we will use Theorem 3). Put more formally
we have:

Theorem 4. Assume that the equilibrium solution to Problem 2 is Class 2 as is defined in Definitions
7 and 8. Then said equilibrium solution of (2.3) is linearly stable if all non-closed-minded individuals
are connected at equilibrium as defined above, at least one non-closed-minded individual is connected
to a closed-minded individual at equilibrium and α2 > α1(1−C) where C =

∑
j∈Ĉ,|xj |>Xc

||aij || where

i is the index associated with the non-closed-minded individual with the largest associated C.

Proof. Our proof for Theorem 4 will begin much the same as Theorem 2 in that again we will consider
the Jacobian associated with the related problem. Specifically we have:

J =


Diag1 Non diag12 Non diag13 ...

Non diag21 Diag2 Non diag23 ...
. . . . . . . . . . . .


where,

Diagi =


−α2(N − 1)â∗i if |x∗i | > Xc and i ∈

Ĉ

−α1
∑
j
a∗ij otherwise

and

Non diagij =


0 if |x∗i | > |Xc| and the i ∈ Ĉ

and j ∈ Ĉ
α1a

∗
ij otherwise

(2.18)

Again as in the case when we considered the Jacobian associated with Problem 1 we see that
all partial derivatives terms associated with the interaction coefficients are zero due to the assumed
form of φ and φ̂.
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Proceeding similarly to before we will without loss of generality arbitrarily define the isolated
closed-minded individuals in the system as individuals 1 through f . As before, this will allow us to
rewrite the above Jacobian as follows:

J =


−α2 0 ... ...

0 −α2 0 ...
. . . . . . . . . . . .

0 0 ... A

 ,

(2.19)

where again A is defined to be the nonzero portion of the Jacobian corresponding to derivatives with
respect to xi where the ith individual is either non-closed-minded or is a closed-minded individual
with whom a non-closed-minded individual interact. Additionally, as before since J has negative
diagonal entries and is weakly diagonally dominant, it’s eigenvalues ei ≤ 0 for all i [24, pg 320]. The
weak diagonal dominance follows by noting that if the ith individual is open-minded

-Diagi =
∑
j

Non diagij (2.20)

(see (2.18) for details) and if the ith individual behaves closed-mindedly

-Diagi =
∑
j

Non diagij + α2(N − 1)â∗i . (2.21)

Again due to this weak diagonal dominance, (2.18) will have non-negative eigenvalues if and only
if its determinant is zero. This follows by applying the Gershgorin circle theorem [24, pg 320] and
noting that the diagonal entries of J are negative. Next as in Theorem 2 we can see by performing
a cofactor expansion on (2.19) that det(J) = (−α2)f det(A). Therefore, det(J) = 0 if and only if
det(A) = 0.

At this point this proof diverges significantly from the proof of Theorem 2 and again for clarity
we will note explicitly what we will establish below. Specifically we wish to apply Theorem 3 to argue
that since A is block irreducible and block diagonally dominant it must be non-singular. Pairing this
with the previously discussed weak diagonal dominance guarantees that all eigen values of J have
negative real part. For simplicity we will address the issue of block irreducibility first.

Block irreducibility of A

We will begin by considering the general form of A,
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A =



−α2 0
...

...
... ...

0
. . . 0 ... 0 ...

... 0 −α2 ... ...

... α1aij
[ q<i≤N
f+1≤j<i

]

... −α1 α1aij
[q<i≤N
i<j≤N

]

...

...
...

. . . . . . . . .

... ... ... −α1


.

(2.22)

Considering (2.22) we see that it differs from(2.15) in that all non-diagonal terms in the rows
associated with closed-minded individuals are zero. As a result the above is not irreducible as
connectivity no longer implies strong connectivity. It is however block irreducible as we can see by
carefully observing the block matrix representation of (2.22) shown below in (2.23).

It is useful in interpreting the block representation of A to note that it was specifically constructed
as to be block irreducible with a strictly block diagonally dominant top row. Specifically,

A =


AC AOC12 AOC13 ...

ANC21 o22 o23 ...
...

. . . . . . . . .

 ,

(2.23)

where, the N − q + 1×N − q + 1 entries in (2.23) are block matrices. It is important to note
that all of the block matrices in (2.23) with the exception of AC , AOC1j and ANCi1 simply consist
of a single entry. This division is noted in the nomenclature of the block matrices by denoting single
entry matrices with a lower case letter. We will now consider each of the capitalized block matrices
in greater detail.

Beginning with the most important, we will first consider AC . The matrix AC is a (q− f + 1)×
(q − f + 1) square matrix that contains the diagonal entries in A corresponding to all close-minded
individuals contained in A and the diagonal entry corresponding to the non-closed-minded individual
who is connected with the most closed-minded individuals (by assumption this non-closed-minded
individual must be connected with at least one close-minded individual). Specifically,
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AC =


−α2 0 0 ...

0 −α2 0 ...
. . . . . . . . . . . .

α1aq+1,f+1 α1aq+1,f+2 ... −α1

 .

(2.24)

Next consider the block matrices defined by AOC1j . We see that AOC1j is a column matrix of
the following form:

AOC1j = (0, ..., α1aq+1,j)
T , (2.25)

The formulation of the above follows by noting that the non-diagonal elements of the top q − f
rows of A are all zero. Hence, (2.25) contains all of the zero elements in the jth column (j >
q + 1) and the interaction coefficient between the (q − f + 1)th individual (who is guaranteed to
be non-closed-minded by construction and hence connected to at least one other non-closed-minded
individual based on the connectivity assumption). This guarantees that at least one of the AOC1j

terms contains a nonzero entry.
Next considering the block matrix ANCi1 in (2.23) we see that it is a row matrix of the following

form:

ANCi1 = (α1ai,f+1, ....., α1ai,q+1). (2.26)

The row matrix described in (2.26) simply contains the interaction coefficients between the ith
individual and the individuals whose column indices f < j ≤ q+1, where all constants are as previous
defined. This formulation is chosen largely to maintain the square dimensions of (2.23).

Now that we have defined all of the entries in (2.24) we can now consider the the block irre-
ducibility of A. Specifically by considering:

A‖∗‖ =


‖AC‖ ‖AOC12‖ ‖AOC13‖ ...

‖ANC21‖ ‖o22‖ ‖o23‖ ...
...

. . . . . . . . .

 ,

(2.27)

where A||∗|| represents the matrix whose ijth entry consists of the infinity norm applied the
ijth submatrix of (2.23). First as mentioned previously since all non-closed-minded individuals are
connected at equilibrium by assumption the q+1th individual (who by formulation is the non-closed-
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minded individual whose interaction coefficients are contained in the AOC1j blocks) must interact
with at least one open-minded individual other than themselves. Hence, at least one non-diagonal
entry in the first row of (2.27) must be nonzero. This shows that the associated directed graph to
(2.27) must contain an arc directed between the node denoting the first row and the node denoted
at least one other row. Further, since our interaction function φ is symmetric there must exist an
arc from this other row to the first row. All other rows are connected to each other by the rationale
given when fi is defined based on (2.4). Therefore, A is block irreducible.

Block Diagonal dominance of A

Next we will consider the relative block diagonal dominance of A. First we will note that all rows
aside from the first are described by (2.20) and are weakly block diagonally dominant. This follows
by noting that under the matrix supremum norm ||ANCi1 || is simply the sum of the interaction
coefficients associated with the ith individual interacting with the jth individual where f < j ≤ q+1.
Therefore, since ||ANCi1 ||∞ is equal to the sum of its entries the row sum associated with the ith
row remains unchanged when i 6= 1.

We now consider the first row in (2.23) and under what conditions it is strictly block diagonally
dominant. The off diagonal row sum is relatively straight forward to calculate as is seen below:

∑
k 6=j
||AOC1k

|| = α1(1− C), (2.28)

where, C =
∑

j∈Ĉ,|xj |>Xc

aq+1,j . Next considering (||A−1
C ||)−1 we note that we must first calculate the

inverse of AC . Specifically

A−1
C =


−α−1

2 0 0 ...

0 −α−1
2 0 ...

. . . . . . . . . . . .
−aq+1,f+1

α2

−aq+1,f+2

α2
... −α−1

1

 .

(2.29)

, where by considering the supremum norm of A−1
C we have that:

||A−1
C || = max(

1

α2
,

1

α1
+
C

α2
),

therefore,
||A−1

C ||
−1 = min(α2, α1(1 +

α1C

α2
)−1), (2.30)

where C is as previously defined. Next we consider the requirement for α2 to be minimal in (2.30).
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Specifically this means that:

α2 ≤ α1(1 +
α1C

α2
)−1

Rearranging the above gives:
α2 ≤ α1(1− C) (2.31)

Hence, since (2.31) is the opposite of the requirement for strict block diagonal dominance we
see that strict block diagonal dominance cannot result if α2 is minimal. Next, we will check the
requirement for diagonal dominance when α2 is larger than α1(1+α1C

α2
)−1. This gives the requirement

that:

α1(1− C) <
α1

(1 + α1
α2
C)
. (2.32)

Rearranging and canceling terms in (2.32) we arrive at the following inequality:

α1

α2
(1− C)− 1 < 0 (2.33)

This is satisfied given our assumption that α1(1− C) < α2.
Hence, we see that A has one row which is strictly block diagonally dominant. Therefore, by

Theorem 3 A is nonsingular. Hence, all eigen values are negative and {x∗i } is linearly stable.

Interpreting the condition for Theorem 2 and 4 qualitatively we see that it encompasses consensus
solutions at one extreme, polarization solutions, and cluster solutions in which individuals interact with
individuals outside of their cluster at equilibrium. Additionally it is worth noting that the assumption
for an equilibrium being Class 1 is not as restrictive as it first appears, as while theoretically there
could be N distinct clusters at equilibrium, in general our simulations indicate that there are fewer
than six. Hence, it is unlikely that anyone of these clusters would precisely reside at ±Xc.

Further the results of Theorem 2 and 4 are interesting as they imply that closed-minded interaction
potentially has the ability to increase stability to a certain extent. Again we will note that in the
absence of closed-minded individuals all equilibria are neutrally stable. This is interesting in terms of
its implications to the social sciences, as it implies that the extremist consensus equilibria solutions
are linearly stable whereas moderate consensus equilibria are not necessarily attracting. This follows
from the fact that non-extremist consensus solutions are not Class 1 or Class 2 as they contain no
closed-minded individuals. Hence, the above result provides a potential stability-based explanation
for why groups such as those described by Sunstein in [50] tend to reach extremist consensuses.

We will now prove some results related to the basin of attraction of one particular case; specifically
the case of a polarization solution at which all individual are closed-minded and reach equilibrium at
one of the extremes where âi is a normalized step function.
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Theorem 5. Assume that x∗i = bi for all i, where bi = ±1. Then the equilibrium solution of (2.3)
where fi is defined by (2.7) or (2.4) and âi is 1/N is attracting when after some finite time |xi| > Xc

for all i and all individuals are closed-minded.

Proof. We will begin by defining the equilibrium point associated with xi as bi, where bi is equal to
±1.

Since x∗i = bi for all i, the function

E =
∑

i

(bi − xi)2 (2.34)

is zero at the equilibrium point and positive definite for all other xi ∈ [−1, 1]. Differentiating (2.34)
and substituting in the definition for dxi

dt given by (2.4) we have:

Ė = −2
∑

i

(bi − xi)
dxi
dt

where
dxi
dt

=

α2Nâi(1− xi) if xi > Xc and i ∈ Ĉ,

α2Nâi(−1− xi) if xi < −Xc and i ∈ Ĉ.

Considering the above, we see that when xi > Xc the top case comes into effect and when xi < −Xc

the bottom case comes into effect. Hence all individuals approaching the bi = 1 equilibrium will be
governed by the top equation and all individuals approaching the bi = −1 equilibrium will be governed
by the bottom equation. Therefore

dxi
dt

= α2(bi − xi).

Hence,

Ė = −2α2

N∑
i=1

(bi − xi)(
N

N
bi −

Nxi
N

).

The above follows by noting that âi is 1/N . Simplifying the above gives

Ė = −2α2

N∑
i=1

(bi − xi)2 ≤ 0. (2.35)

Observing (2.35) we see that it is negative definite and zero at equilibrium. Hence by Lyapunov’s
theorem we conclude that the equilibrium x∗i = bi is asymptotically stable given our assumptions.

Observing Theorem 5 we see that when all xi are in (Xc, 1] or [−1,−Xc) and individuals are
closed-minded that the resulting equilibrium state is attracting. We further conjecture that the
result in Theorem 5 holds even when open-minded individuals are present in said equilibrium cluster.
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This assertion is supported by Theorem 2 which shows that a polarization equilibrium with both
open-minded and closed-minded individuals is in fact linearly stable.

Next we will consider the circumstances under which our model is mean preserving.

Proposition 1. Assume a system is governed by an alignment dynamic as in (2.4) or (2.7). Then the
mean opinion of the population is preserved in time if it is governed by (2.4) and all closed-minded
individuals are symmetrically distributed at t=0 and α3

φ̂i
= α1

φj
for all i, j for which aij 6= 0; or if it is

governed by (2.7) and all individuals are symmetrically distributed at t=0.

Proof. The result stated above follows by noting that symmetric pair-wise interactions preserve the
mean. Considering the case when all individuals are open-minded we have:

d (mean)
dt

=
1

N

∑
i

dxi
dt

=
α1

N

∑
i

∑
j

aij(xi − xj). (2.36)

Next interchanging labels and switching the order of summation we have

d (mean)
dt

=
α1

N

∑
j

∑
i

aji(xi − xj) =
α1

N

∑
i

∑
j

aji(xi − xj). (2.37)

Lastly noting that by definition aij = aji we see that the above can be rewritten as

d (mean)
dt

=
α1

N

∑
i

∑
j

aij(xj − xi) = −d (mean)
dt

. (2.38)

Since −d (mean)
dt = d (mean)

dt we see that d (mean)
dt must equal zero.

In considering a similar equation to the above in the case of the interactions of closed-minded
individuals with other closed-minded individuals and interactions between closed-minded individuals
and open-minded individuals we see that the interactions themselves are not symmetric but can be
grouped into symmetric pairs by the symmetry assumption in the statement of this proposition.

Specifically for every closed-minded-closed-minded interaction which moves towards an opinion
value of 1 at a particular rate there must exist based on the assumed symmetry a similar individual
moving towards −1 at an identical rate. The same rationale follows when considering closed-minded
open-minded interactions in the case when the alignment dynamic is governed by (2.7). In considering
open-minded interaction with closed-minded individuals in the case when the alignment dynamic is
governed by (2.4), the assumption that α3

φ̂i
= α1

φj
allows for an identical argument to be made as in

(2.36). Specifically the aforementioned assumption gives us that α3âij = α1aji. Therefore,

α3âij(xj − xi) + α1aij(xi − xj) = 0 for all i and j

which leads to the necessary cancellations.
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2.4 Numerically examining the effect of open-mindedness social
norms

At this point we will return to our original question of whether social-norms of open-mindedness can
cause consensus in the presence of ingroup-outgroup dynamics. By observing Fig. 2.5 it can be seen
for specific parameters that ingroup-outgroup dynamics in the absence of open-minded individuals
precludes consensus. This trend in fact extends to all relevant parameters, as is supported by Fig.
2.7 and 2.8 (a), which are discussed below.

It is also worth noting that the equilibrium consensus in Fig. 2.5 is at the extreme opinion.
This agrees with the observed psychological phenomenon in which, when groups of individuals reach
a consensus, this consensus tend to be more extreme than the initial mean opinion of the group
[50, 15]. The result in Fig. 2.5 implies that this trend could be potentially caused by a minority of
closed-minded individuals dragging the group opinion towards the extreme. This is not unlike the
theoretical explanation given for this phenomenon using a discrete model for opinions by Galam and
Mosovici in [22]. This trend cannot be captured using the model (2.1)-(2.2).

Figure 2.5: The effect of increasing the proportion of open-minded individuals when a social norm of
open-mindedness is present. As the proportion of open-minded individuals is increased a consensus
results, though it is often more extreme than the initial mean opinion. Here, Xc = 0.5, as = 1,
N = 80. a) m = 0, b) m = 40.

At this point we will turn our attention to the relative difference in the occurrence of consensus
solutions to (2.3) depending on whether fi is defined by (2.4) or by (2.7). The former represents the
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case when there exists a social norm of open-mindedness in interactions between open and closed-
minded individuals, whereas the latter represents the case when there is no such norm. We will
investigate this variation numerically using a parameter sweep. First though, we must determine
what is our parameter space of interest.

In order for our parameter sweep to collectively encompass the largest range of potential psycho-
logical traits we will vary Xc, as and m; our results are shown in the parameter space plots shown
in Figures 2.6 to 2.8. As mentioned, before Xc dictates the critical threshold at which individuals
with closed-minded potential, begin to behave in a closed-minded fashion; while as represents the
support of the interaction function φ associated with aij , which, as was previously mentioned, is the
characteristic function χ[0,as]. The value of as represents how willing non-closed-minded individuals
are to consider the opinions of individuals whose opinion is different than their own. This can be
thought of as a measure of how open-minded non-closed-minded individuals are. The final parameter
varied is m, which represents the number of individuals in the population belong to the set O. This is
the set of individuals who lack the propensity to be closed-minded. We will additionally note that in
all of our simulations âi = 1/N . This represents the fact that for the reasons discussed in Chapter 1
it is reasonable to expect that closed-minded individuals would respond similarly to interactions with
all individuals. Furthermore, aij as previously mentioned is defined as φ(|xj − xi|)/φi where φ is
defined as the step function depicted in Fig. 2.3 (a).

The collective range of parameters in Figures 2.6 to 2.8 was chosen so as to cover as many
parameters as possible while highlighting the region in parameter space where consensus results in
the absence of closed-minded individuals.

Fig. 2.6 is identical to Fig. 2.8 (a). It will serve as a reference plot for the specific parameters
involved in our parameter sweep (in that the labels represent the actual parameters we used). We
will continue to use these parameters in all future parameter sweep plots in this manuscript except
in Chapter 4 where 100 sets of parameters is computationally prohibitive. We will also deviate from
these parameters when considering the proportion of open-minded individuals required for consensus
Figures 2.9, 3.4 and 3.8. This was done so as to focus exclusively on the range of parameters where
consensus results. It is also worth noting that the label above the figure in Fig. 2.6 (‘0 of 80’)
denotes the relationship between the value of m (0) and the value of N (80). This be will our
labeling convention in all our parameter sweeps.

Considering the range of relevant parameters, we see in Figures 2.7 and 2.8 that when a social
norm of open-mindedness exists, consensus can result for all expected parameters if the proportion
of open-minded individuals is large enough. This is not the case in the absence of a social norm of
open-mindedness (see Fig. 2.7), where consensus is not possible except in the case when Xc = 1,
which corresponds to no individuals behaving closed-mindedly. This is the case examined in [38]
where no ingroup-outgroup dynamics are present. This lack of consensus in the absence of an open-
mindedness social norm is caused by the fact that even when the majority of the individuals are
open-minded, the minority of closed-minded individuals still approach the extreme and are unswayed
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Figure 2.6: Sample parameter space plot depicting the average fraction of uniform random initial
conditions resulting in consensus, where fi is defined by (2.7). Here, N = 80 and m = 0. Averaged
over 20 sets of uniform random initial conditions. The title denotes the number of open-minded
individuals used in simulation. x and y axis notes the specific parameter values used in each parameter
sweep unless specified otherwise

by the open-minded individuals, as is evident in Fig. 2.4 (c) and (d).
We will also note here that the occurrence of consensus for a given set of parameters can be

thought of as a binomial probability where the probability of consensus corresponds to the probability
of a success. Hence in estimating the error in the above plot we can use standard error estimates
for estimating the error of a binomial probability. Specifically, this means that the above plots also
implicitly depict the standard deviation.

Observing Fig. 2.8, we see that when there exists a social norm of open-mindedness, increasing the
proportion of open-minded individuals increases the number of parameter values for which consensus
occurs. This demonstrates that open-minded individuals have the potential to cause consensus
under the assumptions of our model when they create a social norm of open-mindedness when
interacting with closed-minded individuals. This is further supported by Fig. 2.9, which shows that
when as ≥ 0.8, consensus is possible if the proportion of open-minded individuals is large enough
and they create an open-mindedness social norm when interacting with closed-minded individuals.

It is additionally worth noting that the proportion of open-minded individuals required for consen-
sus is independent of as. This is equivalent to saying that the proportion of open-minded individuals
is independent of their specific open-mindedness as long as their open-mindedness exceeds the critical
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Figure 2.7: Average proportion of uniform random initial conditions which result in consensus when
no social norm of open-mindedness is present that is, fi defined by (2.7); averaged over 20 sets of
uniform random initial conditions with, N = 80 and a) m = 0, b) m = 10, c) m = 30, d) m = 60.
. Increasing the proportion of open-minded individuals has no effect on the set of parameters for
which consensus results.

threshold of as > 1 (Fig. 2.9). This is interesting since it explains why consensus can be reached
by two groups so quickly under certain circumstances when previously it seem unreachable. This was
the case for instance in the conflicts between Serbia and Montenegro, Georgia and Azkhazia, and
Moldova and Transnistria [11]. In these disputes, European influence lead to agreements between
hostilely aligned political parties which had exhibited closed-minded behavior in the past [11]. One
explanation for this is that these conflicting parties caved to pressure from higher powers out of fear of
repercussions [44]. Another explanation though, is that European political authorities who were not
personally involved in these conflicts provided an open-minded perspective and encouraged consensus
through the creation of open-mindedness norms. It is also worth noting here that these examples still
fit with our conclusions even though many of these conflicting parties have since reached separatist
agreements.

It should also be noted here that the parameter space plot in Fig. 2.9 is compressed relative to
Figures 2.7 and 2.8. This is because it only focuses on parameters where consensus results.
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Figure 2.8: Average proportion of uniform random initial conditions which result in consensus in the
presence of a social norm of open-mindedness. (i.e. fi defined by (2.4)), averaged over 20 sets of
uniform random initial conditions, with N = 80, a) m = 0, b) m = 10, c) m = 30, d) m = 60.
φ = χ[0,as]. Increasing the proportion of open-minded individuals increases the number of parameters
for which consensus results.

2.5 Summary

The most important result in the above chapter is that under the assumptions of our model, social
norms of open-mindedness have the potential to cause consensus in the presence of ingroup-outgroup
dynamics if the proportion of individuals in O is large enough. This is an important result since it
provides a potential explanation for the empirical observation of groups containing closed-minded
individuals reaching consensuses. It is also interesting to note that this consensus solution often
tends to be more extreme in nature. This is in agreement with empirical results which show that
when individuals discuss a particular issue, the consensus agreement tends to be more extreme than
the mean pre-discussion opinion [50, 22]. It also provides support for the theory that group extremism
results because closed-minded individuals skew group opinion towards the extreme.

Analytically we see that extremist consensus solutions may be more stable than non-extremist
consensus solutions. This may provide an explanation why extremist consensuses occur so frequently
[50].

It is also interesting to note that under the assumptions of our model, this proportion of open-
minded individuals required for consensus appears to be independent of as as long as as exceeds a
certain critical threshold. This is intriguing as it implies that the specific degree of open-mindedness

36



Figure 2.9: Average proportion of open-minded individuals required for consensus. This proportion
appears to be independent of as once as exceeds a certain threshold. Here fi is defined by (2.4),
N = 80 and φ = χ[0,as]. The proportion of individuals required to be open-minded for consensus
is negatively correlated with Xc. The above plot is averaged over 20 sets of uniform random initial
conditions.

amongst open-minded individuals does not matter as long as it exceeds a certain threshold. This is
interesting as it potentially explains why under certain circumstances consensuses can be reached or
dissolve so quickly [11].

Lastly it is worth noting that our linear stability analysis gives evidence in favor of closed-
mindedness increasing stability.
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Chapter 3

How open-mindedness norms cause
consensus in the presence of media

The hostile media effect is a complex phenomenon in which highly partisan individuals perceive the
media to be biased against them, irrespective of its actual bias [60, 10, 9, 13, 42]. This phenomenon
has a profound impact in shaping perceptions and as a result in shaping individual actions during
conflicts as diverse as: American elections, the Bosnian conflict, the US parcel workers strike of 1997
and even the Arab-Israeli conflict [60, 10, 9, 13]. Due to this impact on a diverse set of conflicts, it
is critical to understand how conflicts in general can be resolved in the presence of the hostile media
effect. This resolution process can be represented mathematically as the formation of consensus.

In this section we will demonstrate that like in our non-media influence simulations, open-minded
individuals have the potential, under the circumstances assumed in our model, to facilitate consensus
amongst closed-minded individuals through the creation of an open-mindedness social norms. This
implies that to resolve conflicts in the presence of the hostile media effect, it is more effective to try
and stimulate the formation of open-mindedness social norms, rather than endeavoring to directly
overcome the false perception of the media.

3.1 Summary of previous research

As mentioned previously, the hostile media effect has received a lot of attention in the social sciences
[60, 10, 9, 13], though to the best of our knowledge no theoretical works have yet investigated its
cause, or ways in which conflicts can be resolved in its presence. This will be the principal purpose
of this chapter.

Prior to delving into this modeling endeavor, we will first propose a simpler coupled individual
opinion-media model and contrast our results with previous media-opinion modelling efforts such as
those described in [35, 39, 55, 8, 1].

One of the first media-opinion models was proposed by Boudin et al. in [8]. Here they construct
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a consensus-seeking model and investigate the effect of multiple media sources of varying strengths.
One conclusion is that an extremist media source does not benefit its cause. This is supported by
our model in the case when as is small.

Additionally, modeling efforts by Mirtabatabaei et al. [35] have examined what conditions are
sufficient for consensus in the presence of media. They demonstrate for their model that when the
initial opinion distribution is symmetric and the individual-individual interaction has full support,
consensus results.

3.2 Introduction of coupled media opinion model

In this section we see introduce our general for media-opinion dynamics as seen in (3.1). It is of
similar form to the animal aggregation model with shepherd term proposed by Albi and Pareschi [2].
Here media influence on individuals is represented as a ‘shepherd’ term (FP ) where P is an integer
denoting the total number of media sources µp, where as with xi µp is a real number defined on the
interval [−1, 1] denoting the pth media source’s bias. The function λ denotes the rate at which the
media location changes in time. For simplicity we will assume in all of our simulations, apart from
those in Fig. 3.10, that λ = 0. This implies that the media is fixed in time. This need not be the
case, though, as it has been documented that media sources adjust their perspectives in response
to pressure from the public [47], and also in response to competition for viewers with other media
sources [23]. The first type of influence is particularly intriguing, since it has been theorized that
the rise of social media will lead to greater public influence on the media [47]. This means that
potentially media could have less of a polarizing effect on individuals’ opinions, as is supported by
Fig. 3.10.

A general model for opinion dynamics in the presence of media is:

dxi

dt
= fi + FP (xi, µp) (3.1)

where
dµp

dt
= λ(t, ~µ, ~x) (3.2)

Considering (3.1) we will note that t represents time, ~x represents the vector containing all xis
values, and ~µ represents the vector containing all µp values. Additionally in formulating (3.1) we
will assume that opinion interactions are the same as those described previously in (2.4) or (2.7)
depending on the particular simulation. Media-individual interactions are also assumed to differ
from individual-individual interactions by only a scalar multiple. Hence, in all our simulations the
media interaction coefficients (bip and b̂i defined in (3.5)and (3.4) ) are assumed to have identical
forms to those of aij and âi, respectively, unless explicitly stated otherwise. This is supported by the
agreement between empirical studies involving individual interaction with media and studies involving
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individual interaction with groups of other individuals [30, 3, 50, 15, 26, 3]. The definitions of b̂i
and bip do differ from âi and aij in that their normalizations are with respect to the total number
of media sources, as given in (3.4) and (3.5). Further, it is worth stating that when we assume
that individuals respond to media similarly to how they respond to other individuals we are assuming
that the closed-minded individuals in our simulations approach the extreme upon exposure to both
like-minded and cross-cutting media. Taking this into account we see that the media interaction
term becomes

FP =



∑
p
α4,pb̂i(1− xi) if xi > Xc and i ∈ Ĉ∑

p
α4,pb̂i(−1− xi) if xi < −Xc and i ∈ Ĉ∑

p
α5,pbip(µp − xi) otherwise

, (3.3)

where the constants α4,p and α5,p are defined to be scalars denoting the strength of the pth
media source. It is worth noting explicitly that α4,p and α5,p are in general both dependent on p
though since in general we will only use a single media source we will use α4 and α5 interchangeably
with α4,p and α5,p . This p dependence is to allow for different media sources to have different
degrees of influence independent of their respective partisanships.

The above mentioned constants bip and b̂i capture the partisan dependence of the media influence
which represents how responsive an individual is to a media source of a particular bias. Specifically

bip =


0 if

∑
p
φb(µp − xi) = 0,

φb(µp−xi)∑
p
φb(µp−xi) otherwise,

(3.4)

and

b̂i =

0 if φ̂b(±1− xi) = 0,
φ̂b(±1−xi)
Pφ̂b(±1−xi)

otherwise.
, (3.5)

where in considering (3.4) and (3.5) we note that in all simulations conducted below we will
assume that both φb and φ̂b are step functions with identical support to φ and φ̂ respectively.
Specifically we will refer to the support of φb as bs. Further, as in the case of âi we will take φ̂b to
be constant in all of our simulations. This necessarily implies that b̂i = 1/P .
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Examining the effect of open-mindedness social norms in the presence of a media
source

At this point it is worth noting that unless explicitly stated otherwise our simulation only involve a
single media source. Additionally we will take α4 and α5 to be equal to 1 unless explicitly stated
otherwise.

Figure 3.1: The effect of decreasing the proportion of open-minded individuals in the presence of a
social norm of open-mindedness and a media source. FP is governed by (3.3). Parameters: N = 80 ,
φ = χ[0,as], as = 1.2, bs = 1.2, Xc = 0.25, fi defined by (2.4), µ1 = 0 a)m = 60, b)m = 20. In the
presence of a social norm of open-mindedness increasing the proportion of open-minded individuals
leads to consensus.

As mentioned in the introduction of this section we will extend the result established in the
absence of media in Chapter 2. Specifically, we will show that social norms of open-mindedness have
the potential under the assumptions of our model to cause consensus in the presence of a media
source. Again we will approach this endeavor numerically by contrasting parameter space plots of
long-term solutions to (3.1) where fi is defined by (2.4) or (2.7). The choice of fi determines
whether or not social norms of open-mindedness are present in interactions between members of the
set of open-minded individuals and members of the set of non-open-minded individuals. As before
we will conduct our parameter sweep over the region in parameter space where consensus results in
the absence of ingroup-outgroup dynamics, (see Figure 2.6 for details on the selected parameters).

Observing Fig. 3.1 we see anecdotal support, that like in the no-media-influence case, increasing
the proportion of individuals whose indices belong to O results in consensus when open-minded
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individuals create a social norm of open-mindedness. This is true in general, as is supported by
Fig. 3.2. This is interesting since it implies that even in the presence of media, open-mindedness
social norms can cause consensus under the assumptions of our model even in the presence of
ingroup-outgroup dynamics.

Figure 3.2: Average proportion of uniform random initial conditions which result in consensus in
the presence of a media source and a social-norm of open-mindedness. FP is governed by (3.3).
Parameters: N = 80 φ = χ[0,as], fi defined by (2.4), µ1 = 0, a)m = 0, b) m = 10, c) m = 30, d)
m = 60. Averaged over 30 sets of initial conditions.

Observing Figure 3.2 we see that increasing the proportion of open-minded individuals leads
to consensus for a greater proportion of uniform random initial conditions when a social norm of
open-mindedness is present with a single media source. It should be additionally noted, as is shown
in Fig. 3.2, that consensus is more common for parameter values associated with a lower degree
of ingroup-outgroup dynamics (larger Xc). This is not surprising since, as we saw in Chapter 2,
ingroup-outgroup dynamics tend to cause polarization, as was found in the absence of media by
Boudin et al. in [7] using a related model. Using the mathematical framework developed in [38], this
result can be interpreted as that of an open-mindedness social norm increasing connectivity within
the population.

Considering Fig. 3.3, we see that like in the no-media-influence case, the absence of a social
norm of open-mindedness precludes the possibility of consensus in the presence of ingroup-outgroup
dynamics, even when the proportion of open-minded individuals is increased. This is not surprising
since [7] found that similar dynamics to our ingroup-outgroup model preclude consensus in the
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Figure 3.3: Average proportion of uniform random initial conditions which result in consensus in
the presence of a media source, and with no social norm of open-mindedness present. The media
influence ( FP ) is governed by (3.3). Parameters: N = 80, φ = χ[0,as], fi defined by (2.4), µ1 = 0,
a) m = 0, b) m = 10, c) m = 30, d) m = 60. Averaged over 30 sets of initial conditions.

absence of media.
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Figure 3.4: Average proportion of open-minded individuals required for consensus. Uniform random
initial conditions used. Small Xc requires more open-minded individuals for consensus. The media
interaction (FP ) is governed by (3.3). Parameters: N = 80 φ = χ[0,as], αi=1 ∀ i, fi is defined by
(2.4), µ1 = 0. Averaged over 20 sets of uniform random initial conditions

Observing Fig. 3.4, we see that the proportion of open-minded individuals required for consensus
is, as in the no-media-influence case, relatively independent of the specific degree of open-mindedness,
as long as open-mindedness exceeds the critical threshold of 1. This, when taken with other figures,
further supports our conclusion that social open-mindedness norms have the potential to cause
consensus under the assumptions of our model in the presence of a uniform media source as well as
ingroup-outgroup dynamics.

It should also be noted here that the parameter space plot in Fig. 3.4 is compressed relative to
Figures 3.2 and 3.3. This is as before, to focus on parameters where consensus results.

3.3 Modelling the hostile media effect

In this section we will demonstrate that under the assumptions of our model, open-minded individuals
can help polarized populations reach consensus in the presence of the hostile media effect through
the creation of open-mindedness social norms. As was mentioned previously, the hostile media effect
is the tendency for extremist individuals to perceive media as being hostilely biased regardless of its
true bias [33, 10, 60, 13, 9]. This plays a critical role in real life social and military conflicts such
the Arab-Israeli conflict [60] and polarization in American politics [10, 13]. In order for any of these
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conflicts to be resolved a consensus of some sort must be reached between the opposing groups.
Here we investigate the effect of social norms of open-mindedness on the occurrence of consensus in
the presence of the hostile media effect.

To begin this investigation, we will first define our model for the hostile media effect. As was
mentioned above the hostile media occurs in extremist individuals and causes them to perceive
the media as being biased against them. We will model this phenomenon by quite literally having
extremist individuals perceive the media to be shifted by an amount H away from them in opinion
space, relative to the location at which moderate individuals perceive the media to be located.
Extremist closed-minded individuals do not base their responses on the actual perceived location of
the media for the reason described above and supported by [26, 15]. Incorporating these dynamics
we represent the hostile media effect’s influence of media as follows:

FP =



∑
p
α4,pb̂i(1− xi) if xi > Xc and i ∈ Ĉ∑

p
α4,pb̂i(−1− xi) if xi < −Xc and i ∈ Ĉ∑

p
α5,pbip(µp − xi −H) if xi > Xc and i ∈ O∑

p
α5,pbip(µp − xi +H) if xi < −Xc and i ∈ O∑

p
α5,pbip(µp − xi) otherwise

. (3.6)

In considering (3.6) we will note that the other aspects of our model will be the same as those
given in (3.1); in particular fi is defined in accordance with (2.4) or (2.7) depending on the presence,
or lack thereof, of a social norm of open-mindedness in the interactions between individuals in O and
individuals in Ĉ. All interaction coefficients (aij , âi, bip and b̂i) remain unchanged from the previous
section.

Further, as in the previous section λ and µ1 will be assumed to be zero and all α values will be
taken to be 1 for simplicity in all of the below simulations.

3.4 Linear stability

At this point, before numerically considering whether open-mindedness social norms can cause con-
sensus in the presence of the hostile media effect, we will first consider how the hostile media effect
affects the local stability of equilibria. Even in the absence of the hostile media effect, the introduc-
tion of media greatly increases the diversity of potential equilibrium states. A consensus solution is
still possible in the presence of a single media source, and is in fact more common than in the non-
media case (Fig. 3.2). A polarized solution is also still possible, though in general there is a greater
tendency towards increased clustering. Some sample equilibrium solutions are shown in Fig. 3.9.
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Definition 9. (Problem 3) We will define problem 3 to be (3.1) with λ = 0. Here fi is defined
by (2.4) or (2.7), where aij is defined as in (2.2) and âi as in (2.5) or (2.8). Here φ and φ̂ are
step functions of the general form depicted in Fig. 2.3 with arbitrary supports as and âs respectively.
Additionally, FP is defined as in (3.6) with bip and b̂i defined in accordance with (3.4) and (3.5)
respectively.

Definition 10. (Class 3) Let {x∗i } be an equilibrium solution to problem 3. Then {x∗i } is said to be

Class 3 if φ(x∗j − x∗i ), φ̂(x∗i ),
∂a∗ij
∂xi

, ∂â
∗
i

∂xi
,
∂a∗

îj

∂xi
, ∂b̂

∗
i

∂xi
and

∂b∗
îp

∂xi
are well defined for all i and xi 6= Xc for

i ∈ Ĉ.
At this point we will extend the results found in Theorem 2 and 4 to the case when one or more

fixed media sources are present. Again the approach we will take in proving this result will revolve
around establishing that Problem 3’s associated Jacobian (or rather one of it’s principal minors)
is irreducible or block irreducible with diagonally dominant or block diagonally dominant rows. As
before we will use these facts to apply either Theorem 1 or Theorem 3 to establish that the Jacobian
is non-singular. This paired with the Gershgorin circle theorem and the weak diagonal dominance
of the Jacobian will give us that all eigen values have negative real part. More formally this can be
stated as follows:

Theorem 6. Assume that the equilibrium solution to Problem 3 is Class 3 where each of the
aforementioned is defined as in definitions 9 and 10 respectively. Then said equilibrium solution of
(3.1) is linearly stable if all non-closed-minded individuals are connected at equilibrium as defined
previously and one of the following is satisfied: condition 1) fi is defined by (2.7), at least one non-
closed-minded individual is connected to a closed-minded individual at equilibrium and α2 > α1(1−C)

where C is defined as in Theorem (4),; orcondition 2) opin is defined by (2.4), at least one open-
minded individual is connected to a closed-minded individual at equilibrium and α3 > 0 , condition
3) fi is defined by (2.7) or (2.4), at least one non-closed-minded individual has associated nonzero
b∗ip and α5 > 0.

Proof. As before we will begin by calculating the associated Jacobian for (3.1) when FP is defined
by (3.6). As in Theorem 2 and 4 we see that all interaction coefficient partial derivative terms will
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be zero based on our assumptions. Hence, the Jacobian will simplify to:

J =


Diag1 Non diag12 Non diag13 ...

Non diag21 Diag2 Non diag23 ...
. . . . . . . . . . . .


where,

Diagi =


−α2(N − 1)â∗i −

∑
p
α4,pb̂

∗
i if |x∗i | > Xc and i ∈

Ĉ

−α1
∑
j
a∗ij −

∑
p
α5,pb

∗
ip otherwise

and,

Non diagij =


0 if |x∗i | > |Xc|, the i ∈ Ĉ and

j ∈ Ĉ
α1a

∗
ij otherwise

(3.7)

At this point we will note that if condition 1) is satisfied, the argument will follow nearly identically
to that in the proof of Theorem 4. If condition 2) is satisfied the argument will follow nearly identically
to that in the proof of Theorem 2. Hence for brevity we will only explicitly consider the case when
condition 3) is satisfied.

Even in this case the argument will proceed quite similarly to Theorem 2. For simplicity, we
consider the case where fi is defined by (2.7). Specifically as before we will assign our numbering of
individuals 1 through N such that J can be written as

J =


−α2 −

∑
p
α4,pb̂

∗
i 0 ... ...

0 −α2 −
∑
p
α4,pb̂

∗
i 0 ...

. . . . . . . . . . . .

0 0 ... A

 ,

(3.8)

where A is defined to be the nonzero portion of the Jacobian corresponding to derivatives with
respect to xi’s which are associated with non-closed-minded individuals. It should be noted here
that previously A contained a certain number of closed-minded individuals this case is contained in
argument associated with condition 1 and 2 which are omitted for brevity. Additionally, as before
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since J has negative diagonal entries and is weakly diagonally dominant, it’s eigenvalues ei ≤ 0

for all i [24, pg 320]. The weak diagonal dominance follows by noting that if the ith individual is
non-closed-minded, (as is the case with all individuals in A )

-Diagi =
∑
j

Non diagij +
∑
p

α5,pb
∗
ip (3.9)

or if the ith individual is closed-minded

-Diagi =
∑
j

Non diagij + α2(N − 1)â∗i +
∑
p

α4,pb̂
∗
i (3.10)

(see (3.7) for details). Again due to this weak diagonal dominance, (3.8) will have non-negative
eigenvalues if and only if its determinant is zero. This follows by applying the Gershgorin circle
theorem [24, pg 320] and noting that the diagonal entries of J are negative. Next as in Theorem 2
we can see by performing a cofactor expansion on (3.8) that det(J) = (−α2 −

∑
p
α4,pb̂

∗
i )
q det(A),

where again q is the number of individuals behaving closed-mindedly. Therefore, det(J) = 0 if and
only if det(A) = 0.

Considering A in greater detail we see that

A =



−α1 − ξq+1
...

...
... ...

. . . ... ...

... −α1 − ξp α1a
∗
ij

[(q<i<N
i<j≤N

]

...

... α1a
∗
ij

[q<i≤N
q<j<i

]

... −α1 − ξp+1 ...

...
...

. . . . . . . . .

... ... ... −α1 − ξN


where, (3.11)

ξp =
∑
p

α5,pb
∗
ip.

(3.12)

Next noting that A only contains open-minded individuals we see that it trivially follows from our
assumption of connectivity and the assumed symmetric functional form of φ that A is irreducible.
Next we will note that (3.9) applies to A and at least one bip is guaranteed to be nonzero by
assumption. Hence, A is diagonally dominant with strict diagonal dominance holding for at least 1
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row. Therefore, by [53] we see that A is nonsingular. Hence all eigen values of J have negative real
part. therefore, {x∗i } is linearly stable for all i.

When fi is defined by (2.4) the argument follows much the same with the modification that there
exists a third case in Non diagij (3.7), there is a sum term in Diagii (3.7) and N − 1 is replaced by
N −m− 1 in (3.7).

Considering Theorem 6 we see that media has the potential to increase stability. This is unsur-
prising, though since the attraction force to media in our model is proportional to the distance from
media. Hence, if an individual’s opinion is perturbed away from the media, our model implies that it
would be drawn right back to said media source. This is perhaps realistic since empirical studies show
that the distance from a media source in opinion space is positively correlated with the tendency to
move towards said media source upon exposure [30, 3].

It is additionally interesting to note that the hostile media effect does not have the potential to
influence stability. This though is largely due to the fact that our assumed functional form of φb and
φ̂b leads to stable solutions for all parameter values as is apparent by Theorem 6.

We will also comment here that Theorem 6 is really an extension of Theorem 2 and 4. Specifically
Theorem 2 and 4 are sub-cases of Theorem 6 in which α4,p and α5,p are equal to zero. Further as is
Theorem 2 and 4, the assumptions of Theorem 6 are not as severe as they first appear, since while
in theory there could be N distinct clusters at equilibrium, in practice there are usually fewer than
six.

3.5 Numerical investigation of the effect of a social norm of open-
mindedness on consensus in the presence of the hostile media
effect

Observing Fig. 3.5, we see again anecdotal evidence, that when open-minded individuals create an
open-mindedness norm, consensus results when the proportion of open-minded individuals is large
enough. This is supported for a much wider range of parameters by Fig. 3.6 and 3.8. This is not the
case when open-minded individuals do not create an open-mindedness norm (Fig. 3.7). This implies
that under the assumptions of our model, in order to reach consensus between highly polarized groups
which are influenced by the hostile media effect, it is more effective to try to increase individuals’
open-mindedness than to endeavor to directly overcome the falsely perceived biased perception of the
media. Even if a direct advocacy against this bias were successful, it would fail to result in consensus
as is evident by our non-hostile media simulations (Fig. 3.2 (a)).

Contrasting Figure 3.6 (whose simulations do incorporate the hostile media effect), with Figure 3.2
where there is no hostile media effect present, we see that the hostile media effect appears to enhance
consensus for small values ofXc. This implies that extremist individuals perceiving the media as being
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Figure 3.5: The effect of decreasing the proportion of open-minded individuals in the presence of a
social norm of open-mindedness and a hostilely perceived media source. Here, N = 80, φ = χ[0,as],
αi=1 ∀i, as = 1.2, bs = 1.2, Xc = 0.25, µ1 = 0, H = 1 where, fi is defined by (2.4). In this
simulation the media interaction (FP ) is defined by (3.6) where in a), m = 60 and in b) m = 20.
Increasing the proportion of open-minded individuals leads to increased consensus.

biased against them may under some circumstances actually facilitate conflict resolution. Additionally,
it should be noted that consensus is easier to reach at lower levels of ingroup-outgroup dynamics
(see Figs. 3.6 and 3.8).

Observing Fig. 3.7 we see that as in the no-media and uniform-media cases, increasing the
proportion of open-minded individuals has no effect on consensus in the absence of a social norm of
open-mindedness and consensus cannot result in the presence of closed-minded. The bottom rows
of Fig. 3.7 corresponds to when only open-minded individuals exist in the population, for the reasons
discussed previously in Chapter 2.

It is worth noting that in Fig 3.8 the proportion of open-minded individuals required for consensus
is inversely correlated with Xc, though only up to a certain threshold. This implies that the presence
of the hostile media effect can under some circumstances actually help facilitate consensus. This is
very unintuitive, and considering time-series results, not shown in this thesis, seems largely to be due
to open-minded individuals being drawn rapidly towards moderate values by the perceived contrarian
media source. This does does not match with the real world circumstance in which the hostile media
effect is documented, as the hostile media effect largely occurs in conflicts where individuals are
opposed to consensus and ignore media [33, 10, 60, 13, 9]. Hence, we interpret this result and the
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Figure 3.6: The proportion of uniform random initial conditions resulting in consensus in the presence
of a social norm of open-mindedness and a hostilely perceived media source. Here, N = 80, φ =
χ[0,as], αi=1 ∀ i, µ1 = 0, H = 1 where, fi is defined by (2.4). In this simulation the media
interaction (FP ) is defined by (3.6) where in a) m = 0, in b) m = 10, in c) m = 30 and in d)
m = 60. The above plot is averaged over 30 sets of initial conditions. Increasing the proportion of
open-minded individuals leads to increased consensus.

result of enhanced consensus found in Fig. 3.6 to imply that the hostile media effect does not in fact
affect extremist open-minded individuals. This is further supported by our data analysis in Chapter
5 which suggests that the hostile media effect only affects closed-minded individuals (we will discuss
this in greater detail in Chapter 5). In this case, when only closed-minded individuals experience the
hostile media effect (which they ignore and become more certain in their pre-media exposure beliefs),
Fig. 3.8 reduces to Fig. 3.4.

3.6 Summary and future work

The main result of this chapter is that under the assumptions of our model, the presence of social
norms of open-mindedness has the potential to cause consensus in the presence of a media source.
This is true even in the presence of ingroup-outgroup dynamics and the hostile media effect.

We additionally can conclude that, on some level increasing the strength of media influence
increases the stability of equilibrium solutions. This is slightly depressing since it indicates that
according to our model, partisan polarization in American politics may continue to persist since the
amount of media influence appears to be growing [43, 14, 29].
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Figure 3.7: The proportion of uniform random initial conditions resulting in consensus in the presence
of a hostilely perceived media source in absence of a social norm of open-mindedness. Here, N = 80,
φ = χ[0,as], µ1 = 0, H = 1 where, fi is defined by (2.7) and FP defined by (3.6). Simulations
in the above figure are averaged over 30 sets of uniform random initial conditions and the number
of open-minded individuals in each of the above sub-plots is as follows: a) m = 0 b) m = 10 c)
m = 30 d) m = 60.

Future work

Two areas which are in need of future development are: Simulations with multiple media sources,
and simulations incorporating social media through media dependence on individuals’ opinions [47].
Sample plots of the first case are shown in Fig. 3.9. Observing said figure, it is clear that a wealth of
behavior can result when there are multiple media sources. Fig. 3.10 shows that when individuals can
influence the media, the media can under certain circumstances no longer have a significant influence
on the system. These results are only case studies and demonstrate that this area of research is in
need of further development.

Specifically in representing individual influence on media and media influence on media we assume
the following form for λ in (3.1):

λ(~µ, ~x) = α6

∑
i

cip(xi − µp) + α7

∑
q 6=p

Φ(bs/2− |µp − µq|)(bs/2− |µp − µq|)sgn((µp − µq)) (3.13)

where,
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Figure 3.8: The average proportion of open-minded individuals required for consensus in the presence
of a hostilely perceived media source. Here, N = 80, φ = χ[0,as], αi=1, ∀ i, µ1 = 0, H = 1 and
fi is defined by (2.4). The media interaction (FP ) is defined by (3.6). All simulations are averaged
over 30 sets of uniform random initial conditions.

cip = φ/φp where φp =
∑
j

φ(µp − xj). (3.14)

The first term in the above (cip) represents individuals influence on the media. We assume that
individuals influence the media in the same way as they influence other individuals; Specifically, they
draw the media to the mean opinion. We will define cip similarly to aij in that it will derive it’s form
from the step function φ with support cs. The second term represents inter-media competition where,
Φ is the heaviside function. The other newly defined constants (α6 and α7) are scalars denoting
the relative magnitude of each type of influence. All other variables remain the same as previously
defined.

The justification for the assumed influence which individuals have on the media is not peer
pressure, but rather, profit pressure. To paraphrase, we assume that the media seeks the mean
individual opinion in order to maximize its profit. This is a reasonable assumption as empirical
studies have determined that profit maximization is the main determinant of a media’s bias [23].

The justification for the second term in (3.14) is that when two media sources have the same
viewers (as represented by an overlap in the support of the two media’s individual-media interaction
functions), both media sources experience a repulsion away from each other. As before all interaction
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Figure 3.9: Effect of multiple and extremist media sources. Here, N = 80. a) Single extremist media
source: Leads to consensus equilibrium at the media’s bias. We see that under some circumstances
an extremist media source has the potential to draw individuals to its bias, where m = 80, as = 2. b)
Extremism with two media sources: when one media source is stronger than the other an extremist
consensus can result, where as = 1.2, m = 80, N = 80, [α5,1, α5,2] = [1, 0.5]. c) Moderate
consensus with two media: when individuals are more responsive to opinions different from their own,
a more moderate consensus can result, where as = 2, m = 80, N = 80 and [α5,1, α5,2] = [1, 0.5].
d) Multiple clusters with two media sources: when individuals only respond to opinions close to their
own multiple clusters can result, where as = 0.4, m = 80, N = 80 and [α5,1, α5,2] = [1, 0.5].

functions (φ,φ̂,φb, φ̂b) are assumed to be step functions.
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Figure 3.10: Social media influence on media opinion dynamics using (3.1)-(3.3) with (3.13)-(3.14).
a) Strong social media influence: We see that when media is responsive to individuals’ opinions, under
some circumstances it has minimal effect on the population’s mean opinion where, bs = as = cs
as = 2, α6 = 5 . b) Weak social media influence: We see that when media is unresponsive
to individuals opinions it can under some circumstances have a extremism-inducing effect on the
population. Here, as = 2 and α6 = 0.1 (α7 is not relevant in this simulation since there is only a
single media source).
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Chapter 4

Quantifying the effect of
open-mindedness in advertising
optimization

In this section we will examine the effect of open-mindedness on the commercial application of
advertising. For simplicity we will from now on assume the existence of an open-mindedness social
norm when open-minded individuals interact with closed-minded individuals. We will make this
assumption as it is supported by social science texts [56, 57, 36]. In addition, we conjecture that
many of the results below hold in the absence of said social norm.

Numerous mathematical models have been proposed to describe the relationship between ad-
vertising and sales [31, 18, 41, 45, 46, 49, 20, 51]. Most these models treat the system as an
aggregate [31, 18, 34], though some modeling efforts are agent-based like our own [46]. Additionally,
many of the conclusions of these models are inconclusive concerning the specific optimal approach
[31, 18, 46]. To the best of our knowledge, though, none of these modelling endeavors explicitly
consider the role of ingroup-outgroup dynamics. This is surprising, in that numerous studies have
documented that brand loyalty and identity-based emotional sentiment are critical in determining an
individual’s response to advertising [41, 59].

In this section we will attempt to quantify the effect of open-mindedness on the process of adver-
tising optimization. This will require us to make a simplifying assumption that shifting individuals’
opinions in favor of one’s product directly translates into increased sales. This is a common assump-
tion of many models [31, 46] and is additionally supported by empirical data [59]. We shall make
the simplifying assumption that an advertisement is equivalent to a single media source located at
µp whose form is given by (3.3).

Further we will note that all of our investigations below will involve parameter sweeps. In order
to contrast our results with those earlier in this thesis, we will limit ourselves to the parameter space
relevant to consensus used in Chapters 2 and 3 (see Fig. 2.6 for details on the range of parameters
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investigated). While this potentially excludes some interesting parameters, it still makes the results
relevant to a wide range of populations of individuals with varied psychologies.

4.1 Optimizing target proportion given a fixed budget

We will first quantify the effect of open-mindedness on the optimization of advertising with a fixed
budget. Here we will assume that an advertisement budget is defined as

budget = α4 Propc + α5 Propnc, (4.1)

where Propc represents the proportion of closed-minded individuals who are targeted. These are
individuals belonging to the set of non-open-minded individuals whose opinion |xi| > Xc. Similarly,
Propnc represents the proportion of non-closed-minded individuals targeted. As before these are indi-
viduals belonging to the set of non-open-minded individuals whose opinion |xi| < Xc and individuals
belonging to the set of open-minded individuals.

For simplicity we will assume that α4 = α5. In this case Propc and Propnc can be combined into
a single quantity, which we will refer to as the target proportion. This represents the proportion of
the total population which experience the advertisement. Hence (4.1) can be rewritten as follows:

budget = α4,5 × target proportion. (4.2)

For a fixed budget the above presents an obvious trade-off, in which advertisers can either reduce
the strength of their advertisement (reduce α4,5) and target a larger fraction of the population, or
alternatively increase the strength of their advertisement (increase α4,5) and target a more limited
proportion of the population. This is a realistic design, since most traditional and many untraditional
forms of advertisement are priced using roughly this definition [54]. Determining which strategy is
optimal for a given population will be the purpose of this section.

Using the above, we model advertising effectiveness using the following model for an advertise-
ment described in (4.3). As mentioned previously, an advertisement is treated as a media source
term located at µp, where µp > 0 , (as the advertisement supports its associated product). Other
interactions are modeled by (3.1), where fi is defined by (2.4) or (2.7) and λ = 0. Specifically we
will represent advertising as

FP =



∑
p
α4pb̂i(1− xi) if xi > Xc and i ∈ Ĉ ∩A,∑

p
α4pb̂i(−1− xi) if xi < −Xc and i ∈ Ĉ ∩A,∑

p
α5pbij(µp − xi) i ∈ A and either i 6∈ Ĉ or |xi| < Xc ,

0 otherwise.

(4.3)
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Here A represents the set of individuals who are targeted by the advertisement. Additionally we
will assume that there is no targeting of niche groups, and that the specific individuals targeted by
the advertisement are randomly distributed throughout the opinion space. This is not an unrealistic
assumption, as many forms of television and internet media have very diverse sets of viewers [29]. It
is worth noting that (4.3) is identical to our previous media model (3.3) defined in Chapter 3, except
that only a certain fraction of the population experiences the media. As other definitions remain
unchanged from Chapter 3, the stability results also remain largely unchanged from those for (3.3).

Before we numerically determine the optimal target proportion we will make the assumption
that there is no competition between media sources (under our model’s design this implies that our
simulations will only involve a single media term). Additionally, we will assume that an advertiser’s
opinion is located at µ1 = 1. This is equivalent to assuming that advertisers strongly advocate for
their product.

As stated previously we will assume that α4 = α5, and as before we will take α1 = α2 = α3 = 1

in all of our simulations in this section.

Numerical experiments

As was mentioned in the discussion for (4.2) under our assumptions an advertiser with a fixed budget
is faced with a trade-off where the proportion of individuals which they target in the population (target
proportion) is constrained by their selected value of α4,5. We will attempt to optimize this trade-off
where the measure of optimality is the extent which an advertising strategy is successful in shifting
the population’s mean opinion to that of the advertiser’s (assumed to be 1 in the below simulations).
All of the below simulations start with uniform random initial conditions with a population mean
opinion of approximately 0. By varying the target proportion and α4,5 while holding the budget
fixed at 0.1 we will attempt to determine what is the optimal target proportion. In all of the below
simulations as in earlier chapters as = bs and φ̂ is taken to be constant with N = 80. Budget will
be defined based on (4.2).

Observing Fig. 4.1, we see that it is better under specific parameter regimes (see Fig. 4.1 for
details) to target the entire population rather than to concentrate the advertising focus on few
randomly selected individuals. This follows by noting that the target proportion of 1 is optimal in
Fig. 4.1 (c). We additionally see that this is true on average for all interesting parameters (Fig. 4.2),
where the regime of ‘interesting parameters’ is the same as previously mentioned in Chapters 2 and 3.
This is interesting as it implies that under our model assumptions, in the absence of competition,
it is on average ideal to make advertising which appeals to everyone equally. We will refer to these
cases as cases where a global targeting strategy is optimal.

There are notable exceptions to the above rule, as Fig. 4.1 (d) demonstrates. In these cases
the advertising media tends to have minimal impact on the mean opinion regardless of the target
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Figure 4.1: The effect of targeting various proportions of the population with a fixed budget (bud-
get=0.1): a) Time series when all individuals are targeted with, m = 80 and as = 1.5. b) Time
series when only 10 % of individuals are targeted with, m = 80 and as = 1.5. c) Average shift
in mean as a function of the fraction of the population targeted by advertisement with, m = 80,
as = 1.5. d) Average shift in mean as a function of the fraction of the population targeted with,
Xc = 1/3 , as = 1.5, m = 0. On average, in c) it is optimal to target the entire population. This is
not the case in d).

proportion. These cases in general occur when the interaction function has minimal support (small
as and bs) or when Xc is small. This is analogous to individuals being somewhat closed-minded and
only being responsive to those close to them in opinion.

Additionally we see in Fig. 4.3 that the global target optimum occurs much less frequently when
the number of open-minded individuals in the population is low and when there is a large degree
of ingroup-outgroup dynamics present in the population. In these cases, no universal optimal target
proportion exists and initial-condition-dependent dynamics dominate. Hence we see that in general
under our model’s assumptions, open-mindedness results in global targeting strategies being optimal,
whereas closed-mindedness leads to more unpredictable advertising dynamics.

Observing Fig. 4.2, we see that given the assumptions of our model, on average it is optimal
to target the entire population. Additionally we see that it appears to be slightly more optimal to
only target open-minded individuals. It is worth noting though that targeting random individuals and
targeting open-minded individual produces nearly equivalent results, particularly when the majority
of individuals are closed-minded. This is interesting as in situations like politics, closed-mindedness
dominates [30]. Hence our results suggest that under the assumptions of our model, targeting
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Figure 4.2: Average shift in mean opinion as a function of the proportion of the population which
is targeted by the advertisement when the media budget is held constant, averaged over ten sets of
initial conditions and the 16 sets of parameters shown in Fig. 4.3. Budget fixed at 0.1. End time
taken to be 30. Parameters used: a) m = 0 b) m = 10 c) m = 30 d) m = 60.

moderates in the above-mentioned situation is not necessarily of the greatest importance.
Observing Fig. 4.3, we see that while the trend is not uniform, there is a general correlation

between open-mindedness (large Xc) and the optimality of a global targeting strategy in the presence
of an open-mindedness social norm. This implies that under the assumptions of our model, in cases
where there is minimal brand loyalty (modeled by larger Xc) and individuals have weak ties to
particular products it is ideal to target all individuals in the population.

The above result depicted in Fig. 4.3 comes with an asterisk, in that the parameter space plot
appears to potentially be affected by statistical noise from the relatively few simulations used in its
construction (even though in that each parameter space plot contains 1600 simulations). At this time
we have no estimate on this noise term, but more extensive computations to improve this statistic
are in progress. This statement applies to all parameter space plots in Chapter 4.

4.2 Determining minimum investment for optimal relative re-
turns

In this set of simulations we investigate under which circumstances a specific minimal investment in an
advertising budget may be required in order to maximize the associated relative return on investment.
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Figure 4.3: Parameters at which it is optimal to target all individuals when the advertising budget is
held constant (budget=0.1). Optimality is as is defined earlier. Each of the above tiles represents a
line plot such as the one in Fig. 4.1 (c) which has been averaged over ten sets of uniform random
initial conditions. The legend label 1 (white) represents cases in which it is clearly optimal to target
the entire population, whereas the legend label 0 (black) represents cases when this global target
strategy is suboptimal or not statistically different than any other target strategy. We use N = 80
for all simulations where, a) m = 0 b) m = 10 c) m = 30 d) m = 60.

This is an important trend to investigate, since a smaller company could be operating under a
constrained advertising budget yet still desire the greatest relative return for their investment. Using
the same model as (4.3) as well as the same simplifying assumptions about the relative magnitudes
of α4 and α5, we will consider how the relative return on advertising investment varies when various
proportions of the population are targeted. We will define the relative return on investment (RROI )
as:

RROI = shift in population mean/budget. (4.4)

We will simulate varying the advertisement budget by varying the proportion of individuals tar-
geted. An alternative method would be to vary the value of α4,5 in (4.2). This is not as realistic,
though, as small companies will at times face cost barriers for targeting a large group of individuals
[54]. Hence, in the figures below we will vary the proportion of individuals targeted as opposed to the
value of α4,5. Further, as before we will assume that there is no competition and that the advertising
source’s opinion is fixed at µ1 = 1.
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Numerical simulations

Figure 4.4: Relative return on investment as compared to the advertising budget. Parameters: α4

and α5 fixed at 1. a) Sample time series when all individuals are targeted. Xc = 1, as = 1, m = 60,
budget = 1. b) Sample time series when only 10 % of individuals are targeted where, Xc = 1,
as = 1, m = 60, budget = 0.1. c) Average RROI as a function of advertising budget. No cost
barrier case. Xc = 1, as = 1 and m = 60. d) Average RROI as compared to advertising budget.
Possible cost barrier case where, m = 30, Xc = 0 and as = 2. In contrasting c) and d) we see
the two main types of parameter specific behaviors. Simulations averaged over 10 sets of initial
conditions. Error bars represent standard deviation of mean value.

Observing Fig. 4.4 (c), we see that under the assumptions of our model, for the chosen parameter
values there is no minimal threshold of investment in order to receive the optimal return on investment.
Mathematically we denote this case to be when the the following two conditions are satisfied: 1)
the smallest budget value considered (0.1 in our simulations) results in the maximum RROI and 2)
this RROI is statistically significantly different from at least one other budget’s RROI. This situation,
where the minimal investment maximizes the RROI is on average the case, as is shown in Fig. 4.6.
There are large exception to this rule, though, as evident by Fig. 4.4 (d). These exceptions in general
occur when large levels of ingroup-outgroup dynamics are present in the system, as is evident in
Fig. 4.5. This is significant as it implies that under the assumptions of our model, a small company
might have difficulty breaking into market with high levels of brand loyalty or when brands are
associated with personal identity, as is found to be the case in [59, 41].

Considering Fig. 4.5, we see that increasing m increases the proportion of parameters where
advertising faces no cost barrier. Further, from observing Fig. 4.5 we see that when there is large
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Figure 4.5: Parameters at which, the relative return on investment is maximized by taking the media
budget to be the minimum value (0.1 in our simulations). Legend defined such that the value 1,
(white) denotes when the optimal relative return on investment occurs when the minimal proportion
of the individuals is targeted, whereas the value 0 denotes when this is not the case. Each of the
above tiles represents a line plot, such as the one in Fig. 4.4 (c) which has been averaged over ten
sets of uniform random initial conditions for each budget. Parameters: α4 = α5 = 1, N = 80, a)
m = 0, b) m = 10, c) m = 30, d) m = 60.

degree of ingroup-outgroup dynamics present (small Xc), a minimal investment in advertising is
possibly not enough to maximize one’s relative rate of return on investment. This implies that
in cases such as when brand loyalty is strong and individuals strongly identify with their product
choice, that larger investment is required to substantially shift the population’s beliefs. This effect
can be mitigated, though, by increasing the proportion of open-minded individuals in the population
(Fig. 4.5).

This difference in barriers to entry could perhaps explains the relative success and failures of
various guerrilla marketing campaigns found in [5]. Here it was found that Lipton’s guerrilla marketing
efforts were more successful than those of McDonald’s, as participants already felt certain in their
belief that McDonald’s products were unhealthy. This could potentially be explained by the presence
of ingroup-outgroup dynamics in the area of fast food advertising, with one group being ‘health
conscious’ people and the other being less ‘health conscious’ people.

Observing fig 4.6, we see that on average it is optimal, in terms of maximizing the relative rate
of return on investment to take the advertising budget to be as small as possible. That is, given
the assumptions of our model, averaged over all as and Xc the optimal investment to maximize
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Figure 4.6: Average relative return on investment as a function of the advertising budget, with
α4 = α5 = 1. Simulations averaged over 10 sets of uniform random initial conditions, and over the
16 parameter values shown in Fig. 4.5 where, N = 80. Parameters: a) m = 0, b) m = 10, c)
m = 30, d) m = 60.

relative returns is the minimal one. The relative returns of this advertisement increase, though, when
a greater proportion of the population is open-minded. This implies that on average (but particularly
when most individuals are open-minded), there is no economic barrier to entry in terms of advertising.

4.3 Determining the optimal target demographic within an opin-
ion space

In this section we will investigate how open-mindedness affects the optimal target demographic for a
given advertisement. Often advertising will address a specific concern customers have with a product
[59, 41]. This concern will only be held by individuals with a certain opinion towards said product.
Hence these individuals will only be affected by said advertisement when they occupy the interval in
opinion space associated with this concern. Optimizing the target demographic can consequently on
some level be seen as the process of determining which target interval in opinion space is optimal,
where optimality is defined as causing the greatest shift in the population’s mean opinion in the
direction of the advertised opinion.

We will model the effect of open-mindedness on this phenomenon using a similar method to
that which we used to analyze the effect of open-mindedness on budget optimization. We will use
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the model proposed in (3.3), with the modification that only individuals in a specific target interval
experience the media. This modification can be represented by defining the bip and b̂i terms in (3.3)
as shown in (4.5), where χ, as usual, is the characteristic function:

bip = χ[I] (4.5)

b̂i = χ[I].

As before fi is defined by (2.4) and general opinion dynamics are described by (3.1) with λ = 0.
The advertisement target interval I will be defined as follows:

I = [Imin, Imax].

where Imin and Imax represents the lower and upper bounds, respectively, of the target interval. As
in Chapters 2 and 3, aij and âi are defined to be normalized step functions of the forms described
in (2.2) and (2.5).

We note explicitly that in all of our simulations below, we assume that there is no competition
between advertisers that is, there is a single media source. Additionally we will take all α values to
be equal to 1 for simplicity. This is equivalent to assuming that all types of interaction are of equal
magnitude. Lastly, as before we will assume in all of our simulations that the advertising source is
located at µ1 = 1. Before we apply these assumptions to our model and numerically estimate the
optimal target interval, we will first consider the linear stability of the system.

Linear stability analysis

Our experience from numerical simulations is that in general, when the media interaction functions
are defined in accordance with (4.5), similar equilibria result as when the interactions are defined
as in Chapter 3. The relative occurrence of equilibria differs qualitatively, though, in that multiple
cluster solutions are less common when the target interval I is small.

Definition 11. (Problem 4) We will define problem 4 to be (3.1) with λ = 0. Here fi is defined
based on (2.4) or (2.7), where aij is defined as in (2.2) and âi as in (2.5) or (2.8) and φ and φ̂ are
step functions of the general form depicted in fig. 2.3 with arbitrary support as and âs respectively.
Additionally, FP is defined as in (3.6) with bip and b̂i defined in accordance with (4.5).

Definition 12. (Class 4) Let {x∗i } be an equilibrium solution to problem 4. Then {x∗i } is said to be

Class 4 if φ(x∗j − x∗i ), φ̂(x∗i ),
∂a∗ij
∂xi

, ∂â
∗
i

∂xi
,
∂a∗

îj

∂xi
, ∂b̂

∗
i

∂xi
and

∂b∗
îj

∂xi
are well defined for all i, and in addition,

xi 6= Xc for i corresponding to individuals existing in Ĉ and x∗i 6= Imin, Imax for all i.

Theorem 7. Assume that the equilibrium solution to Problem 4 is Class 4 where each of the
aforementioned is defined as in Definition 11 and 12 respectively. Then said equilibrium solution of
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(3.1) is linearly stable if all non-closed-minded individuals are connected at equilibrium as defined
above and that one of the following is satisfied: condition 1) fi is defined by (2.7), at least one non-
closed-minded individual is connected to a closed-minded individual at equilibrium and α2 > α1(1−C)

where C is defined as in Theorem (4), condition 2) fi is defined by (2.4), at least one open-minded
individual is connected to a closed-minded individual at equilibrium and α3 ≥ 0 , condition 3) fi is
defined by either (2.4) or (2.7), at least one open-minded individuals has an associated nonzero b∗ip
and α5 > 0.

Proof. We will begin this extension of Theorem 6 by deriving the associated Jacobian for (3.1) when
fi is defined based on (3.6) with bip and b̂i defined in accordance with (4.5).

As before all partial derivatives associated with interaction coefficient will be zero due to the
assumed restrictions on x∗i . Specifically since the assumed normalized step functions and the char-
acteristic functions are constant apart from at their associated discontinuities (which are excluded as
potential equilibria by Definition 12), the partial derivatives of the aforementioned functions at the
assumed equilibria must be zero. Hence the Jacobian reduces to:

J =


Diag1 Non diag12 Non diag13 ...

Non diag21 Diag2 Non diag23 ...
. . . . . . . . . . . .


where,

Diagi =


−α2(N − 1)â∗i −

∑
p
α4,pb̂

∗
i if |x∗i | > Xc and i ∈

Ĉ

−α1
∑
j
a∗ij −

∑
p
α5,pb

∗
ip otherwise

and,

Non diagij =


0 if |x∗i | > |Xc|, the i ∈ Ĉ and

j ∈ Ĉ
α1a

∗
ij otherwise

(4.6)

The rest of proof follows exactly as in Theorem 6.

The result in Theorem 7 is closely related to Theorem 6, in that aside from the difference in
definition of FP , Theorem 6 is a special case of Theorem 7 corresponding to the case when I is
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[µ−bs, µ+bs], where bs is the support of the step function associated with bij and b̂i as in Chapter 3.
It is additionally worth noting that if x∗i resides inside of the interval I, the diagonal dominance

of (4.6) is enhanced. Hence, as in Chapter 3 we see that media influence at equilibrium on some
level increases the stability of a given equilibrium. The same is true of closed-mindedness.

Numerical simulations

In the below simulations we will attempt to determine the optimal target interval, where optimality is
defined as discussed above. For simplicity will make the additional assumption in all of the simulations
below that Imax − Imin = 0.2. Hence, while we conjecture that our results generalize to a variety of
sizes of target intervals, it should be noted that we will only explicitly consider target intervals of the
aforementioned arbitrarily chosen size. Additionally as before all α values will be taken to be 1 for
simplicity

Figure 4.7: Shift in mean opinion as function of the interval targeted I by advertisement. Simulations
use uniform random initial conditions. a) Time series in which I = [0.6, 0.8]. This target interval
fails to shift the mean opinion significantly. Here, m = 80 and as = 2 b) Time series in which
I = [0.4, 0.6]. This target interval shifts the mean opinion significantly. Here, m = 80 and as = 2 c)
Average shift in mean as a function of Imin. Averaged over ten sets of initial conditions with m = 80
, as = 2. d) Average shift in mean as a function of Imin. Averaged over ten sets of initial conditions
with m = 0, Xc = 0 and as = 1. In many cases there is a clear optimal target interval, though there
are exceptions.

Observing Fig. 4.7, we see the two main phenomena which occur as the target interval is varied
for a given set of parameters. In the first case depicted in Fig. 4.7 (c) there is a single optimal
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interval occurring between 0 and the media source, (though for certain rare parameters there are
two optimal intervals). This case, that there exists an optimal target interval, is more common as
is evident by Fig. 4.8 and 4.9. This is intriguing, since it implies that under the assumptions of our
model it is often optimal to target individuals who already have a positive opinion towards one’s
product. This explains the relative success of targeting previous customers and individuals with a
prior preference for a product [59, 41]. The alternative case, as seen in Fig. 4.7 (d), is that all target
intervals are essentially indistinguishable, and the final equilibrium state is largely dependent on the
initial condition. Unsurprisingly, this second trend tends to occur more often in the presence of large
degrees of ingroup-outgroup dynamics, as is evident in Fig. 4.8.

Figure 4.8: Parameters where there exists a clear optimal target interval. White (value 1) denotes
parameters where an optimal target demographic exists, while black ( value 0) denotes parameters
where all demographics are indistinguishable. Each of the above tiles represents a line plot such as
the one in Figure 4.7 (c) which has been averaged over ten sets of uniform random initial conditions
for each interval. a) m = 0, b) m = 10, c) m = 30, d) m = 60.

Observing Fig. 4.8, we see that, with a few exceptions mostly occurring in the presence of high
degrees of ingroup-outgroup dynamics, an optimal target demographic exists. Further when the
proportion of open-minded individuals is increased, the proportion of parameter values which have
an associated optimal target demographic is enhanced.
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Figure 4.9: Average shift in mean as a function of Imin, averaged over ten sets of uniform random
initial conditions and over the 16 parameters contained in Fig. 4.8. a)m = 0, b)m = 10, c)m = 30,
d) m = 60. Increasing the proportion of open-minded individuals increases the average shift in mean,
and on average makes the optima associated with the optimal target interval more distinct.

Observing Fig. 4.9 we see that on average the optimal target demographic occurs between 0
and 1 in opinion space. This implies that given our assumptions, it is on average optimal to target
individuals who already moderately support one’s product. Additionally we see that on average when
the proportion of open-minded individuals is increased the distinctness of this optimal target interval
is enhanced (Fig. 4.9).

4.4 Asymptotic analysis of reduced case

The result in Fig. 4.9 presents an interesting transition in that targeting individuals close to the
advertiser’s opinion seems to be optimal but only up to a certain point. We will at this point
consider some analysis relating to this transition for the simple case when all individuals are open-
minded and a single media source is located at one of the extremes. In this case the system defined
by (3.1), (2.4), (3.3) and (4.5) reduces to the equation

dxi/dt = α1

∑
j

aij(xj − xi) + α5(µ1 − xi)χ[I](xi). (4.7)

Theorem 8. Let Y be a population of individuals whose opinion dynamics are governed by (4.7).
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Additionally let φ be a nonincreasing function with sufficient support as to allow Y to remain uniformly
connected for all t > 0. Let x̄f = 1

N

∑
i
x∗i . Then x∗i = x̄f for all i, that is consensus is achieved.

Further χ[I](x
∗
i )(µ− x∗i ) = 0 for all i.

Proof. We will approach this as a proof by contradiction.
Assume that x∗i 6= x̄f at equilibrium is true for at least one i. This implies that there must

exist at least two distinct equilibrium values. For notational clarity we will denote the above distinct
equilibrium values as w1, w2...., wf , where f ≤ N .

Next we let i be such that x∗i = wd is closer to one of the extreme values (±1) than all the
other wq and µ1. Put more formally x∗i = wd where either: |1 − wd| < |1 − wq| for all q 6= d and
|1−wd| < |1− µ1| (case 1), or | − 1−wd| < | − 1−wq| for all q 6= d and | − 1−wd| < | − 1− µ1|
(case 2). We will denote this wd as existing in Q.

Since there is only a single media source, we can always find a wd which exist in Q as long as
consensus is not reached at µ1. This follows by noting that each individual must be closer than the
media to one extreme.

Considering x∗i ∈ wd where wd ∈ Q we see that if wd satisfies case 1;

α1

∑
j

aij(x
∗
j − x∗i ) + α5(µ1 − x∗i )χ[I](x

∗
i ) < 0. (4.8)

The above follows by noting that x∗i > x∗j for all j 6= i and that x∗i > µ1. Additionally by the uniform
connectivity assumption at least one of the a∗ij where i 6= j and x∗j 6= wd must be nonzero. Hence,
dxi
dt 6= 0 which contradicts our assumption that the above is at equilibrium.

The case when wd satisfies case 2 follows similarly by noting that:

α1

∑
j

aij(x
∗
j − x∗i ) + α5(µ1 − x∗i )χ[I](x

∗
i ) > 0, (4.9)

since x∗i < x∗j for all j 6= i and x∗i < µ1 (as before at least one aij where i 6= j must be nonzero by
assumption).

Hence, there may only exist one distinct equilibrium value wd. It trivially follows that:

wd = x̄f .

Next considering the requirement for an equilibrium point, for each i we have∑
j

aij(x
∗
j − x∗i ) = −α5χ[I](x

∗
i )(µ1 − x∗i ); (4.10)

hence we see that if x∗j = x∗i for all j that the right hand side of (4.10) must be zero. This implies
that either the consensus occurs at the media’s location, or that the media has no influence at
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equilibrium.

The result in Theorem 8 is quite interesting as in some ways it is an extension of [38, Theorem
4.1] to the situation where a media source term is present. This can also be viewed as equivalent to
a shepherd term in an animal alignment model such as in [12].

Additionally applying Theorem 8 to (4.7) we see that a consensus equilibrium results when
x∗i = x̄f for all i. Hence, it is worth noting explicitly that the equilibrium can be defined strictly
in terms of x̄f . Further by Proposition 1 we know that with the exception of its media term, (4.7)
preserves the population mean opinion. Hence, we can explicitly define the population mean at
equilibrium (and as a result the value of x∗i for all i) in terms of the initial mean and the shift caused
by the media, as is shown below:

x̄f = xinitial + 1/N

N∑
i=1

∫ ∞
0

α5χI(xi(t))(µ1 − xi(t))dt, (4.11)

Additionally it is important to note that the process of finding the optimal target interval is
equivalent to choosing I as to maximize the second term in (4.11).

Theorem 9. Assume that aij = 1/N (as = 2), and that after some finite time tm we have xi(t) 6∈ I
for t > tm. Then the equilibrium solution of (4.7) asymptotically converges after time tm to x∗ as
defined by (4.11).

Proof. Taking z = 1
N demonstrates that Y is uniformly connected for all t > tm (this follows since

aij = 1/N for all t > 0 and i, j).
Hence the assumptions of Theorem 8 are satisfied. Therefore x∗i = x̄f , where as before x̄f =

1
N

∑
i
x∗i .

Since x̄f is the consensus equilibrium, the following function E is zero at the equilibrium point
and positive definite for all other xi ∈ [−1, 1]:

E =
∑

i

(x̄f − xi)2. (4.12)

Differentiating (4.12) we have

Ė = −2

N∑
i=1

(x̄f − xi)
dxi
dt
.

Next noting our assumption that after a particular time tm the media term will cease to contribute,
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and substituting in the definition for dxi
dt from (4.7) the above simplifies to:

Ė = −2α1

N∑
i=1

(
x̄f − xi

)(∑N
j=1 xj

N
− N

N
xi
)
.

We can simplify the above by noting that in the absence of media and closed-minded influence, the
mean opinion is preserved in time by Proposition 1. This gives:

Ė = −2α1

N∑
i=1

(
x̄f − xi

)2
≤ 0. (4.13)

Observing (4.13) we see that it is negative definite . Hence by Lyapunov’s theorem we conclude
that the equilibrium x∗i = x̄f is globally stable under our assumptions.

Theorem 9 is an interesting result, since it suggests that if all individuals in the population pass
through the advertisement’s target interval in opinion space, the consensus equilibrium is globally
attracting. This is interesting since it implies that the optimal target demographic found in Fig. 4.7
leads to an asymptotically attracting solution.

It is also worth noting that in the absence of media, Theorem 9 demonstrates that a consensus
equilibrium is globally attracting when aij has full support.

The result of Theorem 9 also extends to the case when the support of aij is not sufficient to
maintain connectivity and clusters form:

Corollary 1. Assume that all individuals are in the set of open-minded individuals and that aij is
given by the normalized step function discussed in Chapter 2. Further assume that after some time
tm, xi 6= I for all i. Additionally, assume that x∗i consists of a series of G equilibrium clusters, where
a∗ij is nonzero when t > tm if and only if x∗i = x∗j . Then for t > tm the equilibrium solution of (4.7)
asymptotically approaches the equilibria solution x∗i = x̄fq, where x̄fq denotes the mean opinion in
the qth cluster, which is the one containing x∗i .

Proof. Since x̄fq is the equilibrium solution for individuals reaching consensus in the qth cluster the
following function E is zero at the equilibrium point and positive definite for all other xi ∈ [−1, 1]:

E =

N∑
i=1

(x̄fq − xi)2. (4.14)

Differentiating (4.14) and substituting in the definition for dxi
dt when t > tm given by (4.7), we have

Ė = −2α1

N∑
i=1

(
x̄fq − xi

)( nq∑
j=1

1/nq(xj − xi)
)
,
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where nq is equal to the number of individuals in the qth cluster. Note, aij = 1/nq due to the
normalization of aij paired with the assumption that aij = 0 if and only if x∗i 6= x∗j . Expanding out,
the above we have:

Ė = −2α1

N∑
i=1

(
x̄fq − xi

)(∑nq

j=1 xj

nq
− nq.

nq
xi

)
.

Simplifying the above by noting that if individuals only interact with individuals who will reside
in their equilibrium cluster, each cluster group can be seen as a separate population. Hence, by
Proposition 1 the mean is preserved in time within each cluster group when t > tm. This gives:

Ė = −2α1

N∑
i=1

(x̄fq − xi)2. (4.15)

Observing (4.15) we see that it is negative definite. Hence by Lyapunov’s theorem we conclude that
the equilibrium {x∗i } is globally attracting where x∗i = x̄fq .

Considering Corollary 1 we see that the result of Theorem 9 generalizes to when there are multiple
clusters. It is also interesting to note that Corollary 1 implies that when there is no media, cluster
solutions are attracting in the absence of closed-minded individuals.

4.5 Summary of results

The above demonstrates three key results. The first is that under the assumptions of our model,
when the majority of individuals are open-minded a global targeting strategy is optimal in terms of
shifting individuals to an advertised opinion at a fixed cost. The second key result, is that given
our assumptions, when individuals are open-minded there is no minimal cost of entry in terms of
maximizing the relative return on advertisement investment. This potentially explains why some
guerilla marketing campaigns are more successful than others [5]. The final key result, is that in
terms of optimal target demographic, on average it is optimal given our model’s assumptions to
target individuals with a somewhat positive view of one’s product. Additionally this trend becomes
more pronounced the more open-minded individuals there are in the population. This explains why
targeting previous customers can be so successful [41, 59].

One notable fault in the above is that our model does not appear to be numerically tractable
to scales in which it would be useful economically (that is, it is O(N2)). This is not inherently the
case in that a random sampling algorithm such as one of those used in [2] could allow us to solve
for macroscopic behavior of the above systems in O(N) operations. Implementing these types of
algorithms will be an area for future work.
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Chapter 5

Realistic parameter estimation and
experimental replication

The data set which we will analyze was provided by Levendusky in [30]. In his original paper
Levendusky applies theories of motivated reasoning to elucidate why partisan media polarizes viewers
and why some viewers are much more affected by said programing. Using a series of three experiments,
Levendusky uses a least squares framework to test whether exposing particular types of individuals
to particular types of media causes a significant shift in their opinions [30] .

The first experiment involved exposing a group of 720 individuals to either a like-minded media
source, a cross-cutting media source (a media source opposite to their belief), or a neutral media
source. The bias of each media source was determined by the relative partisan skew of its viewership,
which as is noted in [29], is highly correlated with the bias of a news program. As an additional
check, Levendusky also had experimental subjects identify the skew of the particular program which
they were exposed to, and found good agreement with the viewership based approximation for the
news source’s bias. This subject-based identification will be used in our analysis to quantify the bias
of each media source.

Our analysis will focus entirely on the first experiment in [30], as it is the only one which records
both pre-and post-exposure opinions of individuals. The other two experiments only record post-
exposure opinions, and are used to establish that it is the perceived credibility of a news source that
determines its ability to shift opinion, that this opinion shift is due to a perceived strengthening of
one’s own argument and that these effects persist for days after exposure. The data associated with
these experiments are not conducive to fitting to our model, though, so we will not analyze them
any further and will instead focus on the data from the first experiment.

This first experiment concludes that like-minded media has a significant effect on an individual’s
post-exposure opinion, whereas cross-cutting media has little effect unless an individual has a strong
opinion. Opinion strength is recorded as a separate variable from the opinion extremism. So theoret-
ically, individuals could feel very strongly about being neutral on a particular issue. Having a strong
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opinion is defined by ranking the strength of one’s opinion to be ≥ 7 on a 1 to 9 scale.
Unfortunately due to the least squares hypothesis test set up to his analysis, Levendusky is unable

to determine the magnitude or individual-specific direction of these opinion-shifting forces [30]. This
will be one area which we will investigate.

Questions raised by Levendusky results

In addition, the research in [30] raises several questions in regards to the effect of media exposure.
The first question is whether or not there exists a critical threshold of strength of opinion which
best predicts when individuals exhibit closed-minded behavior and resist or are repelled by the media.
This question is of great importance as during political campaigns, campaign resources are finite,
and hence the erroneous allocation of either political or financial capital in trying to directly sway the
opinions of strongly-opinioned individuals could doom a campaign. Additionally, this issue extends
beyond politics to the world of advertising where individuals could for example also have immutably
strong opposition to consuming a product [48, 41]. Hence if one could classify certain groups of
individuals as being closed-minded using simple survey questions on strength of opinion, as was done
in [30], one could greatly reduce wasted advertising cost.

Another important question raised by [30] is whether or not closed-mindedness is actually the
most useful predictive measure of an oppositional response to media. Extremism of opinion could be
a better predictor, with the closed-mindedness result being merely being due to its correlation with
extremism. We will demonstrate that this is not the case.

Finally we will investigate what is the best predictor of the occurrence of the hostile media effect.
As was mentioned before, it has long been accepted that the hostile media effect is the tendency
for extremist individuals to perceive media as being hostilely biased against them [60, 9, 13, 10, 33].
Below we will demonstrate that in the case of the Levendusky data which pertains to American
politics, closed-mindedness is a better predictor than extremism of which individuals will experience
the hostile media effect.

We remark that in addition to studying the data set provided by Levendusky [30], we also
performed analysis on the data set used by Arceneaux and Johnson [3] (kindly provided by Kevin
Arceneaux). Unfortunately this analysis was not successful, as the data was of the form of the
Levendusky data in experiment 2 and 3 in that it only recorded post-exposure opinions; and thus no
results of this analysis are shown in this thesis.

5.1 Qualitative support for our model found in the data of [30]

In this section we will examine correlations between various variables in the Levendusky data to
qualitatively support the formulation of our model. Before we delve into this endeavor though, we
will first define these variables. The first variable which we will consider, is the tendency for the ith
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individual to move away from the media. Specifically, the tendency of the ith individual to move
away from the media will be defined as:

Tendency to shift away from mediai = (xi(0)− xi(9))(µp − xi(0)), (5.1)

where xi(0) and xi(9) represent the initial opinion and the final opinion of the ith individual (the
Levendusky experiment involves 9 minutes of media exposure) and as before µp represents the media’s
location. Here the terms initial and final refer to the beginning and end of the media exposure
experiment. The formula given in (5.1) implicitly weights individuals closer to the media with less
weight than would normally be justified based on the shift alone. This is beneficial since due to
measurement noise, such individuals could in reality be on ‘the other side’ of the media. Hence their
direction of movement (towards, or away from the media) is ambiguous. We will use (5.1) as a
measure of closed-minded behavior as under our model’s assumptions only closed-minded individuals
will tend to move away from the media. The media location (µp) was determined by the average
assigned bias given to the media by the individuals in the study.

The additional variables recorded in the Levendusky data, whose correlations we will consider are
as follows:

1. Individuals’ pre-media-exposure opinions (recorded on a five point scale from -1 to 1);

2. Individuals’ post-media-exposure opinions (recorded on a five point scale from -1 to 1);

3. Individuals’ stated degree of left or right partisanship (denoted political id). This denotes party
identification as oppose to belief. It was recorded on a seven point scale;

4. The stated strength of individuals beliefs (this was was recorded independently of the actual
opinion itself on a nine point scale);

5. The ability of an individual to detect the correct bias in their assigned media program (recorded
on a binary, yes-no scale) ;

6. The tendency of an individual to move away from the media, where ‘move away’ is defined by
(5.1);

7. Closed-mindedness. An individual was classified as closed-minded if their stated strength of
opinion was greater than 4. The determination of this threshold will be discussed later in this
chapter.

Now that we have defined our variables of interest, we will consider the correlations between
several of them. Doing so we arrive at the following (table 5.1):

Considering Table 5.1, we note that the p-value represents the probability of the given correlation
resulting purely by chance. The Pearson correlational coefficient between data {X,Y } is defined as

76



Pearson’s correlation coefficient value p-value
a) strength of opinion and tendency to move away from media 0.0411 0.2740
b) closed-mindedness and tendency to move away from
media

0.0626 0.0958

c) strength of opinion and extremism of initial opinion 0.3005 2.9 x 10−16

d) extremism of political id and tendency to move away from
media

0.0444 0.2378

e) extremism of initial opinion and tendency to move away
from media

−0.2172 5.1071 x 10−9

f) political id and initial opinion 0.0987 0.0085
g) closed-mindedness and ability to correctly note bias in
media

−0.0964 0.0102

h) extremism and ability to correctly note bias in media 0.0107 0.7764

Table 5.1: Table of correlation coefficients of various variables in the data of [30]. Statistically
significant results are shown in bold
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and x, y ∈ {X,Y }.
Observing Table 5.1 (b), we see that there is a weak but significant correlation between the

tendency to move away the media and individuals being closed-minded (as defined by having a
strength of opinion greater than 4). This division level is supported by Fig. 5.1 below, and will be
discussed in greater detail later in this chapter. This trend, though small, is quite impressive, as
this correlation occurs despite closed-mindedness being highly correlated with having an extremist
initial opinion (Table 5.1 (c )), since having an extreme initial opinion is highly correlated with
the tendency to move towards the media (Table 5.1 (e)), it is quite impressive that the opposite
correlation exists when an individual is closed-minded. This supports our model’s design which
incorporates the dynamic of closed-minded individuals moving away from the media.

It should also be noted that strength of opinion is not significantly correlated with the tendency
to move away from the media. This implies that a binary classification of strength of opinion in
terms of open-mindedness/closed-mindedness is perhaps under some circumstances more useful than
a general classification of opinion strength.

The strange association between extremism and moving towards the media is very unintuitive
(Table 5.1 (e)). Rather than being due to some psychological force, though, it is likely due to the
ceiling effect in Levendusky’s surveys (opinion extremism was ranked on a five-point scale; hence
individuals who started at the extreme could only maintain or moderate their opinions). Since none
of the media sources used in [30] were completely extremist, this led to the appearance of extremist
individuals in general shifting towards the media.
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Additionally, observing Table 5.1 we see that closed-mindedness is significantly correlated with
the tendency to incorrectly identify the bias of the media source. This trend is not found for
extremism of initial belief. This implies that the hostile media effect may in fact be better predicted
by closed-mindedness rather than by extremism.

5.2 Parameter estimation

In this section we will try to determine realistic estimates for several parameters. Specifically, we will
determine a reasonable approximations for b̂iα4, bipα5 and m/N as well as attempt to determine a
value for Xc. First though we must define our approximations for b̂iα4 and bipα5.

Estimation of α4b̂i and α5bip

First we will begin by recalling (3.3). In the reduced case occurring in [30] when one individual is
interacting with one media source, (3.3) becomes

dxi

dt
= FP (xi, µp), (5.2)

with

FP =


α4b̂i(1− xi) if xi > Xc and ith individual ∈ Ĉ,

α4b̂i(−1− xi) if xi < −Xc and ith individual ∈ Ĉ,

α5bip(µp − xi) otherwise.

By making the assumption that the various media sources used in [30] have a constant effect
on individuals independent of any individual’s specific opinion we can take α4b̂i and α5bip to be
constants (note: each individual was only exposed to one media source but several different media
sources where used, see [30] for details). As a result of this assumption, in the case that the ith
individual is non-closed-minded, we will be able to rearrange (5.2) into a linear function of |µp − xi|
. If the ith individual is closed-minded, this linear function will be in terms of | ± 1− xi|. This will
allow us to use a least squares fit to solve for α4b̂i and α5bip.

For reasons to be explained later in this section we will introduce two potential rearrangements of
(5.2) to perform least squares fits on. The first will be denoted as the simple linear approximation, and
will make the assumption that the exposure to media in the Levendusky experiment is brief enough
that xi is approximately constant over time (this is of course erroneous). Making this assumption,
we see that in the case that the ith individual is non-closed-minded:

dxi = α5bip(µp − xi)dt (5.3)

Here dxi is equal to the shift in the ith individual’s opinion over the time period dt where said
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individual is being exposed to the media source µp. This time period dt is 9 minutes for all individuals.
Performing least squares on the data set {YX}, where dxi ∈ Y and (µp − xi(0))dt ∈ X, gives a
linear plot whose slope is approximately α5bip. Additionally it should be noted that our fit assumes
that the intercept is zero. A similar procedure can also be used to determine α4b̂i. This method
is far from ideal, and will not be the principal method we will use in determining an approximation
for our interaction coefficients. It is useful, though, in contrasting the relative strength of the media
influence on various groups of individuals, and will be used as a measure of this in several figures.

A superior method can be obtained as follows, where again xi(0) and xi(9) denote the opinion
of the ith individual at t = 0 and t = 9 respectively. Time here is measured in minutes. First in the
case of non-closed-minded individuals, we have

dxi/dt = k(µp − xi).

Here k is a constant denoting the product α5bip. Solving the above ODE gives

| µp − xi |= Ce−kt.

Next, noting that the experiment starts at t = 0 and ends at t = 9, we have:

| µp − xi(0) | e−9k =| µp − xi(9) | . (5.4)

Performing a least squares fit where the x-variable is |µp − xi(0)| and the y-variable is |µp − xi(9)|
gives a slope from which we can calculate

α5bip = k = − ln(slope)/9. (5.5)

Note in the above we are assuming that the x-intercept of our fit is zero. An analogous result for
closed-minded individuals follows from performing least squares to find the slope of the following
function:

| (sgn(xi(0)−Xc)− xi(0)) | e−9k̂ =| sgn(xi(9)−Xc)− xi(9) | . (5.6)

where k̂ = α4b̂i.
The above ((5.6) and (5.4)) will be referred to as the improved linear approximation. We will

note here that the right hand side of (5.6) was treated as | sgn(xi(0)−Xc)− xi(9) | in our actual
linear fits. This was done to account for the cases in the data where an individual shifts away from
the media to the opposite extreme. This type of massive shift, which is in the direction opposite of
that predicted by our model should not be interpreted as supporting large k̂. Hence, our assumed
least squares set up contains | sgn(xi(0)−Xc)− xi(9) | on the right hand side. Further all of our
linear fits assumed that all news programs used in [30] had the same effect on the subjects, aside from
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variations due to differences in partisan opinion. This is a very reasonable assumption, as the biased
news programs used in [30] were chosen specifically such that each program on average was considered
equally entertaining and each host was viewed on average as being equally likeable. Additionally we
assume that Xc is sufficiently small that all individuals with a closed-minded disposition behave
closed-mindedly.

In terms of functioning as a measure of the effectiveness of the media at shifting individuals,
(5.5) and (5.6) are unfortunately not ideal, as the error associated with k is errorslope

9×e−9k (found using
the normal error propagation method). This increases relative to increasing values of k. This renders
the above least accurate when the media has the greatest impact. Since this is the area of greatest
interest, we will use the simple linear approximation (5.3) in measuring the strength of the media’s
influence on a group of individuals (the larger the fitted value of α5bip the more a group of individuals
is influenced by the media), and the improved linear approximation ((5.6) and (5.4)) in determining
the approximate values for α5bip and α4b̂i. An alternative measure of the media’s impact on a group
of individuals would be the average shift in opinion between the pre-and post-exposure surveys. This
is less than ideal, though, since it is more susceptible to the aforementioned ceiling effect in the
Levendusky data.

Estimation of m/N

To estimate the proportion of open-minded individuals in the Levendusky data we must develop a
classifier by which to label an individual as open-minded or non-open-minded. Since an individuals
stated strength of opinion denotes on some level how willing they are to change their opinion we
will use this as our variable which determines an individuals classification. Hence, to determine the
number of open-minded individuals we simply must determine the critical value of strength of opinion
which distinguishes an open-minded individual from a non-open-minded individual.

By making the assumptions that all non-open-minded individuals behave closed-mindedly (Xc is
small) and that open-minded individuals are more willing to change their opinions, we can see that the
critical value of strength of opinion which distinguishes open-minded individuals from closed-minded
individuals will be the value which best distinguishes the degree which individuals tend to shift their
opinions upon media exposure. Estimating this degree of shift using the simple linear approximation
for α5bip associated with individuals whose strength of opinion resides in a particular interval gives
Fig. 5.1. Here the y-variable plotted is the associated simple linear approximation (computed with
(5.3)) and the error bars are calculated using the usual method for determining the standard deviation
of a linear fit.

Observing Fig. 5.1 we see that the simple linear approximation predictions for individuals’ ex-
pected shifts in response to media exposure increase substantially when the linear fit is performed
on data corresponding to individuals with a stated strength of opinion less than 4. Further, one
should note that the plot represents the simple linear approximation to data as a function of the
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Figure 5.1: Plot of the slope of the simple linear approximation for α5bip (computed using (5.3)),
showing an estimate of the degree of shift in response to media exposure as a function of the upper
bound on the strength of opinion of individuals used in said linear fit, using data from [30]. Here
closed-mindedness is categorized by the strength of belief stated in pre-media exposure survey (as
opposed to the actual belief itself). Simple linear approximations were performed on data corre-
sponding to individuals whose stated strength of opinion values resided in the intervals a)[x − 1, x]
b) [x − 2, x], where the x-variable (x) represents the upper bound on strength of opinion used in
each fit.

stated strength of opinion of individuals in said data. Each point on the x-axis corresponds to data
from a different interval of strength of opinion, where plot (a) corresponds to an interval of strength
of opinion of width 1 and plot (b) corresponds to an interval of strength of opinion of width 2.
Interpreting Fig. 5.1 in this light, we see that a binary classification of an individual as either open-
or closed-minded is somewhat simplistic and would be analogous to fitting Fig. 5.1 to a step function
(as with this approximation there would only be two possible slopes). Nevertheless we see that there
is a significant difference between individuals with an opinion strength greater than 4 and those with
an opinion strength less than 4. Using this as our division point between open-minded and closed-
minded individuals, we see that the data set in [30] has far more closed-minded individuals (see Table
5.2).

Once we can divide our data into open-minded/closed-minded individuals we can now apply (5.6)
and (5.4) to estimate α4b̂i and α5bip. As is shown in Fig. 5.2.

In considering Fig. 5.2, we must note that the above represents the improved linear approximation
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proportion of open-minded individuals proportion of closed-minded individuals
0.35 0.65

Table 5.2: Table of the fraction of open-minded and closed-minded individuals in the data of [30].
Determined using a threshold of strength of opinion of 4.

to α5bip and α4b̂i plotted as to overlap with a weighted scatter plot of the data in [30], where bigger
discs represent a larger number of individuals. Since the slope is e−9α5bip in the case of Figure 5.2
(a) and e−9α4b̂i in the case of Figure 5.2 (b) we see that relatively more mild slopes correspond
with greater relative αb values. Hence we see that open-minded individuals are more affected by the
media as the slope in Figure 5.2 (a) is more mild (as was assumed by our least squares fit).

Next for many applications it could be useful to estimate α5bip and α4b̂i in terms of time as
opposed to time viewed. An example of such a situation would be if a politician wished to estimate
the impact a speech would have on individuals without knowing the precise amount of time which
each individual was exposed to the speech. Specifically, in such a situation the politician would wish
to conduct simulations where the constants α5bip and α4b̂i incorporated both the experimentally
determined rate at which individuals change their opinions as determined by an experiment like the
one in [30] as well as the average rate at which individual are exposed to the media stimuli (since
the specific amount for each individual is unknown). To estimate this α5bip and α4b̂i we must take
into account the average time which an individual is exposed to news media each day relative to the
amount of time subjects in the Levendusky experiment were exposed to news media. Specifically,
we will note that according to [29] the average American consumes 70 min of news per day. By
comparison, subjects in [30] only watched their respective news clips for 9 min [30]. Using this we
can estimate the values of α4b̂i and α5bip for real world applications (denoted below as ‘real world
αb’) as follows:

real world αb =
kTr

Ts
, (5.7)

where k in (5.7) represents the fitted value for either α5bip or α4b̂i found previously, Ts represents
the time which a media source was watched in the Levendusky study and Tr represents the average
time per day which individuals spend consuming news. This collectively allows for α5bip and α4b̂i to
be described strictly in terms of time as opposed to time spent watching news.

Note the above assumes that viewers only consume approximately one type of partisan news. This
is a somewhat reasonable assumption since partisan news programs have largely partisan viewers,
(that is, if individuals often sought out contrasting partisan programs the viewership would not be
so skewed) [29].
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Figure 5.2: Improved linear approximation to α5bip and α4b̂i in (5.2), where both are presumed to
be constant in time. The coefficients were extracted by performing a least squares fit to determine
the average slopes of the following equations: a) |µp − xi(9)| = e−9α5bip |(µp − xi(0))| where it was
found that α5bip = 0.0218±0.004; b) |±1−xi(9)| = e−9α4b̂i |±1−xi(0)|, where it was found that
α4b̂i = 0.0085± 0.002. The relative size of the circles reflects the relative number of data points at
each location.

Attempted estimation of Xc

In Fig. 5.3 we construct an estimate for the value of Xc. We note that in our model, individuals with
closed-minded dispositions switch from moving towards the media to moving away from said media
after passing a certain extremist threshold Xc. Hence we conclude that at Xc individuals should
on average maintain a fixed opinion when exposed to media. Therefore, by using a least squares
approximation to a closed-minded individual’s tendency to shift away from the media, as defined
in (5.1) we can take Xc to be the x-intercept of said fit. However, as shown in Fig. 5.3 there is
significant scatter in the data and we are not able to obtain a statistically significant value for Xc.

5.3 Replication of a portion of the data in [30]

In this section we will seek to replicate a portion of the Levendusky data using a fitted version of our
model. We will attempt to replicate the Levendusky data by running various simulations with fitted
parameters on initial data taken from [30], where the maximum allowed strength of an individual’s
opinion is varied.

83



constant Value 1.28 σ
α5bip 0.022 (mins viewed)−1 0.005 (min viewed)−1

α4b̂i 0.009 (mins viewed)−1 0.002 (min viewed)−1

Table 5.3: Realistic parameter values found through improved linear fit on Levendusky data where
open-minded and closed-minded individuals are categorized based on Fig. 5.1. Here, σ represents
the estimated standard deviation in the αb term and (−1.28σ, 1.28σ) is the 90 % confidence interval
for the αb term.

constant Value 1.28 σ
α5bip 0.1284 (days)−1 0.01 (days) −1

α4b̂i 0.0473 (days) −1 0.005 (days)−1

Table 5.4: Realistic parameter values found through improved linear fit on Levendusky data where
open-minded and closed-minded individuals are categorized based on Fig. 5.1. Fitted coefficients
converted for real world applications as to have units strictly in terms of time. Conversion performed
using (5.7). Here, σ represents the estimated standard deviation in the αb term and (−1.28σ, 1.28σ)
is the 90 % confidence interval for the αb term.

Since our model is deterministic we will compare the results of these simulations to the Levendusky
data in the average sense, by contrasting for a given maximum allowed strength of opinion the
simple linear approximation for α5bip as found using our simulated data, to the true simple linear
approximation as found using the Levendusky data. We will additionally contrasts these results to
the simple linear approximations generated when all individuals are assumed to be open-minded. The
results of these simulations are shown in Fig. 5.4 where the maximum allowed strength of opinion of
individuals is taken to be the x-variable.

Observing Fig. 5.4 we see that our model can be fitted fairly well to an averaging of the Levendusky
data. It performs particularly well when contrasted to simulations using a model which does not
incorporate ingroup-outgroup dynamics such as the one in [38] (shown in Figure 5.4 (c)). This result
supports our theoretical framework and demonstrates that a simple binary classification of individuals
as either closed-minded or open-minded is useful in predicting the average behavior of populations.

5.4 Summary

In analyzing the above discussed data set in the context of our model we were able to verify the
effectiveness of our model by replicating some of the Levendusky data through simulation (Fig. 5.4).
Additionally we were able to get estimates for the proportion of open-minded individuals in the
opinion regime of American politics as well as the magnitude of the influence of media on political
belief (Tables 5.2 and 5.3). The first result was particularly intriguing since it potentially explains
why polarization is so rampant in American politics as the majority of individuals appear to be closed-
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Figure 5.3: Plot of tendency to move away from media as a function of extremism of belief. Here, the
tendency to move away from the media is defined by (5.1). Xc is given by the horizontal intercept
of the above plot, which is Xc = 2± 4. This result is not statistically significant.

minded [30]. Lastly we also found that with respect to the Levendusky data, closed-mindedness is
a better predictor of the hostile media effect than extremism (Table 5.1). This is quite surprising
since most of the literature attributes the hostile media effect to a perception error on the part of
extremists [13, 10, 33, 60]. Our analysis indicates that how strongly an individual feels about their
opinion is a much better predictor of their tendency to misidentify a media source’s bias than the
extremism of their belief on a left-right opinion scale (Table 5.1).

85



Figure 5.4: Plot of the slope of the simple linear approximation predicting the degree of shift in
response to media exposure as a function of the upper bound on the closed-mindedness of individuals
used in said linear fit. The data fit was performed on individuals with a strength of opinion within
the interval [0, x]. a) Simple linear approximation to the Levendusky post-media-exposure data. b)
Simple linear approximation to the data produced by simulation with (5.2), using the parameters
given in Table 5.3 and initial data given in [30]. We compute Xc = 0.49 (found through bisection).
The cut-off in strength of opinion for closed-minded designation was taken to be 2. c) Simple linear
approximation to the data simulated using (5.2), where all individuals are treated as open-minded
both in fitting and in simulation.
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Chapter 6

Conclusion

6.1 Methodology

We have proposed an ODE model for opinion dynamics which builds off the earlier work by Motsch
and Tadmor [38]. Opinions are represented continuously on the interval [−1, 1]. By introducing
two classes of individuals (open-minded individuals and individuals with closed-minded potential),
we incorporate the feature of ingroup-outgroup dynamics noted in various social science works [26,
15, 30]. Through implementing this feature we are able to capture the dynamics previously modeled
discretely in [22] using a continuous representation for opinions.

Using this model as our basic framework for investigation, we have explored the general questions
of how consensus can be reached in the presence of closed-minded individuals, as well as the effect
of ingroup-outgroup dynamics on the effectiveness of various advertising strategies.

Additionally we have incorporated data into our investigation by replicating through simulation
some of Levendusky’s data found in [30]. Further, we have used said data to generate realistic
parameter estimations for the opinion regime of American politics.

6.2 Results

The tendency for extremism to result in groups is an interesting psychological phenomenon which
has garnered a lot of research attention [15, 50, 22]. One theoretical explanation has been given by
Galam in [22] using a discrete representation for opinions. We demonstrate that this phenomenon
can also occur when opinions are allowed to exist continuously through the interaction between two
different classes of individuals (open-minded individuals and individuals with closed-minded potential)
see Fig. 2.5. We additionally find analytical stability results lending some support to this theory.

Additionally we investigated the issue of how groups can reach consensuses when some individuals
behave closed-mindedly. This is an intriguing question since many conflicts such as several of those
occurring on the periphery of Europe have reached peaceful agreements (a consensus of sorts) in
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the presence of closed-minded individuals [11]. One potential explanation given in the social sciences
for this occurrence is that open-minded individuals create a social norm of open-mindedness which
stimulates open-minded interaction amongst otherwise closed-minded individuals [36, 56, 57]. We
demonstrate theoretically that under the assumptions of our model, this is a plausible explanation
for how consensus can be reached in the presence of closed-minded individuals (Chapters 2 and 3).
We further show that this is even true in the presence of a media source and the hostile media effect
(Chapter 3).

An additional area of investigation was the commercial application of advertising. Specifically,
we endeavored to quantify the effect of ingroup-out-group dynamics (in this case as represented by
degree of brand loyalty) on the potential success of various advertising strategies. We found three
main results, described in Chapter 4. The first result was that under our assumptions, it is on average
better to implement a global targeting strategy when costs are fixed and there is no competition. Our
second key result is that in the presence of low levels of ingroup-outgroup dynamics there is, under
our assumptions, no cost barrier in terms of maximizing relative return on advertising investment.
This is not necessarily the case when high levels of ingroup-outgroup dynamics are present. This
result potentially explains why certain guerrilla marketing campaigns are more successful than others
[5]. Thirdly we considered what is the optimal target demographic for a given advertising campaign,
where optimality is represented by the target interval in opinion space where advertising influence has
the greatest impact. We found that under the circumstances governed by our model, it is optimal to
target individuals with a somewhat favorable view of one’s product prior to targeting. This potentially
explains why advertisers target previous customers so frequently [59].

Our last area of investigation was an analysis of the data set provided by Levendusky [30].
Through analyzing this data set in the context of our model we were able to verify the effectiveness
of our model through replicating some of data through simulation (Chapter 5). Additionally we were
able to get statistically significant estimates for the proportion of open-minded individuals in the
opinion regime of American politics as well as the magnitude of the influence of media on politically
belief. The first result was particularly intriguing since it potentially explains why polarization is so
rampant in American politics, as the majority of individuals appear to be closed-minded [30]. Lastly
we also found that with respect to the Levendusky data, closed-mindedness is a better predictor of
the hostile media effect than extremism. This is quite surprising, since most the literature attributes
the hostile media effect to perception error on the part of extremists [13, 10, 33, 60]. Our analysis
indicates that how strongly an individual feels about their opinion is a much better predictor of their
tendency to misidentify a media source’s bias than the extremism of their belief on a left-right opinion
scale (Chapter 5).
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6.3 Future work

One shortfall of our work is that our simulations only consider relatively few individuals. This is
because our simulations are computationally O(N2), and hence constrained numerically. This hurdle
can possibly be overcome through implementing random sampling algorithms such as those discussed
in [2] which are O(N). This would be an intriguing future area of research, since it would allow us
to extend our results to realistic values of N .

Another potential area for further research would be to incorporate self-thought dynamics into
our simulations in the form of random perturbations over time. This would be an interesting area
of further research, since currently our model assumes that individuals behave ‘sheep-like’ and do
not think for themselves. While this is not a completely unrealistic assumption, it still prevents the
occurrence of some interesting phenomena [16].

Lastly it would be quite interesting to further explore the effect of individual influence on the
media. This is quite an intriguing concept, since it has been noted that the rise of social media is
ushering in an era where individuals have much greater influence on media [47]. We briefly consider
this factor in our analysis (Fig. 3.10) but do not investigate it as much as is merited by its current
and future importance.
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Appendix A

List of parameters and functions

A.1 List of constants and functions Chapter 2

Constant Symbol
The ith individual’s opinion xi

Number of individuals N

x critical. The critical threshold for extremism above which individuals whose
indices belong to Ĉ becomes closed-minded

Xc

Open-minded interaction function φ

support of φ as

Set of indices of individuals predisposed to closed-mindedness Ĉ

Set of indices of individuals predisposed to open-mindedness O

Number of individuals whose indices belong to O m

Open-minded individual interaction coefficient aij

Closed-minded individual interaction coefficient âij

Closed-minded individual with open-minded individual interaction coefficient âij

Closed-minded interaction function φ̂

Open-minded individual with open-minded individual scalar. Determines rel-
ative strength of interaction

α1

Closed-minded individual with individual with closed-minded disposition
scalar

α2

Closed-minded individual with open-minded individual scalar. Determines
relative strength of interaction

α3

Table A.1: Constants and functions associated with individual opinion dynamics (Chapter 2).
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A.2 List of constants and functions Chapter 3

Constant Symbol
Support of b bs

Closed-minded individual media interaction coefficient b̂i

Open-minded individual media interaction coefficient bip

Hostile media shift factor H

Closed-minded individual media scalar α4,p

Open-minded individual media scalar α5,p

Media location in opinion space µp

Media shift function λ

Table A.2: Constants and functions associated with media opinion dynamics ( Chapter 3).

A.3 List of constants and functions Chapter 4

Constant Symbol
Proportion of individuals excluding those belonging to Ĉ where |xi| > Xc

who are also targeted by the media
Propnc

Proportion of individuals belong to Ĉ where |xi| > Xc targeted by media Propc

The set of individuals targeted by an advertising source A

The interval in opinion space over which advertising has influence I

Table A.3: Constants and functions associated with advertising (Chapter 4).
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