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Abstract 

Over the last decade, the number and sophistication of methods used to do regression on 

complex datasets have increased substantially. Despite this, our literature review found 

that research that explores the impact of heteroscedasticity on many widely used modern 

regression methods appears to be sparse. Thus, our research seeks to clarify the impact 

that heteroscedasticity has on the predictive effectiveness of modern regression methods.  

In order to achieve this objective, we begin by analyzing the ability of ten different modern 

regression methods to predict outcomes for three medium-sized data sets that each 

feature heteroscedasticity. We then use insights provided from this work to develop a 

simulation model and design an experiment that explores the impact that various factors 

have on prediction accuracy of our ten different regression methods. These factors include 

linearity, sparsity, the signal to noise ratio, the number of explanatory variables, and the 

use of a variance stabilizing transformation.  

Keywords:  Regression; heteroscedasticity; LASSO; BART; data mining; machine 
learning 
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1. Introduction 

1.1. Understanding the Challenges of Applied Data Mining 

Over the last decade, the size and complexity of data have continued to increase. At the 

same time, the number and sophistication of methods used to operate on these complex 

data sources have also expanded. Today, for example, modern regression methods can 

deal effectively with unknown, potentially nonlinear relationships between the response 

and explanatory variables. Some of these methods also deal with unknown or unexpected 

interactions among explanatory variables. Separately, progress has also been made 

developing new methods for basic linear regression models that deal with problems such 

as heteroscedasticity, non-normality and outliers.  

While research progress has been immense in both of those aforementioned areas, our 

literature review found that research on the impact of heteroscedasticity on modern 

regression methods is not well developed. This is surprising, particularly considering the 

prevalence of heteroscedasticity in historical data sets. In general, we suspect that many 

practitioners use modern regression methods, including tree-based methods and other 

ensemble learning approaches, without considering the assumptions that underlie these 

models. For example, tree-based ensembles such as random forests are reportedly 

excellent omnibus predictors that can adapt too many regression shapes and interaction 

structures (Hastie, Tibshirani, & Friedman, 2009).  Moreover, from conversations and 

informal reports, we also know that many analysts use random forests as a first choice for 

regression prediction problems. However, the standard tree models upon which random 

forests are built use algorithms based on an ordinary least squares (OLS) criterion for 

partitioning and estimation. This is problematic, particularly because OLS is known to have 

problems dealing with heteroscedastic data (Carroll & Ruppert, 1988).   
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1.2. Objective 

This thesis seeks to clarify the impact that heteroscedasticity has on the predictive 

effectiveness of modern regression methods. In order to achieve this objective, this thesis 

utilizes both simulation and applied analysis. In particular, we begin by analyzing the ability 

of ten different regression methods to predict outcomes for three medium-sized data sets 

that feature heteroscedasticity. During this analysis, we attempt to understand the nature 

of the heteroscedasticity present, consider possible models for it, and, where appropriate, 

apply transformations to reduce its apparent magnitude. Following this, we use insights 

provided from this work to develop simulation experiments that explore the impact that 

various factors have on the prediction accuracy of our ten different regression methods. 

To do this, we create data from models that are both linear and nonlinear, and that have 

both homoscedastic and heteroscedastic errors.  The other factors included in the 

simulation are the number of explanatory variables, the fraction of explanatory variables 

with nonzero coefficients, and the signal to noise ratio.  We also consider the effect of 

using of a variance-stabilizing transformation.  

As we move through the project, we have a number of initial hypotheses that support the 

different research questions asked. First, from our literature review, it is clear that linear 

regression methods that use ordinary least squares perform best under conditions of 

linearity (i.e., a linear relationship between the response and explanatory variables) and 

homoscedasticity. Since linearity is so critical, we generally expect that, when a 

transformation can both linearize and stabilize the variance of a sample, a linear method 

that relies on ordinary least squares should do well on the transformed data set. On the 

other hand, we hypothesize that when a variance-stabilizing transformation ruins linearity, 

we expect that these same methods will be adversely affected by the transformation. 

Secondly, we hypothesize that, because methods such as regression trees have no 

reason to require linearity, they should not be adversely affected by nonlinearity, but may 

be affected by heteroscedasticity. We are unsure about the degree to which 

heteroscedasticity will affect such methods. Nonetheless, since these methods rely on 

unweighted sums of squared errors, we hypothesize that these methods will perform 

better after a variance-stabilizing transformation, regardless of the linearity of the situation.       
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1.3. Outline 

This thesis is organized as follows. In Chapter 2, we describe heteroscedasticity, its 

causes, and the manner in which it manifests itself within data. We also review a number 

of traditional solutions that have been proposed to deal with heteroscedasticity, including 

transformations and weighting. In Chapter 3, we briefly summarize each of the different 

regression techniques that were chosen for our research. In particular, we focus on 

modern regression methods that are commonly used within industry, including LASSO, 

multivariate adaptive regression splines (MARS), regression trees, random forests, neural 

networks, and Bayesian Additive Regression Trees (BART). In Chapter 4, we apply these 

techniques to three real data sets in order to develop a practical understanding of the 

impact that heteroscedasticity can have on each method’s ability to produce low out-of-

sample prediction error. In Chapter 5, we use the insights generated from these analyses 

to create a simulation model and identify a total of 32 different combinations of factors that 

may affect prediction outcomes.  For each of these combinations, we compute the 

methods’ mean squared errors (MSEs) and median absolute deviations (MADs) and 

analyze the results graphically. Finally, in Chapter 6, we discuss our findings, review 

limitations, and state conclusions.   
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2. Heteroscedasticity 

The assumption of equal variance, or heteroscedasticity, is fundamental in classical 

regression models (Carroll & Ruppert, 1988). Unfortunately, while this assumption is 

theoretically convenient, the findings of our work from Chapter 4 suggest that it is often 

not satisfied within practice (Wilcox & Keselman, 2012). In the sections below, we present 

a quick review of heteroscedasticity and the impact that heteroscedasticity has on the 

linear model. Following this, we discuss potential methods that are used to resolve 

heteroscedasticity when it is encountered within regression analysis. 

2.1. Introducing Heteroscedasticity  

Non-constant variability, or heteroscedasticity, is a phenomenon that is frequently 

encountered in nearly all fields, including genetics (Daye, Chen & Li, 2012; Brem & 

Krugylak, 2005), toxicology (Lim, Sen & Peddada, 2010), fisheries research (Ruppert & 

Carroll, 1988), experimental design (Box & Meyer, 1985; Box, 1987), and econometrics. 

Many different types of heteroscedasticity exist, including variability that depends on the 

mean of the data, variability that depends on one or more explanatory variables, as well 

as other structures (Carroll & Ruppert, 1988; Grissom, 2000; Moore & McCabe, 2005). 

For our research, we have chosen to focus only on variability that depends on the mean 

of the data.   

2.2. Heteroscedasticity & Linear Regression 

Heteroscedasticity and its impact on linear regression have been extensively studied. 

Based on this research, it has been shown that using linear regression methods to perform 

prediction with heteroscedastic data can fail dramatically (Carroll & Ruppert, 1988). This 

is because regions of low variability end up having significantly less influence setting 

parameters and making predictions than regions containing high variability. This 

divergence can result in predictions that significantly misrepresent the true mean of the 

data, especially in regions of low variability.   
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In addition to this, other research has shown that linear regression in the presence of 

heteroscedasticity can prevent the type 1 errors and coverage probabilities of confidence 

intervals (CIs) for model-based predictions from attaining the nominal level (Carroll and 

Ruppert 1988; Lim, Sen, & Peddada, 2010; Visek, 2011). This failure can cause 

practitioners to declare an outcome statistically significant when in fact it is not.  

2.3. Stabilizing Heteroscedasticity 

In general, there are two main classes of approaches used to deal with data which is 

heteroscedastic: transformations and weighting. Since we use transformations of the 

response variable in Chapters 4 and 5, we introduce transformations below. 

In linear regression, transformations of the response variable are widely used to deal with 

heteroscedasticity. Depending on the distribution of the data, if the variance can potentially 

be represented as a known function of the mean, a practitioner can resolve the 

heteroscedasticity by transforming the response variable. The transformation used is 

called a variance-stabilizing transformation (Carroll & Ruppert, 1988).  For example, if it 

appears that the variance is proportional to the square of the mean, then the log 

transformation can be applied to the response variable Y. On the other hand, if the 

variance appears to be directly proportional to the mean, which is true for a Poisson 

distribution, then the square-root transformation can be applied to stabilize the variance 

and make the distribution of the transformed response homoscedastic (Carroll & Ruppert, 

1988).  

While a correct transformation of the response variable can effectively produce 

homoscedasticity (Fleiss, 1986; Luh, 1992; Rasmussen, 1989), the use of transformations 

in practice is not without risk. For example, if the underlying data are linear and 

heteroscedastic, the application of an inappropriate transformation can destroy the 

linearity and reduce the accuracy of predictions generated by regression models that 

assume linearity, such as those used in simple linear regression, stepwise regression, 

ridge regression, and the LASSO.  
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Another challenge that often arises relates to the selection of the appropriate 

transformation. As noted in Carroll & Ruppert (1988), one of the most common ways to 

identify heteroscedasticity that depends on the mean of the response is to plot the squared 

residuals against the predicted values from a regression. A version of this process was 

followed for the examples that we explored in Chapter 4. Unfortunately, while this process 

is simple to implement, identifying an appropriate transformation is often very difficult by 

inspection. This is because the data can contain many features outside of 

heteroscedasticity that confound the visual inspection (Wilcox, 1998). This conclusion was 

supported by our own experience in Chapter 4, where the presence of outliers and 

nonlinearity made it difficult for us to identify the appropriate variance-stabilizing 

transformation to be applied. 

2.4. Research Gaps 

Despite the volume of research that exists exploring the impact of heteroscedasticity on 

classical linear regression, our review found that literature discussing the impact of 

heteroscedasticity on many modern regression methods is sparse (Daye, Chen & Li, 2012; 

Woolridge, 2009; Visek, 2011). This is surprising, particularly considering the prevalence 

of heteroscedasticity in the modern data sets which we reviewed. Thus, while significant 

room exists for follow up research, we hope that the insights gained from this thesis can 

begin to fill the gap in current literature discussing the impact of heteroscedasticity on 

modern regression methods. We also hope that this work will provide guidance to industry 

analysts and practitioners who routinely use modern regression methods to make 

predictions.  
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3. Modern Regression Techniques 

3.1. Introduction & Modelling Focus 

In this thesis, ten different regression methods are explored. For each of these methods, 

our focus is on prediction rather than parameter estimation. To provide context, this 

Chapter briefly reviews each of the ten methods that we have explored, and states 

hypotheses relating to the performance of each method on both linear and non-linear 

heteroscedastic data. 

3.2. Regression Methods 

3.2.1. Linear Regression 

The initial foundation for linear regression was laid in 1894 by Sir Francis Galton (Galton, 

1894; Stanton, 2001). In general, the linear regression model can be represented using 

the following form (Hastie, Tibshirani & Friedman, 2009): 

𝑓(𝑋) =  𝛽0 + ∑ 𝑋𝑗𝛽𝑗
𝑝
𝑗=1   

In this model, 𝛽0 is the regression model intercept, 𝛽𝑗 is the 𝑗𝑡ℎ regression coefficient, 𝑋𝑗 

is the 𝑗𝑡ℎ  explanatory variable, and 𝑝 refers to the number of explanatory variables. As 

discussed in Chapter 2, classical linear regression models are very sensitive to 

heteroscedasticity (Carroll & Ruppert, 1988; Wilcox & Keselman, 2012). Based on this, 

we expect that classical linear regression will do a poor job predicting untransformed, non-

linear, heteroscedastic data. On the other hand, we expect that this method will do a better 

job than other methods predicting linear, homoscedastic data that results after a variance 

stabilizing transformation is applied. Finally, when the data in question is linear and 

heteroscedastic, we expect that classical linear regression will struggle on both the 

transformed and untransformed cases. This is because the presence of heteroscedasticity 

in the linear-heteroscedastic case, or the presence of the non-linearity in the transformed 

case, will decrease the accuracy of predictions generated by the classical linear 

regression model. 
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3.2.2. Stepwise Regression 

Stepwise regression, as opposed to classical linear regression, considers variable 

importance when determining the final predictors that remain within a model.  For our 

work, we use the version of stepwise regression that is described by Venables and Ripley 

(2002) and that is implemented in the stepAIC() function in R (Venables & Ripley, 2002). 

For all our methods, we use the backwards option. This option starts with a “full”  model 

which includes all explanatory regression variables, considers the removal of each 

variable from this model, and chooses to remove the variable that results in the smallest 

increase to the error sum of squares.  This process is repeated on the resulting model and 

iterated until a stopping criterion is reached.  

 While stepwise regression attempts to decrease estimation variance by removing 

unnecessary variables from the regression model, the underlying parameter estimation 

algorithm used in stepwise regression is ordinary least squares. Because of this, we 

expect that stepwise regression will perform similarly to the classical linear regression 

model for both non-linear and linear heteroscedastic data. However, since stepwise 

regression helps a model take into account variable importance, we expect that it will 

improve over the full linear regression when the regression model contains many variables 

with zero coefficients.  

3.2.3. Ridge Regression 

Ridge regression was developed with the goal of improving parameter estimates in the 

presence of significant correlation between explanatory variables. In general, ridge 

regression is very similar to linear regression, except that it penalizes the size of the 

regression coefficients resulting in a modified version of the least squares criterion (Hoerl 

& Kennard, 1970). The formula for ridge regression parameter estimates (or estimated 

regression coefficients) can be expressed as: 

�̂�𝑟𝑖𝑑𝑔𝑒 =  𝑎𝑟𝑔𝑚𝑖𝑛𝛽 {∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

)

2
𝑁

𝑖=1

+ 𝛾 ∑ 𝛽𝑗
2

𝑝

𝑗=1

} 
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In this model, 𝑥𝑖𝑗  is the 𝑖𝑡ℎ  measurement of explanatory variable 𝑋  and 𝑦𝑖  is the 𝑖𝑡ℎ 

observation of the response variable. Also, 𝛾  represents a tuning parameter which 

controls the strength of the penalty term ∑ 𝛽𝑗
2𝑝

𝑗=1  (Hastie, Tibshirani & Friedman, 2009). 

The penalty that is applied to the formula is a shrinkage penalty, the main goal of which is 

to reduce the variance of OLS parameter estimates arising from highly correlated 

explanatory variables.  This shrinkage reduces variance but introduces bias into the 

estimates. When gamma is equal to zero, an OLS estimate is returned. On the other hand, 

when gamma goes to infinity, the ridge regression estimates go to zero. Between these 

two extremes, the estimates balance between fitting a linear model of y on X more closely 

and producing parameter estimates with lower variance (Hastie, Tibshirani & Friedman, 

2009).  

While ridge regression is able to deal more effectively with highly correlated explanatory 

variables, this method, fundamentally, still relies on the use of sums of squared errors. 

Because of this, we expect that ridge regression will perform similarly to classical linear 

regression for both linear and non-linear heteroscedastic data. Indeed, we expect that this 

model will outperform classical linear regression and stepwise regression in cases where 

there is a high degree of multi-collinearity existing within the sample data. 

3.2.4. Least Absolute Shrinkage & Selection Operator (LASSO) 

The LASSO (Least absolute shrinkage and selection operator), is a popular modern 

regression method with many similarities to ridge regression. This method is designed to 

select variables and subsequently estimate their coefficients with less bias than occurs 

following other variable selection methods (Tibshirani, 1996).  The LASSO performs well 

when the number of explanatory variables is large. As a result, the LASSO is of keen 

interest in the data mining and big data communities, where the number of explanatory 

variables within a data set can be exceptionally high. The LASSO uses an absolute value 

on the penalty term rather than a squared penalty term (Hastie, Tibshirani & Friedman, 

2009). The formula for the LASSO parameter estimation can be expressed as follows: 

�̂�𝑙𝑎𝑠𝑠𝑜 =  𝑎𝑟𝑔𝑚𝑖𝑛𝛽 {∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

)

2
𝑁

𝑖=1

+ 𝛾 ∑|𝛽𝑗|

𝑝

𝑗=1

} 
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In this model, 𝛾 represents a tuning parameter which controls the strength of the penalty 

term  ∑ |𝛽𝑗|
𝑝
𝑗=1 . It is important to recognize here that the use of the absolute value within 

the penalty term makes the LASSO perform very differently from ridge regression, despite 

the similarity of the objective functions (Tibshirani, 1996). In particular, the LASSO penalty 

causes some coefficients to be shrunk exactly to zero. This occurs with greater frequency 

as 𝛾 increases. (Tibshirani, 2013)  

 

The LASSO parameter estimation formula is solved using an objective function that 

minimizes the sums of squared errors using a penalty term. Because of this, the model is 

arguably potentially sensitive to heteroscedasticity. Thus, we expect that the LASSO 

generated regression models will perform similar to classical linear regression on both 

linear and non-linear heteroscedastic data except when the number of explanatory 

variables in the regression model is large. In this specific case, we expect that the LASSO 

will perform better and produce predictions with lower overall prediction error. 

3.2.5. Regression Trees  

Regression trees come from a class of modern regression models that continue to be very 

popular within industry (Rokach & Maimon, 2008). A regression tree recursively partitions 

data  into smaller and smaller groups and uses the sample mean within each group as the 

predicted value for various combinations and levels of the explanatory variables (Breiman, 

Friedman, Olshen & Stone, 1984; Quinlan, 1986; Strobl, Malley & Tutz, 2009).  

 

In order to determine how to split the data, squared error loss is used. In particular, at 

each step of the tree growing process, the regression tree algorithm seeks to optimally 

split the data in a way that the residual sum of squares (RSS) after the split are minimized. 

Thus, if the RSS of the full data can be represented as:  

𝑅𝑆𝑆(𝐹𝑢𝑙𝑙 𝐷𝑎𝑡𝑎) = ∑(𝑦𝑖 − �̅�)2

𝑛

𝑖=1

 

 
the minimized RSS value of the split can be calculated as: 

𝑅𝑆𝑆(𝑆𝑝𝑙𝑖𝑡) = ∑ (𝑦𝑖 − �̅�1)2

𝑛

𝑖∈𝑅1

+ ∑ (𝑦𝑖 − �̅�2)2

𝑛

𝑖∈𝑅2
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In this split model, 𝑅1 and 𝑅2 are the two subsets of data formed by any one split, 𝑦𝑖 is the 

𝑖 𝑡ℎobservation of the response variable, �̅�1 is the mean of the data in 𝑅1, and �̅�2 is the 

mean of the data in 𝑅2. During the model fitting process, the regression tree is typically 

grown out so that it over-fits the data. Following this, the tree is pruned using cross-

validation (Friedman, 1999; Barros, Basgalupp, Carvalho & Freitas, 2011).  

 

In general, regression trees have the capacity to deal effectively any form of relationship 

between response and explanatory variables (Breiman, Friedman, Olshen & Stone, 1984). 

This means that we can expect the regression tree model to perform similarly regardless 

of whether the data it is modelling are linear or non-linear. Unfortunately, trees generally 

suffer from high variance because of the fact that a small change in the observed data can 

lead to a dramatically different sequence of splits and predictions. This instability occurs 

because of the way the tree is constructed hierarchically. In particular, once a split is made, 

the split cannot be reversed further down the tree. Because of this, we expect the 

regression tree predictions to produce mean squared prediction errors and median 

absolute deviations that have variances than the predictions generated from other models, 

regardless of the data that they are modelling. We also expect that the method itself will 

be sensitive to the presence of heteroscedasticity because regression trees minimize the 

sum of squared errors when determining the optimal way to split the tree. 

3.2.6. Boosted Decision Trees (Boosting) 

Unlike standard regression trees, boosting seeks to improve model fit by fitting a sequence 

of single trees which explicitly consider the amount of variation not explained by earlier 

trees in the sequence (Hastie, Tibshirani & Friedman, 2009). In particular, the boosting 

algorithm starts by using the average of all response values as the first guess for prediction 

and computes the residuals from the fit. An optimal regression tree is fit to these residuals, 

the predictions are updated, and new residuals are computed.  This process repeats itself 

again and again until some stopping rule is reached. A typical stopping rule is the number 

of trees in the sequence (Breiman, 1996; Breiman, 2001; Bulhmann, 2010; Elith, 

Leathwick, Hastie, 2008, Freund & Schapire, 1997; Friedman, 1999; Friedman, 2001; 

Friedman, 2002). Cross-validation is then often applied in order to ensure that the optimal 

number of final trees is used. This prevents the model from over-fitting.  
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 In general, the development of a boosted regression tree has 2 main steps: 1) creating 

residuals 2) building trees. While there are many important parameters that one can tweak 

to control this process, including the increment rate, two highly relevant tuning parameters 

which can be tweaked include the number of splits to be made or nodes allowed on the 

tree, as well as the number of trees to be fit (Elith, Leathwick, Hastie, 2008). One important 

item to recognize is that the boosted regression tree still relies on squared error loss. This 

is because the selection of splits is based on minimizing the residual sum of squares 

(RSS), just like in the simple regression tree case (Loughin, 2012). Since this is true, while 

we expect that the regression model developed using a boosted regression tree will 

perform better than the regression tree models for both linear and non-linear 

heteroscedastic data due to their use of a sequential, weighted, model building process, 

we do expect that boosted trees will still be sensitive to the presence of heteroscedasticity.  

3.2.7. Multivariate Adaptive Regression Splines (MARS)  

In general, regression trees are incredibly flexible but suffer from some serious draw 

backs. In particular, regression trees cannot produce smoothed regression functions. In 

an attempt to improve upon this, Multivariate Adaptive Regression Trees (MARS) were 

developed. MARS attempts to improve regression tree models by using hinge functions 

which allow it to produce smoothed regression prediction surfaces.  

 

During model fitting process, the MARS algorithm begins with a forward pass through the 

data. Within the forward pass, MARS starts with a model that simply represents the mean 

of the response values. MARS then repeatedly adds basis functions to the model in a 

stepwise manner. During this process, MARS splits the basis function such that the final 

split produces the largest drop in the overall sum of squared error. Then, during the 

backwards pass, MARS uses cross-validation in order to choose the best final model that 

has the lowest overall cross-validated residual sum of squares (Friedman, 1991).   

 

While the MARS algorithm proceeds differently than the classical regression model, the 

final MARS regression model still relies on the minimization of the sum of squared errors 

(Loughin, 2012). Thus, we expect that the MARS models will perform better on non-linear 

data than other models which require linearity, but will struggle overall when left to model 
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heteroscedastic data. We also note that the MARS model does attempt to do variable 

selection. Thus, we expect to see the MARS model improve the accuracy of its predictions 

as the number of explanatory variables with zero coefficients increases. 

3.2.8. Random Forests 

The creation of random forests was motivated by the desire to substantially improve upon 

the predictive accuracy of basic tree models (Breiman, 1996). In particular, for each tree, 

a random forest model chooses 𝑚 variables from all available explanatory variables in the 

regression tree randomly and then builds a regression tree using the randomly selected 

explanatory variables. (Loughin, 2012). To complete this process, within each regression 

tree, the random forest model also randomly splits variables, with the initial splitting 

process starting with a resample. After building a single regression tree, the random forest 

algorithm then repeats the process 𝑛 times, building many more regression trees using 

the same criteria for error minimization as the regression tree model. The final random 

forest then averages over the predicted values generated from the many regression trees 

that have been produced (Hastie, Tibshirani, & Friedman, 2009). 

 

Random forests represent a vast improvement over individual regression tree models and 

are “considered by many to be a primary tool for prediction (Loughin, 2012).” These 

models have also shown tremendous promise dealing with nonlinear data (Prinzie & Van 

Den Poel, 2008). Moreover, as Buhlmann (2010) points out, “there are virtually no 

competing methods which can so easily deal with high-dimensional continuous data 

yielding powerful predictions as well as information about variable importance.” 

Nonetheless, we do recognize that the random forest model relies on minimizing the sum 

of squared errors when deciding how to split the generated regression trees at each node 

and implicitly for estimating the mean within each terminal node of each tree. . Thus, we 

expect that the random forest model will perform similarly to the other classical regression 

techniques and struggle when modelling heteroscedastic data. However, we expect that 

its predictions will be better than those of other methods under conditions of nonlinearity.  
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3.2.9. Bayesian Additive Regression Trees (BART) 

Bayesian Additive Regression Trees (BART) represent a new tree model that was 

proposed by Chipman, George, and McCulloch (2010). This approach remains under 

active development, particularly the computational components. BART is an ensemble 

method that creates a linear combination of trees using a Bayesian approach. In particular, 

the BART algorithm specifies a prior for each tree, defines a likelihood using the sample 

data, and then uses Markov Chain Monte Carlo (MCMC) to make multiple draws from the 

posterior of the distribution and form a single regression tree. This process repeats itself 

many times depending on the number of trees that are specified in the model building 

step, with each new tree explaining slightly more of the total error in the model. This results 

in a final model which includes many trees, each which explain a small amount of the total 

overall error (Abu-Nimeh et al., 2008, Chipman, George, and McCulloch, 2010). 

 

BART has several interesting features which have led us to believe that it might perform 

well within our research. In particular, we note that BART conducts automatic variable 

selection while searching for models with highest posterior probabilities. Because of this, 

we hypothesize that BART may do well in situations where the number of explanatory 

variables is large and there are many zero coefficients (Chipman, George & McCulloch; 

1998, Chipman, George, Lemp & McCulloch, 2010; Wu, Tjelmeland, & West, 2007). 

Furthermore, since BART is a tree-based model, we expect that it may do well in situations 

where non-linearity is present. However, we are unsure of the impact that 

heteroscedasticity will have on the BART method and look forward to evaluating this within 

the context of our study. 

3.2.10. Neural Network 

Neural networks are considered to be one of “the premiere tools for automated prediction 

(Loughin, 2012).” In a neural network, simple nodes, called "neurons", are connected 

together to form a network which mimics a biological neural network. (Ripley, 1996). While 

neural networks have traditionally been used for classification tasks, they do have a clear 

application to regression problems (Duda, Hart & Stork, 2001; Secomandi, 2000; Damas 

et al, 2000). In particular, in regression, the neural network algorithm starts by randomly 

selecting weights and applying those weights to all explanatory variables. The weighted 
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explanatory variables then produce many different hidden nodes within a specified number 

of hidden layers. These nodes then are weighted using secondary weights to produce the 

final predictions. Once this process is completed, the neural network algorithm makes 

repeated passes between the original explanatory variables and the predicted values over 

the 𝑚  pre-defined hidden layers. After many iterations, the weights within the model 

converge using methods like gradient descent to settle on final optimized weights. The 

overall optimization goal in this context is to have the weights converge to values that 

minimize the overall sum of squared errors for the predicted values (Deng & Ferris, 2008; 

Rosenblatt, 1958).  

 

While neural networks are very popular, it is important to recognize that they have a 

number of drawbacks which temper their usefulness. For example, as Loughin points out, 

neural networks can be unstable, particularly when the data set is small (Loughin, 2012). 

This is because the use of a small dataset can deprive the model from having enough 

data to effectively tune the model weights. Furthermore, neural networks also require a 

fair amount of tuning in order to generate accurate results (Loughin, 2012). Because of 

these issues, we are unsure how neural networks will perform overall when used within 

the thesis. Nonetheless, since the process relies on minimization of the residual sum of 

squares, we expect that neural networks may perform similarly to other modern regression 

methods when faced with the task of predicting heteroscedastic data. 
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4. Exploring the Impact of Heteroscedasticity on 
Three Applied Regression Problems 

4.1. Analysis Goals 

Prior to the completion of a simulation, we analyzed three heteroscedastic datasets.  This 

initial exploration had a number of goals. The first goal was to understand the ways in 

which heteroscedasticity appears and is discovered in real data, while also observing how 

successfully transformations could be used to stabilize the variance. This would provide 

observational insights into the general trends observed both within and between 

regression methods. Insights gleaned from this work would also help provide guidance 

into the factors that should be varied within our proposed final simulation, which is 

designed to measure the impact of heteroscedasticity on the ten different modern 

regression methods described in the previous chapter. 

In addition to this, the other goal of the analysis was to understand the potential impact 

that an appropriate transformation would have on various performance measures. 

Conveniently, in all three cases, after visually inspecting the plots of the squared errors vs 

the predicted values generated from a random forest model that included all explanatory 

variables, the log transformation appeared to best resolve the heteroscedasticity. 

4.2. Data Description 

All three of the datasets used in Chapter 4 were found on the UCI Machine Learning 

Repository (Bache & Lichman, 2013). They were selected based on their containing 

apparent heteroscedasticity, as well as other features such as sample size and number of 

explanatory variables. The data sets are described below.   

4.2.1. Abalone Data 

The abalone dataset is a well-known machine learning dataset that challenges the user to 

predict the ages of abalone using physical measurements taken from a large sample of 

abalone shells (Nash, Sellers, Talbot, Cawthorn & Ford, 1994; Waugh, 1995). This dataset 
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was relatively clean and contained no missing values. Prior to analysis, the categorical 

variable SEX was removed. This was done because the LASSO cannot not explicitly deal 

with categorical predictors. Binary variables can be analyzed simply as an indicator 

variable, but SEX includes three levels of gender (male, female, and immature). It is 

unclear how this variable should be recoded as indicators. As such, we omitted gender 

from the analysis.  

Below is a full description of the variables that were used within the initial applied study: 

Table 4.1 Description of Abalone data 

Variable Name Type (levels) Description 

SEX Categorical (3) M, F, and I (infant) 

LENGTH Continuous Length in mm = the longest shell measurement 

DIAMETER Continuous Diameter in mm perpendicular to length 

HEIGHT Continuous Height in mm with meat in shell 

WHOLE_WEIGHT Continuous Weight of whole abalone in Grams 

SHUCKED_WEIGHT Continuous Weight of meat in Grams 

VISCERA_WEIGHT Continuous Gut weight in Grams (after bleeding)  

SHELL_WEIGHT Continuous Grams after being dried 

RINGS Integer +/- 1.5 gives the age in years 

4.2.2. Airfoil Data 

The airfoil data set is a unique data set that was processed originally by NASA in 1989. 

The dataset contains 1503 entries, 1 response variable (SCALED_SOUND), and 5 

explanatory variables (Brooks, Pope & Marcolini, 1989). All variables are shown in the 

chart below.  
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Table 4.2 Description of Airfoil Data 

Variable Name Type (levels) Description 

FREQUENCY Numeric Frequency (In Hertz) 

ANGLE_OF_ATTACK Numeric Angle of Attack (in Degrees) 

CHORD_LENGTH Numeric In Meters 

FREE_STREAM_VELOCITY Numeric In Meters / Second 

SUCTION_SIDE Numeric Suction Side Displacement Thickness (in Meters) 

SCALED_SOUND Numeric Scaled Sound Pressure Level, SPL1/3 (in Decibels) 

 

The data for this experiment was gathered from various tests done on two and three-

dimensional airfoil blades within a large wind tunnel. The full description of these 

experiments can be found in the original work & online (Brooks, Pope & Marcolini, 1989; 

Lopez, 2014). 

4.2.3. Bike Rentals Data 

The bike rentals data set gives the daily count of bikes that were rented in 2011 and 2012 

in the Capitalbikeshare System. This data also includes information such as weather and 

other seasonal factors. The original source of the data was the District Department of 

Transportation (DDOT) in Arlington County, Virginia. (Fanaee-T & Gama, 2013). 

 Many potentially important explanatory variables in the data set were categorical. Since 

removal of those variables would materially impact the regression outcomes, we decided 

instead to convert SEASON, YEAR, MNTH, HOLIDAY, WORKINGDAY, and 

WEATHERSIT into indicator variables. The baseline for each of these was chosen as the 

level which would most explain the variation of the response variable. For example, within 

SEASON, summer was chosen as the baseline since it was hypothesized that rentals of 

bikes would be significantly greater in summer than in other seasons. 

In addition to the use of indicators, a number of other changes were made. Prior to initial 

analysis, the variables INSTANT, as well as DTEDAY, were removed, as these were case-

identification variables and not considered relevant for the analysis. Additionally, working 

day was also removed, since this variable was perfectly collinear with WEEKDAY. 

Furthermore, since the REGISTERED and CASUAL explanatory variables summed to 
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give the total bike rental count, these two variables were removed from the experimental 

dataset and converted into a proportion showing the relative percentage of registered 

casual users who rented. Finally, within the WEATHERSIT category, category 4 was not 

observed in the dataset, and was thus removed. This made the WEATHERSIT variable a 

3-category variable, with level 1, or CLEAR, being chosen as the baseline. For reference, 

below is the full description of the bike rentals dataset (Fanaee-T & Gama, 2013):  

Table 4.3 Description of Bike Rentals Data 

Variable Name Type (levels) Description 

INSTANT Numeric Record Instant 

DTEDAY Numeric Date 

SEASON Categorical (4) Season (1:springer, 2:summer, 3:fall, 4:winter)  

YR Categorical (2) Year (0: 2011, 1:2012)  

MNTH Categorical (12) mnth : month ( 1 to 12)  

HOLIDAY Categorical (2) holiday : weather day is holiday or not (extracted 
from [Web Link]) 

WEEKDAY Categorical (7) weekday : day of the week  

WORKINGDAY Categorical (2) workingday : if day is neither weekend nor holiday is 1, 
otherwise is 0 

WEATHERSIT Categorical (4) - 1: Clear, Few clouds, Partly cloudy, Partly cloudy  
- 2: Mist + Cloudy, Mist + Broken clouds, Mist + Few 
clouds, Mist  
- 3: Light Snow, Light Rain + Thunderstorm + Scattered 
clouds, Light Rain + Scattered clouds  
- 4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, 
Snow + Fog 

TEMP Continuous temp : Normalized temperature in Celsius. The values 
are divided to 41 (max) 

ATEMP Continuous atemp: Normalized feeling temperature in Celsius. The 
values are divided to 50 (max)  

HUM Continuous hum: Normalized humidity. The values are divided to 100 
(max) 

WINDSPEED Continuous windspeed: Normalized wind speed. The values are 
divided by 67 (max) 

CASUAL Continuous casual: count of casual users 

REGISTERED Continuous registered: count of registered users 

CNT Continuous cnt: count of total rental bikes including both casual and 
registered 

http://dchr.dc.gov/page/holiday-schedule
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4.3. Exploring Heteroscedasticity 

Prior to model fitting, the squared residuals were plotted against the predicted values 

generated from a random forest model. The random forest model was chosen because of 

its ability to cope with non-linearity and thus more effectively isolate heteroscedasticity 

from other potential model flaws. In general, all three plots showed an increasing trend, 

indicating that the error variance was increasing with the mean in each case.   

Figure 4.1 shows the output of our initial data exploration, in particular the squared errors 

versus the predicted values generated from a random forest model using all explanatory 

variables. As can be observed in Figure 4.1, each of the three sample data sets seemed 

to show different forms of heteroscedasticity. 

 

Figure 4.1 Plots Showing the Squared Errors versus the Predicted Values 
Generated From a Random Forest Model Pre Transformation 

After plotting the data, five possible variance stabilizing transformations were considered: 

log, inverse, square root, quarter root, and squared. Note that the squared transformation 

was not fully considered because, when the variance increases with the mean, the use of 

the square transformation increases the heteroscedasticity that is present. After visually 

inspecting the squared error vs predicted plots for all possible variance stabilizing 

transformations, we produced an initial diagnosis on the appropriate variance stabilizing 

transformation to be applied to each data set. We also determined that the log 

transformation most effectively resolved the heteroscedasticity present in each of the three 

different data sets. The post-transformation residual plots, generated after a log 
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transformation was applied to the response variable 𝑌, are shown in Figure 4.2. The red 

loess curve was used as a visual check to help determine which variance stabilizing 

transformation most effectively resolved the heteroscedasticity present.  

 

Figure 4.2 Plots Showing the Squared Errors versus the Predicted Values 
Generated From a Random Forest Model Post Log Transformation 

Based on this work, the log transformation was chosen to be used as the focal 

transformation within the final research simulation. 

4.4. Analysis Results  

After exploring heteroscedasticity, each data set was analyzed using the ten different 

regression methods discussed in Chapter 3. During this analysis, we had two main goals: 

(1) compare the predictive abilities of the ten selected regression methods, and (2) assess 

whether the use of a variance stabilizing transformations might improve the predictive 

ability of various methods. To complete the analysis, we measured predictive ability by 

splitting the data set into a training set and a test set, each containing 50% of the total 

sample. Each method was applied to the training set in order to generate an estimate of 

the model parameters. The test data were then predicted using the estimated model. 

Importantly, for every data set, we re-randomized the split of the training and test set 100 

times in order to reduce the effects of the random split. We also compared the predictions 

with and without a variance stabilizing method. Thus, for every regression method, 200 

performance measures were obtained for the method on each data set, 100 generated 
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using the non-transformed data and 100 generated using the transform variance stabilized 

data. 

During these experiments, we used two main performance measures: mean squared 

prediction error and median absolute deviation (MAD). The MSPE was chosen based on 

its pervasiveness in industry as a measurement standard. On the other hand, the MAD 

was chosen based on its resistance to extreme prediction errors which have a more 

significant influence on the MSPE than MAD. 

4.4.1. Mean Squared Prediction Error 

The Mean Squared Prediction Error (MSPE) measures the squared distance between the 

predicted value generated from a particular regression method and an actual value. The 

formula for the MSPE is listed below:  

𝑀𝑆𝑃𝐸 = [
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1

𝑛
] 

In this model, 𝑦𝑖 is the actual value of the 𝑖𝑡ℎ observation and �̂�𝑖 is the predicted value 

generated by the modern regression method under consideration.  

4.4.2. Median Absolute Deviation 

As we noted previously, the mean is potentially sensitive to skewness and may not be 

robust to outliers. Because of this, another more effective performance measure may need 

to be used. A measure that we selected is the median absolute deviation, or MAD. In 

general, the MAD can be expressed using the following notation: 

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛[|𝑦𝑖 − �̂�𝑖|] 

In this model, 𝑦𝑖 is the actual value of the 𝑖𝑡ℎ observation and �̂�𝑖 is the predicted value 

generated by the modern regression method under consideration. 
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4.4.3. Abalone Dataset 

MSPE Analysis 

Figure 4.3 shows a boxplot of the MSPE that was generated after each of the 10 different 

methods were applied to the transformed and untransformed abalone data. After running 

100 randomized data splits for each method, both BART and the random forest model 

were most effective at generating small prediction errors, with others being close behind.  

The mean MSPE for untransformed data was similar for the four methods based on a 

linear regression model. Interestingly, the mean MSPEs computed using the transformed 

data were noticeably greater for these same models, and the distribution of MSPE values 

had a much longer right tail than with original data. This observation provided initial support 

for the argument that, when the MSPE is used as the performance measure, the log 

transformation does not efficiently transform away the heteroscedasticity in a manner that 

allows these methods to perform better. This finding will be explored further within the 

simulation study.   
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Figure 4.3 Summary of MSPE – Abalone Data 

One interesting point of concern relates to the few extremely small MSPE values that were 

obtained using the random forest output. These values were not explained as of this 

writing, and will be included in future research. Our initial hypotheses was that these 

values were caused by a computing error. Unfortunately, this hypotheses was checked 

exhaustively and no immediately recognizable computational errors were found. 

Overall, as is shown in Figure 4.3, the use of a variance stabilizing transformation seemed 

to have little impact on the predictive accuracy of the modern regression methods that we 

reviewed, including BART, NNET, Random Forest, Boosting, and MARS. This provides 

some initial support for the argument that these more modern methods may perhaps be 

able to make accurate predictions in the presence of heteroscedasticity. This also provides 

support for the argument that these methods may perform well regardless of the shape of 

the 𝑋 − 𝑌 relationship.  



 

25 

MAD Analysis 

Figure 4.4 shows the results from the MAD analysis of the abalone data. When using the 

MAD, no method seemed to outperform other methods for this particular dataset. 

Moreover, in every case, we note that the transformed datasets had a slightly lower MAD 

than the non-transformed dataset. This observation was the opposite of what was 

observed in the case of the MSPE, and may indicate that there were a few poorly-predicted 

values in the transformed data that resulted in the generation of very large squared errors.   

 

Figure 4.4 Summary of MAD – Abalone Data 

Based on this analysis, a few conclusions can be drawn. Firstly, it is interesting to see 

that, for some methods, both the MAD and MSPE give directionally opposite conclusions 

regarding the impact that a variance stabilizing transformation has on the performance 

measure. This may support our hypotheses from the MSPE section that the MSPE is 

simply not robust to heteroscedasticity. More broadly, this conclusion also suggests that 

care must be taken around the selection of a performance measure prior to analysis, 

particularly if one does not have the luxury of testing or comparing different statistical 

methods during analysis. 
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4.4.4. Airfoil Dataset 

MSPE Analysis 

Analysis of the MSPE output from the airfoil dataset yielded interesting results. As is 

shown in Figure 4.5, there were identified differences in the predictive effectiveness 

between the ten different methods evaluated. In particular, for both the transformed 

(variance stabilized) and untransformed data, BART outperformed the other methods of 

analysis. Furthermore, random forests also outperformed the remaining methods, despite 

returning a MSPE that was on average double the MSPE generated through the BART 

models. In fact, a close inspection of the MSPE statistics shows that in every case other 

than Boosting, methods that relied specifically on linearity seemed to significantly 

underperform the other methods which did not. Moreover, methods like the LASSO, ridge 

regression, stepwise regression, and classical linear regression, performed nearly 

identically for all cases, and showed no noticeable difference between the transformed 

and untransformed cases. 
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Figure 4.5 Summary of MSPE – Airfoil 

The other major observation that came out of the initial analysis dataset relates to the 

issue of transformations and proper transformation selection. As is noted in Figure 4.5, for 

this dataset, both the transformed and non-transformed datasets showed no visually 

obvious differences in their performance. This suggests that potentially, for this dataset, 

the transformation itself that we determined to be optimal has in fact no ability to resolve 

the apparent heteroscedasticity. 

MAD Analysis 

Results from the analysis of the median absolute deviation study are shown in Figure 4.6. 

These results mirror the conclusions obtained from the MSPE analysis. For this case, the 

BART models produced lower MAD values than all other methods that that were 

considered. This performance is consistent between the variance stabilized data and non-

transformed dataset.  
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Figure 4.6 Summary of MAD – Airfoil 

4.4.5. Daily Bike Rental Dataset 

MSPE Analysis 

The final dataset that we considered was the bike rental dataset. In general, the MSPE 

analysis of the bike rental dataset produced findings that were consistent with the MSPE 

analysis of the Abalone data. As is shown in the output, large differences were observed 

between the output derived from using variance stabilized data and the non-transformed 

dataset. Interestingly, the transformation actually increased the total mean squared 

predictive error when compared with the non-transformed dataset for linear regression, 

ridge, subset, and the LASSO. This suggests that, particularly when a linear model is 

used, the use of a variance stabilizing transformation actually made the model fit worse. 
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Figure 4.7 Summary of MSPE – Daily Bike Rentals Data 

Finally, while BART and the random forest models seemed to perform somewhat better 

than most other methods, the differences were not as stark as in the other data sets.  

MAD Analysis 

Figure 4.8 shows the summary of the analysis generated by using the MAD. As is evident 

from visual inspection, the MAD analysis followed a similar pattern as the MSPE analysis 

for this particular dataset. 
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Figure 4.8 Summary of MAD – Daily Bike Rentals Data 

4.4.6. Overall Conclusions 

The significant time spent working on these three individual datasets was extremely 

beneficial both in terms of an exercise in regression, and as a precursor to the simulation. 

We observed that modern regression methods that rely on linearity within the model 

seemed to perform more poorly than the tree based methods and other modern regression 

methods. In fact, in all cases, BART seemed to outperform other methods, with the random 

forest model coming in second. This result held on both the MAD and MSPE analysis 

across the three data sets, suggesting that fundamentally, these two methods may be able 

to deal most effectively with data that is heteroscedastic and / or non-linear.  
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5. Simulation Study 

5.1. Simulation Objective 

In Chapter 4, our analysis of three different data sets revealed some interesting patterns. 

Unfortunately, none of the work in that section allowed us to generalize or control for any 

of the various factors that might have been confounding the success of the ten different 

regression methods that were evaluated. Thus, in order to address this gap, a simulation 

has been designed that examines the performance of each of the ten different modern 

regression techniques.  

5.2. Cases Selected & Simulation Models 

During the simulation, two distinct cases were tested. 

5.2.1. Case 1: Heteroscedastic, Non-Linear Simulation Data 

Case 1 represents data that was heteroscedastic, non-linear, and which was generated 

using the log normal distribution. 

𝑌 = 𝑒𝑥𝑝(𝑋𝛽 + 𝜀), 𝜀 ~ 𝑁(0, 𝜎2) 

The expected value is the value against which all predicted values are compared using 

the mean squared error and the median absolute deviation. The model for the expected 

value of case one is listed below: 

𝐸(𝑌) = 𝑒𝑥𝑝 (𝑋𝛽 + (
𝜎2

2
)) 

5.2.2. Case 2: Heteroscedastic, Linear Simulation Data 

Case 2 represents data that was originally generated as heteroscedastic and linear. This 

is a particularly interesting case for our simulation, because the use of a log transformation 

as a variance stabilizing transformation results in the destruction of linearity. Below is the 

model used to represent the heteroscedastic, nonlinear simulation data: 
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𝑌 = 𝑋𝛽 + 𝜀, 𝜀 ~ 𝑁(0, 𝜎2(𝑋𝛽)2) 

The variance 𝜎2(𝑋𝛽)2 was selected because, when the variance is proportional to the 

square of the mean, the log transformation can be used to stabilize the variance. The 

expected value of this simulation model can be stated as: 

𝐸(𝑌)  =  𝑋𝛽 

5.3. Simulation Factors 

During the simulation, for each of the two cases, we varied 3 distinct factors. These factors 

were determined after conducting an extensive literature review of published work and 

reviewing the output from the three data sets that we analyzed in Chapter 4. For our 

simulations, we varied the number of explanatory variables, the sparsity of the explanatory 

variables (i.e., the fraction with non-zero coefficients), and the signal-to-noise ratio within 

the simulated data. Scenarios which were sparse had the last 80% of their regression 

coefficients 𝛽𝑗 set to 0. On the other hand, scenarios that were not sparse had all of their 

regression coefficients set to the 𝛽 value indicated in Tables 5.1 and 5.2. 

For each simulation, the number of explanatory variables was set at either 10 or 100. The 

level 10 was selected because it was similar to the number of explanatory variables found 

in the three data sets that we explored in Chapter 4. The level 100 was selected based on 

our desire to approximate a medium- to large-dimension data set. For all simulation cases, 

the correlation between any pair of explanatory variables 𝑋𝑗 and 𝑋𝑘 was 𝜌|𝑗−𝑘| with 𝜌 =

0.8. The signal-to-noise ratio (SNR) within the simulation had two levels, 1 or 5. In order 

to generate data with an accurate signal to noise ratio, the intercept of the simulated data, 

𝛽
0
, the common value for all non-zero regression coefficients, 𝛽, and the value of 𝜎 were 

varied for each of the 16 experimental scenarios. Tables 5.1 and 5.2 provide the simulation 

settings that were used for case 1 and case 2. For each simulation setting, 50 data sets 

were generated, each containing 1000 observations. Only 50 simulations were run due to 

the fact that that computational time required to run some of the more advanced methods 

was significant. 
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Table 5.1 Table Illustrating Simulation Settings for Case 1 Simulations 

Scenario  Linearity P SNR Sparsity 𝝈 𝜷 𝜷𝟎 

1 Non-Linear 10 1 Not 0.3 0.04 0.8 

2 Non-Linear 10 5 Not 0.13 0.04 0.8 

3 Non-Linear 10 1 Sparse 0.32 0.18 0.8 

4 Non-Linear 10 5 Sparse 0.15 0.18 0.8 

5 Non-Linear 100 1 Not 0.3 0.01 0.8 

6 Non-Linear 100 5 Not 0.13 0.01 0.8 

7 Non-Linear 100 1 Sparse 0.245 0.02 0.8 

8 Non-Linear 100 5 Sparse 0.11 0.02 0.8 

Table 5.2 Table Illustrating Simulation Settings for Case 2 Simulations 

Scenario Linearity P SNR Sparsity 𝝈 𝜷 𝜷𝟎 

9 Linear 10 1 Not 0.23 0.1 3 

10 Linear 10 5 Not 0.1 0.1 3 

11 Linear 10 1 Sparse 0.25 0.4 3 

12 Linear 10 5 Sparse 0.11 0.4 3 

13 Linear 100 1 Not 0.21 0.02 3 

14 Linear 100 5 Not 0.09 0.02 3 

15 Linear 100 1 Sparse 0.27 0.065 3 

16 Linear 100 5 Sparse 0.12 0.065 3 

5.4. Performance Measures 

The two performance measures of test error were the mean squared error (MSE) and the 

median absolute deviation (MAD). These measures calculated the difference between the 

predicted values generated by the various methods, and the expected value that was 

calculated using the mean of the distributions as noted in Section 5.2. 
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5.5. Computational Details 

The simulations were programmed using R, a statistical programming language. Table 5.3 

shows the statistical packages and functions that were used during the simulation. The 

settings described were the same settings used in Chapter 4 for each of the three applied 

machine learning data sets. With all functions, the default settings were used, except as 

listed in Table 5.3 under the column titled “Customized Parameter Settings”. 

Table 5.3 Table Illustrating R Computational Settings for Each of the 16 
Different Simulations That Were Run 

Model R Function Used Customized Parameter Settings 

Linear 
Regression 

stats::lm() None 

Ridge 
Regression 

MASS::lm.ridge() lambda = seq(0,50,0.01) 

Subset 
Regression 

MASS::stepAIC() direction = "backward" 

LASSO lars::lars() cv.lars() was used for cross-validation 

Regression 
Tree 

rpart::rpart() method = “anova” 

MARS earth::earth() nfold = 10, pmethod = "backward" 

Random 
Forest 

randomForest::randomFore
st() 

ntree = 500 

Boosted 
Trees 

gbm::gbm() distribution="gaussian", n.trees = 5000, interaction.depth = 5, 
shrinkage = 0.001, bag.fraction = 0.5, cv.folds=10 

Neural Net nnet::nnet() preProcess="range"; trace=FALSE;                               
tuneGrid=expand.grid(.size=c(1,2,5,10),.decay=c(0,0.001,0.1,

1) 

BART bartMachine::bartMachine() bartMachineCV() was not used due to computational intensity 
but is recommended 

5.6. Overall Simulation Results 

Below is the summary of overall simulation results. The red, bolded text highlights the cells 

which had the best performance measure for a given scenario. 
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5.6.1. Tabular View of Overall Simulation Results 

Table 5.4 Table Illustrating The Average Mean Squared Error Results For The 
Heteroscedastic Non-Linear Simulations (Scenarios 1 through 8). 

  Scenario 

Method Status 1 2 3 4 5 6 7 8 

Linear Regression 

Transformed 0.13 0.04 0.15 0.05 0.26 0.10 0.20 0.08 

Untransformed 0.17 0.15 0.22 0.20 0.29 0.17 0.21 0.12 

Ridge Regression 

Transformed 0.13 0.03 0.16 0.05 0.22 0.08 0.17 0.07 

Untransformed 0.17 0.15 0.22 0.20 0.25 0.16 0.18 0.11 

Subset Regression 

Transformed 0.14 0.04 0.15 0.04 0.25 0.11 0.18 0.07 

Untransformed 0.18 0.15 0.22 0.20 0.28 0.18 0.19 0.12 

LASSO 

Transformed 0.13 0.04 0.15 0.04 0.22 0.09 0.13 0.05 

Untransformed 0.17 0.15 0.22 0.20 0.23 0.16 0.14 0.10 

Regression Tree 

Transformed 0.40 0.33 0.35 0.28 0.67 0.54 0.37 0.30 

Untransformed 0.40 0.32 0.35 0.26 0.69 0.55 0.38 0.30 

MARS 

Transformed 0.20 0.07 0.19 0.07 0.43 0.18 0.3 0.11 

Untransformed 0.21 0.10 0.20 0.09 0.47 0.21 0.33 0.12 

Random Forest 

Transformed 0.44 0.19 0.49 0.23 0.48 0.25 0.36 0.17 

Untransformed 0.45 0.19 0.50 0.23 0.49 0.24 0.37 0.17 

Boosted Tree 

Transformed 0.21 0.10 0.24 0.12 0.30 0.23 0.18 0.10 

Untransformed 0.19 0.11 0.21 0.12 0.31 0.22 0.19 0.10 

Neural Net 

Transformed 0.15 0.06 0.17 0.08 0.29 0.12 0.22 0.09 

Untransformed 0.18 0.13 0.23 0.17 0.37 0.19 0.28 0.14 

BART 

Transformed 0.21 0.10 0.24 0.12 0.29 0.16 0.20 0.10 

Untransformed 0.23 0.12 0.27 0.15 0.31 0.18 0.20 0.11 

As noted in Table 5.4, for all cases where the original data was heteroscedastic and non-

linear, using the mean squared error (MSE) as a performance measure, the log 
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transformed LASSO consistently outperformed nearly all other methods & was the best 

method on average. The MSE generated by predictions from the linear regression model, 

ridge regression, and subset regression, all seemed to perform similarly to the LASSO. 

One troubling observation, which was identified in case 1, was the weak performance of 

the random forest model. This model was expected to perform well, particularly when 

required to model and predict non-linear data. An investigation into the causes of this poor 

performance is set for future work. 

Table 5.5 Table Illustrating Median Absolute Deviation Results for the 
Heteroscedastic Non-Linear Simulations (Scenarios 1 through 8). 

  Scenario 

Method Status 1 2 3 4 5 6 7 8 

Linear Regression 

Transformed 0.10 0.02 0.11 0.03 0.16 0.06 0.13 0.05 

Untransformed 0.09 0.08 0.12 0.11 0.19 0.10 0.14 0.07 

Ridge Regression 

Transformed 0.10 0.02 0.11 0.03 0.14 0.05 0.11 0.04 

Untransformed 0.09 0.08 0.12 0.11 0.16 0.09 0.12 0.07 

Subset Regression 

Transformed 0.10 0.02 0.11 0.03 0.16 0.07 0.12 0.05 

Untransformed 0.10 0.08 0.12 0.11 0.18 0.10 0.13 0.07 

LASSO 

Transformed 0.10 0.02 0.11 0.03 0.13 0.06 0.08 0.03 

Untransformed 0.09 0.08 0.12 0.11 0.14 0.09 0.09 0.05 

Regression Tree 

Transformed 0.24 0.19 0.19 0.15 0.40 0.33 0.23 0.19 

Untransformed 0.25 0.20 0.21 0.16 0.44 0.36 0.24 0.19 

MARS 

Transformed 0.12 0.03 0.11 0.03 0.25 0.10 0.18 0.06 

Untransformed 0.11 0.05 0.07 0.04 0.29 0.13 0.20 0.07 

Random Forest 

Transformed 0.28 0.11 0.30 0.13 0.30 0.15 0.24 0.11 

Untransformed 0.27 0.11 0.29 0.13 0.28 0.15 0.23 0.11 

Boosted Tree 

Transformed 0.12 0.05 0.13 0.05 0.17 0.12 0.11 0.06 

Untransformed 0.10 0.05 0.09 0.05 0.17 0.14 0.11 0.06 

Neural Net Transformed 0.10 0.03 0.11 0.04 0.18 0.07 0.14 0.05  
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Untransformed 0.10 0.03 0,13 0.09 0.24 0.11 0.19 0.08 

BART 

Transformed 0.13 0.06 0.14 0.06 0.17 0.10 0.12 0.06 

Untransformed 0.11 0.06 0.13 0.06 0.18 0.11 0.12 0.07 

As noted in Table 5.5, for all cases where the original data was heteroscedastic and non-

linear, using the median absolute deviation (MAD), the log transformed LASSO seemed 

to produce the lowest MAD on average. For each linear-regression-based methods, the 

log transformation resulted in a lower mean MSE in all but one scenario.  Transformation 

also seemed to help the neural nets (six out of eight scenarios) and the regression tree 

(all eight scenarios). 

Table 5.6 Table Illustrating Average Mean Squared Error Results for the 
Heteroscedastic Linear Simulations (Scenarios 9 through 16). 

  Scenario 

Method Status 9 10 11 12 13 14 15 16 

Linear Regression 

Transformed 0.19 0.16 0.20 0.17 0.24 0.12 0.35 0.21 

Untransformed 0.07 0.03 0.08 0.04 0.20 0.09 0.26 0.12 

Ridge Regression 

Transformed 0.18 0.16 0.20 0.17 0.20 0.11 0.31 0.19 

Untransformed 0.06 0.03 0.07 0.04 0.17 0.07 0.22 0.10 

Subset Regression 

Transformed 0.20 0.16 0.20 0.17 0.23 0.13 0.32 0.20 

Untransformed 0.09 0.03 0.06 0.03 0.19 0.10 0.23 0.10 

LASSO 

Transformed 0.19 0.16 0.19 0.16 0.18 0.11 0.23 0.17 

Untransformed 0.07 0.03 0.05 0.03 0.14 0.08 0.14 0.07 

Regression Tree 

Transformed 0.40 0.34 0.30 0.24 0.55 0.46 0.52 0.42 

Untransformed 0.38 0.33 0.28 0.23 0.54 0.45 0.51 0.42 

MARS 

Transformed 0.19 0.09 0.17 0.06 0.37 0.17 0.48 0.18 

Untransformed 0.18 0.07 0.14 0.05 0.36 0.15 0.44 0.16 

Random Forest 

Transformed 0.42 0.18 0.46 0.20 0.41 0.20 0.53 0.24 

Untransformed 0.42 0.18 0.45 0.20 0.40 0.20 0.51 0.24 
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Boosted Tree 

Transformed 0.18 0.09 0.20 0.09 0.23 0.18 0.28 0.14 

Untransformed 0.17 0.10 0.16 0.09 0.22 0.18 0.25 0.14 

Neural Net 

Transformed 0.13 0.07 0.14 0.08 0.33 0.15 0.45 0.15 

Untransformed 0.08 0.03 0.10 0.04 0.28 0.11 0.39 0.16 

BART 

Transformed 0.20 0.10 0.23 0.10 0.24 0.14 0.30 0.15 

Untransformed 0.19 0.11 0.20 0.11 0.23 0.14 0,26 0.15 

As observed in Table 5.6, when the original data is heteroscedastic and linear, and the 

MSE is used as a performance measure, the LASSO applied to the untransformed data 

delivered the lowest MSE on average across all cases. This is because the use of a log 

transformation on the heteroscedastic, linear data would have destroyed linearity in the 

sample. This conclusion fits with our initial hypotheses that the untransformed data would 

most effectively be modelled using linear modelling methods. Interestingly, the more 

flexible modern methods generally had numerically lower MSE with the untransformed 

data, contrary to our initial beliefs.  This is especially evident for the neural net. 

Table 5.7 Table Illustrating Median Absolute Deviation Results for the 
Heteroscedastic Linear Simulations (Scenarios 9 through 16). 

  Scenario 

Method Status 9 10 11 12 13 14 15 16 

Linear Regression 

Transformed 0.14 0.09 0.16 0.10 0.16 0.08 0.23 0.12 

Untransformed 0.05 0.02 0.05 0.02 0.14 0.06 0.18 0.08 

Ridge Regression 

Transformed 0.14 0.09 0.16 0.10 0.14 0.07 0.2 0.11 

Untransformed 0.04 0.02 0.05 0.02 0.11  0.05 0.15 0.06 

Subset Regression 

Transformed 0.14 0.09 0.16 0.10 0.15 0.08 0.21 0.11 

Untransformed 0.06 0.02 0.04 0.02 0.13 0.07 0.16 0.07 

LASSO 

Transformed 0.14 0.09 0.17 0.10 0.12 0.07 0.18 0.10 

Untransformed 0.05 0.02 0.04 0.02 0.10 0.05 0.09 0.04 

Regression Tree 

Transformed 0.26 0.22 0.20 0.16 0.37 0.31 0.35 0.28 

Untransformed 0.25 0.22 0.19 0.15 0.36 0.30 0.34 0.28 
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MARS 

Transformed 0.11 0.05 0.11 0.04 0.23 0.11 0.29 0.11 

Untransformed 0.09 0.03 0.05 0.02 0.23 0.10 0.27 0.10 

Random Forest 

Transformed 0.26 0.12 0.28 0.13 0.26 0.13 0.32 0.15 

Untransformed 0.27 0.12 0.29 0.13 0.27 0.14 0.33 0.16 

Boosted Tree 

Transformed 0.11 0.06 0.12 0.05 0.14 0.12 0.16 0.08 

Untransformed 0.10 0.06 0.09 0.05 0.15 0.12 0.15 0.09 

Neural Net 

Transformed 0.09 0.04 0.11 0.04 0.21 0.09 0.27 0.09 

Untransformed 0.05 0.02 0.06 0.02 0.18 0.08 0.27 0.11 

BART 

Transformed 0.13 0.06 0.14 0.06 0.16 0.09 0.19 0.09 

Untransformed 0.11 0.06 0.12 0.06 0.15 0.09 0.17 0.09 

As noted in Table 5.7, for most scenarios where the original data was heteroscedastic and 

linear, the untransformed LASSO seemed to produce the lower MAD on average. The 

transformation had a less clear effect on the mean MAD values for the more flexible 

methods than it had on the MSE.  . 

5.7. Specific Simulation Results  

5.7.1 Heteroscedastic, Non-Linear Data 

When the sample data was heteroscedastic and non-linear, and the number of 

explanatory variables was 10, the use of a variance stabilizing transform resulted in the 

linear, ridge, subset, and LASSO models outperforming the other models. The only other 

modern regression method that was comparable in terms of minimizing the squared error 

was the BART model applied to the transformed data. In general, these trends held 

constant in cases 1 through 4, regardless of the value of the signal to noise ratio that was 

used or the sparsity. 
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Figure 5.1 Summary of Heteroscedastic, Non-Linear Simulation Output 

On the other hand, when the number of explanatory variables was 100 in the same data 

structure, the use of a variance stabilizing transform resulted in ridge regression and the 

LASSO models outperforming the other methods that were evaluated. In general, these 

trends held constant in cases 5 through 8 when the number of explanatory variables was 

set to 100. This trend also held regardless of the signal to noise ratio that was used or 

whether sparsity that was applied. These trends help reinforce the general conclusion that 

a positive effect was observed from the use of a transformation in this case. In fact, all 

methods, seem to prefer both linearity and equal variance when the number of explanatory 

variables is large. 

5.7.1 Heteroscedastic, Linear Data 

When the data was heteroscedastic and linear, and the number of explanatory variables 

was held at 10, the linear, ridge, subset, and LASSO models outperformed the other 

models when applied to the non-transformed data. This is illustrated generally in Figure 

5.2. The only other modern regression technique that comparable in terms of minimizing 

the squared error was the BART model. In general, these trends held constant in cases 9 

through 12, regardless of the value of the signal to noise ratio that was used or the sparsity 

level. 
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Figure 5.2 Summary of Heteroscedastic, Linear Simulation Output 

When the number of explanatory variables was held at 100, the LASSO model, when 

applied to the non-transformed data generally outperformed all other models. This trend 

held in cases 13 through 16, regardless of the value of the signal to noise ratio that was 

used or the sparsity level applied. All linear methods performed better on the 

untransformed data, although the differences were smaller than in the scenarios with 

fewer variables.  None of the modern methods are competitive with the linear-based 

methods, even when all are applied to transformed data that is nonlinear.  This result was 

unexpected.  

5.7.2 Comparison of Number of Explanatory Variables 

The change in the number of explanatory variables produced differing results. For 

example, when the number of explanatory variables in the model was set at 100, the 

LASSO, which uses variable selection, consistently outperformed the other methods. This 

trend held consistent in all cases where the same settings were used and the only 

differences were the number of explanatory variables. 

5.7.3 Comparison of the Impact of Differing SNR Ratios 

When the signal to noise ratio was increased, little change was observed in terms of the 

ranking of the most successful methods. That said, when the signal to noise ratio was 5, 
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the simulation outputs for each of the methods had overall lower MSE and MAD’s. This 

trend held true across all cases where the model factors were held constant and the only 

differences between the experimental set-up was the signal to noise ratio. 

5.7.4 Comparison of MAD vs MSE 

During each of the simulations, two different performance methods were used – the MAD 

and the MSE. When the number of explanatory variables was 10, the use of the MAD 

provided less clarity on which method produced the lowest overall error. In fact, for the 

linear, ridge, subset, and LASSO methods, the performance of these measures on both 

the transformed and untransformed data was similar. On the contrary, the MSE analysis 

suggested that a variance stabilizing transformation produced the best result for the linear, 

ridge, subset, and LASSO models. The performance of MARS was also different when 

the MAD versus the MSE was used. These observations highlight the importance of 

selecting the correct performance measure before analysis, and were observations that 

were similarly observed in scenarios 1 through 4 during the simulations. 
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6 Conclusion and Future Work 

This thesis sought to clarify the impact that heteroscedasticity had on the predictive 

effectiveness of modern regression methods. In order to achieve this objective, we utilized 

both simulation and applied analysis. In particular, we began by analyzing the ability of 

ten different modern regression methods to predict outcomes for three medium-sized data 

sets that each featured heteroscedasticity. During this analysis, we attempted to 

understand the nature of the heteroscedasticity present, consider possible models for it, 

and, where appropriate, apply transformations to reduce its apparent magnitude. 

Following this, we used insights provided from this work to develop simulation experiments 

that explore the impact that various factors have on the prediction accuracy of our ten 

different regression methods. To close the thesis, in Section 6.1, we summarize the main 

difficulties and challenges we faced and discuss conclusions gleaned from both the 

exploratory data studies and the simulation methods. Section 6.2 discusses some project 

limitations and future research opportunities which are planned. 

6.1 Conclusion 

In Chapter 4, we started by analyzing three individual data sets. When analyzing these 

data sets, we observed that, in most cases, modern regression methods which rely on 

linearity seemed to perform worse than the tree based ensembles and other regression 

methods. In fact, we found that in all three cases, BART seemed to outperform other 

methods, with the random forest model coming in second. From this conclusion, it seems 

that both BART and random forests were set up to most effectively deal with data that is 

heteroscedastic and non-linear. Unfortunately, as was previously noted, the random forest 

model did not perform well in our simulations. This is something that will definitely be 

investigated as part of future research.  

Additionally, when analyzing the three data sets, we noted that differences in predictive 

accuracy did sometimes exist when methods were applied to data that was transformed 

using a best-guessed variance stabilization method versus untransformed data. In the 

airfoil and bike rentals data, we found that the use of a variance stabilizing transformation 

actually increased the overall error. This conclusion is important, and reinforces the point 
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that practitioners in industry and academia cannot always rely on a variance stabilizing 

transformation to resolve heteroscedasticity and improve prediction accuracy. Finally, for 

the three applied data sets, we observed that most of the tree models and other modern 

regression methods produced similar predictions regardless of whether a variance 

stabilizing transformation had been used. This suggests that predictions from those 

methods are not impacted by the use of a variance stabilizing transformation.  

While the three data sets did not allow us to generalize our findings, the simulation output 

did produce some interesting results. For example, as we expected, methods that assume 

linearity perform best when the data in question is linear. Our simulations suggested that, 

if a variance stabilizing transformation can be identified that simultaneously linearizes the 

relationship between X and Y, then linear methods, including classical regression, ridge 

regression, stepwise regression, or the LASSO, return the best predictions. On the other 

hand, as expected, when a variance stabilizing transformation ruins linearity, regression 

methods that rely on the assumption of linearity fail. This suggests that analysts must 

remain concerned about understanding the linearity of their data sets and the potential 

impact that a variance stabilizing transformation can have on their data before a 

regression method is applied. This recommendation applies not only to traditional linear 

regression approaches, but also to other more modern methods including BART which 

performed similarly. 

Overall, these results have some important implications for practitioners. Firstly, as we 

discussed in Chapter 3, most of the various newer modern regression techniques do not 

implicitly account for heteroscedasticity. However, we did not find clear evidence that 

heteroscedasticity has an impact on the predictive effectiveness of these methods. On the 

other hand, we found a slight suggestion that many of the modern methods we explored 

seem to prefer linearity rather than homoscedasticity. This was contrary to expectation. 

6.2 Limitations and Future Work 

Overall, there are a number of limitations that existed within our work. Firstly, the largest 

limitation relates to the type of model that we used. In our Chapter 5 simulations, we only 

used two regression models, linear and non-linear. This should be addressed in future 

work and expanded to generate a more encompassing set of models. Secondly, we only 
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used one model of heteroscedasticity, in which the variance was proportional to the 

squared mean. Thirdly, within the simulations themselves, we only used a limited subset 

of factors. For example, we only looked at a single case of sparsity, and only varied the 

number of explanatory variables using 2 levels – 10 and 100. It is very possible that our 

conclusions could change as the number of variables increase beyond 100, or sit between 

10 and 100. In general, this is something that should be addressed in future.  

Furthermore, in our simulations, we only generated sample data sets with a sample size 

of 1000. In future, expanding this research to including samples of differing size, including 

high dimensional case with large 𝑝 and small𝑛, could be very valuable. Other cases, 

including the case when the number of explanatory variables significantly exceeds the 

sample size, should be addressed.  

Another key limitation relates to the number of simulations that were run. During the 

simulations, we only completed 50 simulation runs for each model within each of the 16 

different cases. Much of this related to computational load, since each scenario within our 

simulation took about 10 hours to run. While this number was half of the total number of 

analysis runs completed in the 3 dataset analysis, the number of simulations could be 

massively expanded. To do this, computational speed and modelling inefficiency are 

barriers that need to be addressed. This could include, in cases like BART, faster versions 

of the method as well as alternative methodologies or extensions of the BART 

methodology that generate more accurate predictions in various situations. 

Finally, in terms of the modelling limitations, it is important to note that we did not use 

cross-validation on the BART models, or on any of the other models that required tuning 

parameters. This was because the code underlying the models took an extraordinary 

length of time to run. This could be improved and is a critical focus point of future research. 

Moreover, we only looked at a single correlation structure when generating the data for 

our simulations. Since certain models deal with correlation differently, modelling different 

correlation values could have been incredibly useful. Finally, future work is needed to 

explore some of the peculiar observations that we observed. For example, exploring why 

the random forest prediction results within the simulations were so poor is a key focus. 

Furthermore, understanding and auditing the instances of very low prediction error within 



 

46 

each of the three practice data sets is also key. Both of these areas will be targeted in 

future research. 
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