
Exploring Mental Health Related Emergency Department Visits:

Frequency of Recurrence and Risk Factors

by

Fei Wang

Project Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Science

in the

Department of Statistics and Actuarial Science

Faculty of Science

c© Fei Wang 2014

SIMON FRASER UNIVERSITY

Summer 2014

All rights reserved.

However, in accordance with the Copyright Act of Canada, this work may be

reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,

research, criticism, review and news reporting is likely to be in accordance

with the law, particularly if cited appropriately.



APPROVAL

Name: Fei Wang

Degree: Master of Science

Title of Project: Exploring Mental Health Related Emergency Department Visits: Fre-

quency of Recurrence and Risk Factors

Examining Committee: Dr. Tim B. Swartz

Professor, SFU

Chair

Dr. X. Joan Hu

Professor, SFU

Senior Supervisor

Dr. Q. Michelle Zhou

Assistant Professor, SFU

Supervisor

Dr. John J. Spinelli

Adjunct Professor, SFU

Professor, School of Population and Public Health, UBC

Internal Examiner

Date Approved: August 20, 2014

ii



Partial Copyright Licence 
 

  

 
 

iii



Abstract

This thesis project aims to provide insights into pediatric mental health care and help to improve

its current practice. We explore records of mental health related emergency department visits

from children and youth. The data are extracted from the provincial health administrative data

systems of Alberta. We start with a descriptive data analysis, and then adopt the counting process

framework to conduct statistical inference. A generalized (stratified) Cox regression model and

a renewal process model are considered. We evaluate the frequency and identify important risk

factors with various model specifications. We also account for the gaps of the visit process due

to hospitalization. The project presents the estimates of the model parameters via likelihood and

partial likelihood approaches. Robust estimates and the non-parametric bootstrap estimates for the

standard errors of the parameter estimators are obtained in addition to the likelihood based standard

error estimates. We summarize the analysis and outline a few problems for future investigation in

the final chapter.

Keywords Counting process · Parametric/Semi-parametric/Non-parametric estimation

procedure · Renewal process model · Stratified Cox regression model
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Chapter 1

Introduction

1.1 Background and Motivation

Emergency departments (ED) are often the first point of contact with the mental health care system

for children and youth, and are considered as a safety net for the lack of inpatient and outpatient

mental health services (Newton et al. 2011). The research team led by Drs. Amanda Newton and

Rhonda Rosychuk has observed a significant heterogeneity in mental health presentations to ED

in Alberta, and a high degree of repeated ED use. Their additional findings include ”health system

factors impact patient outcomes”, a lack of community-based care available to children and youth,

and an on-going need for pediatric mental health services; see Newton et al. (2010).

Newton et al. (2011) present a surveillance report about the analysis on the available data of

the ED visits for mental health (EDMH visits) provided by Alberta Health. This study was designed

to assist health care planners in recommending policies and allocating resources for children’s

mental health care. The report shows that, for example, more females than males presented for

emergency mental health care. It is unclear, however, whether sex is a risk factor or simply reflects

the overall pattern of EDMH visits, since similar pattern is observed in the study population. To better

understand the need and to improve emergency mental health services for children and youth, the

research team attempts to conduct comprehensive analyses related to mental health presentations

to Alberta ED. One of the team’s specific objectives is to evaluate the frequency of children and

1



CHAPTER 1. INTRODUCTION 2

youth’s EDMH visits and to identify the risk factors.

When the frequency of EDMH visit over time is of primary interest, one may address the corre-

sponding problem by conducting an analysis of recurrent events, using the well-developed methods

for recurrent event analysis. For example, Andersen and Gill (1982) assume recurrent events follow

a Poisson process, the well-known AG model, and propose the corresponding estimation proce-

dures. Prentice et al. (1981) consider a stratified proportional intensity function to model event

processes. Much of this later development has taken place within the general framework of count-

ing process. Anderson et al. (1993) present theory and statistical methods for counting processes

in an authoritative way. Cook and Lawless (2007) provide extensive examples and reviews.

Hospitalization records of Alberta children and youth are also available in the database main-

tained by Alberta Health. A patient should not be at risk for an EDMH visit during the time period

when this patient is admitted to hospital. It is desirable to address the issue of observation gaps, or

time periods not at risk to EDMH visits, due to hospitalization. Otherwise, those patients who have

long hospital stay will likely be classified as ones with low risk to have the next EDMH visit, which

may result in biased inference on the effects of associated risk factors. Recently, many notable

studies analyze recurrent events which have a duration associated with them. Cook and Lawless

(2007 Chap 6), for example, consider an alternating two-state process model, which defines an ”ac-

tive” and an ”inactive” state, and models two types of recurrent events corresponding to two types

of transitions between the two states at the same time. Another example is that Hu et al. (2011)

extend the well-known models for recurrent events given in Prentice et al. (1981) and Anderson

and Gill (1982) to a generalized Cox regression model and adjust the risk set at a time point to

accommodate event duration. The approach in Hu et al. (2011) focuses on the conditional intensity

function of recurrent event, and does not need to model the event duration. This project adopts the

statistical method of Hu et al. (2011) to evaluate the frequency of EDMH visits, while adjusting for

the gaps of the visit processes due to hospitalization.

The available data for the analysis in this project only contain information of children and youth

who had EDMH visits within a fixed study period. This raises another issue: the first EDMH visit

observed within this observation window may not be the first EDMH visit of the whole life of one

subject. This motivates the consideration of a renewal process model, where a subject is assumed
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to restore to the same physical state right after each EDMH visit. There are methods developed

to conduct the gap time analysis in renewal process model. See Breslow (1972), Kalbfleisch and

Prentice (2002), Cook and Lawless (2007, Chap 4). Following Hu et al. (2011), we extend the

renewal process model to account for the non-negligible duration of hospitalization.

This project aims to assess the frequency of EDMH visits and to identify the associated important

risk factors. As the first attempt to achieve this goal, we focus on recurrence of EDMH visits since

subjects’ initial EDMH visits recorded during the period from April 1 2002 to March 31 2011, based

on the ED records and other information of Alberta residents aged younger than 18 years old. We

adapt the counting process framework to conduct data analysis with a stratified Cox regression

model and a renewal process model. Following Hu et al. (2011), models are extended to address

possible gaps when the individuals are not at the risk to such visits due to hospitalization.

1.2 General Framework

Let 0 < T1 < T2, . . . be the times of a subject’s first, second, ... EDMH visits since his/her initial visit

recorded in the database (referred to as index initial EDMH visit).

Define N(t) =
∑∞
j=1 I(Tj ≤ t), where N(t) represents the cumulative number of the recurrent

EDMH visits, up to time t > 0, that the subject in the study has since his/her index initial EDMH visit.

Note that N(·) is a right-continuous counting process.

Denote further the covariate vector of the subject at time t by Z(t). The history information of

the subject at time t is denoted by H(t) = N (t) ∪ Z(t), where N (t) = {N(s) : 0 ≤ s < t}, and

Z(t) = {Z(s) : 0 ≤ s < t}.

Let λ
(
t
∣∣H(t)

)
be the conditional intensity function of the counting process N(·). Following Hu et

al. (2011), we consider the generalized Cox regression model

λ
(
t
∣∣H(t)

)
= lim
4t→0+

P{N(t)−N(t−4t) = 1|H(t)}/4t

= λ0{t;H(t)} exp{β(t;H(t))
′
Z(t)}, t > 0, (1)



CHAPTER 1. INTRODUCTION 4

where λ0{t;H(t)} is an arbitrary baseline intensity function, and β(t;H(t)) is a function up to fi-

nite dimensional parameters. The dimension of β(t;H(t)) is the same as Z(t). We refer to this

model as Model 1. Specifying the components in Model 1 into different forms, one can explore

various special cases of the generalized Cox regression model. For example, assume the base-

line intensity function and the regression coefficients are independent of the history information,

that is, λ0{t;H(t)} = λ0(t) and β(t;H(t)) = β. Model 1 reduces to a Poisson process model, the

well-known AG model considered in Anderson and Gill (1982).

Consider a group of independent individuals with observations on the counting process starting

from 0 to a censoring time. We formulate the available information associated with a subject as

the right-censored realization of
{
N(t) : t ≥ 0

}
together with Z(t) at EDMH visits. Assume non-

informative censoring conditional on Z(·). Our primary goal is to estimate the baseline intensity

function λ0{t;H(t)} and the regression coefficients β(t;H(t)) based on the right-censored counting

process data. The estimator of β(t;H(t)) can be used to identify a risk factor by conducting a test

on whether the effect of a covariate is significant. We are also interested in estimating the standard

errors of the estimators, and constructing confidence intervals for the intensity function.

1.3 Outline

The rest of the project is organized as follows. Chapter 2 introduces Alberta Pediatric Mental Health

Care (PMHC) data and provides a descriptive analysis. A parametric version of Model 1 is assumed,

and the fit of it based on the PMHC data is represented in this chapter. Chapter 3 introduces one

class of specifications of Model 1, a stratified Cox regression model, and reports the estimation

results. Chapter 4 presents another class of specifications of Model 1, an extended renewal process

model, along with inference procedures and the associated asymptotic results. Conclusions and

some remarks for further investigation are given in Chapter 5.



Chapter 2

Alberta Pediatric Mental Health Care

(PMHC) Data

According to Leitch (2007), eighty percent of mental illness begin in childhood. This paper also

states that fifteen percent of Canadian children and youth live with a mental illness, but only 1

in 6 receives timely specialized services. With limited options for immediate mental health care,

families go to emergency departments. In order to better understand the risk factors associated

with variation in the number of EDMH visits for children and youth, the project analyzes a set of

Pediatric Mental Health Care (PMHC) data extracted from the database of Alberta Health. This

chapter describes the PMHC data.

2.1 Introduction of the PMHC Data

The PMHC data sources are the four population-based administrative databases: Ambulatory Care

Classification System (ACCS), Population Registry File (PRF), Physicians Claims File (PCF), and

Hospitalizations Discharge Database (HDD). The ACCS database provides Alberta EDMH visit in-

formation. The demographic and geographic data are from the PRF database. PCF tracks physician

(follow-up) visits, while HDD contains hospitalization data.

Individual level data that exist in the data sources from April 1, 2002 to March 31, 2011 were

5
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extracted. Since some individuals may have EDMH visits before April 1, 2002, this project focuses

on the time period for each individual starting from the day when the individual has his/her first

EDMH visit after April 1, 2002, referred to as the index initial EDMH visit; while the time period for

each individual is ended at either the day of his/her 18th birthday or March 1, 2011, whichever is

earlier.

The subjects of this project are Alberta residents who had at least one EDMH visit during the

study period from April 1, 2002 and March 31, 2011, and were younger than 18 years of age at

the time of the EDMH visit. An Alberta resident is defined as an individual who is registered in the

Alberta Health Care Insurance Plan(AHCIP). In Alberta, a child or youth is defined as someone

under the age of 18 years. The resulting study group consists of 27947 subjects.

2.1.1 Data Format

We view one EDMH visit as an event of interest. In order to conduct the analysis, we construct three

data matrices, based on the available PMHC data. The first data matrix is referred to as Baseline

Information. It consists of all the characteristic information of the study subjects at the index initial

EDMH visits. Each subject has one row in the data matrix. Table 2.1 shows the data format.

Table 2.1: Data format of baseline information.

ID Start.Date Age pSES Sex Region

xxxxx1 yyyy-mm-dd x x x x
xxxxx2 yyyy-mm-dd x x x x
xxxxx3 yyyy-mm-dd x x x x

· · · · · ·

The variables in Table 2.1, from the left to right, correspond to (i) the unique identification number

of the study subject, (ii) the start date of the index initial EDMH visit, (iii) age at the index initial EDMH

visit (in years), (iv) the proxy of the social-economic status at the index initial EDMH visit, (v) sex,

and (vi) residential region at the index initial EDMH visit, respectively.

The second data matrix contains all the EDMH visit records of the study subjects. Each row

represents one EDMH visit record. For those subjects who had more than one EDMH visit, there

are multiple rows in the data matrix. We refer to this data matrix as EDMH Information. The data
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format is shown in Table 2.2.

Table 2.2: Data format of EDMH information.

ID Start.Date Age pSES Sex Region

xxxxx1 yyyy-mm-dd x x x x
xxxxx1 yyyy-mm-dd x x x x
xxxxx1 yyyy-mm-dd x x x x
xxxxx2 yyyy-mm-dd x x x x
xxxxx3 yyyy-mm-dd x x x x
xxxxx3 yyyy-mm-dd x x x x

· · · · · ·

The variables in Table 2.2, from the left to right, are (i) the unique identification number of the

study subject, (ii) the start date of the EDMH visit, (iii) age at the EDMH visit (in years), (iv) the proxy

of the social-economic status at the EDMH visit, (v) sex, and (vi) residential region at the EDMH

visit, respectively.

The third data matrix includes the hospitalization records, referred to as Hospitalization Infor-

mation. Some patients may have more than one hospitalization record, while some may not have

any during their follow-up periods within this observation window. Therefore, not all subjects have

information in this data matrix. Table 2.3 presents the format of this data matrix.

Table 2.3: Data format of hospitalization information.

ID Start.Date End.Date

xxxxx2 yyyy-mm-dd yyyy-mm-dd
xxxxx4 yyyy-mm-dd yyyy-mm-dd
xxxxx4 yyyy-mm-dd yyyy-mm-dd

· · · · · ·

The variables in Table 2.3, from left to right, correspond to (i) the unique identification number

of the study subject, (ii) the admission date of the hospitalization, and (iii) the discharge date of the

hospitalization, respectively.

We set the Start.Date in the Baseline Information data set as the time origin for each subject.

Then all other time-dependent variables, such as Start.Date and End.Date in the Hospitalization

Information data set, are shifted to the time since the index initial EDMH visit correspondingly.
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2.1.2 Formulation of PMHC Data

Consider days as the time scale. Let Sday and Eday be April 1, 2002 and March 31, 2011, the

starting and ending days of the PMHC data extraction, respectively.

Denote the realization of
{
N(·), Z(·)

}
associated with subject i in the study by

{
Ni(·), Zi(·)

}
for i = 1, . . . , n. For subject i, denote the times of EDMH visits since the index initial EDMH visit

by Ti1, Ti2, · · · , where 0 < Ti1 < Ti2 < · · · . Suppose the observation on Ni(·) is subject to the

right-censoring with the censoring time Ci. According to the data collection mechanism,

Ci = min(Bi + 18× 365−Ai0, Eday −Ai0) > 0,

where Ai0 and Bi are the calender times of the index initial EDMH visit and subject i’s birthday. Let

Y Ci (t) = I(Ci ≥ t) be the censoring indicator. In addition, the PMHC database includes observa-

tions on Zi(·) at times 0 = ti0 < ti1 < . . . < tiKi , where tiKi ≤ Ci < ti,(Ki+1), and Ki is the number

of EDMH visits of subject i observed after the index initial EDMH visit and within the observation

window.

Since there is no information of the individual birthday, we utilize the age of subject at EDMH

visits to estimate the birthday. Denote Aik as the calender times of the kth EDMH visit for subject i,

Ageik is the corresponding age recorded. Then Aik − (Ageik + 1)× 365 < Bi ≤ Aik −Ageik × 365.

We approximate Bi by the average value of Aik − (Ageik + 1/2)× 365 over all k for subject i.

LetR(t) be the risk set at time t. That is,R(t) contains all those subjects who are at risk to EDMH

visits at time t. To address the issue of non-negligible duration of hospitalization, we define the risk

set at time t as a set of subjects who are not being hospitalized and have not been censored at time

t. For subject i, denote the times to the admission of hospitalization by V Ai1 , V
A
i2 , · · · , and the times

to the discharge of hospitalization by V Di1 , V
D
i2 , · · · , where 0 < V Ai1 < V Di1 < V Ai2 < V Di2 < · · · .Then

we have

R(t) = {i : t /∈ ∪k(V Aik , V
D
ik ); t ≤ Ci}.

Let Y Ri (t) be the at-risk indicator of subject i, where Y Ri (t) = 1 or 0 if subject i is at risk at time t or

not. When the risk set is not adjusted for the gaps of the visit processes due to hospitalization, the

at-risk indicator is the same as the censoring indicator.
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We make the following two assumptions about the data.

• The study subjects are independent with each other.

• Ni(·) and Ci are independent conditional on Zi(·).

2.1.3 Potential Risk Factors

Several potential risk factors (covariates) associated with the frequency of EDMH visits are identified

by the PMHC data. They include demographic factors such as sex, age, pSES over time, geographic

factors such as health region of residence, residential region (urban/rural), and diagnostic factors

including triage level. We choose to focus on four potential risk factors, which are listed in the

following:

• Age: the individual’s age (in years) at the index initial EDMH visit, with values from 0 to 17.

• Sex: the indicator of male.

• pSES: the proxy of the social-economic status.

There are four categories: Others/Registration without Subsidy (O), Aboriginal Groups (A),

Government Sponsored Program (S), Welfare (W). Most subjects who revisited ED for mental

illness had stable pSES. That is, their social-economic status did not change over time. Thus

we utilized pSES at the index initial EDMH visit. Since most subjects were with pSES of O

(65.3%), we combined the other three groups (A, S, and W) when conducting the analysis.

See Table 2.5. This variable is coded as an indicator of O in this analysis.

• Region: residential region with two categories, urban and rural. Region is not time-varying

overtime very much either. We consider the effect of region at the index initial EDMH visit.

This variable is coded as an indicator of urban in this analysis.
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2.2 Descriptive Analysis

2.2.1 Summary of Descriptive Statistics

The data analyzed in this project include 27947 subjects and their relevant information over the time

windows from 0 to Ci. The maximum length of the time windows is 3064 days. There are a total

of 41159 EDMH visits, with an average of 1.47 visits per subject (max 52). Most subjects (20871,

74.7%) had only one EDMH visit during their observation period, while 25.3% of them had multiple

EDMH visits. Table 2.4 represents the numbers of EDMH visits and the totals of the associated

subjects across the fiscal year. The yearly numbers of EDMH visits and individuals visiting ED for

mental illnesses increased from 4278 in 2003 to 4849 in 2011, and from 3438 in 2003 to 3773 in

2011, respectively. A fiscal year is defined as a one year period from April 1 of the previous year to

March 31 of the current year. For example, fiscal year 2003 is from April 1 2002 to March 31 2003.

Table 2.4: Numbers of EDMH visits and distinct children and youth by fiscal year.

Fiscal Year (yyyy)
2003 2004 2005 2006 2007 2008 2009 2010 2011 Total

EDMH Visits 4278 4258 4472 4629 4661 4584 4849 4579 4849 41159
Children/youth 3438 3443 3643 3724 3715 3663 3915 3684 3773 27947

Table 2.5: Characteristics of children and youth, according to the observations of the four risk factors
at the index initial EDMH visit (Total n = 27947).

Age Sex pSES Region
Category Number Category Number Category Number Category Number
Pre-school 579 Male 12095 O 18260 Urban 21293
(0 ∼ 5) Female 15852 A 3785 Rural 6654
Elementary 6063 S 4098
(6 ∼ 13) W 1804
Teenager 21305
(14 ∼ 17)

Table 2.5 summarizes the characteristics of children and youth who had EDMH visit during

the period, according to the observations of the four risk factors at the index initial EDMH visit. The

average age is 14.43 years old. More than half (76.2%, 21305) of the study subjects were teenagers
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of age 14 ∼ 17. The subject group had slightly more females than males (56.7% females, 43.3%

males). The distribution of the pSES is 65.3%, 13.5%, 14.7%, and 6.5% of the four groups, O, A, S,

and W, respectively. There are more children and youth from urban (76.2%).

Of the total 41159 EDMH visits, 58.7% (24160 visits) were made by females, while 41.3% (16999

visits ) were made by males. Visits made by females exceeded visits by males overall. However,

Figure 2.1 shows that younger males tend to have slightly higher frequency of EDMH visits than their

peer females. While females of age 14 ∼ 17 contribute more EDMH visits than males in the same

age group. This suggests that the association of EDMH visit frequency with sex differs overtime.

Figure 2.1: ED mental health visits by age group and sex.

We summarize the four risk factors according to the number of recurrent EDMH visits that one

subject observed, by the relative frequency of each category among its corresponding risk factor.

Table 2.6 reports the summary. The column with zero number of recurrent EDMH visit represents

the summary at the index initial EDMH visit. The distributions of age, sex, and residential region

among the study subjects with different number of recurrent EDMH visit are quite similar; while a

slightly decreased pattern of pSES with category O (vs ASW), is observed with the increase of the

number of recurrent EDMH visit.
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Table 2.6: Summary of risk factors by the number of recurrent EDMH visits (%).

Variable Category Number of recurrent EDMH visit
0 1 2 3 4 5 >5

Pre-school (0 ∼ 5) 0.03 0.01 0.00 0.00 0.01 0.00 0.00
Age Elementary (6 ∼ 13) 0.20 0.23 0.30 0.32 0.34 0.36 0.44

Teenager (14 ∼ 17) 0.77 0.76 0.69 0.68 0.65 0.64 0.56
Sex Male 0.45 0.41 0.37 0.37 0.38 0.40 0.28

Female 0.55 0.59 0.63 0.63 0.62 0.60 0.72
pSES O 0.68 0.61 0.58 0.53 0.47 0.47 0.50

ASW 0.32 0.39 0.42 0.47 0.53 0.53 0.50
Region Urban 0.76 0.75 0.77 0.80 0.76 0.77 0.76

Rural 0.24 0.25 0.23 0.20 0.24 0.23 0.24

It appears that the status of pSES and residential region may change overtime, since some

subjects who had multiple EDMH visits show different pSES and/or region at their recurrent EDMH

visits. We checked the distributions of the two risk factors at the index initial EDMH visit, the first

EDMH visit after the index initial visit, the second, and so on. Figure 2.2 shows the distribution

of pSES at the index initial EDMH visit, and first to fifth EDMH visit after the index initial EDMH

visit. Figure 2.3 shows the distribution of residential region. The number at the the bottom of each

bar stands for the proportion of individuals with pSES in the category of O in Figure 2.2, and the

proportion of individuals living in urban in Figure 2.3, respectively. From the two figures, we can see

the pattern of each bar varies slightly, especially for pSES, which may indicate that some patients

did change their pSES status and/or residential region during the study period. However, since we

have a quite large study population, the proportion of patient whose pSES or region varied overtime

is very small, 0.1% and 0.01% for pSES and region, respectively. Thus, the two risk factors are

assumed as time-independent variables in this study.

From April 1 2002 and March 31 2011, 12528 hospitalization records were reported from 7868

subjects who had EDMH visits within this observation window. Among them, there is an average

of 1.56 hospitalization records per individual (median 1, max 28). The average length of hospital-

ization per individual is 16.81 days (median 5, IQR 2 to 16, max 843 days). We found from the

analysis in Chapter 2.3 that estimates from a parametric model with risk set adjusted for the du-

ration of the hospitalization are quite similar to those with risk set not-adjusted for the duration of

the hospitalization. That is because only 28% of the study subjects had observed hospitalization
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Figure 2.2: Distributions of pSES by the order of EDMH visit per subject had observed.

Figure 2.3: Distributions of region by the order of EDMH visit per subject had observed.
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records.

2.2.2 Non-parametric Estimates of Cumulative Intensity Function

We group subjects according to age at the index initial EDMH visit (pre-school 0 ∼ 5, elementary

school 6 ∼ 13, and teenager (14 ∼ 17), sex (male and female), pSES at the index initial EDMH visit

(O and ASW), and region at the index initial EDMH visit (urban and rural). For each of the different

subgroups, we evaluate the generalized Nelson-Aalen estimator for the cumulative intensity function

with adjustment for the hospital duration proposed by Hu et.al (2011), using the following formula:

Λ̂0(t) =

∫ t

0

∑n
i=1 Y

C
i (u)dNi(u)∑n

l=1 Y
C
l (u)Y Rl (u)

=
∑

{td: td≤t}

∑n
i=1 Y

C
i (td)I(dNi(td) = 1)∑n
l=1 Y

C
l (td)Y Rl (td)

, t > 0,

where td is the distinct event time.

Figure 2.4 shows the log-transformed generalized Nelson-Aalen estimates of the cumulative

intensity functions. The vertical distance between each pair of curves represents the corresponding

covariate effect by controlling other covariates. The non-parametric estimates are roughly parallel

with each other. It indicates that the cumulative intensity functions of the study group are likely

proportional according to the four risk factors. There were no observed recurrent EDMH visits until

around 6 years (2200 days) after the index initial EDMH visit, for the subgroup of subjects who are

females of age 0 ∼ 5 with pSES of O in rural area. Therefore, the log-transformed estimate of

cumulative intensity function within the corresponding time period (from 0 to 6 years) is negative

infinite and not shown in Figure 2.4(A).

Figure A.1 in Appendix A represents the generalized Nelson-Aalen estimates of the cumulative

intensity functions. According to Figure A.1, males are less likely to have EDMH visits than females;

the subjects with pSES in the category of O tend to have lower risk of having EDMH visits, compared

to those in the pSES category of A, S, and W; the subjects living in rural area are at lower risk of

recurrent EDMH visits than those living in urban area.



CHAPTER 2. ALBERTA PEDIATRIC MENTAL HEALTH CARE (PMHC) DATA 15

Figure 2.4: The log-transformed generalized Nelson-Aalen estimates of the cumulative intensity
functions with adjustment of hospital duration.
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2.3 Analysis under Parametric Model

From Figure A.1, we can see that the cumulative intensity function increases similar to a power

function of time. As an attempt to analyze the EDMH data, we specify the baseline intensity into

αtα−1, assuming all covariate effects are time-independent . The model is

λ(t|H(t)) = Y R(t)αtα−1 exp{β′Z}. (2)

We refer to this model as Model 2. Let θ denote all the unknown parameters under Model

1, including the regression parameters and the baseline functions. With Model 2, the unknown

parameters θ are specified as (α, β). The likelihood function is

L(θ|data) ∝
n∏
i=1

∏
t∈(0,Ci]

(λ(t;Hi(t)))dNi(t)(1− λ(t;Hi(t))dt)1−dNi(t) (2.1)

=

n∏
i=1

∏
t∈(0,Ci]

(
(αtα−1 exp{β′Zi})dNi(t)

)
× exp

{
−
∫ Ci

0

Y Ri (t)αtα−1 exp{β′Zi}dt
}
,

with the log-likelihood function

l(θ|data) =

n∑
i=1

∫ ∞
0

Y Ci (t)
[
log
(
αtα−1eβ

′Zi

)
dNi(t)− Y Ri (t)αtα−1eβ

′Zidt
]
. (2.2)

Applying the Newton-Raphson algorithm, we attain the maximum likelihood estimate (MLE) of

θ by maximizing the log-likelihood function l(θ|data) in (2.2). The formulas of the likelihood score

function and the observed information matrix are listed in Appendix C. Table 2.7 gives the estimates

of the parameters in Model 2 with the risk set adjusted and not-adjusted for hospital duration re-

spectively. We also present the estimated standard errors in the table. The significant regression

parameters are bold.

From Table 2.7, we can see that all the risk factors in Model 2 (the parametric version of Model

1) had significant effects on the recurrence of EDMH visits. The positive sign of the covariate coef-

ficient suggests that an increasing risk of having recurrent EDMH visit is associated with subjects

having index initial EDMH visits as teenagers (versus younger subjects), and people living in urban
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Table 2.7: MLEs of the regression coefficients in Model 2.

Model α pSES Age Sex Region
(O vs ASW) (at index initial ED) (Male vs Female) (Urban vs Rural)

With risk set adjusted for hospital duration
Estimates 0.205 -0.524 0.085 -0.474 0.111
SE 0.006 0.017 0.003 0.019 0.020
log(L(θ̂)) -104470.5

With risk set not adjusted for hospital duration
Estimates 0.214 -0.531 0.091 -0.486 0.133
SE 0.007 0.017 0.003 0.019 0.020
log(L(θ̂)) -104844.1

area are more likely to visit ED for mental illness than those in rural area. The coefficients of pSES

and sex are negative, which suggest that subjects with pSES of O tend to have lower risk to the

next EDMH visit than those with other pSES, and a decreased EDMH visit risk is associated with

males (versus females). This is consistent with the patterns shown by the generalized Nelson-Aalen

estimates in Chapter 2.2.2.

The estimates of regression parameters with adjustment for hospital duration are very similar to

those without adjustment for hospital duration. As we mentioned above, it may be due to the small

portion, 28%, of the study subjects had hospitalization records.

If the parametric model assumption is appropriate, the log-transformed cumulative intensity func-

tion should be a linear function of log(t). This provides a method to check the model assumption.

We checked the pattern of the log-transformed estimator for the cumulative intensity function in

each subgroup versus the log-transformed event time. Figure 2.5 represents the patterns in the

three age groups consisting of males in urban area with pSES of category A, S, and W. The solid

lines in Figure 2.5 represent the log-transformed generalized Nelson-Aalen estimators with the risk

set not-adjusted for the hospital duration; while the dashed lines stand for the log-transformed esti-

mators under Model 2 with the risk set not-adjusted for the hospital duration. The three dashed lines

are plotted with Age=4, Age=10, and Age=16 for pre-school, elementary, and teenager respectively.

Figure 2.5 shows that the parametric assumption could be inappropriate for the baseline intensity

function, especially for that in the pre-school group. That could be due to the reason that only a

small number of subjects are in this group. The estimate for the pre-school group is very different



CHAPTER 2. ALBERTA PEDIATRIC MENTAL HEALTH CARE (PMHC) DATA 18

with those for the other two age groups. Although the two solid lines for elementary school group

and for teenager group are very close to each other, they are not parallel. This suggests that the

baseline intensity functions in different subgroups may vary. This motivates the application of the

semi-parametric regression model in Chapter 3.

Figure 2.5: The log-transformed estimates of the cumulative intensity functions against log of event
times.



Chapter 3

Stratified Cox Regression Models

This chapter begins with a review of a stratified Cox regression model along with the estimation

procedures. The stratified Cox regression model is applied to analyze the recurrent EDMH visits

described in Chapter 2. We consider special forms of the stratified Cox regression model with

different stratification variables and with time-independent or time-dependent covariate effects.

3.1 Statistical Modeling

Assume that Y R(t) is fully determined by H(t), the subject’s history information at time t. Introduce

a discrete stratification variable s{H(t)}, determined by the history information and with all the

possible values s = 1, . . . , S. We consider a specification of Model 1: for t > 0 and s{H(t)} = s,

λ(t|H(t)) = Y R(t)λ0s(t) exp{β(t;βs)
′Z(t)}. (3)

As refer to this model as Model 3. This model involves the stratum-specific baseline intensity

function λ0s(t), and stratum-specific regression coefficients β(t;βs). Here we assume β(t;βs) to

be a known function of t up to parameters βs. It is an extension of one of the two semi-parametric

models considered in Prentice et al (1981), where β(t;βs) = βs is assumed and the corresponding

19
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intensity function is

λ(t|H(t)) = Y R(t)λ0s(t) exp{β′sZ(t)}. (3a)

We refer to this model as Model 3a. This model allows the regression coefficients to differ across

different strata. Prentice et al (1981) gives an example of the stratification variable as s{H(t)} =

N(t) + 1. In the current application, a subject belongs to stratum s{H(t)} = N(t) + 1, if the number

of recurrent events occurred is N(t) at time t. This specification may accommodate situations with

non-Poisson processes using an appropriate stratification variable s{H(t)}.

One may assume that risk factors have the same effect among different strata by restricting

βs = β. This assumption gives the following intensity function

λ(t|H(t)) = Y R(t)λ0s(t) exp{β′Z(t)}. (3b)

We refer to this model as Model 3b. When λ0s(t) = λ0(t), Model 3b reduces to the well-known

AG model of Anderson and Gill (1982). The corresponding intensity function is then

λ(t|H(t)) = Y R(t)λ0(t) exp{β′Z(t)}. (3c)

As refer to the AG model as Model 3c. This model assumes that the conditional intensity function

is independent of the history of the counting process, N (·). Thus, the counting process {N(t) :

t > 0} is a Poisson process. That is, the number of EDMH visits in non-overlapping time interval is

independent from each other given the covariates.

3.2 Estimation Procedures

3.2.1 Estimating Regression Parameters

Assume that there are no tied event times. Let ts,1 < · · · < ts,ds denote the ordered EDMH visit

times in stratum s, where ds is the total number of the EDMH visit times and s = 1, · · · , S.

Adapting the approach of Prentice et al (1981), a generalized version of the partial likelihood

derivation given in Cox (1975), the overall likelihood function based on the data can be factored into
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two terms, Lp(β) and L1(λ0(·),β), where Lp(β) is usually called partial likelihood function (Cox,

1975), and β is (β1, . . . , βS), or the common values of βs’s when the coefficients are the same

across the strata. Maximize Lp(β) with respect to β to get the maximum partial likelihood estimator

(MPLE) β̂ of β, then maximize L1(λ0(·), β̂) with respect to λ0(t). Specifically, the partial likelihood

function of the regression coefficients βs’s is

PL(β) =

S∏
s=1

ds∏
j=1

exp
{
β(t∗s,j ;βs)

′
Zi(t∗s,j)(t

∗
s,j)
}∑

l:s
{
Hl(t∗s,j)=s

} Y Cl (t∗s,j)Y
R
l (t∗s,j) exp

{
β(t∗s,j ;βs)

′Zl(t∗s,j)
} , (3.1)

where i(t∗s,j) is the index of the subject who experiences the event occurrence in stratum s at time

t∗s,j .

Using counting process notation, the log-partial likelihood function of β can be expressed as

log
{
PL(β)

}
= C(β;∞) with

C(β; t) =

n∑
i=1

∫ t

0

Y Ci (u)

S∑
s=1

[
β(u;βs)

′
Zi(u)

− log
{ ∑
l:s{Hl(u)}=s

Y Cl (u)Y Rl (u) exp{β(u;βs)
′
Zl(u)}

}]∣∣∣∣∣
s=s{Hi(u)}

dNi(u). (3.2)

The partial likelihood estimating function is then

U(β) =
∂C(β;∞)

∂β
=

n∑
i=1

∫ ∞
0

Y Ci (u)

S∑
s=1

[∂β(u;βs)

∂β

′

Zi(u)− (3.3)

∑
l:s{Hl(u)}=s Y

C
l (u)Y Rl (u)∂β(u;βs)

∂β

′

Zl(u) exp{β(u;βs)
′
Zl(u)}∑

l:s{Hl(u)}=s Y
C
l (u)Y Rl (u) exp{β(u;βs)

′Zl(u)}

]∣∣∣∣∣
s=s{Hi(u)}

dNi(u).

The MPLE β̂ of β can be attained by solving the estimating equation U(β) = 0. The variance

of the MPLE β̂ is approximately the inverse of the second derivative of − log
{
PL(β)

}
. We can ob-

tain the robust variance estimator according to Hu el al (2003), which is equivalent to the so-called

”sandwich” estimator given in Lin and Wei (1989). The well-developed counting process formulation

for event history data analysis and the asymptotic derivation using the martingale results presented
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in, for example, Fleming and Harrington (1991) and Andersen et al(1993), can be adapted to ver-

ify the consistency and asymptotic normality of MPLE β̂, the maximum point of (3.2) at t = ∞.

Furthermore, note from expression (3.2) that the counting process formulation accommodates the

situations with tied event times, where are given similar treatments as to the discussion on tied

failure times, for example, in Kalbfleisch and Prentice(1980, Chp 4).

A Wald-type test can be constructed based on the asymptotic normality of the MPLE on the

coefficient for a covariate in Model 3 to assess the covariate effect. We may assess the goodness

of fit of the model using the partial likelihood ratio test. The partial likelihood ratio test statistic,

denoted by G, is calculated as the twice of the difference between the log partial likelihood of the

model containing the covariates and the log partial likelihood of the model containing a subset of

the covariates (the reduced model). Specifically,

G = 2
{
C(β̂,∞)− C(β̃,∞)

}
,

with β̃ the MPLE of β under the reduced model.

3.2.2 Estimating Baseline Intensity Functions

With fixed β, the following estimating equations are unbiased:

∑
i:s{Hi(t)}=s

Y Ci (t)
[
dNi(t)− Y Ri (t)λ0s(t) exp{β(t;βs)

′
Zi(t)}dt

]
= 0, t > 0,

for s = 1, . . . , S. This yields the following estimation procedure. When the baseline intensity function

in Model 3 varies from stratum to stratum, a consistent estimator of the cumulative baseline intensity

function of stratum s is

Λ̂0s(t;βs) =

∫ t

0

∑
i:s{Hi(u)}=s Y

C
i (u)dNi(u)∑

l:s{Hl(u)}=s Y
C
l (u)Y Rl (u) exp{β(u;βs)

′Zl(u)}
, t > 0, (3.4)

for s = 1, . . . , S. Here we take the convention 0
/

0 = 0. In the situations with a single cumulative

baseline intensity function, that is, λ0s(t) = λ0(t) for s = 1, . . . , S, we estimate the baseline function
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using

Λ̂0(t;β) =

∫ t

0

∑n
i=1 Y

C
i (u)dNi(u)∑S

s=1

∑
l:s{Hl(u)}=s Y

C
l (u)Y Rl (u) exp{β(u;βs)

′Zl(u)}
, t > 0. (3.5)

With some regularity conditions and by the martingale central limit theorem, we can show that

Λ̂0s(t;β) and Λ̂0(t;β), after standardization, converge weakly to Gaussian processes with mean

zero.

The above estimators are generalizations of the Breslow estimator for the baseline functions

under Model 3 (Hu et al 2011). They can be used to estimate the intensity function of a particular

group with the covariates fixed at the corresponding levels. This suggests an approach for model

checking. The nonparametric versions of (3.4) and (3.5), taking β(t;βs) = 0, are the generalized

Nelson-Aalen estimator for the cumulative intensity functions with adjustment for event duration.

One may group the subjects according to the covariates. With the information of each of the different

subgroups, we may evaluate the generalized Nelson-Aalen estimator.

We obtain estimators for the baseline intensity functions Λ0s(·) and Λ0(·) conventionally by plug-

ging in the corresponding MPLE of the unknown coefficients in (3.4) and (3.5), respectively. Given

the continuity of Λ̂0s(t;β) and Λ̂0(t;β) as functions of β, we can prove that the resulting estima-

tors Λ̂0s(·; β̂s)and Λ̂0(·; β̂) are consistent and, after standardization, weakly converge to mean zero

Gaussian processes.

3.3 Analysis Results

3.3.1 With Time-independent Regression Coefficients

We obtain the MPLEs of the regression coefficients in the three special cases of Model 3, assuming

all the covariate effects are time-independent. We consider two stratification variables, age at the

index initial EDMH visit (pre-school 0-5, elementary school 6-13, and teenager 14-17), and season

of the EDMH visits (fall, spring, summer, and winter). Table 3.1 represents the MPLEs of the regres-

sion coefficients in those models. The estimated robust standard errors are shown in the brackets.

The log-partial likelihood functions are evaluated at the estimates of the regression coefficients un-

der different models. The coefficient estimates with significant effect are bold in the table. Table B.1
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in Appendix B provides corresponding estimates with the non-parametric bootstrap estimates of the

standard errors, with bootstrap sizes B=1000, B=2000, and B=5000, respectively. The estimates

for the standard errors are similar when B=2000 and B=5000. Thus, we use B=2000 for all later

analyses.

Model 3as:ageβs,λ0s
, 3bs:ageβ,λ0s

, 3as:age−βs,λ0s
, and 3bs:age−β,λ0s

use age at the index initial EDMH visit as the

stratification variable, while Model 3as:seasonsβs,λ0s
and 3bs:seasonsβ,λ0s

use seasons of EDMH visits as the

stratification variable.

From Table 3.1, we can see that the four risk factors have significant effects on the recurrence

of EDMH visits. Lower risk of recurrent EDMH visits is associated with people having pSES in the

category of O and those who are females; while older patients at index time and those who are

living in urban area tend to have higher risk of recurrent EDMH visits.

Proceeding across columns in Table 3.1 under each set of models, we can see the estimated

effects of the risk factors versus their baseline according to different strata. The results indicate that

the covariate effects vary from stratum to stratum: The partial likelihood ratio tests for comparing

the fit of the two models, denoted by 3as:ageβs,λ0s
and 3bs:ageβ,λ0s

, 3as:age−βs,λ0s
and 3bs:age−β,λ0s

, 3as:seasonsβs,λ0s
and

3bs:seasonsβ,λ0s
, have test statistics of value 177.2 with df = 8 (p-value<0.001), 69.6 with df = 6 (p-

value<0.001), and 140.2 with df = 12 (p-value<0.001), respectively. This indicates the effects of

risk factors vary across different strata.

The effects of pSES are significant under all the different models in Table 3.1, and negative

across all strata. The standard error for pSES in the first row of stratum 1 (pre-school stratum),

under Model 3as:ageβs,λ0s
, is quite larger than that in other two strata. It may be due to the small number

of subjects in pre-school stratum.

All the significant coefficients of sex, under different models, are negative but have different mag-

nitudes. It appears that the difference between males and females are non-statistically significant

in the pre-school group but significant in the elementary group. The coefficient −0.379 indicates

females are at higher risk to repeated EDMH visits than males in the elementary group. However,

Figure 2.1 shows that a little more visits were made by males in the elementary group

The effects of residential region are significant and have positive sign in fall, spring, and summer;

while in winter, the effect are non-significant and have opposite sign. It represents that subjects
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living in urban area have more EDMH visits in the three seasons, but have no significant difference

in winter with those living in rural area.

We use age at the index initial EDMH visit, classified into three age groups, as the stratification

variable in Model 3as:ageβs,λ0s
, 3bs:ageβ,λ0s

, 3as:age−βs,λ0s
, and 3bs:age−β,λ0s

. In order to explore the effect of age

within each of the three strata, Model 3as:ageβs,λ0s
and 3bs:ageβ,λ0s

in Table 3.1 include age at the index initial

EDMH visit as the covariate. We can see from Model 3as:ageβs,λ0s
that, the estimated age effect steadily

decreases from stratum 1 to stratum 3, and changes sign in stratum 3. However, the estimate in

stratum 3 is not significant. The average covariate effects under model 3bs:ageβ,λ0s
are in agreement

with the overall covariate effects without stratification under model 3c. The partial likelihood ratio

tests for comparing the fit of 3as:ageβs,λ0s
vs 3as:age−βs,λ0s

, and 3bs:ageβ,λ0s
vs 3bs:age−β,λ0s

, have test statistics of

value 282.2 with df = 3 (p-value<0.001), and 174.6 with df = 1 (p-value<0.001), respectively. It

indicates that under the assumption that baseline intensity function have variations across the age

groups, there is still difference among subjects who are in the same age group but with different age

at index initial EDMH visits. Moreover, the effect of residential region shows significance in stratum

1 in Model 3as:age−βs,λ0s
, compared with Model 3as:ageβs,λ0s

. This indicates that there might be interaction

between age and residential region. This finding motivated us to consider models with two factor

interactions in Chapter 3.3.3.

We also estimate the cumulative intensity function with the MPLEs of the parameters under

Model 3c in Table 3.1. Figure A.2 in Appendix A gives the estimate of the cumulative intensity

function for each subgroup. The dashed lines represent the Breslow estimates under Model 3c in

Table 3.1, while the solid lines show the generalized Nelson-Aalen estimates. The dashed lines are

plotted with Age=3, Age=11, and Age=16 for pre-school, elementary, and teenager respectively.

From Figure A.2, it is clear to see that the Breslow estimates show the closeness to the gener-

alized Nelson-Aalen estimates in some subgroups, with exceptions in the subgroups with pSES in

the category of ASW, age of 6∼13 (Figure A.2.c). Nevertheless, the model assumption seems to

be valid overall.
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3.3.2 With Time-dependent Regression Coefficients

To understand the variations of the covariate effects overtime, we consider models with time-

dependent effects of the risk factors by assuming the regression coefficients in Model 3 as a linear

function of event time. That is, β(t;βs) = βs0 + βs1ln(t), for s{H(t)} = s. We start with models

assuming that all risk factors have time-dependent effects. Table 3.2 summarizes the MPLEs of

the regression coefficients in three special cases of Model 3, assuming time-dependent covariate

effects. The estimated robust standard errors are shown in the brackets. The log-partial likelihood

functions are evaluated at the estimates of the regression coefficients under model assumptions.

The estimates of the coefficients with significant effect are bold in the table. Table B.2 in Appendix B

shows corresponding estimates with the non-parametric bootstrap estimates of the standard errors

with bootstrap size B=2000.

The partial likelihood ratio tests for comparing the goodness of fit of the models in Table 3.2 with

their corresponding models in Table 3.1 have p-value<0.001. For example, the partial likelihood

ratio test for comparing the fit of the two models, denoted by Model 3c in Table 3.2 and Model 3c in

Table 3.1, has a test statistic of value 202.6 with df = 4, which provides a p-value less than 0.001

with the chi-square distribution approximate. This result shows that there exists strong evidence

that the effects of the risk factors are time-dependent. We remove the non-statistically significant

term, the slope of the time-varying effect of region in Model 3c in Table 3.2, and refit the model. The

partial likelihood ratio test gives the value of the test statistic of 0.01 with df = 1. Thus, there is no

need for model reduction.

The results in Table 3.2 indicate that there are statistical significant time trends for the effect of

pSES, age, and gender. The overall covariate effect without stratification, denoted by Model 3c in

Table 3.2, are in agreement with the average covariate effects under Model 3bs:ageβ,λ0s
except for the

intercept term of the time-varying effect of region: under the assumption that the baseline intensity

functions are different across strata (three age groups), the effect of region becomes non-statistically

significant. It also indicates that there might be an interaction between age and residential region.

We also estimate the cumulative intensity function with the MPLEs of the regression parameters

under Model 3c in Table 3.2. Figure A.3 in Appendix A gives the estimate of the cumulative intensity

function for each subgroup. The dashed lines represent the Breslow estimates under Model 3c in
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Table 3.2, while the solid lines show the generalized Nelson-Aalen estimates. Again, we plot the

dashed lines with Age=3, Age=11, and Age=16 for pre-school, elementary, and teenager respec-

tively.

From Figure A.3, we can see that the Breslow estimates under Model 3c in Table 3.2 become

closer to the generalized Nelson-Aalen estimates in the subgroups with pSES in the category of

ASW, age of 6∼13 (Figure A.3.c), compared with the estimates under Model 3c in Table 3.1.

3.3.3 Main Effects together with Two Factor Interactions I

Results from the previous analysis indicate that there might be an interaction between age and

residential region. This section consider the effects of two-factor interactions on the recurrence of

EDMH visits. We start with models assuming all pairs of two-factor interactions. Table 3.3 summa-

rizes the MPLEs of the regression coefficients in the corresponding three special cases of Model 3.

The estimated robust standard errors are shown in the brackets. The log-partial likelihood functions

are evaluated at the estimates of the parameters under model assumptions. The estimates of the

coefficients with significant effect are bold in the table. Table B.3 in Appendix B shows correspond-

ing estimates with the non-parametric bootstrap estimators of the standard errors (B=2000).

We see from Table 3.3 that there exists strong evidence that the interaction terms are nonzero.

For example, the partial likelihood ratio statistic for testing the null hypothesis that Model 3c in Table

3.1 holds against Model 3c in Table 3.3 gives a value of 40.2 with df = 6, which provides a p-value

less than 0.001 with the chi-square distribution approximate. Therefore, Model 3c considering the

two-factor interactions in Table 3.3, significantly improves the fit.

We made a model deduction for Model 3c in Table 3.3 by removing the most non-statistically

significant interaction between gender and region. The partial likelihood ratio test for comparing the

two model has a p-value of 0.685 with a degree of freedom 1. Repeating the step, we ended with

the Model in Table 3.5. Note that the tests for interactions between pSES and region, age and gen-

der are significant using the robust standard error estimates, but non-statistically significant when

applying the non-parametric bootstrap standard error estimates. The result indicates a statistically

significant effect only from the interaction between age and region.

We estimated the cumulative intensity function with MPLEs of the regression parameters under
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Model 3c in Table 3.5. Figure A.4 in Appendix A represent the estimate of the cumulative intensity

function for each subgroup. The dashed lines represent the Breslow estimates under Model 3c in

Table 3.5, are plotted with Age=3, Age=11, and Age=16 for pre-school, elementary, and teenager

respectively.

From Figure A.4, we can clearly see that the Breslow estimate under Model 3c in Table 3.5 shows

closeness to the corresponding generalized Nelson-Aalen estimate in each of different subgroups.

It indicates Model 3c fits reasonably well.

Table 3.5: MPLEs of the regression coefficients and the estimates of the standard errors under the
fitted AG model considering two factor interactions and time-independent covariate effects.

Model Variable β̂ SE1 p-value1 SE2* p-value2*
3c pSES -0.345 0.038 0.000 0.054 0.000

Age 0.321 0.024 0.000 0.032 0.000
Sex -0.276 0.019 0.000 0.026 0.000
Region 0.155 0.030 0.000 0.047 0.001
pSES×Region -0.093 0.043 0.031 0.063 0.133
Age×Sex 0.039 0.020 0.049 0.028 0.157
Age×Region -0.121 0.024 0.000 0.032 0.000

log(PL(β̂)) -119443.7
* SE2 are the non-parametric bootstrap standard errors of the parameters,
and p-value2 are the corresponding p-values (B=2000).
pSES as the indicator of O, Age at the index initial EDMH visit, Sex as the
indicator of male, Region as the indicator of urban.

3.3.4 Main Effects together with Two Factor Interactions II

This section consider the effects of two-factor interactions on the recurrence of EDMH visits and

time-dependent effects of the risk factors. We start with models assuming all pairs of two-factor

interactions and time-dependent effects of all the four risk factors. Table 3.4 summarizes the further

analysis results with the three special cases of Model 3. Table B.4 in Appendix B shows corre-

sponding estimates of the regression coefficients with the non-parametric bootstrap estimators of

the standard errors (B=2000).

We compare the fits of the models in Table 3.4 with their corresponding models in Table 3.3

using the partial likelihood ratio test. The tests have p-value<0.001, which indicate that there exists

strong evidence that the effects of risk factors are time-varying.
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Again, the results indicate that the covariate effects vary from stratum to stratum: the p-values

of the partial likelihood ratio tests for comparing the fit of the two models, denoted by 3as:ageβs,λ0s
and

3bs:ageβ,λ0s
, 3as:seasonsβs,λ0s

and 3bs:seasonsβ,λ0s
, are less than 0.001.

The time trend effects of pSES are significant except in the pre-school group of Model 3as:ageβs,λ0s
.

However, the interaction between pSES and age and the interaction between pSE and sex are

significant in this group. It may indicate that the effect of pSES on the recurrence of EDMH visit

is different among subjects of different ages and between males and females. No significant time

trend for the effect of region is detected.

We made a model deduction for Model 3c in Table 3.4. The estimation results of the reduced

model are shown in Table 3.6. Note that the tests for interactions between pSES and age, pSES

and region are significant using the robust standard error estimates, but non-statistically significant

when applying the non-parametric bootstrap standard error estimates.

The cumulative intensity function are estimated with MPLEs of the regression parameters under

Model 3c in Table 3.6. Figure A.5 in Appendix A represent the estimates of the cumulative intensity

functions. The dashed lines represent the Breslow estimates under Model 3c in Table 3.6, are

plotted with Age=3, Age=11, and Age=16 for pre-school, elementary, and teenager respectively.

Figure A.5 shows that the Breslow estimates under Model 3c in Table 3.6 are closer to their cor-

responding generalized Nelson-Aalen estimates, compared with the Breslow estimates under the

model in Table 3.5. Model 3c assuming the interactions and time-dependent coefficients improves

the fit.
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Table 3.6: MPLEs of the regression coefficients and the estimates of the standard errors under the
fitted AG model considering two factor interactions and time-dependent covariate effects.

Model Variable β̂ SE1 p-value1 SE2* p-value2*
3c pSES 0.031 0.063 0.626 0.076 0.685

Age 0.106 0.036 0.003 0.045 0.019
Sex 0.051 0.053 0.330 0.062 0.408
Region 0.154 0.030 0.000 0.041 0.000
pSES×Age -0.068 0.021 0.001 0.035 0.059
pSES×Region -0.094 0.043 0.030 0.056 0.092
Age×Region -0.124 0.025 0.000 0.032 0.000
pSES × ln(t) -0.174 0.023 0.000 0.030 0.000
Age × ln(t) 0.126 0.012 0.000 0.025 0.000
Region × ln(t) -0.150 0.023 0.000 0.031 0.000

log(PL(β̂)) -119337.5
* SE2 are the non-parametric bootstrap standard errors of the parameters,
and p-value2 are the corresponding p-values (B=2000).
pSES as the indicator of O, Age at the index initial EDMH visit, Sex as the
indicator of male, Region as the indicator of urban.



Chapter 4

Extended Renewal Process Model

As aforementioned in Chapter 1, the available data utilized in this project only contains records of

mental health related ED visits from children and youth during April 1 2002 to March 31 2011. The

starting point of one individual is from the time when he/she had the first EDMH visit during the

observation window. Under this observation mechanism, different individuals have different starting

points, and the starting point is related to the occurrence of EDMH visit. The interpretations of the

analysis outcomes under the Cox regression models in Chapter 3, as well as under the parametric

model in Chapter 2.3, are easier and meaningful only when the time origin is non-informative to the

response. This motivates the renewal process model which assumes one individual is ”brand-new”

after the occurrence of each EDMH visit. If the renewal process model is appropriate, the corre-

sponding analysis outcomes are easier to interpret than the outcomes under the Cox regression

models. Since if individuals start from different time points, it is hard to tell the difference shown by

the end.

This chapter focuses on the renewal process model, assuming that the intensity function of

the event process depends only on the time since the most recent event. We first review a renewal

process model with corresponding estimation procedures. Both a parametric and a semi-parametric

version of the renewal process model are fitted with Alberta’s PMHC data described in Chapter 2.

We compare the analysis outcomes from the Cox regression models and the renewal process

models by the end of this chapter.
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4.1 Statistical Modeling

Assume that the baseline intensity function in the generalized Cox regression model (Model 1) to be

λ0{t;H(t)} = λ0(t− TN(t−)), a function of the gap time since the most recent ED visit, and restrict

the regression coefficients as β(t;H(t)) = β(t− TN(t−);β). We have, for t > 0,

λ(t|H(t)) = Y R(t)λ0(t− TN(t−)) exp{β(t− TN(t−);β)′Z}. (4)

This model uses the gap time as the index of the baseline intensity function and regression co-

efficients. It assumes the shape of the intensity function to depend on the time from the immediately

preceding ED visit time.

When β(t−TN(t−);β) = β, Model 4 assumes the effects of the risk factors are time-independent.

The corresponding intensity function is

λ(t|H(t)) = Y R(t)λ0(t− TN(t−)) exp{β′Z}. (4a)

Further assuming Y R(t) ≡ 1 reduces Model 4a to the second semi-parametric model of Prentice

et al (1981), labeled as formula (3) in their paper.

One may assume a parametric form for the baseline intensity function λ0(·) in Model 4a. Specif-

ically, the intensity function can be

λ(t|H(t)) = Y R(t)α(t− TN(t−))
α−1 exp{β′Z}. (4b)

4.2 Estimation Procedures

The estimation procedures for the extended renewal process model are based on likelihood function

L(θ|data), where θ denotes all the unknown parameters in our model. The following presents

estimation procedures with the semi-parametric model (Model 4a) and the parametric model (Model

4b).
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4.2.1 Estimation with a Semi-parametric Model

With Model 4a, the unknown parameters θ are specified as β, λ0. The likelihood function becomes

L(θ|data) =

n∏
i=1

{
Ki∏
k=1

[
λ0(gik)eβ

′Zi exp{−
∫ gik

0

Y Ri (u+ ti,k−1)λ0(u)eβ
′Zidu}

]}

× exp{−
∫ Ci−tiKi

0

Y Ri (u+ tiKi
)λ0(u)eβ

′Zidu}, (4.1)

with the log-likelihood function

l(θ|data) =
n∑
i=1

{
Ki∑
k=1

[
log
(
λ0(gik

)
) + β′Zi −

∫ gik

0

Y Ri (u+ ti,k−1)λ0(u)eβ
′Zidu

]}

−
∫ Ci−tiKi

0

Y Ri (u+ tiKi
)λ0(u)eβ

′Zidu, (4.2)

where gik = tik − ti,k−1 with ti0 = 0 are the gap times between the (k − 1)th and kth EDMH visits

for all subjects i = 1, . . . , n.

Let 0 < g1 < . . . < gJ be the distinct values of the gap times
{
gik : k = 1, . . . ,Ki; i = 1, . . . , n

}
.

Following Breslow (1972), we attain the MLE of β, λ0 by maximizing log-likelihood function l(θ|data)

in (4.2), viewing λ0(g) = 0 except for g = gj , j = 1, . . . , J . This motivates the likelihood estimating

equations

∂l(θ|data)
/
∂λ0(gj) = 0, j = 1, . . . , J ; ∂l(θ|data)

/
∂β = 0.

Let gj + ti,k−1 = t
(j)
ik for k = 1, . . . ,Ki. The first set of estimating equations can be written as, for

j = 1, . . . , J ,

λ0(gj) =

∑n
i=1

∑Ki

k=1 I(gik = gj)∑n
i=1

∑
k:gj∈(0,gik] Y

R
i (t

(j)
ik )eβ′Zi +

∑
i:gj∈(0,Ci−tiKi

] Y
R
i (t

(j)
i,Ki+1)eβ′Zi

. (4.3)
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Plugging it in the second estimating equations leads to

n∑
i=1

Ki∑
k=1

∂β

∂β

′

Zi (4.4)

=

J∑
j=1

∂β

∂β

′{∑n
i=1

∑
k:gj∈(0,gik] Y

R
i (t

(j)
ik )Zie

β′Zi +
∑
i:gj∈(0,Ci−tiKi

] Y
R
i (t

(j)
i,Ki+1)Zie

β′Zi∑n
i=1

∑
k:gj∈(0,gik] Y

R
i (t

(j)
ik )eβ′Zi +

∑
i:gj∈(0,Ci−tiKi

] Y
R
i (t

(j)
i,Ki+1)eβ′Zi .

}

A natural algorithm to attain the MLE of β,Λ0(t) =
∫ t
0
λ0(u)du is as follows:

(i) Obtain the MLE of β, denoted by β̂, by solving the equations (4.4).

(ii) Plug β̂ in the right-hand-sides of the equations (4.3), resulting in an estimator of λ0(gj) (de-

noted by λ̂0(gj ; β̂) in the following), and obtain the MLE of Λ0(·) as Λ̂0(t) =
∑
j:gj≤t λ̂0(gj ; β̂)

for t > 0.

4.2.2 Estimation with a Parametric Model

With Model 4b, the unknown parameters θ are specified as (α, β).The likelihood function becomes

L(θ|data) =

n∏
i=1

Ki∏
k=1

(α(gik)α−1eβ
′Zi) exp{−

∫ gik

0

Y Ri (ti,k−1 + u)αuα−1eβ
′Zidu}

exp{−
∫ Ci−tiKi

0

Y Ri (tiKi + u)αuα−1eβ
′Zidu}, (4.5)

with the log-likelihood function

l(θ|data) =

n∑
i=1

Ki∑
k=1

log(α) + (α− 1)log(gik) + β′Zi −
∫ gik

0

Y Ri (ti,k−1 + u)αuα−1eβ
′Zidu

−
∫ Ci−tiKi

0

Y Ri (tiKi
+ u)αuα−1eβ

′Zidu. (4.6)

We attain the MLE of θ by maximizing log-likelihood function l(θ|data) in (4.6). The formulas of

the likelihood score function and the observed information matrix are listed in Appendix C.
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4.3 Analysis Results

Applying the Newton-Raphson algorithm, we obtained the MLE of θ with the four time-independent

covariates, with risk set adjusted for hospital duration, for Model 4a and Model 4b, respectively.

Table 4.1 represents the MPLEs of the regression coefficients in Model 4a (the extended semi-

parametric renewal process model). The estimated standard errors are given below the estimates.

The coefficient estimates with significant effect are bold in the table. We can see from Table 4.1

that there exist statistically significant effects of pSES, age, and sex, on the recurrence of EDMH

visit, but no statistically significant difference is detected for region under Model 4a. Although the

signs of the regression coefficients in Model 4a are the same with Model 3c in Table 3.1 (the AG

model with time-independent covariate effects), the interpretations for the two models are different.

The results under Model 4a indicate that a decreased risk of an EDMH visit between successive

recurrent EDMH visits, is associated with pSES of O vs pSES of ASW, and males vs females, no

matter when and how many repeated EDMH visits those subjects had; while older subjects at index

initial visit tend to have higher risk to repeated EDMH visits than younger subjects. There is no

statistically significant difference between those in urban and rural regions in the risk to the next

EDMH visit from the time of most recent EDMH visit.

Table 4.1: MLEs of the regression coefficients in Model 4a.

Model pSES Age Sex Region
(O vs ASW) (at index initial EDMH) (Male vs Female) (Urban vs Rural)

Estimates -0.368 0.194 -0.062 0.107
SE 0.067 0.035 0.028 0.187

Under Model 4a, we estimate the cumulative intensity function for a subgroup of subjects who

have pSES in the category of O, are of age 11 at the index initial EDMH visit, and live in urban

area. See Figure 4.1. Figure 4.1(A) is for individuals who had EDMH visit at time T1 = 1000, T2 =

2000, T3 = 2500. That is, the gap times between two successive EDMH visits are g1 = 1000,

g2 = 1000, g3 = 500. Figure 4.1(B) is for individuals who had EDMH visit at time T1 = 500, T2 =

1000, T3 = 2000. The gap times between two successive EDMH visits for the individual are g1 = 500,

g2 = 500, g3 = 1000. We can see that the pattern is quite different with the one under the Cox
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Figure 4.1: The estimates of the cumulative intensity function for an individual who had EDMH visit
at time (A) T1 = 1000, T2 = 2000, T3 = 2500, and (B) T1 = 500, T2 = 1000, T3 = 2000.
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regression model. Under the renewal process model, one individual returns back to the status at

the index initial EDMH visit immediately after the occurrence of each EDMH visit.

Table 4.2 represents the MPLEs of the regression coefficients in the extended parametric re-

newal process model (Model 4b). The estimated standard errors are given below the estimates.

The coefficient estimates with significant effect are bold in the table. We see from Table 4.2 that

covariate effects with the parametric renewal process model (Model 4b) are in agreement with the

covariate effects under the semi-parametric renewal process model (Model 4a).

Table 4.2: MLEs of the regression coefficients in Model 4b.

Model α pSES Age Sex Region
(O vs ASW) (at index initial EDMH) (Male vs Female) (Urban vs Rural)

Estimates 0.413 -0.206 0.104 -0.041 0.062
SE 0.011 0.021 0.013 0.011 0.23

We estimate the cumulative rate of risk to the next EDMH visit since the index initial EDMH

visit under the two renewal process models. Figure 4.2 shows the corresponding estimates within

different subgroups. Dashed lines represent Model 4a, solid lines stand for Model 4b. We can see

from Figure 4.2 that the estimates under the two renewal process models show closeness in some

subgroups, such as pre-school males with pSES of O in urban; while in some subgroups, they show

discrepancy. The parametric assumption for the baseline intensity function might be inappropriate.
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Figure 4.2: The estimates of the cumulative rates of risk to the next EDMH visit since the index
initial EDMH visit under Model 4a and Model 4b. The lines are plotted with Age=3, Age=11, and
Age=16 for the three age group 0-5, 6-13, 14-17, respectively.
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4.4 Comparison with the Stratified Cox Regression Model

The main difference between the two classes of models, the stratified Cox regression model and

the renewal process model, is the index time for the baseline intensity function. The Stratified Cox

regression model uses the time since the index initial EDMH visit, while the renewal process model

uses the time since the most recent EDMH visit. As aforementioned in Chapter 1, the available data

utilized in this project only contains records of mental health related ED visits from children and

youth during April 1 2002 to March 31 2011. The starting point of one individual is from the time

when he/she had the first EDMH visit during the observation window. The first EDMH visit observed

within this observation window may not be the first EDMH visit of the whole life of one subject. With

the renewal process model, we can more easily to interpret the analysis outcome. However, the

objective of this project is to evaluate the frequency of EDMH visits and identifying the risk factors.

It is worth examining the data through a variety of other models.



Chapter 5

Final Remarks

5.1 Summary

This project aims to evaluate the frequency of children and youth ED visits for mental illnesses and

identify the associated risk factors. Based on the PMHC data, we focus on four main potential

risk factors: social-economic status, gender, age at the index initial EDMH visit, and the region of

residence. Adapting the counting process framework, we conduct data analyses under two classes

of the generalized Cox regression model which accommodates the duration of hospitalization using

the adjusted risk sets: the stratified Cox regression model and the renewal process model. The

data analysis shows that all four risk factors have significant effects on the recurrence of EDMH

visits. We found that an increasing risk of having recurrent EDMH visit is associated with subjects

having index initial visit as teenagers versus at younger ages; children and youth who live in urban

area are more likely to have multiple EDMH visits for mental illness than those in rural area; while

those with pSES of category O tend to have lower risk of the next EDMH visit than those with other

pSES, and a decreased multiple EDMH visit risk is associated with males versus females.

With a parametric version of the generalized Cox regression model, we present the maximum

likelihood based estimation procedures in Chapter 2 and obtain the MLEs of the regression pa-

rameters with the risk set adjusted and not-adjusted for hospital duration. The estimation results

under the two at-risk settings are very similar, which may due to a small proportion of children and
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youth having observed hospitalization records. We evaluate the cumulative intensity function with

the MLEs of the regression coefficients, and plot the log-transformed estimates against log of event

time to check the model assumption. The result indicates that it is inappropriate to assume the

baseline intensity function as a power function of event time. The differences of the Nelson-Aalon

estimates for the intensity functions within different subgroups motivate the analysis in Chapter 3

and Chapter 4.

In Chapter 3, we consider the stratified Cox regression models and obtain the MPLEs of the

regression coefficients. The robust estimates for the standard errors are very small. We also obtain

the non-parametric bootstrap estimates for the standard errors, to make a comparison. The analysis

results show that the effects of the four risk factors are different across different strata and there are

statistical significant time trend for the effect of pSES, age, and gender. The statistically significant

effect from the interaction between age and region was also detected.

In Chapter 4, we fit a semi-parametric and a parametric renewal process model based on PMHC

data, respectively. We obtain the MLEs of the regression parameters. The interpretations under the

renewal process models are different with those under the Cox regression models. The analysis

results show that only three risk factors, pSES, age at the index initial EDMH visit, and sex, have

statistically significant effects on the occurrence of the next EDMH visit since the most recent visit.

The results also indicate that the parametric assumption for the baseline intensity function might be

inappropriate.

5.2 Future Investigation

There are many issues to consider. Some interesting points of future investigations are listed below.

• The estimation procedures in this project require the censoring times Ci for all study subjects.

The censoring times depend on the unavailable birth dates of the subjects. We can use

different methods to estimate the birth dates of the study subjects.

• There is also an interest in the consideration of time-varying covariates. When time-varying

covariates are of interest, the estimation procedures need observations of the covariates
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throughout the whole study period. In the current application, we only have the covariate

information at subject’s each own EDMH visit times. One approach to deal with this issue is to

assume the time-dependent covariates of one subject have only jumps at his or her observed

EDMH visit times.

• We are also interested in considering different stratification variables. We explore season of

the EDMH visits as a stratification variable in this project. This stratification variable may not

be informative, as winter in Calgary and Edmonton, for example, may start in different month.

It is interesting to consider temperature at EDMH visit time as the stratification variable, if data

is available.

• Different methods can be used to accommodate the informative time origin problem. For

example, one may use age in years as the time scale and set age of zero as the starting point

of each subject.

• The PMHC data were extracted from four population-based administrative database. The

information is only available for children and youth in Alberta who had ED records for mental

health during the data collection period from April 01, 2002 to March 31, 2011. In addition, we

know that those individuals who are eligible to be recorded but have no information about ED

visits recored in the database must not have any ED visit during the data collection period.

Utilizing available demographic information on the whole population of children and youth in

Alberta who are eligible to be recorded in the database to supplement the available ED visit

data, we can evaluate the ED visit frequency of the whole population of children and youth in

Alberta.

• The ED visit data and non-ED physician visit data allow us to study the relationship of ED and

non-ED visits. We can jointly model the ED and non-ED visits together by assuming different

forms of the intensity functions. It would also be interesting to jointly model the time of ED

visit(time-to-event data) and diagnosis or severity of ED visit (longitudinal data).
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Appendix A

Estimates of the Cumulative
Intensity Functions

This section represent the estimates of the cumulative intensity functions. We group subjects ac-

cording to age at the index initial EDMH visit (pre-school 0 ∼ 5, elementary school 6 ∼ 13, and

teenager (14 ∼ 17), sex (male and female), pSES at the index initial EDMH visit (O and ASW), and

region at the index initial EDMH visit (urban and rural). For each of the different subgroups, we eval-

uate the generalized Nelson-Aalen estimator and the Breslow estimator under the Cox regression

models in Chapter 3 for the cumulative intensity function.
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Figure A.1: The Generalized Nelson-Aelon estimates of the cumulative intensity functions with
adjustment of hospital duration.
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Figure A.2: The Generalized Nelson-Aalen estimates of the cumulative intensity functions with
adjustment of hospital duration, together with the Breslow estimates under Model 3c (the model
considering time-independent covariate effects) in Table 3.1. The dashed lines are plotted with
Age=3, Age=11, and Age=16 for the three age group 0-5, 6-13, 14-17, respectively.
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Figure A.3: The Generalized Nelson-Aalen estimates of the cumulative intensity functions with ad-
justment of hospital duration, together with the Breslow estimates under Model 3c (the model con-
sidering time-dependent covariate effects) in Table 3.2. The dashed lines are plotted with Age=3,
Age=11, and Age=16 for the three age group 0-5, 6-13, 14-17, respectively.
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Figure A.4: The Generalized Nelson-Aalen estimates of the cumulative intensity functions with
adjustment of hospital duration, together with the Breslow estimates under Model 3c (the two factor
interaction model with time-independent covariate effects) in Table 3.5. The dashed lines are plotted
with Age=3, Age=11, and Age=16 for the three age group 0-5, 6-13, 14-17, respectively.



APPENDIX A. ESTIMATES OF THE CUMULATIVE INTENSITY FUNCTIONS 54

Figure A.5: The Generalized Nelson-Aalen estimates of the cumulative intensity functions with
adjustment of hospital duration, together with the Breslow estimates under Model 3c (the two factor
interaction model with time-dependent covariate effects) in Table 3.6. The dashed lines are plotted
with Age=3, Age=11, and Age=16 for the three age group 0-5, 6-13, 14-17, respectively.



Appendix B

Non-parametric Bootstrap Estimates
of Standard Errors

This section represent the estimations under models in Chapter 3, along with the non-parametric

bootstrap estimates of the standard errors. We explored bootstrap sizes B=1000, B=2000, and

B=5000, respectively. The estimates for the standard errors are similar when B=2000 and B=5000.

Thus, we shows the estimation results with B=2000 in this section.

Table B.1 corresponds to Table 3.1; Table B.2 can be compared with Table 3.2; while Table B.3

corresponds to Table 3.3.

55



APPENDIX B. NON-PARAMETRIC BOOTSTRAP ESTIMATES OF STANDARD ERRORS 56

Ta
bl

e
B

.1
:

M
P

LE
s

of
th

e
re

gr
es

si
on

co
ef

fic
ie

nt
s

an
d

no
np

ar
am

et
ric

bo
ot

st
ra

p
es

tim
at

es
fo

r
th

e
st

an
da

rd
er

ro
rs

in
M

od
el

3a
/3

b/
3c

w
ith

tim
e-

in
de

pe
nd

en
tc

ov
ar

ia
te

ef
fe

ct
s.

S
tra

tifi
ca

tio
n

Va
ria

bl
e

1*
S

tra
tifi

ca
tio

n
Va

ria
bl

e
2*

*
A

G
M

od
el

M
od

el
3a

s
:a
g
e

β
s
,λ

0
s

3b
s
:a
g
e

β
,λ

0
s

3a
s
:s
e
a
s
o
n
s

β
s
,λ

0
s

3b
s
:s
e
a
s
o
n
s

β
,λ

0
s

3c
β
1

β
2

β
3

β
(=

β
s
)

β
1

β
2

β
3

β
4

β
(=

β
s
)

β
(t

;β
s
)

=
β

lo
g(

P
L(
β̂

))
-1

12
37

0.
2

-1
12

45
8.

8
-1

02
30

7.
9

-1
02

37
8

-1
19

46
1.

02
pS

E
S

-0
.7

68
-0

.3
75

-0
.4

18
-0

.4
13

-0
.4

51
-0

.3
64

-0
.5

20
-0

.3
71

-0
.3

85
-0

.4
20

(0
.2

81
)

(0
.0

65
)

(0
.0

41
)

(0
.0

34
)

(0
.0

44
)

(0
.0

46
)

(0
.0

51
)

(0
.0

27
)

(0
.0

22
)

(0
.0

27
)

A
ge

0.
66

2
0.

13
7

-0
.0

09
0.

09
2

0.
03

3
0.

12
2

0.
11

0
0.

09
4

0.
08

5
0.

08
5

(0
.1

26
)

(0
.0

10
)

(0
.0

23
)

(0
.0

06
)

(0
.0

08
)

(0
.0

08
)

(0
.0

11
)

(0
.0

07
)

(0
.0

08
)

(0
.0

05
)

S
ex

-0
.2

65
-0

.3
79

-0
.2

23
-0

.2
90

-0
.2

54
-0

.3
99

-0
.2

60
-0

.1
94

-0
.2

13
-0

.2
82

(0
.2

89
)

(0
.0

43
)

(0
.0

31
)

(0
.0

22
)

(0
.0

57
)

(0
.0

44
)

(0
.0

40
)

(0
.0

43
)

(0
.0

25
)

(0
.0

26
)

R
eg

io
n

0.
56

2
0.

27
9

0.
04

4
0.

11
9

0.
17

8
0.

12
9

0.
23

5
-0

.0
30

0.
11

3
0.

12
6

(0
.3

37
)

(0
.0

48
)

(0
.0

33
)

(0
.0

30
)

(0
.0

51
)

(0
.0

46
)

(0
.0

47
)

(0
.0

45
)

(0
.0

22
)

(0
.0

32
)

3a
(3

)
3b

(3
)

lo
g(

P
L(
β̂

))
-1

12
51

1.
3

-1
12

54
6.

1
pS

E
S

-0
.8

47
-0

.3
60

-0
.4

18
-0

.4
06

(0
.2

68
)

(0
.0

38
)

(0
.0

40
)

(0
.0

28
)

S
ex

0.
00

9
-0

.4
60

-0
.2

24
-0

.3
03

(0
.2

61
)

(0
.0

41
)

(0
.0

27
)

(0
.0

26
)

R
eg

io
n

0.
74

6
0.

27
3

0.
04

5
0.

11
5

(0
.3

44
)

(0
.0

49
)

(0
.0

31
)

(0
.0

31
)

*
A

ge
at

1s
tE

D
M

H
vi

si
ta

s
th

e
st

ra
tifi

ca
tio

n
va

ria
bl

e
(p

re
-s

ch
oo

l0
-5

,e
le

m
en

ta
ry

sc
ho

ol
6-

13
,a

nd
te

en
ag

er
14

-1
7)

.
**

S
ea

so
ns

of
th

e
E

D
M

H
vi

si
ts

as
th

e
st

ra
tifi

ca
tio

n
va

ria
bl

e:
fa

ll,
sp

rin
g,

su
m

m
er

,a
nd

w
in

te
r,

re
sp

ec
tiv

el
y.

pS
E

S
as

th
e

in
di

ca
to

ro
fO

,A
ge

at
th

e
in

de
x

in
iti

al
E

D
M

H
vi

si
t,

S
ex

as
th

e
in

di
ca

to
ro

fm
al

e,
R

eg
io

n
as

th
e

in
di

ca
to

ro
fu

rb
an

.
N

on
-p

ar
am

et
ric

bo
ot

st
ra

p
st

an
da

rd
er

ro
rs

in
br

ac
ke

ts
(B

=2
00

0)
;

S
ig

ni
fic

an
te

ffe
ct

w
ith

p-
va

lu
e
≤

0
.0

5
in

bo
ld

fa
ce



APPENDIX B. NON-PARAMETRIC BOOTSTRAP ESTIMATES OF STANDARD ERRORS 57

Ta
bl

e
B

.2
:

M
P

LE
s

of
th

e
re

gr
es

si
on

co
ef

fic
ie

nt
s

an
d

no
np

ar
am

et
ric

bo
ot

st
ra

p
es

tim
at

es
fo

r
th

e
st

an
da

rd
er

ro
rs

in
M

od
el

3a
/3

b/
3c

w
ith

tim
e-

de
pe

nd
en

tc
ov

ar
ia

te
ef

fe
ct

s.

S
tra

tifi
ca

tio
n

Va
ria

bl
e

1*
S

tra
tifi

ca
tio

n
Va

ria
bl

e
2*

*
A

G
M

od
el

M
od

el
3a

s
:a
g
e

β
s
,λ

0
s

3b
s
:a
g
e

β
,λ

0
s

3a
s
:s
e
a
s
o
n
s

β
s
,λ

0
s

3b
s
:s
e
a
s
o
n
s

β
,λ

0
s

3c
β
1

β
2

β
3

β
(=

β
s
)

β
1

β
2

β
3

β
4

β
(=

β
s
)

β
(t

;β
s
)

=
β

lo
g(

P
L(
β̂

))
-1

12
31

1.
3

-1
12

38
9.

7
-1

02
20

1.
3

-1
02

27
7.

6
-1

19
35

9.
73

7
pS

E
S

-0
.4

21
-0

.0
88

-0
.0

24
-0

.0
80

-0
.0

32
-0

.0
85

-0
.2

11
-0

.0
53

-0
.0

88
-0

.0
85

(0
.7

81
)

(0
.1

11
3)

(0
.0

71
)

(0
.0

65
)

(0
.1

10
)

(0
.1

31
)

(0
.1

22
)

(0
.1

24
)

(0
.0

64
)

(0
.0

70
)

A
ge

0.
50

3
0.

03
6

-0
.0

18
-0

.0
31

-0
.0

21
-0

.0
03

-0
.0

01
-0

.0
17

-0
.0

11
-0

.0
12

(0
.3

21
)

(0
.0

39
)

(0
.0

38
)

(0
.0

21
)

(0
.0

25
)

(0
.0

31
)

(0
.0

38
)

(0
.0

21
)

(0
.0

13
)

(0
.0

09
)

S
ex

1.
39

0
0.

05
1

0.
02

4
0.

05
0

0.
02

2
0.

04
0

0.
18

8
-0

.0
21

0.
05

4
0.

05
3

(0
.9

58
)

(0
.1

24
)

(0
.0

84
)

(0
.0

62
)

(0
.1

01
)

(0
.1

13
)

(0
.1

32
)

(0
.1

21
)

(0
.0

63
)

(0
.0

65
)

R
eg

io
n

0.
35

9
0.

34
4

0.
12

5
0.

12
1

0.
06

1
0.

09
9

0.
35

8
0.

08
7

0.
13

1
0.

13
0

(0
.9

41
)

(0
.1

39
)

(0
.0

74
)

(0
.0

65
)

(0
.1

22
)

(0
.1

20
)

(0
.1

52
)

(0
.1

33
)

(0
.0

73
)

(0
.0

79
)

pS
E

S
×

ln
(t)

-0
.1

40
-0

.1
16

-0
.1

89
-0

.1
50

-0
.1

91
-0

.1
23

-0
.1

36
-0

.1
46

-0
.1

50
-0

.1
51

(0
.2

95
)

(0
.0

41
)

(0
.0

38
)

(0
.0

33
)

(0
.0

52
)

(0
.0

61
)

(0
.0

57
)

(0
.0

61
)

(0
.0

41
)

(0
.0

33
)

A
ge
×

ln
(t)

0.
06

6
0.

04
2

0.
00

4
0.

05
5

0.
02

5
0.

05
8

0.
05

0
0.

05
3

0.
04

5
0.

04
5

(0
.1

25
)

(0
.0

26
)

(0
.0

32
)

(0
.0

09
)

(0
.0

07
)

(0
.0

10
)

(0
.0

15
)

(0
.0

10
)

(0
.0

05
)

(0
.0

05
)

S
ex
×

ln
(t)

-0
.6

41
-0

.1
74

-0
.1

21
-0

.1
53

-0
.1

27
-0

.1
95

-0
.1

98
-0

.0
77

-0
.1

51
-0

.1
50

(0
.3

51
)

(0
.0

52
)

(0
.0

33
)

(0
.0

30
)

(0
.0

42
)

(0
.0

48
)

(0
.0

52
)

(0
.0

48
)

(0
.0

32
)

(0
.0

31
)

R
eg

io
n
×

ln
(t)

0.
07

4
-0

.0
26

-0
.0

39
-0

.0
02

0.
05

3
0.

01
2

-0
.0

55
-0

.0
55

-0
.0

04
-0

.0
03

(0
.3

61
)

(0
.0

62
)

(0
.0

43
)

(0
.0

31
)

(0
.0

51
)

(0
.0

52
)

(0
.0

60
)

(0
.0

58
)

(0
.0

31
)

(0
.0

37
)

*
A

ge
at

th
e

in
de

x
in

iti
al

E
D

M
H

vi
si

ta
s

th
e

st
ra

tifi
ca

tio
n

va
ria

bl
e

(p
re

-s
ch

oo
l0

-5
,e

le
m

en
ta

ry
sc

ho
ol

6-
13

,a
nd

te
en

ag
er

14
-1

7)
.

**
S

ea
so

ns
of

th
e

E
D

M
H

vi
si

ts
as

th
e

st
ra

tifi
ca

tio
n

va
ria

bl
e:

fa
ll,

sp
rin

g,
su

m
m

er
,a

nd
w

in
te

r,
re

sp
ec

tiv
el

y.
pS

E
S

as
th

e
in

di
ca

to
ro

fO
,A

ge
at

th
e

in
de

x
in

iti
al

E
D

M
H

vi
si

t,
S

ex
as

th
e

in
di

ca
to

ro
fm

al
e,

R
eg

io
n

as
th

e
in

di
ca

to
ro

fu
rb

an
.

N
on

-p
ar

am
et

ric
bo

ot
st

ra
p

st
an

da
rd

er
ro

ri
n

br
ac

ke
ts

(B
=2

00
0)

;
S

ig
ni

fic
an

te
ffe

ct
w

ith
p-

va
lu

e
≤

0
.0

5
in

bo
ld

fa
ce



APPENDIX B. NON-PARAMETRIC BOOTSTRAP ESTIMATES OF STANDARD ERRORS 58

Ta
bl

e
B

.3
:

M
P

LE
s

of
th

e
re

gr
es

si
on

co
ef

fic
ie

nt
s

an
d

no
np

ar
am

et
ric

bo
ot

st
ra

p
es

tim
at

es
fo

r
th

e
st

an
da

rd
er

ro
rs

in
M

od
el

3a
/3

b/
3c

w
ith

al
lp

ai
rs

of
tw

o
fa

ct
or

in
te

ra
ct

io
ns

an
d

tim
e-

in
de

pe
nd

en
tc

ov
ar

ia
te

ef
fe

ct
s.

S
tra

tifi
ca

tio
n

Va
ria

bl
e

1*
S

tra
tifi

ca
tio

n
Va

ria
bl

e
2*

*
A

G
M

od
el

M
od

el
3a

s
:a
g
e

β
s
,λ

0
s

3b
s
:a
g
e

β
,λ

0
s

3a
s
:s
e
a
s
o
n
s

β
s
,λ

0
s

3b
s
:s
e
a
s
o
n
s

β
,λ

0
s

3c
β
1

β
2

β
3

β
(=

β
s
)

β
1

β
2

β
3

β
4

β
(=

β
s
)

β
(t

;β
s
)

=
β

lo
g(

P
L(
β̂

))
-1

12
30

4.
1

-1
12

44
1.

5
-1

02
25

8.
9

-1
02

35
7.

8
-1

19
44

0.
9

pS
E

S
-9

.9
49

-0
.2

78
-0

.3
92

-0
.3

62
-0

.4
66

-0
.3

19
-0

.3
04

-0
.3

76
-0

.3
67

-0
.3

66
(3

.3
81

)
(0

.1
02

)
(0

.0
64

)
(0

.0
58

)
(0

.0
78

)
(0

.0
89

)
(0

.0
91

)
(0

.0
86

)
(0

.0
60

)
(0

.0
61

)
A

ge
1.

15
1

0.
81

8
-0

.2
24

0.
35

6
0.

18
7

0.
37

5
0.

41
5

0.
38

9
0.

33
3

0.
33

4
(0

.8
22

)
(0

.0
81

)
(0

.0
91

)
(0

.0
42

)
(0

.0
54

)
(0

.0
59

)
(0

.0
57

)
(0

.0
58

)
(0

.0
35

)
(0

.0
35

)
S

ex
2.

09
9

-0
.9

24
-0

.2
93

-0
.3

23
-0

.1
38

-0
.3

68
-0

.4
45

-0
.3

85
-0

.3
19

-0
.3

21
(2

.9
15

)
(0

.1
00

)
(0

.0
61

)
(0

.0
63

)
(0

.0
81

)
(0

.0
85

)
(0

.1
06

)
(0

.0
90

)
(0

.0
63

)
(0

.0
64

)
R

eg
io

n
8.

81
0

0.
14

7
0.

03
6

0.
14

3
0.

17
0

0.
27

5
0.

24
6

-0
.0

93
0.

15
4

0.
15

2
(3

.1
70

)
(0

.0
94

)
(0

.0
54

)
(0

.0
50

)
(0

.0
67

)
(0

.0
68

)
(0

.0
71

)
(0

.0
70

)
(0

.0
55

)
(0

.0
54

)
pS

E
S
×

A
ge

-1
.9

78
-0

.0
40

0.
02

4
-0

.0
29

-0
.0

54
-0

.0
37

-0
.0

41
0.

01
4

-0
.0

31
-0

.0
31

(0
.7

91
)

(0
.0

62
)

(0
.0

77
)

(0
.0

35
)

(0
.0

41
)

(0
.0

45
)

(0
.0

51
)

(0
.0

44
)

(0
.0

29
)

(0
.0

29
)

pS
E

S
×

S
ex

1.
34

6
0.

14
3

-0
.0

14
0.

05
0

-0
.0

64
0.

24
7

-0
.0

42
0.

08
1

0.
05

8
0.

05
6

(0
.6

01
)

(0
.0

77
)

(0
.0

52
)

(0
.0

41
)

(0
.0

84
)

(0
.0

79
)

(0
.0

89
)

(0
.0

81
)

(0
.0

58
)

(0
.0

59
)

pS
E

S
×

R
eg

io
n

1.
63

6
-0

.2
39

-0
.0

39
-0

.0
92

0.
03

6
-0

.1
68

-0
.2

59
-0

.0
26

-0
.1

00
-0

.0
99

(0
.9

55
)

(0
.0

89
)

(0
.0

57
)

(0
.0

54
)

(0
.0

89
)

(0
.0

91
)

(0
.0

98
)

(0
.0

88
)

(0
.0

63
)

(0
.0

63
)

A
ge
×

S
ex

0.
48

8
-0

.4
19

0.
29

2
0.

03
8

0.
06

2
0.

17
9

-0
.0

37
-0

.0
47

0.
03

9
0.

03
8

(0
.7

52
)

(0
.0

61
)

(0
.0

68
)

(0
.0

41
)

(0
.0

45
)

(0
.0

40
)

(0
.0

55
)

(0
.0

47
)

(0
.0

29
)

(0
.0

28
)

A
ge
×

R
eg

io
n

2.
15

9
-0

.2
23

0.
11

1
-0

.1
20

-0
.1

18
-0

.1
02

-0
.0

74
-0

.1
38

-0
.1

16
-0

.1
17

(0
.8

45
)

(0
.0

84
)

(0
.0

79
)

(0
.0

37
)

(0
.0

55
)

(0
.0

50
)

(0
.0

63
)

(0
.0

50
)

(0
.0

34
)

(0
.0

33
)

S
ex
×

R
eg

io
n

-1
.4

57
0.

04
2

-0
.0

17
0.

01
6

-0
.0

80
-0

.1
93

0.
25

4
0.

18
8

0.
01

6
0.

01
8

(0
.8

30
)

(0
.0

96
)

(0
.0

65
)

(0
.0

55
)

(0
.0

97
)

(0
.0

85
)

(0
.1

12
)

(0
.0

91
)

(0
.0

63
)

(0
.0

63
)

*
A

ge
at

th
e

in
de

x
in

iti
al

E
D

M
H

vi
si

ta
s

th
e

st
ra

tifi
ca

tio
n

va
ria

bl
e

(p
re

-s
ch

oo
l0

-5
,e

le
m

en
ta

ry
sc

ho
ol

6-
13

,a
nd

te
en

ag
er

14
-1

7)
.

**
S

ea
so

ns
of

th
e

E
D

M
H

vi
si

ts
as

th
e

st
ra

tifi
ca

tio
n

va
ria

bl
e:

fa
ll,

sp
rin

g,
su

m
m

er
,a

nd
w

in
te

r,
re

sp
ec

tiv
el

y.
pS

E
S

as
th

e
in

di
ca

to
ro

fO
,A

ge
at

th
e

in
de

x
in

iti
al

E
D

M
H

vi
si

t,
S

ex
as

th
e

in
di

ca
to

ro
fm

al
e,

R
eg

io
n

as
th

e
in

di
ca

to
ro

fu
rb

an
.

N
on

-p
ar

am
et

ric
bo

ot
st

ra
p

st
an

da
rd

er
ro

ri
n

br
ac

ke
ts

(B
=2

00
0)

;
S

ig
ni

fic
an

te
ffe

ct
w

ith
p-

va
lu

e
≤

0
.0

5
in

bo
ld

fa
ce



APPENDIX B. NON-PARAMETRIC BOOTSTRAP ESTIMATES OF STANDARD ERRORS 59

Ta
bl

e
B

.4
:

M
P

LE
s

of
th

e
re

gr
es

si
on

co
ef

fic
ie

nt
s

an
d

no
np

ar
am

et
ric

bo
ot

st
ra

p
es

tim
at

es
fo

r
th

e
st

an
da

rd
er

ro
rs

in
M

od
el

3a
/3

b/
3c

w
ith

al
lp

ai
rs

of
tw

o
fa

ct
or

in
te

ra
ct

io
ns

an
d

tim
e-

de
pe

nd
en

tc
ov

ar
ia

te
ef

fe
ct

s.

S
tra

tifi
ca

tio
n

Va
ria

bl
e

1*
S

tra
tifi

ca
tio

n
Va

ria
bl

e
2*

*
A

G
M

od
el

M
od

el
3a

s
:a
g
e

β
s
,λ

0
s

3b
s
:a
g
e

β
,λ

0
s

3a
s
:s
e
a
s
o
n
s

β
s
,λ

0
s

3b
s
:s
e
a
s
o
n
s

β
,λ

0
s

3c
β
1

β
2

β
3

β
(=

β
s
)

β
1

β
2

β
3

β
4

β
(=

β
s
)

β
(t

;β
s
)

=
β

lo
g(

P
L(
β̂

))
-1

12
24

7.
2

-1
12

36
7.

4
-1

02
14

8.
9

-1
02

25
3.

5
-1

19
33

5.
6

pS
E

S
-1

0.
13

6
0.

01
1

0.
09

9
0.

01
7

0.
01

2
-0

.0
17

0.
08

1
-0

.0
50

0.
00

8
0.

01
0

(3
.8

22
)

(0
.1

52
)

(0
.0

91
)

(0
.0

72
)

(0
.1

33
)

(0
.1

31
)

(0
.1

50
)

(0
.1

38
)

(0
.0

78
)

(0
.0

78
)

A
ge

0.
82

4
0.

59
3

-0
.1

27
0.

07
3

0.
07

5
0.

05
2

0.
20

8
0.

13
3

0.
11

7
0.

11
6

(1
.4

01
)

(0
.1

22
)

(0
.1

25
)

(0
.0

74
)

(0
.0

76
)

(0
.0

79
)

(0
.0

98
)

(0
.0

85
)

(0
.0

44
)

(0
.0

43
)

S
ex

3.
88

2
-0

.4
70

-0
.0

83
0.

02
6

0.
12

4
-0

.0
44

0.
10

6
-0

.1
67

0.
02

1
0.

01
9

(3
.2

02
)

(0
.1

54
)

(0
.0

98
)

(0
.0

77
)

(0
.1

31
)

(0
.1

74
)

(0
.1

66
)

(0
.1

42
)

(0
.0

77
)

(0
.0

78
)

R
eg

io
n

8.
81

8
0.

23
9

0.
10

2
0.

24
8

0.
12

7
0.

35
1

0.
46

2
0.

12
5

0.
25

8
0.

25
6

(3
.4

09
)

(0
.1

65
)

(0
.1

04
)

(0
.0

81
)

(0
.1

42
)

(0
.1

49
)

(0
.1

75
)

(0
.1

49
)

(0
.0

86
)

(0
.0

85
)

pS
E

S
×

A
ge

-2
.0

29
-0

.0
43

-0
.1

32
-0

.0
72

-0
.0

94
-0

.0
69

-0
.0

83
-0

.0
07

-0
.0

65
-0

.0
65

(0
.8

05
)

(0
.0

61
)

(0
.0

73
)

(0
.0

34
)

(0
.0

42
)

(0
.0

53
)

(0
.0

55
)

(0
.0

64
)

(0
.0

33
)

(0
.0

33
)

pS
E

S
×

S
ex

1.
33

4
0.

12
7

-0
.0

27
0.

02
5

-0
.0

86
0.

22
5

-0
.0

76
0.

06
7

0.
03

4
0.

03
2

(0
.6

33
)

(0
.0

73
)

(0
.0

56
)

(0
.0

44
)

(0
.0

79
)

(0
.0

84
)

(0
.0

91
)

(0
.0

88
)

(0
.0

42
)

(0
.0

42
)

pS
E

S
×

R
eg

io
n

1.
64

7
-0

.2
42

-0
.0

43
-0

.0
95

0.
04

1
-0

.1
65

-0
.2

64
-0

.0
36

-0
.1

02
-0

.1
01

(0
.9

65
)

(0
.0

93
)

(0
.0

64
)

(0
.0

49
)

(0
.0

92
)

(0
.0

91
)

(0
.1

00
)

(0
.0

95
)

(0
.0

53
)

(0
.0

53
)

A
ge
×

S
ex

0.
54

6
-0

.4
34

0.
22

6
-0

.0
07

0.
03

9
0.

14
2

-0
.1

07
-0

.0
77

0.
00

1
-0

.0
00

(0
.7

78
)

(0
.0

64
)

(0
.0

78
)

(0
.0

31
)

(0
.0

47
)

(0
.0

50
)

(0
.0

55
)

(0
.0

58
)

(0
.0

28
)

(0
.0

28
)

A
ge
×

R
eg

io
n

2.
16

6
-0

.2
24

0.
09

2
-0

.1
39

-0
.1

21
-0

.1
14

-0
.1

08
-0

.1
71

-0
.1

35
-0

.1
35

(0
.8

54
)

(0
.0

80
)

(0
.0

81
)

(0
.0

33
)

(0
.0

56
)

(0
.0

58
)

(0
.0

69
)

(0
.0

65
)

(0
.0

37
)

(0
.0

37
)

S
ex
×

R
eg

io
n

-1
.4

33
0.

04
1

-0
.0

20
0.

01
1

-0
.0

80
-0

.1
92

0.
24

0
0.

17
7

0.
01

2
0.

01
4

(0
.8

43
)

(0
.0

98
)

(0
.0

64
)

(0
.0

55
)

(0
.0

94
)

(0
.0

94
)

(0
.1

09
)

(0
.0

98
)

(0
.0

57
)

(0
.0

57
)

pS
E

S
×

ln
(t)

0.
00

1
-0

.1
15

-0
.2

11
-0

.1
69

-0
.2

21
-0

.1
33

-0
.1

66
-0

.1
46

-0
.1

67
-0

.1
68

(0
.3

24
)

(0
.0

49
)

(0
.0

42
)

(0
.0

53
)

(0
.0

55
)

(0
.0

49
)

(0
.0

60
)

(0
.0

57
)

(0
.0

32
)

(0
.0

32
)

A
ge
×

ln
(t)

0.
13

2
0.

09
9

0.
01

2
0.

15
4

0.
06

8
0.

17
0

0.
13

3
0.

14
8

0.
12

5
0.

12
5

(0
.3

89
)

(0
.0

38
)

(0
.0

56
)

(0
.0

34
)

(0
.0

28
)

(0
.0

33
)

(0
.0

40
)

(0
.0

35
)

(0
.0

28
)

(0
.0

27
)

S
ex
×

ln
(t)

-0
.6

15
-0

.1
86

-0
.0

88
-0

.1
54

-0
.1

18
-0

.1
40

-0
.2

37
-0

.0
92

-0
.1

49
-0

.1
49

(0
.3

55
)

(0
.0

51
)

(0
.0

39
)

(0
.0

33
)

(0
.0

51
)

(0
.0

56
)

(0
.0

58
)

(0
.0

60
)

(0
.0

33
)

(0
.0

34
)

R
eg

io
n
×

ln
(t)

-0
.0

05
-0

.0
37

-0
.0

28
-0

.0
47

0.
01

9
-0

.0
37

-0
.0

95
-0

.0
97

-0
.0

48
-0

.0
48

(0
.4

08
)

(0
.0

62
)

(0
.0

45
)

(0
.0

34
)

(0
.0

58
)

(0
.0

64
)

(0
.0

70
)

(0
.0

66
)

(0
.0

41
)

(0
.0

42
)

*
A

ge
at

th
e

in
de

x
in

iti
al

E
D

M
H

vi
si

ta
s

th
e

st
ra

tifi
ca

tio
n

va
ria

bl
e

(p
re

-s
ch

oo
l0

-5
,e

le
m

en
ta

ry
sc

ho
ol

6-
13

,a
nd

te
en

ag
er

14
-1

7)
.

**
S

ea
so

ns
of

th
e

E
D

M
H

vi
si

ts
as

th
e

st
ra

tifi
ca

tio
n

va
ria

bl
e:

fa
ll,

sp
rin

g,
su

m
m

er
,a

nd
w

in
te

r,
re

sp
ec

tiv
el

y.
pS

E
S

as
th

e
in

di
ca

to
ro

fO
,A

ge
at

th
e

in
de

x
in

iti
al

E
D

M
H

vi
si

t,
S

ex
as

th
e

in
di

ca
to

ro
fm

al
e,

R
eg

io
n

as
th

e
in

di
ca

to
ro

fu
rb

an
.

N
on

-p
ar

am
et

ric
bo

ot
st

ra
p

st
an

da
rd

er
ro

ri
n

br
ac

ke
ts

(B
=2

00
0)

;
S

ig
ni

fic
an

te
ffe

ct
w

ith
p-

va
lu

e
≤

0
.0

5
in

bo
ld

fa
ce



Appendix C

Estimation Formula

The estimation formula for Model 2 in Chapter 2

Assume that the baseline intensity function is a power function of the event time t. We specify

the baseline intensity into αtα−1. The model is

λ(t|H(t)) = Y R(t)αtα−1 exp{β′Z}. (2)

Let θ denote the two set of unknown parameters in Model 2. Then the likelihood function is

L(θ|data) ∝
n∏
i=1

∏
t∈(0,Ci]

(λ(t;Hi(t)))dNi(t)(1− λ(t;Hi(t))dt)1−dNi(t)

=

n∏
i=1

∏
t∈(0,Ci]

(αtα−1 exp{β′Zi})dNi(t) × exp
{
−
∫ Ci

0

Y Ri (t)αtα−1 exp{β′Zi}dt
}

The log likelihood function is

l(θ|data) =

n∑
i=1

[ ∑
t∈(0,Ci]

log(αtα−1eβ
′Zi)dNi(t)−

∫ Ci

0

Y Ri (t)αtα−1eβ
′Zidt

]

=

n∑
i=1

∫ ∞
0

Y Ci (t)
[
log
(
αtα−1eβ

′Zi

)
dNi(t)− Y Ri (t)αtα−1eβ

′Zidt
]
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The likelihood score function of θ is U(θ) = (Uα(θ), U ′β(θ))′, with

Uα(θ) =

n∑
i=1

∫ ∞
0

Y Ci (t)
[( 1

α
+ lnt

)
dNi(t)− Y Ri (t)

(
tα−1 + αtα−1lnt

)
eβ
′Zidt

]
=

n∑
i=1

∫ ∞
0

Y Ci (t)
( 1

α
+ lnt

)[
dNi(t)− Y Ri (t)αtα−1eβ

′Zidt
]

and

Uβ(θ) =

n∑
i=1

∫ ∞
0

Y Ci (t)Zi

[
dNi(t)− Y Ri (t)αtα−1eβ

′Zidt
]

The observed information matrix is I(θ), with four elements

Iαα(θ) =

n∑
i=1

∫ ∞
0

Y Ci (t)
[( 1

α2

)
dNi(t) + Y Ri (t)

(
tα−1(2 + αlnt)lnt

)
eβ
′Zidt

]
Iαβ(θ) = Iβα(θ)′ =

n∑
i=1

∫ ∞
0

Y Ci (t)Y Ri (t)tα−1(1 + αlnt)Zie
β′Zidt

Iββ(θ) =

n∑
i=1

∫ ∞
0

Y Ci (t)Y Ri (t)αtα−1ZiZ
′
ie
β′Zidt
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The estimation formula for Model 4b in Chapter 4

Under the assumption that the baseline intensity function is a power function of the event time t,

the extended renewal process model becomes

λ(t|H(t)) = Y R(t)α(t− TN(t−))
α−1 exp{β′Z}. (4b)

Let θ denote the two set of unknown parameters in Model 4b. The likelihood function is derived

as the following

L(θ|data) =

n∏
i=1

Li(θ|datai)

∝
n∏
i=1

∏
t∈(0,Ci]

(λ(t;Hi(t)))dNi(t)(1− λ(t;Hi(t))dt)1−dNi(t)

=

n∏
i=1

∏
t∈(0,Ci]

(Y Ri (t)α(t− TN(t−))
α−1eβ

′Zi)dNi(t)(1− Y Ri (t)α(t− TN(t−))
α−1eβ

′Zidt)1−dNi(t)

=

n∏
i=1

[ ∏
t∈(0,Ci]

(Y Ri (t)α(t− TN(t−))
α−1eβ

′Zi)dNi(t)
]

[ ∏
t∈(0,Ci]

(1− Y Ri (t)α(t− TN(t−))
α−1eβ

′Zidt)1−dNi(t)
]

=

n∏
i=1

[ Ki∏
k=1

(α(tik − ti,k−1)α−1eβ
′Zi)
][ Ki∏

k=1

∏
t∈(ti,k−1,tik)

(1− Y Ri (t)α(t− TN(t−))
α−1eβ

′Zidt)

∏
t∈(tiKi

,Ci]

(1− Y Ri (t)α(t− TN(t−))
α−1eβ

′Zidt)
]

=

n∏
i=1

[ Ki∏
k=1

(α(gik)α−1eβ
′Zi)
][ Ki∏

k=1

∏
u∈(0,gik)

(1− Y Ri (ti,k−1 + u)αuα−1eβ
′Zidu)

∏
u∈(0,Ci−tiKi

]

(1− Y Ri (tiKi + u)αuα−1eβ
′Zidu)

]

=

n∏
i=1

[ Ki∏
k=1

(α(gik)α−1eβ
′Zi)
][ Ki∏

k=1

exp{−
∫ gik

0

Y Ri (ti,k−1 + u)αuα−1eβ
′Zidu}

exp{−
∫ Ci−tiKi

0

Y Ri (tiKi
+ u)αuα−1eβ

′Zidu}
]

=

n∏
i=1

Ki∏
k=1

(α(gik)α−1eβ
′Zi) exp{−

∫ gik

0

Y Ri (ti,k−1 + u)αuα−1eβ
′Zidu}

exp{−
∫ Ci−tiKi

0

Y Ri (tiKi
+ u)αuα−1eβ

′Zidu},
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where gik = tik − ti,k−1 with ti0 = 0 are the gap times between the (k − 1)th and kth EDMH visits

for all subjects i = 1, . . . , n.

Let 0 < g1 < . . . < gJ be the distinct values of the gap times
{
gik : k = 1, . . . ,Ki; i = 1, . . . , n

}
.

Following Breslow (1972), we attain the MLE of θ by maximizing log-transformation of L(θ) above,

viewing λ0(g) = 0 except for g = gj , j = 1, . . . , J . The log likelihood function is

l(θ|data) =

n∑
i=1

Ki∑
k=1

log(α) + (α− 1)log(gik) + β′Zi −
∫ gik

0

Y Ri (ti,k−1 + u)αuα−1eβ
′Zidu

−
∫ Ci−tiKi

0

Y Ri (tiKi
+ u)αuα−1eβ

′Zidu,

The likelihood score function of θ is U(θ) = (Uα(θ), U ′β(θ))′, with

Uα(θ) =

n∑
i=1

Ki∑
k=1

1/α+ log(gik)−
∫ gik

0

Y Ri (ti,k−1 + u)
(
uα−1 + αuα−1lnu

)
eβ
′Zidu

−
∫ Ci−tiKi

0

Y Ri (tiKi
+ u)

(
uα−1 + αuα−1lnu

)
eβ
′Zidu

and

Uβ(θ) =

n∑
i=1

Ki∑
k=1

Zi −
∫ gik

0

Y Ri (ti,k−1 + u)αuα−1Zie
β′Zidu−

∫ Ci−tiKi

0

Y Ri (tiKi + u)αuα−1Zie
β′Zidu

The observed information matrix is I(θ), with four elements

Iαα(θ) =

n∑
i=1

Ki∑
k=1

1/α2 +

∫ gik

0

Y Ri (ti,k−1 + u)
(

2 + αlnu
)(
uα−1lnu

)
eβ
′Zidu

+

∫ Ci−tiKi

0

Y Ri (tiKi + u)
(

2 + αlnu
)(
uα−1lnu

)
eβ
′Zidu

Iαβ(θ) =

n∑
i=1

Ki∑
k=1

∫ gik

0

Y Ri (ti,k−1 + u)
(
uα−1 + αuα−1lnu

)
Zie

β′Zidu

+

∫ Ci−tiKi

0

Y Ri (tiKi
+ u)

(
uα−1 + αuα−1lnu

)
Zie

β′Zidu

= Iβα(θ)′

Iββ(θ) =

n∑
i=1

Ki∑
k=1

∫ gik

0

Y Ri (ti,k−1 + u)αuα−1ZiZ
′
ie
β′Zidu+

∫ Ci−tiKi

0

Y Ri (tiKi + u)αuα−1ZiZ
′
ie
β′Zidu
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