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Abstract

The need to compare two separate manifolds arises in a wide range of applications. In

this thesis, ‘Shape-DNA’, i.e. the eigenvalues of the Laplace-Beltrami operator, are used to

create a numerical signature representing an individual object. The corresponding spectrum

is isometry invariant, which means it is independent of manifold representations such as

parameterization or spatial positioning. Therefore, checking if two objects are isometry

invariants does not require any alignment (registration/localization) of the objects but only

comparing their spectra. We determine the Shape-DNA using the closest point method

on the manifold. In 3D we illustrate the process for triangulated mesh and point cloud

surfaces. Convergence studies demonstrate that the convergence rates correspond to those

of the underlying finite di↵erence methods. A 2D multidimensional scaling plot illustrates

how identical objects are mapped to the same spot and similar objects form groups based

on the Shape-DNA’s.

Keywords: Laplace-Beltrami; closest point method; point cloud; spectra
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“But that’s another story and shall be told another time.”

— The Neverending Story, Michael Ende, 1979
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Chapter 1

Introduction

Determining how two objects are similar to or di↵erent from each other is a standard

problem in both mathematics and computational science. Instances of such applications

arise in biological systems, biometric technology, medical imaging and 3D scanning. For

example, biological systems study how similar animals remain when they undergo a physical

transformation such as inflation [2]. Biometric technology can be used to secure financial

transactions [8] by scanning a humans fingerprints and checking the database for a match.

As well, historical identification of artwork can be accomplished with 3D scanning (such as

the digital Michelangelo project [18]) and find similarities to other artworks belonging to

the same time period. With current technologies and the vast pool of applications, there is

high demand for software that can systematically examine a database to determine similarly

shaped objects (i.e. shape matching) e�ciently.

In order to implement shape matching, we first require a method to characterize an

object. “Visual recognition of objects requires an active process of mapping visual sensations

onto stored mental representations”, Parsons and Fox explain in [26]. We now discuss

techniques for automating this innate human ability, which then can be used for shape

matching.

A classical approach to identifying shapes is through the aid of watermarks [3], although

there remain some disadvantages of this technique. Watermarks are information embedded

into the representation or geometry of an object and may be either visible or invisible. Wa-

termark data is commonly embedded into polygonal meshes by slightly modifying the vertex

location, the connectivity of the mesh or the frequency domain involving mesh-spectral anal-

ysis. In most cases, anytime we manipulate the representation or reparametrize an object,

1



CHAPTER 1. INTRODUCTION 2

watermarks can be destroyed if they are not embedded in the geometry. However, embed-

ding watermarks into the geometry changes the object, possibly rendering it inadequate for

shape matching.

In the past fifty years, several methods have been proposed to solve the problem of

shape matching (e.g. using moments, spherical harmonics or Reeb graphs—a survey can

be found in Iyer et al. [15]). A majority of these approaches realign the geometric objects

in a process which is commonly known as localization or registration [27]. These shape

matching algorithms use a specific representation of the object (usually polygonal meshes).

Additional techniques decompose the representation of the objects into smaller attributes

[6], which are compared in a subsequent step. All these techniques can solve the shape

matching problem, however there is a more desirable class of shape identifiers.

A possible alternative to localization and representation decomposition is to identify

shapes by a signature or fingerprint. Fingerprints identify the shape of an object by geo-

metric invariants. These fingerprints do not discriminate between di↵erent representations

of a single object. Fingerprints leave the objects in their original forms, unlike the water-

mark approach, as previously mentioned. We adopt Reuter et al. [29] choice to have a

fingerprint consist of a vector of numbers/shape invariants associated with the given object.

Reuter et al. [29] propose that the ideal candidate will satisfy these properties:

1. [ ISOMETRY ]: Congruent solids (or isometric surfaces) should have the same finger-

print independently of the object’s given representation and location. Therefore, the

fingerprint should be an isometry invariant.

2. [ SCALING ]: For some applications, it is necessary that the fingerprint is independent

of the object’s size, therefore the fingerprint should be scaling invariant.

3. [ SIMILARITY ]: Similarly shaped solids should have similar fingerprints. The fin-

gerprint should depend continuously on shape deformations.

4. [ EFFICIENCY ]: The e↵ort needed to compute fingerprints should be reasonable.

5. [ COMPLETENESS ]: Fingerprints should give a complete characterization of the

shape, thus representing the shape uniquely. Moreover, it would be desirable that the

fingerprints could be used to reconstruct the original solid.

6. [ COMPRESSION ]: The fingerprint data should not be redundant, i.e. a part of it

could not be computed from the rest of the data.
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7. [ PHYSICALITY ]: Finally, it would be beneficial if an intuitive geometric or physical

interpretation of the meaning of the fingerprints is available.

All together, these properties would make the fingerprint an excellent choice for shape

matching as its target application.

An essential property that requires formalism is that of isometry.

Definition 1. (Isometry)

Two geometric objects are isometric if a homeomorphism1from one to the other exists pre-

serving (geodesic) distances, i.e. mapping curves to curves with equal arc length. This

homeomorphism is then called an isometry.

Surfaces remain isometric even after bending the original surface, despite not being

congruent (assuming that there is no stretching or change to the metric) . When matching

a given object A that is a transformation of another object B, the fingerprint will be similar

for objects A and B. When comparing objects, the [ISOMETRY] property is arguably the

most important feature.

Reuter et al. [29] have recognized that the eigenvalues of the Laplace-Beltrami operator

adheres to most of these ideal properties (1. [ISOMETRY] - 7. [PHYSICALITY]). In

order to understand the Laplace-Beltrami operator on general surfaces, we first consider the

operator on a smooth and well studied manifold, that is, on a sphere. Afterwards, we will

detail properties of the eigenvalues.

1.1 Laplace-Beltrami Operator

Let er, e✓, e� be the standard unit vectors in spherical coordinates. The surface gradient in

spherical coordinates is then defined as

rSu(x) =
@u

@r

er +
1

r sin ✓

@u

@�

e� +
1

r

@u

@✓

e✓, (1.1)

1
A function f : X ! Y between topological spaces is called a homeomorphism if it satisfies:

1. f is a bijection,

2. f is continuous,

3. the inverse function f�1
is continuous.
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where ✓ is the angle with the z-axis, � the rotation around the z-axis (commonly known as

the zenith and azimuth angles respectively), S is a smooth closed surface, and u(·) is a C1

smooth scalar function, u : S ! R. The surface divergence in spherical coordinates is given

by

rS ·U(x) =
1

r

2

@

@r

(r2Ur) +
1

r sin ✓

@

@✓

(sin ✓U✓) +
1

r sin ✓

@U�

@�

. (1.2)

The Laplace-Beltrami operator, named after Pierre-Simon Laplace and Eugenio Beltrami,

has the following definition:

�Su(x) = rS ·rSu(x) (1.3)

on a smooth closed surface S. The Laplace-Beltrami operator is a generalization of the

Laplacian since it can also operate on functions defined on surfaces in Euclidean space and,

more generally, on Riemannian manifolds.

The problem that is central to this thesis is the following:

Problem 1. (Laplace-Beltrami eigenvalue problem)

Given a surface S, determine the eigenfunctions u : S ! R and eigenvalues �2 satisfying

�Su(x) = ��2u(x), for x 2 S. (1.4)

Equation (1.4) does not have an analytic solution for a general manifold, hence the majority

of our e↵orts will be concluded with numerical results. Before we investigate the general

properties of the Laplace-Beltrami operator, we start o↵ with an analytic result for the

sphere to give some insight.

1.2 Eigenvalues of a Sphere

In order to determine the eigenvalues of the sphere, we can look at Helmholtz’s equation in

spherical coordinates. This approach follows common mathematical techniques and more

importantly, avoids the di�culty of interpreting the surface Laplacian.

The Helmholtz equation was studied for various basic shapes in the 19th century. In 1829,

Siméon Denis Poisson solved it for the rectangular membrane. In 1852 Gabriel Lamé solved

it for the equilateral triangle. Alfred Clebsch solved it in 1862 for the circular membrane.

The boundary-value problem for the Helmholtz equation is given by
8
<

:
�u(x) + �

2

u(x) = 0, in ⌦
@u

@n

= 0, on @⌦.
(1.5)
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where ⌦ is an open, bounded subset of Rn, u : ⌦̄ ! R is the eigenfunction and �2 2 R is the

corresponding eigenvalue. The case where � = 0 becomes Laplace’s equation. On S, the
Helmholtz equation can be derived by applying separation of variables to the wave equation

(See §A.1 for details). Thus labeling �, the wavenumber, which are spatial frequencies of a

wave. This can give some intuition for the Helmholtz equation.

Considering the Helmholtz equation restricted to the unit sphere, we transform the

coordinate system from the Euclidean space to spherical coordinates. Starting from a sphere

centered at the origin, radius r, and (x, y, z) 2 R3 we have:

x = r cos ✓ sin�,

y = r sin ✓ sin�,

z = r cos�,

where 0  ✓  2⇡ and 0  �  ⇡. The Laplacian operator in spherical coordinates,

Equation (1.3), is explicitly written as

� =
1

r

2

@

@r

✓
r

2

@

@r

◆
+

1

r

2 sin ✓

@

@✓

✓
sin ✓

@

@✓

◆
+

1

r

2 sin2 ✓

@

2

@�

2

. (1.6)

In order to solve Equation (1.5) we apply the classical approach of separation of variables.

Let

u(✓,�) = ⇥(✓)�(�) (1.7)

with no dependence on r, since it is constant for all points on the sphere.

The Helmholtz equation in spherical coordinates using separation of variables gives:

1

sin ✓

@

@✓

�
sin ✓⇥0��+

1

sin2 ✓
�00⇥+ �

2�⇥ = 0,

sin ✓

⇥

@

@✓

�
sin ✓⇥0�+ �

2 sin2 ✓ = ��00

�
. (1.8)

The left hand side of Equation (1.8) does not depend on the same variables as the right

hand side. We therefore have the constant coe�cient ordinary di↵erential equation,

�00

�
= �m

2

, (1.9)

for some integer m (in order that the solution is the same for � and �+ 2⇡). The solution

to Equation (1.9) is of the form

�(�) = e

im� = sin(m�) + i cos(m�). (1.10)
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Substituting Equation (1.9) into Equation (1.8) we have

sin ✓

⇥

@

@✓

�
sin ✓⇥0�+ �

2 sin2 ✓ = m

2

. (1.11)

Simplifying the problem by azimuthal symmetry, where m = 0, Equation (1.11) becomes

1

sin ✓⇥

@

@✓

�
sin ✓⇥0� = ��2. (1.12)

Substituting u = cos ✓, the associated Legendre equation is

d

du

✓
(1� u

2)
d⇥

du

◆
+ �

2⇥(u) = 0. (1.13)

To have a solution to Equation (1.13) it is necessary that u is finite and �2 = l(l+1), l 2 N0.

The eigenvalues for the unit sphere are therefore �2 = l(l + 1) = {0, 2, 6, 12, . . .}, with

multiplicities 2l + 1.

1.3 Properties of the Spectrum

After seeing the spectrum for the sphere, we are interested in the general properties of the

Laplace-Beltrami operator. We will highlight important qualities of the spectrum demon-

strating the connection to the ideal properties (1.[ISOMETRY] - 7. [PHYSICALITY]).

The spectrum is isometric invariant as it only depends on the gradient and divergence

which in turn are defined to be dependent only on the Riemannian structure of the manifold

[29]. In order to demonstrate this dependence, we first introduce some notation from Reuter

et al. [29]. Let f and g be real-valued functions belonging to C2 defined on a Riemannian

manifold M. Given a local parametrization  : Rn ! Rn+k of a submanifold M of Rn+k

with

gij := @i · @j , G := (gij), W :=
p
det G, (gij) := G

�1

(where i, j = 1, · · · , n and det denotes the determinant), we obtain

rf ·rg =
X

i,j

g

ij
@if@jg and

�Sf =
1

W

X

i,j

@i(g
ij
W@jf). (1.14)

This underlying mathematical notion allows the [ISOMETRY] property to be fulfilled.
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Moreover, if we scale a manifold by a factor a, then the eigenvalues become scaled by

the factor 1

a2 (See §A.2 for details). This allows us to satisfy the [SCALING] property by

multiplying by the appropriate constant.

We observe that the spectrum consists of a diverging sequence, 0  �

1

 �

2

 · · · ,
with no accumulation (limit) points except at infinity. Eigenvalues can have multiplicity

greater than 1. Reuter et al. [29] discuss the mutual independence of eigenvalues and

the impossibility of finite characterization. Specifically they demonstrate that an arbitrary

eigenvalue cannot be computed from a finite number of other eigenvalues for a Riemannian

manifold.

Assertion 1. (Mutual independence of eigenvalues)

An arbitrary eigenvalue �k of a compact Riemannian manifold (M, g) cannot be computed

from a finite number of other eigenvalues of (M, g) in general (i.e. if the manifold is

unknown).

They also extend Assertion 1 to demonstrate that it is not only impossible to determine

one arbitrary eigenvalue, but it is also impossible to determine the whole spectrum from a

finite subsequence for an unknown manifold [29]. By “unknown”, we mean that there is no

prior knowledge on what the manifold is, since we can determine the entire spectrum for

certain restricted classes of surfaces (i.e. if we know the object is a sphere, then from the

first few eigenvalues we can determine the entire spectrum).

Corollary 1. (Impossibility of finite characterization)

No subsequence S of a spectrum, Spec(M), of any unknown compact Riemannian manifold

M determines the whole spectrum.

Assertion 1 and Corollary 1 are of interest in relation to the [COMPRESSION] prop-

erty. The eigenvalue spectrum cannot be compressed into a finite subsequence without

loss of information. Moreover, without any prior knowledge about the manifold, the first

m-eigenvalues cannot be constructed from the first n-eigenvalues where n < m. The [COM-

PRESSION] property alongside Assertion 1 and Corollary 1 prevent any possible attempt

at reconstructing the spectrum with only a subsequence and without knowing the manifold.

The remaining properties further support the choice of basing the fingerprints on the

eigenvalues of the Laplace-Beltrami operator. Reuter et al. [29] demonstrate that a sig-

nificant amount of information is stored in the fingerprint fulfilling [PHYSICALITY]. The
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[EFFICIENCY] property holds for the finite element implementation taken by Reuter et al.

[29] and the proposed method of this thesis (as we will see). Both involve solving an eigen-

value problem, which can be accomplished in a reasonable amount of computational time.

Reuter et al. [29] detail that the [COMPLETENESS] property cannot be upheld due to

non-isometric manifolds having the same spectrum. Lastly, [SIMILARITY] is satisfied due

to the spectrum of the Laplace-Beltrami operator depending continuously on the manifold.

Together with all these properties, the fingerprint approach is an excellent candidate.

The calculation of the fingerprint does not manipulate the structure of the manifold which

allows it to be used in shape matching. As we investigate further in this thesis, we shall see

the successful implementation for shape matching.

The thesis unfolds as follows. Chapter 2 gives a detailed explanation of the eigenvalues of

the Laplace-Beltrami operator that we call ‘Shape-DNA’ and the shape matching algorithm.

Chapter 3 illustrates the closest point method and exhibits the di↵erent components through

a concrete example. Chapter 4 verifies the method with numerical results for triangulated

surfaces, point clouds and shape matching application. The closest point method has never

been used for shape-matching and point cloud surfaces until this study. Lastly, Chapter 5

summarizes the Shape-DNA algorithm and its findings.



Chapter 2

Shape-DNA

This chapter begins with a formal definition of Shape-DNA. Following this, we detail the

overall shape matching process called the ‘shape matching algorithm’. We explain each step

in the shape matching algorithm, which is detailed in Reuter et al. [29].

2.1 Shape-DNA

Shape-DNA is extracted from the Laplace-Beltrami operator which encapsulates the geom-

etry of the manifold since it is an isometry invariant.

Definition 2. (Shape-DNA)

Let M be a Riemannian manifold with a metric h. The cropped spectrum containing only

the first n eigenvalues

cspecn(M, h) = {�
0

 �

1

 �

2

 · · ·  �n�1

} 2 Rn
�0

(2.1)

is called the Shape-DNA of (M, h).

Shape-DNA is a central concept in shape matching. See Reuter et al. [29] for a variety of

other interesting applications.

2.2 Shape Matching Algorithm

Humans are able to categorize di↵erent objects by geometric similarities, and this is precisely

what we try to automate. Shape-DNA quantifies this innate ability to categorize various

9
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objects. In order to conduct shape comparison between several objects, we have the following

major steps:

Definition 3. (Shape Matching Algorithm)

1. Solve for the Shape-DNA of the Laplace-Beltrami for given manifolds.

2. Normalize the Shape-DNA of each manifold.

3. Conduct a MultiDimensional Scaling (MDS) plot with the Euclidean distances between

the Shape-DNA from step 2.

How one decides to solve the Laplace-Beltrami eigenvalue problem is entirely user-dependent.

Reuter et al. [29] have chosen to implement the finite element method. The normalization

step is strictly for the [SCALING] property, in order to scale objects of di↵erent magni-

tudes. Since each manifold is represented by its own Shape-DNA, multidimensional scaling

is a classical approach to illustrate the distance between each and every Shape-DNA. We

will now give a more in depth look at each step in the shape matching algorithm.

2.2.1 Finite element method

Firstly we must find (a finite number) of the eigenvalues of the Laplace-Beltrami operator,

i.e. the Shape-DNA.We detail the finite element method for the Laplace-Beltrami eigenvalue

problem, then proceed to the numerical discretization.

Variational problem

Recall that the Helmholtz equation is defined as

�u(x) + �

2

u(x) = 0, (2.2)

where u 2 Rn is the eigenfunction and �

2 2 R corresponds to the eigenvalue. Rather

than working with Equation (2.2), we wish to work with the variational problem or weak

formulation.

We can reach the weak formulation of Helmholtz’s equation restricted to some given

smooth surface by applying Green’s formula,
Z Z

��uWdS = �
Z Z

ru ·r�WdS, (2.3)
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with test functions � 2 C2, Neumann (@u@n = 0) boundary condition and the Nabla operator

under the notation given in §1.3

ru ·r� =
X

i,j

g

ij
@iu @j�. (2.4)

We multiply the Helmholtz equation with test functions. By integrating over the surface

and using Green’s formula, Equation (2.3) becomes
Z Z

��uWdS = ��2
Z Z

�uWdS,

()
Z Z X

i,j

g

ij
@iu@j�WdS = �

2

Z Z
�uWdS. (2.5)

Every function u (u 2 C2 on the boundary) that solves the weak formulation for all test

functions �, is a solution to the Helmholtz equation [7, pg. 35].

Discretization

We require a numerical discretization of the variational problem in order to obtain the

eigenvalues (since an explicit solution to the problem posed on a general surface does not

exist). Reuter et al. implement a Galerkin technique as follows (See e.g. Strang [34]):

• Choose n linearly independent form functions: F

1

(x), · · · , Fn(x) defined on the pa-

rameter space (i.e. the discretization/tessellation of the domain).

• Secondly, use a linear combination of these functions to form a basis of a vector space

to approximate the solution:

u(x) ⇡ F (x) := U

1

F

1

(x) + · · ·+ UnFn(x).

• Lastly, calculate the n unknown coe�cients Ui 2 R by substituting u in the variational

equation and selecting n di↵erent test functions �i to obtain n equations. They are

n-form functions chosen for the test functions to preserve symmetry in the linear

system.

After a discretization/tessellation of the domain is constructed n-form functions are

created. These form functions represent the basis of the solution space. This solution space

is composed of piecewise polynomial functions on each finite element, which are called “form

functions”. Reuter et al. [29] have used linear, quadratic and cubic polynomials defined on

triangular elements in the parameter space of the surface.
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By looking at the discretized surface (i.e. finite dimensional problem) and with Equation

(2.5), the two symmetric matrices are

A = (alm) :=

0

@
Z Z 0

@
X

j,k

(@jFl)(@kFm)gjkd�

1

A

1

A

B = (blm) :=

✓Z Z
FlFmd�

◆
(2.6)

and the variational problem then becomes a general eigenvalue problem:

AU = �

2

BU. (2.7)

We have that U = (U
1

· · ·Un) and A,B are sparse positive semi-definite symmetric matrices

since all eigenvalues are greater than or equal to zero.

2.2.2 Normalization

There are di↵erent possible choices for Step (2) of the Shape-DNA Algorithm introduced

by Reuter et al. [29]. The Shape-DNA of a d-dimensional Riemannian manifold can be:

1. divided by the factor c of the fitting curve,

f(x) = cx

2/d (2.8)

fitting f(n) := �n (cf. Weyl’s law in Appendix A.3).

2. multiplied by V

2/d, where V is the real Riemannian volume of the manifold extracted

by extrapolation from the spectrum (for d = 2 this is simply a multiplication by the

surface area).

3. multiplied by V

2/d, where V is the real Riemannian volume that has been calculated

externally via a pre-process.

We note that for the case d = 2, the slope of the fitting line gives a rough approximation to

4⇡/A where A is the area [29].

We will choose the first and most general normalization that does not require any knowl-

edge of the manifold other than the eigenvalues we compute. Although Weyl’s law is for

large n, we obtain accurate results for n ⇡ 50 for shape matching in §4.2.4. Software au-

tomation is possible by selecting the first normalization factor. Although the second and
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Figure 2.1: Example of 2D-MDS plot for shape matching on a set of objects. Reprinted
with permission of the Journal of Computer-Aided Design [[29], Figure 19].

third options would be more accurate, we cannot always accurately estimate the area of a

general manifold. MATLAB’s [23] built in function, nlinfit which applies a least squares

estimation is used to find the coe�cient c.

2.2.3 Multidimensional scaling

In order to give a visual interpretation of a given set of objects describing the distances

between each Shape-DNA, we will use multidimensional scaling. The 2D-MDS plot can be

understood as an orthogonal projection of the n-dimensional vectors onto their best 2D-

fitting plane. It illustrates how identical manifolds map to the same spot on the figure, and

similar objects form groups (See Figure 2.1 and Figure 2.2 for some results from Reuter et

al. [29, 28]).

We briefly mention the setup to achieve the 2D-MDS plot. Given N -objects, we compute

the dissimilarity matrix where �i,j := distance between the i

th and j

th objects. Find N

vectors, x
1

, · · ·xN 2 Rd such that kxi � xjk2 ⇡ �i,j 8i, j 2 N . T. Cox and M. Cox [11]

describe this process by solving an equivalent eigenvalue problem in the following steps:

1. Obtain dissimilarities {�rs}.

2. Find matrix A =
⇥�1

2

�

2

rs

⇤
.
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Figure 2.2: Example of 2D-MDS plot for shape matching on a set of objects. Reprinted
with permission of M. Reuter [28].

3. Find matrix B = [ars � ar. � a.s + a..],

where [A]rs = ars, ar. = n

�1

P
s ars, a.s = n

�1

P
r ars, a.. = n

�2

P
r

P
s ars.

4. Find the eigenvalues �
1

, · · · ,�n�1

and associated eigenvectors v
1

, · · · ,vn�1

, where the

eigenvectors are normalized so that vT
i vi = �i.

5. Choose the number of dimensions p. This thesis considers p = 2 for all cases.

6. The coordinates of the n points in the p dimensional Euclidean space are given by

xri = vir (r = 1, · · · , n; i = 1, · · · , p).

In this thesis, the vectors are represented by the Shape-DNA of N -objects. There are

built-in functions for determining the solution to the multidimensional scaling problem given

a dissimilarity matrix. We obtain accurate and reliable results by the function cmdscale in

MATLAB [23].

The eigenvalues of the Laplace-Beltrami operator, i.e. Shape-DNA is the fingerprint that

will identify objects. The shape matching algorithm has three components. Firstly, the finite

element method was used to solve for the Shape-DNA of the objects. Then a normalization

factor is taken into account based on Weyl’s Asymptotic growth of eigenvalues. Finally,

multidimensional scaling is how we visualize our shape matching results as a natural choice.
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The shape matching algorithm has successful results using the finite element method.

However this process relies on a triangulated surface. The closest point method can operate

directly on both triangulated surfaces and point clouds. As we will see in the following

chapter, by solving the Shape-DNA with the closest point method instead of the finite

element method, this leads to improvements in several aspects.



Chapter 3

The Closest Point Method

A major consideration for determining the Shape-DNA of an object, is how to evaluate

the surface di↵erential operator. We briefly illustrate the reasoning behind selecting the

closest point method (CPM) as the preferred candidate. We illustrate the CPM through a

case study. Finally, we review the Implicit Closest Point Method (ICPM) for the Laplace-

Beltrami operator.

3.1 Motivation

A standard approach for solving PDEs on surfaces is to create a parametrization on the sur-

face, express the di↵erential operators within this new set of coordinates and then perform a

discretization. Distortions in either angles or other regions always occur from parametriza-

tions, as discussed in [12]. Surface parametrization techniques are di�cult to implement for

general geometries and hence we consider other strategies.

Another class of methods embed the surface di↵erential equations within di↵erential

equations posed on all R3. By restricting the corresponding embedding equations to only

the surface, we obtain the original problem at hand. This approach accounts for general

surface geometries while maintaining the simplicity of working in standard Cartesian grids.

One proposal takes a level-set representation of the underlying surface [5]. Although

e↵ective for a class of problems, embedding methods based on level-set methods have a

list of restrictions. Notably, these methods do not naturally allow for open surfaces with

boundaries although modifications involving additional level-set functions are possible [13].

A second substantial issue arises when restricting the problem from all space to a narrow

16
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band width around the surface. This step requires the introduction of artificial boundary

conditions, which are not well studied and in practice limit the order of accuracy to first

order.

Other embedding methods may be considered. Notably, one may use a closest point

representation of the surface instead of a level set representation. A closest point represen-

tation allows for open surfaces and does not introduce artificial boundary conditions, as we

shall see in further discussion. We now detail the ideas underlying the method.

3.2 Closest Point Representation

The closest point method (CPM) is an embedding method. It replaces the surface PDE

with a related PDE in the embedding space. This allows us to numerically solve the PDE

using finite di↵erences, finite element or other standard approaches. Applying the closest

point method with finite di↵erences is shown to be straightforward and easily implemented

with uniform grids.

An important component of the CPM is the closest point function.

Definition 4. (Closest point function)

Given a surface S in Rd, cp(x) refers to a (possibly non-unique) point belonging to S which

is closest to x 2 Rd.

In practice, there are various techniques to determine the closest point function depending

on the surface given. An analytic representation of the closest point function can be given

for simple geometries such as a circle, sphere or torus. If given a parametrization of the

object, standard numerical optimization techniques can be applied to compute the closest

point function. For more complex geometries, we may be given the surface in the form of

a triangulated surface. For triangulated surfaces, we can examine the nearest point for all

grid points in the embedding space to their respective nearest triangle (i.e. the surface).

Due to interpolation, the closest point function need only be computed once for a distinct

surface. Hence, going through a list of triangles is feasible. For triangulated surfaces there

are also fast methods for evaluating the closest point function using tree-based algorithms

[33].

Now we will illustrate how to handle the surface Laplacian using the closest point func-

tion through two principles and a theorem [22].
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Principle 1. (Gradients)

For points x on a smooth surface, rSu(x) = ru(cp(x)) because the function u(cp(x)) is

constant in the normal direction and therefore only varies along the surface. In other words,

at points x on the surface, intrinsic surface gradients rSu(x) are the same as gradients of

u(cp(x)).

Principle 2. (Divergence)

Let rS · denote the divergence operator intrinsic to a smooth surface S and let v be any

vector field on Rd that is tangent at S and also tangent at all surfaces displaced by a fixed

distance from S (i.e., all surfaces defined as level sets of the distance function to S). Then

at points x on the surface r · v(x) = rS · v(x).

By combining Principle 1 and 2, we can investigate the Laplace-Beltrami operator on a

surface with the closest point function.

Theorem 1. Let S be a smooth closed surface in Rd and u : S ! R be a smooth function.

Assume the closest point function cp(x) is defined in a neighborhood ⌦ ⇢ Rd of S. Then

�Su(x) = �u(cp(x)) for x 2 S. (3.1)

The closest point function in Theorem 1 gives a normal extension to the surface, which means

that on the manifold the surface Laplacian and standard Euclidean Laplacian are equivalent.

For time-dependent PDEs, both operators cannot agree for long times, however if we select

a suitable extension the evolution of the embedding PDE will be accurate initially, which

will be su�cient to update the solution in time [30].

Definition 5. (Closest point extension)

Let S be a smooth surface in Rd. The closest point extension of a function u : S ! R to a

neighborhood ⌦ of S is the function v : ⌦ ! R defined by

v(x) = u(cp(x)). (3.2)

Let us note that the closest point extension is an interpolation step in the implementa-

tion. We require a high enough order of the interpolation to avoid having its errors dominate

the solution. More concretely, with a q

th-order di↵erence scheme and a PDE involving up
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to r

th-order derivatives, the interpolation order should be q + r or higher. Polynomial in-

terpolation is used for problems that have smooth solutions, whereas techniques involving

Essentially Non-Oscillatory (ENO) [32] or Weighted Essentially Non-Oscillatory (WENO)

interpolation [16] are used for problems with non-smooth solutions.

3.3 Case Study: The Closest Point Method for the Heat

Equation on a Circle

The CPM is best explained through an example, and the heat equation on a circle highlights

all the di↵erent components. The heat equation is described by the PDE:

ut(x) = �Su(x). (3.3)

The CPM is composed of these major steps [30]:

1. Determine a closest point representation of the surface.

2. Choose a computational domain normally in the form of a band around the surface.

3. Replace surface gradients with standard gradients in R3.

4. Extend the surface data on the computational domain using the closest point function.

5. Solve the embedding PDE using standard finite di↵erences in the computational do-

main.

For time-dependent processes, the last two steps are repeated for every time iteration. If the

PDE is time-independent, then we run through all steps once. We will detail the important

features of the method.

3.3.1 Closest point representation

The closest point representation for the circle is given by an analytic formula. This allows

the software to quickly assign all the grid points their respective closest points on the circle

as seen in Figure 3.1. If there was not an analytic formula, then an optimization step

would be required in order to determine the closest points on the surface. The closest point

representation is applied to all the grid points in the band surrounding the circle.
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Figure 3.1: A discrete closest point extension being applied to extend u(cp(x)) using degree
p = 3 (bicubic) interpolation. The shaded region indicates the interpolation stencil for
cp(x). Reprinted with permission of the Journal of Computational Physics [[19], Figure 1].

3.3.2 Banding

Any e�cient embedding method must solve the embedded PDE on a narrow band ⌦c,

defined as

⌦c = {x : kx� cp(x)k
2

 bw},

where bw is the bandwidth. For the second-order centered di↵erence Laplacian and gradient

operators, the bandwidth value is given as

bw =

s

(d� 1)

✓
p+ 1

2

◆
2

+

✓
1 +

p+ 1

2

◆
2

�x

where d is the dimension, p is the degree of the interpolating polynomials and �x is the

stencil width. The derivation is detailed in Macdonald et al. [19]. Figure 3.2 illustrates the

corresponding band of a circle with �x = 0.1.

The embedding PDE only agrees with the surface PDE when we have a constant normal

extension of data o↵ the surface. Although Step 4 of the CPM is required at every time

iteration, it eliminates the need for artificial boundary conditions. This is a significant

distinction between the closest point method and other embedding methods.

3.3.3 The extension matrix

The closest point extension is now represented using a matrix operator that we will refer to

as the extension matrix, E. The matrix operator assigns a value of u(cp(x)) to u(x). This

step takes the form of a matrix because barycentric Lagrange polynomial interpolation is a

linear combination of values at neighbouring grid points in a hypercube in Rd (See A.4 for
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Figure 3.2: Computational grid for the closest point method for a circle with �x = 0.1.
Five point di↵erencing stencil and degree p = 2 interpolation are used. Reprinted with
permission of the Journal of Computational Physics [[30], Figure 1].

details). These neighbouring grid points form the interpolation stencil of the scheme. We

apply the interpolation of degree p, in a dimension-by-dimension fashion, so the hypercube

has p+1 points in each coordinate direction. This stencil is illustrated by the shaded region

in Figure 3.1 where a degree p = 3 interpolation is applied to the circle. We formalize the

construction of the extension matrix.

Now we examine two ordered lists of points in the embedding space. Firstly, let L =

{x
1

,x

2

, . . . ,xm} correspond to the list of all grid points in the interpolation stencil for a

given point on the surface S. The grid points in L compose the computational band on

which the numerical solution is defined. Secondly we have G = {xm+1

,xm+2

, . . . ,xm+mg}
corresponding to the “ghost points” along the edges of the computational band which are

disjoint from the set L. The values of the points in set G do not propagate in time and are

only used for the derivation.

Lastly, for the definition, we require defining two vectors over the list L and G. Let

u(cp(L)) 2 Rm denote the vector with components u(cp(xi)) for xi 2 L and let u(cp(G)) 2
Rmg denote the vector with components u(cp(xm+i)) for xm+i 2 G. See Macdonald and

Ruuth [22] for the complete derivation.
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Definition 6. (Extension matrix E)

Given the vectors u, u(cp(L)), u(cp(G)) and an interpolation scheme as described above, the

extension matrix is a matrix operator E such that

 
u(cp(L))

u(cp(G))

!
⇡ Eu. (3.4)

The nonzero entries in the i

th row of E consist of the weights in the interpolation scheme

for u(cp(xi)). That is, the components of the matrix E = [�ij ] are

�ij =

(
wj if xj is in the interpolation stencil for cp(xi)

0 otherwise.

with wj denoting the weight associated with the grid point xj in the interpolation scheme for

point cp(xi).

3.3.4 Time dependence

In order to step forward in time, we use some time stepping method such as the forward

Euler time discretization:

u(t+ �t) = u(t) + �tF (t, u(t)), 8u 2 ⌦c (3.5)

where F = �u. Macdonald et al. have successfully applied the closest point method to

the problem of computing eigenvalues [19], reaction-di↵usion processes on point clouds [20],

segmentation on surfaces [35] as well as many other problems [30, 21, 22].

3.4 Implicit Closest Point Method

To solve the Laplace-Beltrami eigenvalue problem we need an implicit numerical method in

space. The implicit closest point method introduces a matrix to carry out the interpolation

step [22]. If we naively use an interpolation matrix that corresponds to the explicit approach

(which was discussed in § 3.3.3), we find that some eigenvalues are real and positive. Figure

3.3 gives an example of the spectra for the 2D unit circle. Fortunately, there is a stabilized

version of the implicit closest point method that eliminates these spurious eigenvalues. The

spectra for the ICPM for the same test case is given in Figure 3.4 to illustrate the stability.

We now give further details on the implicit closest point method.
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Figure 3.3: Spectra of
⇠
M for a unit circle in 2D using biquartic interpolation (p = 4) and a

mesh width of �x = 0.1. Some eigenvalues exist in the right half plane. Left: Full spectra.
Right: Zoomed in.
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Figure 3.4: Spectra of M for a unit circle in 2D using biquartic interpolation (p = 4) and a
mesh width of �x = 0.1. Eigenvalues do not exist in the right half plane. Left: Full spectra.
Right: Zoomed in.
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3.4.1 The discrete di↵erential operator

The discretization of the di↵erential operator gives us the following:

�u(cp(x)) ⇡ �hEu =
⇠
Mu, (3.6)

where �h is the finite di↵erence scheme, and E is the extension matrix. Hence, this replaces

the continuous operator in the original PDE. The choice is clear from taking the surface

Laplacian of Definition 6. This naturally leads to the following problem:

Problem 2. (Ill-posed embedded eigenvalue problem)

Determine the eigenfunctions v : ⌦ ⇢ Rd ! R and eigenvalues � satisfying

�v(cp(x)) = ��2v(x), (3.7)

in a neighbourhood ⌦ ⇢ Rd of S.

This immediate choice for the di↵erential operator fails to correspond with the original

Equation (1.4) for � = 0 (null-eigenspace). We now detail this inconsistency.

3.4.2 The null-eigenspace

The constant eigenfunction u(x) = c and � = 0 is a solution to Equation (1.4). If we

evaluate a function on ⌦ which agrees with u on the surface (but di↵ers o↵ the surface)

v : ⌦ ! R, such that v(x) = c for x 2 S, (3.8)

and observe that v(x) is a null-eigenfunction of Equation (3.7). The set of null-eigenfunctions

for Equation (3.7) is infinite-dimensional since v(x) is arbitrary for x 2 ⌦\S. Moreover, any

linearly independent change o↵ the surface gives a new linearly independent eigenfunction,

as Macdonald et al. [19] discuss.

3.4.3 A revised discrete di↵erential operator

As previously mentioned, a study of the spectra of
⇠
M divulges that some eigenvalues have

positive real parts [22] (see Figure 3.3). A slight modification to the initial implicit clos-

est point method can eliminate the spurious eigenvalues and accurately capture the null-

eigenspace.
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The adjustment is made within the finite di↵erence stencil represented by the matrix

�h. The diagonal elements will involve ui instead of u(cp(xi)) and all other neighbouring

points of xj of the stencil map back to their closest points cp(xj).

M = stab(�h,E) := diag�h + (�h � diag�h)E. (3.9)

The Laplace-Beltrami operator when discretized then becomes:

�u(cp(x)) ⇡ Mu = ��2u. (3.10)

Now that we have the ICPM, which gives accurate results for the surface Laplacian, we can

give a formal description of the Laplace-Beltrami eigenvalue problem in combination with

the closest point method.

3.5 Closest Point Method Approach

The closest point method will be applied with standard finite di↵erence schemes and inter-

polation to obtain subgrid resolution at the points representing the surface. We will apply

the ICPM as discussed in this chapter.

3.5.1 The embedded eigenfunction problem

As mentioned in §3.4.1, Equation (3.6) leads to an ill-posed embedded eigenvalue problem,

Equation (3.7). The proof can be found in Macdonald et al. [19]. Instead, we define our

embedded formulation of the surface Laplacian as follows.

Definition 7. (Operator �#

✏ )

Given ⌦ ⇢ Rd containing a surface S and a function v : ⌦ ! R, the operator �#

✏ is defined

as

�#

✏ : = �(v(cp(x)))� 2d

✏

2

[v(x)� v(cp(x))] (3.11)

where 0 < ✏⌧ 1.

Macdonald et al. [19] have the factor 2d for notational convenience and a penalty term

for large change in the normal direction. We investigate the newly posed eigenvalue problem

which is consistent with Equation (1.4):
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Problem 3. Regularized embedded eigenvalue problem.

Determine all eigenfunctions v : ⌦ ⇢ Rd ! R and eigenvalues � satisfying

�#

✏ v(x) = ��2v(x), (3.12)

in an embedding space ⌦ ⇢ Rd containing the surface S.

Before illustrating the strengths of the CPM by means of numerical results, we first motivate

the CPM by qualitative reasoning for common scenarios.

3.6 Finite Element Approach

Reuter et al. [29] have solved the Laplace-Beltrami operator by the finite element method.

In order to obtain a more accurate solution to the PDE, their method requires a better

triangulation on the surface. The major concern with triangulations is that, in real world

situations, we require human intervention to get a good triangulation, and surface scans

do not normally come as triangulated data–they come as points in a point cloud. The

finite element method may also be complicated on surfaces, when high order and curved

elements are needed. Moreover, creating a triangulation is a costly step and the refinement

can vary depending on what triangulation is applied1. Refinement on the surface for the

CPM is uniform and easily implemented simply by changing one parameter: the stencil of

the CPM. In this thesis, we propose to use the CPM since it can be implemented on either

a triangulation or a point cloud.

Now that the groundwork has been laid down, we can commence some examples with

the ICPM determining the eigenvalues of the Laplace-Beltrami operator. The focus being

on the accuracy of the eigenvalues and shape matching.

1
Delaunay triangulation is one common implementation [25].



Chapter 4

Numerical Results

This chapter begins by computing the eigenvalues of several manifolds. In practice, surface

representations of objects may be given in di↵erent forms. Two classical forms for the

surface of an object are as triangulations and point clouds. We consider both of these

fundamental data sets in this chapter, where applying the ICPM to a point cloud for the

Laplace-Beltrami is unprecedented. We validate results by performing convergence studies

and performing shape matching for clusters of similar objects.

4.1 Two-Dimensional Results

In two dimensions, the surface (or boundary) of the shapes correspond to a one-dimensional

curve. Numerical convergence studies are carried out for surfaces on which the exact solution

is known.

The eigenvalues of the unit circle are given by {0, 1, 4, 9, 16, . . .}, with multiplicities 2 for

eigenvalues greater than 0. Refining the stencil size of the closest point method we expect

convergence corresponding to the orders of the interpolation and finite di↵erence schemes.

Taking a degree three interpolation and standard second-order finite di↵erences, we achieve

second-order convergence (See top of Figure 4.1). Similarly for polynomial interpolation of

degree five and a finite di↵erence stencil of fourth-order, we obtain fourth-order convergence

(See bottom of Figure 4.1). Changing the geometry to an ellipse also gives second-order

accuracy similar to that of the circle, see Figure 4.2.

27
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Figure 4.1: Numerical convergence study for the first few eigenvalues of the unit circle. Top:
Degree p = 3 interpolation and second-order centered finite di↵erences. The dashed line
has slope 2. Bottom: interpolation p = 5, and fourth-order centered finite di↵erences. The
dashed line has slope 4.
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Figure 4.2: Numerical convergence study for the first few eigenvalues for the ellipse with
major axis 1.5 and minor axis 0.75. Second-order finite di↵erences and degree p = 3 inter-
polation are used. The dashed line has slope 2.



CHAPTER 4. NUMERICAL RESULTS 30

The eigenvalues are computed using MATLAB’s built in eigs function which is based on

ARPACK [17]. We remark that the error in the eigenvalues increases for larger eigenvalues

but we still observe the expected convergence rates. The eigs function uses the Arnoldi

iteration to determine the eigenvalues of the matrix representing the Laplace-Beltrami op-

erator.

4.2 Three-Dimensional Results

4.2.1 The sphere

For some common surfaces we have an explicit formula for the closest point representation.

We first test our method on the sphere. Figure 4.3 demonstrates the expected second-order
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Figure 4.3: Numerical convergence study for the first few eigenvalues of the unit sphere.
Degree p = 3 interpolation and second-order centered finite di↵erences are used. The dashed
line has slope 2.

accuracy.
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4.2.2 Orthogonality

The processing of the surface structure is orthogonal to the CPM solver for the eigenvalues

of the Laplace-Beltrami operator. The processing refers to determining the closest points of

the embedding space to the surface. Orthogonality refers to the computer science term of

decoupled or independent functions within a program. After computing the closest points

of the embedding space, the resulting data is given to the CPM solver. If these two steps

were intertwined then the code [1] would require drastic changes for every new surface we

are interested in. This provides great flexibility with di↵erent data inputs such as analytic

representations, triangulated surfaces or point clouds (as we shall see in this chapter).

4.2.3 Closest point representation of the surface

If we are not given a closest point representation we must determine the closest points on

the surface to the computational grid, along with their distances. The naive approach would

be to directly determine the triangle (or point) closest to each grid node in the embedding

space. However this approach is computationally expensive and ine�cient. This would lead

to a cost of O(N
triangles

⇥N

band grid points

). The procedure is instead as follows:

For each triangle:

• Determine the radius and center of a sphere surrounding the triangle. Place a uniform

grid surrounding the sphere (and triangle in turn).

• For each grid point in the cube, determine the closest point on the surface of the

triangle.

• If this distance is smaller than any pre-existing distance for this grid point, then replace

the value. Otherwise, do nothing.

Figure 4.4 demonstrates the combined result of creating the cube for the closest point

representation for one triangle (of the triangulated surface). The number of grid points

surrounding each triangle is constant, and this process leads to O(N
triangles

) operations. In

regards to the computational band for the closest point method, this is the collection of the

all the cubes surrounding each triangle. Note that one could also compute the closest point

for every point in the embedding space (i.e. without employing banding), however this is

only beneficial when working in Fourier Space [20].
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Figure 4.4: Creating the computational grid surrounding the triangle for the closest point
method.

4.2.4 Triangulated surfaces

Certain simple surfaces and curves are excellent for validating our methods and software,

since we have analytic formulas at our disposal. Much more complex shapes are of interest,

but we do not have the same analytic formulas. A triangulation is a common form that

describes the surface of an object. The closest point representation changes from an analytic

form to an approximate form. The approximate form will be constructed from the underlying

triangulation that represents the object. Clearly, the accuracy of the solution depends on

the accuracy of the triangulation to the exact object.

Convergence

To illustrate the dependence on a good triangulation, we see that for a unit sphere with

2,562 vertices, and 5,120 faces we do not obtain second-order accuracy (Figure 4.5), whereas

with 2,621,422 vertices, and 5,242,880 faces (Figure 4.6) we do indeed observe the correct

order.
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Figure 4.5: Numerical convergence study for the first few eigenvalues of a coarse triangu-
lation for a sphere. Degree p=3 interpolation and second-order centered finite di↵erences.
The dashed line corresponds to second-order accuracy.
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Figure 4.6: Numerical convergence study for the first few eigenvalues of a fine triangulation
for a sphere. Degree p=3 interpolation and second-order centered finite di↵erences. The
dashed line has slope 2.
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Size of triangulation

We now quantify the size of the triangulation and how fine it must be to give reliable results.

Our approach uses the radius of the largest triangle where the radius of the triangle is defined

as the radius of an inscribed circle (See Figure 4.7 and Equation 4.1). Now that we defined

a measurement for the triangles that depicts the surface, we can now investigate how small

the triangulation need be in order to obtain the expected convergence. Table 4.1 has listed

the order of convergence for the first few eigenvalues for di↵erent maximum radius values.

In Table 4.1, 4.2 and 4.3, each �i is the next distinct eigenvalue for the exact values of the

unit sphere, i.e. �
1

= 2, �
2

= 6, �
3

= 12 and so forth. Both tables have computed the first

160 eigenvalues using eigs in MATLAB. We expect the order of convergence to match the

order of the finite di↵erence and interpolation schemes used. However, as we calculate more

eigenvalues in one call of the eigs function, the accuracy of the approximated eigenvalues

decreases. In Table 4.3, we compute only 30 eigenvalues and see that the approximation

for the first few distinct eigenvalues have improved results compared to Table 4.1. The

size of the triangulation depends on how many eigenvalues are required by the user. We

recommend that a triangulation with maximum radius, R
max

, to be R

max

 0.01 for taking

few eigenvalues, and R

max

 0.004 for taking more than 150 eigenvalues. Let us note that

further refinement is possible with a system that contains more storage and RAM (Mac OS

X was used with 2.5 GHz Intel Core i5 and 8 GB 1600 MHz DDR3).

Figure 4.7: A circle inscribed in a triangle.

Radius =
TriangularArea

k

=

p
k(k � a)(k � b)(k � c)

k

, (4.1)

where k =
1

2
(a+ b+ c). (4.2)
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R

max

�i
�

1

�

2

�

3

�

4

�

5

�

6

�

7

�

8

�

9

0.03343480 1.1632 0.7610 1.3477 1.7114 2.0296 2.2770 2.2329 2.3215 2.3391
0.02371572 0.9938 0.9332 1.4924 1.7058 2.0263 2.3057 2.3059 2.2724 2.3593
0.01670541 0.8740 0.8837 1.5548 1.8529 2.0642 2.2209 2.3477 2.2983 2.3328
0.01178180 1.3749 1.0900 1.5796 1.8928 2.1735 2.3040 2.3606 2.3648 2.3740
0.0083981 1.4775 1.0688 1.5914 1.9673 2.1452 2.3578 2.3720 2.3594 2.3441
0.00386704 1.6724 1.0345 1.6699 2.0067 2.2588 2.3678 2.3954 2.3459 2.3930

Table 4.1: Order of convergence for the first few distinct eigenvalues of the unit sphere for
di↵erent size triangulations. ICPM was used with second-order centered finite di↵erences
and a degree three interpolation. MATLAB’s eigs function was used to compute the first
160 eigenvalues.

R

max

�i
�

1

�

2

�

3

�

4

�

5

�

6

�

7

�

8

�

9

0.03343480 1.5302 1.3688 1.0460 2.0337 2.2561 3.1527 3.4391 3.8256 3.9598
0.02371572 1.4389 1.2866 0.6907 2.0685 2.1889 3.4355 3.6169 3.7949 4.2088
0.01670541 1.5391 1.3019 0.7214 2.2069 2.1897 3.4771 3.5245 3.9022 4.0072
0.01178180 1.6009 1.3604 0.6584 2.2637 2.1687 3.3331 3.7529 4.0001 4.2356
0.0083981 1.6647 1.4707 0.8711 2.1357 2.3497 3.5401 3.6635 4.0780 4.0577
0.00386704 1.6897 1.4285 0.8632 2.5833 2.2824 3.5867 3.7874 4.0964 4.2553

Table 4.2: Order of convergence for the first few distinct eigenvalues of the unit sphere for
di↵erent size triangulations. ICPM was used with fourth-order centered finite di↵erences
and a degree five interpolation. MATLAB’s eigs function was used to compute the first 160
eigenvalues.

R

max

�i
�

1

�

2

�

3

�

4

�

5

0.03343480 1.4913 1.6799 1.5070 1.9218 2.0683
0.02371572 1.3192 1.8452 1.6631 1.9271 2.0652
0.01670541 1.1882 1.7686 1.7193 2.0770 2.1024
0.01178180 1.7306 1.9431 1.7334 2.1256 2.2117
0.0083981 1.8059 1.9741 1.7470 2.1781 2.1838
0.00386704 2.0491 1.9233 1.8163 2.2484 2.2967

Table 4.3: Order of convergence for the first few distinct eigenvalues of the unit sphere for
di↵erent size triangulations. ICPM was used with second-order centered finite di↵erences
and a degree three interpolation. MATLAB’s eigs function was used to compute the first
30 eigenvalues.
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Shape matching

Now by applying the method to a class of objects, through the aid of multidimensional

scaling (MDS), we can visualize clustering of similar objects (See Figure 4.8). The objects

consist of a horse, cat, cow, camel, 3 bunnies with varying mesh refinement, hemisphere,

ellipsoid, set of pliers with slight deformations. As expected, clusters begin to form where

similarly shape objects are closer in Shape-DNA. The four legged animals remain within

the same region. The bunnies have a base structure similar to the hemisphere and ellipsoid.

The pliers do not resemble any other object closely and thus form their own cluster. A

second example in Figure 4.9 has two human models, 3 bunnies and 3 pigs, each of which

have a deformation from the original (i.e. scale, rotation, smoothing). We see three clusters

formed from this given data set. Lastly, Figure 4.10 has two human models, a dolphin and

a shark. The two marine mammals distances are close, as are the two human models. As

expected the distance between the two di↵erent species is larger.

Figure 4.8: MDS plot illustrating the 3D objects. The ICPM stencil has the value 0.05.

4.2.5 Point clouds

Implementation of the point cloud, although is completely new, follows from the discussion

in 4.2.3. The only exception is that we no longer have pieces of the surface, only points.

Hence, we require an adequate resolution in order to obtain accurate results since the closest

point on the surface only consists of the points in the cloud, and no points in between. In
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Figure 4.9: MDS plot illustrating the 3D objects. The ICPM stencil has the value 0.05.

Figure 4.10: MDS plot illustrating the 3D objects. The ICPM stencil has the value 0.05.
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many applications, laser scanners extract millions of data points representing the surface

of the manifold, which justifies the high degree of density for this class of problem we are

investigating. The analytic representation analog simply selects closest points on the surface

as well, except the refinement is exact. Intuitively, if the refinement of the point cloud had a

similar density, then we could obtain a result just as accurate as Figure 4.3. For the sphere,

we investigate the convergence dependent on the point cloud approximation to the exact

surface.

Convergence

In order to confirm that the implementation for the point cloud does give the correct result,

we perform a convergence test for the sphere. The density of the point cloud determines

the accuracy of the ICPM. A convergence study which fixes the surface representation, and

varies the ICPM stencil, does not result in the expected order of accuracy (See Figure 4.11).

This is due to the competing errors of the ICPM and point cloud representation. In order

to determine the order of accuracy for the point cloud, we perform a di↵erent convergence

study. We fix the stencil of the ICPM, and refine the point cloud (See Figure 4.12). As we

see in Figure 4.12, the error is first-order accurate, and this explains the results in Figure

4.11. The error of the point cloud representation dominates the error of the ICPM. Thus,

even if we refine the mesh of the ICPM applied to a fine mesh representation, the result

does not coincide with the accuracy of the ICPM. Regardless of this first-order accuracy, we

still have the solution converging to the exact solution as we refine the point cloud which is

what we require.

We have successfully applied the ICPM to solve for the Shape-DNA of the Laplace-

Beltrami operator. The verification comes from the convergence study in both two and

three-dimensions. A required accuracy is needed for both the triangulation and point cloud

representation. Using multidimensional scaling we were able to depict clustering of similarly

shaped objects from a given data set based on their Shape-DNA.
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Figure 4.11: Convergence study of point cloud on a log-log plot. ICPM stencil varies and
the cloud has 2, 621, 442 points. The black dashed reference line has slope 2.
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Figure 4.12: Convergence study of point cloud on a log-log plot. ICPM stencil is �x = 0.04
and the point cloud varies by the number of vertices in the representation. The black dashed
reference line at the bottom has slope 1.
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Conclusion

In this thesis, we have successfully applied the ICPM for determining the eigenvalues of the

Laplace-Beltrami operator on surfaces for shape matching. We have numerical simulations

for manifolds in two dimensions, three dimensions, triangulations, and dense point clouds.

The initial motivation came from applying the ICPM for shape matching. This was

accomplished by solving for the eigenvalues of the Laplace-Beltrami operator by the ICPM

(based on the code [1]). By determining the spectra, we were able to conduct shape matching

without a↵ecting the representation of the manifolds, which is common for a watermark

implementation. The shape matching was based on the shape matching algorithm comprised

of determining the Shape-DNA, normalizing the Shape-DNA, and plotting the results which

demonstrate similar objects being clustered together.

In the simulations, we first had a convergence study verifying the accuracy of the Shape-

DNA coincided with the stencil of the ICPM. This convergence test was ran for surfaces

given by an explicit formula, triangulated surfaces, and point cloud representations. The

triangulated surface and point cloud representation were shown to require a degree of refine-

ment. Since the Shape-DNA was proven to be accurate, a visualization of similar objects

(based on their eigenvalues of the Laplace-Beltrami operator) was seen for di↵erent test

cases using multidimensional scaling. This is the first time the ICPM has been used for

shape matching. Moreover, this is the first time the ICPM has been applied to a point

cloud.

Further investigation remains for applying the ICPM on a point cloud which is not as

dense as the ones illustrated in this thesis. This would add to a much wider range of objects.

Moreover, there is potential for applying this method for automated structure detection for

40
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the nonlocal Cahn-Hilliard equation (See Choksi et al. [10]). They require identification of

triply files which consist of spheres, double gyroids, lamellae, cylinders, perforated lamellae,

etc (See Figure 5.1).

Figure 5.1: Shapes which are of interest to the nonlocal Cahn-Hilliard equation. Reprinted
with permission of the SIAM Journal on Applied Mathematics [[10], Figure 5].
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Appendix A

Mathematical Results

A.1 Deriving Helmholtz Equation

Helmholtz equation can be derived via the wave equation. First recall the wave equation:

utt(r, t) = c

2�u(r, t) (A.1)

Using the technique of separation of variables, we assume the solution has the form, u(r, t) =

R(r)T (t). Substituting this form into the PDE gives:

d

2

dt

2

R(r)T (t) = c

2�(R(r)T (t)),

R(r)
d

2

T

dt

2

= c

2

T (t)�R(r),

1

c

2

T

2

d

2

T

dt

2

=
�R(r)

R(r)
,

The left hand side depends only on t and the right hand side depends only on r. Hence, they

are independent from one another, and so we can set the equations equal to some arbitrary

constant, ��2. This gives the following set of equations:

d

2

T

dt

2

= ��2c2T 2

, second-order ODE,

�R(r) = ��2R(r), Helmholtz equation.
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A.2 Scaling a n-Dimensional Manifold

We will prove that the eigenvalues of a scaled manifold can be computed from the original

surface simply by multiplying by an appropriate factor. In order to illustrate this, we first

introduce notation from Reuter et al. [29] in order to simplify the computations. Given a

local parametrization  : Rn ! Rn+k of a submanifold M of Rn+k with

gij : = @i · @j , G := (gij), W :=
p
detG, (gij) := G

�1

. (A.2)

(where i, j = 1, · · · , n and det denotes the determinant).

LetM be a compact n-dimensional Riemannian manifold in C

1 with the local parametriza-

tion h : Rn ! Rn+k. Let h̄ := ah for the scaled manifold, along with other scaled values:

@kh̄ = a@kh (k = 1 · · ·n) implying ḡ

ij =
1

a

2

g

ij
and

W̄ = a

2

W.

Let u be a solution to

�hu =
1

W

X

i,j

@i(g
ij
W@ju) = ��2u.

Then we have that

�
¯hu = W̄

�1

X

i,j

@i(ḡ
ij
W̄@ju) =

1

a

2

W

X

i,j

@i(g
ij
W@ju) = � 1

a

2

�

2

u. ⌅

A.3 Weyl’s Asymptotic Growth of Eigenvalues

The normalization factor for Shape-DNA is an approximation to 4⇡/A. This term derives

from the asymptotics of the following theorem.

Theorem 2. (Weyl-Asymptotic growth of eigenvalues)

If D is a bounded region of Rd with piecewise smooth boundary B and if 0 < �

1

 �

2

· · · is the
spectrum and N(�)  � where N(�) is the number of eigenvalues, counted with multiplicity,

then

N(�) ⇠ !dvol(D)�d/2

(2⇡)d
(A.3)

as �! +1. The volume of D is denoted by vol(D) and

!d :=
⇡

d/2

�(d
2

+ 1)
(A.4)
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is the volume of the unit disk in Rd. In particular,

�n ⇠ 4⇡2
✓

n

!dvol(D)

◆
2/d

as n ! 1. (A.5)

A.4 Barycentric Interpolation

Barycentric interpolation [4] derives from the Lagrange interpolating polynomials with a

slight modification leading to a faster computation. Define the barycentric weights for

equispaced grid points by

wj = (�1)j
✓
n

j

◆
. (A.6)

The ‘second form of the barycentric formula’ is defined as:

p(x) =

Pn
j=0

wj

x� xj
uj

Pn
j=0

wj

x� xj

(A.7)

The weights are simplified from their general form due to equispaced grid points. Also note

that the weights are independent of the values ui which makes it e�cient for changing ui

and interpolation points, x, fixed. This is the case for the closest point method, and allows

us to write it in the form of a matrix when computing.



Appendix B

Lists

B.1 Database

The objects used in this thesis came from multiple sources listed here:

• Aim at Shapes Repository: http://shapes.aim-at-shape.net/

• The Stanford 3D Scanning Repository: https://graphics.stanford.edu/data/3Dscanrep/

• M. Reuter’s Shape Database I: http://reuter.mit.edu/research/shapedb1/
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