
A Study of Cloud-Assisted Strategy

for Large Scale Video Streaming Systems

by

Fei Chen

M.Sc., Northeastern University, 2009

B.Sc., Qingdao University, 2007

Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Doctor of Philosophy

in the

School of Computing Science

Faculty of Applied Sciences

c© Fei Chen 2014

SIMON FRASER UNIVERSITY

Summer 2014

All rights reserved.

However, in accordance with the Copyright Act of Canada, this work may be

reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,

research, criticism, review and news reporting is likely to be in accordance

with the law, particularly if cited appropriately.

APPROVAL

Name: Fei Chen

Degree: Doctor of Philosophy

Title of Thesis: A Study of Cloud-Assisted Strategy for Large Scale Video Streaming

Systems

Examining Committee: Dr. Janice Regan

Chair

Dr. Jiangchuan Liu,

Associate Professor, Senior Supervisor

Dr. Qianping Gu,

Professor, Supervisor

Dr. Jie Liang,

Associate Professor, Internal Examiner

Dr. Jianping Pan,

External Examiner, Associate Professor of

Computer Science, University of Victoria

Date Approved: August 14th, 2014

ii

Partial Copyright Licence

iii

Abstract

In recent years, the Internet has witnessed a significant increase in the popularity of video streaming

systems for Video-on-Demand (VoD) or live streaming services. The large-scale content distribu-

tion of these systems has become increasingly prevalent and contributes to a significant portion

of Internet traffic. Designing such a large scale, fast growing video streaming platform with high

availability and scalability is technically challenging. Traditionally, it requires either a massive and

costly computation, storage and network delivery infrastructure, or a peer-to-peer (P2P) strategy,

which deploys local resources of participating users. To make it worse, the servers usually have to

be over-provisioned for the peak load to serve the heterogeneous and dynamic user demands in a

large scale with guaranteed Quality of Service (QoS).

The emergence of cloud computing however sheds new lights into this dilemma. A cloud plat-

form offers reliable, elastic and cost-effective resource provisioning, which has been dramatically

changing the way of enabling scalable and dynamic network services for large scale video stream-

ing systems. First, cloud computing can provide an elastic service and scale the provisioned server

resource online in a fine granularity. Second, the geo-distributed cloud sites can respond to the

globalized request demands with the qualified service. Third, the cloud-assisted strategy is highly

compatible with current prevalent P2P video streaming systems in a hybrid solution. Therefore,

the cloud-assisted strategies for large scale video streaming systems call for the novel solutions to

provide the cost-effective services.

In this thesis, we tackle the design issues of cloud-assisted strategies. First, we propose a

flexible cloud based provisioning strategy to serve highly time-varying demands in the P2P VoD

systems. Then, leveraging the geo-distributed cloud services, we build a prototype of crowdsourced

live streaming platform and explore the streaming quality under the influence of different cloud site

leasing strategies. Synergizing the P2P and cloud resource, we model the combinational cost

problem, and present an optimal solution and a distributed solution toward a scalable and cost-

effective service over the hybrid VoD streaming systems. Our analysis and experimental results

demonstrate the superiority of proposed systematic solutions for the large scale video streaming

systems.

iv

To my parents!

v

“There is no such thing as a long piece of work, except one that you dare not start.”

— CHARLES BAUDELAIRE

vi

Acknowledgments

I would first like to thank my senior supervisor Prof. Jiangchuan Liu. What I learned from him is

enormous. His attitude towards research has greatly influenced me. His support and encourage

during all the past years are invaluable for the success of my Ph.D studies.

Special thanks to my defense committee: my supervisor Dr. QianpingGu, internal examiner Dr.

Jie Liang, external examiner Dr. Jianping Pan, and chair for their support, guidance and helpful

suggestions. Their guidance has served me well and I owe them my heartfelt appreciation.

Many colleagues of mine not only provided help in my studies but also in my everyday life. The

time with them is unforgettable.

Finally, nothing would happen without your great supports, my parents. I love you all.

vii

Contents

Approval ii

Partial Copyright License iii

Abstract iv

Dedication v

Quotation vi

Acknowledgments vii

Contents viii

List of Tables xi

List of Figures xii

1 Introduction 1
1.1 Overview of the Large Scale Video Streaming System 2

1.1.1 Peer-to-Peer VoD Systems . 2

1.1.2 Crowdsourced Live Streaming Systems . 3

1.2 Cloud-assisted Strategy and Related Work . 5

1.2.1 Elastic Scaling Solution . 6

1.2.2 Geo-Distributed Solution . 7

1.2.3 Hybrid Solution . 8

1.3 Contribution . 9

2 Predictive Cloud Provisioning for P2P VoD Streaming 11
2.1 Existence and Challenges of Decayed Popularity . 11

2.2 System Model . 13

viii

2.2.1 Two Group Model . 15

2.3 Analysis of Critical Factors . 19

2.3.1 Upload Ratio η . 19

2.3.2 Eviction Ratio ε . 21

2.4 Cloud-Assisted Provisioning . 23

2.5 Numerical Result and Discussion . 24

2.5.1 Time-varying Popularity . 25

2.5.2 Upload Ratio and Replication Ratio . 26

2.5.3 Predictive Cloud-assisted Server Provisioning 27

2.6 Summary . 29

3 Geo-Distributed Service for Crowdsourced Live Streaming 30
3.1 System Overview and Challenges . 30

3.2 Cloud-Assistance for Crowdsourced Live Streaming 33

3.2.1 Problem Formulation . 33

3.2.2 Equivalent Problem . 36

3.3 Optimal Cloud Leasing Strategy . 38

3.4 Performance Evaluation . 41

3.4.1 Prototype experimental results . 42

3.4.2 Trace-driven simulation results . 44

3.5 Summary . 45

4 Hybrid Design for Large Scale VoD Streaming 46
4.1 Challenges in SynPAC . 46

4.1.1 Experiment Results to Performance Impact 47

4.1.2 An Illustrative Example for Provisioning Cost 48

4.2 Overview of SynPAC Structure . 49

4.3 Special Case with Bandwidth-Limited Peers . 50

4.3.1 Problem Formulation . 50

4.3.2 Demand Allocation . 52

4.3.3 Optimal Solution for BLP . 52

4.4 General Case with No Bandwidth Limit . 53

4.4.1 Problem Formulation . 53

4.4.2 Optimal Solution for NBL . 54

4.5 Scalable and Distributed Implementation . 56

4.5.1 Syn-Rarest Scheduling Strategy . 56

4.5.2 Syn-Adaptive Replication Strategy . 56

4.6 Performance Evaluation . 57

ix

4.6.1 Evaluation of the Scheduling Strategy . 57

4.6.2 Evaluation of the Replication Strategy . 59

4.6.3 Evaluation of SynPAC . 59

4.7 Summary . 60

5 Conclusion and Future Discussion 61
5.1 Summary of the Contributions . 61

5.2 Future Work Discussion . 62

5.2.1 Peer-to-Peer VoD Systems . 62

5.2.2 Crowdsourced Live Streaming Systems . 62

Appendix A Proof of Lemma 1 64

Appendix B Proof of Theorem 1 66

Appendix C Proof of Theorem 3 67

Bibliography 68

x

List of Tables

2.1 Model notation . 13

3.1 Top 5 sourcers from Twitch.tv on July, 12th . 32

3.2 Three cloud leasing strategies for crowdsourced live streaming from 7 areas 44

4.1 Some residential broadband offerings in Canada . 50

4.2 Recommended bitrates of several popular streaming services 50

xi

List of Figures

1.1 An overview of system structure . 4

2.1 Population decays in the video on demand system 12

2.2 Demand and supply relationship . 15

2.3 Map of process and parameters . 19

2.4 Time-varying popularity (a-b) and single peer scenario with constant popularity (c-f) 24

2.5 Replication ratio and upload ratio evolution in the multiple peers scenario with time

varying popularity . 26

2.6 Predictive replication evolution and server provisioning 28

3.1 Number of viewers and source streams variation in one week 31

3.2 Source stream distribution with time variation in one day 31

3.3 Viewer demand for the distributed source streams in one day 31

3.4 An illustrative example of (a) distribution graph; (b) service migration vectors 35

3.5 An illustrative example of (a) a constructed service migration graph; (b) a solution for

migrated cloud service for geo-distributed crowdsourcers 37

3.6 RTT latency between planetlab nodes and their top 1 preferred cloud sites 41

3.7 Streaming delay . 42

3.8 Frame loss ratio . 42

3.9 Different regions . 42

3.10 Videos with different bitrates . 42

3.11 Implementation results . 43

3.12 Reduction of streaming delay . 43

3.13 Reduction of frame loss . 43

3.14 Reduction of provisioning cost . 43

4.1 Performance variation with the change of file size 47

4.2 An illustrative example for peer assisted strategy . 48

4.3 System structure of SynPAC . 49

xii

4.4 Steps of optimal solution for the illustrative example 55

4.5 Performance comparison (BP is bandwidth provisioning for short, and SP is storage

provisioning for short.) . 58

xiii

Chapter 1

Introduction

In the past decade, the Internet has witnessed a significant increase in the popularity of the video

streaming systems for Video-on-Demand(VoD) or live streaming services [35]. The large-scale con-

tent distribution of these systems has become increasingly prevalent and contributes to a significant

portion of the Internet traffic. For example, Netflix is the leading subscription service provider for

online movies and TV shows, which attracts more than 23 million subscribers in the United States

and Canada, and can stream out high definition (HD) quality video with average bitrate reaching

3.6 Mbps. In fact, it is also the largest source of Internet traffic in the US, consuming 29.7% of peak

downstream traffic [3]. In Youtube, as of March 2013, every second, 1.2 hours worth of video is

uploaded by users around the world, attracting almost 140 views for every person in the world on

average 1.

Designing such a large scale, fast growing video streaming platform with high availability and

scalability is technically challenging. Traditionally, it requires either a massive and costly comput-

ing, storage and delivery infrastructure, or a peer-to-peer (P2P) strategy, which deploys the local

resources of participating users [29]. For instances, Youtube, as a subsidiary of Google, utilizes

Google’s own massive delivery infrastructure [4], whereas Netflix utilizes multiple CDNs for its con-

tent delivery, such as Akamai, LimeLight, and Level-3 [3]. Meanwhile, in PPlive, one of the most

successful P2P streaming systems with multi-million users, employs 1 GB disk spaces on each

peer as cashes for recently downloaded video segments, taking advantage of peer upload band-

width contributions to rapidly spread data among users [52]. On the other hand, even though CDN

strategy can achieve high availability and short startup latencies, it leads to excessive costs for

deploying dedicated servers. This is particularly severe if the user demands fluctuate significantly,

and the servers have to be over provisioned for peak loads. And the peer-to-peer strategies always

suffer from the unstable performance, especially for the unpopular videos with a small overlay size

1https://www.youtube.com/yt/press/statistics.html

1

CHAPTER 1. INTRODUCTION 2

[35]. To make it worse, in the real-time live streaming system, the reliability and hence service

quality can hardly be guaranteed by the peer upload for the globalized users with stringent playback

delay constraint [46].

The emergence of cloud computing however sheds new lights into this dilemma. A cloud plat-

form offers reliable, elastic and cost-effective resource provisioning, which has been dramatically

changing the way of enabling scalable and dynamic network services. Specifically, the adaptive

cloud provisioning strategies bring the benefit to the video streaming systems with heterogenous

and dynamic requests. On the other hand, the requirements specified by the cloud-assisted strate-

gies raise issues to be considered in the network design of the large scale systems. First of all,

a cost-effective cloud provisioning should guarantee the service quality for heterogenous request

demands, which are highly dynamic in both time and space. Also, in the emerging crowdcoured live

streaming system, not only the request demands, but also the distributed live feeds should be jointly

considered, calling for the the novel solutions to enhance the network performance. In addition, the

efficient cloud-assisted strategies should be designed collaboratively with the peer-to-peer (P2P)

strategies, which are already highly prevalent in the current large scale systems.

Therefore, in this thesis, we will investigate a series of issues related to cloud-assisted strategies

for the large scale video streaming systems.

1.1 Overview of the Large Scale Video Streaming System

In this section, we will first present the overview of two representative large scale video streaming

systems, namely, the peer-to-peer video on demand (VoD) system, and the crowdsourced live

streaming system.

1.1.1 Peer-to-Peer VoD Systems

During the last decade, the peer-to-peer VoD systems succeed to deliver quality streaming video

content to millions of users. These systems utilize dedicated memory or disk spaces on each peer

as caches for recently downloaded video segments, taking advantage of peer upload bandwidth

contributions to rapidly spread data among the users[52]. Such a peer-to-peer sharing can dramati-

cally reduce the server load, which is known to be the critical bottleneck in conventional client/server

VoD systems. Ideally, a P2P VoD system is highly scalable and self-sustainable in a steady state

[35] [20] [21]. In practice, however, the server load saving can hardly be more than 95% [21] and

is generally less, particularly in the presence of user population dynamics [64]. One of the most

notable scenarios is flash crowd, in which hundreds of thousands of users joining the system within

a short period of time, just after a new movie or drama series has been released [32]. Such a

surge in user population can dramatically disturb the balance established in a steady peer-to-peer

CHAPTER 1. INTRODUCTION 3

overlay, thus deteriorating the streaming quality [26]. There have been a series of works addressing

the challenge of flash crowd [33] [32], which often absorb the surge through deploying a poten-

tially large number of servers (e.g., 60 dedicated servers in the Coolstreaming+ system [26]) or

leveraging content delivery networks [57].

Experiences in commercial system deployment, e.g., PPLive 2, have shown these solutions for

flash crowd work reasonably well, despite the extra server cost incurred. The other side of the coin

however has not been well addressed. That is, keeping the high popularity upon a flash crowd does

not necessarily last long, and indeed often drops very fast after the peak. For example, in YouTube,

the top videos tend to experience significant bursts of popularity, receiving a large fraction of their

views on a single peak day or week, which then quickly drop [16]; among the top-5000 most popular

videos provided by Hulu, the popularity decays by 20% after the first day [27]. Our trace data from

PPLive confirms that such a quick population decay exists in peer-to-peer VoD system as well.

Compared to growth, the decay is seemingly less challenging and would be even beneficial given

less user demands. While this is true in the conventional client/server communication paradigm, we

find that it is not the case for peer-to-peer. First, a decayed population means a smaller overlay

for the video, which defeats the benefit of peer-to-peer sharing. This is particularly severe with a

quick decay, which can easily de-stabilize an established overlay; Second, replication has been

widely used to improve sharing efficiency for popular videos and to mitigate the impact of flash

crowd [65] [53] [21]; yet the replicas in individual peers’ local storage will not promptly respond to a

fast and globalized population decay. In other words, many of the replicas become redundant and,

even worse, their spaces cannot be utilized for an extended period with state-of-the-art replication

strategies. Lastly, such VoD systems as PPTV, Netflix, and YouTube now often release a group

of popular videos (e.g. a TV drama series) together, and these videos will then experience similar

user watching patterns (e.g., many users watched them one-by-one in a sequence). Their collective

impact to the population (growth or decay) will be even more damaging.

1.1.2 Crowdsourced Live Streaming Systems

Empowered by today’s rich tools for media generation and distribution, and the convenient Inter-

net access, crowdsourced streaming generalizes the single-source streaming paradigm by includ-

ing massive contributors for a video channel. It combines the efforts of numerous self-identified

contributors, known as crowdsourcers, for a greater result [49]. This is well supported by today’s

mobile/tablet devices that can capture high quality video in realtime. For example, a scalable

system that allows users to perform content-based searches on continuous collection of crowd-

sourced video was proposed in [43]. Recently, Youtube has integrated with Google Moderator, a

crowdsourcing and feedback production, to increase the engagement between viewers and content

2www.pplive.com

CHAPTER 1. INTRODUCTION 4

Crowdsourcer

Streaming Engine CDN

Viewer

Live Feeds Live Channels

Figure 1.1: An overview of system structure

creators 3. Such other video sharing sites as Poptent 4 and VeedMe 5 have also opened inter-

faces for crowdsourcers with user generated content. Crowdsourced live streaming services have

emerged in the market as well, especially for streaming sports online broadcast. Examples include

Stream2Watch.me 6 and sportLEMON.tv 7.

We abstract a generic crowdsourced live streaming system with geo-distributed crowdsourcers

and viewers in Fig. 1.1. A set of crowdsourcers (or sourcers in short) upload their individual video

contents in realtime, which, through a video production engine, collectively produce a single video

stream. The stream is then lively distributed to viewers of interest. Both the sourcers and viewers

can be heterogenous, in terms of their network bandwidth, and their hardware/software configura-

tions for video capture and playback. As such, realtime transcoding is necessary during both up-

loading and downloading, so as to unify the diverse video bitrates/formats from different sourcers for

content production, and to replicate the output video streams to serve the heterogeneous viewers,

possibly through a CDN with such adaptation mechanisms as DASH (Dynamic Adaptive Streaming

over HTTP) [31].

3http://www.google.com/moderator/
4http://www.poptent.com/company/
5http://www.veed.me/
6http://www.stream2watch.me/
7http://www.frombar.com/

CHAPTER 1. INTRODUCTION 5

This generic architecture reflects that of state-of-the-art realworld systems. For example, NBC’s

video contents from the 41 feeds in Sochi Winter Olympics are encoded by Windows Azure Media

Services to the 1080P format, and dynamically transcoded into HLS and HDS formats. These

streams are then pulled from Azure to the Akamai’s CDN and distributed to audiences on targeted

devices, resulting in over 3000 hours of live Olympics streaming contents.

Global streaming imposes high demand on end device capabilities and network connections.

The situation is further complicated in a crowdsourced live streaming system. First, crowdsourced

videos can be highly geo-distributed: they come from all over the world, and then spread all over the

world. Second, the crowdsourcers are also much more dynamic than dedicated content providers,

as they can start or terminate a video contribution as their own will. This is particularly true when

non-professionals using their smartphones/tablets for video production. Third, massive server ca-

pacity is necessary to deal with such online video processing and transcoding for heterogeneous

video contributors and consumers.

1.2 Cloud-assisted Strategy and Related Work

Cloud computing refers to both the applications delivered as services over the Internet and hard-

ware, and systems software in the datacenters that provide those services [9]. It is a novel comput-

ing paradigm builds on the foundations of distributed computing, grid computing, networking, virtu-

alization, service orientation, and market-oriented computing [12]. Cloud services provide flexible

resource allocation on demand with the promise of realizing elastic, Internet-accessible computing

on a pay-as-you-go basis [37]. It includes infrastructure such as computing and storage servers,

platforms such as operating systems, and application software, which correspond to infrastructure-

as-a-service (i.e. IaaS), platform-as-a-service (i.e. PaaS), and software-as-a-service (i.e. SaaS),

respectively [59]. Cloud providers offer or, rather, promise numerous benefits from both the tech-

nology perspective such as increased availability, flexibility and functionality, and the business per-

spective such as reduced capital and operational expenditure and shorter turnaround times for new

services and applications.

We have seen many new generation of cloud-based multimedia services that emerged in recent

years, which are rapidly changing the operation and business models in the market. A prominent

example is Netflix, a major on-demand Internet video provider. Netflix migrated its entire infrastruc-

ture to the powerful Amazon AWS cloud in 2012, using EC2 for transcoding master video copies to

50 different versions for heterogeneous end users and S3 for content storage [3]. In total, Netflix

has over 1 petabyte of media data stored in Amazon’s cloud service. The cloud infrastructure can

provide the computation, bandwidth and storage resources with much lower long-term costs than

those with over-provisioned self-owned servers, and reacts better and faster to user demand with

the dramatically increasing scale.

CHAPTER 1. INTRODUCTION 6

Here, we investigate the research works of cloud-assisted strategies for the video streaming

service, and present them from different aspects as follows:

1.2.1 Elastic Scaling Solution

One of the most important economic appeals of cloud computing is its elasticity and auto-scaling in

resource provisioning [15]. Instead of the long-term investments on its infrastructure to accommo-

date its peak workload, the content providers can use computation and bandwidth resource from

cloud service, without buying over provisioned servers or building their own data centers. A deci-

sion has to be made on the right amount of resource allocated in the cloud and their reservation

time, such that the financial cost is minimized. The amount of allocated resources can be changed

adaptively in a fine granularity, which is commonly referred as auto-scaling. For example, in Ama-

zon Cloud service, the clients can enable Auto-scaling service to scale the number of instances

[1]. Through online monitoring of CloudWatch, the cloud resource can be utilized adaptively by

matching the supply with demands. However, in the video streaming service the request demand

is highly dynamic, and the cloud instances take time to start and terminate (e.g. in the current

Amazon EC2 service, it takes more than ten minutes to start a large instance.) Furthermore, unlike

CPU and memory resources, a guarantee of bandwidth is not provided in current cloud services,

and each datacenter has limited outgoing bandwidth shared by multiple tenants with no bandwidth

assurance. In a word, even though the emerging cloud computing provides potential cost-effective

solutions with elastic resource allocation, there are still numerous issues to be addressed in the

large scale real-world deployment.

Many researches have been proposed to solve the resource allocation problems in the cloud-

assisted video streaming systems with the Quality-of-Service (QoS) guarantee. Depending on the

features of specific application requirements, different deployment strategies can be used.

For the social aware video applications, the online social network interaction among users can

be considered to facilitate the video streaming delivery. Leveraging the cloud computing, Wang et

al. [47] proposed a cloud-assisted adaptive video streaming with social-aware video prefetching to

avoid intermittent disruptions and long buffering delays. Nan et al. [38] further developed an efficient

multimedia distribution approach taking advantage of live-streaming social networks to deliver the

media services from the cloud to both desktop and wireless end users in a large scale.

For the video streaming over mobile devices, the energy consumption is one of the most im-

portant issues in the mobile cloud computing infrastructure design. For example, Zakerinasab et

al. [58] proposed an energy-efficient cloud-assisted streaming system for smartphones with a two-

level scheme. At the top level, the multimedia content is streamed from the cloud hosting the video

source to a WiFi group formed by smartphones. At the bottom level, received content is shared

among smartphones within a WiFi network. Lin et al. [30] presented a cloud-based energy-saving

CHAPTER 1. INTRODUCTION 7

service to minimize the energy consumption of the backlight when displaying a video stream with-

out adversely impacting the user’s visual experience. Considering the limited bandwidth available

for mobile streaming and different device requirements, Lai et al. [25] developed a network and

device-aware QoS approach that provides multimedia data suitable for a terminal unit environment

via interactive mobile streaming services to save the bandwidth and terminal power.

Furthermore, given the time-varying link conditions and heterogenous request demands, amounts

of solutions take the effort to provide the QoS guarantee during the dynamic cloud resource provi-

sioning [5] [6]. Video streaming is a network-bound service with stringent bandwidth requirements.

As the viewers have to download at a rate no smaller than the video playback rate to smoothly watch

video streams online, bandwidth, as opposed to storage and computation, constitutes the perfor-

mance bottleneck. To address this issue, there have already been proposals from the perspective

of data center engineering to offer bandwidth guarantees for egress traffic from a virtual machine

(VM), as well as among VM themselves [19] [10] [39]. For example, Niu. et al proposed a predic-

tive and elastic cloud bandwidth auto-scaling system for video streaming service [41]. The system

automatically predicted the expected future demand as well as demand volatility in each video chan-

nel through ARIMA and GARCH time-series forecasting techniques based on history. Leveraging

demand prediction, the system jointly made load direction to and bandwidth reservations from mul-

tiple data centers to satisfy the projected demands with high probability. The resource booking

cost for the streaming service providers can be saved with regard to both bandwidth and storage.

Besides the bandwidth guarantee, many solutions deploy the cloud-assisted scalable video coding

(i.e. SVC) technology to serve heterogenous clients [47] [25] [13] [48]. Zhu et al. [67] presented the

scheme of cloud-assisted SVC streaming to improve the performance of SVC streaming by using

close cooperation between cloud and network. By employing feedback control techniques, Cicco

et al. [13] designed a dynamical resource allocation controller which throttles the number of virtual

machines in a Cloud-based CDN with the goal of minimizing the distribution costs while providing

the highest video quality to the users.

In this thesis, we undertake a case study of the popularity decays in the large scale VoD systems,

and reveal the root causes toward escalating server load during a population decay. Unlike previous

proposals, our approach formally models the evolution of peer upload and replication during the

population churns in the system, and facilitates the design of flexible cloud based provisioning to

serve highly time-varying demands.

1.2.2 Geo-Distributed Solution

Federation of geo-distributed cloud services is another attractive trend in cloud computing which,

by spanning multiple data centers at different geographical locations, can provide a cloud platform

with larger capacity [55]. Such a geo-distributed cloud is ideal for supporting large scale media

CHAPTER 1. INTRODUCTION 8

streaming applications (e.g. PPTV) with dynamic globalized demands, owing to its abundant on-

demand storage/bandwidth capacities and geographical proximity to different groups of users.

There have been numerous studies on resource allocation among distributed datacenters for

the large scale service [8] [61] [60]. Leveraging the geo-distributed cloud resource provisioning,

Felemban et al. [14] presented an integrated cloudlet and base station system that can meet

application-level quality of service requirements and allow mobile resource provisioning close to

users. Xu et al. [56] considered the emerging problem of joint request mapping and response

routing with distributed datacenters. Assuming that users specify their resource needs, Alicherry et

al. [7] developed an efficient 2-approximation algorithm for optimal selection of data centers in the

distributed cloud. Zheng et al. [63] investigated the server allocation problem in the distributed in-

teractive applications, and formulated the problem with an objective of reducing the network latency

involved in the interaction between participants. Furthermore, the dynamic nature of both demand

pattern and infrastructure cost favors a dynamic solution to this problem [61]. Zhang et al. [60]

designed a solution that optimizes the desired objective dynamically over time according to both

demand and resource price fluctuations. By exploiting social influences among users, Wu et al.

proposed efficient proactive algorithms for dynamic, optimal scaling of a social media application in

a geo-distributed cloud.

Another key challenge faced by service providers is to fulfill the key performance requirements

for latency-sensitive live streaming systems in a geo-distributed service. Zhu et al. [66] proposed

a novel cloud-assisted architecture for supporting low-latency mobile media streaming applications

such as online gaming and video conferences. Wang. et al [46] presented a generic framework

that facilitates a migration of live streaming service to cloud, through leveraging the elastic re-

source provisioning from cloud for the globalized user demand. Furthermore, the need for an online

transcoding for heterogenous demands makes the problem more difficult. In order to minimize the

overall processing delay of the live distribution, Ma et al. [36] proposed a novel dynamic scheduling

methodology on video transcoding for MPEG DASH in a cloud environment. Lai et al. [24] devel-

oped a cloud assisted real-time transcoding mechanism, containing HTTP live streaming protocol,

a coding mode transition state machine, and three bandwidth evaluations of error patterns.

In this thesis, our research complements these solutions by providing crowdsourced live stream-

ing over distributed cloud service, which calls for novel solutions to ensure that the globalized live

feeds are successfully delivered to all destinations all over the world.

1.2.3 Hybrid Solution

Cloud computing is also compatible to be integrated with the current highly developed peer-to-

peer or CDN systems [9]. The hybrid design provides a promising alternative to the conventional

strategies for large scale content distribution, addressing the potential limitations while inheriting

CHAPTER 1. INTRODUCTION 9

their advantages. As a well known example, Netflix, which has migrated its streaming service into

Amazon Cloud as we illustrated before, still deploys the CDN services from Akamai, LimeLight, and

Level-3 for content distribution.

A considerable amount of researches have been done for the hybrid designs of cloud-assisted

streaming systems [29] [46] [67] [62]. For example, Payberah et al. [42] presented CLIVE, a cloud-

assisted P2P live streaming system which can provide QoS guarantee with minimized cost. Li et

al. [29] utilized the real-world measurement results to address the issue how to allocate the cloud

bandwidth to peer swarms so as to maximize the overall bandwidth multiplier effect of the system.

The challenge is further improved in the hybrid P2P and cloud VoD systems, as the collaborative

peers are divided into groups according to their replications rather than the video streaming they

are watching, which makes the cloud-provisioning more sophisticated. Liu et al. [34] implemented

a real-world VoD system, Novasky, to maintain media availability and to balance the system-wide

supply-demand relationship in the P2P storage cloud.

In contrast to earlier studies that fully replicate the video content in cloud, our measurement and

analysis suggest adaptive replication that distinguishes videos to avoid excessive maintenance and

operation cost as well as bandwidth provisioning cost.

1.3 Contribution

The main contributions of this thesis are:

• As the elastic scaling solution, the cloud computing is utilized to accommodate the dynamic

demands in P2P VoD systems during the video popularity churn, especially for the popularity

decay. We seek to understand the impact of such decays and the key influential factors.

Based on real world trace data, we develop a mathematical model to trace the evolution of

peer upload and replication during population churns, specifically during decays. Our model

captures peer behaviors with common data replication and scheduling strategies in state-of-

the-art P2P VoD systems. It quantitatively reveals the root causes toward escalating server

load during a population decay. The model also facilitates the design of a flexible cloud based

provisioning to serve highly time-varying demands.

• As the geo-distributed solution, the cloud computing is deployed to process the live feeds col-

lected from the distributed crowdsourcers, and then deliver the live channels for the viewers

in the global scale. In this paper, we present a generic framework that facilitates a cost-

effective cloud service for crowdsourced live streaming. Through adaptively leasing strategy,

the cloud servers can be provisioned in a fine granularity to accommodate geo-distributed

video crowdsourcers. We present an optimal solution to adaptively lease the cloud service

with diverse prices over the geo-distributed regions. To understand the performance of the

CHAPTER 1. INTRODUCTION 10

proposed strategies in the realworld, we have built a prototype system running over the plan-

etlab nodes and the Amazon EC2 instances. Our extensive experiments demonstrate that the

effectiveness of our solution in terms of deployment cost and streaming quality.

• As the hybrid solution, the cloud computing is jointly designed with the peer cooperative strat-

egy toward highly scalable VoD service. In contrast to earlier studies that fully replicate the

video contents in cloud, our measurement and analysis suggest adaptive replication that dis-

tinguishes videos to avoid excessive maintenance and operation cost as well as bandwidth

provisioning cost. We develop optimal strategies in our SynPAC (Synergizing Peer-to-Peer

and Cloud) design for VoD services. We also address a series of practical issues toward the

implementation in the collaborative peers of the large scale.

Chapter 2

Predictive Cloud Provisioning for
P2P VoD Streaming

Today’s peer-to-peer (P2P) Video-on-Demand (VoD) systems are known to be highly scalable in

a steady state. For dynamic scenarios, much effort has been spent on accommodating sharply

increasing requests (known as flash crowd) with effective solutions being developed. The high

popularity upon a flash crowd however does not necessarily last long, and indeed often drops very

fast after the peak. Compared to growth, a decay is seemingly less challenging or even beneficial

given the less user demands. While this is true in a conventional client/server system, we find that

it is not the case for peer-to-peer. A quick decay can easily de-stabilize an established overlay,

and the resultant smaller overlay is generally less effective for content sharing. The replication of

data segments, which is critical during flash crowd, will not promptly respond to a fast and globalized

population decay, either. Many of the replicas can become redundant and, even worse, their spaces

cannot be utilized for an extended period. Motivated by this, we propose the predictive cloud-

assisted server provisioning strategy to elastically scale the cloud resource during the popularity

decay.

2.1 Existence and Challenges of Decayed Popularity

The myriad of different contents in today’s VoD systems make user behavior and attention span

highly variable with fast-changes [16]. Fig. 2.1(a) shows the popularity evolution of the TOP 1000,

500, and 200 popular videos in the Hulu web service [27], respectively. We can see that, despite

a peak of access in the beginning, most of these popular videos suffer from a rapidly decayed

population in the following days. There are fluctuations, but each later peak is generally followed

by a sharp decay again. For peer-to-peer delivery, each peak of access (i.e., flash crowd) needs

11

CHAPTER 2. PREDICTIVE CLOUD PROVISIONING FOR P2P VOD STREAMING 12

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Day

R
eq

ue
st

 r
at

io
 o

f v
id

eo
s

Top 1000 videos
Top 500 videos
Top 200 videos

(a) Popularity decay of Top-K videos

15 20 25 30
0.02

0.04

0.06

0.08

0.1

0.12

0.14

Day

F
ra

ct
io

n
of

 w
ho

le
 s

ys
te

m

online viewers
replicas

(b) Replication and online users

0 5 10 15 20 25 30
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Day

A
T

D

drama series
others
all

(c) Available replication to demand
(ATD)

Figure 2.1: Population decays in the video on demand system

considerable effort to accommodate. Yet the immediately followed popularity decay largely destroys

the balance in an established peer-to-peer overlay and renders the effort to be useless. Specifically,

the replication in the peers’ local storage can hardly keep up with a rapid decay. Consider a typical

example comes from PPlive, one of the most successful P2P streaming systems with multi-million

users. Our data traces from PPLive show that a very popular drama series containing 26 sets 1

quickly attracted nearly 20% online view among all the videos (over 10,000) in the whole system.

The server load has increased to accommodate the flash crowd but then decreased after a large

overlay has been established, which makes a number of data segments from the drama series being

replicated among the peers. After two weeks, the popularity of the drama series declined sharply,

and yet the server load increased sharply, too. Fig. 2.1(b) shows the popularity decaying process

of the drama series from the 12th day after they were released. We can see that its popularity has

dramatically decreased from 14% to 2%. Meanwhile, the replication ratio decreased much slower,

only from 11% to 4%. Further, in Fig. 2.1(c), the ATD 2 is recorded for all the videos in the system.

We can observe that ATD of the drama series increased fast since the first day they were broadcast.

Even though the number of online viewers have already decreased in the 15th day, the continued

growth of ATD made them a special group of videos distinct from the rest videos in the system. This

is because the replication strategy in PPLive is an online algorithm, which needs sufficient time

to adapt to the changing popularity. As such, many of the replicas for the drama series become

temporally redundant in the decaying process, and even worse, prevent the peers’ local storage

spaces from being used for newer popular videos. This, together with the diminishing overlay size,

1The sets of the drama series are released together, and most of PPLive user viewed them one by one continuously.
2ATD represents the available replication to demand for short, and it can be calculated by R/D, where R is the total

number of replicas for this video, and D is the total number of requests for this video in this system.

CHAPTER 2. PREDICTIVE CLOUD PROVISIONING FOR P2P VOD STREAMING 13

Table 2.1: Model notation

Parameter Definition
M Number of videos in the back-end storage server
N(t) Number of online users in the time slot t
nj(t) Number the online watching the video j in time slot t
ui Upload bandwidth of peer i
rj Playback rate of the video j
C Storage capacity of the peer to store the video locally
αi,j(t) The replication map of user i for video j at time slot t
βi,j(t) The upload scheduling map of user i for video j at time slot t
S(t) Server support at time slot t
D(t) Request demand at time slot t
U(t) Upload capacity by peers at time slot t

contribute to the increased server load in the system.

In the following section, we present a mathematic model to capture the inherent relationship

between the video popularity decreasing and the peer upload capacity evolution. Our model quan-

titatively explains the increase of the server load and identifies the key influential factors. It also

facilitates the design of a flexible cloud service provisioning strategy.

2.2 System Model

According to Fig. 2.1(c), during the fast popularity decay of the drama series, the ATD of them grows

sharply. Meanwhile, the rest videos in the system keep steady ATD fluctuation, which is generally

in accordance with the average ATD of videos in the whole system. This observation motivates us

to found a two group model, in which the drama series are considered in one group, with the rest

videos as the other group. Through the exploration of the replication and the upload evolution in the

two groups, we seek to understand the impact of such decays and the key influential factors.

In this section, we present our proposed two group model of the P2P VoD system, which as-

sumes that there are M videos. Without loss generality, we assume that all the videos are of unit

size and with the same playback rate rj = r, for j = 1, 2, ...M [64]. There is a server that stores

all the videos and serves as backup whenever a peer can not achieve the required download rate

(equal to the playback rate) [11] [53].

In each time slot t, the number of online users in the system is default N(t), and each peer views

one video at the same time 3. The viewer population is
M∑
j=1

nj(t) = N(t) where nj(t) represents the

population of the online viewers for video j. The total number of online viewers in the system can

3According the server log from PPlive, less than 5% peers start more than one video session at the same time.

CHAPTER 2. PREDICTIVE CLOUD PROVISIONING FOR P2P VOD STREAMING 14

be considered as constant 4, with following two considerations. First, our work focuses on the effect

of the video popularity churn in the P2P VoD system. The assumption is appropriate if the channel

churn occurs in a much faster time scale than that of peer churn (i.e. peer incoming or leaving the

system) [51] [65]. Second, it is known that, in the TV system, for a given period, the total number of

viewers is relatively constant, though they switch channels over time.

Each peer contributes a limited upload bandwidth ui and a storage capacity to store C videos,

where C � M . While the average peer uploading capacity being no less than the average video

playback rate (i.e. ūi
r ≥ 1) is a necessary condition for a P2P streaming system to scale, it is

insufficient to capture the system scale, as the upload bandwidth resource may not be fully utilized

by the replication strategy, especially in the presence of highly dynamic video popularity [33].

The server support S(t) is determined by two components, the current user request demand

and the user upload capacity. If the total bandwidth demand exceeds the user upload capacity,

the server bandwidth has to be provisioned for the normal playback of all the peers in the system

[54]. The user upload capacity is determined by the following three parameters, (a) the upload

bandwidth ui of each peer, (b) the replication distribution map αi,j(t) (i.e. αi,j(t) = 0 means video j

is not replicated by peer i at time slot t, and αi,j(t) = 1 means video i is replicated by peer j at time

slot t), and (c) the upload scheduling map βi,j(t) (i.e. the bandwidth utilization of peer i for video

j at time slot t). We assume that the download bandwidth of each peer is not the bottleneck in the

system [32] [33] [11] [64]. With the global knowledge and the central control, we can have the lower

bound of the server bandwidth support as follows:

Min. S(t) =

M∑
j=1

{rnj(t)−
N(t)∑
i=1

uiαi,j(t)βi,j(t)} (2.1)

s.t. 0 ≤
M∑
j=1

nj(t) ≤ N(t), nj(t) ∈ [0, N(t)], j ∈ 1, 2, ..M (2.2)

0 ≤
M∑
j=1

αi,j(t) ≤ C, αi,j ∈ {0, 1}, i ∈ 1, 2, ..., N (2.3)

0 ≤
M∑
j=1

αi,j(t)βi,j(t) ≤ 1, βi,j(t) ∈ [0, 1], i ∈ 1, 2, ..., N (2.4)

0 ≤ rjnj(t)−
N∑
i=1

uiαi,j(t)βi,j(t) ≤ N(t), j ∈ 1, ..M (2.5)

Eq. 2.2 presents the constraints of the online user request for the videos, and Eq. 2.3 and

Eq. 2.4 show the constraints of the limited user storage capacity and upload bandwidth. Eq. 2.5

4We assume that in each time slot the number of the online peers is a constant, N(t) = N , for t0 ≤ t ≤ te, where t0 is
the initial time slot and te is the final time slot.

CHAPTER 2. PREDICTIVE CLOUD PROVISIONING FOR P2P VOD STREAMING 15

S(t)S(t)

R2,1(t)

R1,1(t)

R2,2(t)

R1,2(t)

N1(t) Peers Viewing G1

G1(t) G2(t)

N2,1(t)

D1(t)
D2(t)

N1,2(t)

S1(t) S2(t)

Server Support

Videos

Peers
Replication

N2(t) Peers Viewing G2

Figure 2.2: Demand and supply relationship

provides the constraint of server support for each videos.

Note that this minimum server provisioning is a nonlinear optimization problem, given the two-

dimensional of variables α and β. The replication distribution map α is influenced by the replication

strategy and the specific user behavior, and the upload scheduling map β relates to the popularity

of the video, the playback deadline, and so on. Therefore, even the global information is given

in the stationary scenario, the optimal solution is very hard to achieve [53] [11] . Furthermore,

with the dynamic peer churn and video popularity churn, it can be expensive to acquire the global

information on time. The optimal replication and scheduling strategy remains open problems in the

non-stationary scenario. Rather we focus on the questions that how replication evolves and what

are the critical factors during the popularity decay process. To this end, we simplify the model to a

general homogeneous case, as we are more interested in the asymptotic collective behavior of the

system rather than the individual peer behavior.

2.2.1 Two Group Model

To characterize the video popularity decay, we assume that the M videos are divided into two

groups, namely, a popularity decaying group G1 with size of K videos m1,m2,m3, ...,mK and a

CHAPTER 2. PREDICTIVE CLOUD PROVISIONING FOR P2P VOD STREAMING 16

popularity increasing group G2 with the rest videos mK+1,mK+2, ...mM . The videos in G1 can be

considered as the the members of the newly broadcasted drama series, and they will experience

an fast popularity decaying. Accordingly, we define the number of peers viewing the videos in G1 as

N1(t), and the numbers of peers viewing the videos in G2 as N2(t). Therefore, in each time slot, we

have N1(t) + N2(t) = N . Further, according to [64], the server load is indifferent to whether peers

are homogeneous or heterogenous in bandwidth. Assuming an average upload bandwidth ui = ū

for all the peers, we can have the total bandwidth demand D(t) in each time slot as follows:

D(t) = D1 +D2 =
∑

j∈G1,G2

rnj(t) = rN1(t) + rN2(t) (2.6)

In Fig. 2.2, we plot the relationship between the upload capacity and the demand distribution.

The upload capacity from the server S(t) and peer upload capacity U(t) together equal to the total

bandwidth demand D(t). Since the total number of peers in time slot t is constant, the popularity

churn is driven by the peers exchange between the different viewing groups (e.g. ∆N2,1(t) implies

the peers flow from G2(t) to G1(t) in time slot t), we define N2(t − 1) as N ′2 for short. Accordingly,

we have: ∆N2(t) = N2(t)−N ′2 = ∆N1,2(t)−∆N2,1(t)

∆N1(t) = N1(t)−N ′1 = ∆N2,1(t)−∆N1,2(t)
(2.7)

In each time slot t, the viewing population change (i.e. ∆N1(t) and ∆N2(t)) directly influences

the current request demand in the system. We define the video popularity for the videos in G1

as ρ1(t) = N1(t)
NK and ρ2(t) = N2(t)

N(M−K) for G2, respectively. We further define θ1 = ∆N1(t)
N and

θ2 = ∆N2(t)
N as the popularity churn ratios. We can then formulate the popularity churn as follows:ρ1(t)− ρ1(t− 1) = ∆N1(t)−∆N1(t−1)

NK = θ1
K

ρ2(t)− ρ2(t− 1) = ∆N2(t)−∆N2(t−1)
NK = θ2

M−K

(2.8)

Since we focus on the analysis of the popularity decay, we consider the case that ρ1(t0)� ρ2(t0).

Scheduling Strategy. We assume that each peer has only partial knowledge of other peers

and competes for limited resources [32]. In the P2P VoD system, when a peer is viewing a video, it

can be supported by its partners, who have the same video replica and available upload bandwidth.

A random scheduling strategy is utilized for partner selection, and we consider r
κ as the bit rate

corresponding to a unit bandwidth of the connection. There should be at least κ partners for the

normal playback of one peer, while the upload bandwidth of one peer is capable of supporting a

maximum of ūκr connections.

Replication Strategy. The replication strategy implies how the replicas are distributed in the

local storage of the peers after viewing. We focus on one of the most popular strategies, the least

recently used (LRU) strategy, which is also the default choice of PPlive [21].

CHAPTER 2. PREDICTIVE CLOUD PROVISIONING FOR P2P VOD STREAMING 17

From the Fig. 2.2, we can see that when ∆N2,1(t) users move transfers from N2(t) to N1(t),

they still contribute their upload bandwidth for videos in G2(t) because there still exist replicas for

videos of G2(t) in their local storage. In the real world system, it is possible that some users may

be offline after finishing video viewing. When a peer is offline, neither the replication nor the upload

bandwidth of this peer will be contributed in the system. When this peer is online again, it still needs

to choose which group to join. For example, ∆N2,1(t) stands for the peers who leave Group 2 for

Group 1. It contains not only the peers who join Group 1 immediately after viewing the videos in

Group 2, but also the peers who turn online from offline for the videos in Group 1. Therefore, this

scenario still can be accommodated in our model.

Thus we can have the upload capacity by peers, U(t) divided into four components as follows:

U(t) = ū

M∑
j=1

N∑
i=1

αi,j(t)βi,j(t) = ū(

K∑
j=1

N∑
i=1

αi,j(t)βi,j(t) +

M∑
j=K+1

N∑
i=1

αi,j(t)βi,j(t))

= ū(

K∑
j=1

N1(t)∑
i=1

αi,j(t)βi,j(t) +

K∑
j=1

N2(t)∑
i=1

αi,j(t)βi,j(t) +

M∑
j=K+1

N1(t)∑
i=1

αi,j(t)βi,j(t) (2.9)

+

M∑
j=K+1

N2(t)∑
i=1

αi,j(t)βi,j(t))

Since the scheduling policy is identical across the peers, we can distinguish the peer upload ac-

cording to the replication resource of peers, namelyR1,1(t), R1,2(t), R2,1(t) andR2,2(t), respectively,

where Ra,b(t) represents the replicas for videos in Ga(t), a ∈ {1, 2} from peers in Nb(t), b ∈ {1, 2},
e.g. R1,2(t) implies that the peers have joined the viewing group N2, and their local storages still

keep the replicas of videos in G1.

To further analyze the evolution process of α and β, we now define the eviction ratio and the

upload ratio as follows:

Definition 1: Let ε1(t) be the eviction ratio of the replicas for the videos in G1 to be evicted by

the replication strategy in time slot t, and ε2(t) be that for G2.

Since we assume that there are only two types of videos, ε1(t)+ε2(t) = 1. We can also consider

ε2(t) as the reservation probability for the replicas of G1 to reside in the local storage and ε1(t) as

that for the replicas of G2 to reside in the local storage.

Given that it is an closed queuing system, we assume that there are no new user flows and the

local storage of each peer is fully cached with replicas for G1 or G2
5. From Fig. 2.2, we can see

that the replication evolution is mainly determined by two factors, namely, the eviction ratio (i.e. ε1(t)

5To characterize the successive viewing pattern, we assume that the replicas of ∆N2,1(t) and ∆N1,2(t) consist of videos
in G2 and G1, respectively. This follows the reality the newly joined users ∆N2,1(t) from N2(t) have not watched the videos
in G1 before, as videos in G1 are just released. Since the users continue to view the videos in G1 one by one and C � K,
there only exist replicas for G1 in the local storage of ∆N1,2(t), which are leaving viewing group N1(t).

CHAPTER 2. PREDICTIVE CLOUD PROVISIONING FOR P2P VOD STREAMING 18

or ε2(t)) and the viewing peers flows (i.e. ∆N1,2(t) or ∆N2,1(t)). The former determines how many

replicas should be replaced by the viewing videos through the replication strategy. The latter refers

to the peer flows exchange between the two viewing groups N1(t) and N2(t). We can then specify

the replication evolution process of the four parts as follows:

R2,1(t) = R′2,1ε
′
1 + ∆N ′2,1C

R1,1(t) = R′1,1ε
′
2 +N ′1 −∆N ′1,2C

R1,2(t) = R′1,2ε
′
2 + ∆N ′1,2C

R2,2(t) = R′2,2ε
′
1 +N2(t)−∆N ′2,1C

(2.10)

Replica R2,1 is gradually replaced by R1,1 when the N1(t) peers are watching G1, and replica R1,2

by R2,2 during N2(t) peers are watching G2. The current replication for the videos of G1 or G2 in

the system are as follows: R1(t) = R1,1(t) +R1,2(t) = R′1ε
′
2 +N1(t)

R2(t) = R2,1(t) +R2,2(t) = R′2ε
′
1 +N2(t)

(2.11)

Definition 2: Given the specific R1(t) and R2(t) in the whole system, we define the upload ratio

η1(t) as the upload bandwidth utilization for the videos of G1, and η2(t) for G2. Both η1(t) and η2(t)

are between 0 and 1.

We then have the peers’ upload for G1 and G2 as follows:U1(t) = η1(R1(t), R2(t))N(t)ū

U2(t) = η2(R1(t), R2(t))N(t)ū
(2.12)

Combining with user demand in Eq. 2.6, we have the server support for G1 and G2 as:S1(t) = rN1(t)− η1(R1(t), R2(t))N(t)ū

S2(t) = rN2(t)− η2(R1(t), R2(t))N(t)ū
(2.13)

Fig. 2.3 shows a round map of the whole process from population decay to the server provision-

ing. Without considering the new user flow, the viewer population change (i.e. ∆N1 and ∆N2) of the

two groups of videos becomes the original cause to generate the server provisioning. On one hand,

it directly leads to the change of the demand structure in the system. On the other hand, it leads to

the change of video popularity in the two video groups by Eq. 2.8, which is also related to the sizes

of the two groups (e.g. K or M −K). Further, the upload ratio η(t) and the eviction ratio ε(t) are

influenced by the time-varying video popularity (i.e. ρ1(t) or ρ2(t)) and the local storage capacity C.

The replication evolution R1(t) and R2(t) are then calculated by Eq. 2.11, and the upload evolution

U1(t) and U2(t) are captured by Eq. 2.12. Finally, the server provisioning can be acquired by Eq.

2.13.

CHAPTER 2. PREDICTIVE CLOUD PROVISIONING FOR P2P VOD STREAMING 19

Popularity Churn Ratio
1/K, 2/(M-K)

Number of Movies
K, M-K

Population Decay
N1, N2

Request Popularity
1

Request Popularity
2

Eviction Ratio

Upload Ratio

Replication
R1

Replication
R2

Peer Upload
U1, U2

Peer Storage Capacity
C

Population of
View Group

N1, N2

Request Demand
D1, D2

Server Support
S=S1+S2

Figure 2.3: Map of process and parameters

2.3 Analysis of Critical Factors

From above analysis, the upload ratio η(t) and the eviction ratio ε(t) are two critical factors to

understand the upload and the replication evolution process. Specifically, the eviction ratio will

determine how many replicas for G1 or G2 will be replaced, and the new replication ratio in the next

time slot will be generated based on the old one. The upload ratio will then determine the bandwidth

utilization based on the current replication ratio. We now analyze how the upload ratio η(t) and the

eviction ratio ε(t) are influenced by the time-varying video popularity and the local storage capacity.

2.3.1 Upload Ratio η

Given the replication ratio, we first calculate the bandwidth utilization for G1 or G2 in a single user

case. In the whole system, the replication ratio in the local storage of each peer may be different,

and it depends on the different viewing behavior. Therefore, we further analyze and calculate the

range of η based on the total replication ratio.

CHAPTER 2. PREDICTIVE CLOUD PROVISIONING FOR P2P VOD STREAMING 20

Single Peer Scenario

Given each peer with a local storage C in the P2P VoD system, there exist two types of replica:

type A replicas with the popularity ρ1, and type B replicas with the popularity ρ2. The number of

requests received by the peer is a random variable with respect to each type of replica, and the

request probability for each replica is independent from each other. If one replica receives the

request, it will establish a connection of one unit bandwidth with the request sender until the total

upload bandwidth of the request receiver is used up.

Since the cache hit ratio for each replica member in A is independent and identically distributed

(iid), the cache hit ratio of replicas in A is P (A) = aρ1. Similarly, the cache hit ratio of replicas in B

is P (B) = bρ2, and the cache hit ratio of the replicas in the peer is P (R) = P (A ∪ B) = aρ1 + bρ2,

which implies the probability to establish a connection when a request comes. According to the

Bayes’ law [53], of all the established connections, the upload ratio for replicas from A is P (A|R) =
P (R|A)P (A)

P (R) = aρ1
aρ1+bρ2

.

Multiple Peer Scenario

Lemma 1. Consider there are n peers χ1, χ2, ..., χn, each of which has a local capacity of C for

replication storage. There are M videos in the system. The total numbers of type A replicas and

type B replicas are m1 and m2, respectively, and we have m1 +m2 = n×C. Then in whole system

we have the average upload ratio for type A replica as follows:


m1

m1+m2
≤ ηA ≤ m1ρ1

m1ρ1+m2ρ2
ρ1 ≥ ρ2

m1ρ1
m1ρ1+m2ρ2

≤ ηA ≤ m1

m1+m2
ρ1 < ρ2

(2.14)

The proof can be found in Appendix A.

We can see that, in the multi-peer scenario, the bound of the upload ratio η only depends on the

number of replicas and the request probability, respectively, rather than the local storage capacity

C. However, the local storage capacity C will determine which boundary (the upper bound or the

lower bound) the upload ratio η will approach. Consider two extreme cases as follows:

When C approaches M , it implies all the video replicas are stored in the local storage of each

peer, given that a video does not need duplicated replicas in a singe peer. Since all the peers have

the same replication distribution (ai = m1/n for i = 1, 2, 3..., n), the upload ratio of every peer is

equal to each other. Thus the upload ratio in the system is ηA = m1ρ1/(m1ρ1 +m2ρ2). In this case,

an even distribution (ai/bi = m1/m2 for i = 1, 2, 3, ..., n) enables the popular videos to utilize the

limited upload capacity in priority, resulting in the maximum upload ratio for popular videos.

When c approaches 1, which means only one replica can be stored in the local storage of each

peer, the upload ratio η is only affected by the number of the replica (m1 or m2) in the system,

CHAPTER 2. PREDICTIVE CLOUD PROVISIONING FOR P2P VOD STREAMING 21

i.e., limc→1 ηA = m1

n×c , given that each replica can receive at least one request during the time slot

(ρi > 0 for i = 1, 2, .., n). We can see that c = 1 is a special case of the scenario, in which the

peer’s local storage can only stores one type of replica. In this scenario, no matter how high or

low the popularity of the local replica is, there are constant ūκ
r units of connection to be utilized

for upload. Therefore, the impact of the popularity distinction decreases and only the amount of

replicas becomes the influential parameters. Given the constant amount of replicas, the request

popularity results in the maximum upload ratio η for the unpopular videos, and the minimum value

for the popular videos accordingly.

Overall, we can see that even though the local storage capacity C does not influence the upper

bound and the lower bound of η directly, the average upload ratio η is determined by the replication

distribution (i.e. m1 and m2), which is influenced by C. In real world, there exists both even and

uneven distributions given different user behaviors. Generally, we have a conclusion that, under the

random scheduling strategy, a lager local storage capacity benefits the upload bandwidth utilization

of the videos with higher popularity, and a lower local storage benefits that of the videos with lower

popularity. We can further formulate our result as follows:

ηA =

m1ρ1/(m1ρ1 +m2ρ2) if c� 1

m1/(n× c) else
(2.15)

2.3.2 Eviction Ratio ε

We next analyze the effect of the LRU replication strategy, and show how the replicas evolve in this

system.

Theorem 1. The possibility for the replica χ to be evicted can be computed approximately as fol-

lows:

ẽ(χ) ' (1− ρχ)C (2.16)

Where ρχ is the popularity (possibility to be requested) of replica χ, and C is the local storage

capacity.

The proof can be found in Appendix B.

Similar to the upload ratio, given the number of two-group replicas respectively, we can examine

the eviction ratio ε in both the single peer scenario and the multi-peer scenario.

Single Peer Scenario

There are a maximum of C replicas in the local storage of a peer. We assume that the last item to

be requested as the one to be evicted. Then for a single peer, the eviction ratio εA of the replica

CHAPTER 2. PREDICTIVE CLOUD PROVISIONING FOR P2P VOD STREAMING 22

from the type A replicas is as follows:

εA =
a(1− ρ1)C−1

a(1− ρ1)C−1 + b(1− ρ2)C−1
(2.17)

where a and b are the numbers replica from A and B respectively in the local storage of the peer,

and a+ b = C.

In this single peer scenario, the upload ratio ηA does not change with the storage capacity, which

implies that if the number of the replicas and the request popularity of the replica keep constant,

the utilization of the upload bandwidth connection is basically fixed under the random selection

scheduling. However, the eviction radio εA is affected by the storage capacity C directly. We can

transform Eq. 2.17 as follows:

εA =
1

1 + (ba)(1−ρ2
1−ρ1)C−1

where a 6= 0 (if a = 0 or b = 0, the eviction ratio will not change with storage size C). If ρ1 > ρ2,

we have 1−ρ2
1−ρ1 > 1. Given that b

a is constant, εA decreases as the storage capacity C grows. And

verse vice when ρ1 < ρ2. Given the number of replication ratio is constant, the videos with lower

popularity are more likely to be evicted as the storage capacity C grows. It also implies that a large

C provides a higher probability to reside the videos with higher request popularity.

Multiple Peer Scenario

Like previous section, type A replicas have the popularity ρ1 and the eviction ratio P1 = (1−ρ1)C−1,

and type B replicas have the popularity ρ2 and the eviction ratio P2 = (1− ρ2)C−1. According to the

LRU strategy, we consider the last item to be requested as the one to be evicted. In this system,

the total replica numbers of A and B are m1 and m2, respectively, and we have m1 +m2 = n× C.

We have the average eviction ratio εA from A replicas as follows:


m1P1

m1P1+m2P2
≤ εA ≤ m1

m1+m2
ρ1 ≥ ρ2

m1

m1+m2
≤ εA ≤ m1P1

m1P1+m2P2
ρ1 < ρ2

(2.18)

The only change is the usage of P instead of ρ, and we can see that ρ1 ≥ ρ2 ⇒ P1 ≤ P2 and

ρ1 < ρ2 ⇒ P1 > P2. Obviously, the larger storage capacity will result in a higher eviction ratio for the

video with lower popularity, and it benefits the videos with higher popularity to reside in the storage.

Through above analysis, we can see that the upload ratio η and the replication ratio ε are not

only influenced by the replica number, the request probability, and the local storage capacity, but

also the replication distribution among the multiple peers. The traditional scheduling and replication

CHAPTER 2. PREDICTIVE CLOUD PROVISIONING FOR P2P VOD STREAMING 23

strategies tend to emphasize the importance of popular videos meanwhile underestimate the de-

mand of unpopular videos, as observed in other measurement works [21]. Given a constant peer

upload bandwidth, improving the storage capacity may not be effective to solve the problem.

2.4 Cloud-Assisted Provisioning

Cloud computing allows elastic deployment of applications by dynamically provisioning resources

[54], which we believe to be an effective solution to address the challenges of popularity decays, too.

Since the cloud provisioning is not instant [46], we assume that there is a demand forecast algorithm

(e.g. the algorithm in [40]) to predict the demand (i.e. the number of viewers N1(t) or N2(t)) in the

next time slot t. For ease of expression, we denote R(t− 1) as R′ and R(t) as R. According to Eq.

2.11 of the two group model, the replication evolution can be expressed as follows:

R1 = R′1(1− ε′1) +N ′1 = κ′P ′2 +N ′1

R2 = R′2(1− ε′2) +N ′2 = κ′P ′1 +N ′2 (2.19)

where κ′ =
R′1R

′
2

R′1P
′
1+R′2P

′
2
, P ′1 = (1− ρ′1)C−1, and P ′2 = (1− ρ′2)C−1.

Note that if C � 1, we have η1 ' R1ρ1
R1ρ1+R2ρ2

and ε1 ' R1P1

R1P1+R2P2
; otherwise we have lim

C→1
ε1 =

lim
C→1

η1 = R1

NC . When C → 1, the situation is simple and intuitive, since the upload ratio η and the

replication ratio ε is proportional to the number of replicas in the system. We focus this on the more

general situation where C � 1 [21].

According Eq. 2.12, we can have the upload evolution for G1 with the predicted popularity ρ1

and ρ2 as follows:

U1 =
ūNR1ρ1

R1ρ1 +R2ρ2
=

ūN(κ′P ′2ρ1 +N ′1ρ1)

κ′P ′2ρ1 +N ′1ρ1 + κ′P ′1ρ2 +N ′2ρ2
'

ρ1R
′
1(1 +

R′2
NC)

ρ1R′1(1 +
R′2
NC) + ρ2R′2(1 +

R′1
NC)

(2.20)

where P ′1
P ′2

= (
1−ρ′1
1−ρ′2

)C−1 ' 1 when K � 1, M −K � 1, and C �M .

Therefore, given U ′1 =
R′1ρ

′
1

R′1ρ
′
1+R′2ρ

′
2

and ρ1 = ρ′1 + θ
K , ρ2 = ρ′2 + θ

M−K , we have the upload evolution

for G1 as ∆U1 = U1 − U ′1. Finally the extra cloud service provisioning driven by ∆N in time slot t

can be expressed as follows:

∆S = max{0,∆N1r −∆U1}+max{0,∆N2r −∆U2} (2.21)

During a population decay for G1, we have ∆N1 < 0 and ∆N2 > 0. Accordingly, we have

the popularity decay as ρ1(t) < ρ1(t − 1), with the eviction ratio ε(t) > ε(t − 1) and upload ratio

η(t) < η(t − 1). Therefore we have R1(t) < R1(t − 1) and U1(t) < U1(t − 1). However, according

CHAPTER 2. PREDICTIVE CLOUD PROVISIONING FOR P2P VOD STREAMING 24

0 500 1000 1500 2000 2500 3000 3500 4000
0

500

1000

1500

2000

2500

3000

3500

Time Slots (t)

M
ov

ie
 P

op
ul

at
io

n
fo

r
G

ro
up

 1

K=200
K=300
K=500

(a) Viewer population N1(t)

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

−3

Time Slots (t)

M
ov

ie
 P

op
pu

la
ri

ty
 f

or
 G

ro
up

 1

K=200
K=300
K=500

(b) Video popularity ρ1(t)

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Slots (t)

R
ep

lic
at

io
n

E
vo

lu
tio

n

P1=1.0e−03 P2=4.1176e−04 C=5
P1=1.0e−03 P2=4.1176e−04 C=10
P1=1.0e−03 P2=4.1176e−04 C=20
P1=6.0e−04 P2=4.6667e−04 C=5
P1=6.0e−04 P2=4.6667e−04 C=10
P1=6.0e−04 P2=4.6667e−04 C=20

(c) Replication from G2 to G1

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Slots (t)

R
ep

lic
at

on
 E

vo
lu

tio
n

P1=1.0e−03 P2=4.1176e−04 C=5
P1=1.0e−03 P2=4.1176e−04 C=10
P1=1.0e−03 P2=4.1176e−04 C=20
P1=6.0e−04 P2=4.6667e−04 C=5
P1=6.0e−04 P2=4.6667e−04 C=10
P1=6.0e−04 P2=4.6667e−04 C=20

(d) Replication from G1 to G2

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Slots (t)

U
pl

oa
d

B
an

dw
id

th
 U

til
iz

at
io

n

P1=1.0e−03 P2=4.1176e−04 C=5
P1=1.0e−03 P2=4.1176e−04 C=10
P1=1.0e−03 P2=4.1176e−04 C=20
P1=6.0e−04 P2=4.6667e−04 C=5
P1=6.0e−04 P2=4.6667e−04 C=10
P1=6.0e−04 P2=4.6667e−04 C=20

(e) Upload from G2 to G1

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Slots (t)

U
pl

oa
d

B
an

dw
id

th
 U

til
iz

at
io

n

P1=1.0e−03 P2=4.1176e−04 C=5
P1=1.0e−03 P2=4.1176e−04 C=10
P1=1.0e−03 P2=4.1176e−04 C=20
P1=6.0e−04 P2=4.6667e−04 C=5
P1=6.0e−04 P2=4.6667e−04 C=10
P1=6.0e−04 P2=4.6667e−04 C=20

(f) Upload from G1 to G2

Figure 2.4: Time-varying popularity (a-b) and single peer scenario with constant popularity (c-f)

to our analytical result, when the popularity still keeps the relationship ρ1 > ρ2, the replica R1 is still

very hard to be replaced, even though the demands for videos in G1 have decrease dramatically.

This follows |∆N1| = |∆N2| and |∆U1| = |∆U2|, and |∆N1r| � |∆U2|. Thus, the bandwidth support

forG2 will be the major part of cloud service provisioning, as ∆N1r−∆U1 < 0 and ∆N2r−∆U2 � 0.

This will present the numerical results to further validate it in the next section.

2.5 Numerical Result and Discussion

In this section, we will fist generate a population decay environment. Then we will show the numer-

ical results of replication ratio and the upload ratio evolution process in the static scenario and the

dynamic scenario respectively. Finally, we will validate our proposed model through comparing the

prediction result from our proposed model with the real world trace and the simulated results.

CHAPTER 2. PREDICTIVE CLOUD PROVISIONING FOR P2P VOD STREAMING 25

2.5.1 Time-varying Popularity

Since we focus on the performance in large-scale overlays (where the decay will be noticeable

impact), it is hard to perform packet-level simulations. Instead, we have conducted simulation based

on aggregated user behaviors. Thus, we simulate a dynamic environment with 10000 online peers

and 2000 videos in the system, each peer views the video according to the video popularity. In

the simulation environment, the random scheduling strategy is deployed for partner selection. Each

peer views the video according to the video popularity, and updates its local replication through

LRU strategy. The local storage capacity C is the only parameter for the LRU. The peer upload

bandwidth is set equal to the video playback bandwidth. Thus, the total demand in the system can

be covered in a narrow margin by the peer upload as in [32]. Each video length is 1 hour, and the

time slot is 1 hour in the following simulation.

Through the former analysis, we can see that the request popularity decay is influenced by

the video group sizes and the total number of peers in the system. Like [32], we assume 10000

online peers and 2000 videos in the system. Initially, there are a maximum of 3000 online users

(30%), watching K videos in G1, and there are 7000 online users (70%) viewing M2 = 2000 − K
videos in G2. Considering that a user usually does not return to the video it has just watched [11],

the population of the videos in G1 decreases over time as more and more users have completed

watching the videos. This fetch-at-most-once behavior of users is very prevalent in the P2P systems

[18]. Let P be the probability for a user to join the viewing group. The user will leave the viewing

group after watching K videos, and will not turn back to view the videos again. Then we have the

arrival rate for time slot t as λ(t) = NP (1−P)t−1. The peak viewing population is 3000. Accordingly

we have P1 = 1.8 × 10−3, P2 = 1.2 × 10−3, P3 = 7.14 × 10−4 for K1 = 200,K2 = 300,K3 = 500,

respectively.

Fig. 2.4(a) and Fig. 2.4(b) show the population decay of online viewers N1(t) and the popularity

decay ρ1(t) for each videos in G1, respectively. We can see that both the population and the

popularity decreases dramatically as the departure rate is greater than the arrival rate. In our

experiment, we keep the initial viewing population N1(t0) as a constant, and change the number

of videos in G1 from 200 (K1), 300 (K2), to 500 (K3). When K1 = 200, the popularity of the

videos experiences a very fast decreasing with the highest initial popularity 1.5 × 10−3. As the

number of videos K increases, the popularity will decrease more slowly, and the population tends

to be relatively steady. It implies that, to reach the same population scale, the video group with

the smaller size will suffer from higher request popularity, and the users will leave fast after they

complete the viewing. It usually leads to the problem if the replication or the upload bandwidth in

the system can not efficiently scale to the great amount of user demand temporarily. Meanwhile, it

does not last for a long time due to the short viewing time. Oppositely, the video group with a high

number of videos can distribute the arrival viewers among different videos. Therefore the population

and the popularity can be kept relatively stable in a long-term.

CHAPTER 2. PREDICTIVE CLOUD PROVISIONING FOR P2P VOD STREAMING 26

0 500 1000 1500
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Time Slots (t)

Vi
ew

er
 P

op
ul

at
io

n
of

 M
ov

ie
s

in
 G

ro
up

 1

0

0.1

0.2

0.3

0.4

0.5

Re
p

lic
at

io
n

Ra
ti

o

Replication Ratio K=200 C=5
Replication Ratio K=300 C=5
Replication Ratio K=500 C=5
Population K=200
Population K=300
Population K=500

(a) Replication ratio when C = 5

0 500 1000 1500
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Time Slots (t)

Vi
ew

er
 P

op
ul

ti
on

 o
f M

ov
ie

s
in

 G
ro

up
 1

0
0

0.1

0.2

0.3

0.4

0.5

U
p

lo
ad

 R
at

io

Upload Ratio K=200 C=5
Upload Ratio K=300 C=5
Upload Ratio K=500 C=5
Population K=200
Population K=300
Population K=500

(b) Upload ratio when C = 5

0 500 1000 1500
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Time Slots (t)

Vi
ew

er
 P

op
ul

at
io

n
of

 M
ov

ie
s

in
 G

ro
up

 1

0

0.1

0.2

0.3

0.4

0.5

Re
p

lic
at

io
n

Ra
ti

o

Population K=200
Population K=300
Population K=500
Replication Ratio K=200 C=10
Replication Ratio K=300 C=10
Replication Ratio K=500 C=10

(c) Replication ratio when C = 10

0 500 1000 1500
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Time Slots (t)

Vi
ew

er
 P

op
ul

at
on

 o
f M

ov
ie

s
in

 G
ro

up
 1

0

0.1

0.2

0.3

0.4

0.5

U
p

lo
ad

 R
at

io

Upload Ratio K=200 C=10
Upload Ratio K=300 C=10
Upload Ratio K=500 C=10
Population K=200
Population K=300
Population K=500

(d) Upload ratio when C = 10

0 500 1000 1500
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Time Slots (t)

Vi
ew

er
 P

op
ul

at
io

n
of

 M
ov

ie
s

in
 G

ro
up

 1

0

0.1

0.2

0.3

0.4

0.5

Re
p

lic
at

io
n

Ra
ti

o

Population K=200
Population K=300
Population K=500
Replication Ratio K=200 C=20
Replication Ratio K=300 C=20
Replication Ratio K=500 C=20

(e) Replication ratio when C = 20

0 500 1000 1500
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Time Slots (t)

Vi
ew

er
 P

op
ul

at
io

n
of

 M
ov

ie
s

in
 G

ro
up

 1

0

0.1

0.2

0.3

0.4

0.5

U
p

lo
ad

 R
at

io

Population K=200
Population K=300
Population K=500
Upload Ratio K=200 C=20
Upload Ratio K=300 C=20
Upload Ratio K=500 C=20

(f) Upload ratio when C = 20

Figure 2.5: Replication ratio and upload ratio evolution in the multiple peers scenario with time
varying popularity

2.5.2 Upload Ratio and Replication Ratio

We then analyze the time-varying replication ratio and upload ratio, respectively. First, the popularity

is kept constant, and the numerical results show how the replication ratio and the upload ratio evolve

over time with different user local storage capacities C. Second, we will find out how the replication

ratio and the upload ratio evolve under the population decay environment.

Single Peer Scenario with Constant Popularity

Consider two popularity scenarios ρ1 = 1.0× 10−3, and ρ2 = 4.1176× 10−4 (i.e. the initial popularity

sate when K = 300), and ρ1 = 6.0 × 10−4, ρ2 = 4.6667 × 10−4 (i.e. the initial popularity sate when

K = 500). We can see that the popularity gap in the former scenario is much larger than that in

the latter one. During this experiment we keep the video popularity constant over time. For user

local storage capacity C = 5, 10, 20, we measure the evolution process of the upload ratio and the

replication ratio, respectively. We assume that, before the peer joins into the viewing group, there is

no video replica of this viewing group, which means the replication ratio and the upload ratio both

start from zero.

CHAPTER 2. PREDICTIVE CLOUD PROVISIONING FOR P2P VOD STREAMING 27

From Fig. 2.4 (c-f) we can have following observations: (1) Both the replication ratio and the

upload ratio experience a quick growth, then the speed slows down when the value approaches 1.

Comparing Fig. 2.4(c) to Fig. 2.4(d), we can see the quick growth is more obvious when the peer

leaves from videos with low popularity to the videos with high popularity. Meanwhile, we can see that

the growth speed is mainly affected by the storage capacity C during the replication ratio evolution

process. During the upload ratio evolution process, the different video popularity impacts the growth

speed of the upload ratio from the beginning; (2) The growth speeds of both the replication ratio

and the upload ratio are reduced as the local storage capacity C increases. It is intuitive to consider

the larger capacity C should take a longer time to replace the replicas. From the Fig. 2.4(d) and

the Fig. 2.4(f), we can see that the reduction of the growth speed for the videos with low popularity

is more obvious than that with high popularity, especially the local storage capacity C is high. The

video with low popularity is more likely to be replicated and uploaded in a smaller storage capacity,

which confirms our conclusion in the theoretic analysis.

Multiple Peers Scenario with Time-varying Popularity

We further examine the evolution of the replication ratio and the upload ratio with different storage

capacities (C = 5, C = 10, C = 20) in the multiple peer scenario. In the simulated popularity decay

environment, the average popularity of all the videos in the system is 5.0 × 10−4. When K = 200,

the video popularity in G1 drops from 1.5 × 10−3 to the average popularity at time slot 615 with

viewing population 1000 (time slot 585 with viewing population 1500 when K = 300, and time slot

265 with viewing population 2500 when K = 500).

From Fig. 2.5, we can see that, before the video reaches the average popularity, the replication

ratio and the upload ratio still experience a short period increase, even though the video popularity

and population have decreased already. Comparing with the scenarios K = 300 and K = 500, the

high initial video popularity when K = 200 enables the replication grows faster than the viewing

population fraction (given the total online user number is 10000), especially when the storage ca-

pacity is increased as C = 20. When the video popularity decreases to the average popularity at

about time slot 500, both the replication ratio and the upload ratio approaches the viewing popula-

tion fraction well. As the viewing population keeps decreasing, the videos in G1 tend to be more

unpopular comparing to the rest videos in the system. We can see the that both the replication

ratio and the upload ratio experience an excessive decrease over the population change, especially

when the storage capacity is increased.

2.5.3 Predictive Cloud-assisted Server Provisioning

The above experiments have showed the replication evolution in the the static and the time-varying

dynamic environment respectively. As it is usually not instant to provision the server resource [46],

CHAPTER 2. PREDICTIVE CLOUD PROVISIONING FOR P2P VOD STREAMING 28

5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Day

F
ra

ct
io

n
of

 th
e

W
ho

le
 S

ys
te

m

Viewer Population
Replication
Predicted Replication

(a) Predicted replication

0 100 200 300 400 500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time slot

S
er

ve
r

Lo
ad

 (
P

er
ce

nt
ag

e
of

 to
ta

l d
em

an
d)

Predicted load (K=200)
Predicted load (K=300)
Predicted load (K=500)
Server load (K=200)
Server load (K=300)
Server load (K=500)

(b) Predicted server load when C=5

0 100 200 300 400 500
0

0.02

0.04

0.06

0.08

0.1

0.12

Time Slot

S
ev

er
 L

oa
d

(P
er

ce
nt

ag
e

of
 T

ot
al

 D
em

an
d)

Predicted load (K=200)
Predicted load (K=300)
Predicted load (K=500)
Server load (K=200)
Server load (K=300)
Server load (K=500)

(c) Predicted server load when C=10

Figure 2.6: Predictive replication evolution and server provisioning

the accuracy of server load prediction is essential in the online cloud-assisted strategy. In the

following section, we will take one further step to validate our proposed cloud-assisted server provi-

sioning strategy. As we have assumed that the video demand in the next time slot can be forecast

accurately using algorithm in [40], the proposed cloud-assisted server provisioning consists of a

replication prediction strategy (i.e. Eq. 2.19), and a server load prediction (i.e. Eq. 2.21). As the

server load prediction is based on the replication prediction result, the experiments in this section

are designed as follows. First, we use the real world trace to evaluate the replication prediction.

The numerical result of the replication prediction is achieved through calculating the eviction ratio ε,

and validated through comparing to the real world trace. Second, we use the simulated popularity

decay environment to evaluate the proposed cloud-assisted server provisioning strategy. The nu-

merical result of the server load prediction is achieved through calculating the upload ratio η and the

replication prediction results. Its accuracy is validated through the simulated results with various of

parameter setups.

In Fig. 2.6(a), the replication is predicted according to the trace of drama series in 32 days from

PPlive. Using the trace of the viewer population, we have the numerical results of the replication

prediction, and further validate it with the trace of replication. We set C = 2 corresponding to the 1G

local storage capacity in PPlive. A steady decay is observed after two rounds of viewer population

fluctuation, with each period of 7 days. We conjecture that it is due to the viewer behaviors in

the week days (e.g. viewers may be attracted by the weekend special programs). Basically, the

predicted replication stays in accordance with the trace of replication in the system. There exists

a general gap between the predicted value and real world trace. We speculate that during the

popularity decay of the drama series, other new broadcast videos with sharply increasing popularity

reduce the replication of the drama series in the system.

In Fig. 2.6(b) and Fig. 2.6(c), the cloud-assisted server provisioning strategy is validated in the

CHAPTER 2. PREDICTIVE CLOUD PROVISIONING FOR P2P VOD STREAMING 29

simulated popularity decay presented in Fig. 2.4(a) and Fig. 2.4(b). Using the simulated popularity

decay, we have the numerical result of the server load prediction, and further validate it with the

simulated server load. The popularity decay is simulated with group numbers K = 200, 300, 500.

Among these different levels of popularity decays, we can see that during the graceful popularity

decay (K=500), the numerical results of server prediction match the simulated results well. When

the popularity decay sharply (K=200), the predict accuracy decreases especially during the peak

server load prediction. Further, the deviation becomes worse if the peer local capacity increases

to 10 in Fig. 2.6(c). Similarly, the deviation also happens during the replication prediction in Fig.

2.6(a). We can see that when the popularity decreases sharply (e.g. the 7th day and the 16th

day), the deviation of the replication prediction is also serious. We can conjecture the deviation

occurs during both the calculation of the upload ratio η and that of the replication ratio ε. According

to Eq. 2.14 and Eq. 2.18, we can only have approximate range values of η and ε. When the

popularity is low or gracefully changed (i.e. K=500), a high prediction accuracy can be expected

through accurate allocation of η and ε in the limited range. Generally, we can see that the server

resource can be flexibly provisioned to accommodate the surging server load during the popularity

decay. Comparing to the server-assisted strategy, it is cost effective because the server resource is

needless to be always prepared for the peak demand.

2.6 Summary

In this chapter, we developed a mathematical model to trace the evolution of peer upload and

replication during the population decays. Our model captured peer behaviors with common data

replication and scheduling strategies in state-of-the-art peer-to-peer VoD systems. It revealed that,

during a sharp population decay, the peers local storage could not effectively utilized for upload,

and the imperfect content replication with slow response would inevitably result in an escalating

server load. The proposed prediction model was validated through both the real world trace and

the simulated result. It facilitated the design of a flexible cloud based provisioning strategy to serve

highly time-varying demands.

Chapter 3

Geo-Distributed Service for
Crowdsourced Live Streaming

Empowered by today’s rich tools for media generation and distribution, and the convenient Internet

access, crowdsourced streaming generalizes the single-source streaming paradigm by including

massive contributors for a video channel. It combines the efforts of numerous self-identified contrib-

utors, known as crowdsourcers, for a greater result. This is well supported by today’s mobile/tablet

devices that can capture high quality video in realtime. Internet-wide streaming however requires

computation-intensive format transcoding to serve a wide array of end-users, and such demands

from crowdsourcers can be enormous. It also calls a joint optimization along the path from crowd-

sourcers, through streaming servers, to the end-users to minimize the overall latency. The dynamics

of the video sources, together with the globalized request demands and the high computation de-

mand for each sourcer, make crowdsourced live streaming challenging even with powerful support

from modern cloud computing.

3.1 System Overview and Challenges

We illustrate a generic crowdsourced live streaming system with geo-distributed crowdsourcers

and viewers in Fig. 4.3. A set of crowdsourcers (or sourcers in short) upload their individual video

contents in realtime, which, through a video production engine, collectively produce a single video

stream. The stream is then lively distributed to viewers of interest. Both the sourcers and viewers

can be heterogenous, in terms of their network bandwidth, and their hardware/software configura-

tions for video capture and playback. As such, realtime transcoding is necessary during both up-

loading and downloading, so as to unify the diverse video bitrates/formats from different sourcers for

content production, and to replicate the output video stream to serve the heterogeneous viewers,

30

CHAPTER 3. GEO-DISTRIBUTED SERVICE FOR CROWDSOURCED LIVE STREAMING 31

Sun. Mon. Tues. Wed. Thurs. Fri. Sat.
0

2

4

6

8

10
x 10

5
N

um
be

r
of

 v
ie

w
er

s

4000

6000

8000

10000

12000

14000

N
um

be
r

of
 s

tr
ea

m
s

Viewers
Streams

Figure 3.1: Number of viewers
and source streams variation in

one week

3:00 6:00 9:00 12:00 15:00 18:00 21:00 24:00

AS

US

EU

Figure 3.2: Source stream
distribution with time variation in

one day

3:00 6:00 9:00 12:00 15:00 18:00 21:00 24:00
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
er

ce
nt

ag
e

of
 v

ie
w

er
s

AS
US
EU

Figure 3.3: Viewer demand for
the distributed source streams

in one day

possibly through through a CDN with such adaptation mechanisms as DASH (Dynamic Adaptive

Streaming over HTTP) [31].

This generic architecture reflects that of state-of-the-art realworld systems. For example, NBC’s

video content from the 41 feeds in Sochi Winter Olympics are encoded by Windows Azure Media

Services to the 1080P format, and dynamically transcoded into HLS and HDS formats. These

streams are then pulled from Azure to the Akamai’s CDN and distributed to audiences on targeted

devices, resulting in over 3000 hours of live Olympics streaming contents.

Given the large system scale and the high bandwidth, storage, and computation demands in-

volved, cloud services with elastic resource provisioning is expected. We again consider a generic

geo-distributed cloud infrastructure, which consists of multiple cloud sites distributed in different

geographical locations (e.g., US East (N. Virginia) and EU (Ireland) in Amazon EC2 Cloud)[55].

Each cloud site resides in a data center, and contains a collection of interconnected and virtualized

servers. The server resources will be provisioned for crowdsource live streaming, e.g., computation

resources for collective production and transcoding.

Optimization for conventional single-source video streaming is generally viewer-driven; the re-

source provisioning depends on the distribution of the viewers. In crowdsourced video, however,

the sourcers themselves come from all over the world, whose distribution must be as well taken into

account during resource provisioning. This is further aggravated given that the collaborative pro-

duction escalates the demands on both bandwidth and computation. The crowdsourced streaming

workflow is also much more dynamic, as individual sourcers can start/terminate based on their own

schedules or even terminate accidently.

To better understand the inherent challenges of deploying such a system, we have crawled one-

week trace from July 6 to July 12, 2014 in Twitch.tv website, which has 14 geo-distributed ingest

servers, 1 from Asia area (AS for short), 6 from European area (EU for short), and 7 from United

States area (US for short) to broadcast live game streams to viewers in a global scale. Note that

here, we consider that one live stream is contributed by only one sourcer. Fig. 3.1 shows the

number variation of viewers and streams in a week, from July 6 to July 12, 2014. First, it is obvious

CHAPTER 3. GEO-DISTRIBUTED SERVICE FOR CROWDSOURCED LIVE STREAMING 32

Table 3.1: Top 5 sourcers from Twitch.tv on July, 12th

Sourcers ID Time (Pacific Time) Location
riotgames 11:10 AM-15:40 PM Cologne, Germany
dota2ti ru 7:10 AM-18:10 PM Seattle, USA
srkevo1 6:00 AM-23:40 PM Las Vegas, USA

riotgamesturkish 1:30 AM-7:10 AM Istanbul, Turkey

ongamenet
3:00 AM-13:30 PM Seoul, South Korea18:20 PM-22:40 PM

that the number of viewer is highly dynamic, which is prevalent in current large scale systems. Due

to the differences in time zones and languages, the distribution of viewers can be time-varying,

which has been discussed in the former works [46]. Similar to the number of viewers, we can

see that the number of source streams also has great time variations in one-day time, from about

5000 streams in the early morning to almost 12000 streams in the afternoon. To further investigate

the time-varying distribution of the source streams, we have measured the top 15 streams with the

highest viewer population from 3:00 AM to 24:00 PM (PST) in July 12, 2014, and listed the five most

popular streams in Table 1. We can see that not only the time periods but also the locations of the

stream sourcers were highly dynamic. In Fig. 3.2, we divide the locations as AS, EU, and US, and

record the percentage of source streams from each region for every 30 minutes between 3:00 AM

to 24:00 PM. It can be easily observed that most of the streams from Asia and Europe are during

the morning and afternoon, and the number of streams from the United States keeps growing when

night falls. We further measure the viewer population for the distributed source streams from each

region in Fig. 3.3. We can see that in the early morning between 3:00 AM and 7:00 AM, most of the

popular streams come from Europe or Asia. We conjecture that it is because the times in Europe or

Asia are in afternoon or evening, and there are more online sourcers from these regions during that

time. Meanwhile, the viewer demand from these areas can also be more active during this period.

And most of the viewers may prefer the streams with native language speaking sourcers. Similar

reasons can also explain the increase of viewer demand for the source streams from the United

States after 15:00 PM.

In summary, in a crowdsourced live streaming system, both the number and the distribution of

the crowdsourcers can be highly dynamic. Together with time-varying viewer demand, the conven-

tional server allocation design faces more challenging in a large scale. In this paper, we will utilize

the cloud service to balance the crowdsourcers and viewers. The cloud server instance (e.g. EC2

in Amazon Cloud) are provisioned to collect and processing the live feed of the crowdsourcers, and

the cloud CDNs (e.g. CloudFront in Amazon Cloud) are deployed to handle the viewer dynamics.

Through dynamic cloud leasing strategy, we will present the cost-effective solution with streaming

quality guarantee.

CHAPTER 3. GEO-DISTRIBUTED SERVICE FOR CROWDSOURCED LIVE STREAMING 33

3.2 Cloud-Assistance for Crowdsourced Live Streaming

In this section, we first model the global cloud service leasing strategy with quality guarantee and

transform it into an equivalent problem in a directed graph. We will then present an optimal algorithm

and an efficient online heuristic solution based on the equivalent problem.

3.2.1 Problem Formulation

We use A to denote the global areas which can be divided into n different regions as A = {A1, A2, ...,

An}. Assume that there are m cloud sites all over the world, which can be represented as S =

{s1, s2, ..., sm}. As most cloud providers have a minimum unit time for the duration of leasing a

server (e.g. 1 hour for Amazon EC2), we use T to denote this duration. We define a time slice as

an integer multiple κ (κ ∈ N+) of T and at the beginning of each time slice κT , our cloud leasing

strategy makes decisions on whether to provision or terminate the cloud servers in the distributed

regions. We assume that the schedules of crowdsourced streams are predictable and can be known

beforehand, where the rationale is of two folds. First, in practice a large portion of crowdsourced

streams are driven by well-scheduled events (e.g. as one of the top 5 sourcers from Twitch.tv

in Table 3.1, the channel of srkevo1 has a strict schedule about Evolution 2014 Tournament1).

Moreover, most self-motivated crowdsourcers often prefer a regular broadcast schedule everyday

to attract more viewers. Given that the viewer demands and distributions can be forecasted by

such approaches as discussed in [46], we thus can have the numbers and distributions of both

crowdsourcers and viewers for the next time slice.

For a given time t, we denote the set of source streams from the crowdsourcers as L(t). Accord-

ing to the location distribution of crowdsourcers, we can specify the set as LA(t) = {lA1(t), lA2(t), ...,

lAn(t)} for the n different regions, respectively. As all these live streams are served by the pro-

visioned cloud instances, we further consider the set according to the dedicated cloud sites as

Ls(t) = {ls1(t), ls2(t), ..., lsm(t)}, where lsj (t) represents the live streaming sources loaded in cloud

site sj . For example, if lsj (t) = ∅, no crowdsourced stream is served by cloud site sj , i.e., cloud site

sj does not need to be leased for time t. Otherwise, if the live streams from area A2, A3, and A5

are served by cloud site sj , we have lsj (t) = lA2
(t) ∪ lA3

(t) ∪ lA5
(t).

We denote the server provisioning cost for time t as Cp(t) =
∑m
j=1 c

p
j (lsj (t)), where cpj is the

price of the leased instances in cloud site sj . We assume that there is always a bootstrapping

server s0 redirecting the global live sources to the distributed streaming servers at the cost c0. To

offload the bandwidth support for the diverse viewer demands from the cloud servers, a globalized

CDN strategy (e.g., CloudFront in Amazon) is deployed to distribute the live streams all over the

world. The cost of out-bound traffic from the cloud servers to the CDN can thus be calculated by the

1http://evo2014.s3.amazonaws.com/brackets/index.html

CHAPTER 3. GEO-DISTRIBUTED SERVICE FOR CROWDSOURCED LIVE STREAMING 34

number of channels loaded in the cloud servers, and denoted as Cb =
∑m
j=1 c

b
j(lsj (t)). As the cost

of the bandwidth support from the CDN to the global viewers is proportional to the viewer demands

D(t) =
∑n
i=1DlAi

(t), where DlAi
(t) represents the viewer demands for the crowdsourced streams

from region Ai, we can denote the total cost of the CDN as Cd = cd(D(t)) with cd as the cost to

support one unit of the viewer demand. The total cost of the crowdsourced live streaming system

can thus be calculated as follows:

Costtotal = c0 + Cp + Cb + Cd

= c0 +

m∑
j=1

[
cpj (lsj (t)) + cbj(lsj (t))

]
+ cd(D(t))

= c0 +

m∑
j=1

cj(lsj (t))︸ ︷︷ ︸
Costlease

+cd(D(t))

where cj(·) can be determined by the price policy of instance leasing and data traffic in cloud site

sj . As the first and last costs on the right side of the equation can not be reduced, we focus

on minimizing the middle part of the total cost, i.e., the cloud leasing cost, which we denote as

Costlease.

We assume that the live crowdsourcers in each region lAi(t) have a preference value on a given

cloud site sj , which we denote as P (lAi(t), sj). Generally, the preference value can be defined

according to the RTT, jitter or packet loss values of the connections between the crowdsourcers

and the given cloud site, such as defined as a concave decreasing function of the estimated latency

or a concave increasing function of the estimated connection speed in a geo-distributed service.

To guarantee the streaming quality of the crowdsourced streams in region Ai, we only consider

allocating these streams to the cloud sites with the top k preference values, and define the set of

these cloud sites as Index(lAi(t), k) for the crowdsourced streams lAi(t). As a real world example,

Twitch/Justin.tv provides an ingest server ranker program to feedback the top 3 servers in order for

the selection of their crowdsourcers.

The cloud service leasing problem in our geo-distributed crowdsourced live streaming system

can thus be formulated as to find a cloud site leasing strategy Ls, subjecting to the following con-

straints:

(1) Cloud site service constraint:

∀Ai ∈ A, ∃lsj ∈ Ls, lAi ⊆ lsj

∀lsj , lsĵ ∈ Ls, if j 6= ĵ, lsj ∩ lsĵ = ∅

CHAPTER 3. GEO-DISTRIBUTED SERVICE FOR CROWDSOURCED LIVE STREAMING 35

lA1

lA2

lA4

lA5 lA6

s1

s4s2

s3 s5

lA3

(a) (b)

lA1

lA2

lA4

lA5
lA6

s1

s4s2

s3 s5

lA3

Figure 3.4: An illustrative example of (a) distribution graph; (b) service migration vectors

(2) Crowdsourcer preference constraint:

∀Ai ∈ A, sj ∈ S, if lAi ⊆ lsj
sj ∈ Index(lAi(t), k)

(3) Total budget constraint:

Costlease + c0 + Cd ≤ Costmax

The cloud site service constraint states that the crowdsourced live streams in a given region

are served by only one cloud site. The preference constraint guarantees that the crowdsourced

live streams in each region are collected by one of the cloud sites with the corresponding top k

preference values. The total budget constraint demands that the total cost including the bootstrap-

ping server, the provisioned cloud sites and the CDN utilization must not exceed the total budget

Costmax. Our objective is to maximize the global relative preference of the crowdsourcers, which is

defined as:

Pglobal =

∑
∀sj∈S, lAi⊆lsj

|DlAi
(t)| · P (lAi(t), sj)∑

∀Ai∈A
|DlAi

(t)|P (lAi(t), Index(lAi(t), 1))

where for ease of exposition, we also use Index(lAi(t), 1) to denote the top 1 preferred cloud site for

the live crowdsourced streams lAi(t). We use |DlAi
(t)| to represent the size of the viewer demands

for crowdsourced streams lAi(t) and Pglobal is thus a relative ratio ranged between (0, 1] in the

global scale.

To make our solution cost-effective, we also need a second objective, i.e., to minimize the cloud

leasing cost Costlease. It is easy to see that these two objectives (i.e., Pglobal and Costlease) may

contradict with each other, since always leasing the top 1 preferred cloud servers can increase the

CHAPTER 3. GEO-DISTRIBUTED SERVICE FOR CROWDSOURCED LIVE STREAMING 36

leasing cost. Therefore, we adopt the following linear combination form to align them together by

different weights:

p · Costlease
Costmax − c0 − Cd

+ q · (1− Pglobal)

where p and q are two parameters that can assign different weights to the two goals. As Pglobal is

a relative ratio of the preference values of all the crowdsourcers in the system (i.e. if Pglobal = 1, all

the crowdsourced live streams are allocated in their most preferred cloud sites), (1−Pglobal) should

be minimized as Costlease. To make the leasing cost part also be a ratio ranged between (0, 1], we

further divide Costlease by (Costmax−c0−Cd) and then use parameters p and q to linearly combine

the two parts together. In the next subsection, we will transform this problem to an equivalent graph

problem and then propose an optimal solution.

3.2.2 Equivalent Problem

For ease of exposition, we assume the given time is t for the remainder of this section and thus omit

(t) in all such notations as lAi(t), lsj (t), DlAi
(t), etc. Given the geo-distributed crowdsourcers and

cloud sites, we can construct a distribution graph. Fig. 3.4(a) shows an example of 5 cloud sites and

global crowdsourcers located in 6 regions. There are two types of vertices in the distribution graph,

namely, the live crowdsourcers (e.g. lA1
, ..., lA6

in Fig. 3.4(a)), which are represented by circles, and

the cloud sites (e.g. s1, ..., s5), which are represented by squares. Initially, all the live source steams

are attached to their most preferred cloud sites and we denote the corresponding leasing cost as

Costinitial =
∑

∀Ai∈A, sj=Index(lAi ,1)

cj(lAi)

According to the price strategy cj(·) of different cloud site sj , we have the direction edges be-

tween these distributed cloud sties. We use ~d(i, j) to denote a direction edge from the cloud site

i with higher price to the cloud site j with lower price (e.g. in Fig. 3.4 (a), ~d(4, 2) means that

c2(x) < c4(x) for the same crowdsourcer x), which indicates that the service is migrating towards a

more cost-effective solution.

With the distribution graph and direction edges, we then generate service migration vectors to

indicate the available cloud sites for more cost-effective service migration. We use ~m(i, j) to denote

a service migration vector that represents the live crowdsourcers lAi are migrated and served by the

cloud site sj , rather than the cloud site Index(lAi , 1). For example, in Fig. 3.4(b), the cloud site s4 is

preferred by the live crowdsourcers lA5
and lA6

, i.e., s4 = Index(lAi , 1) for i ∈ {5, 6}. According to

the direction edges ~d(4, 2) and ~d(4, 5), we can have the service migration vectors ~m(5, 2) and ~m(5, 5)

for the live crowdsourcers lA5 , and ~m(6, 2) and ~m(6, 5) for the live crowdsourcers lA6 . Define M as

the set of all service migration vectors that are generated from the given distribution graph. For each

CHAPTER 3. GEO-DISTRIBUTED SERVICE FOR CROWDSOURCED LIVE STREAMING 37

s3

s2

s4

s5

lA2

lA1

lA3

lA5

lA6

(a)

lA1

lA2

lA4

lA5 lA6

s1

s4s2

s3 s5

lA3

(b)

Migration Direction edge

Service migration vector

Figure 3.5: An illustrative example of (a) a constructed service migration graph; (b) a solution for
migrated cloud service for geo-distributed crowdsourcers

service migration vector ~m(i, j) ∈ M , the relative preference degradation for live crowdsources lAi
to be served by the cloud site j can be calculated as follows:

Deg(i, j) =
|DlAi

|(P (lAi , Index(lAi , 1))− P (lAi , sj))∑
∀Ai∈A

|DlAi
|P (lAi , Index(lAi , 1))

Also, for each ~m(i, j) ∈M , we can calculate the cost saving as follows:

Save(i, j) = cĵ(lAi)− cj(lAi)

where cĵ is the pricing policy of cloud site sĵ = Index(lAi , 1).

Traversing all the service migration vectors ~m(i, j) ∈M , we can have a service migration graph

G(V,E). Fig. 3.5(a) shows the service migration graph that is constructed from Fig. 3.4(b). To con-

struct the service migration graph, we only select the cloud sites which are connected with at least

one service migration vector. Then we connect these cloud sites through migration direction edges.

Note that there may be more than one migration direction edges leaving from the same cloud sites.

For example, in Fig. 3.4(b) there are two migration direction edges ~d(4, 2) and ~d(4, 5) leaving from

cloud site s4. Since the set of service migration vectors M has already been generated from the

migration direction edges, we can put any one of these directed edges into the constructed service

migration graph (which is only for the connectivity purpose that will be further explained in the next

subsection). Finally, we connect the crowdsourcers in each region to the cloud sites by the service

migration vectors. In the constructed service migration graph G(V,E), we can further define the

optimal service migration (OSM) problem as to find a set of migration vectors O ⊆M , subjecting to

the following constraints:

(1) Service migration vector constraint:

CHAPTER 3. GEO-DISTRIBUTED SERVICE FOR CROWDSOURCED LIVE STREAMING 38

∀~m(i, j), ~m(i, ĵ) ∈M and j 6= ĵ,

if ~m(i, j) ∈ O, then ~m(i, ĵ) /∈ O

(2) Preference degradation constraint:

∀~m(i, j) ∈ O, sj ∈ Index(lAi , k)

(3) Cost saving constraint:

Costinitial −
∑

∀~m(i,j)∈O

Save(i, j) + c0 + Cd ≤ Costmax

The service migration vector constraint represents that there is at most one migration vector leaving

from a live crowdsourcer vertex, which corresponds to the cloud site service constraint in the cloud

leasing problem. The preference degradation constraint is related to the crowdsourcer preference

constraint of the cloud leasing problem. The cost saving constraint refers to the total cost not

exceeding Costmax in the original problem. Our objective is to minimize the linear combination of

cost saving and the relative preference degradation as follows:

p

Leasemax
(Costinitial −

∑
∀~m(i,j)∈O

Save(i, j)) + q
(
1− (1−

∑
∀~m(i,j)∈O

Deg(i, j))
)

=
p · Costinitial
Leasemax

+
∑

∀~m(i,j)∈O

(
q ·Deg(i, j)− p · Save(i, j)

Leasemax

)
where Leasemax = Costmax − c0 − Cd. As Costinitial cannot be further reduced, our objective can

thus be simplified as to minimize∑
∀~m(i,j)∈O

(
q ·Deg(i, j)− p · Save(i, j)

Leasemax

)
The OSM problem in graph G(V,E) can be naturally related to the cloud site leasing prob-

lem: the optimal solution O indicates the service allocation for the crowdsourcers in each re-

gion toward the distributed cloud sites. For example, Fig. 3.5(b) shows an example solution with

O = {~m(1, 4), ~m(3, 3), ~m(5, 2), ~m(6, 5)}. Therefore, we have the set of live crowdsourcers served in

each cloud site as follows: ls1 = ∅, ls2 = lA2

⋃
lA5

, ls3 = lA3

⋃
lA4

, ls4 = lA1
, and ls5 = lA6

.

3.3 Optimal Cloud Leasing Strategy

The optimal solution of the equivalent problem can be computed according to the spanning trees in

the service migration graph. Clearly, a spanning tree is a subgraph of the directed graph G(V,E).

CHAPTER 3. GEO-DISTRIBUTED SERVICE FOR CROWDSOURCED LIVE STREAMING 39

Let T denote the number of spanning trees in a service migration graph G(V,E). We define the set

of service migration vectors on the i-th spanning tree (i ∈ {1, ..., T}) as Mi, and the optimal solution

of Mi as Oi. We then have the following theorem:

Theorem 2. There must exist an optimal solution O of the service migration vectors M on the

service migration graph G(V,E), such that O ∈ {O1, ..., OT }.

We can prove this using contradiction by assuming that there exits an optimal solution set of

the service migration vectors O with edges in a circle. Then there are two scenarios if the edges

in directed graph contain a circle:(1) The directed edges are sequenced in a line one after another,

with the end vertex sending toward the head vertex. (2) There is more than one directed edge

leaving from the same vertex. As there is no edge sending toward to the live crowdsourcers vertex in

directed graphG(V,E), there would be cloud sites sequenced in a circle, and we have the confliction

c1(l) > c2(l) > ... > cend(l) > c1(l). Also we can eliminate the scenario 2 according to the definition

of service migration graph. We omit the detail of proof here due to space limitation.

According to Theorem 1, each spanning tree can provide a local optimal solution, and the global

optimal solution can be achieved by exploring all the spanning trees in G(V,E). There are extensive

studies on enumerating all the spanning trees in a directed graph [17][22]. E.g., a well-known algo-

rithm in [17] uses backtracking and a method for detecting bridges based on the depth-first search

with the time complexity O(|V |+ |E|+ |E| · |T |) and the space complexity O(|V |+ |E|). Therefore,

in our solution we assume that one of these algorithms can be used to enumerate the spanning

trees efficiently. For a spanning tree i on the service migration graph G(V,E), the service migra-

tion vectors Mi (and each of its subsets) are feasible solutions under the service migration vector

constraint. By enforcing the preference degradation constraint, a number of spanning trees can be

further screened out. Thus, for a remained spanning tree i, we need to calculate the local optimal

migration vector setOi to minimize the combinational objective with the cost saving constraint, which

can be solved by the classic 0-1 knapsack problem. In particular, let F(ItemSet, TotalWeight) de-

note the standard 0-1 knapsack problem. The ItemSet is Mi in our problem and the TotalWeight

is equal to (
∑

~m(i,j)∈Mλ

Save(i, j)− Savemin), where Savemin = Costinitial + c0 +Cd −Costmax. We

thus need to select a set of items M̄ (service migration vectors) in the ItemSet (Mi) with the total

weight
∑

∀~m(i,j)∈M̄

Save(i, j) ≤
∑

~m(i,j)∈Mλ

Save(i, j)− Savemin so as to maximize the total value

∑
∀~m(i,j)∈M̄

(
q ·Deg(i, j)− p · Save(i, j)

Leasemax

)
From the optimal solution Ō of F, we can thus calculate the optimal solutionOi ofMi on the spanning

tree i as Oi = Mi − Ō. Then the global optimal solution can be found through enumerating all the

spanning trees on the service migration graph G(V,E). We summarize this optimal solution in

Algorithm 4.

CHAPTER 3. GEO-DISTRIBUTED SERVICE FOR CROWDSOURCED LIVE STREAMING 40

Algorithm 1: Optimal service migration()
1 O = ∅
2 for each enumerated spanning tree λ on G(V,E) do
3 if tree λ fulfils the preference degradation constraint then
4 if

∑
~m(i,j)∈Mλ

Save(i, j) ≥ Savemin then

5 Ō = F(Mλ,
∑

~m(i,j)∈Mλ

Save(i, j)− Savemin)

6 Oλ = Mλ − Ō
7 if objective(Oλ) < objective(O) then
8 O = Oλ
9 end

10 end
11 end
12 end
13 return O as the global optimal solution for G(V,E)

It is worth noting that finding the optimal solution for the standard 0-1 knapsack problem can

become a time-consuming task as the crwodsourcers are distributed in a large scale, which can

cause the optimal solution proposed in Algorithm 4 less suitable for practice, especially for an online

system with highly dynamic crowdsourcer distribution and viewer demand. To this end, we further

propose a simplified heuristic algorithm in Algorithm 2, which can work efficiently and still return the

global optimal solution under certain situations. We then have the following theorem:

Algorithm 2: Efficient online service migration()
1 O = ∅
2 for each enumerated spanning tree λ on G(V,E) do
3 if tree λ fulfils the preference degradation constraint then
4 Oλ = ∅
5 Totalsave = 0

6 sort ~m(i, j) ∈Mλ with Deg(i,j)
Save(i,j) in increasing order

7 for ~m(i, j) ∈Mλ do
8 if (q ·Deg(i, j) < p

Leasemax
· Save(i, j)) or (Totalsave < Savemin) then

9 put ~m(i, j) into Oλ Totalsave = Totalsave + Save(i, j)
10 end
11 end
12 if objective(Oλ) < objective(O) then
13 O = Oλ
14 end
15 end
16 end
17 return O as the online solution for graph G(V,E)

Theorem 3. Algorithm 2 can return the global optimal solution when Costinitial+c0+Cd ≤ Costmax

CHAPTER 3. GEO-DISTRIBUTED SERVICE FOR CROWDSOURCED LIVE STREAMING 41

for each enumerated spanning tree.

If we can prove that the local optimal solution in each spanning tree can be achieved by Al-

gorithm 2 when Costinitial + c0 + Cd ≤ Costmax, we can then prove that Algorithm 2 can re-

turn the global optimal solution by Theorem 1. We can prove this using contradiction by assum-

ing that there is a spanning tree λ with Costinitial + c0 + Cd ≤ Costmax but has an optimal

solution Óλ ⊆ Mλ, which is better than the solution Oλ found by Algorithm 2. As Savemin =

Costinitial+c0 +Cd−Costmax ≤ 0, we always have Totalsave ≥ Savemin. Thus, for all ~m(i, j) ∈ Oλ,

we have q ·Deg(i, j) < p
Leasemax

· Save(i, j). The contradiction can thus be achieved by first iden-

tifying the difference between Óλ and Oλ, and then showing that making changes to Óλ according

to Oλ can further improve Óλ. We omit the details of the proof here due to the space limitation.

America Europe Asia Pacific
0

20

40

60

80

R
T

T
 (

m
s)

0

0.05

0.1

0.15

0.2

0.25

0.3

P
er

ce
nt

ag
e

of
 to

ta
l p

la
ne

tla
b

no
de

s

Percentage of nodes
RTT latency

Figure 3.6: RTT latency between planetlab nodes and their top 1 preferred cloud sites

3.4 Performance Evaluation

We have implemented the crowdsourced live streaming system as a prototype based on PlanetLab,

Amazon Cloud, Microsoft Azure Cloud, and the opensource VLC/VLM coder, and have conducted

realworld experiments to understand its performance. We have also performed trace-driven simu-

lations to further evaluate the system performance in large scale.

CHAPTER 3. GEO-DISTRIBUTED SERVICE FOR CROWDSOURCED LIVE STREAMING 42

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

Time (second)

Li
ve

 s
tr

ea
m

in
g

de
la

y
(s

ec
on

d)

1st preferred cloud site
2nd preferred cloud site
3rd preferred cloud site
7th preferred cloud site

Figure 3.7: Streaming delay

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

Time (second)

F
ra

m
e

lo
ss

 r
at

io

1st preferred cloud site
2nd preferred cloud site
3rd preferred cloud site
7th preferred cloud site

Figure 3.8: Frame loss ratio

(0, 20ms] (20ms, 50ms] (50ms, 100ms] (100ms, 200ms] (200ms, 500ms]
0

1

2

3

4

5

6

Li
ve

 s
tr

ea
m

in
g

de
la

y
(s

ec
on

d)

America
Europe
Asia Pacific

Figure 3.9: Different regions

(0, 20ms] (20ms, 100ms] (100ms, 200ms] (200ms, 500ms]
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
ra

m
e

lo
ss

 r
at

io

1mbps Matrix
3mbps Shrinkage
6mbps BBC Planet
10mbps Monsters

Figure 3.10: Videos with different bitrates

3.4.1 Prototype experimental results

In our prototype implementation, both the live crowdsourcers and end users are deployed in 398

Planetlab nodes, which are set up with VLC media player 0.8.7 Janus on each node. We deploy

the federation of cloud service from Microsoft Azure Cloud [2] and Amazon Cloud [1] in our prototype

platform. These two cloud service providers can offer totally 21 cloud sites distributed all over

the world. In each cloud site, the General Purpose instances are provisioned with Medium (A2)

from Microsoft Azure Cloud and m3.medium from Amazon Cloud. Each provisioned instance is set

up with Ubuntu 14.04 LTS and installed with VLM to manage multiple live streaming channels.

Further, we deploy the CloudFront CDN service in All Edge Locations for the globalized content

delivery to the geo-distributed viewers. In order to evaluate the streaming quality, the live feeds

are generated through videos uploaded from the distributed Planetlab nodes. We utilize the test

videos with different resolutions and bitrates 2. Each dedicated sourcer stores one of these videos

as its own live feed. We deploy 18 cloud sites in different regions from Amazon Cloud and Microsoft

Azure, 9 from America area, 3 from Europe area, and 6 from Asia Pacific, respectively. To explore

the distribution of the 398 planetlab nodes, we measure the RTT latency between the nodes and

the cloud sites, and use the cloud site with the minimal latency to approximate their locations. In

2https://s3.amazonaws.com/INFOCOM2015/Video+testing+samples.htm

CHAPTER 3. GEO-DISTRIBUTED SERVICE FOR CROWDSOURCED LIVE STREAMING 43

Fig. 3.6, we present the nodes population and the average RTT latency from their top 1 preferred

cloud sites. With the latency results, each sourcer can construct a preference list of the cloud sites.

In order to measure the delay, we implement a live streaming of a timer video 3 from the planet-

lab node to the cloud server. Fig. 3.7 presents a 40 seconds record about the delay. We can see

that the top 1 preferred cloud site has a minimal delay, and the total delay will accumulate with time.

We also use ffmpeg to measure the frame loss ratio during the live streaming through recording the

number of duplicated frames (i.e. because the current frame is not received by the playback dead-

line, the former frame is duplicated) and dropped frames (i.e. the frame is received but corrupted).

The frame loss ratio of a 50 seconds video is recorded in Fig. 3.8. As VLC duplicates the first

received frame when the streaming connection is established, the frame loss ratio is high during the

initial stage and will decrease with time. The gap between the different preferred cloud site become

less remarkable. Furthermore, we deploy the server instances from cloud sites in different areas

and select the videos with different bit rates. Generally, we can see the streaming delay increase

more than 80% if the latency is above 20ms in Fig. 3.9. On the other hand, the frame loss ratio is

stable when the latency is under 200ms in Fig. 3.10.

Van CA VA SA K. and J. CHN S. and A.
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

F
ra

m
e

lo
ss

 r
ed

uc
tio

n

Top 1 preferred first
Optimal migration

Figure 3.11: Implementation results

5:00AM 7:00AM 9:00AM 11:00AM 13:00PM 15:00PM 17:00PM 19:00PM
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
tr

ea
m

in
g

de
la

y
re

du
ct

io
n

Top 1 preferred first
Optimal migration
Centralized provisioning

Figure 3.12: Reduction of streaming delay

5:00AM 7:00AM 9:00AM 11:00AM 13:00PM 15:00PM 17:00PM 19:00PM
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

F
ra

m
e

lo
ss

 r
ed

uc
tio

n

Top 1 preferred first
Optimal migration
Centralized provisioning

Figure 3.13: Reduction of frame loss

5:00AM 7:00AM 9:00AM 11:00AM 13:00PM 15:00PM 17:00PM 19:00PM
0

0.5

1

1.5

C
os

t r
at

io

Top 1 preferred first
Optimal migration
Centralized provisioning

Figure 3.14: Reduction of provisioning cost

3https://s3.amazonaws.com/INFOCOM2015/videos/timer.mkv

CHAPTER 3. GEO-DISTRIBUTED SERVICE FOR CROWDSOURCED LIVE STREAMING 44

Table 3.2: Three cloud leasing strategies for crowdsourced live streaming from 7 areas

Van (10) CA (19) VA (20) SA (5) K. and J. (20) CHN (16) S. and A. (4)
Top 1 preferred first strategy m3× 3 (Oregon) m3× 2 (Virginia) m1× 1 (Sao Paulo) m3× 2 (Tokyo) m3× 1+ m1× 1 (Singapore) m1× 1 (Sydney)

Centralized provisioning strategy m3× 5 (Virginia) m3× 4 (Singapore)
Optimal migration m3× 3 (Oregon) m3× 2 + m1× 1 (Virginia) m3× 2 (Tokyo) m3× 2 (Singapore)

We will further investigate the server provisioning cost and the video streaming quality of the

cloud-based strategies through the implementation on the prototype platform. Except for our pro-

posed optimal migration (OM) strategy, two other cloud-based strategies are implemented for

comparison. The top 1 preferred first (Top1) strategy deploys all the available cloud sites to

allocate the service for sourcers in their most preferred cloud site. Meanwhile, in centralized

provisioning (CP) strategy the cloud servers are allocated in the regions with the most sourcers.

Here we select region Virginia and Singapore as the central regions, and consider CP as the bench-

mark strategy. The implementation details of the cloud leasing strategy are presented in Tab. 3.2.

For example, m3 × 1+ m1 × 1 (Singapore) means one m3.xlarge instance and one m1.large in-

stance are provisioned in Singapore region to serve 16 sourcers. We also calculate the server

provisioning cost per hour according to the prices of Amazon EC2. CloudFront is deployed as CDN

for the global distribution, and we record the average frame loss ratio from 20 distributed users.

Generally the frame loss ratios can be reduced by about 10% for Top1 and OM strategies. Espe-

cially, for the plantlab nodes in China, the improvement can reach almost 30% with the proposed

strategy. Comparing with Top1 strategy, our proposed solution saves 8.34% cost, and achieves

9.1% average video quality improvement (almost equals to 9.3% improvement in Top1).

3.4.2 Trace-driven simulation results

To further evaluate the performance of the proposed strategy in large scale, we simulate the sys-

tem with the real world trace data from Twitch.tv and the measurement results from the prototype

system. The diverse prices of distributed cloud sites are referred to Amazon Cloud and Microsoft

Azure Cloud. We consider a conventional centralized dedicated server (CDS) strategy as the

benchmark, in which the single server is allocated in the central region to service the global re-

quests. The price cost should cover the peak user demand, and we will take this cost as the budget

constraint in our proposed OM strategy. We also set p/q = 0.1 and the preference value is inversely

proportional to the RTT latency. Another two cloud based strategies are deployed for comparison.

All these cloud-based strategies can scale their provisioning capacity adaptive to the user demand.

Fig. 3.12 shows the streaming delay reduction of the three cloud-based strategy comparing with

the benchmark CDS strategy. Generally, Top1 strategy and OM strategy, which deploy the geo-

distributed cloud service, can reduce almost 50% streaming delay of the benchmark strategy. The

CP strategy can have an improvement only when most of viewers concentrate on several sourcers

from the same region (e.g. 3:00AM-8:00AM in Asia and 13:00PM-16:00PM in Europe). Different

from the streaming delay reduction, the frame loss reduction is more dynamic with time variations

CHAPTER 3. GEO-DISTRIBUTED SERVICE FOR CROWDSOURCED LIVE STREAMING 45

in Fig. 3.13. Before 8:00 AM, most of popular sourcers are from Europe and Asia, the CDS strategy

would suffer from the long transmission, despite the total number of streams is not large, and there

is still extra available bandwidth capacity for the rented server. After 9:00AM, sourcers from north

America attract more viewer demand. Then dedicated server can provide an acceptable service

with less frame loss ratio. In Fig. 4.1, we present the cost ratio between the three cloud-based

strategies and the benchmark strategy. As the server instances are allocated in the distributed

cloud sites with diverse prices, the Top1 strategy can lead to a higher cost when the peak demand

comes. Because of the budget constraint, the provisioning cost in our proposed strategy is limited

under the cost of the benchmark. Yet, comparing with Top1 strategy, the gap of streaming delay

and frame loss ratio can still be kept within 5%, and almost 30% of the provisioning cost is saved

through the service migration during the peak demand.

3.5 Summary

In this paper, we built a prototype of crowdsourced live streaming platform with Amazon Cloud

Service and Planetlab nodes. Using the real world trace, we analyzed the influence of cloud service

provisioning to the streaming quality, and it further motivated the design of cloud leasing strategy to

optimize the cloud site allocation for geo-distributed live crowdsourcers.

Chapter 4

Hybrid Design for Large Scale VoD
Streaming

In the past decade, peer-to-peer streaming has seen its great success in commercial deployment

due to its inherent high scalability from the aggregated local resources of participating users. On

the other hand, the shift to the datacenter-powered Cloud Computing has changed the way of

enabling scalable and dynamic networked services. There have been pioneer works on cloud-

assisted strategy for P2P VoD streaming systems [34] [28] [54]. These systems generally utilize

dedicated memory or disk spaces on each peer as caches for recently downloaded video segments,

and replicate all the videos in cloud infrastructure for VoD streaming service support.

The cloud-based storage and access however do not come for free. For example, Amazon

charged end users US$0.15 per gigabyte-month, with additional charges for bandwidth used in

sending and receiving data, and a per-request (get or put) charge [1]. Despite that pricing moved to

tiers where storing more than 50 terabytes receives certain discount, the overall cost generally es-

calates with the increasing scale of service, which is still a prohibited factor of VoD service provider

in the long run, particularly considering that the business model of Internet VoD remains largely

obscure nowadays.

As such, we believe that a truly scalable, cost-effective, and highly quality VoD service should

synergize the resources from both peer-to-peer and cloud.

4.1 Challenges in SynPAC

Different from previous works, we do not have to replicate all the videos in the cloud infrastructure in

our proposed cloud architecture, and we will illustrate the reasons from both the performance and

cost consideration.

46

CHAPTER 4. HYBRID DESIGN FOR LARGE SCALE VOD STREAMING 47

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

Total File Size

C
on

te
xt

 S
w

itc
he

s

Small
Media
Large
X−large

(a) Context switches

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Total File Size

N
or

m
al

iz
ed

 I/
O

 T
hr

ou
gh

pu
t

Small
Medium
Large
X−large

(b) I/O throughput

Figure 4.1: Performance variation with the change of file size

4.1.1 Experiment Results to Performance Impact

This experiment is designed to emulate the cloud instance server under the highly intensive user

requests environment. The file size is proportional to the number of requested videos in a stream-

ing system. In this section, we record the file I/O performance with SysBench fileio mode. Small,

Medium, Large and Extra-large, four types of instances are deployed from Amazon cloud service.

The memory sizes are 1.7GB, 3.7GB, 7.5GB and 15GB for each of them. Initially, a great amount

of files are generated to form the specified total file size. During the running process, each thread

performs specified I/O operations on these files. We also utilize the SysBench to perform check-

sums validation during the data reading and writing. All the measurements are proceeded under

the random read and write testing.

Two metrics are measured in this experiment, namely, the context switches and the I/O through-

put. A context switch is the computing process of storing and restoring the state (context) of a

CPU so that execution can be resumed from the same point later. It enables multiple processes to

share a single CPU, and is a general optimization object of a multitasking operating system. Fig.

4.1(a) shows that the context switch keeps low with the limited number of files. As the number of

files grows, we can see that the context switches of all the four types of instance increase greatly,

especially when the total file size is larger than the memory size. Similarly, in Fig. 4.1(b) the I/O

throughput experiences a sharp decay for all of the instances, and the superiority of the extra-large

instance finally diminishes as the increase of file size.

Through this experiment we analyze the relationship between the server performance (i.e. CPU

or I/O) and the video size, which is served at the same time. For example, there are 100 user

CHAPTER 4. HYBRID DESIGN FOR LARGE SCALE VOD STREAMING 48

5 2 2 2 1 1 0.50.5

4

0.5
0.5

2

2

1

Strategy (b)

10 Bandwidth + 5Videos

2

2

0.5

2

1

1

Strategy (c)

8.5 Bandwidth + 6Videos

5

2

2

1

Strategy (a)

10 Bandwidth + 4Videos

Figure 4.2: An illustrative example for peer assisted strategy

requests to be supported by an Amazon Large instance at the same time. In scenario 1, the 100

requests are for 1 video. In scenario 2, the 100 requests are for 20 different videos. Clearly, the

bandwidth provisioning is the same in these two scenarios. We assume the size of 1 video is 1 G.

The Large instance can easily handle 1 video with high I/O throughput, e.g. 90% in Fig. 4.1(b) in

scenario 1. However, in scenario 2, the instance need to support 20 different videos, in which the

file size of 20 G can exhaust the 7.5G memory size of the large instance. The I/O throughput would

greatly decrease, as video files have to be switched between the fast memory and the hard-disk.

In this case the low I/O throughput, e.g. 20% in Fig. 4.1(b), may be the bottleneck of the whole

system.

4.1.2 An Illustrative Example for Provisioning Cost

Then we consider a motivational toy example in Fig 4.2. The bandwidth demand for 8 videos are 5

units, 2 units, 2 units, 2 units, 1 unit, 1 unit, 0.5 unit, 0.5 unit respectively. There are 2 collaborative

peers, and each of them can replicate 3 different videos, and support 5 bandwidth units. Clearly, the

cloud infrastructure has to replicate 8 videos and support 14 units of bandwidth demands without

the collaborative peers.

In Fig. 4.2, three types of peer collaborative strategies are presented as (a), (b), and (c). Note

that in strategy (b) the connecting line denotes that 4 upload bandwidth units from peer 1 and 1

upload bandwidth unit from peer 2 together support the same video with 5 bandwidth demand. In

both strategy (a) and strategy (b), the upload bandwidth of these two peers are fully utilized for 10

bandwidth demand. Comparing with strategy (a), more cloud storage can be saved by strategy

(b), with only 3 video replications in cloud provisioning. In strategy (c), the local storage of the two

peers can be completely utilized, while the contribution of upload bandwidth is limited. Therefore,

the cloud provisioning should replicate 4 videos and support 4 bandwidth units in strategy (a), 3

CHAPTER 4. HYBRID DESIGN FOR LARGE SCALE VOD STREAMING 49

...

Replication

Video m

Replication

Video 1

Track

Service

Cloud Infrastructure

SynPAC

Request-monitor(1)

 Replica (1) candidates

...

Request-monitor(m)

 Replica (m) candidates

...

Provisioning

Video m

Syn-Rarest Syn-Adaptive

Private

Server

Syn-OPT

Figure 4.3: System structure of SynPAC

videos and 4 bandwidth units in strategy (b), and 2 videos and 5.5 bandwidth units in strategy (c).

4.2 Overview of SynPAC Structure

In this thesis, we present SynPAC design to jointly consider peer local upload bandwidth and stor-

age capacity, releasing the resource provisioning from cloud infrastructure. This is fundamentally

different from the traditional architecture, in which every video can be migrated into the cloud in-

frastructure in a nondistinctive way. The careless provisioning can lead to the redundancy in the

collaborative peers, and waste the cloud resource. In Fig. 4.3, we develop two types of strategies,

a centralized optimal solution implemented on the private central server, and a distributed solution

implemented in the collaborative peers of the large scale system. The distributed solution further

consists of two modules, Syn-Rarest as the peer local scheduling strategy and Syn-Adaptive as the

peer local replication strategy.

We consider that in the VoD service system there are M videos, stored in the private server of

the service provider. Without loss of generality, we assume that all the videos are of unit size and

with the same playback rate γj = γ, for j = 1, 2, ...M [11] [53]. Let the number of online users be N .

Each peer is capable to store C replicas in the local storage (C �M), and the upload bandwidth for

each peer is represented as µj . The private server provides the track service, which keeps the track

of the status of online users, as well as the replication information in the system. Meanwhile, the

private server also maintains the backup of all the videos in the VoD system. As the demand grows,

the video replicas can be provisioned into the public cloud infrastructure, such as Amazon EC2

instance or Akamai CDN, which is generally accepted in the literature [34] [50] [28] [54]. We have

CHAPTER 4. HYBRID DESIGN FOR LARGE SCALE VOD STREAMING 50

Table 4.1: Some residential broadband offerings in Canada

Internet Service Provider Type Lowest tier Highest tier AvailabilityDownload Upload Download Upload
Brama Telecom DSL 6 Mbit/s 800 kbit/s 50 Mbit/s 25 Mbit/s Ontario and Quebec

Internet Lightspeed DSL 3 Mbit/s 1 Mbit/s 6 Mbit/s 1 Mbit/s Western Canada
Shaw Communications Cable 10 Mbit/s 500 kbit/s 250 Mbit/s 15 Mbit/s Western Canada

Rogers Hi-Speed Internet Cable 6 Mbit/s 250 kbit/s 150 Mbit/s 10 Mbit/s Eastern Canada
Bell Internet VDSL2 5 Mbit/s 1 Mbit/s 50 Mbit/s 10 Mbit/s Ontario and Quebec

Telus VDSL2 or Fiber 6 Mbit/s 1 Mbit/s 50 Mbit/s 10 Mbit/s Alberta and British Columbia

Table 4.2: Recommended bitrates of several popular streaming services

Provider SD video 720P video Best quality HD video
Netflix 2 Mbps 4Mbps 5Mbps

Hulu Plus 1 Mbps 2Mbps Over 3.2Mbps
Vudu 1.0-2.3 Mbps 2.3-4.5 Mbps 4.5-9.0 Mbps

the total number of peer requests as
∑M
j=1 nj = N , where nj represents the population of online

users viewing the video j. Note that there would be no duplicated replicas in the same peer. And

the total number of replicas in the system is
∑M
j=1

∑N
i=1 αij ≤ C ·N , where αij ∈ {0, 1} represents

the replica for video j in the local storage of peer i.

When the client i joins into the system, it requests for a video from the private server, and reports

about its local replication information (i.e. r(i,1), r(i,2), ..., r(i,C)). After the private server receives the

requests from the peers, it will feedback the online peers with available replications as the candidate

partners. Then the client i starts to connect with candidate partners and finally establish ωij ≤ κ

connections as the bandwidth support from the collaborative peers. Therefore, γ − ωij
γ
κ is the

bandwidth support from the cloud infrastructure for view i. Furthermore, Bj =
∑nj
i=1(γ − ωij γκ) is

bandwidth provisioning from cloud service for video j over the whole system.

4.3 Special Case with Bandwidth-Limited Peers

We will begin our analysis with bandwidth-limited peers (BLP) scenario, i.e. BDj ≥ µp. Even

though it is a special case, we will show that this scenario is very prevalent in current real-world

environment.

4.3.1 Problem Formulation

In the cloud-assisted VoD streaming systems, there are two types of resource provisioning cost,

namely bandwidth provisioning cost and storage provisioning cost. Let the price of bandwidth pro-

visioning be PB , then the bandwidth provisioning cost is PB
∑mC

j=1Bj , where Bj is the bandwidth

supported from the cloud infrastructure for the video j. Let the price of storage provisioning be

PS , then the cost for storage provisioning is PS
∑mC

j=1 size(j)
1, where mC presents the number of

1As we assume that all the videos are of same unit size (i.e., size(j) = 1, forj ∈ 1, ..M), the provisioned volume of
storage in the cloud infrastructure is proportional to the number of videos

CHAPTER 4. HYBRID DESIGN FOR LARGE SCALE VOD STREAMING 51

videos provisioned in the cloud infrastructure. Note that PB and PS can be configured according

to the real-world market price (i.e. Amazon EC2 and S3), or customized by the content providers.

And also our cost model is compatible to a traditional peer-to-peer system, in which the storage

provisioning price is considered as PS = 0.

In order to analyze the relationship between bandwidth demand BDj and peer upload bandwidth

µp, we explore the recommended speeds from several popular streaming services in Table 4.2, and

some common residential broadband offerings in Canada in Table 4.1. We can see the bandwidth

consumption greatly increases with the improvement of video quality. Most of peers have limited

upload bandwidth that they can hardly support the normal video playback γ, no mention to BDj =

njγ, for nj ∈ N. Therefore, the special case BLP BDj ≥ µp is actually very prevalent in current

real-world environment.

Consider the assisted peers in the VoD system. ωij is the bandwidth support from the peer

i for the video j. We can have peer assisted bandwidth for video j as
∑N
i=1 ωij

γ
κ in the system.

And
∑M
j=1 ωij ≤ µp constrains that the total upload bandwidth of any peer cannot exceed µp.

Furthermore, |Wi| ≤ C is another constraint that no peer can replicate more than C videos, where

Wi = {ωij |ωij 6= 0, for j = 1, ...M}. Now, we can formulate the cost optimization problem for the

case with bandwidth-limited peers (BLP) as follows:

Min. PB
M∑
j=1

(njγ −
N∑
i=1

ωij
γ
κ) + PS

M∑
j=1

ψj (4.1)

s.t. ωij ≤ κ, ωij ∈ N (4.2)

|Wi| ≤ C (4.3)

njγ ≥ µp ≥
N∑
i=1

ωij
γ
κ ≥ 0 (4.4)

Where ψj =

1 if njγ −
N∑
i=1

ωij
γ
κ > 0

0 else
(4.5)

Eq. 4.1 is the objective function to minimize the total provisioning cost of bandwidth resource and

storage resource. Eq. 4.2 and Eq. 4.3 are the bandwidth constraint and replication constraint for a

single peer, respectively. Eq. 4.4 represents the constraint of bandwidth support from collaborative

peers for each video. In Eq. 4.5, a video needs to be replicated in the cloud storage, unless all the

request demands for this video can be supported by the collaborative peers or the private server.

CHAPTER 4. HYBRID DESIGN FOR LARGE SCALE VOD STREAMING 52

4.3.2 Demand Allocation

With BDj ≥ µp, the bandwidth demand BDj can be quantified according to the minimum number of

assisted peers. We can initialize all the demand in the system as follows:

BDj = mjµ
p + (njγ mod µp), mj = bnjγ/µpc (4.6)

where j ∈ {1, ..M}. Therefore, ∀Bj |j ∈ {1, ..M}, we should have at least dnjγ/µpe peers to support

normal playback of the current nj viewers for video j. We define mj peers with µpmj upload

bandwidth as Block, and the peer with restj = njγ mod µp upload bandwidth as header for video

j. As we assume that the user demands γnj for each video are independent with each other, the

header restj for each video can be considered to be stochastic.

Definition 1. The minimum number of assisted peers to allocate the demand requests for video set

J is Jmin = d
∑
j∈J njγ/µ

pe.

Theorem 4. ∀J ⊆ {1, ...M}, demand requests for video set J can be allocated with minimum

number of collaborative peers iif

Jmin ≥
|J | − 1

C − 1
, C ≥ 2 and |J | ≥ 2 (4.7)

where Jmin ∈ N+ is the minimum number of collaborative peers, C ∈ N+ represents the local

storage capacity of a single peer, and |J | stands for the number of the videos in J .

The proof can be found in Appendix C.

4.3.3 Optimal Solution for BLP

As we mentioned before, γnj > µp is a prevalent phenomenon in the real world scenario. Thus, we

can have Jmin = d
∑
j∈J B

D
j /µ

pe ≥ |J | ≥ (|J | − 1)/(C − 1) with this assumption, as C ≥ 2 is also a

general configuration in most VoD system. Therefore, ∀J ⊆ {1, ...M}, the video set J can be allo-

cated with the minimum number of collaborative peers Jmin. It provides Pareto improvement during

the cloud storage and bandwidth provisioning. In another words, the peer local replication strat-

egy and peer local scheduling strategy can be designed independently. The allocation algorithm is

presented as follows in Algorithm 3.

Theorem 5. The computation complexity of Algorithm 3 Syn-OPT-BLP is O(mlog(n)).

The video set J are selected in increasing order of demands to be replicated in the collaborative

peers. Then, all the videos in J are initialized into Block and Header. With the guarantee from

Theorem 4, the BLP problem can be solved fast with Header to Block combination b← h. Therefore,

in the real world scenario, the limited peer upload bandwidth constraint enables the Syn-OPT-BLP

to find the optimal solution efficiently. And also, we will present this algorithm facilitates the design

of distributed solutions in the later section.

CHAPTER 4. HYBRID DESIGN FOR LARGE SCALE VOD STREAMING 53

Algorithm 3: Optimal solution with bandwidth-limited peers (Syn-OPT-BLP)
1 Video Selection()
2 J = ∅
3 Sort v1 ≤ v2... ≤ vj ... ≤ vm, for j = 1, ...,m
4 while

∑
j∈J vj < nµp do

5 J ← j
6 end
7 for video j ∈ J do
8 mj = bnjγ/µ

pc, restj = njγ mod µp

9 Block ← mj , Header ← restj
10 end
11 Bandwidth Allocation()
12 for hj ∈ Header, j = 1 to |J | do
13 while ∃ bk ∈ Block, Capacity(k) < C do
14 if NBlock

bk←h > NBlock or NHeader
bk←h < NHeader then

15 bk ← hj ; update (Block), (Header); break
16 end
17 end
18 end

4.4 General Case with No Bandwidth Limit

Even though BLP is prevalent and efficient to solve the problem in most real world scenario, it is

still possible that the single peer upload bandwidth µp is huge (e.g. campus network), the video

playback rate γ is low (e.g. minimum 400Kbps for 360P), or the number of viewers is small for most

videos (e.g. high popularity skewness). In these cases, Syn-OPT-BLP is not an optimal solution,

as there are too many Headers to be accommodated by Block. We can utilize Theorem 4 to justify

whether it is available to be solved by Syn-OPT-BLP as the special case problem. Here we will

formulate the general problem, and then present combinational optimization solution.

4.4.1 Problem Formulation

In this section, we formulate the cost optimization problem of the general case with no bandwidth

limit (NBL). As the provisioning cost optimization problem is presented in 4.1, here we propose the

peer uploading optimization problem, which is an equivalent problem with the constant demand. Let

us define the weight of request demand for video j as wj = αjnjγ. The value pj is presented as

follows.

pj =

PBwj if αj < 1

PBwj + PS else
(4.8)

CHAPTER 4. HYBRID DESIGN FOR LARGE SCALE VOD STREAMING 54

Where 0 ≤ α ≤ 1. And we can reformulate the NBL to maximize the peer upload value as follows:

Max.
∑M
j=1

∑N
i=1 pjxij (4.9)

s.t.
∑M
j=1 wjxij ≤ µp (4.10)∑N
i=1 xij ≤ 1 (4.11)∑M
j=1 xij ≤ C (4.12)

4.4.2 Optimal Solution for NBL

Algorithm 4: Optimal Solution with No Bandwidth Limit (Syn-OPT-NBL)
1 Sort v1 ≤ v2... ≤ vj ... ≤ vm, for j = 1, ...,m
2 for k ← 1 to n do
3 for c← 1 to C do
4 O0

k,c = 0; L0
k,c = µp; J0

k,c = ∅
5 end
6 end
7 for video j ∈M do
8 for k = 1 to n do
9 for c = 1 to C do

10 wk,j = αk,jvj ; ok,j = PBαk,jvj + bαk,jcPS

11 if wk,j < Lj−1
k,c−1 then

12 Oj
k,c =Max{Oj−1

k,c , ok,j +Oj−1
k,c−1}

13 update Lj
k,c and Jj

k,c

14 end
15 else
16 Oj

k,c = Oj−1
k,c

17 end
18 end
19 j ← (1− αk,j)vj ; j ← Jj−1

k,c − J
j−1
k,c−1

20 end
21 end
22 return Om

n,C

We will solve this combinational optimization problem with dynamic programming solution. At

the beginning of the optimal algorithm, the video demand is sorted by weight in increasing order.

All the parameters are initialized with j = 0, including the initial optimal value O0
k,c = 0, the available

capacity L0
k,c = µp, and initial video demand set supported by peer J0

k,c = ∅. As the video demand

(i.e. bandwidth) is fractional in this literature, we can consider the upload capacity of each peer as a

utility for 1× µp, ...n× µp. The total upload bandwidth cannot surpass µp for each peer. Meanwhile,

the limited local replication C is another constraint, which is iteratively increased for each peer.

0 ≤ αk,j ≤ 1 stands for the fractional part of video demand j supported by peer k, and wk,j is the

weight. ok,j = PBαk,jnj +bαk,jcPS shows the two-part value, one part is proportional to the weight

CHAPTER 4. HYBRID DESIGN FOR LARGE SCALE VOD STREAMING 55

1 × 5 2 × 5

j=0.5

j=0.5

j=1

j=1

j=2

j=2

j=2

j=5

C=1 C=2 C=3 C=1 C=2 C=3

(0.5)

V=1.5

(0.5,0)

V=1.5

(0.5,0,0)

V=1.5

(0.5,0,0)

(0)

V=1.5

(0.5,0,0)

(0,0)

V=1.5

(0.5,0,0)

(0,0,0)

V=1.5

(0.5)

V=1.5

(0.5,0.5)

V=3

(0.5,0.5,0)

V=3

(0.5,0.5,0)

(0)

V=3

(0.5,0.5,0)

(0,0)

V=3

(0.5,0.5,0)

(0,0,0)

V=3

(1)

V=2

(0.5,1)

V=3.5
(0.5,0.5,1)

V=5

(0.5,0.5,1)

(0)

V=5

(0.5,0.5,1)

(0,0)

V=5

(0.5,0.5,1)

(0,0,0)

V=5

(1)

V=2
(1,1)

V=4

(2)

V=3

(2)

V=3

(2)

V=3

(5)

V=6

(1,2)

V=5

(2,2)

V=6

(2,2)

V=6

(2,2)

V=6

(0.5,1,1)

V=5.5

(0.5,1,1)

(0.5)

V=6

(0.5,1,1)

(0.5,0)

V=6

(0.5,1,1)

(0.5,0,0)

V=6

(2,1,1)

V=7

(2,1,1)

(0.5)

V=8.5

(2,1,1)

(0.5,0.5)

V=10

(2,1,1)

(0.5,0.5,0)

V=10

(2,2,1)

V=8

(2,2,1)

(1)

V=10

(2,2,1)

(1,0.5)

V=11.5

(2,2,1)

(0.5,0.5,1)

V=13
(2,2,1)

V=8

(2,2,1)

(2)

V=11

(2,2,1)

(1,2)

V=13
(2,2,1)

V=8

(2,2,1)

(2,1,0.5)

V=14.5
(2,2,1)

(5)

V=14

(2,2,1)

(2,3)

V=14

(2,2,1)

(1,2,2)

V=15

0

0

0

0.5

0.5

1

0

0

Figure 4.4: Steps of optimal solution for the illustrative example

wk,j and the other part is PB only when αk,j = 1. Without violating the local capacity constraint,

Ojk,c = Max{Oj−1
k,c , ok,j + Oj−1

u,c−1} will decide whether j will be allocated or how much will be

allocated. After the iteration of C, the rest of videos with the fractional demand j and the replaced

video in line 20 and 21 will become the input for local replication of the next peer. If this is the last

peer, these video demand will be rejected and video demand j + 1 will start the new circle.

In Fig. 4.4, we present the implementation of this algorithm for the optimization solution of

the illustrative example given in Fig. 4.2. The limited number of peers is 2, and each peer is

capable to support 3 different videos without exceeding 5 upload bandwidth units. Let the value

PB = PS = 1. Because of the optimal substructure, the optimized value is calculated according to

Max{Oj−1
k,c , ok,j + Oj−1

k,c−1}, and the corresponding videos are replicated in the peer local storage.

The black arrows represent the transferred video from the 1st peer to the 2nd peer. The red arrows

denote the track of the optimal replication result. Note that one of the video demand 2 supported by

the 2nd peer is the fraction of video demand j = 5. And also, we can see that the optimized value

equals to the result provided by the strategy (b) in the illustrative example of Fig. 4.2.

Theorem 6. The complexity of Algorithm 4 Syn-OPT-NBL is O(nCm). It runs in pseudo-polynomial

time, which is exponential in the length of the input C.

Even though the Syn-OPT-NBL for the general case problem NBL has the pseudo-polynomial

complexity O(nCm), the peer local capacity is usually limited (e.g. the peer local storage for PPlive

is 1 GB). Thus, it is still practical and efficient when there are only 2 or 3 replications in the peer

local storage.

CHAPTER 4. HYBRID DESIGN FOR LARGE SCALE VOD STREAMING 56

4.5 Scalable and Distributed Implementation

The centralized optimal solution is practical in the small scale network, in which the collaborative

peers can be controlled by the central server efficiently. However, the centralized algorithm is chal-

lenged as the system scale grows with millions of peers and thousands of videos. It will suffer from

the high computation cost, and huge overhead in the large scale systems.

In this section, we present the distributed solution, which contains two components, namely the

Syn-Rarest Scheduling Strategy and the Syn-Adaptive Replication Strategy. Both the Syn-Rarest

and Syn-Adaptive can be implemented independently, and are compatible to other scheduling/repli-

cation strategies. Only the records of replication request information from peers are needed for the

scheduling strategy. Therefore, the overhead is minor in the system.

4.5.1 Syn-Rarest Scheduling Strategy

The scheduling strategy refers to the solution of the candidate selection. Generally, there is more

than one candidate who has the same video replication, and the partners are selected from these

candidates to support their upload bandwidth. The principle of Syn-Rarest design is simple and

intuitive. It can be implemented as follows.

When a peer joins in the system, the central server feedbacks a group of candidate peers Gj
according to the request demand of video j. All the peers in the system record the requested times

of the local replications. Thus, we can define the relative request ratio λjg for g ∈ Gj as follows:

λjg =
Requests for replication j

Total requests received by peer g
(4.13)

The probability is pjg = 1

λjg
/(
∑
ĝ∈Gj

1

λjĝ
) to be selected for the candidate g ∈ Gj . Thus, the Syn-

Rarest tends to reserve the bandwidth for the unpopular videos in the local peers. When both the

unpopular replicas and popular replicas are replicated in a single peer, the upload bandwidth of the

peer will support the requests for the unpopular replicas in priority.

4.5.2 Syn-Adaptive Replication Strategy

As the peer local capacity is limited, one of the replications must be replaced, when the new video

comes. Note that we only consider the passive replication strategy, which means the peers only

replicate the watched video in their local storage. Such assumption is common in the former litera-

tures [53] [64].

Based on passive replication, the replication decision is made according to the request ratio λ of

local replications and upload bandwidth u. Therefore, only the local information is necessary, and it

will not lead to further overhead. Consider the upload bandwidth of peer i is ui, it also has c video

CHAPTER 4. HYBRID DESIGN FOR LARGE SCALE VOD STREAMING 57

replications sorted as λ1 < λ2, ...λc. If ui < µp, the upload bandwidth is not efficiently utilized, and

replication will be implemented from the top (i.e. λ1). If ui = µp and the peer still receives the high

dense of requests, the replication will be performed from the bottom (i.e. λc). Otherwise, if ui = µp

and the peers receives moderate requests, the replication will be replaced from the middle. In

another word, the peer local replications are selected adaptively to balance the replication requests

and the upload bandwidth.

4.6 Performance Evaluation

In this section, we examine the performance of the proposed strategies through extensive simula-

tions. The scheduling strategy and the replication strategy are evaluated respectively. The experi-

ments are implemented under the Zipf distribution. We explore diverse factors such as the number

of online peers N , the popularity skewness parameter s, the number of replications C, and the price

ratio PS/PB . In this section, we present the results based on the following typical configurations,

which are mainly adopted from [44] [34] [53]. Consider the number of videos is M = 1000. The

default number of online viewers (which also equals to the number of the collaborative peers) is

N = 1500, and the default video replication capacity is C = 3. According to the previous study

[45] of movie popularity models, it is suggested that if a Zipf distribution is used, then in the most

practical systems, the value of s is in the range of 0.271 ≤ s ≤ 1. In our configuration, we consider

the default parameter s = 0.8. According to [65], s = 0.8 results in the peak server load for the

proportional replication strategy. The cumulative video popularity curves for Zipf distribution with

different s are plotted in Fig. 4.5(a).

4.6.1 Evaluation of the Scheduling Strategy

In order to evaluate the performance of scheduling strategy, we adopt the FIFO (First in First out) as

the default replication strategy, and compare the performance of Syn-Rarest with Random Strategy

and Greedy Strategy. The Greedy Strategy is self-motivated for the peer itself. The candidate

with the highest request ratio will be selected, in order to minimize the possibility of peer upload

bandwidth to be wasted. According to Fig. 4.5(b) and 4.5(c), the self-motivated strategy does not

reduce the global bandwidth provisioning, as it sacrifices the bandwidth support to the unpopular

replications, which are perish in the proportional distribution. From Fig. 4.5(c), we can see the

storage provisioning in Syn-Rarest Strategy is scalable to the growth of online peers. And also it

does not increase the bandwidth provisioning, as shown in Fig. 4.5(b).

CHAPTER 4. HYBRID DESIGN FOR LARGE SCALE VOD STREAMING 58

1 10 100 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Index of videos

C
D

F

s=0.3
s=0.5
s=0.8
s=1.2
s=1.5

(a) Zipf distribution

500 1000 1500 2000 2500 3000
100

150

200

250

300

350

400

450

Number of Online Peers

B
an

dw
id

th
 P

ro
vi

si
on

in
g

Greedy
Random
Syn−Rarest

(b) BP with online peer scale

500 1000 1500 2000 2500 3000
80

100

120

140

160

180

200

220

240

260

280

Number of Online Peers

S
to

ra
ge

 P
ro

vi
si

on
in

g

Greedy
Random
Syn−Rarest

(c) SP with online peer scale

0.2 0.4 0.6 0.8 1 1.2
160

180

200

220

240

260

280

300

320

340

360

Parameter s for Zipf Distribution

B
an

dw
id

th
 P

ro
vi

si
on

in
g

Greedy
Random
Syn−Rarest

(d) BP with different skewness

0.2 0.4 0.6 0.8 1 1.2
100

120

140

160

180

200

220

240

Parameter s for Zipf Distribution

S
to

ra
ge

 P
ro

vi
si

on
in

g

Greedy
Random
Syn−Rarest

(e) SP with different skewness

0 10 100 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank of Videos

C
D

F
 fo

r
B

an
dw

id
th

 S
up

po
rt

Greedy
Random
Syn−Rarest

(f) CDF for scheduling strategies

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

100

200

300

400

500

600

700

Peer Local Capacity

B
an

dw
id

th
 P

ro
vi

si
on

in
g

LFR
FIFO
Syn−Adaptive

(g) BP with replication variation

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

50

100

150

200

250

300

350

Peer Local Capacity

S
to

ra
ge

 P
ro

vi
si

on
in

g

LFR
FIFO
Syn−Adaptive

(h) SP with replication variation

0 10 100 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rand of Videos

C
D

F

LFR
FIFO
Syn−Adaptive

(i) CDF for replication strategies

1800 2000 2200 2400 2600 2800 3000
0

200

400

600

800

1000

1200

Number of Requests

B
an

dw
id

th
 P

ro
vi

si
on

in
g

Benchmark
Syn−Rarest+FIFO
SynPAC

(j) BP with increasing requests

1800 2000 2200 2400 2600 2800 3000
50

100

150

200

250

300

350

400

450

500

550

Number of Requests

S
to

ra
ge

 P
ro

vi
si

on
in

g

Benchmark
Syn−Rarest+FIFO
SynPAC

(k) SP with increasing requests

0 0.5 1 1.5 2 2.5 3
800

1000

1200

1400

1600

1800

2000

2200

2400

Storage Price/Bandwidth Price
T

ot
al

 P
ro

vi
si

on
in

g
C

os
t

OPT
SynPAC
Benchmark
Syn−Rarest+FIFO

(l) Total cost

Figure 4.5: Performance comparison (BP is bandwidth provisioning for short, and SP is storage

provisioning for short.)

Further, we check the impact of Zipf distribution parameter s. From Fig. 4.5(d) and 4.5(e), we

can see both the Random Strategy and Syn-Rarest Strategy accommodate well with the variation

of the video popularity skewness in the system. Specially, the storage provisioning from Syn-Rarest

Strategy reduces fast as the video popularity becomes more skewed. We believe that this is be-

cause the request demands concentrate on several videos with high popularity. Therefore, even

though there exists inevitable bandwidth provisioning, the number of videos needs to be provisioned

is small. This phenomenon is especially obvious for Syn-Rarest Strategy. In Fig. 4.5(d) and 4.5(e),

from s = 0.2 to s = 1.2 the bandwidth provisioning reduces by 40%, but the storage provisioning

reduces by 45%. When s = 0.8, the self-motivated strategy reaches the peak provisioning. While

CHAPTER 4. HYBRID DESIGN FOR LARGE SCALE VOD STREAMING 59

both the bandwidth and storage provisioning for Syn-Rarest and Random Strategy decreases as

the skewness increases. And in Fig. 4.5(f), it shows almost 20% bandwidth support is for the top

10 videos under the Syn-Rarest Strategy. It reveals that the low storage provisioning in Syn-Rarest

is because of the reduced bandwidth support for the popular videos.

4.6.2 Evaluation of the Replication Strategy

In order to compare the replication strategies in the system, we adopt the Syn-Rarest as the default

scheduling strategy. We compare the Syn-Adaptive with FIFO (First in First out) and LFR (Least

Frequently Request)[65]. We present the bandwidth provisioning and storage provisioning with the

change of local storage capacity respectively in Fig. 4.5(g) and 4.5(h). We can see that both the

FIFO Strategy and Syn-Adaptive Strategy can scale well with the increase of local replication ca-

pacity. Specially, comparing with LFR and FIFO, Syn-Adaptive can reduce extra 15% of the storage

provisioning in cloud resource. From Fig. 4.5(i) we can see 17% total bandwidth is provisioned in

Syn-Adaptive to support the hottest video, which accounts for 6.5% requests demand in the system.

4.6.3 Evaluation of SynPAC

In order to evaluate the performance of SynPAC distributed solution, we deploy the FIFO Replica-

tion Strategy and Random Scheduling Strategy together as the Benchmark Strategy. In order to

analyze an enclosed environment, all the experiments are based on the assumption that all the

online viewers act as the suppliers, and the upload bandwidth is generally equal to the streaming

bandwidth. However, as we known, in the real world peer assisted streaming system, there exist

great amount of free riders, who are not willing to contribute their upload bandwidth, or the VIP

users who do not need to provide their upload resource. Therefore, in Fig. 4.5(j) and Fig. 4.5(k),

given the constant number (1000) of assisted peers, we increase the requests number and check

the evolution process of bandwidth provisioning and storage provisioning. In Fig. 4.5(j), the 6.7%

bandwidth provisioning gap diminishes fast as the number of requests increase. However, in Fig.

4.5(k), the gain of storage provisioning can keep at about 30% for a long range. The reason is that

when the request demand keeps on increasing, all these strategies tend to approach the minimum

of bandwidth provisioning. Even though Syn-PAC distributed solution approaches to the minimum

slowly, it still efficiently serves the unpopular videos in priority to reduce the unnecessary storage

provisioning. Though the Random and FIFO strategies approach to the minimum of bandwidth pro-

visioning fast, no further optimization process can be achieved. All the requests demand have to be

redirected to the cloud infrastructure directly. Thus, our proposed solution is sustainable to save the

cost when the demand increase, and it can achieve the global optimization efficiently in the large

scale environment.

CHAPTER 4. HYBRID DESIGN FOR LARGE SCALE VOD STREAMING 60

In the last experiment, we have the following configuration. Considering 2000 peers, each one

has 6 local replications, and can support 2 video streaming requests simultaneously. Given 5000

video requests with skewness s = 0.8, we evaluate the impact of PS/PB in Fig. 4.5(i). We can

see that the total cost of our proposed distributed solution is expensive without considering the

storage provisioning cost. When PS/PB = 1, the cost saving is obvious, and keeps increasing with

the improvement of PS/PB . The gradient is proportional to the size of storage provisioning. Our

optimal solution keeps a very stable total cost, as the cloud service only needs to support several

top videos.

4.7 Summary

In this chapter, we revisited the cost optimization problem in the hybrid cloud P2P environment. We

demonstrated that, under various peer demand requests, the cloud provisioning would suffer from

poor performance or high cost to maintain great amount of video replications. We are motivated to

remodel the combinational cost problem in this new context. We provided the optimal solution for

both the special case and the general case problems. The centralized solution and the distributed

solution were developed to achieve the cost-effective cloud provisioning. We further examined the

performance of our solution through extensive experiments.

Chapter 5

Conclusion and Future Discussion

In this thesis, we explored the cloud-assisted strategies for the large scale video streaming systems,

and presented it as an elastic resource provisioning solution, a cost-effective geo-distributed service

solution, and a compatible hybrid solution, respectively.

5.1 Summary of the Contributions

• As the elastic scaling solution, the cloud computing is utilized to accommodate the dynamic

demand in the P2P VoD systems during the video popularity churn, especially for the popu-

larity decay. We developed a mathematical model to trace the evolution of peer upload and

replication during the population decays. Our model captured peer behaviors with common

data replication and scheduling strategies in state-of-the-art peer-to-peer VoD systems. It re-

vealed that, during a sharp population decay, the peers local storage could not be effectively

utilized for upload, and the imperfect content replication with slow response would inevitably

result in an escalating server load. The proposed prediction model was validated through both

the real world trace and the simulated result. It facilitated the design of a flexible cloud based

provisioning strategy to serve highly time-varying demands.

• As the geo-distributed solution, the cloud computing is deployed to process the live feeds col-

lected from the distributed crowdsourcers, and then delivery the live channels for the viewers

in the global scale. We built a prototype of crowdsourced live streaming platform with Amazon

Cloud Service and Planetlab nodes. Using the real world trace, we analyzed the influence of

cloud service provisioning to the streaming quality, and it further motivated the design of cloud

leasing strategy to optimize the cloud site allocation for geo-distributed live crowdsourcers. We

also investigated the influence of the server provisioning with diverse capacities and pricing

61

CHAPTER 5. CONCLUSION AND FUTURE DISCUSSION 62

strategies, which further facilitated the bargaining towards resource provisioning in the cloud

service.

• As the hybrid solution, the cloud computing is jointly designed with the peer cooperative strat-

egy toward highly scalable VoD service. We revisited the cost optimization problem the hybrid

cloud P2P environment. We demonstrated that, under various peer demand requests, the

cloud provisioning would suffer from poor performance or high cost to maintain great amount

of video replications. We took the initiative to remodel the combinational cost problem in this

new context. We proposed the optimal solution for both the special case and the general case

problems. Further, a distributed strategy was developed for the peers with local information.

We examined the performance of our solution through extensive experiments, and compared

it with stat-of-art solutions.

5.2 Future Work Discussion

5.2.1 Peer-to-Peer VoD Systems

In the Peer-to-Peer VoD systems our proposed two group model can be potentially extended to a

multiple group model for the predictive cloud provisioning. If we limit the group size to one, there

is only one video in each group with a specific popularity. Take one step further, if we consider

this problem in the chunk level, each chunk will have its own request probability and replication

probability. Although the model can be more accurate because of the granularity, the computa-

tion complexity would grow exponentially as the number of group increases. Thus, there are NM

chunks in the system. Suppose C chunks can be replicated in the local storage of one single peer.

Therefore, there would be MN !
(MN−C)!C! possible combinations of chunks to be replicated in a single

peer. Even though the two group model is a special case for the multiple group model, it is efficient

to capture the evolution of the system and accurately predict the server load.

5.2.2 Crowdsourced Live Streaming Systems

In order to efficiently provision the server instances among the geo-distributed cloud sites, the

accurate prediction of the coming live feeds from each area is a necessary step. We believe that the

dynamic geo-distributed crowdsourcers are predictable, due to following two reasons. First, there

are major two types of live sources, namely, the scheduled sources and non-scheduled sources.

The scheduled sources mean the crowdsourcers follow some social event during a certain time,

such as presidential election, or football match. Therefore, this type of live sources is easy to

predict. Second, as to the non-scheduled sources, the crowdsourcers can start their live streams

arbitrarily. While, the time-varying live sources usually relate to the dynamic viewers demand, since

CHAPTER 5. CONCLUSION AND FUTURE DISCUSSION 63

the crowdsourcers are motivated to get more subscribers as a reward. Therefore, they tend to

broadcast in a fixed time every day, or choose a time when a peak number of viewers can be

achieved. This behavior of crowdsourcers is evident in some modern crowdsourced live streaming

platform, such as twitchtv. We can consider it as an interesting direction in our future work.

Appendix A

Proof of Lemma 1

Proof. According to the upload ratio η in the single peer scenario, we have

ηA = (
a1ρ1

a1ρ1 + b1ρ2
+

a2ρ1

a1ρ1 + b2ρ2
, ...,

anρ1

anρ1 + bnρ2
)/n

where ai and bi represent the numbers of type A replicas and type B replicas in the local storage

of peer i, respectively, and we have a1 + a2+, ..., an = m1 and ai + bi = c for i = 1, 2, ..., n. The

lagrange multipliers can be used to find the local maximum (ρ1 > ρ2) or minimum (ρ1 < ρ2) of the

average upload ratio. The problem can be expressed as follows:

Max. f(a1, ..an; b1, ..bn) =

M∑
i=1

aiρ1

aiρ1 + biρ2
(A.1)

s.t. ai + bi = c, i ∈ 1, 2, ..n

a1 + a2 + a3...+ an = m1

where c ≥ 1 is the local storage capacity of each peer. Let φ1 = ai+ bi− c and φ2 = a1 +a2 +a3...+

an −m1, and consider the Lagrangian L = f + λ1φ1 + λ2φ2, we have:

Lai = biρ1ρ2
(a1ρ1+b1ρ2)2 + λ1 + λ2 = 0

Lbi = − aiρ1ρ2
(a1ρ1+b1ρ2)2 + λ1 = 0

φ1 = ai + bi − c = 0

φ2 = a1 + a2 + a3...+ an −m1 = 0

(A.2)

Scenario(i): If ai 6= 0 and bi 6= 0, we have cλ1

ai
+ λ2 = 0. Therefore, ai is constant for i =

1, 2, 3, ..., n, which implies that a1 = a2 = a3, ... = an = m1

n and b1 = b2 = b3, ... = bn = m2

n is

the unique solution to these constraints. When ρ1 > ρ2, m1ρ1
m1ρ1+m2ρ2

provides the maximum for type

A replicas upload ratio ηA, and accordingly m2ρ2
m1ρ1+m2ρ2

represents the minimum for type B replicas

64

APPENDIX A. PROOF OF LEMMA 1 65

upload ratio ηB , given that the average upload ratio satisfies ηA+ηB = 1. And vice versa for ρ1 < ρ2.

For ρ1 = ρ2, the upload ratio only depends on the number of the replicas m1

n×c = m1

m1+m2
.

Scenario(ii): If ai = 0 or bi = 0, each peers χ1, χ2, ..., χn only cache replica A or B. Given

that replication capacity c and the upload capacity u are constant for each peer, the upload ratios

of replica A or B are respectively proportional to the number of replicas, which implies that ηA =
m1

m1+m2
and ηB = m2

m1+m2
.

Appendix B

Proof of Theorem 1

Proof. Consider an Independent Reference Model (IRM) as the arrival model [23], which describes

the request arrivals Rt = r1, r2, r3, ..., as a sequence of independent, identically distributed random

variables with the probability distribution:

P (rt = i) = ρi, for i = 1, 2, ...n, with
∑n

i=1
ρi = 1 (B.1)

where the items are indexed as 1, 2, ...n. A configuration of R is a vector K = k1, k2, ...kn with the

specific number of requests, kj , issued for item j in this sequence (
∑n
j=1 kj = t).

To compute the eviction probability of item χ, we define χ̄ as the item set without χ. The prob-

ability for a specific configuration K of the R requests among the items χ̄ is given by a multinomial

distribution as follows:

P (χ̄,K, t) =
t!∏
j∈χ̄ kj

∏
j∈χ̄

(ρj)
k
j (B.2)

Given t ≥ C, we have

∑∞

t=C
P (χ̄,K, t) =

(
∑
j∈χ̄ ρj)

C

1−
∑
j∈χ̄ ρj

(B.3)

Eq. B.3 is the probability that item χ is not requested during Rt, but we also need to make sure

that at least C − 1 other items are requested. This will then cause item χ to be evicted by the LRU

replication strategy.

According to [50], when 1 � C � n, the eviction probability ẽ(χ) can be approximated as

follows:

ẽ(χ) ' (1− ρχ)C (B.4)

66

Appendix C

Proof of Theorem 3

Proof. If C = 1, the local storage of peers is only capable of 1 replica for upload. If J = 1, there

is only one video for bandwidth support from the assisted peers. Therefore, in both scenarios, no

bandwidth allocation strategy is available or necessary.

When C ≥ 2 and |J | ≥ 2, ∀J ⊆ {1, ...M}, we have the total bandwidth demand
∑
j∈J njγ =∑

j∈J B
D
j . According to Eq. 4.6, we can further have the minimum number of assisted peers for

video set J as follows:

Jmin = d
∑

j∈J
BDj /µ

pe =
∑

j∈J
(mj + drestj

µp
e) (C.1)

Therefore, if the number of the assisted peer can be minimized from
∑
j∈JdBDj /µpe to Jmin =

d
∑
j∈J B

D
j /µ

pe, there exits at least one feasible solution for the bandwidth optimal allocation. During

the minimization process, (C−1)Jminµ
p original bandwidth support can be accommodated with the

limited storage capacity C, as there is already 1 replica in the peer local storage. And according to

Definition 1, the bandwidth gap should be no more than µp:

|J |µp − (C − 1)Jminµ
p ≤ µp (C.2)

Therefore, we can have Eq. 4.7 to justify whether video set J have the feasible solution for the

optimal allocation.

67

Bibliography

[1] Amazon Cloud Service. http://aws.amazon.com/. 6, 42, 46

[2] Microsoft Azure. http://azure.microsoft.com/. 42

[3] V. K. Adhikari, Y. Guo, F. Hao, M. Varvello, V. Hilt, M. Steiner, and Z. Zhang. Unreeling Netflix:
Understanding and Improving Multi-CDN Movie Delivery. In IEEE INFOCOM, 2012. 1, 5

[4] V. K. Adhikari, S. Jain, Y. Chen, and Z. Zhang. Vivisecting YouTube: An Active Measurement
Study. In IEEE INFOCOM, 2012. 1

[5] V. Aggarwal, V. Gopalakrishnan, R. Jana, K. K. Ramakrishnan, and V. A. Vaishampayan. Op-
timizing Cloud Resources for Delivering IPTV Services Through Virtualization. IEEE Transac-
tions on Multimedia, 15(4):789–801, 2013. 7

[6] A. Alasaad, K. Shafiee, H. Behairy, and V. C. M. Leung. Innovative Schemes for Resource
Allocation in the Cloud for Media Streaming Applications. IEEE Transactions on Parallel and
Distributed Systems, 35(6):1 – 14, 2014. 7

[7] M. Alicherry and T. V. Lakshman. Network Aware Resource Allocation in Distributed Clouds.
In IEEE INFOCOM, 2012. 8

[8] M. Alicherry and T.V. Lakshman. Optimizing Data Access Latencies in Cloud Systems by
Intelligent Virtual Machine Placement. In IEEE INFOCOM, 2013. 8

[9] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A. Konwinski, G. Lee, D.A. Patterson,
A. Rabkin, I. Stoica, and M. Zaharia. Above the Clouds: A Berkeley View of Cloud Computing.
In Tech. Rep. UCB/EECS-2009-28, 2009. 5, 8

[10] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Towards Predictable Datacenter Net-
works. In ACM SIGCOMM, 2011. 7

[11] L. Chang and J. Pan. Towards the Optimal Caching Strategies of Peer-Assisted VoD Systems
with HD Channels. In IEEE ICNP, 2012. 13, 14, 15, 25, 49

[12] N.M. Chowdhury and R. Boutaba. A Survey of Network Virtualization. ELSEVIER Journal on
Computer Networks, 54(8):862–876, 2010. 5

[13] L. D. Cicco, S. Mascolo, and D. Calamita. A Resource Allocation Controller for Cloud-based
Adaptive Video Streaming. In IEEE ICC, 2013. 7

[14] M. Felemban, S. Basalamah, and A. Ghafoor. A Distributed Cloud Architecture for Mobile
Multimedia Services. IEEE Network, 27(5):20 – 27, 2013. 8

68

BIBLIOGRAPHY 69

[15] Y. Feng, B. Li, and B. Li. Bargaining Towards Maximized Resource Utilization in Video Stream-
ing Datacenters. In IEEE INFOCOM, 2012. 6

[16] F. Figueiredo, F. Benevenuto, and J. Almeida. The Tube over Time: Characterizing Popularity
Growth of YouTube Videos. In ACM WSDM, 2011. 3, 11

[17] H. N. Gabow and E. W. Myers. Finding All Spanning Trees of Directed and Undirected Graphs.
SIAM Journal on Computing, 7(3):280–287, 1978. 39

[18] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and J. Zahorjan. Measurement,
Modeling, and Analysis of a Peer-to-Peer FileSharing Workload. In ACM SOSP, 2003. 25

[19] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and Y. Zhang. SecondNet: a Data
Center Network Virtualization Architecture with Bandwidth Guarantees. In ACM CONEXT,
2010. 7

[20] C. Huang, J. Li, and K.W. Ross. Can Internet Video-on-Demand Be Profitable? In IEEE
SIGCOMM, 2007. 2

[21] Y. Huang, T. Fu, DM. Chiu, J. Lui, and C. Huang. Challenges, Design and Analysis of a Large-
Scale P2P-VoD System. In IEEE SIGCOMM, 2008. 2, 3, 16, 23

[22] S. Kapoor and H. Ramesh. An Algorithm for Enumerating All Spanning Trees of a Directed
Graph. Springer Algorithmica, 27(2):120–130, 2000. 39

[23] L. Kleinrock. Queueing Systems, Volume 2: Computer Applications. Wiley, 1976. 66

[24] C. Lai, H. Chao, Y. Lai, and J. Wan. Cloud-assisted Real-time Transrating for HTTP Live
Streaming. IEEE Wireless Communications, 20(3):62 – 70, 2013. 8

[25] C. Lai, H. Wang, H. Chao, and G. Nan. A Network and Device Aware QoS Approach for
Cloud-Based Mobile Streaming. IEEE Transactions on Multimedia, 15(4):747 – 757, 2013. 7

[26] B. Li, G. Y. Keung, S. Xie, F. Liu, Y. Sun, and H. Yin. An Empirical Study of Flash Crowd
Dynamics in a P2P-Based Live Video Streaming System. In IEEE GLOBECOM, 2008. 3

[27] H. Li, L. Zhong, J. Liu, B. Li, and K. Xu. Cost-Effective Partial Migration of VoD Services to
Content Clouds. In IEEE CLOUD, 2011. 3, 11

[28] Z. Li, Y. Huang, G. Liu, and Y. Dai. CloudTracker: Accelerating Internet Content Distribution by
Bridging Cloud Servers and Peer Swarms. In ACM Multimedia (Doctoral Symposium), 2011.
46, 49

[29] Z. Li, T. Zhang, Y. Huang, Z. Zhang, and Y. Dai. Maximizing the Bandwidth Multiplier Effect for
Hybrid Cloud-P2P Content Distribution. In IEEE IWQOS, 2012. 1, 9

[30] C. Lin, P. Hsiu, and C. Hsieh. Dynamic Backlight Scaling Optimization: A Cloud-Based Energy-
Saving Service for Mobile Streaming Applications. IEEE Systems Journal, 63(2):335 – 348,
2014. 6

[31] C. Liu, I. Bouazizi, and M. Gabbouj. Rate Adaptation for Adaptive HTTP Streaming. In ACM
Multimedia Systems, 2011. 4, 31

BIBLIOGRAPHY 70

[32] F. Liu, B. Li, L. Zhong, B. Li, H. Jin, and X. Liao. Flash Crowd in P2P Live Streaming Sys-
tems: Fundamental Characteristics and Design Implications. IEEE Transactions on Parallel
and Distributed Systems, 23(7):1227–1239, 2012. 2, 3, 14, 16, 25

[33] F. Liu, B. Li, L. Zhong, B. Li, and D. Niu. How P2P Streaming Systems Scale Over Time Under
a Flash Crowd? In ACM IPTPS, 2009. 3, 14

[34] F. Liu, S. Shen, B. Li, B. Li, H. Yin, and S. Li. Novasky: Cinematic-Quality VoD in a P2P Storage
Cloud. In IEEE INFOCOM, 2011. 9, 46, 49, 57

[35] J. Liu, S. G. Rao, B. Li, and H. Zhang. Opportunities and Challenges of Peer-to-Peer Internet
Video Broadcast. Proceedings of the IEEE, 96(1):11–24, 2008. 1, 2

[36] H. Ma, B. Seo, and R. Zimmermann. Dynamic Scheduling on Video Transcoding for MPEG
DASH in the Cloud Environment. In ACM MMSYS, 2014. 8

[37] S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, and A. Ghalsasi. Cloud Computing: the Busi-
ness Perspective. ELSEVIER Journal on Decision Support Systems, 51(1):176–189, 2011.
5

[38] G. Nan, Z. Mao, M. Yu, M. Li, H. Wang, and Y. Zhang. Stackelberg Game for Bandwidth
Allocation in Cloud-Based Wireless Live-Streaming Social Networks. IEEE Systems Journal,
8(1):256 – 267, 2014. 6

[39] D. Niu, C. Feng, and B. Li. A Theory of Cloud Bandwidth Pricing for Video-on-Demand
Providers. In IEEE INFOCOM, 2012. 7

[40] D. Niu, Z. Liu, B. Li, and S. Zhao. Demand Forecast and Performance Prediction in Peer-
Assisted On-Demand Streaming Systems. In IEEE INFOCOM, 2011. 23, 28

[41] D. Niu, H. Xu, B. Li, and S. Zhao. Quality-Assured Cloud Bandwidth Auto-Scaling for Video-
on-Demand Applications. In IEEE INFOCOM, 2012. 7

[42] A. H. Payberah, H. Kavalionak, V. Kumaresan, A. Montresor, and S. Haridi. CLive: Cloud-
Assisted P2P Live Streaming. In IEEE P2P, 2012. 9

[43] P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha, and M. Satyanarayanan. Scalable Crowd-
Sourcing of Video from Mobile Devices. In ACM MobiSys, 2013. 3

[44] Y. Sun, F. Liu, B. Li, B. Li, and X. Zhang. FS2You: Peer-Assisted Semi-Persistent Online
Storage at a Large Scale. IEEE Transaction on Parallel and Distributed Systems, 21(10):1442–
1457, 2010. 57

[45] N. Venkatasubramanian and S. Ramanathan. Load Management in Distributed Video Servers.
In IEEE ICDCS, 1997. 57

[46] F. Wang, J. Liu, and M. Chen. CALMS: Migration towards Cloud-Assisted Live Media Stream-
ing. In IEEE INFOCOM, 2012. 2, 8, 9, 23, 27, 32, 33

[47] X. Wang, M. Chen, T. T. Kwon, L. Yang, and V. C. M. Leung. AMES-Cloud: A Framework
of Adaptive Mobile Video Streaming and Efficient Social Video Sharing in the Clouds. IEEE
Transactions on Multimedia, 15(4):811 – 820, 2013. 6, 7

BIBLIOGRAPHY 71

[48] X. Wang, T. T. Kwon, Y. Choi, H. Wang, and J. Liu. Cloud-assisted Adaptive Video Stream-
ing And Social-aware Video Prefetching For Mobile Users. IEEE Wireless Communications,
20(3):72 – 79, 2013. 7

[49] C. Wu, K. Chen, Y. Chang, and C. Lei. Crowdsourcing Multimedia QoE Evaluation:A Trusted
Framework. IEEE Transactions on Multimedia, 15(5):1121–1137, 2013. 3

[50] C. Wu, B. Li, and S. Zhao. On Dynamic Server Provisioning in Multichannel P2P Live Stream-
ing. IEEE/ACM Transactions on Networking, 19(5):1317–1330, 2011. 49, 66

[51] D. Wu, Y. Liu, and K. W. Ross. Queuing Network Models for Multi-Channel P2P Live Streaming
Systems. In IEEE INFOCOM, 2009. 14

[52] J. Wu and B. Li. Keep Cache Replacement Simple in Peer-Assisted VoD Systems. In IEEE
INFOCOM, 2009. 1, 2

[53] W. Wu and J. Lui. Exploring the Optimal Replication Strategy in P2P-VoD Systems: Charac-
terization and Evaluation. In IEEE INFOCOM, 2011. 3, 13, 15, 20, 49, 56, 57

[54] Y. Wu, C. Wu, B. Li, X. Qiu, and F.C.M. Lau. CloudMedia: When Cloud on Demand Meets
Video on Demand. In IEEE ICDCS, 2011. 14, 23, 46, 49

[55] Y. Wu, C. Wu, B. Li, L. Zhang, Z. Li, and F.C.M. L. Scaling Social Media Applications into
Geo-Distributed Clouds. In IEEE INFOCOM, 2012. 7, 31

[56] H. Xu and B. Li. Joint Request Mapping and Response Routing for Geo-distributed Cloud
Services. In IEEE INFOCOM, 2013. 8

[57] H. Yin, X. Liu, T. Zhan, V. Sekar, F. Qiu, C. Lin, H. Zhang, and B. Li. Design and Deployment
of a Hybrid CDN-P2P System for Live Video Streaming: Experiences with LiveSky. In ACM
Multimedia, 2009. 3

[58] M. R. Zakerinasab and M. Wang. A Cloud-Assisted Energy-Efficient Video Streaming System
for Smartphones. In IEEE/ACM IWQoS, 2013. 6

[59] Q. Zhang, L. Cheng, and R. Boutaba. Cloud Computing: State-of-the-Art and Research Chal-
lenges. Journal of Internet Services and Applications, 1(1):7–18, 2010. 5

[60] Q. Zhang, Q. Zhu, M. F. Zhani, and R. Boutaba. Dynamic Service Placement in Geographically
Distributed Clouds. In IEEE ICDCS, 2012. 8

[61] Q. Zhang, Q. Zhu, M. F. Zhani, R. Boutaba, and J. L. Hellerstein. Dynamic Service Placement
in Geographically Distributed Clouds. IEEE Journal on Selected Areas in Communications,
31(12):762–772, 2013. 8

[62] C. Zhao, J. Zhao, X. Lin, and C. Wu. Capacity of P2P On-Demand Streaming with Simple,
Robust and Decentralized Control. In IEEE INFOCOM, 2013. 9

[63] H. Zheng and X. Tang. On Server Provisioning for Distributed Interactive Applications. In IEEE
ICDCS, 2013. 8

[64] Y. Zhou, T. Fu, and DM. Chiu. Statistical Modeling and Analysis of P2P Replication to Support
VoD Service. In IEEE INFOCOM, 2011. 2, 13, 14, 16, 56

BIBLIOGRAPHY 72

[65] Y. Zhou, T. Fu, and DM. Chiu. Server-Assisted Adaptive Video Replication for P2P VoD. El-
sevier Journal Signal Processing: Image Communication, 27(5):484–495, 2012. 3, 14, 57,
59

[66] X. Zhu, J. Zhu, R. Pan, M. S. Prabhu, and F. Bonomi. Cloud-Assisted Streaming for Low-
Latency Applications. In IEEE ICNC, 2012. 8

[67] Z. Zhu, S. Li, and X. Chen. Design QoS-Aware Multi-Path Provisioning Strategies for Effi-
cient Cloud-Assisted SVC Video Streaming to Heterogeneous Clients. IEEE Transactions on
Multimedia, 15(4):758 – 768, 2013. 7, 9

	Approval
	Partial Copyright License
	Abstract
	Dedication
	Quotation
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Introduction
	Overview of the Large Scale Video Streaming System
	Peer-to-Peer VoD Systems
	Crowdsourced Live Streaming Systems

	Cloud-assisted Strategy and Related Work
	Elastic Scaling Solution
	Geo-Distributed Solution
	Hybrid Solution

	Contribution

	Predictive Cloud Provisioning for P2P VoD Streaming
	Existence and Challenges of Decayed Popularity
	System Model
	Two Group Model

	Analysis of Critical Factors
	Upload Ratio
	Eviction Ratio

	Cloud-Assisted Provisioning
	Numerical Result and Discussion
	Time-varying Popularity
	Upload Ratio and Replication Ratio
	Predictive Cloud-assisted Server Provisioning

	Summary

	Geo-Distributed Service for Crowdsourced Live Streaming
	System Overview and Challenges
	Cloud-Assistance for Crowdsourced Live Streaming
	Problem Formulation
	Equivalent Problem

	Optimal Cloud Leasing Strategy
	Performance Evaluation
	Prototype experimental results
	Trace-driven simulation results

	Summary

	Hybrid Design for Large Scale VoD Streaming
	Challenges in SynPAC
	Experiment Results to Performance Impact
	An Illustrative Example for Provisioning Cost

	Overview of SynPAC Structure
	Special Case with Bandwidth-Limited Peers
	Problem Formulation
	Demand Allocation
	Optimal Solution for BLP

	General Case with No Bandwidth Limit
	Problem Formulation
	Optimal Solution for NBL

	Scalable and Distributed Implementation
	Syn-Rarest Scheduling Strategy
	Syn-Adaptive Replication Strategy

	Performance Evaluation
	Evaluation of the Scheduling Strategy
	Evaluation of the Replication Strategy
	Evaluation of SynPAC

	Summary

	Conclusion and Future Discussion
	Summary of the Contributions
	Future Work Discussion
	Peer-to-Peer VoD Systems
	Crowdsourced Live Streaming Systems

	Appendix Proof of Lemma 1
	Appendix Proof of Theorem 1
	Appendix Proof of Theorem 3
	Bibliography

