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Abstract

This thesis studies f(R) model building, cosmological dynamics, Solar System tests of

f(R) gravity, and spherical collapse in f(R) gravity.

We apply the running coupling idea to gravity. We describe several well-known f(R)

models in a simple way in terms of infrared renormalization group flow. We explore two

logarithmic models, produced by the flows. These two models generate a large hierarchy

between the Planck scale and the cosmological constant scale.

We study the cosmological dynamics of a range of f(R) models, presenting generic

features of phase-space dynamics in f(R) cosmology. New techniques to explore phase-

space dynamics are developed. These techniques are very general and can be applied to

other similar dynamical systems.

We investigate the Solar System tests of f(R) gravity. The metric is rederived by directly

focusing on the equations of motion. The chameleon mechanism in the Jordan frame is

considered. These approaches provide a more intuitive understanding of the Solar System

tests of f(R) gravity.

We explore spherical scalar collapse in f(R) gravity numerically. We study the dynam-

ics throughout the collapse. Mesh refinement and asymptotic analysis are implemented

in the vicinity of the singularity of the formed black hole. The Kasner solution for spherical

scalar collapse in f(R) gravity is obtained. These results support the Belinskii-Khalatnikov-

Lifshitz conjecture well in the context of black hole physics.
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Chapter 1

Introduction

1.1 Background

This thesis will discuss f(R) model building, cosmological dynamics, Solar System tests of

f(R) gravity, and spherical collapse in f(R) gravity.

General relativity is a milestone in the exploration of spacetime and the Universe. Mod-

ern physics stands on general relativity and quantum mechanics. Since general relativity

was developed a century ago, it has proven to be a successful gravitational theory, surviv-

ing various tests. It also has had important applications, such as the Global Positioning

System. Despite its great achievements, general relativity has some inherent problems,

such as nonrenormalizability and singularity problems in black hole physics and in the early

Universe. These problems imply that general relativity may not be the final gravitational the-

ory.125 It is largely believed that gravity and quantum mechanics may be unified. Although

a viable quantum theory of gravity is still unavailable, effective field theory makes it possi-

ble to describe a quantized gravitational theory with an effective action at the low-curvature

scale.46 This is the theoretical origin of modified gravity theories. Since the foundation of

general relativity, a large number of modified gravity theories have been discussed. Some

typical ones include scalar-tensor theory,18,25,26,135 massive gravity,51,111,112 f(R) the-

ory,72,125,126 and higher dimensional theory,8,47,80,95,109,110 etc.

A key application of gravitation is cosmology. Modern cosmology is built on general rel-

ativity. However, theoretical and observational explorations in cosmology and astrophysics,

such as inflation, the orbital velocities of galaxies in clusters, and cosmic acceleration, also

1
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encourage consideration of new gravitational theories. In Ref.,125 quantum effects in the

early Universe were taken into account. The induced R2 theory could drive inflation—an

early-Universe cosmological acceleration—and is well consistent with observations of Cos-

mic Microwave Background,1,83 where R is the Ricci scalar. Cosmic acceleration in the late

Universe was observed more than a decade ago via measurements of Type Ia supernovae

luminosity.2,87,103,113,114 Various approaches have been generated to address this issue.

The simplest approach is to introduce the ΛCDM model, in which 31.7% of the mass-energy

density of the Universe is made up of ordinary matter and dark matter, and the rest is con-

stituted by the cosmological constant, Λ.2 The cosmological constant has large negative

pressure, and the equation of state (w ≡ P/ρ) is equal to −1, where P and ρ are the pres-

sure and energy density of the cosmological constant, respectively. It is the large negative

pressure that functions as a repulsive force field against regular gravity, thus driving cosmic

acceleration. The challenge for the ΛCDM model is that the value of the observed cosmo-

logical constant is less than the Planck scale by a factor of 120 orders of magnitude.29

Another possibility is that the cosmic speed-up might be caused within general relativity

by a mysterious cosmic fluid with negative pressure, which is usually referred to as “dark

energy”. However, the nature of dark energy is still unknown. Alternatively, the acceleration

could be due to purely gravitational effects. In other words, one may consider modifying

current gravitational theory to produce an effective dark energy. A natural approach is to

replace the Ricci scalar, R, in the Einstein-Hilbert action with an arbitrary function of the

Ricci scalar,30,72,126

S =
1

16πG

∫
d4x
√
−gf(R) + Sm, (1.1)

where G is the Newtonian gravitational constant, and Sm is the matter term in the action.

[See Refs.50,123 for reviews of f(R) theory.]

Black hole physics and spherical collapse are important platforms for understanding

gravity. A black hole is a spacetime region where gravity is so strong that nothing, including

light, can escape from it. Historically, some static solutions for black holes have been

obtained analytically. The “no-hair” theorem states that a stationary black hole can be

described by only a few parameters.142 Hawking showed that stationary black holes as

the final states of Brans-Dicke collapses are identical to those in general relativity.69 In

Ref.,12 a novel “no-hair” theorem was proven. In this theorem, the scalar field, surrounding

an asymptotically flat, static, spherically symmetric black hole, is assumed to be minimally

coupled to gravity, and to have a non-negative energy density. In this case, the black hole
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must be a Schwarzschild black hole. This result is also valid if the scalar field has a potential

whose global minimum is zero. Possible black hole solutions were explored in scalar-tensor

gravity, including f(R) gravity, by Sotiriou and Faraoni. If black holes are isolated from the

cosmological background, they can be shown to have a Schwarzschild solution.124

Studies of collapse processes can test the conclusions regarding static black holes, and

reveal some fascinating features, e.g., critical phenomena.35 Due to the high nonlinearity

of the Einstein field equations, numerical approaches are indispensable. In fact, simulation

of dynamics related to black holes is a major topic in numerical relativity. Wave templates

obtained from numerical simulations of binary black holes are crucial for gravitational wave

detection.

1.2 Running gravitational coupling and f(R) model building

In Chapter 3, we explore f(R) model building using a running gravitational coupling idea.

Renormalization group flow is a core concept in quantum field theory. It is natural

to consider this idea in the context of gravity. It has long been hoped that the quantum

theory of gravity, at least to some extent, allows description in terms of an effective field

theory. When the effective field theory of gravity is asymptotically safe, there should be

a sensible ultraviolet-complete description. The idea of the renormalization group flow,

which has been very fruitful in high energy physics, is applied to the cosmic acceleration

issue. Consequently, attention shifts from the ultraviolet cutoff in the effective action to the

lower limit of integration. It is interesting to investigate whether it is theoretically possible to

generate an anomalously low scale of a cosmological constant by specific running. In high

energy physics, the renormalized coupling parameters run as beta functions of the energy

scale. In gravity, the basic scale is set by the curvature of spacetime. Assuming that

(classical) gravitational coupling varies with the curvature scalar, one is led to f(R) gravity.

Several well-known f(R) modified gravity models have remarkably simple descriptions in

terms of the infrared renormalization group flow. We analyze two logarithmic f(R) models

produced by the renormalization group flow. These two models generate a large hierarchy

between the cosmological acceleration scale and the Planck scale.
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1.3 Cosmological dynamics in f(R) gravity

Chapter 4 studies the cosmological viability conditions, phase-space dynamics, and cos-

mological evolution of f(R) gravity.

Any modified gravity model should fit conventional standard cosmology as well as ex-

plain the current cosmic speed-up issue. Specifically, in a viable model, the Universe

should have a matter domination epoch in the early Universe to enable the formation of

large-scale structure, and it should transit from a matter domination epoch into the current

dark energy domination epoch. Moreover, in order to be able to drive the cosmic speed-up,

the effective dark energy should have sufficiently large negative pressure, and the effective

equation of state should be less than −1/3.

The conditions for a viable matter domination epoch and late-time acceleration were

derived via an analysis in phase space in Ref.3 In this thesis, in contrast to most previous

works in the literature, we proceed by focusing on the equivalent scalar field description of

modified gravity, which we believe is a more intuitive way of treating the problem.

In order to study how physical solutions evolve in f(R) cosmology, we explore the cos-

mological dynamics of a range of f(R) models. We present generic features of phase-

space dynamics in f(R) cosmology. We study the global structure of the phase space in

f(R) gravity by compactifying the infinite phase space into a finite space via the Poincaré

transformation. On the expansion branch of the phase space, the constraint surface has a

repeller and a de Sitter attractor. On the contraction branch, the constraint surface has an

attractor and a de Sitter repeller. Generally, the phase currents originate from the repeller

and terminate at the corresponding attractor in each space. The trajectories between the

repeller and the attractor in the presence of matter density are different from those in the

vacuum case. The phase analysis techniques developed in this thesis are very general

and can be applied to other similar dynamical systems.

1.4 Solar System tests of f(R) gravity

In Chapter 5, we explore the Solar System tests of f(R) gravity. The metric of the spherical

spacetime for the Sun predicted by general relativity matches well with the observations.

Therefore, general relativity should be recovered from f(R) gravity in the Solar System.

However, if the Sun sits in a vacuum, the scalar field f ′ will be very light, which will generate
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a metric considerably different from the observations. We rederive this result in a simpler

way by directly considering the equations of motion for f(R) gravity in the Jordan frame.

General relativity could be recovered via the chameleon mechanism.84,85 In this mech-

anism, the scalar field f ′ is coupled to the matter density of the environment. f ′ acquires

a mass from the coupling, and then is suppressed by the mass, such that f(R) gravity

can pass the Solar System tests. The chameleon mechanism is usually implemented in

the Einstein frame, in which the condition on the existence of a thin shell is obtained in

Refs.84,85 However, the matter density and the transformed scalar field are coupled in a

complex way in the Einstein frame. Note that f(R) gravity is defined in the Jordan frame,

and the picture is more intuitive in the Jordan frame, in which the coupling between the

matter density and the scalar field f ′ is much simpler than the form in the Einstein frame.

In this thesis, we discuss the chameleon mechanism in the Jordan frame, and also explore

the implications of this mechanism for the form of the function f(R).

In addition to analytical methods, a numerical approach also provides an efficient way to

study how the scalar field f ′ behaves in the effective potential. Taking the R lnR model and

the Hu-Sawicki model as examples, we run numerical experiments solving the equation

of motion for f ′ in different configurations. The results verify the arguments for the thin-

shell condition obtained in the Jordan frame and the thin-wall approximation condition in

the false-vacuum decay scenario, and further clarify whether an f(R) model can avoid the

Solar System tests or not.

1.5 Spherical collapse in f(R) gravity

In Chapter 6, we simulate spherical scalar collapse in f(R) gravity, and examine the dy-

namics near the singularity of the formed black hole.

As astrophysical black holes are expected to come from collapses of matter, studying

collapse processes, especially spherical collapses, is an instructive way to explore black

hole physics, allowing one to verify the results on stationary black holes as well. We take

the Hu-Sawicki model as a sample f(R) model, and take a massless scalar field as the

matter field for the collapse. In order to make the formalism less complicated, we transform

f(R) theory from the Jordan frame into the Einstein frame. We perform the simulations

using the double-null coordinates proposed by Christodoulou.37 These coordinates have

been used widely, because they have the horizon-penetration advantage and allow us to
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study the global structure of spacetime. In the vicinity of the singularity of a formed black

hole, gravity is super strong. Mesh refinement and asymptotic analysis are employed to

examine the dynamics near the singularity.

The results show that a black hole can be formed. Before the collapse, the scalar

degree of freedom f ′ is coupled to a physical scalar field, and general relativity is restored.

During the collapse, the major energy of the physical scalar field moves to the center of

the sphere. As a result, f ′ loses the coupling and becomes light, and gravity transits from

general relativity to f(R) gravity. Due to strong gravity from the singularity of the formed

black hole and the low mass of f ′, f ′ will cross the minimum of the potential and approach

zero. The dynamical solution for collapse is significantly different from the static solution

for a black hole in f(R) theory—it is not a de Sitter-Schwarzschild solution as one might

have expected. As the singularity is approached, in the equations of motion for the metric

components and scalar fields, the metric terms are dominant over other terms. The terms

related to the potential are the least important. The scalar fields are intermediate. f ′

dominates the competition between f ′ and the physical scalar field. f ′ contributes more to

the dynamics of the metric components than the physical scalar field does. The physical

scalar field accelerates the evolution of f ′. The influence of f ′ on the physical field is

considerable. f ′ tries to suppress the evolution of the physical scalar field. This is a dark

energy effect.

Neglecting minor terms, one obtains the reduced equations of motion. These, together

with numerical solutions, enable us to obtain the asymptotic solutions for the metric com-

ponents and f ′. The Kasner solution for spherical scalar collapse in f(R) theory is then

obtained and is confirmed by numerical results. These results support the Belinskii, Kha-

latnikov, and Lifshitz conjecture well.

In the Kasner solution obtained for spherical scalar collapse in f(R) theory, the physical

scalar field is negligible, and only the metric components and f ′ are present. Thus, this

solution is also the Kasner solution for a single-scalar spherical collapse in general relativity.

This thesis is mainly based on the following papers.

4. J.-Q. Guo, D. Wang, and A. V. Frolov, “Spherical collapse in f(R) gravity and the

Belinskii-Khalatnikov-Lifshitz conjecture,” arXiv:1312.4625 [gr-qc] (Accepted for

publication in Physical Review D)

3. J.-Q. Guo, “Solar system tests of f(R) gravity,” International Journal of Modern

http://arxiv.org/abs/1312.4625
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Physics D 23, 1450036 (2014). [arXiv:1306.1853 [astro-ph.CO]]

2. J.-Q. Guo and A. V. Frolov, “Cosmological dynamics in f(R) gravity,” Physical Review

D 88, 124036 (2013). [arXiv:1305.7290 [astro-ph.CO]]

1. A. V. Frolov and J.-Q. Guo, “Small cosmological constant from running gravitational

coupling,” arXiv:1101.4995 [astro-ph.CO]

http://arxiv.org/abs/1306.1853
http://arxiv.org/abs/1305.7290
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Chapter 2

Modified gravity theories

General relativity has passed a wide range of experimental tests. However, it has the

nonrenormalization and singularity problems. Explorations of cosmology, e.g., inflation

and late-Universe cosmic speed-up, also encourage consideration of possible deviations

from general relativity. Over the past century, various modified gravity theories have been

explored in depth. Roughly, modified gravity theories can be classified into four cate-

gories.31,39

1. Theories with extra gravitational fields.

People have considered adding extra scalar fields, vectors, tensors, or even higher

rank fields to general relativity.52,133 Scalar-tensor theories fall into this group. Some

other theories, such as f(R) theory and extra-dimension theory, can also be taken

as effective scalar-tensor theories.

2. Theories with extra spatial dimensions.

It is possible to modify general relativity by adding extra spatial dimensions. Repre-

sentative examples include Kaluza-Klein theory, the Braneworld scenario, and Einstein-

Gauss-Bonnet Gravity.

3. Higher derivative theories.

In general relativity, the terms in the equations of motion are at most second-order

derivatives of the metric. On some occasions, when the action for general relativity is

modified, the new equations of motion can have derivative terms higher than second

8
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order. Some typical theories in this category include f(R) gravity and Horava-Lifshitz

gravity.

4. Theories with non-Christoffel connections.

In these theories, connection is taken as an independent quantity, rather than as be-

ing derived from the metric. We can remove the constraint that the connection must

be torsion-free. However, since the torsion itself is a tensor, we cannot distinguish it

from other non-gravitational tensor fields. Consequently, these theories are equiva-

lent to general relativity (torsion-free theory) plus tensor fields.

This chapter will briefly describe some typical modified gravity theories, including scalar-

tensor theories, f(R) theory, and extra-dimension theories. This chapter is primarily based

on Refs.31,39

2.1 Scalar-tensor theories

Among the most important modified gravity theories are the scalar-tensor theories, in which

a scalar field couples to the Ricci scalar. The action for these theories can be written

as18,135

S =
1

16πG

∫
d4x
√
−g[f(φ)R− h(φ)gµνφ;µφ;ν − V (φ)] + Sm, (2.1)

where f(φ) and h(φ) are functions of the scalar field φ, V (φ) is a potential term, and Sm is

the matter term in the action.

The Brans-Dicke theory is one of the simplest scalar-tensor theories.25 Its action can

be obtained by setting f(φ) to φ, V (φ) to zero, and h(φ) to ω/φ, where ω is a coupling

constant:

S =
1

16πG

∫
d4x
√
−g
[
φR− ω

φ
gµνφ;µφ;ν

]
+ Sm. (2.2)

In Brans-Dicke theory, the scalar field is massless. When the coupling ω approaches infin-

ity, the scalar field is frozen, and general relativity is restored. Solar System tests place a

stringent constraint on ω as ω > 40, 000.21

Variations of the action by Eq. (2.2) with respect to gµν and the scalar φ yield the equa-

tions of motion for the metric components and scalar field:

φGµν +

[
�φ+

1

2

ω

φ
(∇φ)2

]
gµν − φ;µν −

ω

φ
φ;µφ;ν = 8πGTµν , (2.3)
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(3 + 2ω)�φ = 8πGT, (2.4)

where � is the usual notation for the covariant D’Alembert operator � ≡ ∇α∇α. The scalar-

tensor theories are conformally equivalent to general relativity. A conformal transformation

g̃µν = f(φ)gµν (2.5)

converts the action described by Eq. (2.1) into31

S =
1

16πG

∫
d4x
√
−g̃

[
R̃

16πG
− 1

2
g̃µνψ;µψ;ν − U(ψ)

]
+ Sm, (2.6)

where

U(ψ) =
V (φ)

(16πG)2f2(φ)
. (2.7)

The new field ψ is a function of φ. In Brans-Dicke theory, the two quantities are related by

lnφ =

√
16πG

3 + 2ω
ψ. (2.8)

The original frame with metric gµν is called the Jordan frame, and the new frame with

g̃µν is called the Einstein frame. As shown in Eq. (2.6), in the Einstein frame we have

general relativity with a scalar field. Variations of the action expressed by Eq. (2.6) with

respect to g̃µν and ψ produce the equations of motion for the metric components and ψ:

G̃µν = 8πG
[
T̃ (M)
µν + T̃ (ψ)

µν

]
, (2.9)

�ψ − dU

dψ
=

1

2f(φ)

df(φ(ψ))

dψ
T̃ (M), (2.10)

where

T̃ (ψ)
µν = ∂µψ∂νψ − g̃µν

[
1

2
g̃αβ∂αψ∂βψ + U(ψ)

]
. (2.11)

In Brans-Dicke theory, Eq. (2.10) becomes

�ψ − dU

dψ
=

√
4πG

3 + 2ω
T̃ (M). (2.12)

For more details on scalar-tensor theories, please refer to Refs.39,59
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2.2 f(R) gravity

There are several reasons to study f(R) gravity. It was found that the quantization of

matter fields in an unquantized spacetime can lead to f(R) gravity.132 Some f(R) models

can have improved renormalisation properties.127 The R2 Starobinsky model, proposed in

1980, can drive inflation,125 and remains consistent with the observations.1,83 Recently,

due to the possibility of explaining the late-time cosmological acceleration, f(R) theory has

become popular. This section will give the basic formalism of f(R) theory, discuss viability

conditions, and introduce some representative f(R) models.

2.2.1 Formalism of f(R) gravity

The action for f(R) gravity reads

S =
1

16πG

∫
d4x
√
−gf(R) + Sm. (2.13)

Variation with respect to the metric gµν in this action yields the field equations for f(R)

gravity,

f ′Rµν −
1

2
fgµν − (∇µ∇ν − gµν�) f ′ = 8πGTµν , (2.14)

where f ′ denotes the derivative of the function f with respect to its argument R. The trace

of Eq. (2.14) is

�f ′ =
1

3
(2f − f ′R) +

8πG

3
T, (2.15)

where T is the trace of the stress-energy tensor Tµν . In general relativity, f ′ ≡ 1 and

�f ′ ≡ 0. However, �f ′ is generally not zero in f(R) gravity. Therefore, compared to

general relativity, there is a scalar degree of freedom, f ′, in f(R) gravity. Identifying f ′ with

a scalar degree of freedom by

χ ≡ df

dR
, (2.16)

and defining a potential U(χ) by

U ′(χ) ≡ dU

dχ
=

1

3
(2f − χR), (2.17)

one can rewrite Eq. (2.15) as

�χ = U ′(χ) +
8πG

3
T. (2.18)



CHAPTER 2. MODIFIED GRAVITY THEORIES 12

In order to operate f(R) gravity, it is instructive to cast the formulation of f(R) gravity

into a form similar to that of general relativity. We rewrite Eq. (2.14) as

Gµν = 8πG
[
Tµν + T (eff)

µν

]
, (2.19)

where

8πGT (eff)
µν =

f − f ′R
2

gµν + (∇µ∇ν − gµν�) f ′ + (1− f ′)Gµν . (2.20)

Tµν(eff)
is the energy-momentum tensor of the effective dark energy. It is guaranteed to be

conserved, Tµν(eff);ν
= 0. Equation (2.20) reveals the definition of the equation of state for the

effective dark energy

weff ≡
peff

ρeff
, (2.21)

where

8πGρeff =
f ′R− f

2
− 3Hḟ ′ + 3H2(1− f ′), (2.22)

8πGpeff = f̈ ′ + 2Hḟ ′ +
f − f ′R

2
+

(
H2 − R

3

)
(1− f ′). (2.23)

In order for an f(R) model to account for the cosmic speed-up, weff should be less than

−1/3.

2.2.2 Viability conditions on f(R) gravity

A viable f(R) model should be stable, mimic a cosmological evolution consistent with ob-

servations, and satisfy local tests. This places some viability conditions on f(R) gravity as

follows.

1. We require f ′ to be positive to avoid anti-gravity.

2. The function f(R) should be very close to the curvature scalarR at the high-curvature

scale so that a matter domination epoch can exist in the early Universe.

3. The f ′′ should be positive when the curvature scalar R is greater than the cosmo-

logical constant Λ, so that the Dolgov-Kawasaki instability can be avoided and the

scalaron f ′ is nontachyonic.45 Moreover, the potential V (φ) should have a minimum

such that a dark energy domination stage and a consequent cosmic acceleration can

be generated in the late Universe.
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4. The Big Bang nucleosynthesis, observations of the Cosmic Microwave Background,

and local gravity tests imply that general relativity should be recovered as R � Λ:

f(R) → R and f ′ → 1. This, together with the requirement of f ′′ > 0, implies that f ′

should be less than 1.105

2.2.3 Jordan frame and Einstein frame

There are second-order derivatives of f ′ in the energy-momentum tensor of effective dark

energy T (eff)
µν . On some occasions, e.g., spherical collapse that we discuss in Chapter 6, in

order to make the formalism less complicated, we transform f(R) gravity from the current

frame, which is usually called the Jordan frame, into the Einstein frame. In the latter,

the second-order derivatives of f ′ are absent in the equations of motion for the metric

components. The formalism can be treated as Einstein gravity coupled to two scalar fields.

Therefore, we can use some results that have been developed in the numerical relativity

community.

Rescaling χ by

κφ ≡
√

3

2
lnχ, (2.24)

one obtains the corresponding action of f(R) gravity in the Einstein frame,50

SE =

∫
d4x
√
−g̃
[

1

2κ2
R̃− 1

2
g̃µν∂µφ∂νφ− V (φ)

]
+

∫
d4xLM (g̃µν/χ(φ), ψ), (2.25)

where κ =
√

8πG, g̃µν = χ · gµν , V (φ) ≡ (χR − f)/(2κ2χ2), ψ is a matter field, and a tilde

denotes that the quantities are in the Einstein frame. The Einstein field equations are

G̃µν = κ2
[
T̃ (φ)
µν + T̃ (M)

µν

]
, (2.26)

where

T̃ (φ)
µν = ∂µφ∂νφ− g̃µν

[
1

2
g̃αβ∂αφ∂βφ+ V (φ)

]
, (2.27)

T̃ (M)
µν =

T
(M)
µν

χ
. (2.28)

T
(M)
µν is the ordinary energy-momentum tensor of the physical matter field in terms of gµν

in the Jordan frame. In Chapter 6, we take a massless scalar field ψ as the matter field for
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the collapse. Its energy-momentum tensor in the Einstein frame is

T̃ (M)
µν = T̃ (ψ)

µν =
1

χ

(
∂µψ∂νψ −

1

2
gµνg

αβ∂αψ∂βψ

)
=

1

χ

(
∂µψ∂νψ −

1

2
g̃µν g̃

αβ∂αψ∂βψ

)
,

(2.29)

which gives

T̃ (M) = T̃ (ψ) ≡ g̃µν T̃ (ψ)
µν = −

g̃αβ∂αψ∂βψ

χ
.

The equations of motion for φ and ψ can be derived from Lagrange equations as

�̃φ− V ′(φ) + κQT̃ (M) = 0, (2.30)

�̃ψ −
√

2

3
κg̃µν∂µφ∂νψ = 0, (2.31)

where Q ≡ −χ,φ/(2κχ) = −1/
√

6. In the Einstein frame, the potential for φ is written as

V (φ) =
χR− f
2κ2χ2

. (2.32)

Then we have

V ′(φ) =
dV

dχ
· dχ
dφ

=
1√
6

2f − χR
κχ2

. (2.33)

2.2.4 Inflationary f(R) models

Many f(R) models have been proposed and studied. Basically, there are two types of f(R)

models. One type of model modifies general relativity at the high-curvature scale, and can

be used to drive inflation. The other type modifies general relativity at the low-curvature

scale, and is considered to explain the late-time cosmological acceleration.

In the first category, the R2 Starobinsky model, proposed in Ref.,125 is the best known.

In this scenario, inflation is driven by quantum corrections to vacuum. Vilenkin provided a

detailed review of this model in Ref.134 Based on this reference, we give a brief description

of this model below.

The R2 Starobinsky model is obtained in semiclassical general relativity:

Rµν −
1

2
gµνR = 8πG < Tµν >, (2.34)

where < Tµν > is the expectation value of the quantum contributions from the process of

regularization.22,27,44 We consider the Friedmann-Robertson-Walker metric

ds2 = −dt2 + a2(t)dσ2
K , (2.35)
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where K = 1, 0, −1 corresponds to a closed, flat and open Friedmann-Robertson-Walker

model, respectively. In the case of free, massless, conformally invariant fields, the quantum

corrections can be expressed as follows:

< Tµν >= k1H
(1)
µν + k2H

(2)
µν , (2.36)

where k1 and k2 are numerical coefficients, and

H(1)
µν = 2R;µν − 2gµνR

;σ
;σ + 2RRµν −

1

2
gµνR

2, (2.37)

H(2)
µν = RσµRνσ −

2

3
RRµν −

1

2
gµνR

στRστ +
1

4
gµνR

2. (2.38)

The Starobinsky model in a de Sitter space with Mmpl � H0 is

f(R) = R+
R2

6M2m2
pl

+
R2

R0
ln

R

R0
, (2.39)

where R0 = 12H2
0 , H0 = (8πk2G)−1/2, M = (6k1)−1/2, and mpl is the Planck mass.

Equation (2.34) with the energy-momentum tensor defined by Eq. (2.36) has a de Sitter

solution. Neglecting the trivial solution R = 0, we have R = 12H2
0 . The corresponding de

Sitter solutions are
a(t) = H−1

0 cosh(H0t), for K = 1,

a(t) = a0 exp(H0t), for K = 0,

a(t) = H−1
0 sinh(H0t), for K = −1.

(2.40)

These solutions provide an inflationary stage driven entirely by quantum corrections to

Einstein’s equations. At the inflationary stage, the logarithmic term in Eq. (2.39) can be

neglected, and we have the conventional form

f(R) = R+
R2

6M2m2
pl
. (2.41)

Normalization of the Cosmic Microwave Background anisotropies shows thatM ≈ 10−5.1,83
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2.2.5 Dark energy f(R) models

Here, we list two typical viable dark energy f(R) models. One is the Starobinsky model,126

f(R) = R+ CR0

[(
1 +

R2

R2
0

)−n
− 1

]
, (2.42)

where C and n are positive parameters, and R0 has the same order of magnitude as the

currently observed effective cosmological constant. In this model, f(R = 0) = 0. Rµν = 0

is always a solution to Eq. (2.19). However, f ′′(R = 0) is negative. Therefore, the flat

spacetime is unstable. For R� R0, f(R) ≈ R− CR0, and one obtains the ΛCDM model.

The other typical viable f(R) model is the Hu-Sawicki f(R) model. This model reads72

f(R) = R−R0
C1R

n

C2Rn +Rn0
, (2.43)

where n is a positive parameter, C1 and C2 are dimensionless parameters, R0 = 8πGρ̄0/3,

and ρ̄0 is the average matter density of the current Universe. It is noticeable that the n = 1

case of the Starobinsky model and the n = 2 case of the Hu-Sawicki model are essentially

the same. We consider one of the simplest versions of the Hu-Sawicki model, i.e., n = 1,

f(R) = R− CR0R

R+R0
. (2.44)

In this model,

f ′ = 1− CR2
0

(R+R0)2
, (2.45)

R = R0

[√
C

1− f ′
− 1

]
, (2.46)

V (φ) =
CR0R

2

2κ2f ′2(R+R0)2
, (2.47)

V ′(φ) =
R3

√
6κf ′2(R+R0)2

[
1 + (1− C)

R0

R

(
2 +

R0

R

)]
. (2.48)

Equations (2.45) and (2.48) show that as long as the matter density is much greater than

R0, the curvature R will trace the matter density well, f ′ will be close to 1 but not cross 1,

and general relativity will be restored. As implied in Eq. (2.48), in order to make sure that

the de Sitter curvature, for which V ′(φ) = 0, has a positive value, the parameter C needs

to be greater than 1.
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(a) Potential for Starobinsky model (b) Potential for Hu-Sawicki model

Figure 2.1: Potentials for two dark energy f(R) models. (a) Potential for the Starobinsky
model, described by (2.42), with C = 1.1, n = 2, and R0 = 5 × 10−6. (b) Potential for the
Hu-Sawicki model, expressed by (2.44), with C = 1.2 and R0 = 5× 10−6.

The features of f(R) gravity are largely defined by the shape of the potential. Therefore,

we plot the potentials for the Starobinsky and Hu-Sawicki models in Fig. 2.1.

2.3 Higher dimensional gravity theories

Higher dimensional theories are another set of popular alternative modified gravity theories.

Major examples include Kaluza-Klein theory, Randall-Sundrum gravity, Dvali-Gabadadze-

Porrati gravity, and Einstein-Gauss-Bonnet gravity.

Historically, Kaluza-Klein theory was proposed toward unifying gravity with electrody-

namics.80,86 In this theory, general relativity is extended to a five-dimensional spacetime.

The fourth spatial dimension is curled up in a circle of very small radius. The equations are

separated into three sets. One set is equivalent to the Einstein field equations, another set

to Maxwell’s equations for the electromagnetic field, and the third set is for an extra field

known as the dilaton. By implementing a harmonic expansion of all fields along the extra

dimension, one obtains an effective 3 + 1 dimensional theory. When the extra dimensions

have been stabilized, the late-time dynamics of Kaluza-Klein theory can be understood as

a four-dimensional effective theory.

In the Kaluza-Klein scenario, the extra dimensions are small and compact. However, in

the Braneworld scenario, the extra dimensions can be much larger. The Standard Model
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fields are confined to stay on a 3 + 1 dimensional hypersurface embedded in some higher

dimensional spacetime. The 3 + 1 dimensional hypersurface and the higher dimensional

spacetime are usually called brane and bulk, respectively. Some typical Braneworld models

include the ADD model (named after Arkani-Hamed, Dimopoulos, and Dvali4), Randall-

Sundrum gravity,109,110 and Dvali-Gabadadze-Porrati gravity.47

Einstein-Gauss-Bonnet gravity is another interesting modified gravity theory.95 In this

theory, the Gauss-Bonnet term is added to the action of general relativity:

S =
1

16πG

∫
dDx
√
−gR+ αG + Sm, (2.49)

where G is the Gauss-Bonnet term,

G = R2 − 4RµνRµν +RµνρσRµνρσ. (2.50)

More generally, one can replace G by a function of G. The Gauss-Bonnet term makes

contributions only in 4+1 dimensions or greater. In 3+1 dimensions and lower, it becomes

a topological surface term. Consequently, there are no additional dynamical degrees of

freedom.

In summary, in this chapter, we provide a general picture of modified gravity theories.

The rest of this thesis will focus on f(R) gravity. It will discuss f(R) model building, cos-

mological dynamics, Solar System tests of f(R) gravity, and spherical collapse in f(R)

gravity.



Chapter 3

Running gravitational coupling

In this chapter, we study how to construct viable f(R) gravity models. We apply the renor-

malization group flow idea to gravity in order to address the cosmological acceleration

issue. Several well-known f(R) modified gravity models have remarkably simple descrip-

tions in terms of the infrared renormalization group flow. We discuss two logarithmic f(R)

models generated by the flows. This chapter is mainly based on Ref.58

3.1 Running gravitational coupling and f(R) models

Renormalization group flow plays a crucial role in quantum field theory and statistical

physics. It shows how a physical system changes as viewed at different distance scales.

In quantum field theory, the renormalization group flow comes from removing the infinities

of the correlation functions. Under the renormalization conditions, the coupling constant λ

runs with respect to the renormalization scale M as a beta function:

β ≡ dλ

d lnM
. (3.1)

In statistical physics, the renormalization group was introduced to explain the universality

properties of continuous phase transitions.104,146

Given the great successes of the renormalization group flow in quantum field theory

and statistical physics, it is natural to consider this idea in the context of gravity. It has long

been hoped that the quantum theory of gravity, at least in some limit, allows description in

terms of an effective field theory.140,141 The usual Einstein-Hilbert action is merely the first

19
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two terms of an effective action

S[λ] =

∫ { ∞∑
n=0

λ4−2ng(n)(λ)R(n) + . . .

}
√
−g d4x, (3.2)

expanded in local n-th order curvature invariantsR(n), where λ is the ultraviolet cutoff. If the

effective field theory of gravity is asymptotically safe, this would allow a sensible ultraviolet-

complete description.98,102 On the other hand, the observations of current cosmic acceler-

ation indicate a tiny but nonvanishing cosmological constant. This introduces a hierarchy

problem between the (infrared) cosmological acceleration scale and the (ultraviolet) Planck

scale.101,139

It is interesting to investigate whether it is theoretically possible to generate an anoma-

lously low scale of cosmological constant by specific gravitational coupling running. We ap-

ply the renormalization group flow idea, which has been very fruitful in high energy physics,

to the cosmic acceleration issue. This obviously shifts our attention from the ultraviolet cut-

off in the effective action (3.2) to the lower energy scale. In high energy physics, the renor-

malized coupling parameters run as beta functions of the energy scale. In gravity, the basic

scale is set by the curvature of the spacetime. Assuming that the (classical) gravitational

coupling varies with the curvature scalar, R, one is led to f(R) gravity.

Considering that Newton’s gravitational constant runs with the Ricci scalar, we introduce

a dimensionless coupling α,

8πG = αm−2
pl , (3.3)

where mpl is the Planck mass. If the renormalization group flow is autonomous, the running

of the dimensionless coupling α can be described by a beta function,

µ
dα

dµ
= β(α), (3.4)

where µ ≡ R/R0, and R0 is a positive constant parameter. The integration of the above

equation yields an α as a function of the curvature scalar. Then, by replacing 8πG in the

Lagrangian density of general relativity LGR = R/(16πG) with αm−2
pl [refer to Eq. (3.3)],

one obtains f(R) gravity with the Lagrangian density

Lf(R) =
m2

pl

2

R

α
. (3.5)

For a viable f(R) model, f ′ has to be positive to avoid ghosts,99 and f ′′ has to be

positive to avoid the Dolgov-Kawasaki instability.45 These conditions can be expressed in
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terms of the flow equation quantities:

f ′ =
α− β
α2

> 0, (3.6)

Rf ′′ = −
(

1− 2
β

α
+
dβ

dα

)
β

α2
> 0. (3.7)

Moreover, with Eq. (2.17), an f(R) model would have a vacuum (anti-) de Sitter solution if

2f − f ′R =
α+ β

α2
R = 0. (3.8)

At the de Sitter point, β = −α < 0. Then Eq. (3.7) implies that the de Sitter point is unstable

if dβ/dα is less than −3. In order to have an asymptotically safe theory with an effective

cosmological constant, the renormalization group flow should connect the α+ β = 0 line at

the infrared scale to the β = 0 fixed point at the ultraviolet scale.

3.2 Power-law f(R) models

With the arguments in the above section, the power-law corrections to the Einstein-Hilbert

action

f(R) = R

[
1 + λ

(
R

R0

)n]
(3.9)

can be generated by an autonomous flow,

β(α) = nα(α− 1), (3.10)

with

α ≡ R

f(R)
=

1

1 + λµn
. (3.11)

The solutions to β(α) = 0 are called fixed points of the autonomous flow.

When n = −1, 1, and −2, one can achieve general relativity with a cosmological con-

stant, the R2 Starobinsky model,125 and the 1/R model,30 respectively. The corresponding

flows are plotted in Fig. 3.1(a).

Combining Eqs. (3.4), (3.10), and (3.11), one obtains the description of β as a function

of the scale µ,

β = − nλµn

(1 + λµn)2
. (3.12)



CHAPTER 3. RUNNING GRAVITATIONAL COUPLING 22

−1 0 1 2 3
−3

−2

−1

0

1

α

β

 

 

α
−

β
=
0

α
+
β
=
0

Unstable dS

dS in IR

GR fixed point

f (R) = R− 2Λ
f (R) = R−A/R
f (R) = R+ R2/M2

−1 0 1 2 3
−3

−2

−1

0

1

α

β

 

 

α
−

β
=
0

α
+
β
=
0

Stable dS

Stable dS

GR fixed point

R lnR model
modified log model

(a) (b)

Figure 3.1: Renormalization group flows for some f(R) models. (a) Power-law f(R) mod-
els. (b) Two logarithmic models. The R lnR and modified logarithmic models are described
by Eqs. (3.15) or (3.17), and (3.25), respectively.

At the high-curvature scale, where µ� 1, we have

β ≈ − n

λµn
. (3.13)

Therefore, the separation of the orders of magnitude for the beta function is comparable

to that for curvature. In other words, in the power-law f(R) models, a big gap in the beta

function corresponds to a big gap in curvature between the Planck scale and the local

environment on Earth. This is also true for some other f(R) models (e.g., the Hu-Sawicki

model72). However, as will be discussed below, a reasonable gap in the beta function can

make a big hierarchy of curvature when the linear term in the beta function is absent.

3.3 The R lnR model

We consider a quadratic beta function,

β = −α2, (3.14)

which leads to the following model with interesting features.

f(R) =
R

α0

(
1 + α0 ln

R

R0

)
, (3.15)
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where α0 is a dimensionless constant parameter. In this model, the coupling constant runs

as

α =
α0

1 + α0 ln R
R0

. (3.16)

Due to the logarithmic relation between α and R, a small change in the orders of magnitude

for α can generate a large hierarchy for R. As discussed below, this property can be used

to generate small numbers to address the hierarchy problem, which is related to the big

gap between the Planck scale and the cosmological constant scale.

For ease of operation, one can absorb the constant α0 in the denominator of Eq. (3.15)

into the definition of the Planck mass mpl, and rewrite Eq. (3.15) as

f(R) = R

(
1 + α0 ln

R

R0

)
. (3.17)

Therefore, in this model, the scalar degree of freedom is

φ ≡ f ′ = 1 + α0 + α0 ln
R

R0
, (3.18)

and the potential is determined by

V ′(φ) =
2f − f ′R

3
=

1

3
Λe

φ
α0
−2

(φ− 2α0). (3.19)

Then, at the de Sitter point where V ′(φ) = 0, φ is equal to 2α0. The corresponding curva-

ture, which is usually called the de Sitter curvature,

Λ ≡ R0e
− 1
α0

+1
, (3.20)

is exponentially suppressed compared to R0. f ′ has to be positive to avoid ghosts99 and f ′′

has to be positive to avoid the Dolgov-Kawasaki instability.45 For the R lnR model, given

Eqs. (3.18) and (3.20), the first requirement that f ′ be positive can be satisfied as long as

the Ricci scalar is not too much less than the de Sitter curvature. For the R lnR model,

f ′′ is equal to α0/R and α0 is a positive constant, and we only consider the positive Ricci

scalar. Then, the second requirement of f ′′ being positive can be easily met.

In dark energy f(R) gravity, some f(R) models have a singularity problem, while the

R lnR model is free from this problem. For some f(R) models, such as the Starobin-

sky model and the Hu-Sawicki model described by Eqs. (2.42) and (2.43), respectively, φ

asymptotes to 1 as the Ricci scalar goes to infinity. Note that the equation of motion for φ

is described by Eq. (2.18):

�φ = V ′(φ) +
8πG

3
T. (3.21)
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Figure 3.2: The potential V (φ) as in Eq. (3.22) for the R lnR model with α0 = R0 = 1.

As shown in Fig. 2.1, for the Starobinsky model and the Hu-Sawicki model, the height of

the potential barrier, defined by ∆V ≡ V (φ → 1) − V (φdS), is finite, where φdS is the de

Sitter value for φ. Therefore, a perturbation from the matter force, 8πGT/3, can easily push

the field φ to the barrier of V (φ), and then the Ricci scalar becomes singular.57 However,

the R lnR model is free of this singularity problem. Integrating Eq. (3.19), we obtain the

potential

V (φ) =
1

3
α0Λe

φ
α0
−2

(φ− 3α0), (3.22)

which has an exponential wall, avoiding the singularity problem. The potential is shown in

Fig. 3.2.

For this model, with Eq. (3.18), the function f(R) expressed by Eq. (3.17) can be rewrit-

ten as

f(R) = R(φ− α0). (3.23)

When the R lnR gravity is reduced to general relativity, φ evolves slowly. Then, from

Eq. (2.15), which describes the dynamics of φ, one obtains

φ ≈ 2α0 + α0W (X), (3.24)

where X = 8πGρ/Λ and W (X) is the Lambert W function. The basic properties of W (X)

with positive X are described in Appendix 3.6. Equations (3.23) and (3.24) show that when

general relativity is restored, we have

α0 ≈
1

W (X)
� 1.
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When X is much greater than 1, W (X) is approximately equal to ln(X). This feature,

together with Eq. (3.24), implies that the field φ logarithmically runs depending on X, when

X is much greater than 1. Therefore, this model is reduced to general relativity only for a

certain period of curvature or matter density. The less α0 is, the longer the general relativity

restoration period is. This is quite different from some other models, such as the Hu-Sawicki

model72 and the Starobinsky model,126 in which f(R) gravity goes to general relativity once

ρm is above the cosmological constant scale. On the other hand, in order for the R lnR

model to have a sensible cosmic acceleration in the late Universe, the de Sitter curvature–

and hence α0–cannot be too small [see Eq. (3.20)]. Consequently, an appropriate value for

α0 needs to be chosen to reconcile the tension between the requirements in the early and

the late Universe.

In Chapters 4 and 5, we will explore the cosmological dynamics and Solar System tests

of this model in detail.

3.4 A modified logarithmic model

3.4.1 A modified logarithmic model

As shown in Fig. 3.1(b), in the R lnR model, at the high-curvature scale, the effective grav-

itational constant asymptotes to zero. As a result, the modification term causes significant

deviation from general relativity at the high-curvature scale, and this model has difficulties

in developing a matter domination stage and passing the Solar System tests. This problem

is alleviated in the modified logarithmic model

f(R) = R
a+ ln(R/R0)

1 + ln(R/R0)
= R

[
1− b

1 + ln(R/R0)

]
, (3.25)

where b = 1− a. The corresponding flow of this model is

β = −k(α− α∗)2, (3.26)

where k is a parameter, and α∗ is a fixed point. The flow is shown in Fig. 3.1(b). The

flow approaches the nonzero fixed point α = α∗ at the high-curvature scale. Consequently,

compared to the R lnR model, this model can generate a more favorable cosmological

evolution in the early Universe stage.
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In this model,

f ′ = 1− b

1 + ln(R/R0)
+

b

[1 + ln(R/R0)]2
. (3.27)

Equation (3.27) implies that f ′′ and V ′′(φ)[= (f ′ − f ′′R)/3f ′′] will change signs at some

point, and the potential V (φ) is folded at that point, as shown in Fig. 3.3. When b is

small, the potential V (φ) can be folded before φ reaches the de Sitter point, as shown

in Fig. 3.3(a). The model is unstable at places where f ′′ < 0 and V ′′(φ) < 0. When b

is larger, the folding point of V (φ) can be shifted to the left side of the de Sitter point, as

shown in Fig. 3.3(b).

In this modified logarithmic model, f(R) gravity is reduced to general relativity at the

high-curvature scale. However, because of the “soft” logarithmic dependence in the func-

tion f(R), this model is reduced to general relativity at the high-curvature scale slowly, and

still does not have a fully matter-dominated epoch in the early Universe.58

3.4.2 Discussions

In the last subsection, we considered a modified logarithmic model, described by Eq. (3.25).

In order to explore other possibilities, one can generalize the function of Eq. (3.25) as fol-

lows:

f(R) = R

[
1− b

1 +A(R/R0)

]
, (3.28)

where A(R/R0) is a function of R/R0. One may consider a polynomial case as expressed

by

f(R) = R

[
1− b

1 + (R/R0)n

]
. (3.29)

When n = 1, this model happens to be the simplest format of the Hu-Sawicki model.72 The

complete format of the Hu-Sawicki model is described as follows:

f(R) = R− b

c+ (R0/R)n
= R− b(R/R0)n

c(R/R0)n + 1
, (3.30)

where n is a positive integer number. For the model expressed by Eq. (3.29), in the case

of n = 1, there is

f ′ = 1− b

(1 +R/R0)2
. (3.31)

Therefore, f ′′ will not be zero, and V (φ) does not have a folding point from the high-

curvature scale (R � Λ) to the low-curvature scale (R ∼ Λ), as is shown in Fig. 3.3(c).
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Figure 3.3: Potentials for some f(R) models. (a) The potential for the modified logarithmic
model of Eq. (3.25) with b = 0.1 and R0 = 1. (b) The potential for the modified logarithmic
model of Eq. (3.25) with b = 3 and R0 = 1. (c) The potential for the polynomial model
of Eq. (3.29) with n = R0 = 1 and b = 5. (d) The potential for the polynomial model of
Eq. (3.29) with n = 2 and b = R0 = 1.
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However, as long as n > 1, f ′′ will include more than one term of R with different signs,

V (φ) will have a folding point, and V ′′(φ) will switch signs at the folding point. As illustrated

in Fig. 3.3(d), in this case, for some period of φ from the high to the low-curvature scales,

V ′′(φ) is negative and, consequently, the scalaron f ′ is tachyonic. One exponential case,

as described by Eq. (3.32), has a similar problem.

f(R) = R

[
1− b

1 + exp(R/R0)

]
. (3.32)

In this class of f(R) models described by Eq. (3.28), there are functions of R in both

the numerator and the denominator of the modification term, which results in V (φ) having

a folding point. At that folding point, V ′′(φ) switches signs, and the scalaron f ′ is tachyonic

at places where V ′′(φ) < 0. To avoid this problem, one may replace the function of R in the

numerator with a constant, and obtain ΛCDM-like models. In these models, the function

f(R) is approximately equal to (R − 2Λ) at the high-curvature scale, and the modification

term will be the decisive term in the late cosmological evolution.

3.5 Conclusions

We discussed the renormalization group flow idea in the context of gravity. A cosmic ac-

celeration could be generated by this idea. An R lnR model, produced by the renormaliza-

tion group flow, has the exponential hierarchy between the effective cosmological constant

scale and UV scale. On the other hand, in this model, the modification term causes signif-

icant deviation from general relativity at the high-curvature scale. Consequently, it is hard

for this model to have a matter domination stage in the early Universe and to avoid the So-

lar System tests. This problem is alleviated considerably in a modified logarithmic model

(3.25). However, because of the “soft” logarithmic dependence in the function f(R), this

model still does not have a fully matter-dominated epoch in the early Universe.

3.6 Appendix: Lambert W function

The Lambert W function is defined42 by

Y = W (Y )eW (Y ), (3.33)
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where Y can be a negative or a complex number. In this thesis, we only consider the case

of Y > 0. When 0 < Y � 1, W (Y ) � 1, eW (Y ) → 1, then W (Y ) ≈ Y . When Y � 1,

W (Y )� 1, then lnY ≈W . Concisely,

W (Y ) ≈

{
Y if 0 < Y � 1,

lnY if Y � 1.
(3.34)



Chapter 4

Cosmological dynamics in f(R)

gravity

In this chapter, we study the cosmological viability conditions, phase-space dynamics, and

cosmological evolution of f(R) gravity. In contrast to most previous works in the literature,

which analyzed the background dynamics of f(R) gravity by means of a dynamical system,

we proceed by focusing on the equivalent scalar field description of the theory, which we

believe is a more intuitive way of treating the problem. In order to study how the physical

solutions evolve in f(R) cosmology, we explore the cosmological dynamics of a range of

f(R) models. We present generic features of the phase-space dynamics in f(R) cosmol-

ogy. We study the global structure of the phase space in f(R) gravity by compactifying the

infinite phase space into a finite space via the Poincaré transformation. On the expansion

branch of the phase space, the constraint surface has a repeller and a de Sitter attractor.

On the contraction branch, the constraint surface has an attractor and a de Sitter repeller.

Generally, the phase currents originate from the repeller and terminate at the correspond-

ing attractor in each space. The trajectories between the repeller and the attractor in the

presence of matter density are different from those in the vacuum case. The phase analysis

techniques developed in this chapter are very general and can be applied to other similar

dynamical systems. This chapter is mainly based on Ref.65

30
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4.1 Introduction

Any modified gravity model should fit the conventional standard cosmology as well as ex-

plain the current cosmic speed-up issue. Specifically, in a viable model, the Universe

should have a matter domination epoch in the early Universe to enable the formation of

large-scale structure, and it should transit from a matter domination epoch into the current

dark energy domination one. Moreover, in order to be able to drive the cosmic speed-up,

the effective dark energy should have sufficiently large negative pressure, and the effective

equation of state should be less than −1/3.

The conditions for a viable matter domination epoch and late-time acceleration were

derived via an analysis in phase space in Ref.3 In fact, the dynamics of f(R) gravity

closely depends on a potential defined by V ′(φ) ≡ dV/dφ = (2f − φR)/3, where φ ≡
f ′ = df(R)/dR. In this chapter, the cosmological viability conditions are studied directly by

considering how this potential determines the dynamics of f(R) cosmology.

We explore the phase-space dynamics and cosmological evolution of the R lnR model

and Hu-Sawicki model with the following techniques: compactifying the infinite phase

space into a finite space via the Poincaré transformation; studying the vector fields on two-

dimensional slices of the constraint surface when the constraint surface is three-dimensional;

and plotting typical trajectories of the phase flows.

This chapter is organized as follows. In Sec. 4.2, we construct the dynamical system for

f(R) cosmology. In Sec. 4.3, the conditions of the cosmological viability for f(R) gravity are

explored. In Secs. 4.4 and 4.5, the phase-space dynamics and the cosmological evolution

of the R lnR model are studied. In Sec. 4.6, we explore the phase-space dynamics of the

Hu-Sawicki model. Lastly, Sec. 4.7 summarizes our results.

4.2 Dynamical system in f(R) cosmology

4.2.1 Basic equations

In this section, we prepare for the dynamical analysis of f(R) cosmology. The equivalent

of the Einstein equation in f(R) gravity reads,

f ′Rµν −
1

2
fgµν − (∇µ∇ν − gµν�) f ′ = 8πGTµν , (4.1)
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where f ′ denotes the derivative of the function f with respect to its argument R, and � is

the usual notation for the covariant D’Alembert operator � ≡ ∇α∇α. Compared to general

relativity, f(R) gravity has one extra scalar degree of freedom, f ′. The dynamics of this

degree of freedom is determined by the trace of Eq. (4.1)

�f ′ =
1

3
(2f − f ′R) +

8πG

3
T, (4.2)

where T is the trace of the stress-energy tensor Tµν . Identifying f ′ with a scalar degree of

freedom by

φ ≡ df

dR
, (4.3)

and defining a potential V (φ) by

V ′(φ) ≡ dV

dφ
=

1

3
(2f − φR), (4.4)

one can rewrite Eq. (4.2) as

�φ = V ′(φ) +
8πG

3
T. (4.5)

We consider the homogeneous Universe with the flat Friedmann-Robertson-Walker metric,

ds2 = −dt2 + a2(t)dx2, (4.6)

where a(t) is the scale factor. In this case, the evolution of the Universe is described by a

four-dimensional dynamical system of {φ, π,H, a}, where

π ≡ φ̇, (4.7)

H is the Hubble parameter, and the dot (·) denotes the derivative with respect to the coor-

dinate time t. Equation (4.2) provides the equation of motion for π

π̇ = −3Hπ − V ′(φ) +
8πG

3
ρm. (4.8)

The equation of motion for H is

Ḣ =
R

6
− 2H2. (4.9)

The definition of the Hubble parameter implies that

ȧ = aH. (4.10)
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The system is constrained by the Friedman equation

H2 +
π

φ
H +

f − φR
6φ

− 8πG

3φ
(ρm + ρr) = 0, (4.11)

where ρm and ρr are the density of matter and density of radiation, respectively. Equations

(4.7)-(4.11) provide a closed description of the dynamical system {φ, π,H, a}.
In order to explore whether f(R) gravity can account for the cosmic speed-up, it is

instructive to cast the formulation of f(R) gravity into a format similar to that of general

relativity. We rewrite Eq. (4.1) as

Gµν = 8πG
[
Tµν + T (eff)

µν

]
, (4.12)

where

8πGT (eff)
µν =

f − f ′R
2

gµν + (∇µ∇ν − gµν�) f ′ + (1− f ′)Gµν .

Tµνeff is the energy-momentum tensor of the effective dark energy. It is guaranteed to be

conserved, Tµνeff;ν = 0. Equation (4.13) reveals the definition of the equation of state for the

effective dark energy

weff ≡
peff

ρeff
, (4.13)

where

8πGρeff = 3H2 − 8πG(ρm + ρr) =
f ′R− f

2
− 3Hḟ ′ + 3H2(1− f ′), (4.14)

8πGpeff = H2 − R

3
− 8πGpr = f̈ ′ + 2Hḟ ′ +

f − f ′R
2

+

(
H2 − R

3

)
(1− f ′). (4.15)

In order for an f(R) model to account for the cosmic speed-up, weff should be less than

−1/3.

4.2.2 Effective dark energy

For the reference consideration, in this subsection, we give derivations of Eqs. (4.14) and

(4.15). The (t, t) component of Eq. (4.1) is

f ′R00 +
1

2
f − [∇0∇0 − g00�]f ′ = 8πGT00. (4.16)

Using

Γ0
11 = aȧ, Γ0

22 = aȧr2, Γ0
33 = aȧr2 sin2 θ,
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we compute

R00 = −3
ä

a
, (4.17)

∇0∇0f
′ = f̈ ′ − f ′,αΓα00 = f̈ ′, (4.18)

�f ′ ≡ gµν∇µ∇νf ′ = gµµ∇µ∇µf ′ = gµµ(f ′,µµ − Γαµµf
′
,α) = −f̈ ′ − 3

(
ȧ

a

)
ḟ ′. (4.19)

Substituting Eqs. (4.17)-(4.19) into (4.16), we obtain

−3

(
ä

a

)
f ′ = −1

2
f + f̈ ′ + �f ′ + 8πGρm. (4.20)

Using R11 = aä+ 2ȧ2, the (r, r) component of Eq. (4.1) can be described by[
ä

a
+ 2

(
ȧ

a

)2
]
f ′ =

1

2
f − ḟ ′

(
ȧ

a

)
−�f ′ + 8πGpr. (4.21)

A combination of Eqs. (4.20) and (4.21) yields,

6

(
ȧ

a

)2

f ′ = f − 2 ·�f ′ − 3

(
ȧ

a

)
ḟ ′ + 3 · 8πGpr + f̈ ′ + 8πGρt

= 2 · 8πGρt + f ′R− f − 6

(
ȧ

a

)
ḟ ′,

where ρt = ρm + ρr, and we have used Eq. (4.19) and a revised form of Eq. (4.2),

3 · 8πGpr = f ′R− 2f + 3�f ′ + 8πGρt.

Then we have

H2 =

(
ȧ

a

)2

=
1

3f ′

(
8πGρt +

f ′R− f
2

− 3Hḟ ′
)
, (4.22)

with which we obtain the expression for the matter density of the effective dark energy

Eq. (4.14).

Note that

2Ḣ + 3H2 = 2
ä

a
+

(
ȧ

a

)2

.

Then a combination of Eqs. (4.20) and (4.21) leads to

2Ḣ + 3H2 = −
(
H2 − R

3

)
= − 1

f ′

(
8πGpr + f̈ ′ + 2Hḟ ′ +

f − f ′R
2

)
, (4.23)
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where we have used a revised format of Eq. (4.2),

−8πGρt = f ′R− 2f + 3�f ′ − 3 · 8πGpr.

Then, we can achieve the expression for the pressure of the effective dark energy described

by Eq. (4.15).

4.3 Cosmological viability conditions

Many f(R) models have been proposed to address the current cosmic speed-up issue.

It is necessary to check whether these models agree with the observations of both the

early and late Universe. In a viable f(R) theory, there should be a matter domination

epoch in the early Universe such that large-scale structure could be formed. Moreover, the

Universe should experience an acceleration during the late time. The cosmological viability

conditions for f(R) theory were discussed via dynamical analysis in phase space in Ref.3

With this approach, one could investigate the conditions for the existence of a viable matter

domination epoch prior to a late-time acceleration. These conditions can be expressed as

m(r) ≈ 0+ and
dm

dr
> −1, at r ≈ −1, (4.24)

where m ≡ f ′′R/f ′ and r ≡ −f ′R/f . Actually, r and m are closely related to V ′(φ) and

V ′′(φ), respectively, with V ′(φ) being defined by Eq. (4.4) and

V ′′(φ) =
f ′ − f ′′R

3f ′′
. (4.25)

In this section, we will revisit these cosmological viability conditions using the scalar field

description for f(R) gravity.

In the standard cosmology based on general relativity, a matter domination epoch (and

also a radiation domination epoch) is ensured in the early Universe. Therefore, in order to

obtain a long matter domination epoch in f(R) gravity, one may consider how f(R) gravity

could be reduced to general relativity. The restoration of general relativity implies that

f(R) ≈ f ′R, with φ ≡ f ′ ≈ 1, (4.26)

which results in r ≈ −1 as shown in Eq. (4.24). In the early Universe, the matter domination

epoch should last long enough to ensure large-scale structure formation. This means that
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general relativity should be restored for a long time. Therefore, f ′ should roll down very

slowly. Combining Eqs. (4.7) and (4.8), one obtains

φ̈ = −3Hφ̇− V ′(φ) +
8πG

3
ρm. (4.27)

Consequently, when the field φ evolves slowly, we have

|3Hφ̇| � V ′(φ) ≈ 8πG

3
ρm. (4.28)

Note that ρm = ρm0/a
3 and ȧ = aH, where ρm0 is the matter density of the current Universe.

Taking the time derivative of V ′(φ) ≈ 8πGρm/3, we arrive at

V ′′ · φ̇ ≈ −8πG
ρm0

a4
ȧ = −8πGρmH ≈ −3HV ′,

and therefore

φ̇ ≈ −3H
V ′

V ′′
. (4.29)

Substituting Eq. (4.29) into (4.28) yields

|3φ̇H| ≈ 9H2 V
′

V ′′
� V ′ ≈ 8πG

3
ρm. (4.30)

Then we have

V ′′ � 9H2 ≈ 3 · 8πGρm. (4.31)

The condition expressed by Eq. (4.31) can be interpreted as follows. Note that the potential

V (φ) should have a minimum so that there could be a dark energy domination epoch in the

late Universe. In the early Universe, the field φ evolves slowly, and stays at the quasistatic

equilibrium of V ′(φ) ≈ 8πGρm/3 as shown in Eq. (4.28). Therefore, the field φ and the

matter density ρm are coupled. From this coupling, the field φ acquires a mass. When the

mass of φ is heavy [large V ′′(φ)], it is hard to excite φ. Then the field φ stays near 1 for

a long time. Consequently, general relativity is restored for a long time and the Universe

has a long matter domination epoch. The matter density decreases slowly. The field φ

then becomes light, and is eventually released from the coupling to the matter density

and approaches the de Sitter minimum of the potential V (φ). Note that we only consider

the case in which the potential V (φ) has a de Sitter minimum, like the case plotted in

Fig. 3.2. Correspondingly, the Universe transits from the matter domination epoch into the

dark energy domination epoch.
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Substituting Eq. (4.25) into (4.31), and noting that in the general relativistic limit R ≈
8πGρm, one obtains

f ′ � f ′′R. (4.32)

The condition for the recovery of general relativity is given by Eq. (4.31) or Eq. (4.32).

Equation (4.32) is equivalent to m(r) ≈ 0+, shown in Eq. (4.24). Equation (4.32) can be

interpreted via a comparison of the modification term and the main term of the function

f(R). We write the function f(R) as f(R) = R+A(R), where R is the main term and A(R)

is the modification term. If f(R) theory satisfies Eq. (4.26) at a certain time in the early

Universe, which means that |A(R)| � R and |A′(R)| � 1, there is a matter domination

epoch at that time. However, to make this matter domination and/or the general relativity

recovery last long enough, A′(R) should also change with respect to R more slowly than

1/R, namely A′′(R)� 1/R, as implied in Eq. (4.32).

The process of the field φ obtaining a mass from its coupling to the matter density is

very similar to the chameleon mechanism studied in the context of the Solar System tests of

f(R) gravity.49,64,66,72,84,85,97,128,131 In the chameleon mechanism, the field φ is coupled

to the matter densities of the Sun and of the background, respectively. The field φ acquires

a large mass from this coupling. Therefore, f(R) gravity could in principle evade the Solar

System tests.

In addition to having a long matter domination epoch in the early Universe, a viable

f(R) model should also have a stable dark energy domination epoch in the late Universe

to account for the cosmic acceleration. [The potential V (φ) needs to have a minimum.]

Generally, the parameters in viable f(R) models need to take values that can make a

trade-off between the two requirements.

4.4 Phase-space dynamics of the R lnR model

In this section, we study the cosmic dynamics of the R lnR model, as introduced in Chapter

3, in phase space.

f(R) = R

(
1 + α0 ln

R

R0

)
, (4.33)

where α0 and R0 are positive constants. The cosmic dynamics of f(R) gravity is described

by Eqs. (4.7)-(4.11), as shown in Sec. 4.2. For the R lnR model, the equations of motion
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(4.7)-(4.10) can be rewritten as

π ≡ φ̇, (4.34)

π̇ = −3Hπ − 1

3
Λe

φ
α0
−2

(φ− 2α0) +
8πG

3
ρm, (4.35)

Ḣ =
1

6
Λe

φ
α0
−2 − 2H2, (4.36)

ȧ = aH. (4.37)

The constraint equation (4.11) becomes

H2 +
π

φ
H − Λ

6φ
e
φ
α0
−2 − 8πG

3φ
(ρm + ρr) = 0. (4.38)

4.4.1 Phase-space dynamics in vacuum

For simplicity, we first consider the dynamics in vacuum, where both ρm and ρr are equal

to zero. In this case, the solutions to the constraint equation (4.38) are

H± =
1

2

−π
φ
±

√(
π

φ

)2

+
2Λ

3φ
e
φ
α0
−2

 . (4.39)

Since the domains of {φ, π,H} span from −∞ to +∞, it is hard to directly view the global

structure of the constraint surface in the space of {φ, π,H}. Instead, we use the Poincaré

compactification in the cylindrical coordinate system to transform φ, π, and H, respectively,

to
φP ≡ φ√

σ+φ2+π2
,

πP ≡ π√
σ+φ2+π2

,

HP ≡ H√
σ+H2

,

(4.40)

where σ is an arbitrary constant, and we set it to 12 for the R lnR model. In this way, the

constraint surface is compactified into a finite space, as shown in Fig. 4.1. The Hubble

parameter on the upper branch of the constraint surface is positive, corresponding to an

expanding Universe, whereas the lower branch corresponds to a contracting one. The
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(a) Constraint surface (b) Top view

Figure 4.1: Constraint surface and phase-space flows with ρm = 0 for the R lnR model,
with α0 = R0 = 1. The phase currents flow out of point A and move to point D. Point
A is a repeller, points B and C are saddle points, and point D is an attractor. Regarding
the trajectories in green (light color), the parts of them between A and C are not plotted
due to the difficulty in obtaining an accurate numerical integration near the boundary. The
shadings correspond to the values of HP . A color bar is not shown because the values of
HP can be seen from the z axis.

constraint surface is folded in the octants of (φ ≤ 0, π ≥ 0, H ≥ 0) and (φ ≤ 0, π ≤ 0, H ≤
0). On the folding line, which we also call a cutting edge, the solutions of H+ and H−

merge and become equal. This and Eq. (4.39) together imply that the cutting edge can be

described by

π± = ±
√
−2

3
Λe

φ
α0
−2
φ. (4.41)

When φ goes to −∞, the π± approach 0± and the cutting edge is almost closed, as shown

in Fig. 4.1. We denote the two ends of the cutting edge as pointB(φP = −1, πP = 0+, HP =

0+) and point B′(φP = −1, πP = 0−, HP = 0−), respectively. The two branches of the

constraint surface are disconnected. The reasons for this fact are explained below.

We consider the constraint equation (4.39). For positive φ, we have 2Λ exp(φ/α0 −
2)/(3φ) > 0. Consequently, we have H+ > 0 and H− < 0. For negative φ, the expansion

branch of the constraint surface belongs to the space of (φ < 0, π > 0), while the contrac-

tion branch belongs to the space of (φ < 0, π < 0). As shown in Fig. 4.1, the two branches

are close to each other around point B and point B′. As implied by Eq. (4.41), at point B,

πP = 0+, and at point B′, πP = 0−. Therefore, B and B′ are separated, and then the two
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branches are separated as well. In summary, the two branches of the constraint surface

are disconnected, although they both asymptote to the point (φP = −1, πP = 0, HP = 0)

when compactified.

In this paragraph and the next, the critical points on the constraint surface in vacuum

will be briefly discussed. More details are given in Sec. 4.4.2. In the vacuum evolution,

the phase-space flows stay on the constraint surface. Some typical trajectories of the flows

with HP > 0 are plotted in Fig. 4.1. There are four special points on the branch with HP > 0

of the constraint surface as listed below:

A : (φP = 0−, πP = 1, HP = 1),

B : (φP = −1, πP = 0+, HP = 0+),

C : (φP = 0+, πP = −1, HP = 1),

D :

(
φP = 0.5, πP = 0, HP =

√
Λ/(12α0)√

σ+Λ/(12α0)
= 0.083

)
.

At point A, the kinetic term πP is dominant over the field φP , φ̇P = −2, and π̇P = ḢP =

0. All of the phase currents flow out of point A and move to point D. Therefore, loosely

speaking, point A is a repeller. Point B is at one end of the cutting edge. At point B, the

field φP is dominant over the kinetic term πP , and φ̇P = π̇P = ḢP = 0. Moreover, near

point B, the currents slowly approach and then move away from point B. Thus, point B is

a saddle point. Similarly, point C is also a saddle point. At point C, the kinetic term πP is

dominant over the field φP . When ρm is equal to zero, Eq. (4.5) reads

φ̈+ 3Hφ̇+ V ′(φ) = 0. (4.42)

Therefore, on the upper branch of the constraint surface with HP > 0, due to the friction

force−3Hφ̇, the field φ will eventually arrive and stay at the minimum of the potential, where

V ′(φ) = 0, φ = 2α0, π = 0, and H =
√

Λ/(12α0). This minimum corresponds to point D in

Fig. 4.1, which is an attractor and is also called a de Sitter point. When the field φ comes

to this point, only dark energy exists in the Universe, with normal matter diluted away.

We project the phase diagrams onto the regular space (φ, π,H). Near the cutting edge,

the directions of the flows are described as

dπ

dφ

∣∣∣∣
flow

=
π̇

φ̇
= −(φ+ 1)

√
− Λ

6φ
e
φ
α0
−2
. (4.43)
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On the other hand, with Eq. (4.41), the slope of the tangent to the edge yields the same

expression. To conclude, the phase-space flows are tangential to the cutting edge and do

not enter the forbidden area enclosed by the edge. In other words, the constraint equation

forces the currents to stay on the surface. These conclusions also apply to the compactified

space {φP , πP , HP }.
The corresponding behavior of the phase currents on the lower branch of the constraint

surface with HP < 0 can be analyzed in a similar way. There are still four critical points on

this branch, as listed below:

A′ : (φP = 0+, πP = 1, HP = −1),

B′ : (φP = −1, πP = 0−, HP = 0−),

C ′ : (φP = 0−, πP = −1, HP = −1),

D′ : (φP = 0.5, πP = 0, HP = −0.083) .

The phase flows originate from the repeller point D′, and terminate at the attractor point

C ′. Point A′ and point B′ are saddle points.

4.4.2 Critical points

In this subsection, with the knowledge on dynamical analysis in the Appendix 4.8, we

classify the critical points mentioned in the last subsection. Use the notation in the Ap-

pendix 4.8, the matrix for the dynamical system {φP , ψP , HP } can be described as

M =



∂ ˙φP
∂φP

∂ ˙φP
∂πP

∂ ˙φP
∂HP

∂ ˙πP
∂φP

∂ ˙πP
∂πP

∂ ˙πP
∂HP

∂ḢP
∂φP

∂ḢP
∂πP

∂ḢP
∂HP


. (4.44)

For convenience, in computing the above matrix, we use the normal variables φ, π, and H

as intermediate one. For example, near the infinity critical points, we use

∂φ̇P
∂φP

≈
∂ ˙φP
∂φ

∂φ
∂φP

.
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(a) Trajectory (b) Eigenvalues of M

Figure 4.2: Eigenvalues of the matrix M near the critical point A. Along the trajectory in
(a), HP = 0.9999995. All the three set of eigenvalues are positive, so point A is a repeller.

We compute the eigenvalues of the matrix M along a trajectory near the critical points

A, B, and C. The results for point A are shown in Fig. 4.2. The three set of eigen-

values are all positive, implying that point A is a repeller. Near the critical point B, at

(φP = −0.99997, ψP = −0.00377, HP = 0.00110), the eigenvalues are −0.0111, 0.0005,

and −0.0151. These show that point B is a saddle point. Near the critical point C, at

(φP = 0.00489, ψP = −0.99998, HP = 0.99986), the eigenvalues are 2900, −1400, and 400.

Therefore, point C is a saddle point. It is so obvious that point D is an attractor, computa-

tions of the corresponding eigenvalues are skipped.

4.4.3 Phase-space dynamics in the presence of matter

The constraint surface described by Eq. (4.38) is three-dimensional when the matter or

radiation density is not zero. For ease of visualization, we explore the vector fields of

{φ̇P , π̇P , ḢP } on the slices whereHP = const in the three-dimensional space {φP , πP , HP },
with the scale factor a being taken as an implicit variable and ρr equal to zero.

Some typical slices of the vector fields {φ̇P , π̇P } with HP taking different values from −1

to 1 are shown in Fig. 4.3. The thinner (blue) arrows denote that ḢP < 0 at the positions

of the arrows, and the thicker (red) arrows are for ḢP > 0. The solid (black) line is the

intersection between the two-dimensional constraint surface of Eq. (4.39) and the slice of

HP = const. The dashed (cyan) line is the trace of π̇P = 0, and point C is at one end of
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Figure 4.3: Vector fields of {φ̇P , π̇P , ḢP } on the slices of HP = const for the R lnR model,
with α0 = R0 = 1. The thinner (blue) arrows denote that ḢP < 0 at the positions of the
arrows. The thicker (red) arrows are for ḢP > 0. The solid (black) line is the intersection
between the two-dimensional vacuum constraint surface and the slice of HP = const. The
dashed (cyan) line is the trace of π̇P = 0, where the flows change the direction of the π̇P
component. In (d), point D is an attractor. In (f), point B is a saddle point. In (h), point D′

is a repeller. In (i), point A′ is a saddle point and point C ′ is an attractor.
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(a) Trajectories with ρm > 0 (b) Top view

Figure 4.4: Some typical trajectories of the phase-space flows with ρm > 0 for the R lnR
model, with α0 = R0 = 1. Compared to the vacuum case, in the ρm > 0 case, the phase-
space flows still originate at point A and terminate at point D. Regarding the trajectory
plotted in a solid (blue) line, one part of it between A and C is not shown due to the
difficulty in obtaining an accurate numerical integration near the boundary.

this trace. The two-dimensional constraint surface described by Eq. (4.39) is the separation

surface for the signs of the matter density term. The matter density is positive in the space

enclosed by the constraint surface, and is negative outside the surface. The vector fields

and some typical trajectories of the phase-space flows can be combined together to study

the tendencies of the phase flows, as done below.

To complement the vector-field-slice approach, some typical trajectories of the phase-

space flows with ρm > 0 are plotted in Fig. 4.4. Note that although the trajectories for ρm <

0 may not be physically meaningful, we plot them in Fig. 4.5 for completeness. Compared

to the vacuum case, the phase-space flows still originate at point A and terminate at point

D, but the trajectories between point A and point D can be different from the vacuum

solutions. Some flows, such as those plotted with solid (cyan) and dashed (magenta) lines

in Fig. 4.4, behave similarly to those in the vacuum case shown in Fig. 4.1. The flows go

down from point A, then up, then make a turn and go down to point D. This is also shown

in Figs. 4.3(a)-(c). The thinner (blue) arrows near point A in Fig. 4.3(a) show the downward

movement from point A. The thicker (red) arrows near the boundary in Figs. 4.3(b) and (c)
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show the upward movement. The thinner (blue) and thicker (red) arrows near the dashed

(cyan) line in Figs. 4.3(b) and (c) show the turn and movement down to point D. Some

flows (well away from the constraint surface in vacuum), such as those plotted in dash-

dotted (red) and solid (blue) lines in Fig. 4.4, can be very different from those in the vacuum

case. The flow plotted with a dash-dotted (red) line goes directly downwards from point A

to point D. This behavior can also be observed from the thinner (blue) arrows in the region

−0.5 < φp < 0.5 and πp > 0 in Figs. 4.3(a)-(d). Regarding the trajectory plotted with

a solid (blue) line in Fig. 4.4, one part of it from point A to point C is not shown due to

the difficulty in obtaining an accurate numerical integration near the boundary. The part

of this trajectory from point C to point D goes down from point C, makes two turns, and

approaches point D. This is also shown by the thinner (blue) arrows at the corresponding

places in Figs. 4.3(b)-(d).

The fact that point D is still an attractor in the presence of matter is related to the

dynamics of the scale factor a. Equation (4.10) implies that ȧ is positive when the Hubble

parameter H is positive. Then the matter density keeps decreasing in the evolution and

asymptotically comes to zero. Correspondingly, the phase flows approach point D.

The flows with ρm < 0 are between or outside the two branches of the vacuum con-

straint surface. In the R lnR model, when H = HP = 0, Eq. (4.9) becomes

Ḣ =
R

6
=

1

6
R0 exp

(
φ− 1− α0

α0

)
> 0.

So ḢP is positive on the whole slice of HP = 0, as is also shown in Fig. 4.3(f). Therefore,

the flows from the repeller point A do not cross the slice of HP = 0. In fact, the flows from

point A for ρm < 0 still end at the attractor point D. Some flows from the repeller point D′

with ρm < 0 can cross the slice of HP = 0, and end at the attractor point D. These are

shown in Fig. 4.5.

Some slices of the vector fields {φ̇P , π̇P } with HP < 0 are shown in Figs. 4.3(g)-(i). The

typical behavior of the phase flows can be analyzed in a similar way as was done in the

case of HP > 0, and is not included.

4.5 Cosmological evolution of the R lnR model

In the previous section, we studied the global behavior of phase-space dynamics in f(R)

cosmology, where ρm and ρr are independent of the Hubble parameter, H. In this section,
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Figure 4.5: Some trajectories of phase flows with ρm < 0 for the R lnR model. The flows
marked by (blue) dashed, (magenta) dash-dot, (cyan) solid, and (black) solid lines originate
from point A, and terminate at point D. The flow marked as a (red) solid line starts from
point D′, crosses the slice of HP = 0, and ends at point D. The part between A and C for
the trajectory of the (black) solid line is not plotted due to the difficulty in obtaining accurate
numerical integration near the line of φ→ 0.
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we explore the physically more important solution where the scalar field φ tracks the matter

density evolution, and ρm and ρr are related to H by

8πG

3
(ρm + ρr) ≡ (Ωm + Ωr)H

2 =

(
Ωm,0

a3
+

Ωr,0

a4

)
H2

0 ,

where the “0” in the indices denotes that the quantities are measured today with z = 0. The

Ωi
′s are defined as Ωi = 8πGρi/(3H

2), where the index i refers to radiation or matter. At

high redshift, the field φ of this solution closely follows the minimum of the effective potential

Veff, which is defined by V ′eff = V ′(φ) − 8πGρm/3 [see Eq. (4.8)], until the field φ becomes

very light and “releases,” approaching the de Sitter minimum of the potential V (φ).

Equation (4.33) shows that the model is reduced to general relativity when R is equal to

R0. However, the field φ logarithmically runs with respect to X = 8πGρ/Λ, and the R lnR

model slowly deviates from general relativity. We set units so that R0 is equal to 1, and

let R be equal to R0 around the redshift z = 3.5 × 104, where the matter-radiation equality

takes place.89

The cosmological acceleration is a low-curvature issue. Consequently, f(R) gravity

should be reduced to general relativity at the high-curvature scale, and deviate from general

relativity at the low-curvature scale. However, in the R lnR model, the modification term is

not negligible at both the high- and low-curvature scales. In order to reduce this model to

general relativity at the high-curvature scale, the parameter α0 should be much less than

1. However, α0 cannot be too small because of the relation between the de Sitter curvature

and α0, Λ = R0e
−1/α0+1, and also because of the relation between the mass of the field

and α0. Note that the mass of the field φ is defined by

m2 ≡ V ′′(φ) =
1

3
Λe

φ
α0
−2
(
φ

α0
− 1

)
. (4.45)

A tiny α0 generates an extremely small value for Λ and a heavy mass for the field φ. Conse-

quently, the matter domination stage would last too long due to the extremely small value

of Λ, and the evolution of φ would be very slow due to its heavy mass, which is shown

in Figs. 4.6(a) and (d). With the same arguments, the parameter α0 cannot be too large

either. A large α0 would result in a short matter domination epoch (if such an epoch were

to exist) and a fast evolution of φ. These arguments are illustrated in Figs. 4.6(b) and (d),

respectively. Consequently, one needs to choose an intermediate value for α0. Letting

α0 take a value of 0.02, we plot the evolution of the Ωi
′s and weff in Fig. 4.6(c), and the

evolution of φ in Fig. 4.6(d). In this solution, matter-radiation equality takes place around a
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Figure 4.6: Cosmological evolution for the R lnR model with R0 = 1. (a) Cosmological
evolution with α0 = 0.002. A tiny value of α0 will generate an extremely small value of Λ(=
R0e

−1/α0+1), then a super long matter domination stage. (b) Cosmological evolution with
α0 = 0.04. A large α0 makes a small V ′′(φ) and then a fast evolution of φ. (c) Cosmological
evolution with α0 = 0.02. (d) Evolution of the field φ with α0 taking different values.
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redshift of z = 3250,89 and Ωm = 0.32 at z = 0. The field φ runs significantly depending on

the matter density, as shown in Eq. (3.24). Consequently, the effective dark energy density

also changes significantly as implied in Eq. (4.14). As a result, there is no ideal matter

domination epoch at high redshift. Moreover, weff is far away from the expected value of −1

in the late Universe for this model.

The equation of state weff oscillates as shown in Fig. 4.6. This is related to the initial

conditions in the numerical simulations, and can be explained as follows. At high redshift,

the field φ oscillates near the minimum of the effective potential Veff(φ), defined by V ′eff(φ) =

V ′(φ) − 8πGρm/3. [See Eq. (4.27).] The close dependence of weff on the kinetic terms of

φ̇ and φ̈ also makes weff oscillate.126,130 [See Eqs. (4.13), (4.14), and (4.15), which define

weff.]

In Sec. 4.3, we analyzed the cosmological viability of f(R) gravity, and concluded that

a heavy mass for the field φ would result in a slow evolution of φ and thus a long matter

domination epoch, and vice versa. These conclusions are verified by the evolution of the

Ωi
′s and φ, as shown in Fig. 4.6.

4.6 Phase-space dynamics of the Hu-Sawicki model

In the R lnR model, general relativity is recovered only for a particular range of curvature

scales due to the logarithmic running of f ′ with respect to the matter density. This makes it

hard for the R lnR model to have a sensible cosmological evolution. Actually, this problem

is alleviated in the modified logarithmic model

f(R) = R
a+ ln(R/R0)

1 + ln(R/R0)
= R

[
1− b

1 + ln(R/R0)

]
, (4.46)

where b = 1−a, because in this model f ′ asymptotes to a finite value and general relativity

is restored at the high-curvature scale. In this model, the running of the beta function,

β = −k(α − α∗)2, is essentially the same as in the R lnR model. k and α∗ are positive

constants. Therefore, this model can still generate a hierarchy. However, because of the

slow logarithmic running with R, the function f(R) still deviates noticeably from general

relativity from R = R0 to R� R0.

In the ΛCDM-like models, the scalar field f ′ is almost frozen when the Ricci scalar is

greater than the cosmological constant scale, and is released when the Ricci scalar is close

to the cosmological constant scale. Therefore, a model of this type has an advantage when
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Figure 4.7: The potential V (φP ), obtained via integration of Eq. (4.50), for the Hu-Sawicki
model, with C = 1.2 and R0 = 1. φP is a compactified coordinate obtained via the Poincaré
transformation, φp = φ/

√
1 + φ2.

it comes to generating a sensible cosmological evolution and avoiding the local tests. In

this section, we apply the techniques developed above to a typical example of ΛCDM-like

models: the Hu-Sawicki model. We consider one of the simplest versions of this model,

f(R) = R− CR0R

R+R0
, (4.47)

where C is a dimensionless parameter. With this choice,

f ′ = 1− CR2
0

(R+R0)2
, (4.48)

R = R0

[√
C

1− f ′
− 1

]
, (4.49)

V ′(φ) =
R3

3(R+R0)2

[
1 + (1− C)

R0

R

(
2 +

R0

R

)]
. (4.50)

Equations (4.48) and (4.50) show that as long as the matter density is much greater than

R0, the curvature R will trace the matter density well, φ will be close to 1 but will not cross

1, and general relativity will be restored. As implied in Eq. (4.50), in order for this model to

have a de Sitter attractor where V ′(φ) = 0, the parameter C needs to be greater than 1.

We set C to 1.2.

Integrating Eq. (4.50) leads to the potential V (φ), as plotted in Fig. 4.7, with the inte-

gration constant being set arbitrarily. The potential has three special points: two minimum
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(a) Constraint surface (b) Top view

Figure 4.8: Constraint surface and phase-space flows with ρm = 0 for the Hu-Sawicki
model, with C = 1.2 and R0 = 1. As in the R lnR model, point A is a repeller, points B
and C are saddle points, and point D is an attractor. Point C ′ is an attractor, and point
D′ is a repeller. Point E is a critical saddle point. It is also the only point connecting the
two branches, HP ≥ 0 and HP ≤ 0, of the constraint surface. In (b), the left boundary of
the constraint surface is defined by φ ≡ f ′ = 1. Regarding the trajectories in green (light
color), the parts of them between A and C are not plotted due to the difficulty in obtaining
accurate numerical integration near the boundary. The shadings correspond to the values
of HP . A color bar is not shown because the values of HP can be seen from the z axis.

points D, F , and one maximum point E. Points D and E are also shown on the constraint

surface in the vacuum case, as plotted in Fig. 4.8. However, point F is not shown in Fig. 4.8,

because its corresponding Hubble parameter is a complex number.

4.6.1 Phase-space dynamics in vacuum

We explore the phase-space dynamics of the Hu-Sawicki model using the Poincaré com-

pactification in Eq. (4.40). For this model, the parameter σ in Eq. (4.40) is set to 1, and

Eq. (4.48) implies that the left boundary of the phase space is constrained by φ ≡ f ′ = 1.

(Also see Fig. 4.7.)

We first study the structure of the vacuum constraint surface, which is plotted in Fig. 4.8.

It is similar to that in the R lnR model. The surface is folded in the octants of (φ ≤ 0, π ≥
0, H ≥ 0) and (φ ≤ 0, π ≤ 0, H ≤ 0). There are five critical points on the H ≥ 0 branch
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of the constraint surface for this model. When C and R0 take the values of 1.2 and 1,

respectively, the coordinates of these critical points are as follows:

A : (φP = 0−, πP = 1, HP = 1),

B : (φP = −0.884, πP = 0.412, HP = 0.227),

C : (φP = 0+, πP = −1, HP = 1),

D : (φP = 0.502, πP = 0, HP = 0.233) ,

E : (φP = −0.196, πP = 0, HP = 0) .

Similarly to the R lnR model, in the Hu-Sawicki model, point A is a repeller, points B

and C are saddle points, and point D is an attractor. Point E is a new critical saddle point.

It is on the cutting edge and also on one end of a critical line. Details regarding point E and

the critical line are discussed below.

In the three-dimensional phase space {φ, π,H}, the two-dimensional plane φ = 1 − C
is very special. From Eqs. (4.47) and (4.49), one can see that on this plane

f(R) = R = 0. (4.51)

The intersections between the constraint equation (4.11) in vacuum and the plane φ = 1−C
in the octant (φ ≤ 0, π ≥ 0, H ≥ 0) can be expressed as follows: on the vacuum H+ branch,

φ = 1− C, π = π, H = −π
φ
, (4.52)

and on the vacuum H− branch,

φ = 1− C, π = π, H = 0. (4.53)

The vacuum H+ and H− branches are obtained from the constraint equation (4.11) by

setting ρm = ρr = 0:

H± =
1

2

−π
φ
±

√(
π

φ

)2

− 2(f − φR)

3φ

 .
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The line given by Eq. (4.53) is a critical saddle line. With Eqs. (4.7)-(4.11) and (4.51), one

can see that, on this line, π̇ = Ḣ = 0. Consequently, ḢP is equal to zero on the transformed

line in the compactified phase space {φP , πP , HP }. The critical line is the bottom of the

HP ≥ 0 branch of the vacuum constraint surface. The corresponding critical line on the

HP ≤ 0 branch is the top of that branch. These two lines are connected by point E, for

which (φ = 1−C, π = 0, H = 0). At this point, φ̇ = π̇ = Ḣ = 0, and then φ̇P = π̇P = ḢP = 0.

Point E is a critical saddle point, as shown in Figs. 4.7 and 4.8. Moreover, point E is also

the only point connecting the two branches of HP ≥ 0 and HP ≤ 0 of the vacuum constraint

surface, as shown in Fig. 4.8. The combined critical line is shown by a solid (magenta) line

in Fig. 4.9(f).

The dynamics on the constraint surface of HP < 0 can be explored in a similar way, and

is omitted.

4.6.2 Phase-space dynamics in the presence of matter

Some typical slices for the vector fields of {φ̇P , π̇P } with HP taking different values in the

presence of matter are shown in Fig. 4.9. In the case of ρm > 0, the phase flows in the

Hu-Sawicki model move similarly to those in the R lnR model. Specifically, the flows start

from point A, and end at point D. However, in the case of ρm < 0, there is a difference

between the two models as discussed below.

In the Hu-Sawicki model, when H = HP = 0, Eq. (4.9) becomes

Ḣ =
R

6
=

Λ

6

[√
C

1− f ′
− 1

]
=

> 0 if f ′ > 1− C,

< 0 if f ′ < 1− C.
(4.54)

Consequently, on the whole slice of HP = 0, ḢP is positive at some places, and negative at

other places, which is also shown in Fig. 4.9(f). Therefore, i) some flows from the repeller

point A will terminate at the attractor point D as in the case of ρm > 0; ii) some flows will

connect the repeller point D′ to the attractor point D; iii) some other flows will cross the

plane of HP = 0, and end at the attractor point C ′(φP = 0+, φP = −1, HP = −1). These

are shown in Fig. 4.10. The case iii) is different from the R lnR model, in which the phase

flows do not move from the HP > 0 space into the HP < 0 space.

The phase-space dynamics of the modified logarithmic model given by Eq. (4.46), the
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Figure 4.9: Phase flows on the slices of HP = const for the Hu-Sawicki model, with C = 1.2
and R0 = 1. The thinner (blue) arrows denote that ḢP < 0. The thicker (red) arrows are
for ḢP > 0. The solid (magenta) line is the intersection between the two-dimensional
constraint surface and the slice of HP = const. The dashed (cyan) line is the trace of
π̇P = 0. The solid (black) line is defined by φ ≡ f ′ = 1. In (a), point A is a repeller and
Point C is a saddle point. In (b), point D is an attractor. In (c), point B is a saddle point.
In (f), point E is a saddle point and the solid (magenta) line is a critical saddle line. In (h),
point D′ is a repeller. In (i), point A′ is a saddle point and point C ′ is an attractor.
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Figure 4.10: Some typical trajectories of the phase flows with ρm < 0 for the Hu-Sawicki
model. The trajectory marked as a (blue) solid line originates from point A, and terminates
at point D. The trajectories of the (cyan) dash-dot, (black) dashed, and (magenta) solid
lines start from point A, and end at point C ′. The flow of the (red) solid line starts from point
D′, and ends at point D.

exponential model given by Eq. (4.55) (below),9,40,48,94 and the Tsujikawa (hyperbolic tan-

gent) model given by Eq. (4.56) (below)130 are also analyzed:

f(R) = R− b
[
c− exp

(
− R

R0

)]
, (4.55)

f(R) = R− b tanh

(
R

R0

)
. (4.56)

In Eqs. (4.55) and (4.56), b, c, and R0 are constants. When the models have a de Sitter

attractor with the parameters taking appropriate values, the phase-space dynamics is sim-

ilar to that of the Hu-Sawicki model. The noticeable differences are given below. In the

modified logarithmic model,

f ′ = 1− b

1 + ln(R/R0)
+

b

[1 + ln(R/R0)]2
≥ 1− b

4
.

Therefore, the left boundary of φ ≡ f ′ in the phase space of {φ, π,H} is constrained by

φ ≥ 1 − b/4. In the Tsujikawa model described by Eq. (4.56), the left boundary of φ in the
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phase space of {φ, π,H} is constrained by

φ ≡ f ′ = 1− b

R0
sech2

(
R

R0

)
≥ 1− b

R0
.

A critical point, labeled as E and at which f(R) = R = 0, is present in the Hu-Sawicki

model. However, a similar point is absent in the modified logarithmic model described by

Eq. (4.46) and the exponential model described by Eq. (4.55). This occurs because in the

modified logarithmic model the Ricci scalarR cannot be zero due to the logarithmic function

shown in f(R) and f ′ of this model, and in the exponential model f(R)|R=0 = −b · c 6= 0.

4.6.3 Cosmological evolution

In Sec. 4.3, the conditions for the existence of a matter domination epoch in the early

Universe for f(R) gravity were explored. These conditions can be expressed such that the

corrections should be less than the main terms at three orders of derivative with respect to

the Ricci scalar R. Namely, if we rewrite the function f(R) as f(R) = R+A(R), with A(R)

being the modification term, we will have

|A(R)| � R, |A′(R)| � 1, A′′(R)� 1

R
. (4.57)

We can now compare the cosmological evolution of the f(R) models discussed above with

the results of Eq. (4.57).

For the R lnR model expressed by Eq. (4.33), we have

A′′(R) =
α0

R
.

Under the balance of general relativity restoration in the early Universe and dark energy

domination in the late Universe, a value around 0.02 is chosen for α0. In this case, A′(R)

does not run slowly enough with respect to R to ensure an ideal matter domination epoch.

For the modified logarithmic model (4.46), we have

A′′(R) =
b

R

{
1

[1 + ln(R/R0)]2
− 2

[1 + ln(R/R0)]3

}
.

Therefore, in the early Universe where R is much greater than R0, A′′(R) in this model

runs more slowly than the one in the R lnR model, and hence has a better cosmological

evolution, as shown in Ref.66 The ΛCDM-like models (e.g., the Hu-Sawicki model) are very
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close to the ΛCDM model at high redshift. At low redshift, the modification term in the

function f(R) becomes important, and the dark energy is dominant enough to drive the

cosmic acceleration. In one of the simplest versions of the Hu-Sawicki model (4.47),

A′′(R) =
2CR0

(R+R0)3
� 1

R
, when R� R0.

Therefore, A′(R) moves more slowly with respect to R than the one in the modified loga-

rithmic model. Consequently, models of this type better fit the cosmological observations in

both the early and late Universe. The exponential model (4.55) and Tsujikawa (hyperbolic

tangent) model (4.56) are similar in terms of A′′(R) to the Hu-Sawicki model, and they have

similar cosmological evolution as well.9

4.7 Conclusions

In this chapter, we studied cosmological evolution in f(R) gravity, and obtained the cos-

mological viability conditions by using the scalar field description of f(R) gravity. In the

early Universe, the field φ(≡ f ′) is coupled to the matter density, acquiring a mass from

this coupling. It has a slow-roll evolution. Consequently, general relativity is recovered, and

a matter domination stage is ensured in the early Universe. In the late Universe, when

the scalar curvature is around the cosmological constant scale, the field φ will be released

from its coupling to the matter density and approach the de Sitter minimum of the potential

V (φ). Then, the dark energy will be dominant and drive the cosmic speed-up.

Phase-space dynamics and cosmological evolution of the R lnR model and Hu-Sawicki

model were studied in detail. The R lnR model has the feature of being singularity-free,

which is an advantage in terms of the hierarchy problem between the cosmological accel-

eration scale and the Planck scale. On the other hand, in this model, general relativity

can only be restored at a certain high-curvature scale due to the logarithmic running of f ′

with respect to the matter density. Therefore, it is hard for this model to have a sensible

cosmological evolution in the early Universe. The Hu-Sawicki model is very close to the

ΛCDM model, and can generate a cosmological evolution compatible with the observations

of both the early and late Universe.

In our explorations of phase-space dynamics, for simplicity, the radiation density was

set to zero. In order to obtain a global picture of the phase space, we compactified the

infinite phase space into a finite space via the Poincaré transformation. The R lnR model
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and Hu-Sawicki model have similar phase-space dynamics. In the vacuum case where the

matter density is zero, the phase space is three-dimensional, and the constraint surface

is two-dimensional. The phase-space dynamics was explored in the three-dimensional

phase space {φ, π,H} without difficulty. On the expansion branch of the phase space,

the constraint surface has a repeller and a de Sitter attractor. On the contraction branch,

the constraint surface has an attractor and a de Sitter repeller. When the matter density

is not zero, the phase space {φ, π,H, a} is four-dimensional, and the constraint surface

is three-dimensional. For ease of visualization, we projected the four-dimensional phase

space {φ, π,H, a} onto the three-dimensional phase space {φ, π,H} by taking the scale

factor a as an implicit variable. It is not convenient to study the phase-space dynamics

on the three-dimensional constraint surface directly. Instead, we cut the three-dimensional

surface into two-dimensional slices of HP = const, and explored the vector fields of the

phase flows on the slices.

As a supplement, we plotted some typical trajectories of the phase flows. When the

matter density is not zero, the constraint surface has the same repellers and attractors as

in the vacuum case. Some trajectories between the repeller and the attractor are similar

to those in the vacuum case, while some others are not. We also explored the phase-

space dynamics of some other f(R) models, such as the modified logarithmic model, the

exponential model, and the Tsujikawa model. The results are similar to those of the Hu-

Sawicki model.

We presented some generic features of the phase-space dynamics in f(R) gravity in

this chapter. We developed new techniques to explore the phase-space dynamics. These

techniques are very general and can be applied to other similar dynamical systems.

4.8 Appendix: classification of critical points in a dynamical

system

In this Appendix, we briefly discuss how to classify the critical points. Take a two-dimensional

autonomous system as an example.

ẋ = f(x, y), ẏ = g(x, y),
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where the dot (·) denotes time derivative. Assume (xc, yc) is a critical point for this system.

Namely, at this point, ẋ = ẏ = 0. Consider a small perturbation around this point.

x = xc + δx, y = yc + δy.

Then we have
d

dt

(
δx

δy

)
= M

(
δx

δy

)
, (4.58)

where

M =

(
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)
. (4.59)

We denote λ1 and λ2 as the two eigenvalues of the matrix M . Then the solutions to the

above equation are

δx = C1e
λ1t + C2e

λ2t, δy = C3e
λ1t + C4e

λ2t.

With the above equation, the stability of the critical point can be stated as follows. If the

eigenvalues are real and distinct, the critical point is either a node or a saddle.

• It is a stable node (attractor) when λ1 < 0 and λ2 < 0.

• It is an unstable node (repeller) when λ1 > 0 and λ2 > 0.

• It is a saddle point when λ1 · λ2 < 0.

If the eigenvalues are complex numbers in the form of α± βi, the critical point will be a

spiral point or a centre.

• It is a stable spiral point (attractor) when α < 0.

• It is an unstable spiral point (repeller) when α > 0.

• It is center when α = 0.

If the eigenvalues are real and repeated, then the critical point is either a star or an

improper node. In the case of improper node, trajectories are tangential to the sole eigen-

vector.147



Chapter 5

Solar System tests of f(R) gravity

In this chapter, we discuss the Solar System tests of f(R) gravity. When the Sun sits

in a vacuum background, the field f ′ is light, which leads to a metric different from the

observations. We reobtain this result in a simpler way by directly focusing on the equations

of motion for f(R) gravity in the Jordan frame. The discrepancy between the metric in

f(R) gravity and the observations can be alleviated by the chameleon mechanism. The

implications of the chameleon mechanism for the form of the function f(R) are discussed.

Considering the analogy of the Solar System tests to the false vacuum decay problem,

the effective potentials in different cases are also explored. A combination of analytic and

numerical approaches enables us to ascertain whether an f(R) model can pass the Solar

System tests or not. This chapter is mainly based on Ref.66

5.1 Introduction

A viable f(R) model should generate cosmic dynamics compatible with the cosmological

observations, and also pass the Solar System tests, which place strong constraints on f(R)

gravity. The metric for the spherical spacetime for the Sun predicted by general relativity

matches well with the observations. General relativity predicts that the parameterized post-

Newtonian (PPN) parameter γ should be equal to 1, and the observational results show

that γ = 1 +O(10−4).21,119,144 Therefore, general relativity should be recovered from f(R)

gravity in the Solar System. However, if the Sun sits in a vacuum, the scalar field f ′ will

be very light, which will generate a metric considerably different from the observations. In

60
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this chapter, we rederive this result in a simpler way by directly considering the equations

of motion for f(R) gravity in the Jordan frame.

General relativity could be recovered through the chameleon mechanism. In this mech-

anism, the scalar field f ′ is coupled to the matter density of the environment. f ′ acquires

a mass from the coupling, and then is suppressed by the mass, such that f(R) gravity

can pass the Solar System tests. The chameleon mechanism is usually implemented in

the Einstein frame, in which the condition on the existence of a thin shell is obtained in

Refs.84,85 However, the matter density and the transformed scalar field are coupled in a

complex way in the Einstein frame. Note that f(R) gravity is defined in the Jordan frame,

and the picture is more intuitive in the Jordan frame, in which the coupling between the mat-

ter density and the scalar field f ′ has a much simpler form than in the Einstein frame. In

this chapter, we discuss the chameleon mechanism in the Jordan frame, and also explore

the implications of this mechanism for the form of the function f(R).

In addition to analytical methods, a numerical approach provides another efficient way

to study how the scalar field f ′ behaves in the effective potential. Taking the R lnR and

Hu-Sawicki models as examples, we run the numerical experiments solving the equation

of motion for f ′ in different configurations. The results verify the arguments for the thin-

shell condition obtained in the Jordan frame and the thin-wall approximation condition in

the false-vacuum decay scenario, and further clarify whether an f(R) model can avoid the

Solar System tests or not.

This chapter is organized as follows. In Sec. 5.2, we introduce the framework of the So-

lar System tests of f(R) gravity. In Sec. 5.3, a case where the Sun sits in a vacuum back-

ground is discussed. In Sec. 5.4, working in the Jordan frame, we explore the chameleon

mechanism, and its implications for the form of f(R). In Sec. 5.5, the false-vacuum decay

scenario is discussed. In Sec. 5.6, numerical computations are performed to verify the

thin-shell condition. In Sec. 5.7, the results are summarized.

5.2 Framework

5.2.1 Basic equations

As discussed in Chapter 2, the equation of motion for f ′ ≡ φ is

�φ = V ′(φ) +
8πG

3
T, (5.1)
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where

V ′(φ) ≡ dV

dφ
=

1

3
(2f − φR). (5.2)

The spherically symmetric coordinate system inside and outside the Sun is set up as

ds2 = −N(r)dt2 +
1

B(r)
dr2 + r2dθ2 + r2 sin2 θd2φ, (5.3)

where r is the radius. In these coordinates, the equations of motion for f(R) gravity88 are

φ

r2
(−1 +B + rB′) = −8πGρ− 1

2
(φR− f)−B

[
φ′′ +

(
2

r
+
B′

2B

)
φ′
]
, (5.4)

φ

r2

(
−1 +B + rB

N ′

N

)
= 8πGp− 1

2
(φR− f)−B

(
2

r
+
N ′

2N

)
φ′, (5.5)

where the prime (′) denotes the derivative with respect to r, ρ is matter density, and p is

pressure. The trace equation in the coordinate system described by Eq. (5.3) reads

B

[
φ′′ +

(
2

r
+
B′

2B
+
N ′

2N

)
φ′
]

=
8πG

3
(−ρ+ 3p) + V ′(φ). (5.6)

When the gravitational field is weak and ρ� p, Eq. (5.6) can be approximated as

φ′′ +
2

r
φ′ = −8πG

3
ρ+ V ′(φ). (5.7)

The boundary conditions are

φ(r)|r=∞ = Const,
dφ

dr

∣∣∣∣
r=0

= 0. (5.8)

We will use the above formulas to explore the behaviors of f(R) gravity in the Solar System,

and compare the theoretical results with the observations in the PPN formalism.

5.2.2 Parameterized post-Newtonian formalism

Generally, isotropic coordinates are used in the PPN formalism,19,34,143 while it is conve-

nient to express the metric outside the Sun in the spherical coordinates138

ds2 = −

[
1− 2α

GM

r
+ 2(β − αγ)

(
GM

r

)2
]
dt2 +

(
1 + 2γ

GM

r

)
dr2 + r2dΩ2, (5.9)
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where α, β, and γ are PPN parameters, and M is the solar mass. In general relativity,

α = β = γ = 1, and the prediction of α = 1 follows from the empirical definition of the mass

M . A centripetal acceleration for a slowly moving particle far from the center of the Sun is

−g = −Γrtt =
1

2

∂gtt
∂r

= −αGM
r2

, (5.10)

and the solar mass is measured by setting g to MG/r2. Therefore, we must set α to 1.138

Then we can rewrite Eq. (5.9), to the first order of MG/r, as

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1 + γ

2GM

r

)
dr2 + r2dΩ2. (5.11)

A light pulse will be deflected by the Sun when it travels around the Sun. We denote d as

the closest distance between the light pulse and the center of the Sun. Then, to the first

order of MG/d, the deflection angle for the metric Eq. (5.11) can be expressed as138

δθ =

(
1 + γ

2

)
4M

d
, (5.12)

which is the same as the one derived in isotropic coordinates.143 In general relativity, γ is

equal to 1 and then the deflection angle δθGR is equal to 4M/d. The results from VLBI (very-

long-baseline radio interferometry) observations show that γ−1 = (−1.7±4.5)×10−4.119,144

5.3 The metric for the Sun sitting in a vacuum background

5.3.1 The metric

In f(R) gravity, if we assume that the Sun sits in a vacuum, the metric outside the Sun

is dramatically different from the observations. In Refs.,34,49,72,79,88,123,145 the metric

Eq. (5.29) is obtained by a perturbation method or by transforming f(R) theory from the

Jordan frame into the Einstein frame. In this thesis, we will recompute the metric in a

simpler way by directly focusing on the equations of motion in the Jordan frame.

We assume that the Sun is sitting in a vacuum, and that in Eq. (5.7) V ′(φ) is negligible

in comparison to φ′′ and 2φ′/r. Note that at infinity, φ is expected to be close to the de Sitter

value φ0, for which V ′(φ)|φ=φ0 = 0. Then, the solution to Eq. (5.7), inside and outside the

Sun, can be written as

φ(r)|interior ≈ φ0 +
ε

2r0

[
3−

(
r

r0

)2
]
, (5.13)
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φ(r)|exterior ≈ φ0 +
ε

r
, (5.14)

where ε = 2GM/3, and r0 is the radius of the Sun. When both (φR − f)/2 and p can be

neglected, Eqs. (5.4) and (5.5) become

1

r2
(−1 +B + rB′) ≈ − 2

3φ0
8πGρ, (5.15)

N ′

N
≈

φ
r2

(1−B)− 2B
r φ
′

B
(
φ
r + φ′

2

) . (5.16)

Note that Eq. (5.15) differs from the corresponding equation in general relativity only by a

factor of 2/(3φ0). This means that the solutions of B(r) inside and outside the Sun can be

written as

B|interior ≈ 1− 2ε1
r0

(
r

r0

)2

, (5.17)

B(r)|exterior ≈ 1− 2ε1
r
, (5.18)

where ε1 = 2GM/(3φ0). Substituting Eqs. (5.13)(5.17) and (5.14)(5.18) into (5.16) yields

the solutions for N(r) inside and outside the Sun, respectively,

N(r)|interior ≈ exp

[
4ε1
r0

(
r

r0

)2

+ C1

]
, (5.19)

N(r)|exterior ≈ C2

(
1− 4ε1

r

)
. (5.20)

Setting C2 to 1 and requiring N(r) to be continuous at r equal to r0, we have

N(r)|exterior ≈ 1− 4ε1
r
, (5.21)

N(r)|interior ≈ 1− 8ε1
r0

+
4ε1
r0

(
r

r0

)2

. (5.22)

In summary,

φ(r) ≈


φ0

{
1 + ε1

2r0

[
3−

(
r
r0

)2
]}

for r < r0,

φ0

(
1 + ε1

r

)
for r > r0,

(5.23)
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B(r) ≈


1− 2ε1

r0

(
r
r0

)2
for r < r0,

1− 2ε1
r for r > r0,

(5.24)

N(r) ≈


1− 8ε1

r0
+ 4ε1

r0

(
r
r0

)2
for r < r0,

1− 4ε1
r for r > r0.

(5.25)

For comparison, we also list the corresponding quantities in general relativity: φ(r) is al-

ways equal to 1 and

BGR(r) ≈


1− 3ε

r0

(
r
r0

)2
for r < r0,

1− 3ε
r for r > r0,

(5.26)

NGR(r) ≈


1− 6ε

r0
+ 3ε

r0

(
r
r0

)2
for r < r0,

1− 3ε
r for r > r0.

(5.27)

More generally, when the matter density and the radius of the Sun are large enough

for some f(R) models, φ(r) could be almost constant at 0 < r < r1 < r0, therefore

V ′(φ) − 8πGρ/3 ≈ 0. Note that in this case the chameleon mechanism is functioning. At

r1 < r < r0, the field φ(r) varies with r, φ′′ + 2φ′/r = −8πGρ/3 + V ′(φ). In this case, the

solutions of B(r) and N(r) are a bit more complicated. However, the forms of φ(r), B(r),

and N(r) will not change outside the Sun, except that in the definition of ε1, M is replaced

by

Meff ≈ 4π

∫ r0

r1

[
ρ− 3V ′(φ)

8πG

]
r2dr. (5.28)

5.3.2 Comparison of theoretical results and observations

Substitution of Eqs. (5.18) and (5.21) into (5.3) yields

ds2 = −
(

1− 8

3φ0

GM

r

)
dt2 +

(
1 +

4

3φ0

GM

r

)
dr2 + r2dΩ2. (5.29)

This result is considerably different from the observations as discussed in Sec. 5.2.2. This

difference can be explained as follows. Compared to general relativity, in f(R) gravity,
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there is one more degree of freedom f ′. Equivalently, an extra force is operating. This

force affects the metric and then the trajectory of the light pulse. In the next section, we will

discuss the chameleon mechanism, in which the degree of freedom f ′ is suppressed and

therefore f(R) gravity may avoid the Solar System tests.

In Refs.,19,38 a PPN parameter γ equal to 1 is obtained via a linear perturbation of the

metric for f(R) gravity in flat Minkowski space. In some f(R) models, e.g., f(R) = R+αR2,

where α is a parameter, the de Sitter curvature [obtained from V ′(φ) = 0] is zero and

hence the background space can be Minkowski space. However, in the dark energy f(R)

gravity, the curvature of the background is not equal to zero, but equal to the cosmological

constant. A linearized analysis in the de Sitter space will lead to the metric described by

Eq. (5.29).34,123

5.4 Chameleon mechanism

5.4.1 Chameleon mechanism in the Einstein frame

The discrepancy between the theoretical results and observations in the Solar System

tests of f(R) gravity could be avoided through the chameleon mechanism.49,50,84,85,123

The f(R) gravity can be transformed into the Einstein frame. The field φ is rescaled to

φ̃ =
√

3/2mpl lnφ, where mpl is the Planck mass and 8πG = m−2
pl . We can consider that

the Sun sits in the Solar System background, which has a nonzero matter density. The new

field φ̃ can acquire a mass from its coupling to the matter density of the environment both

inside and outside the Sun. The field φ̃ is suppressed by this mass. In order to avoid the

Solar System tests, the field φ̃ should be suppressed to satisfy49

|φ̃∞min − φ̃
c
min|

Φc

√
3/2

mpl
≤ 3.5× 10−5, (5.30)

where Φc(≈ 10−6) is the Newtonian potential on the Sun’s surface.

5.4.2 Chameleon mechanism in the Jordan frame

We present the chameleon mechanism in the Jordan frame in this section, which has a

simpler form than in the Einstein frame. General relativity predicts that γ is equal to 1,

which matches the observations very well. By comparing the equations of motion in f(R)
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gravity, (5.4) and (5.5), with those in general relativity,

1

r2
(−1 +B + rB′) = −8πGρ, (5.31)

1

r2

(
−1 +B + rB

N ′

N

)
= 8πGp, (5.32)

one can see that in order to obtain a γ equal to 1 in f(R) gravity, f(R) gravity should be

reduced to general relativity in the Solar System. The corresponding matter density ranges

from ρ ≈ ρSun ∼ g/cm3 to ρ ≈ ρSolar-System ∼ 10−8g/cm3,

f(R) ≈ R, and f ′ ≈ 1. (5.33)

Therefore, with Eq. (5.7), which is the equation of motion for φ, we obtain that, from inside

the Sun to places far away from the Sun, the following equation should be satisfied,

V ′(φ)− 8πG

3
ρ ≈ 0. (5.34)

As will be discussed in Sections 5.5 and 5.6 and as plotted in Figs. 5.4 to 5.7, when the

radius of the Sun/sphere r0 is large enough and the density of the Sun/sphere is high

enough, inside the Sun/sphere, φ will stay at the state described by Eq. (5.34), and switch

to another state across a thin shell near the boundary. The thin shell is plotted in Fig. 5.1.

Taking the spatial coordinate r in Eq. (5.7) as the “time” coordinate,

φ̈+
2

r
φ̇ = −

[
−V ′(φ) +

8πG

3
ρ

]
. (5.35)

Then, as shown in Fig. 5.2, points B and C correspond to the respective quasistationary

states for the field φ outside and inside the Sun, and |φB − φC | � 1. However, if the matter

density of the environment is zero, the field φ will move to Point A, and a metric Eq. (5.29)

different from the observations will be obtained.

When φ′ → 0 and φ′′ → 0, Eqs. (5.4) and (5.5) become

φ

r2
(−1 +B + rB′) = −8πGρ− 1

2
(φR− f), (5.36)

φ

r2

(
−1 +B + rB

N ′

N

)
= 8πGp− 1

2
(φR− f). (5.37)

Letting η1 = 8πGρ+ (φR− f)/2 and η2 = −8πGp+ (φR− f)/2, we obtain

B(r) ≈ 1 +
C1

r
− η1

3
r2, (5.38)
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Figure 5.1: Thin shell. When the radius of the Sun/sphere r0 is large enough and the
density of the Sun/sphere is high enough, inside the Sun/sphere, φ will stay at the state
described by V ′(φ)− 8πGρ/3 ≈ 0, and switch to another state across a thin shell ∆r0 near
the boundary.

A

B

C

V′(φ)8πG
3 ρ

A: de Sitter point

B: Far away from the Sun

C: Near the Sun

φ

−
V
(φ
)

Figure 5.2: Description of the chameleon mechanism in the Jordan frame.
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N(r) ≈ C2 exp

[
−
∫
C1/r

2 + (η2 − η1/3)r

1 + C1/r − η1r2/3
dr

]
. (5.39)

When η1r � C1/r
2 and η2r � C1/r

2, one obtains

B(r) ≈ N(r) ≈ 1 +
C1

r
, (5.40)

and γ ≈ 1.

5.4.3 Requirements on the form of the function f(R)

The requirements on the fields φ̃ and φ to pass the Solar System tests have been dis-

cussed in the above two subsections. In this subsection, we study the implications of these

requirements on the form of the function f(R).

Consider a small variation of Eq. (5.34):

V ′′(φ) · δφ ≈ 8πG

3
δρ. (5.41)

As discussed in the above subsection, when general relativity is restored, we have R ≈
8πGρm and |δφ| � 1. These together with Eq. (5.41) imply that

|δφ| ≈ 8πG

3

|δρ|
|V ′′(φ)|

∼ R

|V ′′(φ)|
� 1. (5.42)

With Eq. (5.2) defining V ′(φ), we have

V ′′(φ) =
f ′ − f ′′R

3f ′′
. (5.43)

Substitution of Eq. (5.43) into Eq. (5.42) yields that

f ′ � f ′′R. (5.44)

Equation (5.44) can be interpreted as follows. We write the function f(R) as

f(R) = R+A(R), (5.45)

where R is the main term and A(R) is the modification term. Then Eqs. (5.33) and (5.44)

imply that the corrections should be smaller than the main terms at three orders of deriva-

tive:

|A(R)| � R, |A′(R)| � 1, A′′(R)� 1

R
. (5.46)
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If general relativity is restored inside the Sun, there should be |A(R)| � R and |A′(R)| �
1. To guarantee that general relativity recovery is valid from inside the Sun to places far

away from the Sun, A′(R) should also change considerably slowly with respect to R, and

Eq. (5.44) shows that the change should be slower than 1/R.

In addition to the Solar System tests, f(R) gravity should also be reduced to general

relativity in the early Universe so that large-scale structure can be formed. Therefore,

the recovery requirements on the f(R) form in the two cases are essentially same. The

derivation of Eq. (5.46) is very similar to the corresponding one in the study of cosmological

evolution, as was discussed in Chapter 4. On the other hand, f(R) gravity should deviate

from general relativity at the low-curvature scale, so that a cosmic acceleration can be

generated in the late Universe. Therefore, the parameters in f(R) models should take

appropriate values to balance the requirements from both high and low-curvature scales.

5.5 False vacuum decay and Solar System tests of f(R) grav-

ity

From the mathematical point of view, the Solar System tests of f(R) gravity are very similar

to the false vacuum decay discussed in Ref.41 The conclusions in Ref.41 provide a pictorial

description of the thin shell problem in f(R) gravity. In this section, we first briefly introduce

the scenario of false vacuum decay, then discuss the Solar System tests of f(R) gravity

using the arguments of this scenario.

5.5.1 False vacuum decay

Consider a single scalar field in four-dimensional spacetime

L =
1

2
∂µφ∂

µφ− U(φ). (5.47)

Let U possess two relative minima, φ±, only φ− is an absolute minimum as shown in

Fig. 5.3. Assume the energy difference between the two minima, ζ, is tiny, and denote

Umax as the local maximum of U in the first order of ζ. If φ stays at the minimum φ+ initially,

quantum effects can make φ penetrate the barrier and approach φ−. Thus, φ+ is called a

false vacuum. The Euclidian (imaginary-time) equation of motion for φ is(
∂2

∂τ2
+∇2

)
φ = U ′(φ), (5.48)
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where τ = it, and the prime denotes differentiation with respect to φ. Define ρ = (τ2 +

|x|2)1/2. Then, in the three-dimensional spherical symmetry case, Eq. (5.48) becomes

d2φ

dρ2
+

3

ρ

dφ

dρ
= U ′(φ). (5.49)

The boundary conditions are set as

φ(ρ)|ρ=+∞ = φ+,
dφ

dρ

∣∣∣∣
ρ=0

= 0. (5.50)

Equation (5.49) can be studied in the language of classical mechanics. Taking ρ as the

“time” variable, the field φ moves in −U(φ) as shown in Fig. 5.3(b). Assume φ stays very

close to φ− initially. Due to friction, φ will remain close to φ− until some very long time

after. The field will run through the valley quickly, then approach φ+ very slowly. The place

where φ moves fast is called the thin-wall. The condition for the validity of the thin-wall

approximation can be equivalently expressed in the following three forms:41

ζ

8Umax
� 1⇐⇒ ∆a

a
� 1⇐⇒

∆
(
µ2
)

µ2
� 1. (5.51)

With the illustration of Fig. 5.3, ∆a = |a+−a−|, a = (a++a−)/2, µ2 = [U ′′(φ+) + U ′′(φ−)] /2,

and ∆
(
µ2
)

= |U ′′(φ+) − U ′′(φ−)|. Next, we will use these results to examine the Solar

System tests of f(R) gravity.

5.5.2 Solar System tests of f(R) gravity

It is possible to rewrite Eq. (5.7) as

φ′′ +
2

r
φ′ = V ′eff(φ), (5.52)

where

V ′eff(φ) = −8πG

3
ρ+ V ′(φ). (5.53)

The boundary conditions are described by Eq. (5.8). The dynamics of φ(r) defined by

Eqs. (5.7)-(5.8) are almost identical to the scenario of false vacuum decay, except that the

spacetime has one dimension less in the former than in the latter.

For convenience, one may take the spatial coordinate as the “time” coordinate, and

rewrite Eq. (5.52) in a “dynamical” form

φ̈+
2

r
φ̇ = −

[
−V ′eff(φ)

]
, (5.54)
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Umax

φ+ φ
−

ζ

a+ a
−

φ

U
(φ
)

φ+ φ
−

φ

−
U
(φ
)

(a) (b)

Figure 5.3: Instanton in false vacuum decay. (a) Pictorial description of the thin-wall ap-
proximation condition expressed by Eq. (5.51). (b) The inverted potential, −U(φ). In the
beginning, the field φ quasistatically stays at the right maximum of the inverted potential
for a long “time” due to the large friction force 2φ̇/r. Then, after a long “time” (if r is large
enough), the friction force becomes negligible, the field φ will run through the valley instantly
and then slowly approach the left maximum of −U(φ).

where the overdot still denotes the derivative with respect to the spatial coordinate r. The

field φ is required to satisfy the boundary conditions described by Eq. (5.8). For f(R)

models satisfying the conditions expressed by Eq. (5.46), general relativity can be well

restored when the matter density is much greater than the cosmological constant. In this

case, the field φ(≡ f ′) is always very close to 1 from inside the Sun to places far away

from the Sun, and will have a fast transition between the values inside and outside the Sun.

Consequently, the two maxima of−Veff for these models are almost at the same “height”. In

the beginning, the field φ quasistatically stays at the right maximum of the inverted potential

−Veff for a long “time” due to the large friction force 2φ̇/r. Then, after a long “time” (when r

is large enough), the friction force becomes negligible such that the field φ will run through

the valley instantly and then slowly approach the left maximum of −Veff. In this case, φ is

an instanton, and has a thin shell across the Sun’s surface. However, for f(R) models not

well satisfying the condition expressed by Eq. (5.46), general relativity may be recovered

only for a very short period of matter density, and the field φ can deviate significantly from 1

from inside the Sun to places far away from the Sun. Then, a slow transition for the field φ

between the values inside and outside the Sun will take place. In this case, the two maxima

of the effective potential can be quite different. Both the instanton and noninstanton cases

will be numerically implemented in the rest of this chapter.
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5.6 Numerical computations

In order to verify the analytic arguments in Secs. 5.4 and 5.5, we numerically investigate

the profile of φ(r) for a sphere (including the Sun) sitting in a background with nonzero

matter density. When the function f(R) can trace the Ricci scalar R closely enough in

the Solar System, the field φ will be very close to 1, and has a fast but tiny drop near the

surface of the Sun. The two maxima of the effective potential will be almost equally high,

and the field φ is an instanton across the valley of the effective potential. However, if the

function f(R) deviates greatly from the Ricci scalar R in the Solar System, the field φ will

change significantly from 1 and will have a long-term transition between the values inside

and outside the Sun. Consequently, the heights of the two maxima of the effective potential

can be very different, and the corresponding f(R) model will have difficulty in passing the

Solar System tests. To justify these results, in this section, we will numerically explore

the behaviors of φ(r) in the Solar System, taking the R lnR and Hu-Sawicki models as

examples.

5.6.1 Numerical computations for the R lnR model

We consider the R lnR model as introduced in Chapter 3,

f(R) = R

(
1 + α0 ln

R

R0

)
, (5.55)

where α0 and R0 are positive constants. For this model, the de Sitter curvature is

Λ ≡ R0e
− 1
α0

+1
. (5.56)

The function f(R) can be rewritten as

f(R) = R(φ− α0), (5.57)

with

φ ≡ f ′ = 1 + α0 + α0 ln
R

R0
. (5.58)

When φ′′ and 2φ′/r are negligible compared to V ′(φ) and 8πGρ/3 in Eq. (5.7), one obtains

φ ≈ 2α0 + α0W (X), (5.59)



CHAPTER 5. SOLAR SYSTEM TESTS OF F (R) GRAVITY 74

where X = 8πGρ/Λ, and W (X) is the Lambert W function. Equations (5.57) and (5.59)

show that, at the general-relativistic limit, φ ≈ 1, R ∼ R0, and

α0 ≈
1

W (X)
� 1. (5.60)

W (X) ≈ ln(X) when X � 1. Then, with Eq. (5.59), φ is logarithmically dependent on X

when X � 1. This model is therefore reduced to general relativity only for a certain period

of curvature or matter density even at the high-curvature scale.

Regarding the low-curvature scale, in order for f(R) gravity to generate a cosmic ac-

celeration in the late Universe, the de Sitter curvature, and hence α0, cannot be too small.

[See Eq. (5.56).] Consequently, an appropriate value for α0 needs to be chosen to recon-

cile the tension between the requirements at the high- and low-curvature scales. Under the

reconciliation, the running of φ makes it hard for the R lnR model to pass the Solar System

tests, as discussed below.

Using Newton’s iteration method, we numerically solve Eq. (5.7) to obtain φ(r) for a

sphere (which can be the Sun) in a background with nonzero matter density in different

configurations. As far as the units are concerned, in this chapter, we set the parameters

to be dimensionless. We set the radius of the Sun r0 to 1, in which case the densities

of the Sun, the Solar System and the dark energy are 2.1 × 10−6, 6 × 10−14 and 10−34,

respectively. We describe the matter density profile around the sphere approximately as

ρ =
ρsphere

1 + e10(r−r0)
+ ρbackground. (5.61)

For simplicity, we set R0 to 1. We consider the following three cases in sequence: i) a thin

shell of φ(r) exists, ii) a thick shell of φ(r) exists, and iii) a solar case, where the field φ

does not sit at one minimum of Veff(φ) inside the Sun, and a shell does not exist.

Generally, a thin-shell solution of φ(r) could exist, when i) the matter densities of the

sphere and the background are high, ii) the gap between the two matter densities is not too

large, iii) the sphere is large enough, and iv) and the parameters take appropriate values

so that the f(R) model does not deviate much from general relativity at the curvature scale

above the one of the background. Take α0 = 0.015 and R0 = 1. Using the same units

as those in the Solar System case, we set the matter densities of the sphere and the

background to 55 and 5, respectively. The radius of the sphere r0 is 10. The results for this

set of parameters are shown in Fig. 5.4. A thin-shell solution for φ exists across the surface

of the sphere. [See Fig. 5.4(a).] In this configuration, φ stays at the coupling state, for which
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V ′(φ) ≈ 8πGρ/3, from inside to outside the sphere, and the absolute value of the friction

force |2φ′/r| is much less than that of the net force |φ′′|, as shown in Figs. 5.4(b) and (c).

Consequently, φ can instantly cross the valley of −Veff(φ) and, as plotted in Fig. 5.4(c), the

two maxima of the inverted effective potential −Veff are almost at the same height, and φ is

an instanton in −Veff. The potentials, V , Veff, and Vm in Fig. 5.4(c) are defined by Eqs. (5.2),

(5.53), and V ′m = −8πGρ/3, respectively. Equation (5.53) implies that Veff = V + Vm.

Now we consider a more challenging configuration. Take α0 = 0.02 and R0 = 1. The

matter densities of the sphere and the background are 2.1 × 10−1 and 2.1 × 10−5, respec-

tively. The radius of the sphere r0 is 5. The results for this set of parameters are shown

in Fig. 5.5. As shown in Figs. 5.5(a) and (b), in this situation, at places well inside and far

away from the sphere, the field φ stays at the coupling state, and the equation of motion

for φ (5.7) becomes V ′(φ) − 8πGρ/3 ≈ 0. Near the surface of the sphere, Eq. (5.7) is ap-

proximated as φ′′ + 2φ′/r ≈ 0. In this case, φ has a thick shell. In the meantime, although

−Veff(φ) still has two maxima, they are not at the same height, as shown in Fig. 5.5(c).

In the above two configurations, inside the sphere, φ stays at the coupling state. Then,

the scalar field φ runs slowly with respect to the matter density. [See Eq. (5.59).] This

running can easily trigger the field φ to move off the coupling state inside the sphere and

then the field φ will slowly approach the other coupling state which is far away from the

sphere, as shown in Figs. 5.4 and 5.5. The smaller the matter density and the radius of

the sphere are, the earlier the field φ will be released from the coupling state inside the

sphere. In the Solar System case, such a coupling process does not even exist. We let

α0 = 0.0126 and R0 = 1 so that Λ can take the value of the dark energy, 10−34. The

numerical results in the solar case are shown in Fig. 5.6. Figure 5.6(a) shows that Eq. (5.7)

can be approximated as φ′′ + 2φ′/r ≈ 8πGρ/3 and φ′′ + 2φ′/r ≈ 0 inside and outside

the Sun, respectively. As a result, outside the Sun, φ(r) ≈ φ0 + 2GM/(3r), where φ0 =

2α0 + α0W (8πGρSolar-System/Λ). Therefore, a metric close to Eq. (5.29), which is different

from the observations, will be obtained, similarly to what was discussed in Sec. 5.3.

One may also interpret the results in the solar case in another way. For the R lnR

model,

f ′′ =
α0

R
. (5.62)

In comparison to the requirement of the general relativity restoration (5.46), the modification

term in the R lnR model changes fast with respect to the Ricci scalar R, and the model

deviates significantly from general relativity. Consequently, with Eq. (5.59), there can be
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Figure 5.4: Numerical solution for the R lnR model when the parameters are set up to
make the field φ heavy. (a) The field φ(r). φ(r) is coupled to the matter density from inside
to outside the sphere, and a thin shell exists across the surface of the sphere. φc(= 1.70) is
the value of φ at the center of the sphere. (b) The terms in the equation of motion (E.o.M.)
for φ (5.7). From inside to outside the sphere, Eq. (5.7) is approximated as V ′(φ) ≈ 8πGρ/3.
The absolute value of the friction force, |2φ′/r|, is much less than that of the net force |φ′′|,
which allows the field φ to cross the valley of −Veff instantly. (c) Zoom-in of (b) near the
surface of the sphere. (d) The inverted effective potential −Veff(φ). The two maxima of
−Veff(φ) are almost at the same height, and φ(r) is an instanton in −Veff(φ). Veff = V +Vm.
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Figure 5.5: Numerical solution for the R lnR model in an intermediate case. (a) The field
φ(r). At places well inside and far away from the sphere, the field φ is coupled to the matter
density of the environment. Near the surface of the sphere, the field φ is decoupled from
the matter density and has a slow rather than instant roll. (In other words, φ has a thick
shell.) φc(= 0.99) is the value of φ at the center of the sphere. (b) The terms in the equation
of motion for φ (5.7). At places well inside and far away from the sphere, Eq. (5.7) becomes
V ′(φ)− 8πGρ/3 ≈ 0. Just outside the sphere, Eq. (5.7) is approximated as φ′′ + 2φ′/r ≈ 0.
(c) The inverted effective potential −Veff(φ). The left maximum of −Veff(φ) is lower than the
right one. A large fraction of potential energy of the field φ is exhausted by the friction force
in the rolling-down process. Veff = V + Vm.
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Figure 5.6: Numerical solution for the R lnR model in the Solar System case. (a) The field
φ(r). In this configuration, φ(r) is not coupled to the matter density inside the Sun, and
then a shell does not exist near the surface of the Sun. φc(= 0.202555860) is the value
of φ at the center of the Sun. (b) The terms in the equation of motion for φ (5.7). The
friction force, 2φ′/r, is relatively large, and φ′′ + 2φ′/r ≈ 8πGρ/3, which leads to a metric
Eq. (5.29) different from the observations. (c) The inverted effective potential, −Veff(φ). The
field φ slowly rolls down from Maximum 1 to “Maximum 2” due to the large friction force.
Veff = V + Vm.
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a big gap for φ between inside and outside the sphere. In the Solar System, outside

the Sun, due to the small value of W (8πGρSolar-System/Λ), the value of φ in the coupling

state, V ′(φ) ≈ 8πGρSolar-System/3, is very close to its de Sitter value 2α0. Then along the

radial direction from outside to inside the Sun, because of the big gap between the general

relativity restoration value φ ≈ 1 and the value close to φ0(= 2α0), φ slowly moves toward

the general relativity restoration place as the matter density increases. However, because

the solar density is not high enough and the Sun is not large enough for the R lnR model,

inside the Sun, the equation of motion for φ is reduced to φ′′ + 2φ′/r ≈ 8πGρSun/3. In

other words, the field φ does not even come to the equilibrium point between V ′(φ) and

8πGρSun/3 as the radius approaches to zero. As a result, Eq. (5.42) does not apply, and

φ(r) does not have a shell across the Sun’s surface.

As a supplement, Fig. 5.6(c) shows that the inverted potential,−Veff, has only one rather

than two maxima, so φ just slowly rather than instantly rolls down from the maximum (inside

the Sun) to the minimum (outside the Sun) of the inverted potential, −Veff. In summary, due

to the large running of the modification term with respect to the Ricci scalar R, the R lnR

model has difficulty in passing the Solar System tests.

As a result, it remains challenging for the R lnR model to pass the Solar System tests

when the chameleon mechanism has been taken into account. This problem is significantly

alleviated in some other f(R) models (e.g., the Hu-Sawicki model) that are close to the

ΛCDM model. In these models, the field φ is not sensitive to the change in the matter

density when the matter density is above the cosmological constant scale.

5.6.2 Numerical computations for the Hu-Sawicki model

We consider the simplest version of the Hu-Sawicki model,72

f(R) = R− CR0R

R+R0
, (5.63)

where C is a dimensionless parameter, R0 = 8πGρ̄0/3, and ρ̄0 is the average matter density

of the current Universe. In this model,

V ′(φ) =
R3

3(R+R0)2

[
1 + (1− C)

R0

R

(
2 +

R0

R

)]
. (5.64)

The above two equations show that as long as the matter density is much greater than R0,

the curvature R will trace the matter density well, and φ will be close to 1.
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Figure 5.7: Numerical solution for the Hu-Sawicki model described by Eq. (5.63). (a) The
field φ(r). A thin shell exists near the surface of the sphere. φc(= 1− 1.188× 10−14) is the
value of φ at the center of the sphere. (b) The inverted effective potential −Veff(φ). The
two maxima of −Veff(φ) are almost at the same height, and φ(r) is an instanton in −Veff(φ).
Veff = V + Vm.

In this model,

A′′(R) =
2CR0

(R+R0)3
� 1

R
, when R� R0

where A(R) is the modification term, f(R) = R + A(R). So A′(R) moves very slowly with

respect to R in comparison to 1/R, which makes the Hu-Sawicki model favorable to avoid

the Solar System tests. We compute the field φ(r) when a sphere sits in a background

with nonzero matter density, and the parameters take the following values. Equation (5.64)

shows that in order for the model to have a de Sitter point for which V ′(φ) = 0, the param-

eter C needs to be greater than 1. In this chapter, we set C to 1.2. In the same set of units

as used in the R lnR case, the radius of the sphere r0 is equal to 1, and the densities of

the sphere, background, and R0 are 2.1 × 10−4, 10−2ρsphere, and 10−7ρsphere, respectively.

The density profile is

ρ =
ρsphere

[1 + exp(30(r − r0))]
+ ρbackground.

The solution for φ(r) is plotted in Fig. 5.7(a), which shows that φ(r) has a thin shell near

the surface of the sphere. As shown in Fig. 5.7(b), the two maxima of the inverted effective

potential are at the same height, and φ(r) is an instanton in the inverted effective potential.
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In principle, when the computational precision is high enough, numerical computations

in the solar case can be performed. On the other hand, in this thesis, we only considered

a simple case (n = 1) of the Hu-Sawicki model (2.43). A case with a larger n will be

more favored to pass the Solar System tests because the field φ will be more suppressed.

However, implementing all such computations is beyond the scope of this thesis.

5.7 Conclusions

Confrontations between f(R) gravity and the Solar System tests were explored in the Jor-

dan frame in this chapter. The metric grossly violates the observations if the Sun is as-

sumed to sit in a vacuum background. We reobtain this result in a simpler way by directly

focusing on the equation of motion for φ(≡ f ′) in the Jordan frame.

The chameleon mechanism implies that the function f(R) should be very close to the

Ricci scalar R for R above or equal to the Solar System scale. On the other hand, f(R)

gravity should deviate from general relativity at the cosmological constant scale, so that a

cosmic acceleration can be generated in the late Universe. Therefore, a trade-off between

the requirements at the high- and low-curvature scales needs to be made.

We numerically computed the profiles of φ(r) for a sphere (which can be the Sun) in

an environment (which can be the Solar System) with nonzero matter density in different

configurations. The corresponding inverted effective potentials were plotted. These pro-

vided an intuitive understanding of the effects from the matter density. Regarding the R lnR

model, in the coupling state, the scalar field φ runs logarithmically with respect to the mat-

ter density when the matter density is much greater than the cosmological constant. This

logarithmic relationship can easily trigger the field φ to release from the coupling state in-

side the sphere, and φ will then SLOWLY approach the other coupling state, which is far

away from the sphere. Consequently, it is challenging for the R lnR model to pass the

Solar System tests. In fact, the coupling state does not even exist inside the Sun for this

model. In some other f(R) models which are very close to the ΛCDM model, the field φ is

robust to the change in the matter density as long as the matter density is greater than the

cosmological constant. As a result, this class of f(R) models has the advantage of passing

the Solar System tests.



Chapter 6

Spherical collapse in f(R) gravity

Spherical scalar collapse in f(R) gravity is studied numerically in double-null coordinates

in the Einstein frame. Dynamics in the vicinity of the singularity of the formed black hole

is examined via mesh refinement and asymptotic analysis. Before the collapse, the scalar

degree of freedom f ′ is coupled to a physical scalar field, and general relativity is restored.

During the collapse, the major energy of the physical scalar field moves to the center. As a

result, f ′ loses the coupling and becomes light, and gravity transits from general relativity

to f(R) gravity. Due to strong gravity from the singularity and the low mass of f ′, f ′ will

cross the minimum of the potential and approach zero. The static solution for a black hole

in f(R) gravity is a de Sitter-Schwarzschild solution. Therefore, the dynamical solution is

significantly different from the static one. f ′ tries to suppress the collapse of the physical

scalar field. This is a dark energy effect. As the singularity is approached, the metric

terms are dominant over other terms. The Kasner solution for spherical scalar collapse

in f(R) theory is obtained and confirmed by numerical results. These results support the

Belinskii-Khalatnikov-Lifshitz conjecture well. This chapter is mainly based on Ref.67

6.1 Introduction

Black hole physics is an ideal platform from which to study gravity. It connects classical

general relativity, semiclassical gravity, and the quantum theory of gravity. It is studied not

only in the context of gravitation, but also in astrophysics and cosmology. Moreover, there

are profound links between black hole physics, thermodynamics, and information theory.

82
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Historically, some static solutions for black holes have been obtained analytically. The

“no-hair” theorem states that a stationary black hole can be described by only a few pa-

rameters.142 Hawking showed that stationary black holes as the final states of Brans-Dicke

collapses are identical to those in general relativity.69 In Ref.,12 a novel “no-hair” theorem

was proven. In this theorem, the scalar field, surrounding an asymptotically flat, static,

spherically symmetric black hole, is assumed to be minimally coupled to gravity, and to

have a non-negative energy density. In this case, the black hole must be a Schwarzschild

black hole. This result is also valid if the scalar field has a potential whose global minimum

is zero. The possible black hole solutions were explored in scalar-tensor gravity, including

f(R) gravity, by Sotiriou and Faraoni. If black holes are isolated from the cosmological

background, they can be shown to have a Schwarzschild solution.124

As astrophysical black holes are expected to come from collapses of matter, study-

ing collapse processes, especially spherical collapses, is an instructive way to explore

black hole physics and to verify the results on stationary black holes as well. (For re-

views of gravitational collapse and spacetime singularities, see Refs.15,17,70,77,78,81) The

Oppenheimer-Snyder solution offers an analytic description of spherical dust collapse into

a Schwarzschild black hole.100 The Lemaı̂tre-Tolman–Bondi solution describes a spheri-

cally symmetric inhomogeneous universe filled with dust matter.23,92,129 However, due to

the nonlinearity of the Einstein field equations, in most other cases, the collapse solutions

have to be searched for numerically. The simulations of spherical collapse in Brans-Dicke

theory were implemented in Refs.,115,116,118 confirming Hawking’s conclusion that station-

ary black holes as the final states of Brans-Dicke collapses are identical to those in general

relativity.69 In Ref.,71 numerical integration of the Einstein equations outwards from the

horizon was performed. The results strongly supported the new “no-hair” theorem pre-

sented in Ref.12 Recently, the dynamics of single and binary black holes in scalar-tensor

theories in the presence of a scalar field was studied in Ref.,20 in which the potential for

scalar-tensor theories is set to zero and the source scalar field is assumed to have a con-

stant gradient.

Although f(R) theory is equivalent to scalar-tensor theories, it is a unique type. In f(R)

theory, the potential is related to the function f(R) or the Ricci scalar R by V ′(χ) ≡ (2f −
χR)/3, with χ ≡ f ′. In dark-energy-oriented f(R) gravity, the de Sitter curvature obtained

from V ′(χ) ≡ (2f − χR)/3 = 0 is expected to drive the cosmic acceleration. Consequently,

the minimum of the potential cannot be zero. Therefore, spherical collapse in f(R) theory
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has rich phenomenology and is worth exploring in depth, although some studies have been

implemented in scalar-tensor theories. In Ref.,32 the gravitational collapse of a uniform dust

cloud in f(R) gravity was analyzed; the scale factor and the collapsing time were computed.

In Ref.,117 the junction conditions through the hypersurface separating the exterior and the

interior of the global gravitational field in f(R) theory were derived. In Ref.,75 a charged

black hole from gravitational collapse in f(R) gravity was obtained. However, to a large

extent, a general collapse in scalar-tensor theories (especially in f(R) theory), in which the

global minimum of the potential is nonzero, still remains unexplored as of yet. In addition to

a black hole formation, large-scale structure is another formation that can be modeled. In

Refs.,10,90 with the scalar fields assumed to be quasistatic, simulations of dark matter halo

formation were implemented in f(R) gravity and Galileon gravity, respectively.

Another motivation comes from the study of the dynamics as one approaches the singu-

larity. The Belinskii, Khalatnikov, and Lifshitz (BKL) conjecture states that as the singularity

is approached, the dynamical terms will dominate the spatial terms in the Einstein field

equations, the metric terms will dominate the matter field terms, and the metric compo-

nents and the matter fields are described by the Kasner solution.13,14,82,91,136 The BKL

conjecture was verified numerically for the singularity formation in a closed cosmology in

Refs.16,61 It was also confirmed in Ref.62 with a test scalar field approaching the singularity

of a black hole, which is described by a spatially flat dust Friedmann−Robertson−Walker

spacetime. In Ref.,5 the BKL conjecture in the Hamiltonian framework was examined, in

an attempt to understand the implications of the BKL conjecture for loop quantum gravity.

In this thesis, we consider a scalar field collapse in f(R) gravity. We study the evolution of

the spacetime, the physical scalar field ψ, and the scalar degree of freedom f ′ throughout

the whole collapse process and also near the singularity.

Regarding simulations of gravitational collapses and binary black holes in gravitational

theories beyond general relativity, in addition to the references mentioned above, in Ref.,68

the generation and propagation of the scalar gravitational wave from a spherically symmet-

ric and homogeneous dust collapse in scalar-tensor theories were computed numerically,

with the backreaction of the scalar wave on the spacetime being neglected. Scalar gravita-

tional waves generated from stellar radial oscillations in scalar-tensor theories were com-

puted in Ref.122 The response of the Brans-Dicke field during gravitational collapse was

studied in Ref.73 Charge collapses in dilaton gravity were explored in Refs.24,55,56 Binary

black hole mergers in f(R) theory are simulated in Ref.28
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We take the Hu-Sawicki model and the Starobinsky model as sample f(R) models. We

perform the simulations in the double-null coordinates proposed by Christodoulou.37 These

coordinates have been used widely, because they have the horizon-penetration advantage

and also allow us to study the global structure of spacetime.24,54–56,63,73,74,120 The results

show that a black hole can be formed. During the collapse, the scalar field f ′ is decoupled

from the matter density and becomes light. Simultaneously, the Ricci scalar decreases, and

the modification term in the function f(R) becomes important. The lightness of f ′ and the

gravity from the scalar sphere, which forms a black hole later, make the scalar field f ′ cross

the minimum of the potential (also called a de Sitter point), and then approach zero near

the singularity. The asymptotic expressions for the metric components and scalar fields are

obtained. They are the Kasner solution. These results support the BKL conjecture.

To a large extent, the features of f(R) theory are defined by the shape of the potential.

Local tests and cosmological dynamics of f(R) theory are closely related to the right side

and the minimum area of the potential. In the early Universe, the scalar degree of freedom

f ′ is coupled to the matter density. In the later evolution, f ′ is decoupled from the matter

density and goes down toward the minimum of the potential, and eventually stops at the

minimum after some oscillations. Interestingly, the study of the collapse process draws

one’s attention to the left side of the potential.

The chapter is organized as follows. In Sec. 6.2, we introduce the framework of the col-

lapse, including the formalism of f(R) theory, double-null coordinates, and the Hu-Sawicki

model. In Sec. 6.3, we set up the numerical structure, including discretizing the equations

of motion, defining initial and boundary conditions, and implementing the numerical tests.

In Sec. 6.4, numerical results are presented. In Sec. 6.5, we discuss numerical results from

the point of view of the Jordan frame. In Sec. 6.6, we consider collapses in more general

models. Section 6.7 summarizes our work.

6.2 Framework

In this section, we build the framework of spherical scalar collapse in f(R) theory. For

computational convenience, f(R) gravity is transformed from the Jordan frame into the

Einstein frame. In order to study the global structure of the spacetime and the dynamics

near the singularity, we simulate the collapse in double-null coordinates. A typical f(R)

model, the Hu-Sawicki model, is chosen as an example model.
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6.2.1 Formalism in the Einstein frame

As shown in Chapter 2, the second-order derivatives of f ′ make the field equations in f(R)

gravity complex,

f ′Rµν −
1

2
fgµν − (∇µ∇ν − gµν�) f ′ = 8πGTµν . (6.1)

Based on our preliminary numerical experiments, simulating collapse in the Jordan frame

seems not a trivial issue. Among all the possible causes, the presence of second-order

derivatives of f ′ might be an important one. Compared to the first-order derivatives of f ′,

the second-order ones could produce more noises in the simulations, causing instabilities

especially at the inner boundary that we are more concerned with, and eventually crashing

the simulations. Although simulating collapse in the Jordan frame could be implemented in

principle, more efforts need to be invested. In this thesis, for computational convenience,

we consider an alternative and simpler approach: transforming f(R) gravity from the Jor-

dan frame into the Einstein frame. In the latter, the second-order derivatives of f ′ are

absent in the field equations for the metric components. The formalism can be treated as

Einstein gravity coupled to two scalar fields. Therefore, we can use some results that have

been developed in the numerical relativity community.

As discussed in Sec. 2.2.3, in the conformal transformation from the Jordan frame into

the Einstein frame, we rescale χ(≡ f ′) by

κφ ≡
√

3

2
lnχ. (6.2)

Then, in the Einstein frame, the Einstein field equations are

G̃µν = κ2
[
T̃ (φ)
µν + T̃ (M)

µν

]
, (6.3)

where T̃
(φ)
µν and T̃

(φ)
µν are the energy-momentum tensors for the scalar field φ and matter

field, respectively.

T̃ (φ)
µν = ∂µφ∂νφ− g̃µν

[
1

2
g̃αβ∂αφ∂βφ+ V (φ)

]
, (6.4)

T̃ (M)
µν =

T
(M)
µν

χ
. (6.5)

T
(M)
µν is the ordinary energy-momentum tensor of the physical matter field in terms of gµν

in the Jordan frame.
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We tried to use a dust field as the matter field for the collapse. Its energy-momentum

tensor is Tµν = ρUµUν , where ρ is the mass density, and Uµ is the four-velocity. However,

in this case, the simulations can become unstable very easily. Therefore, we switch to the

scalar field, which is stiffer than the dust field. We take a massless scalar field ψ as the

matter field for the collapse. Its energy-momentum tensor in the Einstein frame is

T̃ (M)
µν = T̃ (ψ)

µν =
1

χ

(
∂µψ∂νψ −

1

2
gµνg

αβ∂αψ∂βψ

)
=

1

χ

(
∂µψ∂νψ −

1

2
g̃µν g̃

αβ∂αψ∂βψ

)
,

(6.6)

which gives

T̃ (M) = T̃ (ψ) ≡ g̃µν T̃ (ψ)
µν = −

g̃αβ∂αψ∂βψ

χ
.

The equations of motion for φ and ψ can be derived from the Lagrange equations as

�̃φ− V ′(φ) + κQT̃ (M) = 0, (6.7)

�̃ψ −
√

2

3
κg̃µν∂µφ∂νψ = 0, (6.8)

where Q ≡ −χ,φ/(2κχ) = −1/
√

6. Equation (6.8) can also be obtained from the Lagrange

equation in the Jordan frame. Since the scalar field ψ is massless in the Jordan frame,

there is

0 = �ψ =
1√
−g

∂µ
(√
−ggµν∂νψ

)
=

1√
−g̃ · χ−4

∂µ

(√
−g̃ · χ−4 · χ · g̃µν∂νψ

)
= χ

[
�̃ψ − g̃µν∂µψ∂ν(lnχ)

]
= χ

[
�̃ψ −

√
2

3
κg̃µν∂µφ∂νψ

]
. (6.9)

In the Einstein frame, the potential and the first-order derivative of the potential with

respect to φ are

V (φ) =
χR− f
2κ2χ2

, (6.10)

V ′(φ) =
dV

dχ
· dχ
dφ

=
1√
6

2f − χR
κχ2

. (6.11)
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6.2.2 Coordinate system

We are interested in the singularity formation, the dynamics of the spacetime and the

source fields near the singularity, and the global structure of the spacetime. The double-

null coordinates described by Eq. (6.12) are a viable choice to realize these objectives:37

ds2 = e−2σ(−dt2 + dx2) + r2dΩ2 = −4e−2σdudv + r2dΩ2, (6.12)

where σ and r are functions of (t, x), and u[= (t−x)/2 = Const] and v[= (t+x)/2 = Const]

are outgoing and ingoing characteristics, respectively. The two-manifold metric

dγ2 = e−2σ(−dt2 + dx2) = −4e−2σdudv

is conformally flat. In these coordinates, one can know the speed of information propa-

gation everywhere in advance. The metric (6.12) is invariant for the rescaling u → U(u),

v → V (v). We fix this gauge freedom by setting up initial and boundary conditions.

6.2.3 f(R) model

We take the Hu-Sawicki f(R) model as an example. We consider one of the simplest

versions of this model,

f(R) = R− DR0R

R+R0
, (6.13)

whereD is a dimensionless parameter, R0 = 8πGρ̄0/3, and ρ̄0 is the average matter density

of the current Universe. In this model,

f ′ = 1− DR2
0

(R+R0)2
, (6.14)

R = R0

[√
D

1− f ′
− 1

]
. (6.15)

In the Einstein frame, for the Hu-Sawicki model, the potential and the first-order deriva-

tive of the potential with respect to φ are

V (φ) =
DR0R

2

2κ2f ′2(R+R0)2
, (6.16)

V ′(φ) =
1√
6

2f − χR
κχ2

=
R3

√
6κf ′2(R+R0)2

[
1 + (1−D)

R0

R

(
2 +

R0

R

)]
. (6.17)
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Figure 6.1: The potentials for the Hu-Sawicki model in (a) the Einstein frame and (b) the
Jordan frame. χp is a compactified coordinate obtained via the Poincaré transformation,
χp = χ/

√
1 + χ2, with χ ≡ f ′. The potential V (χ(φ)) in the Einstein frame is defined by

Eq. (6.16), and the potential U(χ) in the Jordan frame is defined by Eq. (2.17). A scalar
field can collapse to form a black hole. As the singularity of the black hole is approached,
χ asymptotes to zero.

As implied in Eq. (6.17), in order to make sure that the de Sitter curvature, for which V ′(φ) =

0, has a positive value, the parameter D needs to be greater than 1. In this chapter, we

set D and R0 to 1.2 and 5× 10−6, respectively. Then, together with Eqs. (6.16) and (6.17),

these values imply that the radius of the de Sitter horizon is about
√

1/R0 ∼ 103. Moreover,

in the configuration of the initial conditions described in Sec. 6.3.2 and the above values of

D and R0, the radius of the apparent horizon of the formed black hole is about 2.2. [See

Fig. 6.6.(b).] The potential in the Einstein frame defined by Eq. (6.16) and the potential in

the Jordan frame defined by Eq. (2.17) are plotted in Figs. 6.1(a) and (b), respectively.

After explorations of spherical collapse for one of the simplest versions of the Hu-

Sawicki model described by Eq. (6.13), we consider general cases. We let the parameter

D in Eq. (6.13) take different values. We also study spherical collapse for the Starobinsky

model.126 All the results turn out to be similar.
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6.3 Numerical setup

In this section, we present the numerical formalisms, including field equations, initial con-

ditions, boundary conditions, discretization scheme, and numerical tests. The numerical

code used in the chapter is a generalized version of the one developed in Ref.54

6.3.1 Field equations

In this chapter, we set 8πG to 1. In double-null coordinates (6.12), some components of

the Einstein tensor can be expressed as follows:

Gtt =
2e2σ

r2

[
r(r,tσ,t + r,xσ,x) + rrxx +

1

2
(−r,t2 + r,x

2)− 1

2
e−2σ

]
, (6.18)

Gxx =
2e2σ

r2

[
−r(r,tσ,t + r,xσ,x)− rrtt +

1

2
(−r,t2 + r,x

2)− 1

2
e−2σ

]
, (6.19)

Gθθ = Gφφ =
e2σ

r
[−r,tt + r,xx − r(−σ,tt + σ,xx)] , (6.20)

Guu = −2

r
(r,uu + 2σ,ur,u), (6.21)

Gvv = −2

r
(r,vv + 2σ,vr,v), (6.22)

where r,t ≡ dr/dt, and other related quantities are defined in a similar way.

For a massive scalar field with energy-momentum tensor

Tµν = φ,µφ,ν − gµν
[

1

2
gαβφ,αφ,β + V (φ)

]
, (6.23)

there are

T tt = −e2σ

[
1

2
(φ2
,t + φ2

,x) + e−2σV (φ)

]
, (6.24)

T xx = e2σ

[
1

2
(φ2
,t + φ2

,x)− e−2σV (φ)

]
, (6.25)

T θθ = T φφ = −e2σ

[
1

2
(−φ2

,t + φ2
,x) + e−2σV (φ)

]
, (6.26)
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Tuu = φ2
,u, (6.27)

Tvv = φ2
,v, (6.28)

T = −e2σ(−φ2
,t + φ2

,x)− 4V (φ). (6.29)

In the Einstein frame, using

G̃tt + G̃xx = T̃
(φ)t

t + T̃ (φ)x
x + T̃

(ψ)t
t + T̃ (ψ)x

x ,

one obtains the equation of motion for the metric component r,

r(−r,tt + r,xx) + (−r2
,t + r2

,x) = e−2σ(1− r2V ). (6.30)

Equation (6.30) involves a delicate cancellation of terms at both small and large r, which

makes it susceptible to discretization errors. In order to avoid this problem, when r is not

too large, we define η ≡ r2, and integrate the equation of motion for η instead. The equation

of motion for η can be obtained by rewriting Eq. (6.30) as54

−η,tt + η,xx = 2e−2σ
(
1− r2V

)
. (6.31)

When r is very large, the delicate cancellation problem can be avoided by using a new

variable ρ ≡ 1/r instead.54 G̃θθ = T̃
(φ)θ

θ + T̃
(ψ)θ

θ provides the equation of motion for σ,

−σ,tt + σ,xx −
−r,tt + r,xx

r
− 1

2
(−φ2

,t + φ2
,x)− 1

2χ
(−ψ2

,t + ψ2
,x) = e−2σV. (6.32)

In double-null coordinates, the dynamical equations for φ (6.7) and ψ (6.8) become,

respectively,

(−φ,tt + φ,xx) +
2

r
(−r,tφ,t + r,xφ,x) = e−2σ

[
V ′(φ) +

1√
6
κT̃ (ψ)

]
, (6.33)

(−ψ,tt + ψ,xx) +
2

r
(−r,tψ,t + r,xψ,x) =

√
2

3
κ(−φ,tψ,t + φ,xψ,x), (6.34)

where

T̃ (ψ) =
e2σ(ψ2

,t − ψ2
,x)

χ
. (6.35)
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The {uu} and {vv} components of the Einstein equations yield the constraint equations:

r,uu + 2σ,ur,u = −r
2

(
φ2
,u +

ψ2
,u

χ

)
, (6.36)

r,vv + 2σ,vr,v = −r
2

(
φ2
,v +

ψ2
,v

χ

)
. (6.37)

Via the definitions of u = (t − x)/2 and v = (t + x)/2, the constraint equations can be

expressed in (t, x) coordinates. Equations (6.37)− (6.36) and (6.37) + (6.36) generate the

constraint equations for {tx} and {tt}+ {xx} components, respectively,

r,tx + r,tσ,x + r,xσ,t +
r

2
φ,tφ,x +

r

2χ
ψ,tψ,x = 0, (6.38)

r,tt + r,xx + 2r,tσ,t + 2r,xσ,x +
r

2
(φ2
,x + φ2

,t) +
r

2χ
(ψ2

,x + ψ2
,t) = 0. (6.39)

In the equation of motion for σ (6.32), the term (−r,tt + r,xx)/r needs special attention.

[In fact, a similar term, (−r2
,t + r2

,x − e−2σ)/r, exists in the equation of motion for r (6.30).

However, this problem is avoided by converting Eq. (6.30) into the form (6.31).] The dis-

cretization errors of r increase dramatically near the center x = r = 0. The discretization

errors in the term (−r,tt + r,xx)/r are amplified by the division of r. Some efforts have

been made to avoid this problem in the community. Critical gravitational collapses in higher

dimensions and in Einstein-Gauss-Bonnet gravity were discussed in Ref.121 and Ref.,63

respectively. In these two references, the double-null coordinates in the form of (6.40) were

used:

ds2 = −α2dudv + r2dΩ2
D−2, (6.40)

where α and r are functions of (u, v), and D is the dimension of the spacetime. Near the

center, instead of integrating the equations of motion, Taylor series expansions were used

to get the values of r,u and φ,u, where φ is a massless scalar field. In addition, the values

of α,v/α and φ,v were obtained via the combination of values from the evolution equations

and values extrapolated from neighboring points in the past light cone. Moreover, in Ref.,63

an auxiliary function, Γ ≡ (α2 + 4r,ur,v)/r
2, was defined. In the equations of motion for

certain quantities, some related terms are expressed in terms of Γ. The Γ′s evolution, Γ,v,

can be obtained from the definition Γ ≡ (α2 + 4r,ur,v)/r
2.
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In Ref.,43 a new numerical framwork was built, with a dynamical lapse function β being

introduced,

ds2 = −αβ2dt2 + αdx2 + r2dΩ2, (6.41)

where α, β, and r are functions of (t, x). In order to avoid the instability issue, instead

of introducing Γ as was done in Ref.,63 the Misner-Sharp mass m was introduced as an

auxiliary variable,

m ≡ r

2
(1− gµνr,µr,ν) =

r

2

(
αβ2 + r2

,t − β2r2
,x

αβ2

)
. (6.42)

In this thesis, to circumvent the instability problem, we use the constraint equation (6.36)

as proposed in Ref.54 A new variable g is defined as

g = −2σ − ln(−r,u). (6.43)

Then, Eq. (6.36) can be written as the equation of motion for g,

g,u =
r

2

φ2
,u + ψ2

,u/χ

r,u
. (6.44)

In the numerical integration, once the values of g and r at the advanced level are obtained,

the value of σ at the current level will be computed from Eq. (6.43).

6.3.2 Initial conditions

For any dynamical system whose evolution is governed by a second-order time derivative

equation, its evolution is uniquely determined by setting the value of the dynamical variable,

and its first-order time derivative, at any given instant. We set the initial data to be time-

symmetric as follows (also refer to Fig. 6.2):

r,t = σ,t = φ,t = ψ,t = 0 at t = 0. (6.45)

In this case, the constraint equation (6.38) is satisfied identically.

We set the initial value of ψ(r) at t = 0 as

ψ(r) = Q · tanh
[
(r − r0)2

]
, (6.46)

where Q and r0 take the values of 0.5 and 5, respectively. The initial value of φ(r) can be

arbitrary as long as it is negative. [See Eq. (2.24) and note that χ ≡ f ′ < 1.] Here we



CHAPTER 6. SPHERICAL COLLAPSE IN F (R) GRAVITY 94

Figure 6.2: Initial and boundary conditions.

choose its value as that in a static system and weak-field limit r = x and σ = 0. In this

case, the equation of motion for φ, Eq. (6.33), becomes

d2φ

dr2
+

2

r

dφ

dr
= V ′(φ) +

1√
6
κT̃ (ψ). (6.47)

We solve this equation for initial φ(r) with Newton’s iteration method, enforcing dφ/dr = 0

at r = 0 and φ to stay at the minimum of the potential V (φ) at the outer boundary. [Note

that T̃ (ψ) = 0 at the outer boundary.]

We define a local mass by

p ≡ g̃µνr,µr,ν = 1− 2m

r
. (6.48)

Using r,t = 0, x = v − u, and t = u + v, we have r,u = −r,x at t = 0. Then, in double-null

coordinates described by (6.12), Eq. (6.48) implies that

e−2σ =
r2
,x

p
. (6.49)

On the other hand, from Eq. (6.43), one obtains, at t = 0,

r,u = −r,x = −e−2σe−g. (6.50)

A combination of Eqs. (6.49) and (6.50) provides the equation for r,

r,x =

(
1− 2m

r

)
eg. (6.51)
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In addition to assigning r,t = φ,t = 0 at t = 0, we set r,tt = 0 at t = 0 to fix the gauge

freedom. Consequently, Eqs. (6.39) and (6.30) become, respectively,

r,xx + 2r,xσ,x +
r

2

(
φ2
,x +

ψ2
,x

χ

)
= 0, (6.52)

e2σr,xx = −rV +
2m

r2
. (6.53)

Differentiating Eq. (6.49) with respect to r yields

e2σ(2σ,xr,x + 2r,xx) = −2m,r

r
+

2m

r2
. (6.54)

Substituting Eqs. (6.52) and (6.53) into (6.54) generates the equation for m

m,r =
r2

2

[
V +

1

2
e2σ

(
φ2
,x +

ψ2
,x

χ

)]
. (6.55)

Moreover, with Eqs. (6.48) and (6.49), we have

e2σ

(
φ2
,x +

ψ2
,x

χ

)
= e2σ

(
φ2
,r +

ψ2
,r

χ

)
r2
,x =

(
φ2
,r +

ψ2
,r

χ

)(
1− 2m

r

)
.

Then, Eq. (6.55) can be rewritten as

m,r =
r2

2

[
V +

1

2

(
1− 2m

r

)(
φ2
,r +

ψ2
,r

χ

)]
. (6.56)

The equation for g at t = 0 can be obtained from Eq. (6.44):

g,r =
r

2

(
φ2
,r +

ψ2
,r

χ

)
. (6.57)

We obtain the initial values of r, m, and g at t = 0 by integrating Eqs. (6.51), (6.56), and

(6.57) via the fourth-order Runge-Kutta method. The values of r, σ, f ′[= exp(
√

2/3κφ)],

and ψ at t = 0 are plotted in Fig. 6.7.

We implement a leapfrog scheme, which is a three-level scheme and requires initial

data on two different time levels. With the initial data at t = 0, we compute the data at

t = ∆t with a second-order Taylor series expansion. Take the variable φ as an example:

φ|t=∆t = φ|t=0 + φ,t|t=0∆t+
1

2
φ,tt|t=0(∆t)2. (6.58)
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The values of φ|t=0 and φ,t|t=0 are set up as discussed above, and the value of φ,tt|t=0 can

be obtained from the equation of motion for φ (6.33).

The second-order Taylor series expansion, exemplified by Eq. (6.58), helps to make the

numerical results be second-order accurate. More importantly, it is found that this second-

order expansion helps to stabilize the numerical simulations. Numerical experiments show

that in spherical collapse in general relativity, the simulations remain stable even if we ne-

glect the second-order terms in the expansion. However, in spherical collapse in f(R) the-

ory, the dynamics is more complex. Instability would arise especially at the inner boundary

x = 0 when the second-order terms were omitted.

6.3.3 Boundary conditions

The range for the spatial coordinates is x ∈ [0 22]. The value of 22 is chosen such that it is

much less than the radius of the de Sitter horizon (∼
√

1/R0 ∼ 103), and it is much greater

than the dynamical scale.

On the inner boundary where x = 0, r is always set to zero, as illustrated in Fig. 6.2.

The terms 2(−r,tφ,t + r,xφ,x)/r and 2(−r,tψ,t + r,xψ,x)/r in Eqs. (6.33) and (6.34) need to

be regular at r = x = 0. Since r is always set to zero at the center, so is r,t. Therefore, we

enforce φ and ψ to satisfy the following conditions:

φ,x = 0, ψ,x = 0.

The boundary condition for g at r = 0 is obtained via extrapolation.

Considering the outer boundary, since one cannot include infinity on the grid, one needs

to put a cutoff at x, where the radius r is set to a constant. This is also shown in Fig. 6.2. In

this thesis, we are mainly interested in the dynamics around the horizon and the dynamics

near the singularity of the formed black hole. The dynamics in these regions will not be

affected by the outer boundary conditions, as long as the spatial range of x is large enough

compared to the time range needed for black hole formation. We set up the outer boundary

conditions via extrapolation.

6.3.4 Discretization scheme

In this thesis, finite difference methods are used. The leapfrog integration scheme is im-

plemented, which is second-order accurate and nondissipative. With the demonstration of
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Figure 6.3: Numerical evolution scheme.

Fig. 6.3 and using the variable φ as an example, our discretization scheme is expressed

below:
dφ

dt
=
φup − φdn

2∆t
,

dφ

dx
=
φrt − φlt

2∆x
,

d2φ

dt2
=
φup − 2φhr + φdn

(∆t)2
,

d2φ

dx2
=
φlt − 2φhr + φrt

(∆x)2
,

d2φ

dxdt
=
φur − φul − φdr + φdl

4∆x ·∆t
,

dφ

du
=
dφ

dt
− dφ

dx
.

We let the temporal and the spatial grid spacings be equal, ∆t = ∆x.

The equations of motion for η ≡ r2 (6.31), for φ (6.33), and for ψ (6.34) are coupled.

Newton’s iteration method can be employed to solve this problem.108 With the illustration

of Fig. 6.3, the initial conditions provide the data at the levels of “down” and “here,” and we

need to obtain the data on the level of “up”. We take the values at the level of “here” to be

the initial guess for the level of “up”. Then, we update the values at the level of “up” using

the following iteration (taking φ as an example):

φnew
up = φup −

G(φup)

J(φup)
,

where G(φup) is the residual of the differential equation for the function φup, and J(φup) is

the Jacobian defined by

J(φup) =
∂G(φup)

∂φup
.
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We do the iterations for all of the coupled equations one by one, and run the iteration loops

until the desired accuracies are achieved.

6.3.5 Locating the apparent horizon

Horizons are important characteristics of black holes. For simplicity, we locate the apparent

horizon of a black hole formed in the collapse, where the expansion of the outgoing null

geodesics orthogonal to the apparent horizon is zero.11 This implies that, in double-null

coordinates,43 at the apparent horizon

g̃µνr,µr,ν = e2σ(−r2
,t + r2

,x) = 1− 2m

r
= 0. (6.59)

With this property, one can look for the apparent horizon. M(≡ m/G) in Eq. (6.59) is the

mass of the black hole.

6.3.6 Examining dynamics near the singularity with mesh refinement

Gravity near the singularity is super strong. In order to study the dynamics and examine

the BKL conjecture in this region, high-resolution simulations are needed. To achieve this,

one may choose to slow down the evolution near the singularity by multiplying the (t, t)

metric component with an appropriate lapse function.43 However, in this thesis, we employ

an alternative approach: fixed mesh refinement, which is similar to the one used in Ref.60

This technique is very convenient to implement and works very well. Firstly, with numerical

results obtained using coarse grid points, we roughly locate the singularity curve r = 0,

as shown by the solid (blue) line in Fig. 6.4, and choose a region to examine, e.g., the

region enclosed by the dash-dotted (green) square. Then the grid points in this region are

interpolated with the original grid spacing being halved. We take two neighboring slices,

with narrower spatial range, of the newly interpolated results at the midway as new initial

data. Specifically, the new initial data are located near the line segment AB in Fig. 6.4. We

then run the simulations with these new initial data. The interpolate-and-run loop is iterated

until the desired accuracies are obtained.

As discussed in Sec. 6.3.1, in the first simulation with coarse grid points, the term

(−r,tt + r,xx)/r in (6.32) can create big errors near the center x = r = 0. To avoid this

problem, we use the constraint equation (6.36) instead. However, at the mesh refinement

stage, in the region that we are investigating, the values of r at the two boundaries are
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Figure 6.4: Description of fixed mesh refinement. Firstly, with numerical results obtained
using coarse grid points, we roughly locate the singularity curve r = 0, as shown by the
solid (blue) line, and choose a region to examine, e.g., the region enclosed by the dash-
dotted (green) square. Then, the grid points in this region are interpolated with the original
grid spacing being halved. We take two new neighboring slices as initial data for the next
simulation. Specifically, the new initial data are located near the line segment AB. The
interpolate-and-run loop is repeated until the desired accuracies are achieved.
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usually as regular as those at other neighboring grid points. We need to study the behaviors

of all the terms in Eq. (6.32) with high accuracy. Therefore, at the mesh refinement stage,

we switch back to Eq. (6.32). The values of the integration variables on the two boundaries

are obtained via extrapolation.

6.3.7 Numerical tests

The accuracies of the discretized equations of motion used in the simulations are checked.

In the simulations, the range for the spatial coordinates is x ∈ [0 22], and the grid spacing

∆x of the coarsest grid is set to 0.01. The constraint equations (6.38) and (6.39) are also

examined. The convergence rate of a discretized equation can be obtained from the ratio

between residuals with two different step sizes,

n = log2

 O(hn)

O
((

h
2

)n)
 . (6.60)

Our numerical results show that both of the constraint equations are about second-order

convergent. As a representative, in Fig. 6.5(a), we plot the results for the {tt} + {xx}
constraint equation (6.39) when the coordinate time is equal to 3.5.

Convergence tests via simulations with different grid sizes are also implemented.63,120

If the numerical solution converges, the relation between the numerical solution and the

real one can be expressed by

Freal = F h +O(hn),

where n is the convergence order, and F h is the numerical solution with step size h. Then,

for step sizes of h/2 and h/4, we have

Freal = F
h
2 +O

[(
h

2

)n]
, Freal = F

h
4 +O

[(
h

4

)n]
.

Defining c1 ≡ F h − F h/2 and c2 ≡ F h/2 − F h/4, one can obtain the convergence rate

n = log2

(
c1

c2

)
. (6.61)

The convergence tests for η ≡ r2, g, φ, and ψ are investigated, and they are all second-

order convergent. As a representative, in Fig. 6.5(b), the results for η are plotted when the

coordinate time is equal to 3.5.
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Figure 6.5: Numerical tests when the coordinate time t is equal to 3.5. (a) Convergence,
described by Eq. (6.60), for {tt} + {xx} constraint equation (6.39). In the numerical simu-
lations, this constraint equation is about second-order convergent. (b) Convergence rate,
expressed by Eq. (6.61), for η ≡ r2. The simulation results for η are second-order conver-
gent.

6.4 Results

A black hole formation from the scalar collapse in f(R) gravity is obtained. During the

collapse, the scalar degree of freedom f ′ is decoupled from the source scalar field ψ and

becomes light. Consequently, gravity transits from general relativity to f(R) gravity. Near

the singularity, the contributions of various terms in the equations of motion for the metric

components and scalar fields are studied. The asymptotic solutions for the metric compo-

nents and the scalar field φ near the singularity are obtained. They are the Kasner solution.

These results support the BKL conjecture well.

6.4.1 Black hole formation

Before the collapse, near the scalar sphere, f ′ stays at the right side of the potential (shown

in Fig. 6.1) due to the balance between U ′(f ′) and the force from the physical scalar field ψ.

During the collapse, the force from ψ decreases and then changes the direction at a later

stage. Correspondingly, f ′ rolls down the potential and then crosses the minimum of the

potential, as depicted in Fig. 6.1. If the energy carried by the scalar field ψ is small enough,

the field f ′ will oscillate and eventually stop at the minimum of the potential, and the field
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Figure 6.6: Black hole formation from spherical collapse for the Hu-Sawicki model de-
scribed by Eq. (6.13), with D = 1.2 and R0 = 5 × 10−6. (a) Global structure of spacetime
for the collapse. (b) Growth of the apparent horizon. v = (x+ t)/2.

ψ disperses. The resulting spacetime is a de Sitter spacetime. However, if the scalar field

ψ carries enough energy, a black hole will form, and the Weyl tensor and Weyl scalar will

become singular as r goes to zero, which is confirmed in Sec. 6.5 and Fig. 6.14. This

shows that r = 0 is the true singularity inside a black hole. With Eq. (6.59), the apparent

horizon is found and plotted in Fig. 6.6. Therefore, a black hole is formed.

6.4.2 Dynamics during collapse

The evolutions of r, σ, f ′, and ψ are shown in Fig. 6.7. The evolution of the Ricci scalar

in the Jordan frame, RJF, is plotted in Fig. 6.8. During the collapse, the major part of the

energy of the source scalar field ψ is transported to the center. Consequently, the field f ′ is

decoupled from the source field and becomes light. At the same time, as shown in Fig. 6.8,

the Ricci scalar in the Jordan frame decreases, and the modification term in the function

f(R) becomes important. In this process, gravity transits from general relativity to f(R)

gravity. Compared to gravity from the singularity, the left side of the potential U(f ′) is not

steep enough to stop f ′ from running to the left. Consequently, the field f ′ rolls down from

its initial value, which is close to 1, crosses the de Sitter point, and asymptotes to but does

not cross zero near the singularity, as shown in Figs. 6.7(c) and 6.11(c). Simultaneously,
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Figure 6.7: Evolutions of the metric components and scalar fields on consecutive time
slices. As the singularity curve, r = 0, is approached, f ′ goes to zero, and the physical
scalar field ψ becomes singular.
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Figure 6.8: Evolution of the Ricci scalar in the Jordan frame on consecutive time slices.
Near the boundary of the scalar sphere, the Ricci scalar in the Jordan frame, RJF, moves
from a large value at the initial state to a very small value as the singularity is approached.
Then, gravity transits from general relativity to f(R) gravity.

as shown in Eq. (6.35), the factor 1/f ′ accelerates the transformed energy-momentum of

the source field ψ in the Einstein frame to blow up. In other words, one may say that the

effective gravitational coupling constant becomes singular at this point. The observations

that f ′ approaches zero are consistent with the results of collapse in Brans-Dicke theory

obtained in Ref.73 One may take f(R) theory as the ω = 0 case of Brans-Dicke theory,

where ω is the Brans-Dicke coupling constant. On the other hand, the potential in f(R)

theory has a more complicated form than in Brans-Dicke theory. In the latter case the

potential is usually set to zero.

We examine the evolutions in the vicinity of the singularity using the fixed mesh re-

finement method as discussed in Sec. 6.3.6. On the sample slice (x = 2.5, t = t) that

we choose to study, the interpolate-and-run loop is iterated 20 times. As a result, the grid

spacing ∆x = ∆t is reduced from 10−2 to 10−8. The smallest value for the radius r we

can reach is reduced from 10−2 to 10−4 (see Figs. 6.9 and 6.11). Note that the radius of

the apparent horizon of the formed black hole is about 2.2 [see Fig. 6.6(b)]. The results

obtained via mesh refinement support the BKL conjecture well, as discussed below.

One statement of the conjecture is that, in the vicinity of the singularity, gravity domi-

nates over the matter fields. This is verified by the results plotted in Fig. 6.9. The results

show that the metric terms are the most important ones, while the potential term and the
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Figure 6.9: (color online) Numerical solutions near the singularity obtained via mesh re-
finement. The range for the spatial coordinates is x ∈ [0 22], and the solution shown in
this figure is for (x = 2.5, t = t). In the vicinity of the singularity, in the equations of mo-
tion, the metric component terms are the most important, and the potential terms are the
least important. The scalar fields are intermediate. The scalar field φ dominates over
the physical field ψ. The ratios of σ,tt/σ,xx, φ2

,t/φ
2
,x, and (r,tφ,t)/(r,xφ,x) are all around

11.5. As discussed in Sec. 6.4.2, this is related to the slope of the singularity curve. This
implies that the slope of the singularity curve at x = 2.5 is about 1/

√
11.5 ≈ 0.29. Con-

sequently, neglecting minor terms, we can approximately rewrite the original equations of
motion for σ, φ and ψ only in terms of temporal derivatives. (a) The equation of motion for
η (6.31) becomes −η,tt + η,xx ≈ 2e−2σ. (b) The equation of motion for σ (6.32) becomes
−σ,tt+r,tt/r+φ2

,t/2 ≈ 0. (c) The equation of motion for φ (6.33) becomes φ,tt+2r,tφ,t/r ≈ 0.
(d) The equation of motion for ψ (6.34) becomes ψ,tt + 2r,tψ,t/r ≈

√
2/3κφ,tψ,t. Note that

φ,t is negative. Therefore, the term
√

2/3κφ,tψ,t tries to stop the evolution of ψ. This is a
dark energy effect.
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Figure 6.10: Spatial derivative vs temporal derivative near the singularity. Point A and point
B are on one same hypersurface r = Const, while point C is on another one. At point C,
in first-order accuracy, r,x ≈ (rC − rA)/∆x and r,t ≈ (rB − rC)/∆t. Since rA = rB and the
slope of the singularity curve, dt/dx, is less than 1, there is |r,x/r,t| ≈ |∆t/∆x| < 1.

effective force term based on the first-order derivative of the potential with respect to the

scalar field φ are the least important. The terms related to the scalar fields are intermediate.

The field φ, transformed from the scalar degree of freedom f ′, dominates the competition

between φ and the physical source field ψ [see Figs. 6.9(b)-(d)]. As discussed in the next

paragraph, |ψ,t| is no less than |ψ,x|. Then, in the equation of motion for φ (6.33), the con-

tribution from ψ, e−2σκT̃ (ψ)/
√

6
[
= (ψ2

,t − ψ2
,x)/(
√

6f ′)
]
, is positive. Namely, ψ accelerates

the evolution of φ. On the other hand, this contribution is tiny compared to gravity [see

Fig. 6.9(c)]. The effective force term from the potential is even less than the contribution

from ψ. This implies that, in the vicinity of the singularity, φ or f ′ becomes almost massless.

Regarding the equation of motion for ψ (6.34), the contribution from φ,
√

2/3κφ,tψ,t, is rel-

atively important [see Fig. 6.9(d)]. In fact, φ,t is negative. Therefore, the term
√

2/3κφ,tψ,t

functions as a friction force for ψ. This is a dark energy effect. This effect can also be

observed via comparison of Figs. 6.11(c) and (d). Because the dynamics of φ is mainly

determined by gravity, φ[≡ (
√

3/2 ln f ′)/κ] has a good linear relation with ln r [also refer to

Eqs. (6.80) and (6.82)]. However, because of the suppression from φ, the field ψ does not

have such a linear relation with ln r.

The second statement of the BKL conjecture is that, near the singularity, the terms

containing temporal derivatives are dominant over those containing spatial derivatives.
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However, in double-null and Kruskal coordinates, temporal derivatives and spatial deriva-

tives are connected by the slope of the singularity curve. We first take the variable r as

an example. As illustrated in Fig. 6.10, point A and point B are on one same hyper-

surface r = Const, while point C is on another one. At point C, in first-order accuracy,

r,x ≈ (rC − rA)/∆x and r,t ≈ (rB − rC)/∆t. Since rA = rB and the slope of the singularity

curve, dt/dx, is no greater than 1 [see Fig. 6.6(a)], there is∣∣∣r,x
r,t

∣∣∣ ≈ ∣∣∣∆t

∆x

∣∣∣ < 1. (6.62)

Namely, in the vicinity of the singularity curve, the ratio between spatial and corresponding

temporal derivatives is defined by the slope of this singularity curve. (Similar results for a

Schwarzschild black hole in Kruskal coordinates can be obtained analytically. Details are

given in Appendix 6.8.) This can also be interpreted in the following way. In double-null and

Kruskal coordinates, the time vector is not normal to the hypersurface of r = Const. Then,

the derivatives in the radial direction have nonzero projections on both hypersurfaces of

x = Const and t = Const. With Eq. (6.62), along a certain slice (x = Const, t = t), near

the singularity, the ratio between spatial and corresponding temporal derivatives is almost

constant.

The fact that the ratios between temporal and spatial derivatives are related to the

slope of the singularity curve is also valid for other quantities, e.g., σ, φ, and ψ. This can

be explained as follows. We take the scalar field φ as an example. With the illustration of

Fig. 6.10, as this scalar field moves toward the center r = 0 along the radial direction, two

neighboring points on this scalar wave φ should take close values when they cross points

C and D, respectively, on one same hypersurface r = Const at two consecutive moments,

because these two points on the scalar wave are neighbors and the “distances” AD and

BC are more important for their values than the difference between these two neighboring

points. In other words, in the vicinity of the singularity curve, gravity is more important than

the difference between neighboring points on the scalar wave. These arguments are also

supported by numerical results. Near the singularity, the evolution of φ is described by

Eq. (6.82): φ ≈ C ln ξ, where ξ is the distance between two hypersurfaces of r = Const

and r = 0. In Fig. 6.10, ξ means AD and BC. As shown in Fig. 6.13(f), the parameter C

changes slowly along the singularity curve, compared to the dramatic running of ln ξ near

the singularity. We also checked variations of C as ξ takes different scales on one same

slice (x = Const, t = t). The results show that C also changes very slowly.
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On the slice (x = 2.5, t = t) that we study, near the singularity, the ratios between

second-order temporal derivatives (or the squared/multiplication of first-order time deriva-

tives) and the corresponding spatial derivatives present in Eqs. (6.31)-(6.34), e.g., σ,tt/σ,xx,

φ2
,t/φ

2
,x, and (r,tφ,t)/(r,xφ,x), are all around 11.5. As argued in the above paragraph, this

implies that the slope of the singularity curve at x = 2.5 is about 1/
√

11.5 ≈ 0.29. In addi-

tion, as illustrated in Fig. 6.9, the term 2e−2σr2V in Eq. (6.31) and the terms e−2σ[V ′(φ) +

κT̃ (ψ)/
√

6] in Eq. (6.33) are negligible. Consequently, we can approximately rewrite the

original equation of motion for η (6.31) in the format of (6.63), and rewrite the original equa-

tions of motion for σ (6.32), φ (6.33), and ψ (6.34) only in terms of temporal derivatives as

follows:

−η,tt + η,xx ≈ 2e−2σ, (6.63)

−σ,tt +
r,tt
r

+
1

2
φ2
,t ≈ 0, (6.64)

φ,tt +
2r,tφ,t
r
≈ 0 ⇐⇒ φ,t ≈ Const · r−2 + Const, (6.65)

ψ,tt +
2r,tψ,t
r
≈
√

2

3
κφ,tψ,t. (6.66)

Note that |η,xx| is no greater than |η,tt|. As the singularity is approached, r,t and φ,t are

both negative. (Refer to the above arguments at the beginning of this section.) Then,

Eq. (6.65) implies that φ,tt < 0. Therefore, φ will be accelerated to −∞. Correspondingly,

f ′ approaches zero. Similar arguments can be applied to other equations above. Then, the

dynamical system approaches an attractor (r → 0, σ = −∞, f ′ → 0, ψ = +∞). Next, we

will explore the asymptotic solutions based on Eqs. (6.63)-(6.65).

6.4.3 Kasner solution for Schwarzschild black holes

The third statement of the BKL conjecture is that the dynamics near the singularity is ex-

pressed by the universal Kasner solution.82 The Kasner solution is an exact particular

solution to Einstein field equations in vacuum, and can be described by Eq. (6.67) with

q = 0. When a massless scalar field ζ is minimally coupled to gravity, the four-dimensional
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homogeneous but anisotropic Kasner solution can be described as follows:14,81,96

ds2 = −dτ2 +
3∑
i=1

τ2pidx2
i ,

p1 + p2 + p3 = 1,

p2
1 + p2

2 + p2
3 = 1− q2,

ζ = q ln τ,

(6.67)

where the parameter q describes the contribution from the field ζ. The parameter q2 is

constrained by Eq. (6.67) as

q2 ≤ 2

3
. (6.68)

The Kasner exponents can be expressed in the following parametric form:

p1 =
−w

1 + w + w2
, (6.69)

p2 =
1 + w

1 + w + w2

{
w − w − 1

2

[
1− (1− α2)

1
2

]}
, (6.70)

p3 =
1 + w

1 + w + w2

{
1 +

w − 1

2

[
1− (1− α2)

1
2

]}
, (6.71)

α2 =
2(1 + w + w2)2q2

(w2 − 1)2
. (6.72)

The parameter α2 is no greater than 1. The Kasner exponents are invariant under the

transformation of w → 1/w:

p1

(
1

w

)
= p1(w), p2

(
1

w

)
= p3(w), p3

(
1

w

)
= p2(w).

If q2 > 0, there are combinations of positive Kasner exponents, satisfying Eq. (6.67). More-

over, all three Kasner exponents take positive values if q2 ≥ 1/2.14,81 As will be demon-

strated in the rest of this chapter, a Schwarzschild black hole and spherical collapse toward

a black hole formation have special types of Kasner solution, in which p2 and p3 are equal.

The behavior of a test scalar field near the singularity in the spacetime of Oppenheimer-

Snyder collapse100 was simulated in Ref.62 The spacetime is asymptotically flat. The
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results confirmed one statement of the BKL conjecture: the temporal derivative terms are

dominant over the spatial ones. In the scalar collapse in f(R) gravity that we study in this

thesis, two scalar fields are present. One of them, ψ, is massless, and the other one, φ,

is very light although it has a mass. Moreover, the spacetime has an asymptotic de Sitter

solution.

Due to the close connection between a Schwarzschild black hole and spherical col-

lapse, it is instructive to review the dynamics near the singularity of a Schwarzschild black

hole first. In Schwarzschild coordinates, the Schwarzschild metric can be expressed as

ds2 = −
(

1− 2m

r

)
dt2 +

1

1− 2m
r

dr2 + r2dΩ2,

which, near the singularity, is reduced to

ds2 ≈ − r

2m
dr2 +

2m

r
dt2 + r2dΩ2. (6.73)

Inside the horizon, r is timelike, and t is spacelike. In this case,

τ ≈
∫ r

0

√
r

2m
dr =

√
2

3
√
m
r

3
2 , r ≈

(
3
√

2m

2
τ

) 2
3

. (6.74)

Considering Eqs. (6.67), (6.73), and (6.74), we have

p1 = −1

3
, p2 = p3 =

2

3
, (6.75)

which clearly are Kasner exponents, satisfying Eq. (6.67), with q being equal to zero.

To be one more step closer to spherical collapse in double-null coordinates, we consider

the Schwarzschild metric in Kruskal coordinates, which has the following form:

ds2 =
32m3

r
e−

r
2m (−dt2 + dx2) + r2dΩ2. (6.76)

The Schwarzschild radius r is given by

t2 − x2 =
(

1− r

2m

)
e
r

2m . (6.77)

In the vicinity of the singularity curve, we rewrite t as t = t0 − ξ, where t0 is the coordinate

time on the singularity curve and ξ � t0. With the spatial coordinate x being fixed, a

perturbation expansion near the singularity curve directly yields

r ≈
(
16m2t0ξ

) 1
2 . (6.78)
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Consequently, the proper time is

τ ≈
(
32m3

) 1
2

∫ ξ

0
r−

1
2dξ ≈ 8

√
2m

3(t0)
1
4

ξ
3
4 ≈

√
2

3
√
mt0

r
3
2 .

Therefore,

r ≈

(
3
√

2mt0
2

τ

) 2
3

. (6.79)

Then, we obtain the same set of Kasner exponents as in Schwarzschild coordinates.

6.4.4 Kasner solution for spherical collapse

The reduced equations of motion, (6.63)-(6.65), numerical results for spherical collapse in

f(R) theory, and the analysis of dynamics near the singularity for a Schwarzschild black

hole together show that the variables r, σ, and φ have the following asymptotic solutions:

r ≈ Aξβ, (6.80)

σ ≈ B ln ξ, (6.81)

φ ≈ C ln ξ, (6.82)

where ξ is defined in the same way as in the Kruskal case: ξ = t0 − t, where t0 is the

coordinate time on the singularity curve. Substituting the above three expressions into

Eq. (6.64) yields a relation between parameters β, B, and C:

B ≈ β(1− β)− C2

2
. (6.83)

We then put Eqs. (6.80), (6.81), and (6.83) into (6.63). Noting that the ratio η,tt/η,xx has a

certain value near a fixed singularity point, and neglecting minor terms, we obtain

ln(1− 2β) ≈
[
2(β − 1)2 + C2

]
ln ξ.

As ξ approaches zero, the parameter β needs to be close to 1/2, so that the two sides of

the equation are balanced. In this case, the above equation implies that

β ≈ 1− ξ
1
2

+C2

2
. (6.84)
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Therefore, as a function of ξ, r in spherical collapse has an exponent close to the one in a

Schwarzschild black hole in Kruskal coordinates [see Eq. (6.78)]. Substitution of Eqs. (6.83)

and (6.84) into (6.81) leads to the asymptotic solution for σ,

σ ≈
(

1− 2C2

4

)
ln ξ. (6.85)

Then, the proper time is

τ =

∫ ξ

0
e−σdξ ≈ 4

3 + 2C2
ξ

3+2C2

4 . (6.86)

Consequently, one can obtain the expressions for the metric components and scalar field

φ with respect to τ as follows:

r ≈ Aξ
1
2 ≈ A

(
3 + 2C2

4
τ

) 2
3+2C2

, (6.87)

e−σ ≈ ξ
−1+2C2

4 ≈
(

3 + 2C2

4
τ

)−1+2C2

3+2C2

, (6.88)

φ ≈ C ln ξ ≈ 4C

3 + 2C2
ln τ. (6.89)

Comparing Eqs. (6.87)-(6.89) to (6.67), we extract

p1 =
−1 + 2C2

3 + 2C2
, p2 = p3 =

2

3 + 2C2
, q =

4C

3 + 2C2
. (6.90)

It can be verified that these parameters satisfy Eq. (6.67). It is noticeable that as the pa-

rameter C in Eq. (6.89) goes to zero, namely the field φ disappears, the Kasner exponents

take the same values as in the Schwarzschild black hole case. The above analytic expres-

sions are also supported by numerical results. On the slice that we study, the parameter C

for φ is obtained by fitting the numerical results, C = 0.24070 ± 0.00003 [see Fig. 6.12(a)].

Then, with Eq. (6.90), the values for the Kasner exponents and the parameter q are

p1 = −0.28375± 0.00001,

p2 = p3 = 0.641874± 0.000006,

q = 0.308998± 0.000003.
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As shown in Figs. 6.12(b)-(d), the values for these quantities obtained via fitting the numer-

ical results are
p1 = −0.2650± 0.0003,

p2 = p3 = 0.6475± 0.0002,

q = 0.3038± 0.0002.

The two sets of values are highly compatible. Therefore, we obtain the Kasner solution for

spherical scalar collapse in f(R) theory in double-null coordinates in the Einstein frame.
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Figure 6.11: Evolutions of the metric components and scalar fields near the singularity
obtained via mesh refinement. The range for the spatial coordinates is x ∈ [0 22], and the
results shown in this figure are for (x = 2.5, t = t). We fit the results near the singularity
as follows. (a) ln τ = a + b ln r, a = −0.774 ± 0.004, b = 1.5843 ± 0.0006. (b) ln e−2σ =
−2σ = a + b ln r, a = 1.575 ± 0.003, b = −0.8797 ± 0.0004. ln e−2σ(= −2σ) has an ideal
linear relation with ln r, which supports our statements on Eqs. (6.80) and (6.81). (c) ln f ′ =√

2/3κφ = a + b ln r, a = −0.8021 ± 0.0002, b = 0.39288 ± 0.00004. Near the singularity,
the dynamics of f ′ or φ is mainly determined by gravity. As a result, ln f ′(=

√
2/3κφ) has

an ideal linear relation with ln r. f ′ approaches zero as r goes to zero. (d) ψ. Near the
singularity, although the evolution of ψ is mainly determined and accelerated by gravity, it is
considerably suppressed by φ. Consequently, ψ does not have an ideal linear relation with
ln r.
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Figure 6.12: Verification of the Kasner solution near the singularity. The results shown
in this figure are obtained via mesh refinement. These results are for (x = 2.5, t = t),
where t is equal to t0 when the singularity is approached. We fit the results near the
singularity as follows. (a) φ = a+ b ln(ξ + c), a = −0.5118± 0.0004, b = 0.24070± 0.00003,
c = (−1.735±0.008)×10−9. (b) φ = a+ b ln(τ +c), a = −0.747±0.002, b = 0.3038±0.0002,
c = (−0.89± 2.75)× 10−9. (c) r = a+ b(τ + c)d, a = (6.00± 0.06)× 10−5, b = 1.895± 0.002,
c = (−2.17±0.03)×10−7, d = 0.6475±0.0002. (d) exp(−σ) = a+b(τ+c)d, a = −1.98±0.05,
b = 2.14± 0.01, c = (−1.24± 0.09)× 10−8, d = −0.2650± 0.0003.
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6.4.5 Variations of Kasner parameters along the singularity curve

The Kasner solution described by Eq. (6.90) is a special case of the one expressed by

Eqs. (6.69)-(6.72). The two sets of expressions are identical under the conditions

α2 = 1, |C| = 1√
2

∣∣∣∣1− w1 + w

∣∣∣∣ . (6.91)

We study variations of the parameters A, β, B, and C present in Eqs. (6.80)-(6.82)

along the singularity curve by fitting the numerical results to corresponding analytic expres-

sions. The results are plotted in Fig. 6.13. The results imply that at places far away from the

center x = 0, the contribution from the scalar field φ is negligible, and the spacetime is very

similar to the one for a Schwarzschild black hole in Kruskal coordinates. Equation (6.78)

reveals that A = 4mt
1/2
0 and β = 1/2 for a Schwarzschild black hole. In the collapse case,

we plot the relation of A vs t0 in Fig. 6.13(b), while an approximate analytic expression for A

vs t0 is unavailable yet. Figure 6.13(c) shows that β is very close to 1/2. In Fig. 6.13(d), we

plot results for B obtained both via fitting the numerical results and the analytic expression

B = (1 − 2C2)/4 [see Eq. (6.85)]. We also compute the relative errors between the two

sets of results. The results from the two approaches are very close. They asymptote to 1/4

at places far from the center x = 0. This is consistent with the Schwarzschild black hole

case, in which B = 1/4.

As functions of C, the Kasner exponents and the parameter q are plotted in Fig. 6.13(e).

Equation (6.67) constrains the parameter q as q ≤
√

2/3. This is verified in Fig. 6.13(e).

When C =
√

3/2 ≈ 1.22, there are q =
√

2/3 ≈ 0.82 and p1 = p2 = p3 = 1/3. By fitting

the numerical results to Eq. (6.82), we obtain variations of C and q along the singularity

curve, as plotted in Fig. 6.13(f). In the direction from x = 5.5 toward x = 0, q increases and

approaches the maximum value,
√

2/3, near x = 0.3. Note that q describes the contribution

of the scalar field φ. The variation of q can be interpreted in a straightforward way. During

the collapse, ψ and φ move toward the center x = 0. Due to interactions between the scalar

fields and spacetime, the major energy of φ arrives at the formed singularity near x = 0.3,

and contributes most at this point.

One may wonder what the asymptotic values for A, β, B, and C are as x approaches

zero along the singularity curve. Another issue is the running of these parameters with

respect to the scale of ξ. Letting the spatial coordinate x take a fixed value, we implement

mesh refinement with different iterations. Correspondingly, ξ reaches different scales. We
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Figure 6.13: Variations of some parameters for the metric components and scalar field
along the singularity curve. (a) A for Eq. (6.80): r ≈ Aξβ. (b) A vs t0. (c) β for Eq. (6.80):
r ≈ Aξβ. (d) B for Eq. (6.81): σ ≈ B ln ξ. (e) The Kasner exponents and the parameter q
described by Eq. (6.90). (f) C for Eq. (6.89): φ ≈ C ln ξ. q = 4C/(3 + 2C2). In the range
of 0.2 ≤ x ≤ 3.7, 20 iterations of mesh refinement are implemented. In order to make
the fitting converge quickly, in the ranges of 3.8 ≤ x ≤ 5.5 and 5.6 ≤ x ≤ 5.9, 22 and 25
iterations of mesh refinement are implemented, respectively.
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obtain C by fitting the numerical results to Eq. (6.82). We find that C is running with respect

to the scale of ξ. For example, at x = 2.5, C decreases about three percent when the scale

of ξ is reduced from 10−3 to 10−8. However, detailed studies of such issues are beyond the

scope of this thesis.

Note that we are working in the Einstein frame. In this frame, the gravitational theory is

similar to general relativity. Two scalar fields, φ (or f ′) and ψ, are present. However, in the

vicinity of the singularity, the contributions to the spacetime from the physical scalar field

ψ and the potential for φ are negligible. The field φ is almost massless. The contribution

from the almost-massless field φ is important. Therefore, this case is essentially the same

as single massless scalar (spherical) collapse in general relativity. The Kasner solution

we obtained for spherical scalar collapse in f(R) theory is also the corresponding Kasner

solution for single massless scalar collapse in general relativity.

The statement that spherical collapse in general relativity ends up with a Schwarzschild

black hole has been verified by various numerical simulations. Hawking showed that sta-

tionary black holes as the final states of Brans-Dicke collapses are also the solutions of gen-

eral relativity.69 This conclusion has been numerically confirmed in Refs.115,116,118 A static

black hole in scalar-tensor theories [including f(R) theory] has a de Sitter-Schwarzschild

solution. In the f(R) theory case, f ′ would stay at the minimum of the potential, U(f ′).

However, numerical simulations show that in the collapse process, f ′ crosses the minimum

of the potential, and asymptotes to zero as the singularity is approached. Namely, the static

and dynamical solutions are considerably different. One may wonder whether the collapse

will lead to the static solution eventually. Preliminary explorations show that this may not

be a trivial question. Further explorations of this problem are omitted in this thesis.

6.5 View from the Jordan frame

Originally, f(R) gravity is defined in the Jordan frame. For computational convenience, we

transform f(R) gravity from the Jordan frame into the Einstein frame. After the results have

been obtained in the Einstein frame, we convert these results back into the Jordan frame

in this section. We examine the Ricci scalar, Weyl scalar, Weyl tensor, and Kasner solution

in the Jordan frame.
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6.5.1 Ricci scalar

First, using the asymptotic expressions for r (6.80) and σ (6.85), we compute the Ricci

scalar in the Einstein frame as follows:

REF = 2e2σ

[
− σ,tt + σ,xx +

2(r,tt − r,xx)

r
+

(r,t)
2 − (r,x)2

r2
+
e−2σ

r2

]
≈ (J2 − 1) · C2 · ξ−

(3+2C2)
2

≈ (J2 − 1) · C2 ·
(rEF

A

)−3−2C2

, (6.92)

where J is the slope of the singularity curve, and

J2 ≈ r,xx
r,tt
≈ σ,xx

σ,tt
≈ (r,x)2

(r,t)2
. (6.93)

Refer to arguments in Sec. 6.4.2 for details on the above equation. We use r and rEF to

denote the quantity r in the Einstein frame and rJF in the Jordan frame. The numerical

results and fitting results for REF in the vicinity of the singularity on the slice (x = 2.5, t = t)

are plotted in Fig. 6.14(a). We fit the numerical results according to ln |REF| = a+b ln(rEF +

c). We fix a to −0.592, which is the modified analytic value for a as discussed below. The

fitting results are
b = −3.1102± 0.0009,

c = (−3.0± 0.2)× 10−6.

The analytic results are

aanalytic = ln
[
(1− J2)C2A3+2C2

]
= 0.0922± 0.0003,

banalytic = −3− 2C2 = −3.11587± 0.00003,

canalytic = 0.

In the above computations, we have used the approximate expression for σ (6.81), σ ≈
B ln ξ. This expression is valid when r is close enough to zero. The fitting results for σ for

the slice (x = 2.5, t = t) are σ = −0.34224 + 0.22108 ln ξ. If we used this more accurate

expression, the modified analytic value for a would be aanalytic-modify = −0.592± 0.001.
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Figure 6.14: Curvature invariants near the singularity in the Einstein and Jordan frames in
the collapse of the Hu-Sawicki model expressed by Eq. (6.13). The results are for (x =
2.5, t = t). We fit the results as follows. (a) ln |REF| = a+ b ln(rEF + c). We fix a to −0.592,
which is the modified analytic value for a. b = −3.1102 ± 0.0009, c = (−3.0 ± 0.2) × 10−6.
REF diverges in the vicinity of the singularity, due to contributions from the scalar field,
φ[≡ (

√
3/2 ln f ′)/κ]. (b) RJF = a + b(rJF)c, a = (4.7869 ± 0.0001) × 10−7, b = (1.1294 ±

0.0002) × 10−6, c = 0.50983 ± 0.00006. As shown in Fig. 6.11(c), when the singularity is
approached, f ′ asymptotes to zero. Consequently, with Eq. (6.94), RJF will approach to a
constant: R0(

√
D−1). (c) lnCEF = a+b ln(rEF +c). We fix a to 2.072, which is the modified

analytic value for a. b = −2.9117±0.0008, c = (7.0±0.2)×10−6. (d) lnCJF = a+b ln(rJF+c),
a = 1.93± 0.03, b = −3.265± 0.007, c = (2.6± 0.1)× 10−4.
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The Ricci scalar in the Jordan frame for the Hu-Sawicki model can be obtained from

Eq. (6.15). In the vicinity of the singularity, f ′ � 1. Then Eq. (6.15) becomes

RJF = R0

[√
D

1− f ′
− 1

]
≈ R0(

√
D − 1) +

R0

√
D

2

(rJF

A

) 2
√

2/3C

1−
√

2/3C , (6.94)

where we have used

f ′ ≡ χ = e

√
2
3
φ

= ξ

√
2
3
C
, (6.95)

rJF = rEF · χ−
1
2 ≈ Aξ

1−
√

2/3C

2 . (6.96)

Note that in this chapter we have set 8πG = κ2 = 1. Equation (6.94) reveals that as rJF

asymptotes to zero, RJF will approach a constant: R0(
√
D − 1). The numerical results and

fitting results for RJF are shown in Fig. 6.14(b). The numerical results are fit according to

RJF = a+ b(rJF)c. The fitting results are

a = (4.7869± 0.0001)× 10−7,

b = (1.1294± 0.0002)× 10−6,

c = 0.50983± 0.00006.

The corresponding analytic results are

aanalytic = R0(
√
D − 1) = 4.77× 10−7,

banalytic = R0

√
D

2 A
− 2
√

2/3C

1−
√

2/3C = (1.7014± 0.0001)× 10−6,

canalytic =
2
√

2/3C

1−
√

2/3C
= 0.48920± 0.00008.

In the above computations, we have used the approximate expression for φ (6.82), φ ≈
C ln ξ. This expression is valid when r is close enough to zero. The fitting results for φ

for the slice (x = 2.5, t = t) are φ = −0.5118 + 0.2407 ln ξ [see Fig. 6.12(a)]. If we used

this more accurate expression, the modified analytic value for b would be banalytic-modify =

(1.0114± 0.0004)× 10−6.
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6.5.2 Weyl scalar

The Ricci tensor and Ricci scalar include information on the traces of the Riemann tensor,

while the trace-free parts are described by the Weyl tensor and Weyl scalar. We con-

sider the Weyl scalar and Weyl tensor in this and the next subsections, respectively. It is

convenient to define

AW = σ,xx − σ,tt +
r,xx − r,tt

r
+

(r,t)
2 − (r,x)2

r2
+
e−2σ

r2
. (6.97)

Then in the Einstein frame, the Weyl scalar is

CEF ≡
√
CαβµνCαβµν =

√
4

3
e2σAW

≈ 3− 2C2

2
√

3
(1− J2)ξ−

3+2C2

2

≈ 3− 2C2

2
√

3
(1− J2)

(rEF

A

)−3−2C2

, (6.98)

where Cαβµν is the Weyl tensor. The numerical and fitting results for CEF are plotted in

Fig. 6.14(c). We fit the numerical results according to lnCEF = a+ b ln(rEF + c). We fix a to

2.072, which is the modified analytic value for a as discussed below. The results are

b = −2.9117± 0.0008,

c = (7.0± 0.2)× 10−6.

The analytic results are

aanalytic = ln
[

3−2C2

2
√

3
(1− J2)A3+2C2

]
= 2.7574± 0.0001,

banalytic = −3− 2C2 = −3.11587± 0.00003,

canalytic = 0.

If we used the more accurate expression for σ, σ = −0.34224 + 0.22108 ln ξ, the modified

analytic value for a would be aanalytic-modify = 2.072± 0.001.

The Weyl scalar in the Jordan frame is137

CJF = f ′ · CEF ≈
3− 2C2

2
√

3
(1− J2)

(rJF

A

)− 3+2C2−2
√

2/3C

1−
√

2/3C . (6.99)
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We fit the numerical results according to lnCJF = a+ b ln(rJF + c). The results are

a = 1.93± 0.03,

b = −3.265± 0.007,

c = (2.6± 0.1)× 10−4.

The analytic results are
aanalytic = 3.0230± 0.0001,

banalytic = −3.3888± 0.0001,

canalytic = 0.

If we used the more accurate expressions for φ and σ, φ = −0.5118 + 0.2407 ln ξ, and

σ = −0.34224 + 0.22108 ln ξ, the modified analytic value for a would be aanalytic-modify =

2.6247± 0.0002.

6.5.3 Weyl tensor

The Weyl tensor in the format of Cαβµν is invariant under conformal transformations. We

compute one component of the Weyl tensor,

Ctxtx =
1

3
AW ≈

1

3

[
(1− J2)

3− 2C2

4
ξ−2 +A−2ξ−

3−2C2

2

]
. (6.100)

We also compute the metric components in the Jordan frame in the vicinity of the singularity

curve using the transformation relation, g(EF)
µν = χ · g(JF)

µν :

rJF = rEF · χ−
1
2 ≈ Aξ

1−
√

2/3C

2 , (6.101)

e−σ
∣∣
JF = e−σ

∣∣
EF · χ

− 1
2 ≈ ξ

−1+2C2−2
√

2/3C

4 . (6.102)

Equations (6.100)-(6.102) show that C =
√

3/2 is a special point. As ξ approaches

zero, when 0 < C <
√

3/2, Ctxtx and e−σ|JF become positive infinity, and rJF asymptotes

to zero. However, when C >
√

3/2, Ctxtx becomes negative infinity, rJF becomes positive

infinity, and e−σ|JF asymptotes to zero. Further explorations of these issues are beyond the
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scope of this thesis. Since the Weyl tensor is invariant under conformal transformations,

Ctxtx will also become positive infinity in the Jordan frame in the case of 0 < C <
√

3/2.

Moreover, the radius of the apparent horizon for the black hole in the Jordan frame can be

obtained from Eq. (6.101). Consequently, a black hole can also be formed in the Jordan

frame. The scalar degree of freedom f ′ will approach zero as rJF asymptotes to zero.

6.5.4 Kasner solution in the Jordan frame

In the Jordan frame, the proper time for the case of 0 < C <
√

3/2 is

τJF =

∫ ξ

0
e−σ

∣∣
JF dξ ≈

4

3 + 2C2 − 2
√

2/3C
ξ

3+2C2−2
√

2/3C

4 . (6.103)

Therefore, rJF, e−σ|JF, and φ can be written in terms of τJF as follows:

rJF ≈ A

(
3 + 2C2 − 2

√
2/3C

4
τJF

) 2(1−
√

2/3C)
3+2C2−2

√
2/3C

, (6.104)

e−σ
∣∣
JF ≈

(
3 + 2C2 − 2

√
2/3C

4
τJF

)−1+2C2−2
√

2/3C

3+2C2−2
√

2/3C

, (6.105)

φ ≈ 4C

3 + 2C2 − 2
√

2/3C
ln τJF. (6.106)

Comparing Eqs. (6.104)-(6.106) to (6.67), we have

(JF)p1 =
−1 + 2C2 − 2

√
2/3C

3 + 2C2 − 2
√

2/3C
, (6.107)

(JF)p2 = (JF)p3 =
2(1−

√
2/3C)

3 + 2C2 − 2
√

2/3C
, (6.108)

(JF)q =
4C

3 + 2C2 − 2
√

2/3C
. (6.109)

Obviously, (JF)p1, (JF)p2, (JF)p3, and (JF)q do not satisfy (JF)p1 + (JF)p2 + (JF)p3 = 1 and
(JF)p1

2 + (JF)p2
2 + (JF)p3

2 = 1 − (JF)q2. This is because in the Jordan frame, the scalar

degree of freedom, f ′, is not minimally coupled to gravity, while that is the case in the

Einstein frame or general relativity.
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Figure 6.15: Black hole formation from spherical collapse for the Hu-Sawicki model de-
scribed by Eq. (6.13), with D = 1.05 and R0 = 5× 10−6. (a) Global structure of spacetime
for the collapse. (b) Growth of the apparent horizon. v = (x+ t)/2.

6.6 Collapses in more general models

We have studied spherical collapse for one of the simplest versions of the Hu-Sawicki

model in the Einstein frame. In this section, we will discuss collapses in more general

cases. We will examine how the parameter D in the Hu-Sawicki model (6.13) affects the

results. Spherical collapse for another typical dark energy model, the Starobinsky model,

will be explored.

6.6.1 Collapse for the Hu-Sawicki model in general cases

In one of the simplest versions of the Hu-Sawicki model, described by Eq. (6.13), the

parameter D is set to 1.2. Now we let D take a smaller value, 1.05. This means that the

dark energy will play a less important role. The results in this configuration are plotted in

Fig. 6.15. Not surprisingly, in comparison to Fig. 6.6 with D = 1.2, in this new case, it takes

less time to form a black hole, and the radius of the apparent horizon of the formed black

hole is larger. In the case of D = 1.2, the apparent horizon starts to form at t = 3.6, and the

radius of the black hole is about 2.2. In the case of D = 1.05, the apparent horizon starts

to form at t = 3.0, and the radius of the black hole is about 3.4.
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6.6.2 Collapse for the Starobinsky model

We consider spherical collapse for the Starobinsky model, which can be expressed as

follows:126

f(R) = R+DR0

[(
1 +

R2

R0
2

)−n
− 1

]
, (6.110)

where D and n are positive parameters, and R0 has the same order of magnitude as

the currently observed effective cosmological constant. In the simulations, we set R0 to

5× 10−6.

We simulate collapses with n = 1 and n = 2. Note that the case of n = 1 for the

Starobinsky model (6.110) is identical to the case of n = 2 for the Hu-Sawicki model (2.43).

The results with n = 1 and n = 2 for the Starobinsky model are similar, and we only present

results of the n = 2 case in Fig. 6.16. The potentials in Figs. 6.16(a) and (b) are for D = 2

and D = 1.1, respectively. The results of these two cases are also similar, and only those

for D = 1.1 are plotted in Figs. 6.16(c) and (d). These results are close to those for the

Hu-Sawicki model. Since the potential is not important in the vicinity of the singularity, f ′

asymptotes to zero as the singularity is approached, no matter what the potential looks like

near f ′ = 0. [See Figs. 6.16(a) and (b).]

6.7 Conclusions

Spherical scalar collapse in f(R) gravity was simulated in this chapter. Two typical dark

energy f(R) models, the Hu-Sawicki model and Starobinsky model, were taken as example

models. A black hole formation was obtained. The dynamics of the metric components,

the scalar degree of freedom f ′, and a physical scalar field during the collapse process,

including near the singularity, were studied. The results confirmed the BKL conjecture.

This work concludes by examining both its numerical and physical findings.

6.7.1 Conclusions on numerical issues

In order to achieve certain objectives, one needs to choose proper coordinates. In numer-

ical simulations, stability is a core issue. Most, if not all, efforts are made to improve the

stability of the simulations.
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Figure 6.16: Spherical collapse in the Starobinsky model (6.110), with n = 2 and R0 =
5 × 10−6. (a) is for D = 2, and (b)-(d) for D = 1.1. The results are similar to those in
the Hu-Sawicki model. Since the potential is not important in the vicinity of the singularity,
χ(≡ f ′) asymptotes to zero as the singularity is approached, no matter what the potential
looks like near χ = 0.
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• Coordinates. The double-null coordinates were employed, which enabled us to study

the dynamics both inside and outside the horizon of the formed black hole.

• Mesh refinement and asymptotic analysis. Mesh refinement and asymptotic analy-

sis were applied to study the dynamics in the vicinity of the singularity of the formed

black hole. Mesh refinement significantly helped us to reveal the dynamics near the

singularity, and hence was specially enlightening in seeking approximate analytic so-

lutions. A combination of mesh refinement and asymptotic analysis effectively helped

us to obtain the asymptotic analytic solutions near the singularity.

• Scalar field vs dust field. A massless scalar field was taken as the matter field for

the collapse. A scalar field is much stiffer than a dust field. This helped to make the

simulations more stable.

• Jordan frame vs Einstein frame. Originally, f(R) gravity was built in the Jordan frame.

For computational convenience, we transformed f(R) gravity from the Jordan frame

into the Einstein frame, in which the gravitational theory is similar to general relativity.

Moreover, in the Einstein frame, the second-order derivatives of f ′ are absent in the

equations of motion for the metric components. This makes the formalism simpler

and makes the simulations easier.

• Choosing proper evolution equations. In the equations of motion for r (6.30) and σ

(6.32), some terms are susceptible to discretization errors at small r. We avoided this

problem by rewriting Eq. (6.30) in terms of η ≡ r2, and using the constraint equation

and defining a new variable g[= −2σ − ln(−r,u)] instead. At the mesh refinement

stage, where the refinement region is usually a bit far from the center x = r = 0, we

switch back to Eq. (6.32).

• First- vs second-order accurate initial conditions. The leapfrog integration scheme

was used in this paper. This scheme needs the initial data at the first two time levels.

We obtained the initial data at the first level t = 0 by setting the variables to be

time-symmetric and then solving the field equations. We computed the initial data at

the second level t = ∆t via a second-order Taylor series expansion. This approach

helped to make the simulations second-order accurate. More importantly, it was found

that this approach greatly helped to stabilize the simulations in f(R) theory, especially

at the center x = r = 0.
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6.7.2 Conclusions on physical results

The dark energy f(R) theory is a modification of general relativity at the low-curvature

scale. Inside a sphere whose matter density is much greater than the dark energy density

and whose radius is large enough, f ′ is coupled to the matter density and is close to 1.

Accordingly, f(R) gravity is reduced to general relativity and the modification term is neg-

ligible. However, during the collapse, the matter moves to the center of the scalar sphere,

which forms a black hole at a later stage. Then, f ′ loses the coupling and becomes almost

massless. Due to the strong gravity from the singularity and the low mass of f ′, f ′ crosses

its de Sitter value and asymptotes to zero as the singularity is approached. Simultane-

ously, the modification term in the function f(R) takes effect and even becomes dominant.

A static black hole in f(R) theory has a de Sitter-Schwarzschild solution. Therefore, the

solution of the dynamical collapse is significantly different from the static one.

In the vicinity of the singularity, in the equations of motion for the metric components and

scalar fields, the metric component terms are more important than the scalar field ones.

The field φ, transformed from the scalar degree of freedom f ′, dominates the competition

between φ and the physical field ψ. The field φ contributes more to the dynamics of the

metric components than ψ does. In the equations of motion for the metric components

and φ, the contributions of ψ are negligible. However, the effect of φ on the evolution of ψ

is visible. The field φ or effective dark energy tries to stop the collapse of ψ. The metric

components and the scalar field φ are described by the Kasner solution. These results

supported the BKL conjecture well.

Near the singularity, the field ψ can be omitted; while the field φ remains, with the

potential being negligible. Then the Kasner solution for spherical scalar collapse in f(R)

theory that we obtained is also the Kasner solution for collapse in general relativity.

In studies of cosmological dynamics and local tests of f(R) theory, much attention has

been given to the right side and the minimum area of the potential as plotted in Fig. 6.1.57

In the early Universe, the scalar field f ′ is coupled to the matter density and is close to 1.

In the later evolution, f ′ goes down toward the minimum of the potential, oscillates, and

eventually stops at the minimum. In the oscillation epoch, f ′ does not deviate too far from

the minimum. However, in the collapse toward a black hole formation, the strong gravity

from the black hole pulls f ′ in the left direction to a place far away from the minimum.

Consequently, the left side of the potential needs more attention in the collapse problem.
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6.8 Appendix: Spatial and temporal derivatives near the singu-

larity curve for a Schwarzschild black hole

In this appendix, we derive the analytic expressions for the spatial and temporal derivatives

near the singularity curve for a Schwarzschild black hole in Kruskal coordinates. Due

to the similarity between Kruskal coordinates and double-null coordinates, these results

can provide an intuitive understanding of the relation between the spatial and temporal

derivatives near the singularity curve for the collapse in double-null coordinates.

For a Schwarzschild black hole in Kruskal coordinates, the expression for r can be

obtained from Eq. (6.77):
r

2m
= 1 +W (z), (6.111)

where

z =
x2 − t2

e
,

and W is the Lambert W function defined by42

Y = W (Y )eW (Y ). (6.112)

Y can be a negative or a complex number. On the hypersurface of r = Const, z = (x2 −
t2)/e = Const. Then, in the two-dimensional spacetime of (t, x), the slope for the curve

r = Const, J , can be expressed as

J ≡ dt

dx
=
x

t
. (6.113)

The first- and second-order derivatives of W are

dW

dz
=

W

z(1 +W )
, for z 6=

{
0,−1

e

}
. (6.114)

d2W

dz2
= −W

2(2 +W )

z2(1 +W )3
, for z 6=

{
0,−1

e

}
. (6.115)

Consequently, with Eqs. (6.111), (6.114), and (6.115), one can obtain the first- and second-

order derivatives of r with respect to x:

1

2m
· dr
dx

=
dW

dz
· 2x

e
, (6.116)

1

2m
· d

2r

dx2
=
d2W

dz2

(
2x

e

)2

+
dW

dz
· 2

e
. (6.117)
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Near the singularity curve, z[= (x2 − t2)/e] approaches −1/e, and W asymptotes to −1.

Consequently, the second-order derivative of r with respect to x can be approximated as

follows:
1

2m
· d

2r

dx2
≈ − 4x2

(1 +W )3
≈ d2W

dz2

(
2x

e

)2

. (6.118)

Similarly, one can obtain the first- and second-order derivatives of r with respect to t

near the singularity curve:
1

2m
· dr
dt

= −dW
dz
· 2t

e
, (6.119)

1

2m
· d

2r

dt2
≈ − 4t2

(1 +W )3
≈ d2W

dz2

(
2t

e

)2

. (6.120)

Therefore, with Eqs. (6.116) and (6.118)-(6.120), the ratios between the spatial and tem-

poral derivatives can be expressed by the slope of the singularity curve, J :

dr
dx
dr
dt

= −x
t

= −J, (6.121)

d2r
dx2

d2r
dt2

≈
(x
t

)2
= J2. (6.122)

As discussed in Sec. 6.4.2, in spherical collapse in double-null coordinates, the ratios be-

tween the spatial and temporal derivatives are also defined by the slope of the singularity

curve, J .



Chapter 7

Conclusions

7.1 Summary

In this thesis we have studied f(R) model building, cosmological dynamics, Solar System

tests of f(R) gravity, and spherical collapse in f(R) gravity.

We explored the running coupling concept in gravity, and discussed the modified gravity

models generated from this idea. Two logarithmic models were analyzed. These two mod-

els can produce a large hierarchy between the Planck scale and the cosmological constant

scale. However, the price is that, at the high-curvature scale, the considerable running of

the modification terms with the Ricci scalar makes these two models deviate from gen-

eral relativity nonnegligibly. Therefore, it is challenging for these two models to generate a

viable cosmological evolution and avoid the Solar system tests.

We studied the cosmological viability conditions, phase-space dynamics, and cosmo-

logical evolution of f(R) gravity. We developed a set of techniques for the cosmological

analysis. We presented generic features of the phase-space dynamics in f(R) cosmology.

We investigated the Solar System tests of f(R) gravity in the Jordan frame. We studied

the spacetime of the Solar System where the Sun sits in a vacuum background. We dis-

cussed the chameleon mechanism, and also explored the implications of this mechanism

for the form of the function f(R). In addition to analytical methods, numerical computations

were implemented, which provide an efficient way to study how the scalar field f ′ behaves

in the effective potential.

We simulated spherical scalar collapse in f(R) theory. The results show that a black

132
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hole can be formed. We found that, during the collapse, the major energy of the physical

scalar field moves to the center of the sphere. Consequently, f ′ is released from the cou-

pling to the matter density and becomes light. Due to the strong gravity from the singularity

and the low mass of f ′, f ′ crosses the minimum of the potential and approaches zero.

The static solution of a black hole in f(R) gravity is a de Sitter-Schwarzschild solution.

Therefore, the dynamical solution for spherical collapse is significantly different from the

static one. In the vicinity of the singularity, spacetime is more important than matter fields.

The competition between f ′ and the physical scalar field was studied. f ′ suppresses the

collapse of the physical scalar field noticeably, while the physical scalar field affects the evo-

lution of f ′ negligibly. We obtained the Kasner solution for the spherical scalar collapse in

f(R) theory. These results verify the Belinskii-Khalatnikov-Lifshitz conjecture in the context

of black hole physics.

7.2 Perspectives

Black hole physics is a unique playground to explore gravity and quantum physics. This

thesis only considered neutral spherical scalar collapse in f(R) gravity. In fact, a large

number of other interesting issues could be explored. Some of them are listed below.

• Final state of collapse. In this thesis, we studied the dynamics throughout the col-

lapse, including in the vicinity of the singularity of the formed black hole. However,

the final state of the collapse remains unexplored yet. Because of couplings between

scalar fields and spacetime, this seems not a trivial issue and deserves to be inves-

tigated. The dynamics of a free cosmological scalar field near the horizon of a small

black hole was explored analytically in Ref.76 The generalized circumstances of both

lightly and heavily massive scalar fields were analyzed in Ref.53 An exact solution for

a slowly rolling scalar field accreting onto a black hole was found in Ref.33

• Critical collapse. Critical phenomena of collapse in modified gravity may be another

interesting subject to explore. Gravitational collapse shows critical phenomena when

a black hole is on the edge of being or not being formed.35 The mass of the black

hole in this critical collapse has a scaling relation with respect to a parameter of

the source field. The collapse also shows a discrete self-similarity. These critical
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phenomena have also been found in other cases, e.g., gauge field collapse,36 Brans-

Dicke collapse,93 and Einstein-Gauss-Bonnet collapse.63 However, critical collapse

in f(R) theory has not been studied yet.

• Charge collapse. An electrically charged black hole has a more complicated space-

time structure. Therefore, it would be worthwhile to simulate a charge collapse in

f(R) theory. In Ref.,75 charge collapse in f(R) theory was briefly discussed. How-

ever, a detailed analysis of the dynamics of (and interactions between) the physical

source field, charge, Ricci scalar, and f ′ has not been done yet. Mass inflation106,107

and asymptotic solutions near the singularity deserve to be explored.

• Quantum effects. In this thesis, we discussed collapses in classical general relativity.

It may be exciting to take into account quantum effects. In Refs.,55,56 the semiclassi-

cal geometry of charged black holes was studied in two-dimensional dilaton gravity,

and quantum effects were included in the form of pair-production of charged parti-

cles. Quantum evaporation of Callan-Giddings-Harvey-Strominger black holes within

the mean-field approximation was analyzed in Refs.6,7

To unify gravity and quantum field theory and to address certain cosmological problems,

people have considered possible gravitational theories beyond general relativity. Con-

frontations between these theories and the observations imply that more efforts need to

be invested, and that the basic principles of classical general relativity and quantum me-

chanics need to be rethought. More experimental data and observations are required.

Attracted by the possibilities, people have been working toward connecting gravity with

quantum physics for several decades. As of yet, a viable and complete quantum theory of

gravity has not been constructed. However, the explorations will continue as people are

driven to discover new worlds and extend the boundaries of our current knowledge.



Bibliography

[1] P. A. R. Ade et al. [Planck Collaboration], “Planck 2013 results. XXII. constraints on

inflation,” arXiv:1303.5082 [astro-ph.CO] 2, 11, 15

[2] P. A. R. Ade et al. [Planck Collaboration] “Planck 2013 results. I. Overview of products

and scientific results,” arXiv:1303.5062 [astro-ph.CO] 2

[3] L. Amendola, R. Gannouji, D. Polarski, and S. Tsujikawa, “Conditions for the cos-

mological viability of f(R) dark energy models,” Phys. Rev. D 75, 083504 (2007).

[arXiv:gr-qc/0612180] 4, 31, 35

[4] N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, “The hierarchy problem and new

dimensions at a millimeter,” Phys. Lett. 429B, 263 (1998). [arXiv:hep-ph/9803315] 18

[5] A. Ashtekar, A. Henderson, and D. Sloan, “A Hamiltonian Formulation of the BKL Con-

jecture,” Phys. Rev. D 83, 084024 (2011). [arXiv:1102.3474 [gr-qc]] 84

[6] A. Ashtekar, F. Pretorius and F. M. Ramazanoglu, “Surprises in the Evaporation of

2-Dimensional Black Holes,” Phys. Rev. Lett. 106, 161303 (2011) [arXiv:1011.6442

[gr-qc]] 134

[7] A. Ashtekar, F. Pretorius and F. M. Ramazanoglu, “Evaporation of 2-Dimensional Black

Holes,” Phys. Rev. D 83, 044040 (2011) [arXiv:1012.0077 [gr-qc]] 134

[8] D. Bailin and A. Love, “Kaluza-Klein theories,” Rept. Prog. Phys. 50, 1087 (1987). 1

[9] K. Bamba, C.-Q. Geng, and C.-C. Lee, “Cosmological evolution in exponential gravity,”

J. Cosmol. Astropart. Phys. 08 (2010) 021. [arXiv:1005.4574 [astro-ph]] 55, 57

135

http://arxiv.org/abs/1303.5082
http://arxiv.org/abs/1303.5062
http://arxiv.org/abs/gr-qc/0612180
http://arxiv.org/abs/hep-ph/9803315
http://arxiv.org/abs/1102.3474
http://arxiv.org/abs/1011.6442
http://arxiv.org/abs/1011.6442
http://arxiv.org/abs/1012.0077
http://arxiv.org/abs/1005.4574


BIBLIOGRAPHY 136

[10] A. Barreira, B. Li, C. Baugh, and S. Pascoli, “Spherical collapse in Galileon gravity:

fifth force solutions, halo mass function and halo bias,” J. Cosmol. Astropart. Phys. 11

(2013) 056. [arXiv:1308.3699 [astro-ph.CO]] 84

[11] T. W. Baumgarte and S. L. Shapiro, Numerical Relativity: Solving Einstein’s Equations

on the Computer (Cambridge University Press, Cambridge, UK, 2010). 98

[12] J. D. Bekenstein, “Novel ‘no-scalar-hair’ theorem for black holes,” Phys. Rev. D 51,

R6608 (1995). 2, 83

[13] V. A. Belinskii, I. M. Kalathnikov, and E. M. Lifshitz, “Oscillatory Approach to a Singular

Point in the Relativistic Cosmology,” Adv. Phys. 19, 525 (1970). 84

[14] V. A. Belinskii and I. M. Khalatnikov, “Effect of scalar and vector fields on the nature of

the cosmological singularity,” Zh. Eksp. Teor. Fiz. 63, 1121 (1972) [Sov. Phys. JETP 36,

591 (1973)]. 84, 109

[15] V. A. Belinskii, “On the cosmological singularity,” arXiv:1404.3864 [gr-qc] 83

[16] B. K. Berger, D. Garfinkle, J. Isenberg, V. Moncrief, and M. Weaver, “The Singularity

in Generic Gravitational Collapse Is Spacelike, Local, and Oscillatory,” Mod. Phys. Lett.

A13, 1565 (1998). [arXiv:gr-qc/9805063] 84

[17] B. K. Berger, “Numerical Approaches to Spacetime Singularities,” Living Rev. Relativity

5, 1 (2002). [arXiv:gr-qc/0201056] 83

[18] P. G. Bergmann, “Comments on the scalar tensor theory,” Int. J. Theor. Phys. 1, 36

(1968). 1, 9

[19] C. P. L. Berry and J. R. Gair, “Linearized f(R) gravity: Gravitational radiation and Solar

System tests,” Phys. Rev. D 83 (2011) 104022. [arXiv:1104.0819v4 [gr-qc]] 62, 66

[20] E. Berti, V. Cardoso, L. Gualtieri, M. Horbatsch, and U. Sperhake, “Numerical simula-

tions of single and binary black holes in scalar-tensor theories: circumventing the no-hair

theorem,” Phys. Rev. D 87, 124020 (2013). [arXiv:1304.2836 [gr-qc]] 83

[21] B. Bertotti, L. Iess, and P. Tortora, “A test of general relativity using radio links with the

Cassini spacecraft,” Nature 425 (2003) 374. 9, 60

http://arxiv.org/abs/1308.3699
http://arxiv.org/abs/1404.3864
http://arxiv.org/abs/gr-qc/9805063
http://arxiv.org/abs/gr-qc/0201056
http://arxiv.org/abs/1104.0819v4
http://arxiv.org/abs/1304.2836


BIBLIOGRAPHY 137

[22] N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge Uni-

versity Press, Cambridge, UK, 1982). 14

[23] H. Bondi, “Spherically symmetrical models in general relativity,” Mon. Not. R. Astron.

Soc. 107, 410 (1947). 83

[24] A. Borkowska, M. Rogatko, and R. Moderski, “Collapse of Charged Scalar Field in

Dilaton Gravity,” Phys. Rev. D 83, 084007 (2011). [arXiv:1103.4808 [gr-qc]] 84, 85

[25] C. H. Brans and R. H. Dicke, “Mach’s principle and a relativistic theory of gravitation,”

Phys. Rev. 124, 925 (1961). 1, 9

[26] C. H. Brans, “Roots of scalar-tensor theories,” arXiv:gr-qc/0506063 1

[27] T. S. Bunch and P. C. W. Davies, “Conditions for the cosmological viability of f(R) dark

energy models,” Proc. R. Soc. London A 356, 569 (1977). 14

[28] Z. Cao, P. Galaviz, and L.-F. Li, “Binary black hole mergers in f(R) theory,” Phys. Rev.

D 87, 104029 (2013). 84

[29] S. M. Carroll, “The Cosmological Constant,” Living Rev. Relativity 4, 1 (2001).

[arXiv:astro-ph/0004075] 2

[30] S. M. Carroll, V. Duvvuri, M. Trodden, and M. S. Turner, “Is Cosmic Speed-

Up Due to New Gravitational Physics?” Phys. Rev. D 70, 043528 (2004).

[arXiv:astro-ph/0306438] 2, 21

[31] S. Carroll, Spacetime and Geometry: An Introduction to General Relativity (Addison-

Wesley, 2003). 8, 9, 10

[32] J. A. R. Cembranos, A. de la Cruz-Dombriz, and B. M. Nunez, “Gravitational collapse

in f(R) theories,” J. Cosmol. Astropart. Phys. 04 (2012) 021. [arXiv:1201.1289 [gr-qc]]

84

[33] S. Chadburn and R. Gregory “Time dependent black holes and scalar hair,”

arXiv:1304.6287 [gr-qc] 133

[34] T. Chiba, T. L. Smith, and A. L. Erickcek, “Solar System constraints to general f(R)

gravity,” Phys. Rev. D 75, 124014 (2007). [arXiv:astro-ph/0611867] 62, 63, 66

http://arxiv.org/abs/1103.4808
http://arxiv.org/abs/gr-qc/0506063
http://arxiv.org/abs/astro-ph/0004075
http://arxiv.org/abs/astro-ph/0306438
http://arxiv.org/abs/1201.1289
http://arxiv.org/abs/1304.6287
http://arxiv.org/abs/astro-ph/0611867


BIBLIOGRAPHY 138

[35] M. W. Choptuik, “Universality and scaling in gravitational collapse of a massless scalar

field,” Phys. Rev. Lett. 70, 9 (1993). 3, 133

[36] M. W. Choptuik, T. Chmaj, and P. Bizon “Critical behaviour in gravitational collapse of

a Yang-Mills field,” Phys. Rev. Lett. 77, 424 (1996). [arXiv:gr-qc/9603051] 134

[37] D. Christodoulou, “Bounded Variation Solutions of the Spherically Symmetric Einstein-

Scalar Field Equations,” Commun. Pure Appl. Math. 46, 1131 (1993). 5, 85, 88

[38] T. Clifton, “The Parameterised Post-Newtonian Limit of Fourth-Order Theories of Grav-

ity,” Phys. Rev. D 77 024041 (2008). [arXiv:0801.0983 [gr-qc]] 66

[39] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, “Modified gravity and cosmology,”

Physics Reports 513 (2012) 1. [arXiv:1106.2476 [astro-ph]] 8, 9, 10

[40] G. Cognola, E. Elizalde, S. Nojiri, S. D. Odintsov, L. Sebastiani, and S. Zerbini, “Class

of viable modified f(R) gravities describing inflation and the onset of accelerated expan-

sion,” Phys. Rev. D 77, 046009 (2008). [arXiv:0712.4017 [hep-th]] 55

[41] S. Coleman, “Fate of the false vacuum: Semiclassical theory,” Phys. Rev. D 15 2929

(1977). 70, 71

[42] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the

Lambert W function,” Adv. Comput. Math. 5, 329 (1996). 28, 130

[43] P. Csizmadia and I. Racz, “Gravitational collapse and topology change in spher-

ically symmetric dynamical systems,” Classical Quantum Gravity 27, 015001 (2010).

[arXiv:0911.2373 [gr-qc]] 93, 98

[44] P. C. W. Davies, S. A. Fulling, S. M. Christensen and T. S. Bunch, “Conditions for the

cosmological viability of f(R) dark energy models,” Ann. Phys. 109, 108 (1977). 14

[45] A. D. Dolgov and M. Kawasaki, “Can modified gravity explain accelerated cosmic ex-

pansion?” Phys. Lett. 573B, 1 (2003). [arXiv:astro-ph/0307285] 12, 20, 23

[46] J. F. Donoghue, “General relativity as an effective field theory: The leading quantum

corrections,” Phys. Rev. D 50, 3874 (1994). [arXiv:gr-qc/9405057] 1

[47] G. R. Dvali, G. Gabadadze, and M. Porrati, “4D gravity on a brane in 5D Minkowski

space,” Phys. Lett. 485B, 208 (2000). [arXiv:hep-ph/0005016] 1, 18

http://arxiv.org/abs/gr-qc/9603051
http://arxiv.org/abs/0801.0983
http://arxiv.org/abs/1106.2476
http://arxiv.org/abs/0712.4017
http://arxiv.org/abs/0911.2373
http://arxiv.org/abs/astro-ph/0307285
http://arxiv.org/abs/gr-qc/9405057
http://arxiv.org/abs/hep-ph/0005016


BIBLIOGRAPHY 139

[48] E. Elizalde, S. Nojiri, S. D. Odintsov, L. Sebastiani, and S. Zerbini, “Non-singular ex-

ponential gravity: a simple theory for early- and late-time accelerated expansion,” Phys.

Rev. D 83, 086006 (2011). [arXiv:1012.2280 [hep-th]] 55

[49] T. Faulkner, M. Tegmark, E. F. Bunn, and Y. Mao, “Constraining f(R) Gravity as a Scalar

Tensor Theory,” Phys. Rev. D 76 (2007) 063505. [arXiv:astro-ph/0612569v1] 37, 63,

66

[50] A. D. Felice and S. Tsujikawa, “f(R) Theories,” Living Rev. Relativity 13, 3 (2010).

[arXiv:1002.4928 [gr-qc]] 2, 13, 66

[51] M. Fierz and W. Pauli, “On relativistic wave equations for particles of arbitrary spin in

an electromagnetic field,” Proc. Roy. Soc. Lond. A173, 211 (1939). 1

[52] E. Fradkin and M. A. Vasiliev, “On the Gravitational Interaction of Massless Higher

Spin Fields,” Phys. Lett. 189B, 89 (1987). 8

[53] A. V. Frolov and L. Kofman, “Inflation and de Sitter Thermodynamics,” J. Cosmol.

Astropart. Phys. 05 (2003) 009. [arXiv:hep-th/0212327] 133

[54] A. V. Frolov, “Is It Really Naked? On Cosmic Censorship in String Theory,” Phys. Rev.

D 70, 104023 (2004). [arXiv:hep-th/0409117] 85, 90, 91, 93

[55] A. V. Frolov, K. R. Kristjansson, L. Thorlacius, “Semi-classical geometry of charged

black holes,” Phys. Rev. D 72, 021501 (2005). [arXiv:hep-th/0504073] 84, 85, 134

[56] A. V. Frolov, K. R. Kristjansson, L. Thorlacius, “Global geometry of two-dimensional

charged black holes,” Phys. Rev. D 73, 124036 (2006). [arXiv:hep-th/0604041] 84, 85,

134

[57] A. V. Frolov, “A Singularity Problem with f(R) Dark Energy,” Phys. Rev. Lett. 101,

061103 (2008). [arXiv:0803.2500 [astro-ph]] 24, 129

[58] A. V. Frolov and J.-Q. Guo, “Small cosmological constant from running gravitational

coupling,” arXiv:1101.4995 [astro-ph.CO] 19, 26

[59] Y. Fujii and K.-I. Maeda, The Scalar-Tensor Theory of Gravitation (Cambridge Univer-

sity Press, Cambridge, UK, 2007). 10

http://arxiv.org/abs/1012.2280
http://arxiv.org/abs/astro-ph/0612569v1
http://arxiv.org/abs/1002.4928
http://arxiv.org/abs/hep-th/0212327
http://arxiv.org/abs/hep-th/0409117
http://arxiv.org/abs/hep-th/0504073
http://arxiv.org/abs/hep-th/0604041
http://arxiv.org/abs/0803.2500
http://arxiv.org/abs/1101.4995


BIBLIOGRAPHY 140

[60] D. Garfinkle, “Choptuik scaling in null coordinates,” Phys. Rev. D 51, 5558 (1995).

[arXiv:gr-qc/9412008] 98

[61] D. Garfinkle, “Numerical Simulations of Generic Singularities,” Phys. Rev. Lett. 93,

161101 (2004). [arXiv:gr-qc/0312117] 84

[62] R. Saotome, R. Akhoury, and D. Garfinkle, “Examining Gravitational Collapse With

Test Scalar Fields,” Classical Quantum Gravity 27, 165019 (2010). [arXiv:1004.3569

[gr-qc]] 84, 109

[63] S. Golod and T. Piran, “Choptuik’s Critical Phenomenon in Einstein-Gauss-Bonnet

Gravity,” Phys. Rev. D 85, 104015 (2012). [arXiv:1201.6384 [gr-qc]] 85, 92, 93, 100,

134

[64] J.-A. Gu and W.-T. Lin, “Solar-System Constraints on f(R) Chameleon Gravity,”

arXiv:1108.1782 [gr-qc] 37

[65] J.-Q. Guo and A. V. Frolov, “Cosmological dynamics in f(R) gravity,” Phys. Rev. D 88,

124036 (2013). [arXiv:1305.7290 [astro-ph.CO]] 30

[66] J.-Q. Guo, “Solar system tests of f(R) gravity,” Int. J. Mod. Phys. D23, 1450036 (2014).

[arXiv:1306.1853 [astro-ph.CO]] 37, 56, 60

[67] J.-Q. Guo, D. Wang, and A. V. Frolov, “Spherical collapse in f(R) gravity and BKL

conjecture,” arXiv:1312.4625 [gr-qc] 82

[68] T. Harada, T. Chiba, K.-I. Nakao, and T. Nakamura, “Scalar gravitational wave from

Oppenheimer-Snyder collapse in scalar- tensor theories of gravity,” Phys. Rev. D 55,

2024 (1997). [arXiv:gr-qc/9611031] 84

[69] S. W. Hawking, “Black holes in the Brans-Dicke theory of gravitation,” Comm. Math.

Phys. 25, 167 (1972). 2, 83, 118

[70] M. Henneaux, D. Persson, and P. Spindel, “Spacelike Singularities and Hidden Sym-

metries of Gravity,” Living Rev. Relativity 11, 1 (2008). [arXiv:0710.1818 [hep-th]] 83

[71] T. Hertog, “Towards a Novel no-hair Theorem for Black Holes,” Phys. Rev. D 74,

084008 (2006). [arXiv:gr-qc/0608075] 83

http://arxiv.org/abs/gr-qc/9412008
http://arxiv.org/abs/gr-qc/0312117
http://arxiv.org/abs/1004.3569
http://arxiv.org/abs/1004.3569
http://arxiv.org/abs/1201.6384
http://arxiv.org/abs/1108.1782
http://arxiv.org/abs/1305.7290
http://arxiv.org/abs/1306.1853
http://arxiv.org/abs/1312.4625
http://arxiv.org/abs/gr-qc/9611031
http://arxiv.org/abs/0710.1818
http://arxiv.org/abs/gr-qc/0608075


BIBLIOGRAPHY 141

[72] W. Hu and I. Sawicki, “Models of f(R) Cosmic Acceleration that Evade Solar-System

Tests,” Phys. Rev. D 76, 064004 (2007). [arXiv:0705.1158 [astro-ph]] 1, 2, 16, 22,

25, 26, 37, 63, 79

[73] D.-i. Hwang and D.-h. Yeom, “Responses of the Brans-Dicke field due to gravitational

collapses,” Classical Quantum Gravity 27, 205002 (2010). [arXiv:1002.4246 [gr-qc]]

84, 85, 104

[74] D.-i. Hwang, H. Kim, and D.-h. Yeom, “Dynamical formation and evolution of (2+1)-

dimensional charged black holes,” Classical Quantum Gravity 29, 055003 (2012).

[arXiv:1105.1371 [gr-qc]] 85

[75] D.-i. Hwang, B.-H. Lee, and D.-h. Yeom, “Mass inflation in f(R) gravity: A conjecture

on the resolution of the mass inflation singularity,” J. Cosmol. Astropart. Phys. 12 (2011)

006. [arXiv:1110.0928 [gr-qc]] 84, 134

[76] T. Jacobson, “Primordial black hole evolution in tensor-scalar cosmology,” Phys. Rev.

Lett. 83, 2699 (1999). [arXiv:astro-ph/9905303] 133

[77] P. S. Joshi, Gravitational Collapse and Spacetime Singularities (Cambridge University

Press, Cambridge, UK, 2007). 83

[78] P. S. Joshi, “Recent developments in gravitational collapse and spacetime singulari-

ties,” Int. J. Mod. Phys. D20, 2641 (2011). [arXiv:1201.3660 [gr-qc]] 83

[79] K. Kainulainen, J. Piilonen, V. Reijonen, and D. Sunhede, “Spherically symmetric

spacetimes in f(R) gravity theories,” Phys. Rev. D 76, 024020 (2007). [arXiv:0704.2729

[gr-qc]] 63

[80] T. Kaluza, “On the Problem of Unity in Physics,” Sitzungsber. Preuss. Akad. Wiss.

Berlin (Math. Phys.) 1921, 966 (1921). 1, 17

[81] A. Yu. Kamenshchik, “The problem of singularities and chaos in cosmology,” Phys.

-Usp. 53, 301 (2010). [arXiv:1006.2725 [gr-qc]] 83, 109

[82] E. Kasner, “Geometrical theorems on Einsteins cosmological equations,” Am. J. Math,

43, 217 (1921). 84, 108

http://arxiv.org/abs/0705.1158
http://arxiv.org/abs/1002.4246
http://arxiv.org/abs/1105.1371
http://arxiv.org/abs/1110.0928
http://arxiv.org/abs/astro-ph/9905303
http://arxiv.org/abs/1201.3660
http://arxiv.org/abs/0704.2729
http://arxiv.org/abs/0704.2729
http://arxiv.org/abs/1006.2725


BIBLIOGRAPHY 142

[83] A. Kehagias, A. Moradinezhad Dizgah, A. Riotto, “Comments on the Starobinsky

model of inflation and its descendants,” arXiv:1312.1155 [hep-th] 2, 11, 15

[84] J. Khoury and A. Weltman, “Chameleon Cosmology,” Phys. Rev. D 69, 044026 (2004).

[arXiv:astro-ph/0309411] 5, 37, 61, 66

[85] J. Khoury and A. Weltman, “Chameleon Fields: Awaiting Surprises for Tests of Gravity

in Space,” Phys. Rev. Lett. 93, 171104 (2004). [arXiv:astro-ph/0309300] 5, 37, 61, 66

[86] O. Klein, “Quantentheorie und funfdimensionale Relativitatstheorie,” Zeitschrift fur

Physik 37, 895 (1926). 17

[87] R. A. Knop et al. [The Supernova Cosmology Project], “New Constraints on ΩM , ΩΛ,

and w from an Independent Set of 11 High-Redshift Supernovae Observed with HST,”

Astrophys. J. 598, 102 (2003). [arXiv:astro-ph/0309368] 2

[88] T. Kobayashi and K. I. Maeda, “Relativistic stars in f(R) gravity, and absence thereof,”

Phys. Rev. D 78, 064019 (2008). [arXiv:0807.2503 [astro-ph]] 62, 63

[89] E. Komatsu et al. [WMAP Collaboration], “Seven-year Wilkinson Microwave Anisotropy

Probe (WMAP) Observations: Cosmological Interpretation,” Astrophys. J. Suppl. 192, 18

(2011). [arXiv:1001.4538 [astro-ph.CO]] 47, 49

[90] M. Kopp, S. A. Appleby, I. Achitouv, and J. Weller, “Spherical collapse and halo

mass function in f(R) theories,” Phys. Rev. D 88, 084015 (2013). [arXiv:1306.3233

[astro-ph.CO]] 84

[91] L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, Course of Theoretical

Physics Series Vol.2 (Pergamon Press, Oxford, UK 1971), 4th ed. 84

[92] G. Lemaı̂tre, “The Expanding Universe,” Annales Soc. Sci. Brux. Ser. I Sci. Math.

Astron. Phys. A 53, 51 (1933). Reprint: Gen. Rel. Grav. 29, 641 (1997). 83

[93] S. L. Liebling and M. W. Choptuik, “Black hole criticality in the Brans-Dicke model,”

Phys. Rev. Lett. 77, 1424 (1996). [arXiv:gr-qc/9606057] 134

[94] E. V. Linder, “Exponential Gravity,” Phys. Rev. D 80, 123528 (2009). [arXiv:0905.2962

[astro-ph]] 55

http://arxiv.org/abs/1312.1155
http://arxiv.org/abs/astro-ph/0309411
http://arxiv.org/abs/astro-ph/0309300
http://arxiv.org/abs/astro-ph/0309368
http://arxiv.org/abs/0807.2503
http://arxiv.org/abs/1001.4538
http://arxiv.org/abs/1306.3233
http://arxiv.org/abs/1306.3233
http://arxiv.org/abs/gr-qc/9606057
http://arxiv.org/abs/0905.2962
http://arxiv.org/abs/0905.2962


BIBLIOGRAPHY 143

[95] D. Lovelock, “The Einstein tensor and its generalizations,” J. Math. Phys. 12, 498

(1971). 1, 18

[96] H. Nariai, “Hamiltonian approach to the dynamics of expanding homogeneous uni-

verses in the Brans-Dicke cosmology,” Prog. Theor. Phys. 47, 1824 (1972). 109

[97] I. Navarro and K. V. Acoleyen, “f(R) actions, cosmic acceleration and local tests of

gravity,” J. Cosmol. Astropart. Phys. 0702 (2007) 022. [arXiv:gr-qc/0611127] 37

[98] M. Niedermaier, “The asymptotic safety scenario in quantum gravity: An introduction,”

Classical Quantum Gravity 24, R171 (2007). [arXiv:gr-qc/0610018] 20

[99] A. Nunez and S. Solganik, “The content of f(R) gravity,” arXiv:hep-th/0403159 20,

23

[100] J. R. Oppenheimer and H. Snyder, “On Continued Gravitational Contraction,” Phys.

Rev. 56, 455 (1939). 83, 109

[101] P. J. E. Peebles, B. Ratra, “The cosmological constant and dark energy,” Rev. Mod.

Phys. 75, 559 (2003). [arXiv:astro-ph/0207347] 20

[102] R. Percacci, “Asymptotic safety,” In ”Approaches to Quantum Gravity: Towards a New

Understanding of Space, Time and Matter”, ed. D. Oriti, Cambridge University Press,

Cambridge, UK, 111-128 (2009). [arXiv:0709.3851 [hep-th]] 20

[103] S. Perlmutter et al. [Supernova Cosmology Project Collaboration], “Measurements

of Ω and Λ from 42 high redshift supernovae,” Astrophys. J. 517, 565 (1999).

[arXiv:astro-ph/9812133] 2

[104] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory (West-

view Press, Boulder, U.S.A., 1995). 19

[105] L. Pogosian and A. Silvestri, “The pattern of growth in viable f(R) cosmologies,” Phys.

Rev. D 77 023503 (2008). [arXiv:0709.0296 [astro-ph]] 13

[106] E. Poisson and W. Israel, “Inner-horizon instability and mass inflation in black holes,”

Phys. Rev. Lett. 63, 1663 (1989). 134

[107] E. Poisson and W. Israel, “Internal structure of black holes,” Phys. Rev. D 41, 1796

(1990). 134

http://arxiv.org/abs/gr-qc/0611127
http://arxiv.org/abs/gr-qc/0610018
http://arxiv.org/abs/hep-th/0403159
http://arxiv.org/abs/astro-ph/0207347
http://arxiv.org/abs/0709.3851
http://arxiv.org/abs/astro-ph/9812133
http://arxiv.org/abs/0709.0296


BIBLIOGRAPHY 144

[108] F. Pretorius, “Numerical Relativity Using a Generalized Harmonic Decomposition,”

Classical Quantum Gravity 22, 425 (2005). [arXiv:gr-qc/0407110] 97

[109] L. Randall and R. Sundrum, “A large mass hierarchy from a small extra dimension,”

Phys. Rev. Lett. 83, 3373 (1999). [arXiv:hep-th/9905221] 1, 18

[110] L. Randall and R. Sundrum, “An alternative to compactification,” Phys. Rev. Lett. 83,

4690 (1999). [arXiv:hep-th/9906064] 1, 18

[111] C. de Rham and G. Gabadadze, “Generalization of the Fierz-Pauli Action,” Phys.

Rev. D 82, 044020 (2010). arXiv:1007.0443 [ hep-th] 1

[112] C. de Rham, G. Gabadadze, and A. J. Tolley, “Resummation of Massive Gravity,”

Phys. Rev. Lett. 106, 231101 (2011). arXiv:1011.1232 [ hep-th] 1

[113] A. G. Riess et al. [Supernova Search Team Collaboration], “Observational evidence

from supernovae for an accelerating universe and a cosmological constant,” Astron. J.

116, 1009 (1998). [arXiv:astro-ph/9805201] 2

[114] A. G. Riess et al. [Supernova Search Team Collaboration], “Type Ia Supernova

Discoveries at z > 1 From the Hubble Space Telescope: Evidence for Past Decel-

eration and Constraints on Dark Energy Evolution,” Astrophys. J. 607, 665 (2004).

[arXiv:astro-ph/0402512] 2

[115] M. A. Scheel, S. L. Shapiro, and S. A. Teukolsky, “Collapse to Black Holes in Brans-

Dicke Theory: I. Horizon Boundary Conditions for Dynamical Spacetimes,” Phys. Rev. D

51, 4208 (1995). [arXiv:gr-qc/9411025] 83, 118

[116] M. A. Scheel, S. L. Shapiro, and S. A. Teukolsky, “Collapse to Black Holes in Brans-

Dicke Theory: II. Comparison with General Relativity,” Phys. Rev. D 51, 4236 (1995).

[arXiv:gr-qc/9411026] 83, 118

[117] J. M. M. Senovilla, “Junction conditions for f(R) gravity and their consequences,”

Phys. Rev. D 88, 064015 (2013). [arXiv:1303.1408 [gr-qc]] 84

[118] M. Shibata, K. Nakao, and T. Nakamura, “Scalar-type gravitational wave emission

from gravitational collapse in Brans-Dicke theory: Detectability by a laser interferometer,”

Phys. Rev. D 50, 7304 (1994). 83, 118

http://arxiv.org/abs/gr-qc/0407110
http://arxiv.org/abs/hep-th/9905221
http://arxiv.org/abs/hep-th/9906064
http://arxiv.org/abs/1007.0443
http://arxiv.org/abs/1011.1232
http://arxiv.org/abs/astro-ph/9805201
http://arxiv.org/abs/astro-ph/0402512
http://arxiv.org/abs/gr-qc/9411025
http://arxiv.org/abs/gr-qc/9411026
http://arxiv.org/abs/1303.1408


BIBLIOGRAPHY 145

[119] S. S. Shapiro, J. L. Davis, D. E. Lebach, and J. S. Gregory, “Measurement of the

Solar Gravitational Deflection of Radio Waves using Geodetic Very-Long-Baseline Inter-

ferometry Data, 19791999,” Phys. Rev. Lett. 92, 121101 (2004). 60, 63

[120] E. Sorkin and T. Piran, “Effects of Pair Creation on Charged Gravitational Collapse,”

Phys. Rev. D 63, 084006 (2001). [arXiv:gr-qc/0009095] 85, 100

[121] E. Sorkin and Y. Oren, “On Choptuik’s scaling in higher dimensions,” Phys. Rev. D

71, 124005 (2005). [arXiv:hep-th/0502034] 92

[122] H. Sotani, “Scalar gravitational waves from relativistic stars in scalar-tensor gravity,”

Phys. Rev. D 89, 064031 (2014). [arXiv:1402.5699 [astro-ph]] 84

[123] T. P. Sotiriou and V. Faraoni, “f(R) Theories Of Gravity,” Rev. Mod. Phys. 82, 451

(2010). [arXiv:0805.1726 [gr-qc]] 2, 63, 66

[124] T. P. Sotiriou and V. Faraoni, “Black holes in scalar-tensor gravity,” Phys. Rev. Lett.

108, 081103 (2012). [arXiv:1109.6324 [gr-qc]] 3, 83

[125] A. A. Starobinsky, “A new type of isotropic cosmological models without singularity,”

Phys. Lett. 91B, 99 (1980). 1, 2, 11, 14, 21

[126] A. A. Starobinsky, “Disappearing cosmological constant in f(R) gravity,” JETP Lett.

86, 157 (2007). [arXiv:0706.2041 [astro-ph]] 1, 2, 16, 25, 49, 89, 126

[127] K. S. Stelle, “Renormalization of higher-derivative quantum gravity,” Phys. Rev. D 16,

953 (1977). 11

[128] T. Tamaki and S. Tsujikawa, “Revisiting chameleon gravity - thin-shells and

no-shells with appropriate boundary conditions,” Phys. Rev. D 78, 084028 (2008).

[arXiv:0808.2284 [gr-qc]] 37

[129] R. C. Tolman, “Effect of Inhomogeneity on Cosmological Models,” Proc. Natl. Acad.

Sci. U.S.A. 20, 169 (1934). Reprint: Gen. Relativ. Gravit. 29, 935 (1997). 83

[130] S. Tsujikawa, “Observational signatures of f(R) dark energy models that sat-

isfy cosmological and local gravity constraints,” Phys. Rev. D 77, 023507 (2008).

[arXiv:0709.1391 [astro-ph]] 49, 55

http://arxiv.org/abs/gr-qc/0009095
http://arxiv.org/abs/hep-th/0502034
http://arxiv.org/abs/1402.5699
http://arxiv.org/abs/0805.1726
http://arxiv.org/abs/1109.6324
http://arxiv.org/abs/0706.2041
http://arxiv.org/abs/0808.2284
http://arxiv.org/abs/0709.1391


BIBLIOGRAPHY 146

[131] S. Tsujikawa, T. Tamaki, and R. Tavakol, “Chameleon scalar fields in relativistic grav-

itational backgrounds,” J. Cosmol. Astropart. Phys. 05 (2009) 020. [arXiv:0901.3226

[gr-qc]] 37

[132] R. Utiyama and B. S. Dewitt, “Renormalization of a Classical Gravitational Field In-

teracting with Quantized Matter Fields,” J. Math. Phys. 3, 608 (1962). 11

[133] M. A. Vasiliev, “Consistent equation for interacting gauge fields of all spins in (3+1)-

dimensions,” Phys. Lett. 243B, 378 (1990). 8

[134] A. Vilenkin, “Classical and quantum cosmology of the Starobinsky inflationary

model,” Phys. Rev. D 32, 2511 (1985). 14

[135] R. V. Wagoner, “Scalar-tensor theory and gravitational waves,” Phys. Rev. D 1, 3209

(1970). 1, 9

[136] J. Wainwright and A. Krasinski, “Republication of: Geometrical theorems on Ein-

steins cosmological equations (By E. Kasner),” Gen. Relativ. Gravit. 40, 865 (2008). 84

[137] R. M. Wald, General Relativity (The University of Chicago Press, Chicago, U.S.A.,

1984). 122

[138] S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General

Theory of Relativity (John Wiley & Sons, Inc. New York · London · Sydney · Toronto,

1972). 62, 63

[139] S. Weinberg, “The cosmological constant problem,” Rev. Mod. Phys. 61, 1 (1989).

20

[140] S. Weinberg, “Effective field theory, past and future,” PoS CD09, 001 (2009)

[arXiv:0908.1964 [hep-th]] 19

[141] S. Weinberg, “Asymptotically safe inflation,” Phys. Rev. D 81, 083535 (2010).

[arXiv:0911.3165 [hep-th]] 19

[142] R. Ruffini and J. A. Wheeler, “Introducing the black hole,” Phys. Today 24, No. 1, 30

(1971). 2, 83

[143] C. M. Will, Theory and experiment in gravitational physics, revised ed. (Cambridge

University Press, Cambridge, UK, 1993). 62, 63

http://arxiv.org/abs/0901.3226
http://arxiv.org/abs/0901.3226
http://arxiv.org/abs/0908.1964
http://arxiv.org/abs/0911.3165


BIBLIOGRAPHY 147

[144] C. M. Will, “The Confrontation between General Relativity and Experiment,” Living

Rev. Relativity 9, 3 (2006). [arXiv:gr-qc/0510072] 60, 63

[145] P.-J. Zhang, “The behavior of f(R) gravity in the solar system, galaxies and clusters,”

Phys. Rev. D 76, 024007 (2007). [arXiv:astro-ph/0701662] 63

[146] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, (Clarendon Press,

Oxford, UK, 2002). 4th ed. 19

[147] http://wwwf.imperial.ac.uk/metric/metric_public/differential_

equations/second_order/qualitative_methods_1.html 59

http://arxiv.org/abs/gr-qc/0510072
http://arxiv.org/abs/astro-ph/0701662
http://wwwf.imperial.ac.uk/metric/metric_public/differential_equations/second_order/qualitative_methods_1.html
http://wwwf.imperial.ac.uk/metric/metric_public/differential_equations/second_order/qualitative_methods_1.html

	Approval
	Partial Copyright License
	Abstract
	Acknowledgments
	Contents
	Introduction
	Background
	Running gravitational coupling and f(R) model building
	Cosmological dynamics in f(R) gravity
	Solar System tests of f(R) gravity
	Spherical collapse in f(R) gravity

	Modified gravity theories
	Scalar-tensor theories
	f(R) gravity
	Formalism of f(R) gravity
	Viability conditions
	Jordan frame and Einstein frame
	Inflationary f(R) models
	Dark energy f(R) models

	Higher dimensional gravity theories

	Running gravitational coupling
	Running gravitational coupling and f(R) models
	Power-law f(R) models
	The RlnR model
	A modified logarithmic model
	A modified logarithmic model
	Discussions

	Conclusions
	Appendix: Lambert W function

	Cosmological dynamics in f(R) gravity
	Introduction
	Dynamical system in f(R) cosmology 
	Basic equations
	Effective dark energy

	Cosmological viability conditions
	Phase-space dynamics of the RlnR model 
	Phase-space dynamics in vacuum
	Critical points
	Phase-space dynamics in the presence of matter

	Cosmological evolution of the RlnR model 
	Phase-space dynamics of the Hu-Sawicki model
	Phase-space dynamics in vacuum
	Phase-space dynamics in the presence of matter
	Cosmological evolution

	Conclusions 
	Appendix: classification of critical points in a dynamical system

	Solar System tests of f(R) gravity
	Introduction
	Framework 
	Basic equations
	Parameterized post-Newtonian formalism

	The metric for the Sun sitting in a vacuum background 
	The metric
	Comparison of theoretical results and observations

	Chameleon mechanism 
	Chameleon mechanism in the Einstein frame
	Chameleon mechanism in the Jordan frame
	Requirements on the form of the function f(R)

	False vacuum decay and Solar System tests of f(R) gravity
	False vacuum decay
	Solar System tests of f(R) gravity

	Numerical computations
	Numerical computations for the RlnR model
	Numerical computations for the Hu-Sawicki model

	Conclusions

	Spherical collapse in f(R) gravity
	Introduction
	Framework
	Formalism in the Einstein frame
	Coordinate system
	f(R) model

	Numerical setup
	Field equations
	Initial conditions
	Boundary conditions
	Discretization scheme
	Locating the apparent horizon
	Examining dynamics near the singularity with mesh refinement
	Numerical tests

	Results
	Black hole formation
	Dynamics during collapse
	Kasner solution for Schwarzschild BHs
	Kasner solution for spherical collapse
	Variations of Kasner parameters along the singularity curve

	View from the Jordan frame
	Ricci scalar
	Weyl scalar
	Weyl tensor
	Kasner solution in the Jordan frame

	Collapses in more general models
	Collapse for the Hu-Sawicki model in general cases
	Collapse for the Starobinsky model

	Conclusions
	Conclusions on numerical issues
	Conclusions on physical results

	Derivatives near the singularity curve for Schw. BH

	Conclusions
	Summary
	Perspectives

	Bibliography

