
 

 
 
 
 

COUNTERPARTY CREDIT RISK FOR AMERICAN OPTIONS IN A 
REDUCED-FORM MODEL 

 
by 
 

Yiwen Yuan 
B.Sc. of Honours in Mathematics and Computing Science 

Simon Fraser University 2013 
 

and 
 

Qiuyue Qu 
Bachelor of Economics in Economics and Finance 

Tsinghua University 2013 
 
 
 

PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF 
THE REQUIREMENTS FOR THE DEGREE OF 

 
MASTER OF SCIENCE IN FINANCE 

 
 

In the Master of Science in Finance Program  
of the  

Faculty 
of 

Business Administration 
 
 

© Yiwen Yuan and Qiuyue Qu 2013 

SIMON FRASER UNIVERSITY 

Summer 2013 

 
 

All rights reserved. However, in accordance with the Copyright Act of Canada, this work 
may be reproduced, without authorization, under the conditions for Fair Dealing. 

Therefore, limited reproduction of this work for the purposes of private study, research, 
criticism, review and news reporting is likely to be in accordance with the law, 

particularly if cited appropriately. 



 

 ii 

Approval 

Name: Yiwen Yuan and Qiuyue Qu 

Degree: Master of Science in Finance 

Title of Project: Counterparty Credit Risk for American Options in a 
Reduced-Form Model 

Supervisory Committee: 

   ___________________________________________  

 Dr. Peter Klein 
Senior Supervisor 
Professor 

   ___________________________________________  

 Dr. Phil Goddard 
Second Reader 
Instructor  

Date Approved:   ___________________________________________  

 



 

 iii 

Abstract 

This thesis follows the idea of Klein and Yang (2013) to study the effect of counterparty 

credit risk and valuation of Vulnerable American options.  Most existing literatures use the 

structural model (Merton 1974) to study the vulnerable options. However, structural model uses 

the unrealistic assumptions for the corporate asset. In addition, calibration stochastic asset 

processes using public information in the structural model is some more difficult than anticipated 

(Wang 2009). This thesis uses the reduced-form (intensity) model to study the credit risk of 

vulnerable American put options and compare the results with Klein and Yang (2013). We 

conclude that counterparty credit risk will affect the vulnerable option value as Klein and Yang 

did in their paper. Throughout, we rely on binominal tree method to derive our numerical results. 

  

Keywords:  structural model; reduced-form (intensity) model; counterparty credit risk; 

Vulnerable American options 
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1:  Introduction 

Over-the-Counter (OTC) options are one of the most widely used derivatives in the 

industry that can be affected by the counterparty credit risk among contracts. Many reasons such 

as not enough collateral, stress mark-to-market changes will lead to a huge credit exposure. There 

are many examples of vulnerable options, such as currency options, exchange, real estate options 

etc. They are privately written and the third party cannot guarantee their payoff (Johnson and 

Stulz 1987). “Poor management of credit risk has been widely recognized as one of the causes of 

the global financial crisis of 2008” (Klein and Yang 2013). Therefore, the study of effect of credit 

risk on OTC options is considered critical and valuable.  

This thesis focuses on the effect of credit event on the early exercise policy of an 

American style option. We follow the same idea of Klein and Yang (2013), where they used the 

structural model (Merton 1974) to study the effect of counterparty credit risk on an American 

option. The structural model (Merton’s model) has limitations in many places such as evaluating 

the default probabilities, implementation of models and data collecting issue. Leland stated that 

the structural model would under-predict short-term default probabilities (Leland 2004). As well, 

structural model used the unrealistic continuous tradability assumption for the corporate assets. In 

addition, calibrating stochastic asset processes using publicly available information is some more 

difficult than anticipated (Wang 2009). Therefore, people will benefit from using the reduced-

form approach particularly in data collecting and model implementation. The contribution of this 

thesis is to use the reduced-form (Intensity) model to study the effect of counterparty credit risk 

on an American style option. In reduced-form (Intensity) model, we assume options’ default 

intensity λ is a function of stock price S and time t. By using the λ, we are able to model the 

probability of default of an American option. In terms of the assumptions, we use Klein and 
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Yang’s paper for reference. We set up one of the assumptions as the option writer can default not 

only at maturity but also at each time point prior to the maturity. We also follow the assumption 

in Klein and Yang’s paper such that “In an event of default, the option holder’s nominal claim is 

the value of the otherwise identical non-vulnerable options f” (Klein and Yang 2013). These are 

our main assumptions during the price calculation of the vulnerable options. 

This thesis is organized as follows. Section 2 is our literature review, which lists some 

papers containing either the pricing process of the vulnerable options or the effect of credit risk 

on the early exercise policy. We also demonstrate our motivation for doing this thesis. Section 3 

demonstrates models of pricing both vulnerable and non-vulnerable options. We elaborate on our 

modification to the non-vulnerable option model in order to consider the credit process for its 

vulnerable twin. In Section 4, we show our numerical results by demonstrating the parameter 

changing effects on the critical asset price and the property of our pricing results. Section 5 is our 

conclusion. 
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2: Literature Review 

In this section, we review the literatures on the optimality of the early exercise policy of 

vulnerable options.  

Johnson and Stulz (1987) first researched on the early exercise of vulnerable options. 

They made the following assumption in their model: the option value is the liability of the writer 

and the option holder will receive the entire option writer’s asset if the writer defaults.  By doing 

this, they demonstrated that “It is possible for the value of a vulnerable European option to fall 

with time to maturity, with the interest rate, and with the variance of the underlying asset”. 

Overall, the effect of credit risk on either option value or the early exercise policy can be quite 

significant. Further, they concluded that it might be optimal to early exercise a vulnerable 

American call option on a non-dividend-paying asset. However, they assumed that the default 

occurs only at maturity. There were no numerical results demonstrating the property of the 

American style option. 

Hull and White (1995) presented a model for valuing derivative securities when the 

derivative securities holder considers that the option writer will default.  They made an 

assumption such that the default can occur at any time before the option expires. The probability 

of default and the size of the proportional recovery rate are random, meaning in their model, the 

default will occur as long as the value of the assets of the option writer falls below the value of a 

fixed default barrier. They drew the conclusion that default risk has larger effect on the European 

options than the American options.   

Klein (1996) further applied what was concluded in Johnson and Stulz (1987). He 

allowed other liabilities of the option writer in addition to the potential claim under the option. He 
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also allowed that the payout ratio is dependent on the value of asset and liability of the option 

writer. Based on the assumptions he made, he derived a closed-form solution for pricing the 

vulnerable European options.  This formula is based on the structural model (Merton 1974) of 

modelling the credit risk.  

Klein and Inglis (2001) extended the results from Johnson and Stulz (1987) and Klein 

(1996). Their model allows a default boundary that depends on the potential liability of the 

written option and other liabilities of the option writer.  They also linked the payout ratio when 

there is a financial distress to the value of option writer’s assets, and modelled the correlation 

between the assets of the option writer and asset underlying. They concluded that the variable 

default boundary is important in evaluation of a vulnerable European option when the payoff of 

the option is greater than the value of the other liabilities of the option writer (Klein and Inglis 

2001). 

Klein and Yang (2010) studied the properties of the vulnerable American options. In their 

paper, they showed the probability of early exercise is higher for a vulnerable American option 

than its non-vulnerable American twin. They also demonstrated that the degree of credit risk of 

the option writer would affect the underlying asset price at which early exercise is optimal.  

Klein and Yang (2013) further extended their idea in their previous paper, and studied the 

effect of counterpart credit risk on optimal early exercise policy. They found the optimal early 

exercise policy would become quite different when option holder considers the credit risk of the 

option writer. In their paper, they applied the structural model (Merton 1974) and priced the value 

of American option. Klein and Yang concluded the following: “The early exercise when a credit 

event is very likely can mitigate but not eliminate the effect of credit risk on the value of 

American options” (Klein and Yang 2013).  

Those papers discussed above mainly deal with pricing the vulnerable European options.  

Additionally, most of the papers used the Structural model (Merton 1974) to either price the 
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options or consider the early exercise policy. There are limitations in using such a model as we 

have mentioned in the previous section. Thus, we would like to present the reduced-form 

(intensity) model for a further research. 
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3: The Model 

3.1 Binomial Tree for Non-vulnerable American Put Option 

By applying the CRR model, we are able to derive the following tree of the underlying 

asset price (Cox, Ross and Rubinstein 1979). Figure 1 shows an example of the binomial tree of 

the price for the underlying asset, which is stock. 

Figure 1: Binomial Tree for stock price 

 

For a non-vulnerable American put option, we calculate the payoff at each node during 

the backward induction process. 

Vn = Max [X - Sn, (Pu *Vu + (1- Pu)*Vd) / R] 

In above, X - Sn stands for the intrinsic value at node n; Vu and Vd are the option payoffs 

at the up and down nodes in the next time step; R is the continuous risk free return from time t to t 

+ dt, which equals 𝑒𝑟∗𝑑𝑡. If the underlying asset generates a continuous dividend rate of q, the 

value of R becomes the following:  

R = 𝑒(𝑟−𝑞)∗𝑑𝑡 



 

 7 

We start with the notations we use in non-vulnerable options1.  Let f (t) denote the value 

of non-vulnerable option at time t. The price of underlying asset at time t is denoted as S(t). We 

use Sc to represent the critical price of underlying asset when early exercise is optimal for the 

non-vulnerable option. That is to say, f(Sc) stands for the non-vulnerable option value when early 

exercise is optimal. Take a two-time-step binomial tree as an example. We can see from Figure 1 

how the stock price moves gradually in the binomial tree. Based on the stock price we already 

have, we can derive the following tree for the non-vulnerable put option. 

Figure 2: Binomial Tree for Non-vulnerable American put option 

 

At each node, if the intrinsic value > calculated value, then early exercise is optimal and 

underlying asset price at this node is denoted as Sc. 

Next, we have to create a similar two-time-step binomial tree for the vulnerable put 

option using intensity model to get probability of default in each time step of the tree.  

                                                      
1 Without further notification, we are discussing the American options in our thesis. 
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3.2 Binomial Tree for Vulnerable American Put Option 

The vulnerable options use the similar notation. They are as follows: Let f*^(t) denote the 

value of vulnerable option at time t. The price of underlying asset at time t which is S(t) is the 

same with it in the non-vulnerable options. We use Sc
^ to represent the critical price of underlying 

asset when early exercise is optimal for a vulnerable option. That is to say, f*^(Sc
^) stands for the 

vulnerable option value when early exercise is optimal. For vulnerable options, if a default 

happens, we need the recovery rate denoted as ω to calculate the compensation. The value of ω 

ranges from 0 to 1. For example, when ω = 1, the option holder will lose nothing if the option 

writer defaults. Otherwise, when ω = 0, the option holder will get nothing if the option writer 

defaults. Pd is the conditional probability of default in each time step, given there is no default 

prior to that step. We still use Figure 1 as a tree of underlying asset for the vulnerable option.  

Then we can derive the following tree for our vulnerable option value. 

Figure 3: Binomial Tree for Vulnerable American put option 
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Before we discuss our formulas in detail, we present the following assumption at first: 

Klein and Yang (2013) indicated, “In the event of default, the option holder’s nominal 

claim is the value of the otherwise identical non-vulnerable option f” (Klein and Yang 2013). 

At each node, we calculate the expected payoff, which equals to E [payoff when default 

happens, payoff when no default happens]. According to the assumption above, the payoff when 

default happens is ω * f. When there is no default happens, the payoff for American put at expiry 

is Max[X – S, 0]; while at other nodes before expiry, the payoff is Max[X - S, Calculated Value]. 

If the payoff when no default happens is equal to X – S, then we are able to conclude that the 

early exercise is optimal at this node,  and we denote the underlying asset price at the node as Sc
^. 

Next, we introduce our intensity model for the calculation of probability of default. We 

set our intensity λ as a function of stock price S and time t, which is what Andersen did in his 

paper (Andersen 2002). 

 

In our base case, we set the value of 𝑎 to be equal to 0 and p as a positive constant. This 

will lead us to see a more reasonable asymptotic behaviour such that lim𝑠→∞ 𝜆 = 0 

and lim𝑠→0 𝜆 = ∞ (Andersen 2002). This behaviour implies that it is likely to default when the 

underlying asset is at low price.  

Based on the stock price we have, we are able to calculate the intensity by setting the 

parameters in the model above. Giesecke showed that the probability of default occurring by time 

t is 1 − 𝑒−𝜆∗𝑡(Giesecke 2004).  In our tree, we have multiple nodes in each time step. Since the 

stock price is different at each node, we can get different λ at each node in each time step. Thus, 

we can derive a cumulative probability of default at node n by time step i, which is denoted as 

CumuPd(n, i).  
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We claim that the cumulative probability of default we derived above is path 

independent. In a binomial tree, there are many paths to reach a certain node. However, no matter 

which path we choose, they have the same value of time t = i*dt and the underlying asset price at 

that node S(n, i) is fixed. In our model, CumuPd(n, i) at a certain node is a function of underlying 

asset price at that node S(n, i) and the time spent to reach that node, which is t. Therefore, we 

conclude that the cumulative probability of default is path independent in theory. 

Further, we can use a two-time-step binomial tree to prove our claim above. 

Figure 4: Binomial Tree for Probability of Default 

 

As shown in Figure 4, we denote probability of default conditional on no early default 

before from node S0 to S1
u, S0 to S1

d, S1
u to S2

ud, S1
d to S2

ud and S0 to S2
ud as Pd1

u, Pd1
d, Pd2

d, Pd2
u 

and Pd2
ud respectively. Based on our intensity model and the conditional probability of default 

formula, we can get the following equations: 

𝑃𝑑1𝑢 = 1 − 𝑒
−(𝑎+ 𝑏

(𝑆1𝑢)𝑝)∗𝑑𝑡
; 

𝑃𝑑1𝑑 = 1 − 𝑒
−(𝑎+ 𝑏

�𝑆1𝑑�
𝑝)∗𝑑𝑡

; 
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𝑃𝑑2𝑑 =
�1 − 𝑒

−(𝑎+ 𝑏
�𝑆2𝑢𝑑�

𝑝)∗2∗𝑑𝑡
� − �1 − 𝑒

−(𝑎+ 𝑏
(𝑆1𝑢)𝑝)∗𝑑𝑡

�

1 − �1 − 𝑒
−(𝑎+ 𝑏

(𝑆1
𝑢)𝑝)∗𝑑𝑡

�
= 1 − 𝑒

𝑏
(𝑆1
𝑢)𝑝∗𝑑𝑡−

𝑏
�𝑆2𝑢𝑑�

𝑝∗2∗𝑑𝑡
; 

𝑃𝑑2𝑢 =
�1 − 𝑒

−(𝑎+ 𝑏
�𝑆2𝑢𝑑�

𝑝)∗2∗𝑑𝑡
� − (1 − 𝑒

−(𝑎+ 𝑏
�𝑆1𝑑�

𝑝)∗𝑑𝑡
)

1 − (1 − 𝑒
−(𝑎+ 𝑏

�𝑆1
𝑑�

𝑝)∗𝑑𝑡
)

= 1 − 𝑒
𝑏

�𝑆1𝑑�
𝑝∗𝑑𝑡−

𝑏
�𝑆2𝑢𝑑�

𝑝∗2∗𝑑𝑡
. 

Actually, Pd2
ud is the probability of defaulting at any point in time from node S0 to S2

ud, 

which is the cumulative probability of default at node S2
ud in our model. We calculate cumulative 

probability of default at a specific node, using one minus the probability of no default until that 

node. Thus, when we choose path S0  S1
u  S2

ud, Pd2
ud = 1 - (1-Pd1

u)*(1-Pd2
d); when we 

choose path S0  S1
d  S2

ud, Pd2
ud = 1 - (1-Pd1

d)*(1-Pd2
u). After substituting each conditional 

probability of default calculated above into these two equations, we can find that Pd2
ud got 

through the two paths are both equal to 1 − 𝑒
− 𝑏

�𝑆2
𝑢𝑑�

𝑝∗2∗𝑑𝑡
, which is consistent with the cumulative 

probability of default formula at node S2
ud in our model. Therefore, you can see that the 

cumulative probability of default is path independent, which strongly proves our claim. 

Next, we denote the unconditional probability of default at node n in time step i as 

UcPd(n, i). Thus, the unconditional probability of default at the first node (n = 1) in time step i is 

the difference between CumuPd(1, i) and CumuPd(1, i-1). The unconditional probability of 

default at the last node (n = i) in time step i is the difference between CumuPd(i, i) and 

CumuPd(i-1, i-1). The unconditional probability of default at the other node (1 < n < i) in time 

step i is the difference between CumuPd(n, i) and 𝐶𝑢𝑚𝑢𝑃𝑑(𝑛−1,𝑖−1)+𝐶𝑢𝑚𝑢𝑃𝑑(𝑛,𝑖−1)
2

: 
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UcPd(n, i) = 
𝐶𝑢𝑚𝑢𝑃𝑑(𝑛, 𝑖) − 𝐶𝑢𝑚𝑢𝑃𝑑(𝑛, 𝑖 − 1)                             (𝑛 = 1)

 𝐶𝑢𝑚𝑢𝑃𝑑(𝑛, 𝑖) −  𝐶𝑢𝑚𝑢𝑃𝑑(𝑛−1,𝑖−1)+𝐶𝑢𝑚𝑢𝑃𝑑(𝑛,𝑖−1)
2

                       (1 < 𝑛 < 𝑖)                
𝐶𝑢𝑚𝑢𝑃𝑑(𝑛, 𝑖) − 𝐶𝑢𝑚𝑢𝑃𝑑(𝑛 − 1, 𝑖 − 1)                        (𝑛 = 𝑖)

 

 

The conditional probability of default at node n in time step i, given there is no early 

default before, denoted as CondPd(n, i) is  

 

CondPd(n, i) = 
𝑈𝑐𝑃𝑑(𝑛, 𝑖)/(1 − 𝐶𝑢𝑚𝑢𝑃𝑑(𝑛, 𝑖 − 1))                                  (𝑛 = 1) 

𝑈𝑐𝑃𝑑(𝑛, 𝑖)/(1 −  𝐶𝑢𝑚𝑢𝑃𝑑(𝑛−1,𝑖−1)+𝐶𝑢𝑚𝑢𝑃𝑑(𝑛,𝑖−1)
2

)                       (1 < 𝑛 < 𝑖)        
𝑈𝑐𝑃𝑑(𝑛, 𝑖)/(1 −  𝐶𝑢𝑚𝑢𝑃𝑑(𝑛 − 1, 𝑖 − 1))                         (𝑛 = 𝑖)

 

 

By doing this, we are able to calculate the unique conditional probability at each node in 

each time step. 

Given the probability of default, we can go back to our payoff tree of the vulnerable 

option and calculate the option value. As well, we keep track of Sc and Sc
^ in order to compare the 

early exercise policy in vulnerable and non-vulnerable options. 

In order to calculate the early exercise price Sc and option value for the non-vulnerable 

options, we simply set our parameters for the credit process equal to zero so that the default can 

never occur. In our model, we set a = b = 0. 

In the next session, we will show our numerical results based on the intensity model. 
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4: Numerical Results 

We use the American put as an example. Based on our model described above, we set the 

base case parameters of the non-vulnerable American put as S = 50, X = 50, σ = 0.2, T = 2, time 

steps = 100, r = 0.05, q = 0.05, a=0, b = 0. The parameters are chosen in order to follow what 

Klein and Yang (2013) did in their paper, so that the base case parameters are similar to many 

business situations. For a vulnerable American put, since the option holder concerns if the option 

writer would default, we use the probability of default and recovery rate to calculate the 

vulnerable option value. In our model, we use the intensity model proposed in Andersen (2002) to 

derive the  probability of default at each node in each time step, which is λ(t, S) = a + b / Sp. 

Therefore, the base case parameters of the vulnerable American put are added by a=0, b = 

0.657139, p = 0.06, ω = 0.5 in order to obtain the same value of vulnerable American put as 

demonstrated in Klein and Yang (2013). In order to check if the early exercise policy will be 

affected by default risk, we compare the differences between Sc for a non-vulnerable American 

put and Sc
^ for its vulnerable American twin. We exhibit our detailed results in Table 1 and Table 

3. 

Next, we continue to do research on the effect of changing the values of parameters. At 

each time, we only change the value of one parameter and keep the rest fixed, indicated in the 

first column of Table 1. It clearly shows the different critical asset prices for both Sc and Sc
^ and 

the percentage of difference between Sc and Sc
^, which is denoted as Difference (%) in the last 

columns in Table 1. The value of Sc and Sc
^ we are looking for is the value of underlying asset 

that would make it optimal to exercise the option immediately at the first node for both vulnerable 

and non-vulnerable put options. 
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Table 1 Parameter changing effects on the early exercise policies between the two types of puts 

 
 Vulnerable American put Non-vulnerable American put Difference (%) 

Base Case Sc
^ = 39.6 Sc = 33.2 19.3 

b = 1.0 Sc
^ = 40.7 Sc = 33.2 22.6 

b = 0.8 Sc
^ = 40.1 Sc = 33.2 20.8 

b = 0.4 Sc
^ = 38.3 Sc = 33.2 15.4 

b = 0.2 Sc
^ = 36.6 Sc = 33.2 10.2 

p = 0.02 Sc
^ = 40.0 Sc = 33.2 20.5 

p = 0.04 Sc
^ = 39.8 Sc = 33.2 19.9 

p = 0.08 Sc
^ = 39.4 Sc = 33.2 18.7 

p = 0.1 Sc
^ = 39.2 Sc = 33.2 18.1 

X = 55 Sc
^ = 43.5 Sc = 36.6 18.9 

X = 45 Sc
^ = 35.7 Sc = 29.9 19.4 

r = 0.075 Sc
^ = 41.2 Sc = 37.7 9.3 

r = 0.025 Sc
^ = 37.4 Sc = 21.4 74.8 

q = 0.075 Sc
^ = 38.0 Sc = 27.7 37.2 

q = 0.025 Sc
^ = 41.0 Sc = 36.9 11.1 

T = 3 Sc
^ = 39.1 Sc = 31.9 22.6 

T = 1 Sc
^ = 40.5 Sc = 35.6 13.8 

σ = 0.3 Sc
^ = 35.3 Sc = 27.2 29.8 

σ = 0.1 Sc
^ = 44.5 Sc = 40.7 9.3 

ω = 0 Sc
^ = 42.2 Sc = 33.2 27.1 

ω = 1 Sc
^ = 32.2 Sc = 33.2 0 

b = 0.4109 
p = -0.06 

Sc
^ = 39.5 Sc = 33.2 19.0 

a = 1.0393 
b = -0.657139 

Sc
^ = 39.5 Sc = 33.2 19.0 
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Results of the structural model in Klein and Yang (2013) are shown in Figure 5 below. 

Figure 5: Exhibit 1 in Klein and Yang (2013) 
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The results in Table 1 clearly show that the critical asset price is different for the 

vulnerable option and its non-vulnerable twin. In the base case, the vulnerable put option is 

optimal to be exercised immediately if the price of underlying asset turns to 39.6. However, its 

non-vulnerable put twin will not be exercised immediately until the price of underlying asset 

becomes 33.2. The difference between them is approximately 19%. In other cases, the critical 

asset price for immediate exercise of the vulnerable put option is always larger than that of its 

non-vulnerable put twin, with an apparent difference. 

Table 1 also provides us with the results for different values of probability of default, 

which are reflected by the changes of parameters b and p. When b is getting larger or p is getting 

smaller, the probability of default turns out to be larger. When b is smaller or p is larger, the 

critical asset prices for both vulnerable and non-vulnerable options become closer but not equal to 

each other. We conclude that if the probability of default is getting greater, the option holder will 

be likely to have a higher early exercise price. 

The critical asset prices for both the vulnerable and non-vulnerable options are sensitive 

to changes of the other parameters as well. If the dividend yield decreases, the strike price 

increases, or the riskless interest rate increases, the critical asset prices for both the vulnerable and 

non-vulnerable put options will increase.  

When we change the value of the continuous dividend yield, the result is quite different 

with what is shown in Klein and Yang’s paper. For example, when q changes from 0.075 to 

0.025, Klein and Yang showed 5.1% to 4.9%. Our result shows 37.2% to 11.1%. This is due to 

the critical asset price change in the vulnerable option. For instance, if q = 0.075, we have a value 

of 38.0 compared with 29.1 shown in Klein and Yang (2013). We conclude that the early exercise 

price in the intensity model is more sensitive to the value change of q than in the structural model 

in Klein and Yang (2013).  
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Changing the value of the riskless interest rate has the greatest effect on our results. For 

example, changing the value of riskless interest rate r from 0.05 (base case) to 0.025 increases the 

difference of the critical asset prices for vulnerable put and its non-vulnerable twin from 19% to 

75%. This is not consistent with what is presented in Klein and Yang’s paper. We further study 

this issue and test our model with a zero value of r. As a result, the non-vulnerable option will 

never be early exercised. The vulnerable option will be optimal to be exercised immediately with 

an underling asset price of 34.3. Table 2 shows a summary of this result. 

Table 2: Effects of r changes on the early exercise policies between the two types of puts 

 
 Vulnerable American put Non-vulnerable American put 

r = 0.075 Sc
^ = 41.2 Sc = 37.7 

r = 0.025 Sc
^ = 37.4 Sc = 21.4 

r = 0 Sc
^ = 34.3 No early exercise 

 

We noticed that when the value of r decreases, the early exercise policy changes 

significantly in the non-vulnerable option case. For example, when r drops from 0.075 to 0.025, 

the early exercise price drops about 43% (= (37.7-21.4) / 37.7). However, when we consider the 

vulnerable option, the early exercise price drops only about 9% (= (41.2-37.4) / 41.2). By 

comparing these two numbers, we can see the early exercise price is not changing as that much as 

in the vulnerable option. This might because the effect of r on the early exercise price is partially 

offset by the effect of the credit process of our model. Additionally, by comparing to the results 

of Klein and Yang (Figure 5), when r drops from 0.075 to 0.025, Sc^ is 22.4 when we consider 

the vulnerable option, which generates about 43% (= (39.2-22.4) / 39.2) difference. By 

comparing the two differences 9% vs 43%, we conclude that the intensity model is less sensitive 

to the value change of r. 
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In contrast, if we change the strike price, the difference in the critical asset prices for the 

two types of puts is 18.9% vs 19.4%. In Klein and Yang, the difference is 5.5% vs 5.7%.  

Although the number is quite different, we can see the difference is not changing greatly when we 

change the strike. This is consistent with Klein and Yang’s results. 

Changing the time to maturity or the volatility of the underlying asset price affects the 

critical asset prices for the two types of puts as well. As we can see the results from Table 1, 

increasing the value of time to maturity (T) and volatility of the underlying asset (σ) will decrease 

the value of the early exercise price and increase the difference of critical asset prices between 

vulnerable put and its twin. This is due to the fact that these two parameters will have effects on 

the time value of the options. For the option holders, they would like to choose an earlier exercise 

to avoid the potential default of option writers. If they choose to exercise their options earlier, it 

means that they have to give up the time value of those options (Klein and Yang 2013). In other 

words, if their option’s value increases later, they will lose the time value in the case of early 

exercise. As a result, counterparty credit risk will have a greater influence on the critical asset 

price for options that have potential high time value. These results are consistent with Klein and 

Yang‘s results. 

At last, we want to test our model by setting the value of p or b to be negative as shown 

in the last two rows of Table 1, which replicate the cases of ρ in Klein and Yang (2013). After we 

make any of the changes above to our model, the intensity and the underlying asset price become 

positively correlated. This implies that if the underlying asset price increases, then the probability 

of default will also become greater. This result is comparable with the case that dZv and dZs have 

a negative correlation which is the case of ρ = -0.5 in Klein and Yang (2013). They show that if ρ 

= -0.5, then the immediate exercise price for the vulnerable put will become 33.7, which is lower 

than 35.1 in the base case.  In our model, firstly, we change the value of p from 0.06 to -0.06. In 

order to achieve the same initial intensity in our base case, we multiply the value of b in our base 
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case by 𝑆2𝑝 = 502∗(−0.06) = 0.6254 to get a new value of b as 0.4109. Next, instead of the 

changes above, we let the value of b to be negative as -0.657139. In order to replicate the initial 

intensity in our base case, we set the value of a as  −2𝑏
𝑆𝑝

= −2∗(−0.657139)
500.06 = 1.0393. In the two new 

cases, both of the immediate exercise prices are 39.5 for the vulnerable put, which is also lower 

than 39.6 in our base case. Therefore, our results are consistent with what Klein and Yang did.  

In general, we found that the early exercise price for the vulnerable option is quite 

different with those shown in Klein and Yang (2013). For example, the result for vulnerable put 

in our base case is 39.6 and it is 35.1 in Klein and Yang’s result.  The early exercise price is 41.2 

if change the value of the interest rate r to 0.075, while Klein and Yang showed 39.2 in their case 

etc. Moreover, we find that our results are larger than those in Klein and Yang’s paper for all the 

cases.  This is due to the reason that the credit process differs over time as compared to Klein and 

Yang, meaning the intensity approach generates greater early exercise price than the structural 

model. We suspect that the value of probability of default may be the cause of the differences.  

Further, we consider the probability of default is greater than the ones in the structural model. 

Therefore, the option holder is likely to early exercise the option at a higher price comparing with 

the structural model. Leland studied the behavior of probability of default in structural model. He 

calculated the distance to default, which is measured by the number of standard deviation 

between the log ratio of the expected future asset and KMV default boundary at t. Then, he 

mapped it to the default probabilities by using the standard normal distribution. He concluded that 

structural model would under-predict the short-term default probabilities (Leland 2004). This 

conclusion is consistent with our intuitions. We show our conditional and cumulative probability 

of default through time in the following plots. In order to see that the probability is increasing, we 

choose a larger value of T, which is 20 in this case.  As we can see from Figure 6 and 7, the value 

of probability of default increases very slowly through time. Figure 8 shows an example from 

Leland’s paper.  The dotted line is the given probability of default from Moody ‘s . The solid line 
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plots the cumulative probability of default predicted by the Leland and Toft’ model.  The short-

term probability defaults are underestimated (Leland 2004). 

Figure 6: Conditional Probability through Time 

 

 
Figure 7: Cumulative Probability through Time  
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Figure 8: Cumulative Default Probabilities through Time in Structural Model (Leland 2004) 
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Table 3: Parameter changing effects on the option prices between the two types of puts 

 Non-vulnerable put price 
f 

Vulnerable put price 
f*^ 

Percentage reduction vs. f 
(%) 

Base Case 5.21 4.11 21.20 

b = 1.0 5.21 3.82 26.74 

b = 0.8 5.21 3.98 23.75 

b = 0.4 5.21 4.42 15.25 

b = 0.2 5.21 4.75 8.88 

p = 0.02 5.21 4.00 23.20 

p = 0.04 5.21 4.06 22.19 

p = 0.08 5.21 4.16 20.22 

p = 0.1 5.21 4.21 19.25 

X = 55 8.18 6.79 17.04 

X = 45 2.96 2.23 24.49 

r = 0.075 4.35 3.54 18.52 

r = 0.025 6.45 4.83 25.06 

q = 0.075 6.15 4.68 23.83 

q = 0.025 4.47 3.62 19.06 

T = 3 6.17 4.58 25.81 

T = 1 3.82 3.30 13.78 

σ = 0.3 7.79 6.14 21.17 

σ = 0.1 2.61 2.06 21.21 

ω = 0 5.21 3.23 38.14 

ω = 1 5.21 5.21 0 
 

Table 3 demonstrates the effects of the same parameters’ changes as in Table 1 on the 

option prices for vulnerable put and its non-vulnerable twin, so the first column is the same with 

it in Table 1. The second and third columns of Table 3 state the values of non-vulnerable 

American put (f) and its vulnerable American twin (f*^). Additionally, the last column of Table 3 
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indicates the percentage reduction of the vulnerable put option value compared with its non-

vulnerable twin.  

Our base case is set up as before such that S = 50, X = 50, σ = 0.2, T = 2, time steps = 

100, r = 0.05, q = 0.05, b = 0.657139, p = 0.06 and ω = 0.5.  By doing this, we make sure our 

result is matched with what Klein and Yang (2013) did through the structural model (see Figure 9 

below). Our base case result shows that the non-vulnerable option has the value 5.21 today and 

the vulnerable option has the value of 4.11. This generates 21.2% reduction in value in terms of 

the non-vulnerable option value. This result exactly matches with what Klein and Yang did in 

their research, as shown in Figure 9. 
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Figure 9: Exhibit 2A in Klein and Yang (2013) 

 

We further study the effect of changing our intensity parameters such as b and p in our 

model. Firstly, we change the value of b. Based on the intensity formula below, the intensity will 

become greater if we increase the value of b, which will further increase the probability of 

default. Based on our numerical results, we can find that the value of the vulnerable option 

decreases with an increasing value of b. This implies that greater the probability of default, less 

the value of the option.  Next, we study the effect of changing value in p, which is another 

parameter in deciding the value of intensity. We can also find that the value of intensity will 
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decrease if we increase the value of p according to the formula below. From Table 3, we can see 

that when the value of p increases, the option value increases. 

 

In sum, we conclude that, the intensity value indeed has effect on the value of the 

options, which is that the option will have a greater value if the option is less likely to default. 

This conclusion appears to be the same result as what was concluded in Klein and Yang (2013).  

The option value for both the non-vulnerable and vulnerable option can be affected by the 

changes in other parameters as well. We present them in the following. 

From Table 3, we see the changes of values in both non-vulnerable and vulnerable put if 

we change the value of the strike price. When the strike price increases, the option value 

increases. The results in our table also show that non-vulnerable option value is less sensitive to 

the change of strike price than the vulnerable option value.  We calculate the following 

percentage change in value: the non-vulnerable option value changes (8.18 (X = 55) – 5.21 (X 

=50))/5.21 (X =50) = 57%. However, the vulnerable option shows (6.79 (X = 55) – 4.11 (X 

=50))/4.11(X= 50) = 65% change in its value.  

Next, we want to test the effect on the option value from changing the value of r, q and σ. 

From Table 3, we can see that the option value increases when we decrease the value of r, 

increase the value of q or increase the value of σ. As well, we test how sensitive the value 

changes of the two types of puts when we change the value of r, q and σ.  

For example, in the non-vulnerable option, the value changes (6.15 (q = 0.075) – 5.21 (q 

= 0.05)) / 5.21 (q = 0.05) = 18%. However, the vulnerable options shows (4.68 (q = 0.075) – 4.11 

(q=0.05)) / 4.11 (q=0.05) = 14% change in its values.  These results support the conclusion that 

the two types of puts have similar sensitivity to the value change of q. Further, we see the 

percentage reduction values in Table 3 and Figure 9 are very close. 22.6% vs 23.8% (q = 0.075) 
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and 19.8% vs 19.0% (q = 0.025). This implies that the effect of changing the value of q in 

structural model and intensity model are very similar. 

The same conclusion can be derived if we change the value of r and the volatility of the 

underlying asset σ.  

We test our results when we change the value of time to maturity T. From Table 3, we 

see that the value of both non-vulnerable and vulnerable option increase when the value of T 

increases. As we mentioned in the results discussion section of Table 1, greater the value of T is, 

greater the time value of the option is, thus greater the effect of credit risk is. We notice that Klein 

and Yang showed 20.3% and 16.4% change when the value of T becomes 3 and 1 respectively.  

Our results shows 25.8% and 13.8 % compared to the results in Klein and Yang (2013). 

Therefore, we have a higher value of percentage reduction vs. f when T is larger. This result is 

consistent with what is shown in Klein and Yang (2013).  

Lastly, we test the effect of value change of the recovery rate. When the value of ω goes 

from 0 to 1, the vulnerable option will appear to be the non-vulnerable option. By definition, ω = 

1 stands for if the option holder defaults the option holder will lose nothing, which is equivalent 

to a non-vulnerable option. Therefore, the value is exactly the same as the non-vulnerable case, 

which is 5.21. When ω = 0, the option holder will get northing and the option value drops if the 

option writer defaults.  

In all, we test all the parameters in our model. The numerical results show that the value 

of vulnerable option is always lower than that of its non-vulnerable twins. This result is consistent 

with Klein and Yang’s result. Further, according to Table 3, we show that in the intensity model, 

changing the value of r, q, σ and T has very similar effect in the option price compared to what 

Klein and Yang showed in their paper. 
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5: Conclusion 

The main purpose of this thesis is to apply the intensity model to verify that the early 

exercise policy will be affected in a vulnerable American option.  We follow what Klein and 

Yang did in their paper. We retain the assumptions hold by Klein and Yang (2013) that in the 

event of option writer defaults, the option holder’s nominal claim is the value of the otherwise 

identical non-vulnerable option. We also follow the assumption that the default can occur any 

time before the expiry. Based on these assumptions, we come up with the critical asset price for 

both non-vulnerable and vulnerable options. We provide numerical examples to verify that the 

early exercise price will be affected by the counterparty credit risk. We further study the effect of 

the counterparty credit risk on the value of the options. Numerical results are also provided.   

The main contribution of this thesis is to use the intensity approach to model the 

counterparty credit risk on OTC options. The intensity model has several advantages in modelling 

the credit process. For example, the data used in this model is more practical and easier to be 

obtained than what is used in the structural model. Lastly, the intensity model is easier to be 

implemented.  

The numerical results in our thesis confirm that the intensity model can be applied to test 

the early exercise policy and price the vulnerable American options. The model can be employed 

to a general vulnerable American option with parameter adjustments. 
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Appendices 
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Appendix A Program: Function for Non-vulnerable American Put  

(matlab program) 

function [stockTree,valueTree,Sc] = ... 
    NonvulnerableAmericanOption(S0,X,r,q,sig,dt,steps,drift) 
  
% CRR model parameters 
a = exp((r-q)*dt); 
u = exp(drift*dt + sig*sqrt(dt)); 
d = exp(drift*dt - sig*sqrt(dt)); 
p = (a-d)/(u-d); 
  
% Loop over each node and simulate the underlying stock prices 
stockTree = nan(steps+1,steps+1); 
Sc = zeros(steps+1,steps+1); 
  
stockTree(1,1) = S0; 
for idx = 2:steps+1 
    stockTree(1:idx-1,idx) = stockTree(1:idx-1,idx-1)*u; 
    stockTree(idx,idx) = stockTree(idx-1,idx-1)*d; 
end 
  
valueTree = nan(size(stockTree)); 
  
% Calculate the value at expiry 
  
valueTree(:,end) = max(X-stockTree(:,end),0); 
  
steps = size(stockTree,2)-1; 
  
% Loop backwards to get option value 
for idx = steps:-1:1 
     
    valueTree(1:idx,idx) = exp(-r*dt)*(p*valueTree(1:idx,idx+1) +... 
        (1-p)*valueTree(2:idx+1,idx+1)); 
     
    valueTree(1:idx,idx) = max(X-stockTree(1:idx,idx),valueTree(1:idx,idx)); 
     
    %   Keep track of the early exericse Price 
    for jdx = 1: idx 
         
        if (valueTree(jdx,idx) == X-stockTree(jdx,idx) ) 
            Sc(jdx,idx) = stockTree(jdx,idx); 
        end 
         
    end 
end 
  
end 
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Appendix B Program: Function for Vulnerable American Put  

(matlab program) 

function [ valueTree_StarHat,Sc_Hat ]... 
    = VulnerableAmericanOption( S0,X,r,q,sig,dt,steps,PdCond,omega,drift ) 
  
% CRR model parameters 
a = exp((r-q)*dt); 
u = exp(drift*dt + sig*sqrt(dt)); 
d = exp(drift*dt - sig*sqrt(dt)); 
p = (a-d)/(u-d); 
  
% Loop over each node and simulate the underlying stock prices 
stockTree = nan(steps+1,steps+1); 
  
stockTree(1,1) = S0; 
for idx = 2:steps+1 
    stockTree(1:idx-1,idx) = stockTree(1:idx-1,idx-1)*u; 
    stockTree(idx,idx) = stockTree(idx-1,idx-1)*d; 
end 
  
% Recalculate the option value in the non-vunlerable option  
[~,valueTree,~] = NonvulnerableAmericanOption(S0,X,r,q,sig,dt,steps,drift); 
  
% Preallocate the option value output 
valueTree_StarHat = nan(size(stockTree)); 
Sc_Hat = zeros(steps+1,steps+1); 
  
% Option value at expiry 
valueTree_StarHat(:,end) = omega*PdCond(:,end).*valueTree(:,end)... 
    +(1-PdCond(:,end)).*max(X-stockTree(:,end),0); 
  
% Loop backwards to get option value 
steps = size(stockTree,2)-1; 
  
for idx = steps:-1:1 
     
    valueTree_StarHat(1:idx,idx) =... 
        exp(-r*dt)*(p*valueTree_StarHat(1:idx,idx+1) + (1-p)*valueTree_StarHat(2:idx+1,idx+1)); 
     
    valueTree_StarHat(1:idx,idx) = omega*PdCond(1:idx,idx).*valueTree(1:idx,idx)+(1-
PdCond(1:idx,idx))... 
        .*max((X-stockTree(1:idx,idx)), valueTree_StarHat(1:idx,idx)); 
     
    %             Keep track of the early exercise price 
    for jdx = 1: idx 
         
        if  ( valueTree_StarHat(jdx,idx) == PdCond(jdx,idx)*omega*valueTree(jdx,idx)... 
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                +(1-PdCond(jdx,idx))*(X-stockTree(jdx,idx))); 
            Sc_Hat(jdx,idx) = stockTree(jdx,idx); 
        end 
         
    end 
     
end 
  
end 
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Appendix C Program: Test Script  

(matlab program) 

clear all 
close all 
clc 
  
for S0 = 50:-0.1:0 
 
    % Set S0 to be a fixed number and then calculate the option value 
     
    %  S0 =50; 
    X = 50; 
    r = 0.05; 
    q = 0.05; 
    sig = 0.2; 
    T = 2; 
    steps = 100; 
    dt = T/steps; 
 
    a = 0; 
    %     a = 1.0393; 
 
    b = 0.657139; 
    %     b = 0.4109; 
    %     b = -0.657139; 
 
    pi = 0.06; 
    %     pi = -0.06; 
     
    omega = 0.5; 
     
    drift = 0; %Conside the the CRR model with Drift only. 
     
    [stockTree,valueTree,Sc] = ... 
        NonvulnerableAmericanOption(S0,X,r,q,sig,dt,steps,drift); 
     
    tMat = repmat((0:dt:dt*steps),(steps+1),1); 
  
    % Calculate intensityTree 
    intensityTree = a + b./(stockTree.^pi); 
     
    % Calculate Tree for probability of default by each step 
    PdTree = 1-exp(-tMat.*intensityTree); 
     
    PdUC = zeros(size(PdTree)); 
    PdCond = zeros(size(PdTree)); 
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    % Calculat the unconditional probablity 
    PdUC(1,2:end)  = PdTree(1,2:end) - PdTree(1,1:end-1); 
    PdCond(1,2:end) = PdUC(1,2:end)./(1-PdTree(1,1:end-1)); 
 
    %  Calculate the conditional probablity 
     
    for idx = 2 : 1:  size(PdTree,2) 
         
        for jdx = 2: idx 
  
            Ave = ( PdTree(jdx-1,idx-1) + PdTree(jdx,idx-1))/2; 
            PdUC(jdx,idx) =PdTree(jdx,idx)- Ave;          
            PdCond(jdx,idx) = PdUC(jdx,idx)./(1-Ave);             
        end         
        PdUC(idx,idx)  = PdTree(idx,idx) - PdTree(idx-1,idx-1); 
        PdCond(idx,idx) = PdUC(idx,idx)./(1-PdTree(idx-1,idx-1)); 
         
    end 
     
    [ valueTree_StarHat,Sc_Hat ] =... 
        VulnerableAmericanOption( S0,X,r,q,sig,dt,steps,PdCond,omega,drift ); 
   
    %     if Sc(1,1) ~= 0 
    %         Sc(1,1) 
    %         break 
    %     end   
     
        if Sc_Hat(1,1) ~= 0 
        Sc_Hat(1,1) 
        break 
    end   
end 
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