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Abstract

When modelling diffusive systems with stochastic differential equations, a question about interpre-

tations of the stochastic integral often arises. Using simulations of a random Lorentz gas model, we

show that given only the diffusion coefficient, for a diffusive system without external force, the sys-

tem is underdetermined. By varying one free parameter, the prediction from different interpretations

can hold true. However, for a diffusive system satisfying detailed balance condition, we show that

it is uniquely determined by the equilibrium distribution in addition to the diffusion coefficient. We

propose an explicit method for simulating stochastic differential equations in this formulation. Our

numerical scheme introduces Metropolis-Hastings step-rejections to preserve the exact equilibrium

distribution and works directly with the diffusion coefficient rather than the drift coefficient. We show

that the numerical scheme is weakly convergent with order 1/2 for such systems with smooth co-

efficients. We perform numerical experiments demonstrating the convergence of the method for

systems not covered by our theorem, including systems with discontinuous coefficients.
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Chapter 1

Introduction

1.1 Backgroud

Diffusion is a very common phenomenon and it plays an important role in many subjects. Re-

searchers have been using various diffusion models for many processes such as particle motion,

energy transportation, chemical reactions, etc. One simple diffusive model is the evolution of con-

centration c(x, t) in one dimension under Fick’s law:

J(x, t) = −D∂c(x, t)
∂x

which states that the local flux J(x, t) at position x and at time t is proportional to the negative of

the gradient of the concentration with coefficient D. Here, D is a constant known as the diffusion

coefficient. Then, by conservation, we can obtain a partial differential equation (PDE) model for the

evolution of concentration with proper initial values and boundary conditions:

∂c(x, t)

∂t
= D

∂2c(x, t)

∂x2
(1.1)

This is a continuum model, which implies that the system contains infinitely many particles. Inter-

estingly, it is possible to study the same process by only looking at the movement of a single particle

X(t) under appropriate assumptions [14]. The movement of X(t) is related to the famous Brownian

motion [37] and X(t) is governed by a stochastic differential equation (SDE) [30] (see Appendix A.2

and A.4 for their definitions),

dX(t) =
√

2DdB(t) (1.2)

As the models are describing the same physical process, it turns out that the SDE (1.2) uniquely

corresponds to the PDE (1.1) which is known as the Fokker-Planck equation (FPE) for the SDE (1.2)

[14] (see Appendix A.5 for the definition of the FPE). The described model is a diffusion process

1



CHAPTER 1. INTRODUCTION 2

with constant diffusion coefficient.

A problem arises when one starts to model a diffusion process with a spatially dependent diffusion

coefficient (the diffusion coefficient is not a constant but depends on the space variable). Since the

Brownian motion is not of bounded variation, for a spatially dependent diffusion coefficient D(x),

the Lebesgue integral of the term
√

2D(X(t))dB(t) is not well defined any more. For the SDE

dX(t) =
√

2D(X(t))dB(t) (1.3)

different interpretations (Ito, Stratonovich or Isothermal) of
√

2D(X(t))dB(t) lead to different solu-

tions [30]. From the PDE model, if one only modifies Fick’s law to adapt to the variable diffusion

coefficient D(x), then the PDE (1.1) becomes the divergence form equation

∂c(x, t)

∂t
=

∂

∂x
D(x)

∂c(x, t)

∂x

However, this PDE is only equivalent to the SDE in one particular interpretation(the Isothermal

interpretation, see Table 2.2). As a result, the interpretation of the stochastic term
√

2D(X(t))dB(t)

cannot be determined arbitrarily. In reality, a modeler often needs additional information about

the process to choose the suitable interpretation. For instance, for realistic physical stochastic

systems with noise, since the noise often has finite correlations and white noise is only a idealized

approximation, the choice of Stratonovich integral is more appropriate [19]. However, for those

applications of stochastic integrals in finance, they often require that the process does not look into

the future (all decisions can only be made upon current and past information). In such situations,

Itô integral seems to be a better choice [37]. In this thesis, we look at this modelling problem from a

different point of view. The different behavior in the macroscopic and mesoscopic models imply that

the clues about how to build the model may be obtained by looking at microscopic level models.

1.2 Thesis Organization

In Chapter 2, we rephrase the modelling problem stated in the introduction with a concrete example:

a particle diffusing in a box with piecewise constant diffusion coefficients. We consider the equi-

librium distribution ρeq given piecewise constant diffusion coefficient D on each side of the box. A

discussion of a seeming paradox about the predictions from Statistical Mechanics and time change

is presented. To resolve this paradox, we run simulations of a microscopic deterministic Hamil-

tonian billiard system: the random Lorentz gas [10]. The system has two free parameters: disc

radius and free volume fraction. There is a one-parameter family of values of these parameters

that can generate the same effective diffusion coefficient. We will show how to choose these pa-

rameters to obtain arbitrarily good approximations to diffusive motion for the particle on each side

of the box. Using the degree of freedom in the choice of parameters, we show that the equilibrium

density of the particle is underdetermined by the diffusion coefficient on each side of the region.
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For a given diffusion coefficient, exploiting the flexibility in the parameter choice allows us to create

systems in which either the statistical mechanics prediction or the time-change prediction is correct.

Therefore, choosing a diffusion coefficient D is not enough to fully specify diffusive dynamics in

the absence of other assumptions. In particular, our results show that fixing D is not enough to

specify ρeq, the equilibrium probability density for the position of the particle. On the other hand,

diffusions that satisfy the detailed balance condition with respect to some invariant measure feature

prominently in many areas of physics, chemistry, and mathematical biology [45, 14, 4]. For such

systems, we propose a framework for modelling state-dependent diffusion with a known equilibrium

probability density. Rather than simply specifying a state-dependent diffusion coefficient, we specify

diffusion coefficient D(x) and an equilibrium density ρeq(x) which together with a detailed balance

assumption (no-flux in equilibrium) completely determine the dynamics. We conclude the chapter

by explaining the relation between our results and three different interpretations of state-dependent

diffusion: Itô, Stratonovich and the isothermal convention [23].

In Chapter 3, we introduce a new method for the numerical simulation of diffusive dynamics which

makes use of our framework: the numerical method is expressed in terms of D(x) and ρeq(x) and

makes no reference to a drift term. The method consists of Euler-Maruyama steps for a purely

diffusive Itô SDE together with Metropolis rejections. The method is similar to the Metropolis- ad-

justed Langevin algorithm (MALA) [36],[5], except that there is no drift term in the Euler-Maruyama

step, and it is the Metropolis rejections that induce any drift in the trajectories. The advantages

of our method over the Euler-Maruyama method are that it samples space with the correct equi-

librium density ρeq(x) and since our numerical method does not calculate the drift term explicitly,

it is possible to handle the case when D(x) and ρeq(x) have discontinuities where the drift would

have a singularity. A proof of the convergence of the method with sufficiently smooth coefficients is

provided. Then we validate the numerical methods using several examples. For these examples,

the method shows that it preserves the exact equilibrium distribution and converges weakly even

with discontinuous coefficients.

In Chapter 4, we establish proof of the convergence using a different technique from the point

of view of Markov processes and martingale problems, which is more probabilistic in nature. As

developed by Stroock and Varadhan [42], the diffusion approximations can be done through the

martingale characterization in the limit. Though the key estimates in the proof in Chapter 3 cannot

be avoided, this way of proof gives a more fundamental reason for the convergence. Without giving

the convergence rate, the weak convergence of our numerical method is proved under conditions

with less smoothness of the coefficients.
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1.3 Publication and contributions of authors

The work in chapter 2 has been published in [43]: Paul Tupper developed the model and wrote the

manuscript, Xin Yang implemented the the code, ran the simulations.

The work in chapter 3 has been submitted : Paul Tupper developed the numerical scheme. Xin

Yang carried out the convergence proof, implemented the code and ran the simulations. Xin Yang

wrote the manuscript with extensive revisions by Paul Tupper.



Chapter 2

Modelling state-dependent
diffusions

2.1 A paradox of state-dependent diffusions

As shown in the introduction, specific choices need to be made when one wants to model a system

with state-dependent diffusions. In order to illustrate the situation, we begin with a seeming paradox

about the state-dependent diffusion.

Consider a particle diffusing in a two-dimensional box with reflecting boundary conditions. We show

a portion of a simulated trajectory of such a system in Figure 2.1. Suppose that in the left half of the

box the particle diffuses with coefficient D1, and that in the right half of the box the particle diffuses

with coefficient D2 = 2D1. We assume that there are not external forces acting on the particle. Our

question is: does the particle spend an equal fraction of time on each side of the box in the long

run?

One answer is based on the statistical mechanics: the particle will spend an equal proportion of time

on each side of the box. The justification for this prediction is the principle of statistical mechanics

which states that ’an isolated system in equilibrium is equally likely to be in any of its accessible

states’ [33, p. 54]. Since all states in the box are accessible, and there are an equal number of

states on each side of the box, the particle should spend an equal proportion of its time on each

side of the box.

Another answer is based on the idea of rescaling time in one side of the box: the particle will spend

less time on the side of the box where the diffusion coefficient is greater. The justification for this

prediction is that, in the absence of any drift, faster diffusion is equivalent to time passing more

quickly. Since the geometry is reflection symmetric, for every trajectory, its reflection will also be a

possible trajectory with the same probability. This means that the periods of time the particle spends

5
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Figure 2.1: Simulation of particle diffusing within a box with reflecting boundary conditions. Points
are generated by the Euler-Maruyama method Xn+1 = Xn +

√
2hD(Xn)Nn, where h = 0.5, Nn

are independent standard two-dimensional Gaussians, and D(x) is the state-dependent diffusion
coefficient. (a) D(x) = 1 and (b) D(x) = 2

on the right-hand side of the box will be shorter than those spends on the left hand side. Hence

the total time the particle spends on the right-hand side will be less. We show how this prediction is

a straightforward consequence of interpreting the particle’s motion as drift-free diffusion, where we

interpret the state-dependent diffusion coefficient using the Itô convention [14] A.4. We can write

the equation for the particle motion as

dx = b(x)dB(t) (2.1)

where x = (x1, x2) and B(t) is standard two-dimensional Brownian Motion. (Equivalently, we may

write this equation as (dx/dt = b(x)η(t)) where η is two-dimensional Gaussian white noise.) We

specify b(x) = b1 for x1 < 0 and b(x) = b2 for x1 > 0. Here bi =
√

2D, i = 1, 2 where Di is the

corresponding diffusion coefficient. We enforce reflecting boundary conditions at the four walls of

the box. The (Itô-)Fokker-Planck equation for ρ(x, t), the probability density of the particles position

at time t, is [14, p. 118]

∂

∂t
ρ(x, t) =

1

2
∇ · [∇(b2(x)ρ(x, t))] = ∇ · [∇(D(x)ρ(x, t))].

The equilibrium density ρeq(x) satisfies

∇(D(x)ρeq(x)) = const.

Reflecting boundary conditions for the diffusion correspond to homogeneous Neumann boundary

conditions J(x, t) ·~n = ∇(D(x)ρeq(x)) ·~n = 0 (zero-flux) for the Fokker-Planck equation. With these
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boundary conditions, the unique equilibrium density is ρeq(x) = C/D(x) for some constant C. Thus,

since D2 = 2D1, the particle spends half as much time on the right-hand side of the box as on the

left. (We discuss the relation of our question to other interpretations of (2.1) in 2.4).

Neither the statistical mechanics prediction nor the time-change prediction are definitive. The statis-

tical mechanics prediction relies on the principle of equal probability of all accessible states, which

needs to be independently justified for the mesoscopic level of description we are considering here.

The time-change prediction is not definitive since Itô stochastic differential equations (SDEs) are

themselves mesoscopic models whose use can only be rigorously justified by showing how they

arise as the coarse-scale limit of microscopic dynamics. Since the two predictions contradict each

other, at least one of them must be wrong for any given physical system. The approach by which

we resolve this apparent contradiction is to study a microscopic model of the box system we have

described above and then see what proportion of the time the particle spends on each side in simu-

lations of that system. If one prediction turned out to always be true for our model system, we could

use our result as a baseline for investigating under which more general situations the prediction was

still true. However, we will see that even for our simple system, there are parameter choices that

make the statistical mechanics prediction correct and parameter choices that make the time-change

prediction correct. This demonstrates that there is no a priori reason to conclude that one prediction

or another is correct, given only the diffusion coefficient D(x) for the system.

2.2 A model system for state-dependent diffusion

In 2.1, we described a two-dimensional system consisting of a single particle diffusing inside a

rectangular box and reflecting off the boundaries. The diffusion coefficient is twice as large on the

right-hand side of the box as the left. In this section, we demonstrate how to construct a family of

deterministic systems that approximates this behaviour on a coarse scale. In 2.2.1, we describe the

random Lorentz gas [10], a deterministic system that when given a random initial condition yields

constant-coefficient diffusion at a coarse scale. In 2.2.2, we show how to approximate the model

system in 2.1 by creating two adjacent domains of the random Lorentz gas within a bounding box.

In 2.2.3, we describe numerical experiments with the box system demonstrating that the fraction of

time a particle spends on each side of the box cannot be determined solely from the values of the

diffusion coefficient. In 2.2.4 , we explain how the result of the numerical experiments in 2.2.3 can

be predicted from properties of the dynamics of the microscopic system.

2.2.1 Random Lorentz gas

Consider infinitely many discs with positions fixed in R2. The centers of the discs are distributed

randomly with uniform density subject to the constraint that the discs do not overlap. We consider
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Figure 2.2: Portions of the trajectory of the random Lorentz gas with φ = 0.5 at two levels of
magnification, showing (a) the discs and (b) the trajectory of the moving particle.

a single point particle interacting with the discs in the following manner. Given an initial velocity

and an initial position not on a disc, the particle moves with constant velocity until it meets a disc.

Then it undergoes an instantaneous elastic reflection with the boundary of the disc, with the angle

of incidence equalling the angle of reflection. This model is the two-dimensional random Lorentz

gas [10], a mathematical formulation of a model originally due to Lorentz [26]. We will always con-

sider the case when the particle has initial velocity of magnitude 1. Figure 2 shows trajectories of

the random Lorentz gas at two different scales. The random Lorentz gas has two parameters: the

radius of the discs r, the number of the discs per unit area λ. The radius r can take any positive

value. The density λ has a maximum value λmax = 1/(r2
√

12) corresponding to the close-packed

hexagonal pattern of discs. We define φ to be the free volume fraction, the proportion of the area

not occupied by discs. We have that φ = 1− πr2λ. The free volume can take any value in [φmin, 1)

where φmin = 1 − π/
√

12 ≈ 0.093, regardless of the value of r. The pair (r, φ) provides an alter-

native parametrization of the random Lorentz gas, with the advantage that φ is dimensionless. For

φ = φmin , adjacent discs are touching and the particle remains in a small region of the plane for its

entire trajectory. For φ ∈ (φmin, 1), the probability that two discs are touching anywhere in the plane

is zero [10, p. 325] and motion of the particle is conjectured to be diffusive [10]. Specifically, if we

start the particle at initial position x(0) not coincident with a disc and give it initial speed 1 and uni-

formly distributed direction in [0, 2π), then x(t), the position of the particle at time t is approximately

distributed as a Gaussian random vector with mean 0 and variance matrix 2DtI . Here I is the 2×2
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identity matrix and D denotes the diffusion coefficient. This conjecture is supported by analytical

calculations [11][10] and numerical simulations [6][9].

A stronger and more formal statement of the conjecture is stated in the language of weak conver-

gence [2]. Specifically, let x(t) denote the position of the moving particle at time t . Fix x(0) to be

some point not coincident with a disc and let the initial velocity be chosen as above. It is conjectured

that

x(nt)√
n
⇒
√

2Dr,φB(t)

as n → ∞, where B(t) is standard two-dimensional Brownian motion , Dr,φ is the diffusion coef-

ficient which depends on r and φ, and ⇒ denotes weak convergence in the space of continuous

functions [2]. Such a result holds for the certain periodic Lorentz gasses [7] [35], but remains open

for the random Lorentz gas. (We chose for our study not to use the standard periodic Lorentz gas

with discs centred on a hexagonal lattice since for large enough φ the particle undergoes superdif-

fusive motion in this case.) A scaling argument shows that, for fixed φ, Dr,f is proportional to r . To

see this, letting |·| denote the Euclidean norm and letting 〈·〉 denote the average, observe that the

coefficient D can be obtained by the Einstein-Smoluchowsky equation,

D = lim
t→∞

〈|x(t)|2〉
2td

,

where d = 2 is the dimension in this case. If we rescale space by a factor R, we increase both

the size of the discs and the distance the particle travels by a factor of R, without changing φ. So

〈|x(t)|2〉 increases by a factor of R2 . To maintain the speed of the particle as 1, we also have to

rescale time, increasing t by a factor R. The net effect on the ratio 〈|x(t)|2〉/4t is to increase it by a

factor R [38]. So

Dr,φ = rf(φ) (2.2)

for some function f of φ. Figure 2.3 shows the relation between f(φ) and φ that was computed

using the techniques described in [9]. It appears that the function f(φ) is continuous on its domain,

it is monotonically increasing, f(φ) → 0 as φ → φmin and f(φ) goes to infinity as φ → 1. Indeed,

calculations from kinetic theory show that f(φ) ∼ 3π/[16(1 − φ)] in the φ → 1 limit [46] [6]. Given

any fixed diffusion coefficient D > 0 there is a one-parameter family of choices of r, φ such that

D = Dr,φ : for any φ ∈ (φmin, 1), just choose r = D/f(φ).

2.2.2 Box with two domains

In order to investigate the main question about the different predictions, we take a rectangular box

and divide it into two equal regions. Each region is filled with randomly placed discs, with different r

and φ on each side. As in the Lorentz gas, the centers of the discs are placed uniformly at random
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Figure 2.3: The ratio of diffusion coefficient versus disc radius D/r as a function of free volume
fraction φ for the random Lorentz gas.

with the condition that they not overlap with each other. Discs can intersect with the walls of the box

but not the dividing line between the two sides of the box. Figures 2.4 and 2.5 show two examples

of such configurations of discs. The dynamics of the point particle are the same as in the infinite

random Lorentz gas, with the added condition that the particle reflects off the walls of the box.

Suppose we are given diffusion coefficients D1, D2 > 0. We can choose r1, φ1 and r2, φ2 such that

D1 = Dr1,φ1
and D2 = Dr2,φ2

. For small enough r1, r2 , the dynamics of the particle in this system

will be well-approximated by a particle that diffuses with coefficient D1 on the left-hand side of the

box and diffuses with coefficient D2 on the right-hand side of the box. With appropriate choices of

the parameters, we can investigate the question of the proportion of time the particle spends on

each side of the box.

2.2.3 Numerical experiments

We start the particle off at some position in the box not on a disc with velocity of magnitude 1 and

randomly chosen direction. The motion of the particle is simulated with an event-driven simulation,

computing a trajectory that is accurate up to the errors of floating point arithmetic [9]. Periodically

(with a fixed time interval ∆t) the position of the particle is recorded. At the end of a long trajec-

tory, we compute the number of times the particle is on the right-hand side of the box divided by

the number of times the particle is on the left-hand side of the box. We consider two choices of
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Figure 2.4: Set-up 1. Free volume fraction is the same on each side φ1 = φ2. Scatterer radius on
right (b) is twice that on left (a): 2r1 = r2, leading to 2D1 = D2

Figure 2.5: Set-up 2. Free volume fraction is twice as big on left (a): φ1 = 2φ2. Scatterer radii are
chosen so that 2D1 = D2
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set-up r1 φ1 D1 r2 φ2 D2 time on the right/time on the left
1 0.3 0.5 0.09 0.6 0.5 0.18 0.99
2 0.09 0.60 0.47 0.75 0.30 0.093 0.50

Table 2.1: The parameters used in each side of the box in the two set-ups, and the ratio between
amount of time spent by the particle on the right-hand side of the box and the left-hand side of the
box in each set up

parameters on each side of the box, or set-ups, each of which leads to the effective diffusion co-

efficients satisfying D2 = 2D1 . We have contrived the set-ups so that in set-up 1 in Figure 2.4,

the statistical mechanics prediction is correct, and that in set-up 2 in Figure 2.4, the Time-change

prediction is correct. The parameters for each set-up are summarized in Table 2.1. In the first set-up

φ1 = φ2 = 0.5 and 2r1 = r2 = 0.6. We show the position of the discs in the box in figure 2.4. Over a

trajectory of length 5× 105 time units the ratio between the occupation times is approximately 1, as

we show in table 2.1. This result agrees with the statistical mechanics prediction.

In the second set-up 2φ2 = φ1 = 0.60 and 8.3r1 ≈ r2 = 0.75. We show the position of the discs in

the box in Figure 2.5. Over a trajectory of length 7× 106 time units the ratio between the occupation

times is approximately 1
2 , as we show in table 2.1. This result agrees with the time-change predic-

tion. Thus, by fixing the parameters appropriately, both the statistical mechanics prediction and the

time-change prediction can be seen to be correct for the given mesoscopic behavior.

2.2.4 Analysis and discussion

We first explain that, given the properties of random Lorentz gas, the results of the simulation in

the previous subsection are predictable. We first note that the system is ergodic. The ergodicity of

periodic Lorentz gas is shown by [40], since it is equivalent to dispersing billiards on the torus. Our

system is not dispersing because the walls of the box are not convex, but [40, Section 9] shows how

ergodicity still holds in this case by unfolding the box to obtain a periodic domain. Ergodicity implies

that the duration of time that the particle spends in a region of phase space is proportional to the

volume of the region. For our system, this implies that the amount of time spent by the particle on

each side is proportional to the free volume fraction φ on each side. For fixed φ, the parameters r

and D are irrelevant to the proportion of time the particle spends on each side of the box. In set-up

1 Figure 2.4 above, φ1 = φ2 so the ratio of times spent on each side of the box is equal and the

statistical mechanics prediction is correct. In set-up 2, φ1 = 2φ2, and so the particle spends twice

as much time on the left-hand side of the box, and the time-change prediction is correct. Despite

appearances, the principles of statistical mechanics are not violated in set-up 2. There are two ways

to reconcile the apparent contradiction. Firstly, one can say that at the microscopic scale statistical

mechanics is not violated because there are not an equal number of states on each side. The num-

ber of states is proportional to the free volume fraction on both sides, and so the system spends
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more time where the free volume fraction is higher. The other way of reconciling the disagreement

is at the mesoscale. Suppose we divide the box into many rectangular cells of equal area, each

much smaller than the whole box, but much larger than the size of the discs. Each cell corresponds

to a mesoscopic state which the particle may be in. Since the system is in the microcanonical en-

semble (no exchange of energy with the outside) the probability of the system in equilibrium being

in a particular mesoscopic state is determined by the entropy of that state, where the entropy of a

mesoscopic state is proportional to the logarithm of the amount of microscopic states it contains.

The greater free volume fraction on the left in set-up 2 implies that mesoscopic states have greater

entropy there, and so the system will spend more time on the left-hand side of the box. On the other

hand, in set-up 1, the time-change prediction proves to be wrong. This means that the motion of

the particle in the box is not well-described by the drift-free Itô SDE (2.1). Since, by the properties

of the uniform random Lorentz gas, (2.1) is a good model for the dynamics of the particle within

each of the two regions of constant disc radius r , it must be that the equation is no longer a good

model at the boundary of the two regions. We see that there are choices of φ1 ,r1 and φ2 ,r2 such

that either the Time-change prediction or the statistical mechanics prediction are correct, while still

D2 = 2D1 . Indeed, for any D1 and D2 , parameters can be chosen to induce arbitrary ratios be-

tween the times spent on the left-hand side and the right-hand side. Although for generic values

of the parameters in our Lorentz gas model neither prediction will be valid, we point out that the

statistical mechanics prediction holds for a natural set of parameter settings, whereas the same is

not true of the time-change prediction. For the time-change prediction to be correct, it is necessary

for the ratio between φ1 and φ2 to match the ratio between D2 and D1 . We see no natural way

that the parameters in our model may be set for this matching to occur. On the other hand, for the

statistical mechanics prediction to be correct it is necessary that φ1 and φ2 be equal. There is at

least one case where this condition approximately holds for a naturally occurring system. Consider

a situation in which both φ1, φ2 ≈ 1. This requires no fine tuning, only that the discs take up a small

fraction of the total volume. Choosing r1 and r2 to be unequal leads to different diffusion coefficients

on each side, but the particle still spends approximately equal proportions of time in each region.

Likewise, in any physical system where a particle diffuses by interacting with small, sparsely placed

scatterers, we expect the statistical mechanics prediction to be correct.

Our justification for studying a particular microscopic system is threefold. Firstly, there is a solid an-

alytical understanding of the random Lorentz gas on which we can base our simulations. Secondly,

our purpose is not to conclude that a particular style of mesoscopic modelling is always the cor-

rect one, but to show that postulating a state-dependent diffusion rate is not enough to fully specify

mesoscopic behavior. For this objective, it is enough to show that multiple mesoscopic behaviors

are possible for a single class of simple models, as we do in this chapter. Finally, we have resorted

to a purely deterministic microscopic model, rather than a stochastic microscopic model (such as
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Langevin dynamics or a random walk) to avoid concerns that the method used to introduce ran-

domness at the microscopic level somehow biases the results at the mesoscopic level. This last

point distinguishes our work from similar discussions of [45] and [31]. These authors show that

spatially inhomogeneous random walks, with natural choices of parameters, can lead to either pre-

diction holding true at the mesoscopic level. Similarly, our conclusions closely parallel those of [21],

in which the same question is answered using a random-walk model on a one-dimensional lattice.

There, following the earlier work of [32], they show that choosing how the random walk behaves at

the interface of two regions of differing diffusion coefficient leads to different equilibrium probability

densities for the system. In [21], the authors explain how to determine the correct interface behavior

of the random walk model using experimentally measurable quantities. Our approach differs in that,

in our model, the interface behavior is determined indirectly through the microscopic dynamics that

we describe.

2.3 A proposal for modelling with state-dependent diffusion

The numerical simulation in 2.2.3 demonstrates that the equilibrium density ρeq(x) is not deter-

mined solely by the local diffusion rate D(x), even in situations with no external forces acting on

the particle. This raises the practical issue of how to model systems with state-dependent diffusion.

Ideally, mesoscopic diffusive models would be derived from microscopic models via an asymptotic

technique, such as the van Kampen system-size expansion[45, ch. XI.3]. But in many circum-

stances, deriving a realistic microscopic model may be impractical. Instead, in this section, we

describe a more phenomenological approach. We assume that the modeller posits an isotropic

state-dependent diffusion rate D(x) and an equilibrium density ρeq(x). We then derive a drift coef-

ficient a(x) for an Itô SDE with diffusion coefficient D(x) that gives the desired ρeq(x). In 2.3.2, we

show how the Lorentz gas system of 2.2.3 can be modelled at a mesoscopic level in this way.

2.3.1 A modelling framework for state-dependent diffusion

We model the diffusion in k spatial dimensions by the Itô SDE

dX(t) = a(X(t))dt+
√

2D(X(t))dB(t), (2.3)

where we will determine a(x) in terms of ρeq(x) and D(x). Here B(t) is standard k-dimensional

Brownian motion. (In alternate notation, we write this equation as dX(t)/dt = a(X(t))+
√

2D(X(t))η(t)

where η is k-dimensional Gaussian white noise.) The Fokker-Planck equation for this system is

∂

∂t
ρ(x, t) = −∇ · [a(x)ρ(x, t)] + ∆[D(x)ρ(x, t)] = −∇ · J(x) (2.4)

where J(x) is the probability flux. Since the problem is underdetermined as stated, we need to

impose extra constraints. The constraint that we consider is the detailed balance condition which
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implies that the probability flux vanishes in equilibrium. This is one conclusion of the detailed bal-

ance condition from a macroscopic (PDE) point of view. A formal description of the detailed balance

condition is in Section 3.3. One typical type of systems is a closed, isolated physical system where

the solution satisfying detailed balance condition is known to be the thermal equilibrium distribution

(see [45, ch V.6, ch. XI.4] for precise criteria on systems under which this condition holds). We

choose a(x) so that J(x) is zero in equilibrium:

J(x) = a(x)ρeq(x) +∇[D(x)ρeq(x)] = 0.

Solving for a(x) gives

a(x) =
1

ρeq(x)
∇(D(x)ρeq(x))

= ∇D(x) +D(x)∇ ln ρeq(x). (2.5)

Thus given an equilibrium density ρeq(x) and diffusion coefficient D(x) the appropriate Itô SDE is

dX(t) = (∇D(X(t)) +D(X(t))∇ ln ρeq(X(t))) dt+
√

2D(X(t))dB(t). (2.6)

The Fokker-Planck equation of (2.6) is

∂

∂t
ρ(x, t) = ∇ ·

[
−∇(D(x)ρeq(x))

(
ρ(x, t)

ρeq(x)

)
+∇(D(x)ρ(x, t))

]
(2.7)

which is the special isotropic case of [45, XI.4.14]. Therefore we have a formulation in terms of D

and ρeq only. The advantages of this change of perspective are two-fold: (i) in many circumstances

it is more natural to model the system in terms of ρeq and D, such as when ρeq is available from

experimental data but a is not [39], (ii) there are situations in which D and ρeq are well-defined but

a is singular, such as when D or ρeq has a jump discontinuity. In this case, defining algorithms

in terms of D and ρeq allows us to avoid working with a singular drift a. Note that if ρeq(x) is

constant with respect to x, which corresponds to the Statistical Mechanics Prediction being true,

then a(x) = ∇D(x) and (2.6) reduces to

dX(t) = ∇D(X(t))dt+
√

2D(X(t))dB(t).

On the other hand, to obtain a drift-free Itô SDE in this framework requiresD(x)ρeq(x) to be constant

in x, which means that ρeq(x) is determined completely by D(x).

2.3.2 Connection to the Lorentz gas model

We explain the connection between the framework of 2.3 and the microscopic Lorentz gas model

of 2.2. Given an instance of our random Lorentz gas model with two domains, what are the corre-

sponding functions D(x), ρeq(x) in (2.7), the mesoscopic equation for ρ? Suppose on the left-hand
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side of the box the Lorentz gas model has parameters r1 and φ1 and on the right it has parameters

r2 and φ2 . The diffusion coefficients on each side, D1 and D2 are determined by the relation (2.2).

To determine the equilibrium probability density of the particle on each side, let 2A be the total area

of the box, so that each side has area A. We know that ρeq,i , the probability density on side i, is

proportional to φi , and thus ρeq,1/ρeq,2 = φ1/φ2 . We also know that since the total probability must

be 1, ρeq,1A+ ρeq,2A = 1. Solving for ρeq,i gives

ρeq,i =
φi

A(φ1 + φ2)
,

for i = 1, 2. We define D(x) and ρeq(x) for x = (x1, x2) in the box by

D(x) =

{
D1, for x1 < 0,

D2, for x1 > 0,
ρeq(x) =

{
ρeq,1, for x1 < 0,

ρeq,2, for x1 > 0.

These functions determine a(x), the drift coefficient in (2.3), via (2.5). The drift a(x) is zero every-

where except along the line x1 = 0 where it is not defined. We determine the appropriate boundary

conditions for ρ along the boundary line x1 = 0. In order for the right-hand side of (2.7) to be well

defined, we require ρ(x)/ρeq(x) to be continuous. So for any x along the boundary line we must

have

ρ(x−)

ρeq(x−)
=

ρ(x+)

ρeq(x+)

where x− denotes taking the limit from the left, and x+ denotes taking the limit from the right. For

our particular choice of ρeq , this gives

ρ(x−)

ρeq,1
=
ρ(x+)

ρeq,2

The second boundary condition comes from assuming continuous flux across the boundary line:

D(x−)ρeq(x−)
∂

∂x1

ρ(x−)

ρeq(x−)
= D(x+)ρeq(x+)

∂

∂x1

ρ(x+)

ρeq(x+)

For our particular choices of D and ρeq , since ρeq is constant away from the line x1 = 0, this gives

the boundary conditions

D1
∂

∂x1
ρ(x−) = D2

∂

∂x1
ρ(x+)

A possible direction for further investigation is to consider Lorentz gas models where disc radius

r and free volume fraction φ vary smoothly with x , and to determine what D(x) and ρeq(x), and

hence a(x).
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2.4 Discussion: Itô, Stratonovich, or Isothermal

We conclude by discussing our results in the context of the apparent ambiguity between Itô, Straton-

ovich, and Isothermal interpretations of stochastic integrals [24][47]. For the purposes of discussion,

we consider a particle moving in one spatial dimension whose position at time t is X(t). We assume

that X(t) is a Markov stochastic process with continuous sample paths. We model the motion of

the particle with the stochastic differential equation (SDE)

dX(t) = a(X(t))dt+ b(X(t))dB (2.8)

where B(t) is standard Brownian motion. We call a(x) the drift and b(x) the diffusion of the SDE.

As is well known [45, 14], unless we specify a particular interpretation, the SDE (2.8) does not

unambiguously define the stochastic process X(t). To see this, we integrate (2.8) over [0, T ] to get

X(t)−X(0) =

∫ T

0

a(X(t))dt+

∫ T

0

b(X(t))dB(t).

The first term on the right has a unique interpretation as a Riemann integral, but the second term

cannot be simply viewed as a Riemann-Stieltjes integral, since B(t) is not of bounded variation. If

we compute the second term as the limit of Riemann sums, the answer depends on where in each

subinterval the argument b(X(t)) is evaluated. For example, choosing h = T/N , tn = hn and letting

Bn = B(tn) and Xn = X(tn), suppose we take the integral with respect to B to be∫ T

0

b(X(t))dB(t) = lim
h→0

N−1∑
n=0

b(X∗n)(Bn+1 −Bn),

where

X∗n = (1− α)Xn + αXn+1. (2.9)

Famously, unless b(x) is a constant, the limit depends on the choice of α [47]. If we choose α = 0,

we obtain the Itô interpretation of the integral, which yields a stochastic process X(t) with Fokker-

Planck equation

∂

∂t
ρ(x, t) = − ∂

∂x
[a(x)ρ(x, t)] +

1

2

∂2

∂x2

[
b(x)2ρ(x, t)

]
.

If we choose α = 1/2, we obtain the Stratonovich interpretation of the integral, which yields a

process X(t) with Fokker-Planck equation

∂

∂t
ρ(x, t) = − ∂

∂x

[
a(x)ρ(x, t) +

1

2
b(x)b′(x)ρ(x, t)

]
+

1

2

∂2

∂x2

[
b(x)2ρ(x, t)

]
.

Note that the Fokker-Planck equation shows that the Stratonovich interpretation of the SDE with

drift a(x) and diffusion b(x) yields the same stochastic process as the Itô interpretation of the SDE
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α
Interpretations of
Stochastic Integral Fokker-Planck Equation for a ≡ 0

Special Properties
when a ≡ 0

0 Itô
∂

∂t
ρ =

1

2

∂2

∂x2

[
b2ρ
]

〈X(t)−X(0)〉 = 0 for all t.

1/2 Stratonovich
∂

∂t
ρ =

1

2

∂

∂x

{
b
∂

∂x
[bρ]

}
Standard chain rule applies

1 Isothermal
∂

∂t
ρ =

1

2

∂

∂x

{
b2
∂

∂x
ρ

}
ρeq = const.

Table 2.2: Summary of some properties of the Itô, Stratonovich and isothermal interpretations

with drift a(x) + b(x)b′(x)/2 and diffusion b(x) [14, p. 99]. Finally, if we choose α = 1 we obtain the

anti-Itô or Isothermal interpretation [24, 47], which yields a process with Fokker-Planck equation

∂

∂t
ρ(x, t) = − ∂

∂x
[a(x)ρ(x, t) + b(x)b′(x)ρ(x, t)] +

1

2

∂2

∂x2

[
b(x)2ρ(x, t)

]
.

In this case, the Isothermal interpretation of the SDE with drift a(x) and diffusion b(x) gives the

same stochastic process as the Itô interpretation of the SDE with drift a(x) + b(x)b′(x) and diffusion

b(x) [24].

As we can see in the various Fokker-Planck equations above, if we fix a(x) and b(x), varying

the parameter α gives different stochastic processes for the motion of the particle. This fact may

make it seem like there should be a physically correct choice of the parameter α. We argue that

this is misleading. For any fixed α the range of stochastic processes that can be captured by an

appropriate choice of a(x) and b(x) is the same. For example, suppose we fix a choice of a(x) and

b(x) and choose to interpret (2.8) with a given α ∈ [0, 1]. The process defined is identical to what we

would obtain with the Itô interpretation (α = 0) of the SDE with drift a(x) + αb′(x)b(x) and diffusion

b(x).

Though the families of stochastic processes described using each convention are the same, it may

still be the case that some choice of α is more natural or convenient for some purposes than others.

Frequently, the rationale is based on the idea that if the drift is zero, then X(t) should have certain

properties. For example, if one wants 〈X(t)−X(0)〉 = 0 for all t when a(x) ≡ 0, regardless of b(x),

then the Itô convention with α = 0 in (2.9) guarantees this. If one wants that when a(x) ≡ 0 the

equilibrium density is constant, then the Isothermal convention with α = 1 in (2.9) guarantees this.

We summarize the properties of the various interpretations of the SDE (2.8) when a(x) ≡ 0 in the

following table. The question we posed in Section 2.1 may be rephrased as follows: in the absence

of external forces, and given a diffusion b(x) =
√

2D(x), what is the correct choice of parameter α

and drift a(x) to model the motion of the particle? A natural way to approach the problem is to inter-

pret the absence of external forces as meaning that a(x) ≡ 0. Then the problem boils down to the

choice of α: the Statistical Mechanics Prediction follows from taking α = 1, and the Time-Change
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Prediction follows from taking α = 0. The results in Section 2.2.4 showed that neither answer is

justified universally.

In Section 2.3 we recommended a different approach. We fix α and then choose a(x) to generate

the desired equilibrium distribution. As we have explained here, the choice of α is not crucial once

we allow a non-zero a(x). Accordingly, we have chosen α = 0, corresponding to Itô calculus. This is

the main choice in the mathematics literature, and numerical methods such as the Euler-Maruyama

method take a particularly simple form with it. Once we have made this choice of α, we are free to

choose a(x) appropriately. In Section 2.3 we chose a(x) to ensure a given equilibrium density.

Beyond the particular needs of the present work, we believe the framework we describe in Sec-

tion 2.3 provides a natural and flexible way to model diffusive systems. In situations where a

researcher is confident for physical reasons that the equilibrium probability is constant, then our

framework takes a simple form. One area in which the proposed framework in Section 2.3 could be

used is cellular biology. Although earlier models of chemistry in the cytoplasm of cells assumed that

chemical species were well-mixed and thus ignored diffusion, more recent models have taken the

geometry of the cell and the diffusion coefficient of various molecules into account [44]. Effective

diffusion coefficients of a molecule in a cell differ from that in water owing to the crowding effect

of other molecules. One approach is to model the motion of a molecule as diffusion with constant

coefficient, but then have the effective diffusion be modified by interaction with other particles which

are also included in the model [34]. Another is to not include the crowding particles in the model,

but to model their effect with a modified diffusion coefficient [17]. Given the inhomogeneity of the

cytoplasm, we can expect that this effective diffusion coefficient of the molecule (and its equilibrium

probability density) will vary with location within the cell. Our framework and numerical method are

developed with this latter situation in mind.



Chapter 3

A Metropolized integator for SDEs

We shall propose a numerical method for SDEs which utilizes the formulation (2.6) in Chapter 2.

Before we get to the new numerical method, let’s have a brief introduction to numerical methods for

SDEs and Metropolis-Hastings Algorithm. A detailed introduction could be found in [18] and [8].

3.1 Numerical Methods for solving SDEs

3.1.1 The Euler-Maruyama Method

Like solving ODEs and PDEs, in most cases, analytic solutions cannot be obtained for SDEs. Hence

people seek numerical methods for computer simulations. The simplest numerical method for SDEs

is the Euler-Maruyama method, which can be treated as an extension of the forward Euler method

for time dependent ODEs. Consider an SDE in one dimension

dX = a(X, t)dt+ b(X, t)dB(t)

or in the integral form

X(t) = X(0) +

∫ t

0

a(X(s), s)ds+

∫ t

0

b(X(s), s)dB(s) (3.1)

where B(t) is the one dimensional Brownian motion with initial condition X(0) = x0. If we approxi-

mate the integrands by a(X(0), 0) and b(X(0), 0), then we obtain the Euler-Maruyama method. Let

h be the time step length and Xn be the numerical solution at t = nh. The Euler-Maruyama method

takes an explicit iteration

Xn+1 = Xn + a(Xn, tn)h+ b(Xn, tn) (B ((n+ 1)h)−B (nh))

The term (B ((n+ 1)h)−B (nh)) could be calculated by a Gaussian random variable with mean

0 and variance h. In matlab, this is simply dB=sqrt(h)*randn. Higher accuracy methods can be

20
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obtained by including higher order terms in the stochastic expansion of the integrands in (3.1). We

discuss the concept of accuracy and convergence in 3.1.2.

3.1.2 Modes of convergence: Strong convergence and weak convergence
of numerical methods

The way to measure error in numerical methods for SDEs is more complicated than that for ODEs.

In the SDE case, we need to measure the difference between random variables or stochastic pro-

cesses. Strong convergence and weak convergence are two types of convergence that are fre-

quently used for numerical methods for SDEs. If Xn is the numerical solution from some numerical

method approximating the exact solution X(nh), then

estrongh := E |Xn −X(nh)|

is the strong error. If we have

estrongh ≤ Chp

uniformly for all nh < T , for some constants C, p > 0 when h is sufficiently small, then we call the

numerical method is strongly convergent with order of accuracy p. Let

eweakh := |E(f(Xn)− f(X(nh)))|

be the weak error where f is from some class of test functions which are often chosen from poly-

nomials. If we have

eweakh ≤ Cfhp

uniformly for all nh < T , for some constant p > 0 and Cf depending on the test function f only

when h is sufficiently small, then we call the numerical method is weakly convergent with order of

accuracy p. As a example, EM has the strong accuracy 0.5 and weak accuracy 1.

3.2 A Numerical Method for Sampling: The Metropolis-Hastings

Algorithm

The Metropolis-Hastings Algorithm is a way to generate random variables with distributions approx-

imating a given distribution. One important application is to calculate the integrals for expectations

in high dimensions which it usually hard to use standard quadrature rules to deal with. The standard

Monte Carlo method provides a convenient way to compute such integrals, but the convergence rate

depends on the distribution chosen and sampling random variables with arbitrary distributions is not
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simple. The Metropolis-Hastings Algorithm uses a Markov Chain to give proposal moves and then

introduce random rejections with a designed probability. Then the Markov Chain with rejections will

be converging to some random variable with the given distribution, therefore, after a large number

of iterations, the distribution of the observations generated from the simulation is approximately the

target distribution. Given a known transitional probability q(x, y) for a Markov Chain Xn, from state

Xn = x to state Xn+1 = y with some initial state X0 = x0 and a target distribution π(x), the MH

method takes the following procedure:

• generate X∗n+1 from the Markov Chain with a known transitional probability q(Xn, X
∗
n+1)

• generate ξ from uniform distribution in [0, 1]

• compute

α(Xn, X
∗
n+1) =

 min
(
π(X∗n+1)q(X∗n+1,Xn)

π(Xn)q(Xn,X∗n+1) , 1
)

if π(Xn)q(Xn, X
∗
n+1) > 0

1 otherwise

• accept X∗n+1 with probability α(Xn, X
∗
n+1)

Xn+1 =

{
X∗n+1 if ξ < α(Xn, X

∗
n+1)

Xn otherwise.

3.3 Detailed Balance and Metropolis-Hastings Algorithm

If we expect a Markov chain to converge, we need to ask first if it has a stationary distribution. Given

the process defined on Rd, we call π∗(x) a stationary distribution for a Markov chain, if

π∗(dy) =

∫
Rd
P (x, dy)π∗(dx)

where P (x, dy) is the transitional distribution. A sufficient condition for the Markov chain to have

a stationary distribution π∗ is the detailed balance condition (in Markov processes, this is the re-

versibility) with respect to π∗.

Let Sxy = Sx × Sy where Sx and Sy are measurable sets in Rd. Then the detailed balance condi-

tion with respect to a probability distribution π for a Markov process with the transitional probability

distribution P t is∫
Sxy

π(dx)P t(x, dy) =

∫
Syx

π(dx)P t(x, dy)

This is describing the ”microscopic (detailed) balance” of transitions that the probability of going

from Sx to Sy should be the same as the probability of going from Sy to Sx. In the case where
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the proposal step is given by some continuous distribution, we can assume that the composite

transitional distribution P (x, dy) has a continuous component and a discrete component:

P (x, dy) = p(x, y)dy + r(x)δx(dy)

where p(x, x) = 0, δx(dy) = 1 if x ∈ dy and 0 otherwise. r(x) = 1−
∫
p(x, y)dy is the probability that

the chain remains at x. Then for a Markov chain with transitional distribution P (x, dy), the detailed

balance condition with respect to π∗ can be expressed in the form of

π∗(x)p(x, y) = π∗(y)p(y, x)

This is saying that the probability of transition from state x to y is the same as the probability of

transition from state y to x. To see how the detailed balance condition implies the existence of a

stationary distribution, we use a formal computation: for any measurable set A∫
P (x,A)π∗(x)dx =

∫
Rd

∫
A

p(x, y)π∗(x)dydx+

∫
Rd
r(x)δx(A)π∗(x)dx

=

∫
A

∫
Rd
p(y, x)π∗(y)dxdy+

∫
A

r(x)π∗(x)dx =

∫
A

(1− r(x))π∗(y)dy+

∫
A

r(x)π∗(x)dx =

∫
A

π∗(y)dy.

The Metropolis-Hastings Algorithm is constructed to satisfy the detailed balance condition with re-

spect to the target distribution π by adjusting the transitional probability. Loosely speaking, if the

Markov chain that generates the proposal step satisfies

π(x)q(x, y) > π(y)q(y, x)

then jumps going from x to y occur too often to have π as a stationary distritbution. By introducing

an acceptance probability of the move α, the Markov chain with rejection has transitional probability

π(x)q(x, y)α(x, y) = min (π(x)q(x, y), π(x)q(x, y)) = π(y)q(y, x)α(y, x)

Therefore, the detailed balance condition with respect to π is satisfied and the chain has a stationary

distribution π. A sufficient condition for the convergence of Metropolis-Hastings Algorithm from the

theory of Markov processes is the aperiodicity and irreducibility of the proposal chain. This is

generally not hard to achieve: for example, the proposal move from the Brownian motion satisfies

the condition.

3.4 Metropolis-adjusted Langevin Algorithm

Though the convergence of Metropolis-Hastings algorithm is guaranteed, the speed of convergence

may still be a problem. A slow convergence rate will hugely affect the efficiency of the sampling.
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One solution to this is to construct a better Markov chain that gives proposal steps. Roberts and

Tweedie considered and showed that the Langevin equation

dX =
1

2
∇ ln ρeq(X)dt+ dB(t) (3.2)

possesses a unique stationary distribution ρeq and the distribution of X(t) converges to ρeq expo-

nentially [36]. However, Roberts and Tweedie also pointed out that for naive time discretizations like

the Euler-Maruyama scheme (EM) or Milstein’s method, they will typically not preserve the correct

equilibrium density. They also showed that these methods may not be ergodic at all even though

the underlying diffusion is exponentially ergodic. Therefore, they proposed Metropolis-adjusted

Langevin algorithm: an algorithm takes proposal steps by the Euler-Maruyama method and then

uses rejections according to Metropolis-Hastings algorithm to preserve the exact stationary distri-

bution.

Let h be the step length of the numerical discretisation, the iteration of MALA takes the following

procedure:

X∗n+1 = Xn +
1

2
∇ ln ρeq(Xn)h+B((n+ 1)h)−B(nh) (3.3)

where B is standard d-dimensional Brownian motion. Xn+1 is given by

Xn+1 =

{
X∗n+1 if ξn < αh(Xn, X

∗
n+1),

Xn otherwise,
(3.4)

where

αh(x, y) = min

(
1,
qh(y, x)ρeq(y)

qh(x, y)ρeq(x)

)
.

and ξn, n ≥ 1 is an independent, identically distributed sequence of random variables, uniform on

[0, 1] and independent of B. Here

qh(x, y) =
1√
2πh

exp

(
−
(
x+

1

2
∇ ln ρeq(x)h− y

)2

/2h

)
is the transition probability density for X∗n+1 being at y given that Xn is at x. Since Roberts and

Tweedie were only interested in sampling the equilibrium distribution, they did not analyze the con-

vergence of the Metropolized scheme as a numerical integrator. Bou-Rabee and Vanden-Eijnden

[5] showed that MALA as an numerical integrator for SDEs is not only ergodic with respect to ρeq

but also converges to the solution of the SDE strongly.

3.5 Our numerical method

If D and ρeq are smooth, then MALA is both a convergence method and a method that preservers

the given stationary distribution for the SDE (2.6). However, in the model problem in 2.1, both D and
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ρeq have discontinuities in which case the drift term in (2.5) has a singularity and needs to be defined

as a distribution. On the other hand, for SDEs that have variable diffusion coefficients and satisfy

the detailed balance condition with respect to a known equilibrium distribution, in 2.3 we proposed

a framework for such systems in which, instead of a diffusion coefficient and a drift coefficient, a

modeller specifies a diffusion coefficient and a equilibrium distribution, and then assumes detailed

balance with respect to this equilibrium distribution. Therefore, it is possible to work directly with the

diffusion coefficient and equilibrium distribution, rather than the drift coefficient.

Our method is a variant of the MALA scheme. Instead of using a convergent scheme for the

SDE, we only use the diffusion coefficient to give a trial step and then use the Metropolis-Hastings

rejection procedure to guarantee the correct equilibrium density. Therefore the drift is enforced only

indirectly through the rejection step. The motivation for this idea is that for any SDE the infinites-

imal drift is uniquely determined by the infinitesimal diffusion, the equilibrium distribution, and the

detailed balance condition [43]. Therefore, if we have a Markov chain that approximates a diffusion

process with the correct diffusion coefficient and the correct equilibrium distribution, and also satis-

fies the detailed balance condition, we expect that the process also has approximately the correct

drift coefficient.

For our scheme, since the trial step is given with the correct diffusion and the Metropolis-Hastings

rejection process provides the detailed balance with respect to the correct equilibrium density, we

expect that it converges to the correct solution to the stochastic differential equation. A similar theo-

rem appears in [4] for general self-adjoint diffusions (where the density is not necessarily integrable).

In this chapter, we will show directly that the process has the correct drift and diffusion in the limit of

steplength going to zero, when the coefficients are sufficiently smooth. In particular, we show that

the scheme is weakly convergent with order of accuracy 1/2 under appropriate conditions.

Though our results here are for smooth coefficients, the main motivation for our scheme is to to

handle instances of (2.6) where D has jump discontinuities. Other work has developed numerical

schemes for similar classes of problems. The reference [22] proposes a method for such systems

that does not make explicit use of the equilibrium distribution and hence does not preserve it ex-

actly. However, their method could be adjusted with a Metropolis-Hastings step in order to do so.

Another approach is to resolve the jump discontinuities in D by developing a separate procedure for

when the state of the system approaches the discontinuity. This approach is taken by [13, 25, 28]

for one-dimensional systems, who make use of the theory of skew Brownian motion to resolve the

discontinuity.

Here we define our algorithm from [43] for approximating the solution of (2.6). Let h be the step

length. The trial step is given by

X∗n+1 = Xn +
√

2D(Xn)[B((n+ 1)h)−B(nh)]. (3.5)
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This is accepted with probability αh

Xn+1 =

{
X∗n+1, if ξn < αh

(
Xn, X

∗
n+1

)
,

Xn, otherwise.
(3.6)

where ξk satisfies uniform distribution on [0,1] and αh is the acceptance probability for Metropolis-

Hastings rejection procedure [36] from state Xn to X∗n+1 with the expression

αh(x, y) = min

(
1,
qh(y, x)ρeq(y)

qh(x, y)ρeq(x)

)
(3.7)

and qh(x, y) is the transitional probability density determining the trial step (3.5)

qh(x, y) =
1

(4πhD(x))d/2
exp

(
− (x− y)2

4hD(x)

)
. (3.8)

This choice of αh and qh in the Metropolis-Hastings rejection process guarantees that the process

Xn, n = 0, 1, 2, . . . satisfies detailed balance with respect to the density ρeq. The Metropolis rejection

procedure guarantees that the process Xn, n ≥ 1 has ρeq(x) as its equilibrium density. On the

other hand, in any region of the state space where D(x) and ρeq(x) are constant with respect to

x, αh is 1 and so the method reduces to the Euler-Maruyama method for the constant coefficient

diffusion without drift. Notice that the algorithm only requires the ratio of the equilibrium density at

different positions. The method may also be applied to problems with non-normalizable equilibrium

distribution (i.e. the equilibrium distribution is no more a probability distribution).

3.6 Numerical Simulations

In this section we validate our method with the following numerical experiments. We chose 1-

dimensional examples of (2.6) with the following features:

1. Smooth diffusion coefficient D and equilibrium density ρeq, for which we have an exact solu-

tion.

2. Smooth and periodic diffusion coefficient D and equilibrium distribution ρeq = 1 which is not

normalizable.

3. Geometric brownian motion, for which we have a non-normalizable ρeq and degenerate D.

4. Piecewise constant D and uniform ρeq in [−1, 1].

The motivation of these examples is to demonstrate the convergence of the numerical scheme for

some problems not necessarily satisfying the conditions of Theorem 3.



CHAPTER 3. A METROPOLIZED INTEGATOR FOR SDES 27

3.6.1 Example 1: SDE with smooth coefficients.

We first test the method on a SDE for which we have a closed-form solution,

dX = −X
2
dt+

√
1−X2dB. (3.9)

Comparing with (2.6), we can see that this is the case when the diffusion coefficient is

D(x) =
1− x2

2

and the equilibrium density is

ρeq(x) =
1

π
√

1− x2

in the domain |x| < 1. If the initial condition is X(0) = 1
2 , then it has the exact solution

X(t) = sin(B(t) +
π

6
).

The equation (3.9) does not satisfy the conditions of Theorem 3 because D is not bounded away

from zero and d
dx ln(ρeq(x)) approaches infinity at x = ±1.

Firstly, we numerically verify that this method keeps the exact equilibrium density ρeq and approxi-

mates the given diffusion coefficient. To compute these statistical quantities of the trajectories, the

domain (−1, 1) is cut into 20 equally spaced subintervals [xi, xi+1), i = 0, . . . , 19. The density is

computed by dividing the number of times that the particle is in the particular interval over the total

number of time steps. The effective diffusion coefficient is computed as in [43]:

D(xi) = mean
Xkh∈[xi,xi+1)

(X(k+1)h −Xkh)2

2h

The SDE is simulated with different time step lengths over a total time interval of length T = 1000.

With these parameters we plot the values of ρeq(x) and D(x) over the domain |x| < 1 in Figure 3.1.

The error bars show estimates of standard error due to the finite time simulation. As we can see

from Figure 3.1, the numerical method produces the correct distribution for all the time step lengths,

while the effective D is converging to the exact curve as the time step length is decreasing.

In order to check the weak accuracy of the numerical scheme, we measure the mean error at

time T = 1 with test function f(x) as in [18],

εh = |E(f(XNh))− E(f(X(T )))| (3.10)

The expectation E(f(XNh)) is approximated by the average values of f(XNh) over a number of

M = 107 trajectories. Figure 3.2 shows the error versus the time step length with test functions

f(x) = x and f(x) = x2. For these test functions, the exact solutions are EX(1) = 1
2
√
e
, E(X(1))2 =

1
2 −

1
4e2 The plot shows the accuracy is of order 1

2 .
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Figure 3.1: Plot of the computed equilibrium density (left) and diffusion coefficient (right) for Example
1.
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Figure 3.2: The weak error of the scheme for Example 1 with test function f(x) = x and f(x) = x2.
The error bars in this plot are smaller than the symbol size.
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3.6.2 Example 2: SDE with smooth coefficients.

Here we consider the case with smooth diffusion coefficient D = sin(x) + 2 and uniform equilibrium

distribution ρeq = 1. Using (2.6), this gives the SDE

dX(t) = cos(X)dt+
√

4 + 2 sin(x)dB

with initial conditionX(0) = 0. Here, ρeq is not normalizable since the domain is infinite, therefore we

do not have a probability density at equilibrium. However, computationally, since we only simulate to

finite time, we can still look at the probability distribution of X(T ) and its expectation and moments

are well defined. For this SDE, since we do not have the exact solution, we measure the error by

subtracting the results from time step length h/2 from h, i.e.

εh =
∣∣E(f(Xh(T )))− E(f(Xh/2(T )))

∣∣ (3.11)

The expectation is approximated by the average over M = 4 × 106 trajectories. Figure 3.3 shows

the error plot compared with the error from Euler-Maruyama (EM) scheme. The EM method shows

the expected weak accuracy of order 1. Our method shows the weak accuracy of order 1
2 for the

test function f(x) = x2. Furthermore, we observe super-convergence with apparent order 1 for test

function f(x) = x. A closer look at the leading
√
h term in the error shows that its coefficient in this

case is comparably smaller than the next term due to the effect of f(x) being odd. Therefore, when

h is not small enough, the error is dominated by the order h term.

3.6.3 Example 3: Geometric Brownian Motion.

For this example, we test our scheme on geometric brownian motion

dX(t) = aXdt+ bXdB

with a = 1, b = 1 are constants. The initial condition is X0 = 1. We have the exact solution

X(t) = X0 exp

((
a− b2

2

)
t+ bB(t)

)
= X0 exp

(
1

2
t+B(t)

)
with expectation

E(X(t)) = X0 exp(t).

Firstly we need to rewrite the equation in the form of (2.6). Notice that even though geometric

brownian motion does not have an equilibrium density, we can still formally let

D =
1

2
X2, ρeq = 1

to get the same form of SDE as we want. Figure 3.4 shows the weak error with test function

f(x) = x at time t = T = 1 compared with the error from the Euler-Maruyama scheme. The
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error is measured over M = 5 × 105 trajectories, using (3.10) and (3.11). As a result, though

geometric brownian motion does not satisfy the conditions in Theorem 3, the numerical simulation

still demonstrates that we can expect convergence in this case with weak accuracy of order 1
2 .

3.6.4 Example 4: SDE with piecewise constant diffusion coefficient.

Here we numerically demonstrate the convergence of the method for the simple case where

D(x) =

{
1 if x ≤ 0,

2 if x > 0,

and

ρeq(x) =

{
1 if x ∈ [−1, 1],

0 otherwise.

Equation (2.6) with this choice of D(x) and ρeq(x) models a particle diffusing on the interval [−1, 1]

with reflecting boundary conditions at ±1 and a piecewise constant diffusion coefficient. The re-

flecting boundary conditions are conveniently implemented by our choice of ρeq(x).

Figure 3.5 shows the results of simulating (2.6) with these choices of D(x) and ρeq(x) using the

method we have described. To show results, we divide the interval [−1, 1] into 20 equal subinter-

vals, and plot the density for the amount of time the particle spends in each subinterval. We also

plot the effective diffusion coefficient for each bin, which we define to be the average observed value

of (Xn+1−Xn)2/2h over the trajectory, for all n such that Xn lies in the given bin. Simulations were

conducted with h = 0.01, 0.001, 0.0001 and for trajectories long enough so that standard statistical

errors in the plots are smaller than the symbols used. We see that for all values of h the equilibrium

density ρeq(x) is correctly reproduced. The effective diffusion coefficient converges to D as h goes

to zero.

The weak error in this example is calculated using formula

εh =

∣∣∣∣E(f(Xh(T )))−
∫
x∈R

f(x)ρ(x, T )dx

∣∣∣∣
where ρ(x, t) solves the corresponding Fokker-Plank equation,

∂ρ(x, t)

∂t
=

∂

∂x

(
D(x)

∂

∂x
ρ(x, t)

)
with homogeneous Neumann boundary conditions ∂

∂xρeq(x, t) = 0 at x = ±1 and initial condition

ρ(x, 0) = δ(x) where δ(x) is the delta distribution. This divergence form PDE is solved numerically

using Crank-Nicolson(CN) scheme with a very fine mesh. The expectation is approximated by

averaging over M = 4 × 106 trajectories. Figure 3.6 shows the convegence of the method with

test functions f(x) = x and f(x) = x2. In each case we see order 1
2 convergence despite the

discontinuity of D at x = 0.
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Figure 3.5: Equilibrium density ρeq and local diffusion coefficient D for method (3.5) applied to a
simple one-dimensional SDE. Shown are results for h = 0.01 (dotted), h = 0.001 (dashed), and
h = 0.0001 (solid), along with the exact values for the SDE.

3.7 Weak convergence of the method

Firstly, we exhibit some sufficient conditions on D and ρeq for the ergodicity of the SDE (2.6) and the

numerical scheme in Theorem 1 and Theorem 2. The convergence to the equilibrium ρeq of (2.7) is

shown using the idea of relative entropy and the logarithmic Sobolev inequality [1]. As we show in

Theorem 2, the numerical method is ergodic and has the correct equilibrium distribution because of

the use of the Metropolis-Hastings method. We then show in Theorem 3 that the numerical method

converges weakly with order 1/2 for smooth ρeq and D.

We will let H(ρ1|ρ2) be the relative entropy of ρ1 with respect to ρ2 where

H(ρ1|ρ2) :=

∫
Rd
ρ1(x) ln

ρ1(x)

ρ2(x)
dx.

The reason to use relative entropy is due to the Csiszàr-Kullback inequality

H(ρ1|ρ2) ≥ 1

2
‖ρ1 − ρ2‖2L1 . (3.12)

Therefore, once we have convergence in the relative entropy, we will have convergence in L1.

Another useful functional I(ρ1|ρ2) called the entropy dissipation functional is defined by

I(ρ1|ρ2) :=

∫
Rd
ρ1(x)∇ ln

ρ1(x)

ρ2(x)
· ∇ ln

ρ1(x)

ρ2(x)
dx.

Theorem 1. Suppose

1. The known equilibrium probability density ρeq ∈ C2(Rd) is positive ρeq(x) > 0 and satisfies

∇2 ln ρeq ≤ −λId, where Id is the identity matrix of dimension d and λ > 0 is some positive

constant.
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Figure 3.6: The weak error of the numerical scheme in Example 4 with test functions f(x) = x, x2.
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2. H(ρ(x, 0)|ρeq(x)) <∞. i.e. the initial condition of (2.7) has finite relative entropy with respect

to the equilibrium density ρeq.

3. The diffusion coefficient D ∈ C2(Rd) and D is bounded below by some positive number:

inf D(x) = Dmin > 0.

4. The surface integral

lim
R→+∞

∫
|x|=R

Dρeq

∣∣∣∣∇ ρ

ρeq

∣∣∣∣ dx = 0 (3.13)

then ρ(x, t) in (2.7) converges to ρeq exponentially fast in relative entropy.

H(ρ(x, t)|ρeq) ≤ e−2tλDminH(ρ(x, 0)|ρeq)

Hence, ρ(x, t)→ ρeq(x) in L1 as t→∞.

Proof. Let g = ρ
ρeq

. Assuming ρ is a solution to (2.7), g will satisfy

∂g

∂t
=
∇ · (Dρeq∇g)

ρeq
.

Let φ(g) = g ln g − g + 1, then through direct calculation, H(ρ|ρeq) =
∫
Rd φ(g)ρeqdx and

d

dt
H(ρ|ρeq) =

∫
Rd

∂φ(g)

∂g

∂g

∂t
ρeqdx = −

∫
Rd
Dρ

(
∇ ln

ρ

ρeq
· ∇ ln

ρ

ρeq

)
dx ≤ −Dmin ·I(ρ(x, t)|ρeq(x))

where the surface integral from integration by parts vanishes because of (3.13). By Theorem 1

in [27] (See Theorem 9 in Appendix B), Condition 1 here guarantees that the logarithmic Sobolev

inequality with parameter λ holds

H(ρ|ρeq) ≤
1

2λ
I(ρ|ρeq).

As a result,

d

dt
H(ρ|ρeq) ≤ −2λDminH(ρ|ρeq)

We get the exponential convergence in relative entropy which will imply exponential convergence in

L1 by (3.12).

Remark: Theorem 1 also works when ρeq is only positive in some connected open set D ⊂ Rd

provided that condition 4 is replaced by zero-flux boundary conditions on ∂D. By restricting the

domain inside the region, ρeq will be strictly positive inside the domain and there’s no problem of

dividing by zero. A discussion about relaxing the uniform convexity of ln ρeq in condition 1 can be

found in [27].
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Theorem 2. Suppose the diffusion coefficient D is bounded below by some positive number:

inf D(x) > 0 and suppose ν is the equilibrium probability distribution with density ρeq. Let the

numerical scheme defined in (3.5), (3.6) generate a Markov chain with n-step transitional proba-

bility distribution Pn(x, ·). Then Pn(x, ·) converges to the equilibrium probability distribution ν(·) in

total variation norm as n→∞ i.e. :

sup{|Pn(x,A)− ν(A)| : for all measurable set A} → 0 , uniformly in x

Proof. The proof follows from [20, 41] (see Theorem 10 in Appendix B). We only need to show that

the chain generated by the numerical method is ρeq-irreducible and aperiodic. These two conditions

are satisfied since 1) our proposal step is given by Gaussian random variables which gives a positive

probability to any set with positive Lebesgue measure, 2) the acceptance rate αh(x, y) in Metropolis-

Hastings rejection step will always be positive as long as ρeq(y) is positive. Hence the transitional

distribution of the Markov chain with rejections generated by the numerical method will have a

positive probability of jumping into any set where ρeq is positive.

Now we show the main result of this chapter that the scheme is weakly convergent. We rewrite

the time stepping of the scheme in the form

Xn+1 = Xn + Ā(Xn, h;X∗n+1, ξn)

where

Ā(Xn, h;X∗n+1, ξn) = (X∗n+1 −Xn)1ξn<αh(Xn,X∗n+1)

is the increment of the numerical scheme in a single step. We shall use A to denote the increment

of the exact solution in a single step.

Theorem 3 (Weak convergence of the scheme). Let ‖·‖2 be the 2-norm for matrix and ∇2 be the

Hessian. Suppose that

1. the coefficients a(x) = ∇D(x) + D(x)∇ ln ρeq(x) and b(x) =
√

2D(x) of equation (2.6) are

continuous, satisfy a Lipschitz condition

|a(x)− a(y)|+ |b(x)− b(y)| ≤ K |x− y|

and together with their partial derivatives with respect to x of order up to and including 3 have

at most polynomial growth.

2. ‖∇2D(x)‖2 and ‖∇2 ln ρeq(x)‖2 can be bounded by some polynomial in x and the diffusion

coefficient D(x) is bounded away from zero: inf(D(x)) > 0.
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3. the function f(x) together with its partial derivatives of order up to and including 3 have at

most polynomial growth.

We assume the initial condition X(0) = x0 is fixed. For uniform discretization tk = hk, k = 1, ..., N

with tN = T the total time, the following inequality holds for all k:

|E(f(X(tk))− f(Xk))| ≤ Ch1/2.

We prove Theorem 3 by analyzing the local error of the scheme. Bou-Rabee et al. [4] have

shown a similar result about a more general class of Metropolized integrators applied to a class of

equations including our (2.6). Their method consists of the use of a Runge-Kutta type integrator

for the trial step followed by a Metropolis-Hastings decision to accept or reject the step. In general,

their trial step uses the gradient of the diffusion coefficient, but also allows our choice of using

only the diffusion coefficient itself as a special case (corresponding to Gh = 0 in their notation). In

the following estimates of the local error, we use the same techniques as [4], making precise the

dependence of the remainder term on x in order to guarantee global convergence. We also have a

slightly less restrictive condition on ρeq(x) in that derivatives of ln ρeq(x) do not need to be bounded.

Proof. We are going to apply Theorem 2.1 of [29, p. 100] (see Theorem 11 in Appendix B) to

show the weak convergence of the scheme. The condition (a) of their theorem corresponds to

our condition 1 which is the requirement on the smoothness and the growth of the coefficients a

and b. The condition (c) there corresponds to our condition 3 which is the requirement on the

smoothness and the growth of the test function f . Their condition (d) is a uniform a priori bound on

the moments of the numerical scheme which is guaranteed by our Lemma 1. What remains to be

shown is their condition (b): bounds on the moments of the increments of the numerical method.

For convenience, we use O(x, hp) to denote a quantity that can be bounded by K1(x)hp where

K1(x) is some polynomial or a matrix of polynomial entries.

The condition (b) in Theorem 2.1 of [29, p. 100] has two requirements. Firstly, all the third moments

of the increment in the numerical scheme must be O(Xn, h
3/2), i.e.

EXn

 3∏
j=1

∣∣Āij ∣∣
 ≤ K1(Xn)h3/2

Here Āij is the ij ∈ {1, .., d} component of Ā andK1(x) is a function with at most polynomial growth.

Then, the difference between the first and second moments of the approximated increment and the

exact increment needs to be O(Xn, h
3/2), i.e.∣∣∣∣∣∣EXn

 s∏
j=1

Āij −
s∏
j=1

Aij

∣∣∣∣∣∣ ≤ K2(Xn)h3/2, s = 1, 2
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Here K2(x) is also a function with at most polynomial growth.

For the first requirement, since∣∣Ā(Xn, h;X∗n+1, ξn)
∣∣ =

∣∣∣(X∗n+1 −Xn)1ξn<αh(Xn,X∗n+1)

∣∣∣ ≤ ∣∣∣√2D(Xn)
(
Bij ((n+ 1)h)−Bij (nh))

)∣∣∣
therefore

EXn

 3∏
j=1

∣∣Āij ∣∣
 ≤ (2D(Xn))3/2h3/2

By the Lipschitz condition on b(x) =
√

2D(x), (2D(Xn))3/2 will be bounded by some polynomial.

For the second requirement, consider the solution after one time step from the initial condition. Let

A(X(0), h) = X(h)−X(0) be a column vector of the increment of the exact solution.

EX0
(Ā(X0, h;X∗1 , ξ1)−A(X0, h)) = EX0

((X∗1 −X0)αh(X0, X
∗
1 )− (X(h)−X0))

EX0(Ā(X0, h;X∗1 , ξ1)ĀT (X0, h;X∗1 )−A(X0, h)AT (X0, h))

= EX0
((X∗1 −X0)(X∗1 −X0)Tαh(X0, X

∗
1 )− (X(h)−X0)(X(h)−X0)T )

By Theorem 4, we have

EX0
((X∗1 −X0)αh(X0, X

∗
1 )) = a(X0)h+O(X0, h

3/2)

EX0
(X∗1 −X0)(X∗1 −X0)Tαh(X0, X

∗
1 ) = b2(X0)hId +O(X0, h

3/2)

Let Lf(x) = aT (x) · ∇xf(x) + 1
2b(x)∆xf(x) be the infinitesimal generator of the Itô diffusion (2.6).

By Ito-Taylor expansion [29, p. 99] , we have the expansion componentwise

EX0
(X(h)−X0)i = ai(X0)h+ EX0

(
h

∫ h

0

Lai(X(t))dt

)
(3.14)

EX0
((X(h)−X0)(X(h)−X0)T )ij = b2(X0)hIijd +EX0

(
h

∫ h

0

L
(
ai(X(t)) · (Xj(t)−Xj(0))

)
dt

)
+

EX0

(
h

∫ h

0

L
(
aj(X(t)) · (Xi(t)−Xi(0)) +

1

2
b2(X(t))

)
dt

)
(3.15)

Since the integrands in the remainder terms in (3.14) (3.15) are combinations of products of X, a, b

and their derivatives, by assumptions on their growth, the integrands can only have at most polyno-

mial growth in X. We can find m large enough, s.t.∣∣∣∣∣EX0

(
h

∫ h

0

Lai(X(t))dt

)∣∣∣∣∣ < hEX0

∫ h

0

C1(1 + |X(t)|2m)dt
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for some constant C1. Theorem 4 in [15, p. 48] (see Theorem 13 in Appendix B) shows that the

moments of the solution could be uniformly bounded by the moments of the initial condition, i.e.

EX0

∫ h

0

C1(1 + |X(t)|2m)dt ≤ hEX0
C(1 + |X(0)|2m) = hC(1 + |X(0)|2m)

The constant C in the last inequality only depends on T , m, K. The same process applies to the

remainder in (3.15). As a result, (3.14) (3.15) becomes,

EX0
(X(h)−X0)i = ai(X0)h+O(X(0), h2) (3.16)

EX0
((X(h)−X0)(X(h)−X0)T )ij = b2(X0)hIijd +O(X(0), h2) (3.17)

Hence, we have the weak local error,∣∣EX0(Ā(X0, h;X∗1 , ξ1)−A(X0, h))
∣∣ ≤ O(X(0), h3/2)∣∣EX0(Ā(X0, h;X∗1 , ξ1)ĀT (X0, h;X∗1 )−A(X0, h)AT (X0, h))

∣∣ ≤ O(X(0), h3/2)

Therefore, by Theorem 2.1 in [29, p. 100], the method is convergent with order of accuracy
1
2 .

Lemma 1. Suppose the assumptions in Theorem 3 are satisfied. Then for every even number 2m

the 2m-moment of the numerical solution E |Xk|2m exist and are uniformly bounded with respect to

k = 1, ..., N , if and only if E |X0|2m exists.

Proof. The result follows from Lemma 2.2 in [29] (see Theorem 12 in Appendix B), if the magnitude

of Ā in one step is well-behaved. By using Theorem 4, the expectation of A is of order h∣∣EXnĀ(Xn, h;X∗n+1, ξn+1)
∣∣ =

∣∣∣EXn ((X∗n+1 −Xn)1ξn<αh(Xn,X∗n+1)

)∣∣∣
=
∣∣EXn ((X∗n+1 −Xn)αh(Xn, X

∗
n+1)

)∣∣ ≤ K(1 + |Xn|)h

while
∣∣Ā∣∣ is of order h1/2

∣∣Ā(Xn, h;X∗n+1, ξn+1)
∣∣ ≤ ∣∣X∗n+1 −Xn

∣∣ ≤ ∣∣∣∣∣X∗n+1 −Xn√
2D(Xn)h

∣∣∣∣∣√2D(Xn)h

and X∗n+1−Xn√
2D(Xn)h

satisfies standard normal distribution hence has moments of all orders. Then by

Lemma 2.2 in [29], the moments of the numerical solution at time tk: E |Xk|2m exist and are uni-

formly bounded.

Theorem 4. With the definitions and assumptions in Theorem 3, we have the following,

EX0(X∗1 −X0)αh(X0, X
∗
1 ) = a(X0)h+O(X0, h

3/2)

EX0
(X∗1 −X0)(X∗1 −X0)Tαh(X0, X

∗
1 ) = b2(X0)hId +O(X0, h

3/2)
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Proof. For convenience, let x = X0, y = X∗1 , and we can rewrite the conditional expectation in the

integral form,

EX0(X∗1 −X0)αh(X0, X
∗
1 ) =

∫
Rd

(y − x)αh(x, y)qh(x, y)dy (3.18)

EX0(X∗1 −X0)(X∗1 −X0)Tαh(X0, X
∗
1 ) =

∫
Rd

(y − x)(y − x)Tαh(x, y) · qh(x, y)dy (3.19)

Introducing a change of variable, let ε =
√
h, y − x = εz. Therefore the transition probability density

changes into

qh(x, y)dy =
1

(
√

4πhD(x))d
e−

(x−y)2
4hD(x) dy =

1

(
√

4πD(x))d
e−

z2

4D(x) dz =: q(x, z)dz

which is independent of ε. Let

α(x, z, ε) = min

(
1,
q(x+ εz, z)ρeq(x+ εz)

q(x, z)ρeq(x)

)
After the change of variable, (3.18) and (3.19) become,∫

Rd
(y − x)αh(x, y) · qh(x, y)dy = ε

∫
Rd
zα(x, z, ε)q(x, z)dz (3.20)

∫
Rd

(y − x)(y − x)T (αh(x, y)) · qh(x, y)dy = ε2
∫
Rd
zzT (α(x, z, ε))q(x, z)dz (3.21)

Let

β(x, z, ε) = min

(
1, exp

(
ε
∇xq(x, z) · z
q(x, z)

+ ε
∇xρeq(x) · z
ρeq(x)

))
be an approximation for α(x, z, ε). The motivation of β is discussed in Lemma 2. First we study the

order of the error in drift. Applying the fact that
∫
Rd zq(x, z)dz = 0 which follows from the symmetry

of q, we obtain

ε

∫
Rd
zα(x, z, ε)q(x, z)dz = ε

∫
Rd
z(α(x, z, ε)− 1)q(x, z)dz.

By Lemma 2 and Lemma 3, we can obtain

ε

∫
Rd
z(α(x, z, ε)− 1)q(x, z)dz = ε

∫
Rd
z(β(x, z, ε)− 1)q(x, z)dz + ε

∫
Rd
z(α(x, z, ε)

−β(x, z, ε))q(x, z)dz = a(x)ε2 +O(x, ε3)
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Use Lemma 2 and Lemma 3 for (3.21),

ε2
∫
Rd
zzT (α(x, z, ε)) · q(x, z)dz = ε2

∫
Rd
zzT · q(x, z)dz + ε2

∫
Rd
zzT (β(x, z, ε)− 1) · q(x, z)dz +

ε2
∫
Rd
zzT (α(x, z, ε)− β(x, z, ε))q(x, z)dz = b(x)Idε2 +O(x, ε3)

Recall that ε =
√
h, therefore we have the desired bounds for local error.

Lemma 2 (Estimates of α(x, z, ε) and β(x, z, ε)). With previous definitions, we have the following

estimates. Let g(z) ∈ R be polynomial in z, then∣∣∣∣∫
Rd
g(z)(α(x, z, ε)− β(x, z, ε))q(x, z)dz

∣∣∣∣ ≤ K(x)ε2

where K(x) has polynomial growth.

Proof. Rewrite α in exponent form,

α(x, z, ε) = min

(
1, exp

(
ln
q(x+ εz, z)ρeq(x+ εz)

q(x, z)ρeq(x)

))
A Taylor expansion for the exponent about ε = 0 gives

q(x+ εz, z)ρeq(x+ εz)

q(x, z)ρeq(x)
= exp

(
ε
∇xq(x, z)
q(x, z)

+ ε
∇xρeq(x)

ρeq(x)
+R(x, z, ε)

)
Therefore β is obtained by keeping only the leading order ε terms.

β(x, z, ε) = min

(
1, exp

(
ε
∇xq(x, z)
q(x, z)

+ ε
∇xρeq(x)

ρeq(x)

))
R(x, z, ε) is the remainder given by

R(x, z, ε) =

∫ ε

0

∫ ξ

0

∂2 ln (q(x+ ηz, z)ρeq(x+ ηz))

∂η2
dηdξ =

∫ ε

0

∫ ξ

0

(
−d

2

(zT∇2
wD(w)z)

D(w)

)
w=x+ηz

dηdξ+

∫ ε

0

∫ ξ

0

(
d

2

(zT∇wD(w))2

D2(w)
+
z2(zT∇2

wD(w)z)

4D2(w)
− z2

8D3(w)
(zT · ∇wD(w))2

)
w=x+ηz

dηdξ

+

∫ ε

0

∫ ξ

0

(
zT · ∇2

wρeq(w) · z
ρeq(w)

− (zT · ∇wρeq(w))2

ρ2
eq(w)

)
w=x+εz

dηdξ

Consider the function h(x) = min(1, exp(x)). Since h(x) is piecewise smooth, it is not hard to see

that h(x) is globally Lipschitz with Lipschitz constant 1. Therefore,

|α(x, z, ε)− β(x, z, ε)| ≤ |R(x, z, ε)|
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Therefore, with the assumptions that inf D(x) > 0 , ‖∇2D(x)‖ bounded by some polynomial,

‖∇2 ln ρeq(x)‖ bounded by some polynomial, we obtain

|R(x, z, ε)| ≤ K1(x, z)ε2

Here K1(x, z) is some polynomial in x, z. Furthermore, since for fixed x, q(x, z) is a multivariate

Gaussian, we can calculate its absolute moments [16, p. 337],

∫
Rd
|z|p q(x, z)dz =


Sd

2 (2D(x))p/2(p− 1)!! if p is even√
2
π
Sd

2 (2D(x))p/2(p− 1)!! if p is odd

where Sd is the surface area of the unit hypersphere in Rd. Since b(x) =
√

2D(x) has at most

polynomial growth, therefore,∣∣∣∣∫
Rd
g(z)(α(x, z, ε)− β(x, z, ε))q(x, z)dz

∣∣∣∣ ≤ K(x)ε2

For K(x) has at most polynomial growth.

Lemma 3. With previous definitions,∣∣∣∣∫
Rd
zq(x, z)(β(x, z, ε)− 1)dz − a(x)ε

∣∣∣∣ ≤ K(x)ε2 (3.22)∣∣∣∣∫
Rd
g(z)q(x, z)(β(x, z, ε)− 1)dz

∣∣∣∣ ≤ K∗(x)ε (3.23)

where K(x),K∗(x) are polynomials in x

Proof. Since

β(x, z, ε)− 1 = min

(
0, exp

(
ε
∇xq(x, z) · z
q(x, z)

+ ε
∇xρeq(x) · z
ρeq(x)

)
− 1

)
=

(
exp

(
ε
∇xq(x, z) · z
q(x, z)

+ ε
∇xρeq(x) · z
ρeq(x)

)
− 1

)
1Ω(x,0)

Here the region is defined by,

Ω(x,0) =

{
z

∣∣∣∣(exp

(
ε
∇xq(x, z) · z
q(x, z)

+ ε
∇xρeq(x) · z
ρeq(x)

)
− 1

)
< 0

}
=

{
z

∣∣∣∣(∇xq(x, z) · zq(x, z)
+
∇xρeq(x) · z
ρeq(x)

)
< 0

}
Therefore we can expand β(x, z, ε)− 1 in the integrand in domain Ω(x,0) about ε = 0∫

Rd
zq(x, z)(β(x, z, ε)− 1)dz =

∫
Ω(x,0)

zq(x, z)

(
exp

(
ε
∇xq(x, z) · z
q(x, z)

+ ε
∇xρeq(x) · z
ρeq(x)

)
− 1

)
dz

=

∫
Ω(x,0)

zq(x, z)

(
ε
∇xq(x, z) · z
q(x, z)

+ ε
∇xρeq(x) · z
ρeq(x)

+ ε2R(x, z, ξ(ε))

)
dz
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where ε2R is the remainder given by,

R(x, z, ξ(ε)) = exp

(
ξ
∇xq(x, z) · z
q(x, z)

+ ξ
∇xρeq(x) · z
ρeq(x)

)(
∇xq(x, z) · z
q(x, z)

+
∇xρeq(x) · z
ρeq(x)

)2

with 0 < ξ(ε) < ε. Notice that

zq(x, z)

(
ε
∇xq(x, z) · z
q(x, z)

+ ε
∇xρeq(x) · z
ρeq(x)

)
is an even function in z. On the other hand, the integral domain Ω(x,0) satisfies Ω(x,0) ∪ (−Ω(x,0)) =

Rn. Hence the integral without ε2R term becomes∫
Ω(x,0)

zq(x, z)

(
ε
∇xq(x, z) · z
q(x, z)

+ ε
∇xρeq(x) · z
ρeq(x)

)
dz

=
ε

2

∫
Rd
zq(x, z)

(
∇xq(x, z) · z
q(x, z)

+
∇xρeq(x) · z
ρeq(x)

)
dz

=
ε

2

∫
Rd
z(∇ ln(ρeq(x)) · z − d

2
∇ ln(D(x)) · z − zT z

4
∇(

1

D(x)
) · z)q(x, z)dz

= (∇D(x) +D(x)∇ ln ρeq(x)) ε = a(x)ε

Then we need to show the remainder term is indeed of order ε2. Since in the domain Ω(x,0),
∇xq(x,z)·z
q(x,z) +

∇xρeq(x)·z
ρeq(x) < 0, therefore exp

(
ξ∇xq(x,z)·zq(x,z) + ξ

∇xρeq(x)·z
ρeq(x)

)
< 1.∣∣∣∣∣

∫
Ω(x,0)

zq(x, z)R(x, z, ξ(ε))dz

∣∣∣∣∣
=

∣∣∣∣∣
∫

Ω(x,0)

zq(x, z)

(
exp

(
ξ
∇xq(x, z) · z
q(x, z)

+ ξ
∇xρeq(x) · z
ρeq(x)

)(
∇xq(x, z) · z
q(x, z)

+
∇xρeq(x) · z
ρeq(x)

)2
)
dz

∣∣∣∣∣
≤
∫

Ω(x,0)

|z| q(x, z)
(
∇xq(x, z) · z
q(x, z)

+
∇xρeq(x) · z
ρeq(x)

)2

dz

≤
∫
Rd
|z| q(x, z)

(
∇xq(x, z) · z
q(x, z)

+
∇xρeq(x) · z
ρeq(x)

)2

dz

As shown in Lemma 2, the term
∣∣∣∇xq(x,z)·zq(x,z) +

∇xρeq(x)·z
ρeq(x)

∣∣∣ could be bounded by a polynomial K1(x, z)

and since the integral
∫
Rd |z|

p
q(x, z)dz could be bounded by a polynomial K2(x), therefore there

exists a polynomial K(x)∣∣∣∣∣
∫

Ω(x,0)

zq(x, z)R(x, z, ξ(ε))dz

∣∣∣∣∣ ≤ K(x)
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A similar proof works for the other inequality (3.23). By Taylor expansion,∣∣∣∣∫
Rd
g(z)q(x, z)(β(x, z, ε)− 1)dz

∣∣∣∣
= ε

∣∣∣∣∣
∫

Ω(x,0)

g(z)q(x, z) exp

(
ξ
∇xq(x, z) · z
q(x, z)

+ ξ
∇xρeq(x) · z
ρeq(x)

)(
∇xq(x, z) · z
q(x, z)

+
∇xρeq(x) · z
ρeq(x)

)
dz

∣∣∣∣∣
≤ ε

∫
Rd
|g(z)| q(x, z)

∣∣∣∣∇xq(x, z) · zq(x, z)
+
∇xρeq(x) · z
ρeq(x)

∣∣∣∣ dz ≤ K∗(x)ε

which concludes the proof.



Chapter 4

Diffusion Approximations

Theorem 3 shows the weak convergence of the numerical method (3.5),(3.6) by direct calculations

of local errors. This is of course not the unique way to show the convergence. In this chapter we

will show the weak convergence of our method using the idea of diffusion approximations from a

more probabilistic point of view. This idea provides us a more intuitive justification of the conver-

gence of the method by showing that 1) the numerical method generates a Markov chain that is

approximating some diffusion process, 2) the rejection from Metropolis-Hastings algorithm does not

change the diffusion term, 3) the correct drift is guaranteed since the process generated by the

numerical method satisfies the detailed balance condition. Though the rate of convergence can not

be obtained in this way, the advantage of the proof is that the conditions on the smoothness of the

coefficients in Theorem 3 can be relaxed. Though we show the convergence for coefficients with

some smoothness (see Theorem 7), it is believed that the diffusion approximations may be a better

way to obtain results for the discontinuous coefficients cases.

4.1 Diffusions and The Martingale Problem

Since the Itô integral is a martingale [30] (see A.3 for the definition), the solution to a (Ito-)SDE is

also associated with a martingale. Firstly, we define the generator of an Itô diffusion [30, p. 117].

Definition 1. Let Xt be an Itô diffusion in Rd. The (infinitesimal) generator A of Xt is defined by

Af(x) = lim
t→0+

Exf(Xt)− f(x)

t
; x ∈ Rd

Here the conditional expectation is taken on X0 = x and all the functions f such that the limit exists

for all x form the domain of the operator DA,

Then the following theorem associates an Itô diffusion to the corresponding martingale [30, p.

140].

46
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Theorem 5. If Xt is an Itô diffusion in Rd with generator A, then for all twice continuously differen-

tiable functions with compact support: f ∈ C2
0 (Rd), the process

Mt = f(Xt)−
∫ t

0

Af(Xr)dr

is a martingale with respect toMt the filtration generated by Mt

To simplify the concepts, we can identify each ω ∈ Ω in the sample space with the trajectory

mapping

ωt = ω(t) = Xx
t (ω)

Therefore the underlying probability space (Ω,M,Px) is identified with ((Rd)[0,∞),B, P̃x) where B is

the Borel σ-algebra on (Rd)[0,∞). In fact, the converse of the theorem is also true in the sense the

following definition.

Definition 2. Let L be a semi-elliptic differential operator with its graph A of the form

A =


f, Lf =

∑
i

ai
∂f

∂xi
+
∑
i,j

bij
∂2f

∂xi∂xj

∣∣∣f ∈ C∞c (Rd)


where the coefficients ai and bij are locally bounded Borel measurable functions on Rd. Given an

initial distribution µ for X0 on Rd, we say that a stochastic process Xt on some probability space

(Ω,F ,P) solves the martingale problem (A,µ) with respect to a filtration Gt, if the process

Mt = f(Xt)−
∫ t

0

g(Xr)dr,

is a P-martingale with respect to Gt, for all (f, g) ∈ A. And the martingale problem is called well-

posed if there is a unique process Xt in the sense of finite dimensional distributions that solves

the martingale problem (A,µ). If this is true for all initial probability distributions µ, we say that the

martingale problem for A is well-posed.

Stroock and Varadhan [42] showed that the SDE

dXt = a(Xt)dt+ b(Xt)dBt

has a unique weak solution Xt if and only if the martingale problem for the graph of L

L =
∑
i

ai
∂

∂xi
+

1

2

∑
i,j

(bbT )ij
∂2

∂xi∂xj

is well posed. Hence, the existence and uniqueness of the weak solution to the corresponding SDE

has been formulated in terms of the well-posedness of the martingale problem.
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4.2 Approximating Diffusions

The following theorem from [12, p. 355] to show the convergence of Markov chains to an Itô diffu-

sion.

Theorem 6. Let a : Rd → Rd be continuous and let b2 be a continuous, symmetric, nonnegative

definite, d× d matrix-valued function on Rd. Let

A = {(f,Lf :=
∑

aj∂jf +
1

2

∑
b2j,k∂j∂kf) : f ∈ C∞0 (Rd)}

and suppose that the martingale problem for (A,µ) has a unique solution for each µ ∈ P(Rd). Let

ph(x, dy) be the transitional distribution on Rd, and set

ah(x) =
1

h

∫
|y−x|≤1

(y − x)ph(x, dy)

b2h(x) =
1

h

∫
|y−x|≤1

(y − x)(y − x)T ph(x, dy)

Suppose for each r > 0 and ξ > 0

sup
|x|≤r

|ah(x)− a(x)| → 0 (4.1)

sup
|x|≤r

∣∣b2h(x)− b2(x)
∣∣→ 0 (4.2)

and

sup
|x|≤r

1

h
ph(x, {y : |y − x| ≥ ξ})→ 0 (4.3)

Let Y hn be a Markov chain with transition function ph and define Xh(t) = Y h[nt]. If the distribution of

Y h0 ⇒ µ, then Xh(t) converges in distribution to the solution of the martingale problem for (A,µ).

We use Theorem 6 to show the main result of this chapter, Theorem 7: the weak convergence

of the numerical method (3.5),(3.6).

The proof takes two steps:

1. the Markov chains generated by the process (3.5),(3.6) are converging to an Itô diffusion with

the same diffusion coefficient as the SDE (2.6),

2. the limiting process satisfies the detailed balance condition with respect to the known equilib-

rium density ρeq.

Therefore, the limiting process will have the correct drift by the discussion in Section 2.3.

Theorem 7. Suppose
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• b(x) =
√

2D(x) is Lipschitz in |x| ≤ r with constant L1,

• ∇ ln ρeq(x) is Lipschitz in |x| ≤ r with constant L2,

• ∇D(x) is Lipschitz in |x| ≤ r with constant L3 and D(x) is bounded away from 0: inf D(x) =

K > 0.

Then the numerical method (3.5),(3.6) generates a process Xh(t) converging weakly to the solution

of the SDE (2.6).

Proof. We use the same change of variables as in (3.20) and (3.21). Let h = ε2 and y − x = εz.

Then

ah(x) =
1

h

∫
|y−x|≤1

(y − x)ph(x, dy) =
1

ε

∫
|z|≤ rε

zα(x, z, ε)q(x, z)dz

b2h(x) =
1

h

∫
|y−x|≤1

(y − x)(y − x)T ph(x, dy) =

∫
|z|≤ rε

zzTα(x, z, ε)q(x, z)dz

and

ph(x, {y : |y − x| ≥ ξ}) =

∫
|z|≥ ξε

α(x, z, ε)q(x, z)dz.

For condition (4.3)

sup
|x|≤r

1

h
ph(x, {y : |y − x| ≥ ξ}) = sup

|x|≤r

1

ε2

∫
|z|> ξ

ε

α(x, z, ε)q(x, z)dz ≤ sup
|x|≤r

1

ε2

∫
|z|≥ ξε

q(x, z)dz

= sup
|x|≤r

1

ε2
erfc

(√
D(x)ξ

ε

)
→ 0.

Since we want to show b2h(x) and ah(x) are converging to some continuous functions, we are go-

ing to show the equicontinuity and then apply the Arzelà-Ascoli theorem. Recall that a family of

continuous functions G on compact metric space (S, λ) is equicontinuous if and only if

∀ε > 0,∀x ∈ S,∃δ > 0,∀y ∈ S,∀g ∈ G,λ(x, y) < δ ⇒ |g(x)− g(y)| < ε.

For condition (4.2), firstly we show the equicontinuity of b2h(x):

For ∀ |x| ≤ r, ∀η > 0, let B(x, γ) be an open ball centered at x with radius γ > 0 such that for

∀y ∈ B(x, γ), we have

∣∣b2h(x)− b2h(y)
∣∣ =

∣∣∣∣∣
∫
|z|≤ rε

zzT (α(x, z, ε)q(x, z)− α(y, z, ε)q(y, z))dz

∣∣∣∣∣
≤

∣∣∣∣∣
∫
|z|≤ rε

zzT (α(x, z, ε)− α(y, z, ε))q(x, z)dz

∣∣∣∣∣+

∣∣∣∣∣
∫
|z|≤ rε

zzTα(y, z, ε)(q(x, z)− q(y, z))dz

∣∣∣∣∣
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Then, using Lemma 6, the first term on the right hand side of the inequality has the following upper

bound. ∣∣∣∣∣
∫
|z|≤ rε

zzT (α(x, z, ε)− α(y, z, ε))q(x, z)dz

∣∣∣∣∣
≤
∫
|z|≤ rε

|z|2 ((|g1(z)|+ |∇D(x)| |g2(z)|+ |g3(z)| ε)ε |y − x|) q(x, z)dz ≤ K1(x) |y − x|

where K1(x) is a continuous function of x independent of h or ε. Using Lemma 5, the second term

has upper bound,∣∣∣∣∣
∫
|z|≤ rε

zzTα(y, z, ε)(q(x, z)− q(y, z))dz

∣∣∣∣∣ ≤
∫
|z|≤ rε

|z|2 |q(x, z)− q(y, z)| dz

≤M
∫
|z|≤ rε

|z|2 e− z2

4K

(∣∣∣∣∇D(x)

D2(x)

∣∣∣∣+ (1 + |∇D(x)|) |y − x|
)
|x− y| dz ≤ K2(x) |y − x|

where K2(x) is also a continuous function of x independent of h or ε. As a result,∣∣b2h(x)− b2h(y)
∣∣ ≤ (K1(x) +K2(x)) |y − x| ≤ (K1(x) +K2(x))γ

So we can choose γ small enough to make the difference of b2h(x) − b2h(y) smaller than η for all h.

Hence, b2h(x) is equicontinuous for all |x| < r. For a fixed x, since 0 ≤ α ≤ 1, the integrand in b2h(x)

is dominated∣∣zzT (α(x, z, ε))q(x, z)
∣∣ ≤ ∣∣zzT q(x, z)∣∣

Since

b2(x) =

∫
Rd
zzT q(x, z)dz = 2D(x)Id

Therefore, by the Arzelà-Ascoli Theorem [3, p. 190], b2h(x) → 2D(x)Id uniformly in x as h → 0. As

a result

sup
|x|≤r

∣∣b2h(x)− b2(x)
∣∣→ 0

For condition (4.1), similarly we show the equicontinuity of ah(x):

For ∀ |x| ≤ r, ∀η > 0, let B(x, γ) be an open ball centered at x with radius γ > 0 such that for

∀y ∈ B(x, γ), we have

|ah(x)− ah(y)| = 1

ε

∣∣∣∣∣
∫
|z|≤ rε

z(α(x, z, ε)q(x, z)− α(y, z, ε)q(y, z))dz

∣∣∣∣∣
≤ 1

ε

∣∣∣∣∣
∫
|z|≤ rε

z(α(x, z, ε)− α(y, z, ε))q(x, z)dz

∣∣∣∣∣+
1

ε

∣∣∣∣∣
∫
|z|≤ rε

zα(y, z, ε)(q(x, z)− q(y, z))dz

∣∣∣∣∣
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Then, using Lemma 6, the first term in the inequality has the upper bound

1

ε

∣∣∣∣∣
∫
|z|≤ rε

z(α(x, z, ε)− α(y, z, ε))q(x, z)dz

∣∣∣∣∣ ≤∫
|z|≤ rε

|z| ((|g1(z)|+ |∇D(x)| |g2(z)|+ |g3(z)| ε) |y − x|) q(x, z)dz

≤ K3(x) |y − x|

where K3(x) is a continuous function of x independent of h or ε. Using Lemma 5 and Lemma 7, the

second term has the upper bound

1

ε

∣∣∣∣∣
∫
|z|≤ rε

zα(y, z, ε)(q(x, z)− q(y, z))dz

∣∣∣∣∣ =
1

ε

∣∣∣∣∣
∫
|z|≤ rε

z(α(y, z, ε)− 1)(q(x, z)− q(y, z))dz

∣∣∣∣∣
≤
∫
|z|≤ rε

|z| g(y, z) |q(x, z)− q(y, z)| dz ≤ K4(x) |y − x|

where K4(x) is also a continuous function of x independent of h or ε. Even though we have g(y, z)

not depending on x in the above integral, since g(y, z) is a polynomial while y is close to x. Therefore

it is always possible to find a larger function K4(x) depending on x as the upper bound as long as

x is in some compact set.

As a result,

|ah(x)− ah(y)| ≤ (K3(x) +K4(x))γ

Hence, ah(x) is equicontinuous for all |x| < r. On the other hand, using Lemma 7, ah(x) can be

shown uniformly bounded by some constant U for |x| < r

|ah(x)| = 1

ε

∣∣∣∣∣
∫
|z|≤ rε

z(α(x, z, ε)− 1)q(x, z)dz

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
|z|≤ rε

zg(x, z)q(x, z)dz

∣∣∣∣∣ ≤ U
Therefore, by the Arzela-Ascoli Theorem [3, p. 190], ah(x) is relatively compact. For any conver-

gent subsequence {ahj (x)}, hj → 0, it is converging uniformly to some continuous function â(x).

Therefore, after applying Theorem 6. This subsequence is converging to a solution to a martingale

problem with coefficients â, b2, i.e., the solution from the numerical method is converging to an Itô

diffusion (A.2) with drift â and diffusion b. To show furthermore that â = a is unique for all con-

vergent subsequences, we shall use the detailed balance condition. As shown in Section 3.3, the

Metropolized integrator preserves the exact equilibrium density ρeq and satisfies the detailed bal-

ance condition with respect to ρeq. Let Sxy = Sx × Sy where Sx and Sy are measurable sets in Rd.
Then the detailed balance condition for the transitional probability distribution P th of the numerical

method is∫
Sxy

ρeq(x)P th(x, dy)dx =

∫
Syx

ρeq(x)P th(x, dy)dx
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which means the transitions from Sx to Sy is the same as the transitions from Sy to Sx, for t = nh,

n = 1..N . Here P th(x, dy) denotes the transitional probability density from state x to dy after a fixed

amount of time t = nh for time step length h. By a change of variable, we obtain∫
Sxy

ρeq(x)P th(x, dy)dx =

∫
Sxy

ρeq(y)P th(y, dx)dy (4.4)

The weak convergence of the numerical solution to diffusions implies that the distribution

ρeq(x)P th(x, dy)dx ⇒ ρeq(x)P t(x, dy)dx weakly. By the equivalent definitions of weak convergence

[37, p. 117] (see Appendix ??), for any measurable set Σ such that the boundary ∂Σ has zero

measure under ρeq(x)P t(x, dy)dx, we have

lim
h→0

∫
Σ

ρeq(x)P th(x, dy)dx =

∫
Σ

ρeq(x)P t(x, dy)dx.

Since the diffusion coefficient is bounded away from zero, the density of P t satisfies a second order

parabolic equation(the Fokker-Planck equation). As a result, P t(x, dy) = pt(x, y)dy is Lebesgue

measurable and pt(x, y) is continuous both in x, y for all t > 0. Therefore, by taking h → 0 and

letting Sxy have boundaries with Lebesgue measure zero, (4.4) becomes∫
Sxy

ρeq(x)P t(x, dy)dx =

∫
Sxy

ρeq(y)P t(y, dx)dy =

∫
Syx

ρeq(x)P t(x, dy)dx. (4.5)

Since diffusions have continuous paths, (4.5) suffices to show that the limit process have no net

probability flux under the density ρeq [14, p. 119], i.e. J = 0 in (2.4). From the discussion in 2.3,

J = 0 implies that the drift has the unique expression â(x) = ∇D(x) + D(x)∇ ln ρeq(x) = a(x).

Thus, all limits of the convergent subsequence are the same as a(x). Therefore, as h→ 0, there is

a continuous function a(x),

sup
|x|≤r

|ah(x)− a(x)| → 0

and the limiting diffusion solves (2.6).

Lemma 4. With the assumptions in Theorem 7, we have the following estimates for the smoothness

of D, ∇DD and ∇DD2

1.

|D(x)−D(y)| ≤ L1

√
2D(x) +

√
2D(y)

2
|x− y|

2. ∣∣∣∣∇D(x)

D(x)
− ∇D(y)

D(y)

∣∣∣∣ ≤ (C1 + C2 |∇D(x)|) |y − x|
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3. ∣∣∣∣∇D(x)

D2(x)
− ∇D(y)

D2(y)

∣∣∣∣ ≤ (C3 + C4 |∇D(x)|) |y − x|

Proof. For the first inequality, we have

|D(x)−D(y)| =

∣∣∣∣∣
√

2D(x) +
√

2D(y)

2
(
√

2D(x)−
√

2D(y))

∣∣∣∣∣ ≤ L1

√
2D(x) +

√
2D(y)

2
|x− y|

For the second inequality, by direct calculation,∣∣∣∣∇D(x)

D(x)
− ∇D(y)

D(y)

∣∣∣∣ ≤ 1

D(x)D(y)
|D(y)∇D(x)−D(x)∇D(y)|

≤ 1

D(x)D(y)
(|D(y)∇D(x)−D(x)∇D(x)|) +

1

D(x)D(y)
(|D(x)∇D(x)−D(x)∇D(y)|)

≤ 1

D(x)D(y)

(∣∣∣∣∣∇D(x)L1

√
2D(x) +

√
2D(y)

2
|x− y|

∣∣∣∣∣
)

+
1

D(x)D(y)
(|D(x)L3(x− y)|)

≤ 1√
2D(x)D(y)

(|∇D(x)L1 |x− y||) +
1

D(x)
√

2D(y)
(|∇D(x)L1 |x− y||) +

1

D(y)
(|L3(x− y)|)

≤ (C1 + C2 |∇D(x)|) |y − x|

Therefore ∇D(x)
D(x) is locally Lipschitz. For the third inequality, by direct calculation,∣∣∣∣∇D(x)

D2(x)
− ∇D(y)

D2(y)

∣∣∣∣ ≤ 1

D2(x)D2(y)

∣∣D2(y)∇D(x)−D2(x)∇D(y)
∣∣

≤ 1

D2(x)D2(y)

(∣∣D2(y)∇D(x)−D2(x)∇D(x)
∣∣)+

1

D2(x)D2(y)

(∣∣D2(x)∇D(x)−D2(x)∇D(y)
∣∣)

≤ 1

D2(x)D2(y)

(∣∣∣∣∣∇D(x)L1
(D(x) +D(y))(

√
2D(x) +

√
2D(y))

2
|x− y|

∣∣∣∣∣
)

+
1

D2(x)D2(y)

(∣∣D2(x)L3(x− y)
∣∣)

≤ (C3 + C4 |∇D(x)|) |y − x|

Therefore ∇D(x)
D2(x) is locally Lipschitz.

Lemma 5. With the assumptions in Theorem 7, |q(x, z)− q(y, z)| has the following upper bound,

|q(x, z)− q(y, z)| ≤Me−
z2

4K

(∣∣∣∣∇D(x)

D2(x)

∣∣∣∣+ (1 + |∇D(x)|) |y − x|
)
|x− y|

for some positive constant M .

Proof. Using mean value theorem and by direct calculation

q(x, z)− q(y, z) =

(
−d

2
(4πD(ξ))−

d
2 e−

z2

4D(ξ)
∇D(ξ)

D(ξ)
+ (4πD(ξ))−

d
2 e−

z2

4D(ξ)
z2

4

∇D(ξ)

D2(ξ)

)
· (x− y)
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Since we have inf D = K and ∇DD , ∇DD2 satisfying Lipschitz conditions as shown in Lemma 4,

|q(x, z)− q(y, z)| ≤
∣∣∣∣(d2(4πK)−

d
2 e−

z2

4K

(∣∣∣∣∇D(x)

D(x)

∣∣∣∣+ (C1 + C2 |∇D(x)|) |y − x|
)∣∣∣∣ · |x− y|

+

∣∣∣∣(4πK)−
d
2 e−

z2

4K
z2

4

(∣∣∣∣∇D(x)

D2(x)

∣∣∣∣+ (C3 + C4 |∇D(x)|) |y − x|
)∣∣∣∣ · |x− y|

≤Me−
z2

4K

(∣∣∣∣∇D(x)

D2(x)

∣∣∣∣+ (1 + |∇D(x)|) |y − x|
)
|x− y|

For some constant M > 0

Lemma 6. With the assumptions in Theorem 7, α(x, z, ε) satisfies a Lipschitz condition in x

|α(x, z, ε)− α(y, z, ε)| ≤ (|g1(z)|+ |∇D(x)| |g2(z)|+ |g3(z)| ε)ε |y − x|

with g1,g2,g3 are polynomials.

Proof. Let

α(x, z, ε) = min

(
q(x+ εz)ρeq(x+ εz)

q(x, z)ρeq(x)
, 1

)
= min(α̂(x, z, ε), 1)

then

|α(x, z, ε)− α(y, z, ε)| =
∣∣∣min(eln α̂(x,z,ε), 1)−min(eln α̂(y,z,ε), 1)

∣∣∣
≤ |ln α̂(x, z, ε)− ln α̂(y, z, ε)|

Since,

ln α̂(x, z, ε) = ln q(x+ εz, z)− ln q(x, z) + ln ρeq(x+ εz)− ln ρeq(x)

=

∫ ε

0

z · ∇q(x+ ζz, z)

q(x+ ζz, z)
dζ +

∫ ε

0

z · ∇ρeq(x+ ζz)

ρeq(x+ ζz)
dζ

=

∫ ε

0

−d
2
· z · ∇D(x+ ζz)

D(x+ ζz)
− z2(z · ∇D(x+ ζz))

4D2(x+ ζz)
dζ +

∫ ε

0

z · ∇ρeq(x+ ζz)

ρeq(x+ ζz)
dζ

|ln α̂(x, z, ε)− ln α̂(y, z, ε)| ≤
∣∣∣∣∫ ε

0

−d
2
· z ·

(
∇D(x+ ζz)

D(x+ ζz)
− ∇D(y + ζz)

D(y + ζz)

)
dζ

∣∣∣∣
+

∣∣∣∣∫ ε

0

−z2

(
z ·
(
∇D(x+ ζz)

4D2(x+ ζz)
− ∇D(y + ζz))

4D2(y + ζz)

))
dζ

∣∣∣∣
+

∣∣∣∣∫ ε

0

z ·
(
∇ρeq(x+ ζz)

ρeq(x+ ζz)
−
∇ρeq(y + ζz)

ρeq(y + ζz)

)
dζ

∣∣∣∣
Therefore, using Lemma 4∣∣∣∣∇D(x+ ζz)

D(x+ ζz)
− ∇D(y + ζz))

D(y + ζz)

∣∣∣∣ ≤ (C1+C2 |∇D(x+ ζz)|) |y − x| ≤ (C1+C2 |∇D(x)|+L3 |ζz|)) |y − x|
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∣∣∣∣∇D(x+ ζz)

4D2(x+ ζz)
− ∇D(y + ζz))

4D2(y + ζz)

∣∣∣∣ ≤ (C3+C4 |∇D(x+ ζz)|) |y − x| ≤ (C3+C4 |∇D(x)|+L3 |ζz|)) |y − x|

∣∣∣∣∇ρeq(x+ ζz)

ρeq(x+ ζz)
−
∇ρeq(y + ζz)

ρeq(y + ζz)

∣∣∣∣ ≤ L2 |y − x|

Hence,

|α(x, z, ε)− α(y, z, ε)| ≤ (|g1(z)|+ |∇D(x)| |g2(z)|+ |g3(z)| ε)ε |y − x|

Lemma 7. With the assumptions in Theorem 7, (α(x, z, ε)− 1)/ε is uniformly bounded by a polyno-

mial in x, z for all ε

|α(x, z, ε)− 1| ≤ g(x, z)ε

with g a polynomial in x, z.

Proof. The proof of the uniform boundness is similar to the proof of the Lipschitz condition in Lemma

6 Let

α(x, z, ε) = min

(
q(x+ εz)ρeq(x+ εz)

q(x, z)ρeq(x)
, 1

)
= min(α̂(x, z, ε), 1)

then

|α(x, z, ε)− 1| =
∣∣∣min(eln α̂(x,z,ε), 1)−min(e0, 1)

∣∣∣
≤ |ln α̂(x, z, ε)− 0|

Since,

ln α̂(x, z, ε) = ln q(x+ εz, z)− ln q(x, z) + ln ρeq(x+ εz)− ln ρeq(x)

=

∫ ε

0

z · ∇q(x+ ζz, z)

q(x+ ζz, z)
dζ +

∫ ε

0

z · ∇ρeq(x+ ζz)

ρeq(x+ ζz)
dζ

=

∫ ε

0

−d
2
· z · ∇D(x+ ζz)

D(x+ ζz)
− z2(z · ∇D(x+ ζz))

4D2(x+ ζz)
dζ +

∫ ε

0

z · ∇ρeq(x+ ζz)

ρeq(x+ ζz)
dζ

Therefore, using Lemma 4∣∣∣∣∇D(x+ ζz)

D(x+ ζz)
− ∇D(x))

D(x)

∣∣∣∣ ≤ (C1 + C2 |∇D(x)|) |z| ζ ≤ (C1 + C2 |∇D(x)|) |z| ε

∣∣∣∣∇D(x+ ζz)

4D2(x+ ζz)
− ∇D(x))

4D2(x)

∣∣∣∣ ≤ (C3 + C4 |∇D(x)|) |z| ζ ≤ (C3 + C4 |∇D(x)|) |z| ε
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∣∣∣∣∇ρeq(x+ ζz)

ρeq(x+ ζz)
−
∇ρeq(x)

ρeq(x)

∣∣∣∣ ≤ L2 |z)| ζ ≤ L2 |z)| ε

Hence,

|α(x, z, ε)− 1| ≤ g(x, z)ε



Chapter 5

Summary and Conclusion

This thesis builds upon the work of my graduate research in Simon Fraser University with my senior

supervisor Dr. Paul Tupper. Our main goals are to build up 1) a new formulation of the SDE to cor-

rectly model diffusive systems with variable diffusion coefficients in the absence of external force,

2) a numerical method that utilizes the new formulation to solve the SDE.

We firstly show that for diffusive systems with variable diffusion coefficients, the physical systems

cannot be fully described solely by the diffusion coefficients even if there are no external force. The

justifications are from both theoretical discussions of different interpretations of stochastic integrals

and a concrete microscopic computational simulation of the Lorentz gas model. Therefore, a drift

term which is not from external force should come with the diffusion. The computational simulation

also reveals that there is a family of parameters producing the same diffusion coefficients but giving

different long time behaviors. Hence, we suggest to choose the equilibrium distribution combined

with the detailed balance condition as well as the diffusion coefficient to describe a diffusive system.

The underlying drift is uniquely determined by the diffusion coefficient and the equilibrium density

with the detailed balance condition.

Then we propose a numerical method that takes advantage of the new formulation in terms of the

diffusion coefficient and the equilibrium density. The numerical method uses the Euler-Maruyama

method for the drift-free SDE to give a proposal step and then uses Metropolis-Hastings algorithm

to introduce rejections which generate drifts implicitly. The detailed balance condition is automat-

ically satisfied by the Metropolis-Hastings algorithm. Therefore, no explicit calculation of the drift

term is required. As a result, we are able to deal with the cases where the drift may have singu-

larity when the diffusion coefficient and the equilibrium density are not smooth enough. Another

important advantage is that the equilibrium density is preserved exactly by the numerical method

which means that the numerical method is capable of simulating long time behavior. We show that

the numerical method is 1
2 order accurate by error analysis for smooth coefficients and it is also

validated to be convergent by computational experiments even for coefficients that are less smooth
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than those stated in the conditions of the convergence theorem and for equilibrium densities that

are not normalizable.

Finally we use diffusion approximations as an alternative way to justify the weak convergence of

the numerical method. This way of proof, as a complement to the previous error analysis, shows

the weak convergence without giving any rate and requires less for smoothness of the coefficients.

Since the well-posedness of the corresponding martingale problems can be obtained under the

conditions of diffusion coefficients being continuous and positive and drift coefficients being mea-

surable, we can use diffusion approximations and the martingale problem to investigate the weak

convergence of the numerical method for discontinuous coefficients in the future study.
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Appendix A

Preliminaries

Here are some basic materials in stochastic processes and SDEs. Most contents can be found in

[37, 30].

A.1 Measure-theoretic Probability

Probability is some number (between 0 and 1) denoting the possibility that some event happens.

To represent the idea mathematically, Measure-theoretic Probability assumes that the events are

the subsets of some non-empty set Σ. Then the probability of one event A ∈ Σ happening is P(A)

where P is a map from subsets of Σ to a real number p ∈ [0, 1]. Therefore, the idea of probability

naturally grows upon the measure theory.

Definition 3. A probability space or a probability triple is (Ω,F ,P) with following property.

• Ω is a non-empty set called the sample space;

• F is the σ-algebra which consists of subsets of Ω, containing Ω itself and the empty set ∅;

• P is a mapping from F to [0, 1], with P(∅) = 0 and P(Ω) = 1, such that P is countably additive.

This definition allows us to study the possibility of any event A as long as A is measurable

(A ∈ F). A more interesting to study is one experiment that is built on the event A ∈ F . By thinking

of the sample space Ω as the set of all possible outcomes of some experiment, then a random

variable assigns a numerical value to each of these outcomes.

Definition 4. Given a probability triple (Ω,F ,P), a random variable is a function X from Ω to the

real numbers R, such that

{ω ∈ Ω; X(ω) ≤ x} ∈ F , x ∈ R
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Therefore, a random variable X(ω) is a measurable function on (Ω,F ,P). This definition could

be easily extended toX taking values in multiple dimensions by thinkingX as a measurable function

from (Ω,F ,P) to (Rd,B, λ).

A.2 Stochastic Processes

To study the relation or evolution of random variables, we introduce a collection of random variables

called stochastic process.

Definition 5. A stochastic process is a parametrized collection of random variables

{Xt}t∈T

defined on a probability space (Ω,F ,P) and assuming values in Rd

Here the parameter T is a subset in R and is usually describing the time. T could be discrete

(T = {i; i ∈ N}) or continuous (T = [0,∞)). Note that for each t ∈ T fixed we have a random

variable

ω → Xt(ω); ω ∈ Ω.

One the other hand, fixing ω ∈ Ω we can consider the function

t→ Xt(ω); t ∈ T.

We shall call this a path or trajectory of Xt. Let’s look at a famous example of stochastic process:

Brownian motion or Wiener Process.

Definition 6. Brownian motion (Wiener Process) is a continuous time stochastic process Bt, t ∈
[0,∞) that satisfies,

• Bt is a Gaussian process: for all 0 ≤ t1 ≤ t2 · · · ≤ tk the random variable Z = (Bt1 , · · · , Btk)Rnk

has a multinormal distribution;

• independent increments: for all 0 ≤ t1 ≤ t2 · · · ≤ tk, Bt1 , Bt2 − Bt1 , · · · , Btk − Btk−1
are inde-

pendent;

• continuous paths: P({ω;Bt(ω) is continuous}) = 1

The construction of Brownian motion is not trivial. [30, p. 11] provides one way to show the

existence and continuous paths using Kolmogorov’s extension theorem and Kolmogorov’s continuity

theorem.
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A.3 Martingales

Martingales are important stochastic processes which are originally used to describe fair games.

The ’fair’ is shown through conditional expectations which says that expectation of a stochastic pro-

cess Xt at time t conditioned on the process at some previous time t′ < t, (use history information

at and before t′ to predict the future value at t) is Xt′ : E(Xt|Xt̃, (t̃ ≤ t′)) = Xt′ . Since the conditional

expectation conditioned on random variables is defined by the conditional expectation conditioned

on the σ-algebra generated by the random variables. The information is equivalently described by

an increasing family of σ-algebras which is called a filtration.

Definition 7. A filtration on some measurable space (Ω,F) is a familiy M = {Mt}(t ≥ 0) of

σ-algebrasMt ⊂ F such that

0 ≤ s < t⇒Ms ⊂Mt

And a process Xt is said to be adapted to a filtrationM if and only if Xs isMs measurable for all s.

Definition 8. An n-dimensional stochastic process Mt, (t ≥ 0) on some probability space (Ω,F ,P)

is called a martingale with respect to a filtrationMt if

1. Mt isMt-measurable for all t

2. E |Mt| <∞ for all t

3. E(Ms|Mt) = Mt for all s ≥ t

A.4 Stochastic Calculus and SDE

Stochastic Calculus starts with problems (differential equations) with random terms. For example,

in process with random fluctuations, people like to consider problems with noises,

dX

dt
= a(X, t) + ’noise’

However one cannot start unless the term ’noise’ is well-fined. To describe the noise mathematically,

we may associate the term with a function of time Wt. A famous idealized model for the noises is

the white noise where one may expect Wt to satisfy a stationary normal distribution for all t and for

t1 6= t2, Wt1 and Wt2 are independent. However, it turns out there does not exist any ”reasonable”

stochastic processes satisfying these property. One intuitive explanation is that the Wt here looks

like the derivative of a Brownian motion while Brownian motions are nowhere differentiable.

If we rearrange the derivative in differential form and treat the term Wtdt = dBt

dXt = a(Xt, t)dt+Wtdt = a(Xt, t)dt+ dBt
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Therefore, by formal notation
∫ t2
t1
dBt = Bt2 − Bt1 , we have managed to deal with the noise term.

However, this method fails if one wants to use variable coefficient for dBt term. i.e. for a equation:

dXt = a(Xt, t)dt+Wtdt = a(Xt, t)dt+ b(Xt, t)dBt (A.1)

the defintion of the integral for the last term
∫ t2
t1
b(Xt, t)dBt needs to be thoroughly discussed. For

example, in one dimenson, a limit of Riemann-like sum could be defined as:∫ T

0

b(X(t))dB(t) = lim
h→0

N−1∑
n=0

b(X∗n)(Bnh+h −Bnh),

where

X∗n = (1− α)X(nh) + αX(nh+ h)

with discretization tn = nh, tN = T . The choice of α = 0 leads to the Itô integral. The limit here is

in the sense of L2 in the product space of [0, T ]× Ω with weight dt · P(dω).

A important property of the Itô integral is that it is a martingale. i.e. Mt(ω) =
∫ t

0
f(s, ω)dBs a

martingale with respect to the filtration generated by Bt. By the martingale representation theorem

[30, p. 53], the inverse is also true.

Though we have expressed Xt in terms of stochastic integrals, since the integrand depends on Xt,

we haven’t really solve the equation yet. One may ask a question that given an initial condition Z

and a Brownian motion Bt, does there exist a process Xt satisfying the SDE (A.1) and is adapted

to the filtration generated by Z and Bt? This process Xt will be called a strong solution to (A.1)

since the version of the Brownian motion is given in advance. However, if one only ask for a pair of

process (Xt, Bt) and they are both adapted to another filtration Ht (with the initial condition Z to be

Ht measurable). Then the solution is called a weak solution. This definition is weaker since Xt may

not be adapted to the filtration generated by Bt and Z any more. And there does exist the case that

only weak solutions exist but not strong solutions.

A.5 The Fokker-Planck Equation and the Itô Diffusion

Consider a n-dimensional stochastic process Xt satisfying SDE

dXt = a(Xt, t)dt+ b(Xt, t)dBt (A.2)

Let p = p(x, t|x0, t0) be the conditional probability density when Xt = x and Xt0 = x0, then p

satisfies the PDE

∂p

∂t
= −

∑
i

∂ai(x, t)p

∂xi
+

1

2

∑
i,j

∂2[b(x, t)(b(x, t))T p]ij
∂xi∂xj
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with initial condition p(x, t0|x0, t0) = δ(x − x0) where δ(x − x0) is the delta distribution. Hence,

for the same process, the two descriptions from the SDE and the PDE are to be regarded as

complementary to each other.

We call the solution to (A.2) the (Itô) diffusion with a to be the drift coefficient and b or sometimes
1
2bb

T to be the diffusion coefficient. If the coefficients a and b do not explicitly depend on t, the

diffusion is called time homogeneous.

A.6 Weak convergence

Given a mesurable space (Ω,F), if the probability measures Pn and P satisfy∫
Ω

fdPn →
∫

Ω

fdP

for every bounded continuous real function f on Ω. Then we say that the sequence Pn converges

weakly to P and write Pn ⇒ P . In applications, people use equivalent versions of the definition

to check the weak convergence. If the distributions of a sequence of random variables Xn con-

verge weakly to the distribution of some random variable X. Then we call the sequence of random

variables Xn converges to X in distribution (or weakly) and denote it as Xn ⇒ X.



Appendix B

Useful Theorems

We put the theorems used in this thesis from the literatures here.

Theorem 8 (The Arzelà-Ascoli Theorem, this statement is taken from [3]). Given (S, d) a compact

metric space, A set A ⊂ C(S) is relatively compact if and only if it is composed of equicontinuous

function and there exists an M > 0 such that

‖x‖C(S) ≤M, for all x ∈ A

A is said to be composed of equicontinuous functions if and only if: ∀ε > 0, ∀p ∈ S, there exists a

δ > 0, such that ∀p′ ∈ S, ∀x ∈ A, d(p, p′) < δ implies |x(p)− x(p′)| ≤ ε.

Theorem 9 (Bakry and Emery 1985, this statement is taken from Theorem 1 in [27]). Let e−V be

(the density of) a probability measure on Rn, such that D2V ≥ λIn where In is the identity matrix

for dimension n and D2 is the Hessian. Then e−V satisfies a logarithmic Sobolev inequality with

constant λ.

H(ρ|e−V ) ≤ 1

2λ
I(ρ|e−V )

where H(ρ1|ρ2) is the relative entropy of the density ρ1 with respect to the density ρ2

H(ρ1|ρ2) :=

∫
Rd
ρ1(x) ln

ρ1(x)

ρ2(x)
dx,

and I(ρ1|ρ2) is the entropy dissipation functional is defined by

I(ρ1|ρ2) :=

∫
Rd
ρ1(x)∇ ln

ρ1(x)

ρ2(x)
· ∇ ln

ρ1(x)

ρ2(x)
dx.
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Theorem 10 (Meyn and Tweedie 1993, this statement is taken from [20]). Suppose a Markov chain

has the transition kernel P given by

P (x, dy) = p(x, y)dy + r(x)δx(dy)

where δx is the delta distribution and r(x) is the probability of staying at x. If P is irreducible and

aperiodic then

lim
n→+∞

‖Pn(x, ·)− π(·)‖TV = 0

for π-almost all x.

The following materials are taken from [29, Ch. 2]. Consider the system,

dX = a(t,X)dt+

q∑
r=1

σr(t,X)dwr(t) (B.1)

where X, a, σ are vectors of dimension d with components Xi, ai, σi. Assume that the functions

a(t, x) and σr(t, x) satisfy a global Lipschitz condition with respect to x: for all t ∈ [t0, T ], x ∈ Rd,
y ∈ Rd the following inequality holds for some positive constant K:

|a(t, x)− a(t, y)|+
q∑
r=1

|σr(t, x)− σr(t, y)| ≤ K |x− y| . (B.2)

Here and below |x| denotes the Euclidean norm of the vector x.

Definition 9. We say that a function f(x) belongs to the class F, written as f ∈ F, if we can find

constants K > 0, κ > 0 such that for all x ∈ Rd the following inequality holds:

|f(x)| ≤ K(1 + |x|κ) (B.3)

If a function f(s, x) depends not only on x ∈ Rd but also a parameter s ∈ S, then we say that f(s, x)

belongs to F (with respect to the variable x) if an inequality of the type (B.3) holds uniformly in s ∈ S.

Along with the system (B.1), we consider the approximation

X̄t,x(t+ h) = x+A(t, x, h; ξ) (B.4)

where ξ is a random variable (in general, a vector) having moments of a sufficiently high order,

and A is a vector function of dimension d. Partition the interval [t0, T ] in to N equal parts with step

h = (T − t0)/N : t0 < t1 < . . . < tN , tk+1 − tk = h. According to (B.1), we construct the sequence

X̄0 = X0 = X(t0), X̄k+1 = X̄k +A(t, X̄k, h; ξk), k = 0, 1, . . . , N − 1, (B.5)

while ξk for k > 0 is independent of X̄0, X̄1, . . . , X̄k, ξ0, . . . , ξk−1. We write ∆ = X − x = Xt,x(t +

h)−x, ∆̄ = X̄−x = X̄t,x(t+h)−x. Let X(t) = Xt0,x0
(t) be a solution of (B.1) and X̄t0,X0

(tk) = X̄k

is the approximation.



APPENDIX B. USEFUL THEOREMS 69

Theorem 11. Suppose that

1. the coefficients of equation (B.1) are continuous, satisfy a Lipschitz condition (B.2) and to-

gether with their partial derivatives with respect to x of order up to 2p + 2, inclusively, belong

to F;

2. the method (B.4) is such that∣∣∣∣∣∣E(

s∏
j=1

∆ij −
s∏
j=1

∆̄ij )

∣∣∣∣∣∣ ≤ K(x)hp+1, s = 1, 2, . . . , 2p+ 1, K(x) ∈ F,

∣∣∣∣∣∣E(

2p+2∏
j=1

∆̄ij )

∣∣∣∣∣∣ ≤ K(x)hp+1, K(x) ∈ F;

3. the function f(x) together with its partial derivatives of order up to 2p + 2, inclusively, belong

to F;

4. for a sufficiently large m (specified below) the expectations E
∣∣X̄k

∣∣2m exist and are uniformly

bounded with respect to N and k = 0, 1, . . . , N .

Then, for all N and all k = 0, 1, . . . , N the following inequality holds:∣∣Ef(Xt0,X0(tk))− Ef(X̄t0,X0(tk))
∣∣ ≤ Khp,

i.e., the method (B.5) has order of accuracy p in the sense of weak approximations.

Theorem 12. Suppose that for h < 1,

|EA(tk, x, h, ξk)| ≤ K(1 + |x|h),

|A(tk, x, h, ξk)| ≤M(ξk)(1 + |x|)h 1
2

where M(ξk) has moments of all orders. Then for every even number 2m the mathematical ex-

pectations E
∣∣X̄k

∣∣2m exist and are uniformly bounded with respect to N and k = 1, 2, . . . , N , if only

E |X0|2m exists.

Theorem 13 (Gihman and Skorohod, this statement is taken from Theorem 4 in [15]). Assume the

coefficients of (B.1) satisfy the global Lipschitz condition (B.2) and that E |X0|2m is finite. Then we

can find a constant C depending only on m, K and T for which

E
∣∣X2m

t

∣∣ ≤ E(1 + |X0|2m) exp(Ct)
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