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Abstract

Computational complexity theory and algorithms are two major areas in theoretical com-

puter science. Computational complexity theorists study the inherent difficulty of computa-

tional problems, and classify problems based on computational resources needed. In par-

ticular, complexity theorists intend to prove lower bounds, that is, showing certain problems

are not solvable under specific resource bounds. On the other hand, algorithm designers

wish to discover efficient algorithms solving particular problems. Traditionally, researchers

in the two areas have different goals and use different techniques. However, several re-

cent breakthroughs indicate fundamental connections in between. In particular, new lower

bounds were proved via designing efficient algorithms, and reversely, known lower bound

proofs were exploited to design efficient algorithms.

In this thesis, we focus on the connections between algorithms and lower bounds, which

lead to discoveries of new algorithms and lower bounds. For small-size boolean formulas,

we get new satisfiability counting algorithms. The algorithm is based on a simplified proof

of the property that formula size shrinks with high probability under certain random restric-

tions. This approach is further adapted to get satisfiability algorithms and average-case

lower bounds for small linear-size boolean circuits. We also show that circuit lower bound

proofs based on the method of random restrictions yield non-trivial compression algorithms

for easy boolean functions from the corresponding circuit classes. In the reverse, we show

that the existence of non-trivial compression algorithms would imply circuit lower bounds for

non-deterministic exponential time. In the end, we introduce the notion of weakly-uniform

circuits, and generalize previous known lower bounds against uniform circuits to weakly-

uniform circuits.

Keywords: satisfiability algorithm; circuit lower bound; boolean formula; boolean cir-

cuit; compression algorithm
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Chapter 1

Introduction

Computational complexity theory studies what computational problems are, or are not, ef-

ficiently solvable. In this thesis, we focus on the fundamental connections between proving

hardness of problems and designing efficient solutions.

1.1 Algorithms and Lower Bounds

Complexity theory and algorithm design are two major areas of theoretical computer sci-

ence. Algorithm designers discover efficient solutions for specific problems, and demon-

strate the power of computation. Over the years, algorithm designers have made huge im-

pact to the industry by discovering efficient solutions (algorithms) to practically interesting

problems. On the other hand, complexity theorists wish to show the limits of computation

by proving lower bounds, that is, proving certain hard problems do not have any relatively

efficient solution. Although complexity theorists do not solve problems directly, they de-

velop a foundational framework for analyzing the efficiency of computation, and use the

framework to explain the impossibility results.

Algorithms explore the power of computation, while lower bounds characterize the lim-

its of computation. Traditionally, the two areas have different goals and use different tech-

niques. Designing algorithms is arguably easier than proving lower bounds. To solve a

problem, algorithm designers only need to find one efficient solution. However, to prove a

lower bound for a problem, complexity theorists must argue that no efficient solution exists.

1
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Essentially, algorithm designers analyze the structure of the problem at hand, but com-

plexity theorists reason more on algorithms themselves. While algorithm designers can

constantly make progress by gradually refining their solutions, complexity theorists can not

claim any result before they try (or have a way to rule out) all the possibilities. We have

seen dramatic and versatile progress in algorithms over the years, but not much in proving

lower bounds.

However, in recent years, fundamental connections between algorithms and lower bounds

have been discovered in several breakthroughs. On the one hand, new lower bounds have

been proved via designing relatively efficient algorithms; on the other hand, new algorithms

for hard problems have been derived using techniques from lower bound proofs. In this the-

sis, we will study more instances of such connections.

1.1.1 Algorithms for Boolean Formulas

To better illustrate the power of computation, we will use several problems related to

boolean formulas as examples.

Let {xi}i∈N be a collection of variables with domain {0, 1}, where N = {1, 2, . . .}. A

boolean formula is an expression composed with variables in {xi}, constants in {0, 1}, and

logical operators in {¬,∧,∨}. More precisely, a variable or a constant is a boolean formula,

and, if E and F are boolean formulas, then so are ¬E, (E ∨ F ), (E ∧ F ). For example, the

following is a boolean formula on variables {x1, x2}:

(x1 ∧ ¬x2) ∨ (¬x1 ∧ x2). (1.1)

An assignment to n variables is a mapping from [n] = {1, . . . , n} to {0, 1}. Given a

boolean formula and an assignment to its variables, we can evaluate the formula by substi-

tuting each variable with the corresponding value in the assignment. We say an assignment

satisfies a formula if the formula evaluates to 1 under the assignment. A boolean formula

on n variables computes a boolean function from {0, 1}n to {0, 1}. For example, the formula

in (1.1) outputs 1 iff x1 6= x2.

We define the size of a formula to be the total number of appearances of all variables.

For example, the formula in (1.1) has size 4. We usually parametrize the size as a function

s(n) of the the number of variables n. We say a formula over n variables has polynomial

size if the size s(n) is upper-bounded by for some polynomial of n. In this subsection, we

will consider only formulas of polynomial size.
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Now we consider the following two computational problems:

• FormulaEval: Given a formula and an assignment, check whether the assignment

satisfies the formula.

• FormulaSAT: Given a formula, check whether there exists an assignment which sat-

isfies the formula.

The FormulaEval problem is obviously easier. We can substitute the assignment into

the formula, and evaluate each sub-formula one by one. The number of steps taken in this

evaluation algorithm is at most polynomial in the formula size. Thus we say that Formu-

laEval is efficiently decidable. We denote by P the class of problems which are efficiently

decidable.

The FormulaSAT problem is much harder. A quick solution is to enumerate all possible

assignments and evaluate the formula under each assignment to check if there is any sat-

isfying one. Such a procedure is usually called brute-force search. It will take exponential

number of steps to enumerate and evaluate the formula on all possible assignments. This

satisfiability algorithm is not efficient, but it raises the following question: Does there exist

an algorithm which solves FormulaSAT in less than exponential number of steps? Until

now, we do not know the answer yet. We do not even know, for formulas on n variables,

whether there is an algorithm running in 20.9n steps. There is a large family of problems

like FormulaSAT for which we can neither give an efficient solution nor prove there are no

efficient solutions.

Nevertheless, we do know that FormulaSAT is efficiently verifiable. That is, if a formula

is satisfiable, then there is a satisfying assignment which can be verified efficiently (using

the algorithm for FormulaEval). We denote by NP the class of problems which are efficiently

verifiable. The famous P versus NP question asks whether efficiently verifiable problems

like FormulaSAT are also efficiently decidable. Although most complexity theorists conjec-

ture this is not true, we are still far from proving or disproving it.

1.1.2 Boolean Formulas as Computational Models

We now take a different perspective on boolean formulas. A boolean formula computes a

boolean function, so it can be used as a computational device to solve problems (generat-

ing outputs from inputs). The drawback is that, each formula has a fixed number of input
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variables. To overcome this, we introduce a family of boolean formulas {Fn}n∈N, where

each formula Fn is over n input variables. A family of formulas can be used to solve a

general computational problem, with any input size. Such models are called non-uniform

computational models.

Now one may ask the following questions. Given a problem, does there exist a family

of formulas solving the problem? If true, how can we construct such formulas? What will

be the size of the formulas?

Since the truth table of a function can be encoded as a formula of exponential size,

every problem is solvable by a family of exponential-size formulas. But do we have formulas

of smaller size to solve specific problems like FormulaEval, FormulaSAT or even simpler

ones?

We consider a very simple problem of computing the Parity of n variables, where the

output is true iff the sum of the inputs is odd. Parity is easily computable by an algorithm

summing through each input one by one. But how can we compute Parity using boolean

formulas? In fact, the formula in (1.1) computes Parity on two inputs, and we can compound

such formulas to get a formula of size n2 which computes Parity on n inputs. Can we make

even smaller formulas to compute Parity? The answer can be proved to be No.

What will be the smallest formula size required to solve FormulaEval or FormulaSAT?

Till now, we do not know the answer better than the trivial exponential size. The best known

formula-size lower bound is that, there is a problem in P which requires formula size almost

n3. We do not know any larger lower bounds for problems in NP.

Complexity theorists tend to favor a model which is more general than boolean formulas,

that is, boolean circuits. A boolean circuit on n input variables of size s is a sequence of

n + s functions C = (f1, . . . , fn+s) where (1) fi = xi for i = 1, . . . n, and (2) fi = ¬fj ,
fi = fj ∨ fk, or fi = fj ∧ fk, for i > n and j, k < i. The output of fn+s is designated as the

output of the circuit. A boolean circuit can also be viewed as a directed acyclic graph with

n source nodes and s internal nodes which are labeled by fi’s, and the incoming arcs of

fi are from the nodes that fi directly depends on. Boolean formulas are special cases of

boolean circuits where the fan-out of each internal node is 1. Similar as boolean formulas,

we define the following problems:

• CircuitEval: Given a circuit and an assignment, check whether the assignment satis-

fies the circuit.
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• CircuitSAT: Given a circuit, check whether there is an assignment which satisfies the

circuit.

It is not hard to see that CircuitEval is efficiently decidable and CircuitSAT is efficiently

verifiable. Similar as FormulaSAT, we do not know if CircuitSAT is efficiently decidable, or

if it is solvable by an algorithm better than the brute-force search.

Now we consider the use of boolean circuits as computational models. We also intro-

duce a family of circuits {Cn}n∈N in order to solve computational problems. Then, what is

the smallest circuit size required to compute problems like Parity, FormulaEval/CircuitEval,

and FormulaSAT/CircuitSAT?

For the easy case of computing Parity, one can construct a circuit of size 3n following a

similar approach as that for formulas. It can also be proved that circuits even slightly smaller

than 3n can not compute Parity. For solving FormulaEval and CircuitEval, we can apply the

known simulations of algorithms by circuits, which hardwires the computational process

as circuit connections, and derive that any efficiently solvable problem (any problem in

P including FormulaEval and CircuitEval) can also be solved by a family of polynomial-

size circuits. For the harder problems like FormulaSAT and CircuitSAT, we do not know if

they can (or can not) be solved by polynomial-size circuits. In fact, if one can prove that

FormulaSAT or CircuitSAT can not be solved by polynomial-size circuits, that will resolve

the P versus NP question. The currently best known circuit-size lower bound is that, there

is a problem in P which requires circuit size almost 5n. Again, we do not have any larger

lower bounds for problems even in NP.

To summarize, we have seen two different roles of boolean circuits/formulas: on the one

hand, they were used as inputs to evaluation or satisfiability algorithms; on the other hand,

they were used as non-uniform computational models, which can simulate algorithms. We

call algorithms like satisfiability algorithms as meta-algorithms, that is, algorithms on “al-

gorithms”. As introduced in the beginning of this section, several recent breakthroughs

indicate fundamental connections between designing better satisfiability algorithms and

prove circuit lower bounds. In this thesis, we will study more connections along this direc-

tion, and make some partial progress on the way to resolve some of the open questions

raised in this section.
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1.2 Contributions of This Thesis

Satisfiability algorithms and lower bounds for small-size boolean formulas. Boolean

formulas have the property that, when we randomly assign values to a fraction of the vari-

ables, the formula on the remaining variables can be simplified such that the size shrinks.

In Chapter 3, we show that the shrinkage happens with high probability under certain pro-

cess of random restrictions, and, using this property, we get a satisfiability algorithm for

boolean formulas of size n2.49. We also give an alternative proof of the average-case lower

bounds on such formulas.

Compression algorithms and circuit lower bounds. In Chapter 4, we explore the

connections between compression algorithms and circuit lower bounds, where the com-

pression algorithms take the truth table of a function and output a relatively succinct repre-

sentation of the function. The compression algorithms rely on structural characterizations

of “easy” functions, which are useful both for proving circuit lower bounds and for designing

satisfiability algorithms. We also show that the existence of efficient compression algo-

rithms would imply circuit lower bounds.

The work in Chapter 3 and 4 was done jointly with V. Kabanets, A. Kolokolova, R.

Shaltiel, and D. Zuckerman; it appeared in the 29th IEEE Conference on Computational

Complexity (CCC 2014) [CKK+14].

Improved FormulaSAT algorithms. In Chapter 5, we get an improved analysis of the

shrinkage property of boolean formulas, and this gives a non-trivial satisfiability algorithm

for formulas of size n2.63. This is a joint work with V. Kabanets and N. Saurabh; it will appear

in the 39th International Symposium on. Mathematical Foundations of Computer Science

(MFCS 2014) [CKS13].

Satisfiability algorithms and lower bounds for small linear-size boolean circuits.

In Chapter 6, we revisit the gate-elimination method which was used to prove fixed linear-

size circuit lower bounds, and generalize it to get concentrated circuit-size reduction un-

der certain random restrictions. The approach is similar to the concentrated shrinkage of

boolean formulas, and it leads to average-case lower bounds and #SAT algorithms for cir-

cuits over de Morgan basis of size almost 3n, as well as for circuits over the full basis of

size almost 2.5n. This is an ongoing joint work with V. Kabanets.

Lower bounds against weakly-uniform circuits. In Chapter 7, we introduce the no-

tion of weakly-uniform circuits, as a generalization of uniform circuits. Uniform circuits are
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circuits that can be generated by algorithms, while weakly-uniform can be generated by

algorithms taking certain amount of extra inputs (which are called advice). We generalize

all previous known lower bounds against uniform circuits to weakly-uniform circuits. This

is a joint work with V. Kabanets and J. Kinne. The conference version (with Kabanets)

appeared in the 18th Annual International Computing and Combinatorics Conference (CO-

COON 2012) [CK12], and the journal version (with Kabanets and Kinne) appeared in Algo-

rithmica, August 2013, Springer [CKK13a].



Chapter 2

Preliminaries

Solving a computational problem requires computational resources, such at time and space.

Complexity classes categorize problems based on resource bounds in computation. In this

chapter we will introduce terminologies on complexity classes, with emphasis on circuit

complexity classes. We will then review circuit lower bounds, as an approach to separate

complexity classes. Finally, we will survey the recent connections between algorithms and

circuit lower bounds, which is the theme of this thesis.

2.1 Complexity Classes

2.1.1 Turing Machines, Time and Space Bounds

Let {0, 1}∗ = ∪n∈N{0, 1}n be the collection of all binary strings. A language is a subset of

{0, 1}∗, or equivalently, a mapping from {0, 1}∗ to {0, 1} such that x ∈ L iff L(x) = 1. A

decision problem for L is to decide whether or not a given string is in L.

A Turing machine (TM) is a tuple M = (Q,Σ, δ) where

• Q is a finite set of states, containing a start state q0, an accepting state qy, and a

rejecting state qn. The states qy and qn are distinct.

• Σ is the alphabet which is a collection of symbols, containing a special blank symbol

⊥. The input does not contain the blank symbol ⊥.

• δ is a transition function from Q× Σ to Q× Σ× {←,→,−}.

8
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In its physical implementation, a Turing machine has a tape, a cursor, a state register,

and a lookup table for transitions. The tape is divided into cells and initialized with blank

symbols; we assume it extends infinitely at both ends. At the beginning, the tape contains

the input string, the cursor locates at the first input symbol, and the machine starts with

state q0. At each step, given the current state q and the symbol a at the cursor, the machine

follows the transition rule δ(q, a) = (q′, b, d) by changing to state q′, overwriting the cell at

the cursor with b, and moving the cursor in the direction d.

Given a TM and an input string, a configuration describes the running context of the

machine. Formally, a configuration is a tuple (q, u, w), where q is the current state, u is the

string to the left the cursor, and w is the string to the right of the cursor.

We say a configuration c yields another configuration c′ if the machine moves one step

from c to c′. A TM M accepts an input string x if and only if there exists a sequence of

configurations c0, c1, . . . , cn such that c0 is the start configuration, ci yields ci+1 for 0 ≤ i ≤
n− 1, and cn is a configuration with the accepting state. Given an input, a TM may accept

it, reject it, or run forever. The language decided by a Turing machine M is L(M) = {w ∈
Σ? |M accepts w}.

The running time of a TM M on input x, denoted by tM (x), is the number of steps M

takes on input x before halting (M may not halt). A TM M is time bounded by f : N→ N if

M halts within f(|x|) steps for any input x, that is, ∀x[tM (x) ≤ f(|x|)]. The running space

of a TM M on input x, denoted by sM (x), is the number of tape cells that M reaches on

input x before halting. A TM M is space bounded by f : N → N if M halts by reaching at

most f(|x|) cells for any input x, that is, ∀x[sM (x) ≤ f(|x|)].
A nondeterministic Turing Machine (NTM) extends a TM with several possible transi-

tions in each step of computation. The transition function δ is defined from Q × Γ to the

power set of Q× Γ× {←,→,−}. We say a configuration c yields another configuration c′ if

there is one choice by the transition function such that the machine moves from c to c′. A

NTM N accepts an input string x if and only if there exists a sequence of transitions that

leads to an accepting configuration. The language decided by a NTM N is the set of strings

that N accept.

A language L is decidable in time t(n) (space s(n)) if there is a Turing machine M

which runs in time t(n) (space s(n)) and decides L. A language L is verifiable in time t(n)

(space s(n)) if there is a Turing machine M running in time t(n) (space s(n)) such that, for

any input x ∈ {0, 1}n, there is a string y ∈ {0, 1}t(n) such that A(x, y) = 1 iff x ∈ L. The
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string y is often called a certificate. Note that, language L is verifiable in time t(n) (space

s(n)) if and only if there is a nondeterministic Turing machine which decides L, where the

certificate can be encoded as transition choices of the NTM.

Let DTIME(t(n)) be the class of languages decidable in timeO(t(n)), and let NTIME(t(n))

be the class of languages verifiable in time O(t(n)). Let DSPACE(s(n)) be the class of

languages decidable in space O(s(n)), and let NSPACE(s(n)) be the class of languages

verifiable in space O(s(n)). We also have the following common complexity classes:

• P: languages decidable in polynomial time.

• NP: languages verifiable in polynomial time.

• PSPACE: languages decidable in polynomial space.

• EXP: languages decidable in exponential time.

• NEXP: languages verifiable in exponential time.

• EXPSPACE: languages decidable in exponential space.

By equivalent simulation of Turing machines, it is not hard to see the following inclu-

sions.

P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ NEXP ⊆ EXPSPACE

By the following time and space hierarchy theorems, we know some of inclusions are

strict; however, we do not know which ones are strict.

We say a function f : N → N is time (space) constructible if, given any x with |x| = n,

the value f(n) is computable in time (space) O(f(n)).

Theorem 2.1 (Time Hierarchy Theorem [HS65, Zák83]). Let f and g be time constructible

functions.

• if f(n) log f(n) = o(g(n)), then DTIME(f(n)) ( DTIME(g(n)).

• if f(n+ 1) = o(g(n)), then NTIME(f(n)) ( NTIME(g(n)).

Theorem 2.2 (Space Hierarchy Theorem [HLS65, Imm88]). Let f and g be space con-

structible functions and f(n) = o(g(n)). Then

• DSPACE(f(n)) ( DSPACE(g(n)).

• NSPACE(f(n)) ( NSPACE(g(n)).
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2.1.2 Polynomial Hierarchy

An oracle TM is a TM M with a special oracle tape, an oracle language, and three special

states qQ, qY , qN . When M enters the state qQ, it writes some input string w onto its oracle

tape; and if w is in the oracle language, then M moves directly to qY , otherwise it moves to

qN . The output of M on input x with oracle language O is written as MO(x).

We let ∆P
0 = ΣP

0 = ΠP
0 = P.

• ∆P
i+1 = PΣP

i .

• ΣP
i+1 = NPΣP

i .

• ΠP
i+1 = coNPΣP

i .

The polynomial hierarchy is defined as PH = ∪i≥0ΣP
i . In particular, we have the follow-

ing.

• ΣP
1 = NP, ΠP

1 = coNP.

• ΣP
i = coΠP

i .

• PH = coPH.

It is known that PH ⊆ PSPACE, but it is not known whether the inclusion is strict. As

a generalization of P,NP and coNP, the exact relationship between ΣP
i , ΣP

i+1 and ΠP
i is

still unknown. The following are some relative results on the “collapse” of the polynomial

hierarchy.

• For i ≥ 1, if ΣP
i = ΠP

i then PH = ΣP
i , that is, PH collapse to the i-th level.

• If NP = coNP then PH = NP.

• If P = NP then PH = P.

2.1.3 Circuit Complexity

We have defined complexity classes for problems solvable by Turing machines with certain

resource (time or space) bounds. Now we consider a non-uniform computational model,

namely, boolean circuits, where we are allowed to design different algorithms for different

input size.
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Definition 2.3. An n-input, single-output boolean circuit is a directed acyclic graph (DAG)

with

• n input vertices of in-degree zero;

• one output vertex of out-degree zero; and

• all non-input vertices, called gates, labeled with AND, OR or NOT, where the vertices

labeled with AND and OR have fan-in 2 and the vertices labeled with NOT have fan-in

1.

In boolean circuits, the gates have unbounded out-degrees. Restricting the out-degree

gives boolean formulas. That is, a boolean formula is a boolean circuit where all non-output

gates have out-degree one.

A circuit family is a sequence of boolean circuits {Cn}n∈N, where each circuit Cn has n

inputs and one single output. A boolean circuit on n inputs computes a boolean function

from {0, 1}n to {0, 1}. A circuit family defines a language L such that, for any n and any

x ∈ {0, 1}n, we have x ∈ L iff Cn(x) = 1.

The complexity of a boolean circuit can be measured by its size and depth. The size of

a boolean circuit C, denoted by |C|, is the total number of vertices in C. The depth of C is

the length of its longest path from an input to the output.

Let s : N → N be a function. We say a circuit family {Cn}n has size s(n) if we have

|Cn| ≤ s(n) for every n. We denote by SIZE(s(n)) the class of languages decidable by

circuit families of size O(s(n)). In particular, we denote by SIZE(poly) ≡ ∪c(SIZE(nc)) the

collection of languages decidable by polynomial-size circuit families.

Circuit complexity classes can be equivalently characterized by TMs taking advice. An

advice-taking TM has a read-only tape, called advice tape, which presents an advice string

an for inputs of length n. Note that, one advice is used for all inputs of the same size.

Definition 2.4. A language L is in DTIME(t(n))/α(n) if there exists a TM M and a se-

quence {an} of strings with an ∈ {0, 1}α(n) such that

• M runs in time t(n) on inputs of length n+ α(n), and

• for any x ∈ {0, 1}n, x ∈ L if and only if M(x, an) = 1.

In particular, we let P/poly = ∪c,dDTIME(nc)/nd. The following is easy to show by

hardwiring descriptions of circuits as advice.
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Proposition 2.5.

P/poly = SIZE(poly)

∪c,dDTIME(nc)/nd = ∪cSIZE(nc).

A deterministic TM running in time t(n) can be simulated by a circuit family of size

polynomial in t(n), and similarly, A non-deterministic TM running in time t(n) can be sim-

ulated by a circuit family of size exponential in t(n). This gives that P ⊆ P/poly, and

NP ⊆ SIZE(2poly(n)). However, we do not know whether there is a better simulation with

smaller circuit size. In fact, a simulation of NP with polynomial-size circuits implies the col-

lapse of the polynomial hierarchy, and similarly, a simulation of EXP with polynomial-size

circuits implies a more severe collapse of EXP to ΣP
2 .

Theorem 2.6 (Karp-Lipton [KL82]). If NP ⊆ P/poly, then PH = ΣP
2 = ΠP

2 .

Theorem 2.7 (Meyer [KL82]). If EXP ⊆ P/poly, then EXP = ΣP
2 .

Shannon [Sha49] showed that there are hard functions which requires large circuits.

Theorem 2.8 (Shannon [Sha49]). For large enough n, there exists a boolean function

which is not computable by any boolean circuit of size at most 2n/n.

The proof is by a counting argument; that is, count the number of possible circuits of

a bounded size. In fact, almost all boolean functions are hard to compute; the number of

functions computable by circuits of size 2n/n is bounded by 22n · 2−Ω(2n/n), which is only a

tiny portion of the 22n functions. However, we do not know how to explicitly define such a

function. In particular, we do not know whether there is such a hard function in NEXP.

Based on Shannon’s result, Kannan [Kan82] showed that, there are hard languages

which are not computable by circuits of any fixed polynomial size.

Theorem 2.9. [Kan82] For any constant c, there exists a language in ΣP
2 which is not

computable by boolean circuits of size nc.

Note that the theorem says, for any constant c, we have ΣP
2 * SIZE(nc). This does

not imply any relationship between ΣP
2 and P/poly = ∪cSIZE(nc). Analogously, for any c,

we have P * TIME(nc), but P = ∪cTIME(nc); for any c, we have P/poly * SIZE(nc), but

P/poly = ∪cSIZE(nc).
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2.1.4 Bounded Depth Circuits

General boolean circuits are hard to analyze. Until now, we do not know whether there is a

problem in NEXP which require circuits of super-polynomial size. In the following, we define

circuits of bounded depth, where the depth restriction allows us to apply more analytical

tools.

In order for a constant-depth circuit to access all the inputs, we allows the AND and

OR gates to have unbounded fan-in. Also, we introduce modular and majority gates. A

MODm gate outputs 1 if and only if the summation of its inputs is divisible by m. A MAJ

gate outputs 1 if and only if more than half of its inputs are 1. The following are well-studied

constant-depth circuit classes.

• AC0 is the class of circuit families of constant depth and polynomial size, with un-

bounded fan-in AND and OR gates.

• AC0[m], for an integer m, extends AC0 with unbounded fan-in MODm gates.

• ACC0 = ∪mAC0[m].

• TC0 extends AC0 with unbounded fan-in MAJ (majority) gates.

It is known that

AC0 ( ACC0 ⊆ TC0 ⊆ P/poly.

Proving lower bounds against bounded-depth circuits is a hard task for complexity the-

orists. It was known that PARITY is not in AC0 [FSS84], and for distinct prime numbers p

and q, MODp is not in AC0[q] [Raz87, Smo87]. There was little progress for decades, until

Williams [Wil11] showed that a problem in NEXP is not in ACC0. Proving a lower bound

against TC0 is the next goal for complexity theorists.

2.1.5 Boolean Formulas

A (boolean) formula over the basis B is a tree where each leaf is labeled by an input

variable or a constant, each internal node is labeled by a function in B whose arity is the

same as the in-degree of the node, and the root is designated as the output. A De Morgan

formula is a formula over the basis {¬,∧,∨}. Constants in formulas can be eliminated by
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the facts that 0 ∧ x = 0, 1 ∨ x = 1, and 0 ∨ x = 1 ∧ x = x. Formulas also allow equivalent

transformations by commutativity and De Morgan’s laws:

x ∧ y = y ∧ x, x ∨ y = y ∨ x,

¬(x ∧ y) = ¬x ∨ ¬y, ¬(x ∨ y) = ¬x ∧ ¬y.

Thus, one can transform a de Morgan formula such that ¬ appears only before a variable.

Without loss of generality, we will assume that, a de Morgan formula is represented by a

binary tree where each leaf is labeled by a literal (a variable or its negation), and each

internal node is labeled by ∧ or ∨.

The size of a formula is the number of leafs in its tree representation; the depth of

a formula is the depth of the tree. The size is also the total number of appearances of

all variables in the formula. We denote by L(F ) the size of a formula F . For a boolean

function f and a basis B, its formula size L(f) is the smallest size of all possible formulas

over B computing f , and the formula depth D(f) is the smallest depth of all formulas over

B computing f .

We say a language L is computable by formulas of size s(n) over a basis B if, for each

input length n, there is a formula Fn over B such that, for every x ∈ {0, 1}n, we have x ∈ L
if and only if Fn(x) = 1. In other words, L is computable by a sequence of formulas {Fn}
such that L(Fn) ≤ s(n) for all n.

Shannon [Sha49] showed a non-explicit lower bound of Ω(2n/ log n) using a count-

ing argument; that is, there exists a function which is not computable by formulas of size

δ · 2n/ log n for some δ > 0 (over any finite basis). In fact, most functions are hard to com-

pute by such formulas. However, we do not know how to explicitly find even one of them.

Nevertheless, using Shannon’s lower bound as a blackbox, Andreev [And87] constructed

a function computable in P but not by formulas of size n2−o(1) over the full basis. For de

Morgan formulas, the lower bound was improved to n3−o(1) by [Hås98].

2.2 Circuit Lower Bounds versus Circuit Satisfiability Algorithms

2.2.1 Lower Bounds from Satisfiability Algorithms

The Karp-Lipton and Meyer’s theorems (Theorem 2.6 and 2.7) say that, simulating PH

(EXP) with polynomial-size circuits imply the collapse of PH (EXP) to ΣP
2 . This can be
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directly used to prove the following.

Theorem 2.10. [KL82] If P = NP, then EXP * P/poly.

The proof is simple. Suppose EXP * P/poly. Then by Theorem 2.7), EXP = ΣP
2 .

Since P = NP implies that ΣP
2 = P, we get a contradiction with the time hierarchy theorem

(Theorem 2.1). This result can be strengthened in two ways. Let E = DTIME(2O(n)).

• The condition P = NP implies a stronger result E * SIZE(2n/n). Similar to Kannan’s

result (Theorem 2.9), EPH contains a language which requires the maximal circuit

size O(2n/n). Since P = NP implies PH = P, we get EPH = E and the result follows.

• A weaker condition NP ⊆ DTIME(2o(n)) still implies that EXP * P/poly. Assuming

EXP * P/poly implies EXP = ΣP
2 = NPNP. Since NP ⊆ DTIME(2o(n)), we get EXP is

in DTIME(2o(n)) which still contradicts the time hierarchy theorem.

We can also get that coNP ⊆ NTIME(2o(n)) implies NEXP * P/poly. This follows from

the result by [IKW01] that NEXP ⊆ P/poly implies NEXP = ΠP
2 .

The above results show that sub-exponential time SAT algorithms imply circuit lower

bounds. However, such algorithms are still beyond our reach. Recently, Williams [Wil10]

showed that a very weak improvement over brute-force search would imply circuit lower

bounds for NEXP. Let C be a circuit class which is closed under composition and AC0 ⊆
C ⊆ P/poly (for example, C could be P/poly,TC0,ACC0).

Theorem 2.11. [Wil10, Wil11] There is c > 0 such that, if C-SAT is in O(2n/nc) for circuits

with n inputs and nk size for any k, then NEXP * C.

Similar as Theorem 2.10 and its strengthened results, the proof is via a contradiction

with the (non-deterministic) time hierarchy theorem. That is, assuming both NEXP ⊆ C and

an efficient C-SAT algorithm, every problem in nondeterministic O(2n) time is solvable in

o(2n) time, which contradicts the non-deterministic time hierarchy theorem (Theorem 2.1).

The condition here only requires SAT algorithms of slightly better than brute-force

search; this is much weaker than the previous conditions of polynomial or sub-exponential

time SAT algorithms. Following this, Williams [Wil11] showed that ACC0 circuits do have

SAT algorithms running in the require time bound, and this gives the currelty best-known

circuit lower bounds.

Theorem 2.12. [Wil11] NEXP * ACC0.
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2.2.2 Structured Properties, Lower Bounds and Satisfiability Algorithms

Restricted circuit models have certain structured properties which can be exploited to either

prove lower bounds or design better satisfiability algorithms. We survey here several circuit

models, including k-CNF, AC0, ACC0 and boolean formulas, and their structured properties.

k-CNF. A CNF formula is an AND of ORs of literals, where a literal is a variable or

its negation. A k-CNF is a CNF where each OR has at most k literals. The k-SAT prob-

lem is to decide the satisfiability of k-CNF formulas; for all k ≥ 3, the problem is NP-

complete [Coo71]. There has been a line of researches which get k-SAT algorithms run-

ning in time 2n−n/ck for some fixed constant c [PPZ99, PPSZ98, Sch02]. (However, we note

that the savings of the running time over 2n diminishes as k increases.)

Paturi, Pudlak and Zane [PPZ99] gave a randomized algorithm for k-SAT running in

time roughly 2n−n/k, and a deterministic algorithm in time 2n−n/2k. The algorithm is based

a special property on the satisfying assignments to k-CNF, which is termed “Satisfiability

Coding Lemma”. It says that the satisfying assignments of a k-CNF can be encoded suc-

cinctly. In particular, it implies that a k-CNF has at most 2n−n/k isolated solutions, where

an isolated solution is a satisfying assignment such that, if we flip any one bit of the assign-

ment, the formula is no longer satisfied. It was shown that a satisfiable k-CNF has either a

nearly isolated solution or many satisfying assignments, and then one can either search in

a space of small size (for an isolated solution), or randomly guess a solution.

The Satisfiability Coding Lemma was also used in [PPZ99] to get a lower bound for com-

puting Parity with depth-3 circuits, that is, Parity requires depth-3 circuits of size θ(n1/42
√
n).

Intuitively, Parity, which has a large number 2n−1 of isolated solutions, is hard to compute

by small ORs of CNFs, which do not have many isolated solutions.

The approach by Paturi, Pudlak and Zane [PPZ99] shows an example of the connec-

tions between satisfiability algorithms and lower bounds. They identified a structured prop-

erty of k-CNFs; on the one hand, this property helps to design a better satisfiability al-

gorithm by reducing the search space, and on the other hand, this property implies the

limitation of using k-CNF as a computational model, which gives a lower bound.

AC0 Circuits. We now consider AC0 circuits, which are boolean circuits with unbounded

fan-in AND and OR gates but constant depth. This generalizes DNFs and CNFs from depth

2 to arbitrary constant depth. Lower bounds against AC0 were obtained long time ago; it

was shown by [FSS84, Ajt83] that Parity is not computable by polynomial-size AC0 circuits.
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Hastad [Hås86] improved this lower bound to exponential size exp(nθ(
1
d−1

)). The structured

property of AC0 exploited by Hastad [Hås86] is depth reduction under “random restrictions”,

known as Hastad’s Switching Lemma. That is, for a depth-d AC0 circuit, when we randomly

assign values to a large fraction of the inputs, with high probability, the circuit (on the

remaining inputs) can be transformed to be of depth d − 1. By recursively applying this

depth reduction, a small-size circuit can be transformed to be a constant even when there

are still unassigned inputs. This means such circuits cannot compute Parity, since Parity is

not a constant even when there is only one input left.

Recently, Impagliazzo, Matthews and Paturi [IMP12] extends Hastad’s switching lemma

and gives a randomized AC0 satisfiability algorithm running in time 2n−n/ log(s/n)d−1
, where s

is the size of the circuit. The algorithm is based on a partition of the input space into regions

where the circuit becomes constant, and that the number of such regions is not too large.

A deterministic AC0 satisfiability algorithm was derived in [BIS12], which is based on an

improvement of the lower bound technique of [Ajt83]. The properties exploited in [IMP12]

and [BIS12] also give improved bounds on how AC0 circuits can approximately compute

Parity; finally, Hastad [Hås12] showed that AC0 circuits of size s can compute Parity cor-

rectly on at most 1/2 + ε fraction of inputs where ε = exp(−Ω(n/ logd−1 s)).

This line of work [Ajt83, Hås86, IMP12, BIS12, Hås12], which explored structured prop-

erties of AC0, show another connection between circuit lower bounds and satisfiability al-

gorithms.

ACC0 Circuits. Since AC0 circuits can not compute Parity, ACC0 circuits extend AC0

by allowing unbounded fan-in modulo gates. It was shown by [BT94, AG94] that an ACC0

circuit of size s can be efficiently transformed to a depth-2 circuit with a symmetric gate at

the top, and exp(logO(1)(s)) AND gates in the middle. Here, a symmetric gate computes a

function of its inputs such that the output is the same for any permutations of the inputs.

Williams [Wil11] exploited this property to design a satisfiability algorithm running in time

2n−n
Ω(1)

, which allows him to apply Theorem 2.11 [Wil10] to get a new lower bound.

Boolean Formulas. For boolean formulas, we have the restriction that the non-input

gates have fan-out 1. Boolean formulas have the structured property that the formula

size shrinks non-trivially under random restrictions. This property was exploited to prove

formula lower bounds. In particular, for boolean formulas over the de Morgan basis, Sub-

botovskaya [Sub61] showed that, when we randomly assign values to a fraction 1−p of the

inputs, the formula size (on average) shrinks by a factor of p1.5. Based on this shrinkage
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property, Andreev [And87] constructed a function (computable in P) which is not com-

putable by formulas of size n2.5−o(1). The shrinkage factor was improved to almost p2 by

Hastad [Hås98], and this implies a n3−o(1) formula lower bound for the same Andreev’s

function [And87].

Recently, Santhanam [San10] exploited the shrinkage property to design a satisfiability

algorithm running in time 2n−Ω(n) for linear-size formulas. The algorithm is based on a

concentrated analysis of the shrinkage property. That is, under a certain process which

restricts a fraction 1 − p of the inputs, the formula size shrinks in high probability, not just

on average. This “concentrated” shrinkage allows [San10] to build a decision tree of size

2n−Ω(n) for linear-size formulas, and the algorithm follows from traversing the decision tree.

This approach also allows Santhanam [San10] to give a correlation lower bound, that is,

linear-size formulas over the de Morgan basis can compute Parity correctly on at most

1/2 + 2−Ω(n) of the inputs. Santhanam [San10]’s algorithm was extended to formulas over

the full basis by Seto and Tamaki [ST12], to formulas of size n2.49 by [CKK+14] (which we

include in this thesis), and finally to formulas of size n3−o(1) by [KRT13].
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Boolean Formulas: #SAT Algorithms
and Lower Bounds

3.1 Introduction

Boolean formulas are a special case of boolean circuits where the underlying structures

are trees instead of directed acyclic graphs. In other words, each internal gate in a boolean

formula has out-degree at most one. This limitation in reusability makes formulas a less

powerful computational model. However, it does allow more combinatorial analysis. In par-

ticular, we have better lower bounds, satisfiability algorithms, and pseudoranom generators

for formulas than those for circuits.

A particularly interesting property for formulas is the size shrinkage under random re-

strictions, that is, the size of a formula shrinks non-trivially when some of its inputs are

randomly assigned. We say the shrinkage exponent is Γ if the formula size shrinks by

an expected factor of pΓ under random restrictions which leave a fraction p of the inputs

unassigned.

Subbotovskaya [Sub61] observed that, de Morgan formulas, i.e., formulas over the

de Morgan basis {¬,∨,∧}, have shrinkage exponent Γ ≥ 1.5. This immediately gives

a lower bound: we need de Morgan formulas of size at least Ω(n1.5) to compute Parity.

Khrapchenko [Khr71] proved a lower bound of Ω(n2) using a different technique. Later,

Andreev [And87] constructed a function (computable in polynomial time) which requires

formulas of size at least Ω(nΓ+1−o(1)); this is at least Ω(n2.5−o(1)) for Γ ≥ 1.5 by [Sub61].

20
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The shrinkage exponent for de Morgan formulas was improved to Γ ≥ 1.55 by [IN93]

and to Γ ≥ 1.63 by [PZ93]. They use similar techniques by introducing weight functions

based on the underlying tree structures of formulas. Finally, Hastad [Hås98] proved that

Γ ≥ 2−o(1); this is almost tight since we know Γ ≤ 2, by the fact that Parity is computable by

formulas of size n2. This leads to an Ω(n3−o(1)) lower bound for Andreev’s function [And87].

Recently, several new results on formulas were discovered: better-than brute-force sat-

isfiability algorithms for small-size formulas [San10], pseudorandom generators [IMZ12],

and average-case lower bounds for formulas [KR13, KRT13].

Santhanam [San10] observed that, the shrinkage result of [Sub61] can be strengthened

to a high-probability version. That is, by deterministically choosing variables which appear

frequently in the formula and randomly assigning 0 or 1 to such variables, the formula

size shrinks with high probability (by a factor of p1.5 when there are a fraction p of the

variable left). This concentrated shrinkage property was used by [San10] to design a #SAT

algorithm for linear-size de Morgan formulas which runs in time 2n−Ω(n), better than brute-

force search. Meanwhile, this property gives a correlation lower bound for Parity; that is

Parity can not be approximately computed by linear-size de Morgan formulas.

The average-case lower bound for de Morgan formulas was improved to Ω(n2.499)

by [KR13] and to Ω(n2.499) by [KRT13], which is almost tight. Komargodski and Raz [KR13]

designed a specific process of random restrictions such that the formula size shrinks (by

a factor of p1.5) with high probability, and they also used error-correcting codes to gen-

eralize the hardness of Andreev’s function from the worst case to the average case. The

restriction process defined in [KR13] still uses certain randomness for selecting variables to

restrict, which is necessary for their average-case hardness. Using techniques of [IMZ12],

the average-case lower bound was improved by [KRT13] to Ω(n2.999), matching with the

worst-case hardness. Furthermore, this average-case hardness result implies a random-

ized #SAT algorithm running in time 2n−n
Ω(1)

for de Morgan formulas of size n2.999.

Impagliazzo, Meka and Zuckerman [IMZ12] constructed pseudorandom generators for

formulas based on the shrinkage property. In particular, for de Morgan formulas of size s,

their generator has seed length almost s0.334. They proved that, under a family of pseudo-

random restrictions, the de Morgan formula size shrinks by a factor of almost p2 with high

probability.

Along this line of research, we derive the following results on the concentrated shrink-

age, #SAT-algorithms and average-case lower bounds for small formulas.
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Shrinkage of formulas. This “shrinkage in expectation” result of Subbotovskaya [Sub61]

is sufficient for proving worst-case de Morgan formula lower bounds [And87]. However,

for designing SAT-algorithms and pseudorandom generators, as well as for proving strong

average-case hardness results for small de Morgan formulas, it is important to have a

“high-probability” version of such a shrinkage result, saying that “most” restrictions (of the

appropriate kind) shrink the size of the original formula. Such a version of shrinkage for de

Morgan formulas is implicit in [San10] (for linear-size formulas); Impagliazzo et al. [IMZ12]

prove a version of shrinkage with respect to pseudo-random restrictions (for de Morgan

formulas of size almost n3); Komargodski and Raz [KR13] prove the shrinkage result for

certain random restrictions (for de Morgan formulas of size about n2.5).

We sharpen a structural characterization of small (de Morgan) formulas by proving a

stronger version of the “shrinkage under random restrictions” result of [San10, KR13], with

a cleaner and simpler argument.

Shrinkage Lemma: Let F be a (de Morgan) formula or general branching program size s

on n variables. Consider the following greedy randomized process:

For n − k steps (where 0 ≤ k ≤ n), do the following: (1) choose the most

frequent variable in the current formula; (2) assign it uniformly at random to 0 or

1; (3) simplify the resulting new formula.

Then, with probability at least 1 − 2−k, this process produces a formula of size at most

2 · s · (k/n)Γ, where Γ = 1.5 for de Morgan formulas, and Γ = 1 for general formulas and

branching programs.

Formula-#SAT. The fact that SAT is NP-complete [Coo71, Lev73], and so probably not

solvable in polynomial time, does not deter researchers interested in “better-than-brute-

force” SAT-algorithms. In particular, the case of CNF-SAT has been actively studied for a

number of years (see [DH09] for a recent survey), while the study of Circuit-SAT algorithms

for more general classes of circuits is more recent: see [CIP09, IMP12, BIS12] for AC0-SAT,

[San10, ST12] for Formula-SAT, and [Wil11] for ACC0-SAT. Usually such algorithms exploit

the same structural properties of the corresponding circuit class that are used in the circuit

lower bounds for that class. In fact, the observation that circuit lower bound proofs and

meta-algorithms are intimately related was first formulated in Zane’s PhD thesis [Zan98]

precisely in the context of depth-3 circuit lower bounds and improved CNF-SAT algorithms.
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As a consequence of the Shrinkage Lemma above, we get a new “better-than-brute-

force” deterministic algorithm for #SAT for (de Morgan) formulas and general branching

programs of about quadratic size, as well as give a simplified analysis of the #SAT algo-

rithms for linear-size (de Morgan) formulas from [San10, ST12].

#SAT algorithms: Counting the number of satisfying assignments for n-variate de Morgan

formulas of size n2.49, formulas over the complete basis of size n1.99, or branching pro-

grams of size n1.99 can be done by a deterministic algorithm in time 2n−n
ε
, for some ε > 0

(dependent on the size of the formula/branching program).

Average-case formula lower bounds. Showing that explicit functions are average-case

hard to compute by small circuits is an important problem in complexity theory, both for un-

derstanding “efficient computation”, and for algorithmic applications (e.g., in cryptography

and derandomization). Here, again, useful algorithmic ideas often contribute to proving

lower bounds for the related model of computation. For example, strong average-case

hardness results for linear-size (de Morgan) formulas are proved in [San10, ST12], using

the same ideas that also gave SAT-algorithms for the corresponding formula classes.

We use our shrinkage lemma to give an alternative proof of a recent average-case

lower bound against (de Morgan) formulas due to [KR13]: There is a Boolean function

f : {0, 1}n → {0, 1} computable in P such that every de Morgan formula of size n2.49 (any

general formula of size n1.99) computes f(x) correctly on at most 1/2 + 2−n
σ

fraction of all

n-bit inputs, for some constant 0 < σ < 1.

3.1.1 Restriction-Based Lower Bounds

Now we describe the “random restriction” method by Subbotovskaya [Sub61] for proving

formula lower bounds. That is, if we randomly assign values to the inputs of a De Morgan

formula, then the formula size shrinks non-trivially. More precisely, if a random restriction

leaves p fraction of variables unrestricted, then the formula size shrinks in expectation by a

factor of pΓ for Γ ≥ 1.5, where Γ is called the shrinkage exponent.

Let f be a boolean function on n variables and it is computed by a formula F which has

the smallest possible size. Consider that we fix the variables of F one by one to be either

0 or 1. The tree of the formula can be simplified at each step via the following rules:
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• If a constant (0 or 1) appears at a leaf, remove it and also possibly its sibling. In

particular, replace 1 ∨ ψ by 1, 0 ∧ ψ by 0, and 0 ∨ ψ or 1 ∧ ψ by ψ.

• For any literal in a leaf, remove its variable from the sibling subtree. In particular, for

y ∨G where y is a literal and G is a formula, replace every appearance of y in G by 0

and y by 1; for y ∧G, replace every appearance of y in G by 1, and y by 0.

The second rule guarantees that the sibling subtree of a leaf does not contain the variable

in that leaf.

Suppose we choose a variable x randomly and assign it uniformly to be either 0 or 1.

For each leaf containing x, we can remove this leaf, and also, with probability at least 1/2,

remove its sibling subtree. By the second rule above, the sibling subtree does not contain

x. Thus on average we can remove at least 1.5 leaves for each appearance of x in F . Let

F ′ be the new formula after applying the above simplification rules. Since on average each

variable appears L(F )/n times in F , the new formula size L(F ′) satisfies that

E[L(F ′)] ≤ L(F )− L(F )

n
· 3

2
= L(F ) ·

(
1− 3

2n

)
≤ L(F ) ·

(
1− 1

n

)1.5

.

The last inequality is by the fact that 1 − ax ≤ (1 − x)a for 0 ≤ x ≤ 1 and a ≥ 1. Note that

the expectation is taken over a random choice of variables and a random assignment to

the variable.

Consider a step-by-step process where at each step we randomly choose a variable

and randomly fix it. We simplify the formula using the simplification rules after each step.

Suppose we run the process for n− k steps (with k variables left unfixed). Let F0 = F , and

Fi be the simplified formula after step i. We have that, for each step i,

E[L(Fi)] ≤ E[L(Fi−1)] ·
(

1− 1

n− i+ 1

)1.5

,

and finally

E[L(Fn−k)] ≤ L(F0) ·
(

1− 1

n

)1.5

· · ·
(

1− 1

k + 1

)1.5

= L(F0) ·
(
k

n

)1.5

.

Together with Markov’s inequality, we essentially proved the following lemma.

Lemma 3.1. Let f be a boolean function on n variables. After randomly fixing n − k vari-

ables, let f ′ be the new function. Then we have

E[L(f ′)] ≤ L(f) ·
(
k

n

)1.5

,
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and

Pr

[
L(f ′)] ≤ 4 · L(f) ·

(
k

n

)1.5
]
≥ 3

4
.

Using this shrinkage result, Andreev [And87] constructed an explicit function requiring

almost n2.5 formula size. Andreev’s function uses Nechiporuk’s “universal function” method.

Andreev [And87] gave lower bounds based on the shrinkage exponent of the size of the

computational model.

Theorem 3.2. [And87] If a class of formulas has shrinkage exponent Γ, then there is an

explicit boolean function h : {0, 1}n → {0, 1} in P that is not computable by formulas of size

at most nΓ+1/poly(log n).

Andreev’s function is constructed as follows. For simplicity, consider 2n bits of inputs:

The first n bits defines a function on log n bits, denoted by H; the second n bits are divided

into log n blocks, each with n/ log n bits. Compute the the parity of the variables in each

block, and then we apply H on the log n bits produced. Now if H is the truth table of a

hardest function, then it requires formulas of size O(n/ log log n). Under random restriction,

with certain probability, we have both that the formula size shrinks non-trivially and that

each block in the second n bits has unrestricted variables left. Due to hardness of H, the

original function must have a large size such that the size after the shrinkage is still big

enough to accommodate H.

Now we prove the special case on De Morgan formulas.

Theorem 3.3. [And87] There exists an explicit function which is not computable by formulas

of size n2.5−o(1).

Proof. We define a function f on 2n inputs, where the first n inputs will be fixed as a hard

function, and the second n inputs serve as an index to the first n bits. Similarly, the second

n inputs are divided into log n blocks, each of size n/ log n.

The function is computed as follows. For each block of the second n inputs, compute

the parity of all bits inside the block; this generates log n bits, one from each block. Use

these bits to locate one bit in the first n inputs and output it.

More specifically, suppose we have input bits (x, y) = (x0, . . . , xn−1, y0, . . . , yn−1). Let

m = n/ log n and let

ri = ymi ⊕ · · · ⊕ ym(i+1)−1, i = 0, . . . , (log n− 1).
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The number r = r0r1 . . . rlogn−1 is between 0 and n− 1. The output of f(x, y) is the bit xr.

Let F be the smallest formula computing f . We fix a hard function h on log n bits which

has formula size L(h) ≥ n/(2 log log n), and fix the first n bits to be the truth table of h,

denoted by xh.

Consider a random restriction on the second n inputs which leaves k = log n ln(4 log n)

of the n inputs unfixed. For each block of m inputs, the probability that no bit is left unfixed

is the following (
n−m
k

)(
n
k

) ≤
(
n− k
n

)m
≤ e−

k
logn =

1

4 log n

By the union bound, the probability that some of the log n blocks has no bit unfixed is at

most log n · 1
4 logn = 1/4. Then with probability 3/4, every block has some unfixed inputs.

Denote by F ′ the formula after the random restriction. With probability 3/4, it computes

the hard function h (as a sub-function), which mean that L(F ′) ≥ L(h). On the other hand,

with probability 3/4, we have L(F ′) ≤ 4(k/n)1.5L(F ). Therefore, we get

L(F ) ≥ 1

4

(n
k

)1.5
L(h) ≥ 1

4

(n
k

)1.5 n

2 log log n
≥ n2.5−o(1).

3.2 Concentrated Shrinkage

The shrinkage under Subbotovskaya’s random restriction happens on average. Santhanam

[San10] observed that, by adaptively picking the most frequent variables, shrinkage hap-

pens with high probability; and furthermore, this concentrated shrinkage can be applied to

design a satisfiability algorithm for small-size formulas, and also get average-case lower

bounds.

We prove the concentrated shrinkage using the adaptive restrictions of [San10] (each

time randomly restricting the most frequent variable in the formula). Following [KR13], our

idea is to analyze how the size of a formula is changed after a single (most frequent) vari-

able is randomly assigned. The new formula size is a random variable, which is expected

to get smaller than the previous formula size. We would like to treat the sequence of

these random variables as a supermartingale, and use the standard concentration results

(Azuma’s inequalities) to show that the final formula is very likely to have a small size.
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One technical problem with this approach is that in one step the formula size may drop

by an arbitrary amount, and we don’t seem to get the boundedness condition (that a ran-

dom variable changes by at most some fixed amount after each step) that is a condition for

the standard version of Azuma’s inequality. In [KR13], this technicality was circumvented

by introducing some “dummy” variables into the formula to artificially keep the one-step

change in the formula size bounded, and then apply the standard version of Azuma’s in-

equality. However, it seems unnecessary to do that, since if the formula size drops by a lot

in a single step, this should be even better for us!

Instead, we show a version of Azuma’s inequality holds in the special case of random

variables which take two values with equal probability and where the boundedness condi-

tion is one-sided : we just require that the next random value be smaller than the current

value by at least some known amount, meanwhile allowing it to be arbitrarily small. This

turns out to be precisely the setting in our case, and so we can bound the probability of

producing a large formula by a direct application of Azuma’s inequality. Apart from making

the overall argument simpler, this also gives a quantitatively better bound. We give the

details next.

3.2.1 A Variant of Azuma’s Inequality

Lemma 3.4. Let Y be a random variable taking two values with equal probability. If E[Y ] ≤
0 and there exists c ≥ 0 such that Y ≤ c, then for any t ≥ 0, we have E[etY ] ≤ et2c2/2.

Proof. Suppose Y takes two values a and b where a ≤ b ≤ c, and Pr[Y = a] = Pr[Y =

b] = 1
2 . Consider the following two cases. If b ≤ 0, then

etY ≤ et·0 = 1 ≤ et2c2/2.

If b > 0, since E[Y ] = 1
2(a+ b) ≤ 0, we have a ≤ −b and

E[etY ] =
1

2
(eta + etb) ≤ 1

2
(e−tb + etb) ≤ et2b2/2 ≤ et2c2/2,

where we used the inequality 1
2(e−x + ex) ≤ ex2/2.

Recall that a sequence of random variables X0, X1, X2, . . . , Xn is a supermartingale

with respect to a sequence of random variables R1, R2, . . . , Rn if

E[Xi | Ri−1, . . . , R1] ≤ Xi−1, for 1 ≤ i ≤ n.



CHAPTER 3. BOOLEAN FORMULAS: #SAT ALGORITHMS AND LOWER BOUNDS 28

Lemma 3.5. Let {Xi}ni=0 be a supermartingale with respect to {Ri}ni=1. Let Yi = Xi−Xi−1.

If, for every 1 ≤ i ≤ n, the random variable Yi (conditioned on Ri−1, . . . , R1) assumes

two values with equal probability, and there exists a constant ci ≥ 0 such that Yi ≤ ci,

E[etYi | Ri−1, . . . , R1] ≤ et2c2i /2, then, for any λ, we have

Pr[Xn −X0 ≥ λ] ≤ exp

(
− λ2

2
∑n

i=1 c
2
i

)
.

Proof. The following is an adaptation of the standard proof of Azuma’s inequality to our

case of “one-sided bounded” variables. Let t ≥ 0 be arbitrary. Since Xn −X0 =
∑n

i=1 Yi,

we have

Pr[Xn −X0 ≥ λ] = Pr

[
n∑
i=1

Yi ≥ λ

]
= Pr

[
et

∑n
i=1 Yi ≥ eλt

]
≤ e−λtE

[
et

∑n
i=1 Yi

]
,

where the last inequality is by Markov’s inequality. We note that the following bound does

not depend on the conditioning part:

E[etYi | Ri, . . . , R1] ≤ et2c2i /2.

We get

E
[
et

∑n
i=1 Yi

]
= E

[
e
∑n−1
i=1 YietYn

]
= E

[
et

∑n−1
i=1 Yi ·E

[
etYn | Rn−1, . . . , R1

]]
≤ E

[
et

∑n−1
i=1 Yi

]
·et2c2n/2,

where the last inequality is by Lemma 3.4. By induction, we get E
[
et

∑n
i=1 Yi

]
≤ et2

∑n
i=1 c

2
i /2.

Thus, Pr[Xn − X0 ≥ λ] ≤ e−λt+t
2
∑n
i=1 c

2
i /2. Choosing t = λ/

∑n
i=1 c

2
i yields the required

bound.

3.2.2 Shrinkage Lemma

Recall our definition of a restriction. For a given de Morgan formula F on n variables, define

F0 = F . For 1 ≤ i ≤ n, we define Fi to be the subformula obtained from Fi−1 by uniformly

at random assigning the most frequent variable of Fi−1.

We state the Shrinkage Lemma for the case of de Morgan formulas; the case of gen-

eral formulas and branching programs is similar with the shrinkage exponent Γ = 1 used

throughout instead of Γ = 3/2.
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Lemma 3.6 (Shrinkage Lemma). Let F be any given de Morgan formula on n variables.

For any k ≥ 4, we have

Pr

[
L(Fn−k) ≥ 2 · L(F ) ·

(
k

n

)3/2
]
< 2−k.

For the proof, we will need the following auxiliary lemmas.

Lemma 3.7. Let F be a de Morgan formula on n variables, and let F ′ = F1 (obtained from

F in one step of adaptive restriction defined above). Then L(F ′) ≤ L(F ) ·
(
1− 1

n

)
, and

E[L(F ′)] ≤ L(F ) ·
(
1− 1

n

)3/2.

Proof. Let x be the most frequent variable in F . Then x appears at least L(F )/n times

(as a leaf label x or x). Furthermore, since F is simplified, for each leaf labeled with

x or x, its sibling subtree does not contain x. By the simplification rules 1 and 2, after

assigning x to be 0 or 1, we can remove at least one leaf for each appearance of x. That

is, L(F ′) ≤ L(F )− L(F )/n = L(F ) · (1− 1/n) .

Moreover, for each appearance of x, we expect to remove its sibling with probability

1/2. Since the sibling has size at least 1 and does not contain x, we have

E[L(F ′)] ≤ L(F )− L(F )

n
− 1

2
· L(F )

n
= L(F ) ·

(
1− 3

2n

)
≤ L(F ) ·

(
1− 1

n

)3/2

,

where the last inequality is by 1−ax ≤ (1−x)a true for 0 ≤ x ≤ 1 and a ≥ 1 (see below).

Lemma 3.8. For 0 ≤ x ≤ 1 and a ≥ 1, it holds that (1− ax) ≤ (1− x)a.

Proof. For 1 ≤ a < 2, by Taylor’ series,

(1− x)a

= 1− ax+
a(a− 1)

2!
x2

(
1− a− 2

3
x

)
+
a(a− 1)(a− 2)(a− 3)

4!
x4

(
1− a− 5

5
x

)
+ · · ·

≥ 1− ax

For 2 ≤ a < 3, we have (1− x)a ≥ (1− x) (1− (a− 1)x) ≥ 1− ax. By induction, we can

prove the inequality for all intervals i ≤ a < i+ 1, for integers i ≥ 1.

Let Ri be the random value assigned to the restricted variable in step i. Set Li := L(Fi),

and li := logLi. Define a sequence of random variables {Zi} as follows:

Zi = li − li−1 −
3

2
log

(
1− 1

n− i+ 1

)
.
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Note that, given R1, . . . , Ri−1, the random variable Zi assumes two values with equal prob-

ability.

Lemma 3.9. Let X0 = 0 and Xi =
∑i

j=1 Zj . Then the sequence {Xi} is a supermartingale

with respect to {Ri}, and, for each Zi, we have

Zi ≤ ci := −1

2
log

(
1− 1

n− i+ 1

)
.

E[Zi | Ri, . . . , R1] ≤ 0,

E[etZi | Ri, . . . , R1] ≤ et2c2i /2.

Proof. Using Lemma 3.7, we get

li ≤ li−1 + log

(
1− 1

n− i+ 1

)
.

Then,

Zi = li − li−1 −
3

2
log

(
1− 1

n− i+ 1

)
≤ log

(
1− 1

n− i+ 1

)
− 3

2
log

(
1− 1

n− i+ 1

)
= −1

2
log

(
1− 1

n− i+ 1

)
≡ ci

By Jensen’s inequality, E[li | Ri−1, . . . , R1] ≤ logE[Li | Ri−1, . . . , R1], which, by Lemma 3.7,

is at most

log

(
Li−1 ·

(
1− 1

n− i+ 1

)3/2
)

= li−1 +
3

2
log

(
1− 1

n− i+ 1

)
;

this implies E[Zi | Ri−1, . . . , R1] ≤ 0, and so {Xi} is indeed a supermartingale.

Conditioning on the first i − 1 random bits, Zi takes two values with equal probability,

E[Zi | Ri−1, . . . , R1] ≤ 0, and Zi ≤ ci. By Lemma 3.4, we have E[etZi | R1, . . . , Ri−1] ≤
et

2c2i /2.

Now we can complete the proof of the Shrinkage Lemma.
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Proof of Lemma 3.6. Let λ be arbitrary, and let ci’s be as defined in Lemma 3.9. By

Lemma 3.9 and Lemma 6.4, we get

Pr

 i∑
j=1

Zj ≥ λ

 ≤ exp

(
− λ2

2
∑i

j=1 c
2
j

)
.

For the left-hand side, we get by the definition of Zj ’s that
∑i

j=1 Zj = li − l0 − 3
2 log n−i

n .

since
i∑

j=1

Zj = li − li−1 −
3

2
log

(
1− 1

n− (i− 1)

)
+ . . .+ l1 − l0 −

3

2
log

(
1− 1

n

)

= li − l0 −
3

2
log

(
n− i
n

)
,

Hence,

Pr

 i∑
j=1

Zj ≥ λ

 = Pr

[
li − l0 −

3

2
log

(
n− i
n

)
≥ λ

]

= Pr

[
exp

(
li − l0 −

3

2
log

(
n− i
n

))
≥ eλ

]
= Pr

[
Li ≥ eλL0

(
n− i
n

)3/2
]
.

For each 1 ≤ j ≤ i, we have cj ≤ 1
2 ·

1
n−j .

cj = −1

2
log

(
1− 1

n− j + 1

)
=

1

2
log

(
1 +

1

n− j

)
≤ 1

2
· 1

n− j
,

where the last inequality is by log(1 + x) ≤ x. Thus,
∑i

j=1 c
2
j is at most

1

4

i∑
j=1

(
1

n− j

)2

≤ 1

4

i∑
j=1

(
1

n− j − 1
− 1

n− j

)
=

1

4
·
(

1

n− i− 1
− 1

n− 1

)
≤ 1

4
· 1

n− i− 1
.

Taking i = n− k, we get

Pr

[
Ln−k ≥ eλL0

(
k

n

)3/2
]
≤ exp

(
− λ2

2
∑n−k

j=1 c
2
j

)
≤ e−2λ2(k−1).
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Choosing λ = ln 2 and k ≥ 4, concludes the proof.

Pr

[
L(Fn−k) ≥ 2 · L(F )

(
k

n

)3/2
]
< 2−k,

3.3 #SAT Algorithms for Formulas

3.3.1 n2.49-Size Formulas

Here we show the existence of “better than brute-force” #SAT algorithms for formulas of

about quadratic size.

Theorem 3.10. There is a deterministic algorithm for counting the number of satisfying

assignments in a given formula on n variables of size at most nd which runs in time t(n) ≤
2n−n

δ
, for some constant 0 < δ < 1 (dependent on d), where the constant d is such that

• d < 2.5 for de Morgan formulas, and

• d < 2 for formulas over the complete basis and for branching programs.

Proof. We consider the case of de Morgan formulas only; the case of general formulas and

branching programs is similar (using the shrinkage exponent Γ = 1 rather than Γ = 1.5).

Suppose we have a formula F on n variables of size n2.5−ε for a small constant ε > 0. Let

k = nα and α < 2
3ε. We build a restriction decision tree with 2n−k branches as follows:

Starting with F at the root, find the most frequent variable in the current formula,

set the variable first to 0 then to 1, and simplify the resulting two subformulas.

Make these subformulas the children of the current node. Continue until get a

full binary tree of depth exactly n− k.

Note that constructing this decision tree takes time 2n−kpoly(n). By the Shrinkage

Lemma (Lemma 3.6), for all but at most 2−k fraction of the leaves have the formula size

L(Fn−k) < 2 · L(F )
(
k
n

)3/2
= 2 · n2.5−ε · n1.5(α−1) = 2n1−ε+1.5α.

To solve #SAT for all “big” formulas (those that haven’t shrunk), we use brute-force

enumeration over all possible assignments to the k variables left. The running time is

bounded by 2n−k · 2−k · 2k · poly(n) ≤ 2n−k · poly(n).
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For “small” formulas (those that shrunk to the size less than 2nγ for some γ = 1 − ε +

1.5α), we use memoization. First, we enumerate all formulas of such size, and compute

and store the number of satisfying assignments for each of them. Then, as we go over the

leaves of the decision tree that correspond to small formulas, we simply look up the stored

answers for these formulas.

There are at most 2O(nγ logn) such formulas, and counting the satisfying assignments for

each one (with k inputs) takes time 2kpoly(nγ) = 2n
α · poly(n). The total time of evaluating

all formulas of size 2nγ is bounded by 2O(nγ logn) · 2nα · poly(n) ≤ 2O(nγ logn). Including

pre-processing, computing #SAT for all small formulas takes time at most 2n−k · poly(n) +

2O(nγ logn) ≤ 2n−n
α · poly(n).

Thus, the overall running time is bounded by 2n−n
δ

for some δ > 0.

3.3.2 Linear-Size Formulas

First, we give a simplified analysis of Santhanam’s 2n−δn-time satisfiability algorithm [San10]

for cn-size de Morgan formulas on n variables, getting an explicit bound on the savings δ

along the way (in [San10], the savings δ was some unspecified inverse polynomial in c).

Theorem 3.11 ([San10]). There is a deterministic algorithm for counting the number of

satisfying assignments of a given cn-size de Morgan formula on n variables that runs in

time 2n−δn, for δ ≥ 1/(32 · c2).

Proof. Let F be a de Morgan formula of linear size cn for some constant c. Let p =
(

1
4c

)2
and k = pn. We construct a decision tree of n − k levels in exactly the same way as in

the proof of Theorem 3.10. At each level, we choose the most frequent variable in the

current formula, generate two branches by assigning the variable either 0 or 1, and then

restrict the formula by the assignment. The final decision tree has 2n−k branches. By

the Shrinkage Lemma (Lemma 3.6), all but 2−k fraction of leaves have the formula size

L(Fn−k) ≤ 2 · L(F )
(
k
n

)3/2
= 2 · cn · p3/2 = 2cp1/2 · pn = 1

2pn = k
2 .

To compute #SAT for all “big” formulas, we use brute-force enumerations over all pos-

sible assignments to the k variables which are left. The running time in total is bounded by

2n−k · 2−k · 2k · poly(n) = 2n−k · poly(n).

For “small” formulas (with size less than k/2), there are at most k/2 variables left. To

compute #SAT for all such formulas, the total running time is bounded by 2n−k · 2k/2 ·
poly(n) = 2n−k/2 · poly(n).



CHAPTER 3. BOOLEAN FORMULAS: #SAT ALGORITHMS AND LOWER BOUNDS 34

The overall running time of counting the number of satisfying assignments of a de Mor-

gan formula of size cn is bounded by 2n−δnpoly(n) where δ = 1
32c2

.

Remark 3.12. Santhanam’s SAT algorithm relies on the fact that, under most restrictions,

a given linear-size de Morgan formula will simplify to a formula that doesn’t depend on all

of the remaining variables. The same is not true for de Morgan formulas of size at least

n2, as such formulas can compute the parity function on n bits. It is an interesting question

whether one can devise a non-trivial SAT algorithm for super-quadratic-size de Morgan

formulas that uses, say, polynomial space.

We can also use the “supermartingale approach” to provide a different analysis of the

#SAT algorithm for linear-size general formulas of [ST12]. At a high level, the argument of

[ST12] is as follows. One runs a greedy branching process (picking variables to restrict,

and restricting them to both 0 and 1) on a given general formula. Either at some point

in this process, we get a subformula that is easy to check for satisfiability (using, e.g.,

linear algebra), or else the formula will keep shrinking (similarly to the case of de Morgan

formulas). That is, assuming that we don’t get a formula amenable to linear-algebraic

methods, we can show that the formulas will behave similarly to de Morgan formulas and

so keep shrinking with some shrinkage exponent slightly bigger than 1.

More precisely, Seto and Tamaki [ST12] show that if we don’t get a simple enough

formula to solve using linear algebra, then in each step of the branching process there will

be a constant number of variables to restrict so that all the restrictions of these variables are

guaranteed to make the formula “slightly” smaller (by a certain known value), and moreover,

for at least half of such restrictions, the new formula gets “significantly” smaller. The latter is

similar to what happens in the case of de Morgan formulas after one restricts one variable

(albeit with much worse shrinkage parameters). The main difference is that for general

formulas (of linear size), we need to restrict more than one but still at most some constant

number of variables.

This suggests defining a supermartingale sequence for the sizes of the restricted for-

mula after a certain constant number of variables are set, and applying Lemma 6.4 to that

sequence. Indeed, this approach yields the running-time analysis of [ST12]’s SAT algo-

rithm for cn-size general formulas on n variables, with the running time 2n−δn, for δ about

c−c
3
.

Finally, we observe that the proof of Theorem 3.11 immediately yields an average-case
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lower bound for linear-size de Morgan formulas [San10]. Indeed, by the proof of Theo-

rem 3.11, every cn-size de Morgan formula F on n variables can be computed by a deci-

sion tree of height n−k, for k = n/(16c2), where all but 2−k branches of the tree correspond

to subformulas on at most k/2 of the remaining k variables. Any such subformula has zero

correlation with the parity function. Hence, F can correctly compute parity with probability

at most 1/2 + 2−k = 1/2 + 2−n/(16c2).

Note that this average-case hardness is nontrivial for c <
√
n, i.e., for de Morgan for-

mulas of size at most n1.5. In the following section, we show how to get an average-case

lower bound against de Morgan formulas of size about n2.5.

3.4 Average-Case Hardness

Here we use our shrinkage result for adaptive restrictions to re-prove a recent result by Ko-

margodski and Raz [KR13] on average-case hardness for de Morgan formulas. Our proof

is more modular than the original argument of [KR13], and is arguably simpler. The main

differences are: (i) we use restrictions that choose which variable to restrict in a completely

deterministic way (rather than randomly), and (ii) we use an extractor for oblivious bit-fixing

sources (instead of Andreev’s extractor for block-structured sources).

3.4.1 Andreev’s Original Argument

We sketch the original idea of Andreev first. Andreev [And87] defined a functionA : {0, 1}n×
{0, 1}n → {0, 1} as follows: Given inputs x, y ∈ {0, 1}n, partition y into log n blocks

y1, . . . , ylogn of size n/ log n each. Let bi be the parity of block yi, and output the bit of

x in the position b1 . . . blogn (where we interpret the log n-bit string b1 . . . blogn as an integer

between 0 and n−1). Note that the de Morgan formula complexity of A(x, y) is at least that

of A(x0, y) for any fixed string x0. Andreev argued that if x0 is a truth table of a function of

maximal formula complexity, then the resulting function A′(y) = A(x0, y) will be hard for de

Morgan formulas of certain size (dependent on the best available shrinkage exponent Γ).

The proof is by contradiction. Suppose we have a small de Morgan formula computing

A′(y). The argument relies on two observations. First, under a random restriction (with

appropriate parameters), the restricted subformula of A′(y) will have size considerably less
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than n. Secondly, a random restriction is likely to leave at least one variable free (unre-

stricted) in each of the blocks. When both these events happen, we get a small-size de

Morgan formula that can be used to compute the bits of x0, which contradicts the assumed

hardness of x0.

Looking at Andreev’s argument more closely, we observe that he uses the second string

y to extract log n bits that are used as a position in the truth table x0. He needs y to have

the property that every log n-bit string can be obtained from y even after y is hit by a

random restriction, leaving few variables free. Intuitively, each unrestricted variable in y is a

source of a truly random bit, and so the restricted string y is a weak source of randomness

containing k truly random bits, where k is the number of unrestricted variables left in y. In

fact, this is an oblivious bit-fixing source with k bits of min-entropy.

Andreev uses a very simple extractor for y (extracting one bit of randomness from each

block in y), but this extractor works only for “sources of randomness” which have a “block

structure”, namely, every block contains at least one truly random bit. This dictates that the

argument be constrained to use restrictions which in addition to leaving k unrestricted bits,

also respect this “block structure” (at least with high probability). This is not an issue in An-

dreev’s argument which uses random restrictions (that indeed respect the “block structure”

with high probability). However, this creates difficulties if one wants to use other choices of

restrictions as is the case in both [KR13] and the argument of this work.

3.4.2 Adapting to Arbitrary Restrictions, using Extractors

We will show that Andreev’s argument can be adapted to work with any choice of restric-

tions (in particular, our adaptive restrictions that choose deterministically which variables

to restrict). To this end, we shall use explicit extractors for oblivious bit-fixing sources; in

fact, a disperser suffices in this context of worst-case hardness, but an extractor is needed

for the case of average-case hardness that we consider later.

One difficulty we need to overcome when using an arbitrary extractor/disperser instead

of Andreev’s original extractor is an apparent need of invertibility : Given a position z into

the truth table of x0, and a restriction, we need to find extractor’s pre-image y′ of z that

is consistent with the restriction. This task is very easy for Andreev’s extractor, but quite

non-trivial in general. We remark that [GS12] constructed dispersers for oblivious bit-fixing

sources which are invertible in expected polynomial time. Naively, we seem to require an
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inverting procedure that is computable by a small de Morgan formula, in order to argue that

we get a small de Morgan formula for the assumed hard string x0. However, we will show

that for Andreev’s argument, one can start with any incompressible string x0, not just of

high de Morgan formula complexity, but rather, say, of high Kolmogorov complexity. This

makes the whole argument of deriving a contradiction to the assumed hardness of x0 much

simpler: we just need to argue that the existence of a small de Morgan formula for A(x0, y)

implies the existence of a short description in the Kolmogorov sense for the string x0. The

reconstruction procedure for x0 may take arbitrary amount of time, and so in particular, it is

acceptable to use even brute-force inverting procedures for extractors/dispersers.

We provide the details on how to use dispersers in Andreev’s worst-case hardness

argument next. We define a modified version of Andreev’s function using the following

zero-error disperser.

Theorem 3.13 ([GS12]). There exist c > 1 and 0 < η < 1 such that, for all sufficiently

large n, k > (log n)c, there is a poly(n)-time computable zero-error disperser D : {0, 1}n →
{0, 1}k−o(k) for oblivious (n, k)-bit-fixing sources.

The modified function B : {0, 1}4n × {0, 1}n → {0, 1} is defined by B(x, y) = xD(y),

where D is a disperser that extracts log(4n) = logn+2 bits from oblivious bit-fixing sources

containing k = (log n)c random bits. That is, we use a more powerful disperser instead of

Andreev’s naive parity based disperser. In addition, we also increased the length of the first

input x from n to 4n. This is done for technical reasons related to the use of Kolmogorov

complexity.

Next, fix a string x0 of length 4n whose Kolmogorov complexity is K(x0) ≥ 4n, and

consider the function B′(y) = B(x0, y). Suppose B′(y) has a de Morgan formula F . The

shrinkage result of Lemma 3.6 says that, after adaptively restricting n − k variables via a

random restriction ρ, the formula size will shrink with high probability. Denote by F ′ the

formula after a restriction ρ, i.e., F ′ = F |ρ. Then,

Pr

[
L(F ′) ≤ 2L(F )

(
k

n

)3/2
]
> 1− 1

2k
.

Fix a good restriction ρ and consider the formula F ′ obtained from F using the restriction

ρ. We will use the descriptions of F ′ and ρ to reconstruct the string x0, using the following

procedure:
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Given a formula F ′(y′), a restriction ρ, and n in binary, go over all values 0 ≤ i ≤
4n − 1. For each i, find a pre-image z = D−1(i) consistent with the restriction

ρ (by trying all possible values for the free variables y′ and evaluating D on the

input described by the restriction ρ plus the chosen values for y′), and output

F ′(z′), where z′ is the part of z corresponding to the unrestricted variables y′.

For the correctness analysis, for each position 0 ≤ i ≤ 4n − 1, there will be a required

preimage z to the disperser (since the disperser is zero-error). Since F correctly computes

B′(y), we get that F ′(z′) equals the bit of x0 in the position D(z) = i.

The input size that the above procedure for reconstructing x0 takes is at most L(F ′) ·
logL(F ′) + 2n+ 2 log n+ 2 bits to describe the restricted formula F ′, the restriction ρ, and

the input size n. Indeed, we can first describe n by repeating twice each bit of the log n-bit

string n, followed by the two-bit string 01, followed by 2n-bit string describing the restriction

ρ (saying for each position 0 ≤ i ≤ n − 1 of y whether it’s 0, 1, or ∗), followed by the

description of F ′. We get

4n ≤ K(x0) ≤ L(F ′) · logL(F ′) + 2n+ 2 log n+ c,

for some constant c (which takes into account the constant-size description of the Turing

machine performing the reconstruction of x0). Hence, L(F ′) > n/ log n. We conclude that

L(F ) ≥ n2.5/poly log n, and hence also the function B(x, y) requires de Morgan formulas

of at least that size, up to a constant factor.

3.4.3 Average-Case Hardness for Formulas of Size n2.49

Here we generalize the argument from the previous subsection to prove average-case

hardness. We will use the following extractor by Rao [Rao09].

Theorem 3.14 ([Rao09]). There exist constants d < 1 and c ≥ 1 such that for every k(n) >

logc n, there is a polynomial time computable extractor E : {0, 1}n → {0, 1}k−o(k) for (n, k)-

bit-fixing sources, with error 2−k
d
.

We also use the following binary code whose existence is a folklore result; for complete-

ness, we sketch a possible construction of such a code.

Theorem 3.15. Let r = nγ , for any given 0 < γ < 1. There exists a binary code C

mapping (4n)-bit message to a codeword of length 2r, such that C is (ρ, L)-list decodable
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for ρ = 1/2−O(2−r/4) and L ≤ O(2r/2). Furthermore, there is a polynomial-time algorithm

for computing C(x) in position z, for any given inputs x ∈ {0, 1}4n and z ∈ {0, 1}r.

Proof sketch. For a parameter ε > 0, let S ⊆ {0, 1}4n be an explicit ε-biased sample space.

Using a powering construction from [AGHP92], we get such a set of size (4n/ε)2, where

for each 1 ≤ i ≤ |S|, we can compute the ith string in S in time poly(n). For x ∈ {0, 1}4n

and position 1 ≤ i ≤ |S|, we define the ith symbol of the codeword of x by C(x)i = 〈x, yi〉
mod 2, where yi is the ith string in S. By construction, the code has relative minimum

distance at least 1/2− ε. Hence, by the Johnson bound, the code is (1/2−O(
√
ε), O(1/ε))-

list-decodable. We choose ε so that |S| = 2r, which yields ε = O(2−r/2).

Loosely speaking, as in [KR13], the code is used to perform “worst-case to average-

case hardness amplification” in the spirit of [STV01]: When applied on a truth table x0 of a

function that is hard in the worst case, C(x0) is the truth table of a function that is hard on

average. Here “hardness” refers to description size.

We extend the definition of the previous section and use the modified Andreev’s function

after applying the error-correcting code. Namely, let f : {0, 1}4n × {0, 1}n → {0, 1} be

defined by f(x, y) = C(x)E(y), where C is the code from Theorem 3.15 and E is Rao’s

extractor (from Theorem 3.14) mapping n bits to m = r = nγ bits, for the min-entropy

k ≥ 2m. We will prove the following.

Theorem 3.16. Let x0 be any fixed (4n)-bit string of Kolmogorov complexity K(x0) ≥ 3n.

Define f ′(y) = f(x0, y). Then there exists a constant 0 < σ < 1 such that, for any de

Morgan formula F of size at most n2.49 on n inputs, we have

Pry∈{0,1}n [F (y) = f ′(y)] <
1

2
+

1

2nσ
.

Proof. We will use an argument similar to that from the previous section, where we argued

worst-case hardness. Towards a contradiction, suppose that there is a small de Morgan

formula F computing f ′(y) well on average:

Pry∈{0,1}n [F (y) = f ′(y)] ≥ 1

2
+

1

2nσ
. (3.1)

For k = 2m = 2nγ , consider a restriction decision tree of depth n − k for the formula

F . We know by the Shrinkage Lemma (Lemma 3.6) that all but 2−k fraction of leaves

of the decision tree correspond to restricted subformulas of F of de Morgan formula size
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s < 2 · L(F )(k/n)3/2. For a sufficiently small γ > 0, we can get that s < n0.99, and hence,

the description size of each such subformula is less than n0.991.

Note that the restriction decision tree of depth n− k partitions the universe {0, 1}n into

disjoint subsets of inputs of equal size 2k each. Furthermore, the distribution of choosing

a restriction by the specified process, and then uniformly selecting the unrestricted bits,

induces a uniform n bit string. Hence, the probability on the left-hand side of Eq. (3.1) is

equal to the average over all branches of this decision tree of the success probabilities of

the restricted subformulas computing the corresponding restrictions of f ′. Since there are

at most 2−k fraction of “bad” restrictions (which do not shrink the formula F ), we conclude

that the average over “good” restrictions ρ (those that shrink the formula F ) of the suc-

cess probabilities Pry[F |ρ(y) = f ′|ρ(y)] is at most 2−k smaller than the right hand-side of

Eq. (3.1). By averaging, there exists a restriction ρ such that F ′ = F |ρ agrees with f ′|ρ in

at least 1/2 + 2−n
σ − 2−k fraction of the remaining 2k inputs, and at the same time F ′ has

the reduced size s < n0.99.

Let y′ denote the k unrestricted variables left in y. For any given k-bit string a, we denote

by (ρ, a) the input to the function f ′(y) obtained using the restriction ρ and the values a for

the unrestricted variables y′. We have

Pry′∈{0,1}k [F ′(y′) = C(x0)E(ρ,y′)] ≥
1

2
+

1

2nσ
− 1

2k
. (3.2)

Note that the probability above is for a random experiment where we first choose a uni-

formly random y′ ∈ {0, 1}k which determines z = E(ρ, y′). Equivalently, we can first choose

z = E(ρ, y′′) for a random y′′ ∈ {0, 1}k, and then set y′ to be a uniformly random k-bit string

such that E(ρ, y′) = z. Finally, consider a new experiment where we choose z uniformly at

random from {0, 1}r, and then choose y′ uniformly at random so that E(ρ, y′) = z. Since

E is an extractor with error at most 2−k
d

(by Theorem 3.14), the probability in Eq. (3.2) will

reduce by at most 2−k
d
. Thus we get the following randomized algorithm for computing

C(x0) at a given position z:

Given n and the descriptions of F ′ and ρ, on input z ∈ {0, 1}r, pick a uniformly

random y′ ∈ {0, 1}k such that E(ρ, y′) = z, and output F ′(y′). (Output an

arbitrary value if there does not exist a y′ such that E(ρ, y′) = z).

By the discussion above, we have the described procedure computes C(x0) correctly

with probability at least ε = 1/2 + 2−n
σ − 2−k − 2−k

d
, where the probability is over both the
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codeword position z ∈ {0, 1}r and the internal randomness used to sample y′. By choosing

σ sufficiently small as a function of γ and d, we can ensure that ε ≥ 1/2 + 2−n
γd/2

=

1/2 + 2−r
d/2

.

Equivalently, we could implement the above procedure as follows: given z, consider

all k-bit strings y′ such that E(ρ, y′) = z, calculate the fraction pz of those strings y′ from

that set where F ′(y′) = 1, and output 1 with probability pz, and 0 otherwise. This way,

the internal randomness we need is the randomness to pick a uniformly random point on

the unit interval [0, 1]. This can be done up to an error 2−t, using t uniformly random

bits. By choosing t = r, we ensure that this modified algorithm succeeds with about the

same probability, and that it uses t uniformly random bits for internal randomness that are

independent of the string z. By averaging, there is a particular string α0 ∈ {0, 1}t such

that our algorithm correctly computes C(x0) on at least 1/2 + 2−r/4 fraction of positions

z ∈ {0, 1}r, when using this α0 as advice.

Thus we get a deterministic algorithm (with advice) that outputs some 2r-bit string w that

agrees with C(x0) in at least 1/2 + 2−r/4 fraction of positions. The amount of nonuniform

advice needed by this algorithms is at most n0.991 + 2n+ r +O(log n) ≤ (2.1)n to describe

the subformula F ′, restriction ρ, internal randomness α0, and the input length n.

The list-decodability of the code C (Theorem 3.15) implies there are at most O(2r/2)

codewords that have such high agreement with w. We can describe the required codeword

C(x0) by specifying its index of at most r bits in the collection of all such codewords (or-

dered lexicographically). This would add extra r = nγ bits of advice to our algorithm above.

The overall amount of advice will be less than (2.5)n bits.

Once we know C(x0), we can also recover the message x0, using a uniform algorithm

that does brute-force decoding. We conclude that K(x0) < 3n, contradicting our choice of

x0.

As a corollary, we get

Theorem 3.17. There is a constant 0 < σ < 1 such that, for any de Morgan formula F of

size at most n2.49 on 5n inputs, we have

Prx∈{0,1}4n,y∈{0,1}n [F (x, y) = f(x, y)] <
1

2
+

1

2nσ
.

Proof. The proof is by a simple averaging argument applied to Theorem 3.16. Suppose

there is a de Morgan formula F that agrees with f(x, y) on at least 1/2 + ε fraction of pairs
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(x, y), for ε = 2−n
σ
. By averaging, there is a subset S containing at least ε/2 fraction of

strings x, such that for each x′ from the subset we have F (x′, y) = f(x′, y) on at least

1/2 + ε/2 fraction of y’s.

On the other hand, the fraction of 4n-bit strings that have Kolmogorov complexity less

than 3n is at most 23n/24n = 2−n, which is much less than ε/2. Hence, there is a (4n)-bit

string x0 with K(x0) ≥ 3n, such that F (x0, y) has non-trivial agreement with f(x0, y) over

random y’s. The latter contradicts Theorem 3.16.

Since the function f(x, y) is computable in P (using the fact that the code C and the

extractor E are efficiently computable), we get an explicit function in P that has exponential

average-case hardness with respect to de Morgan formulas of size n2.49.

Remark 3.18. The average-case lower bound for general formulas and branching pro-

grams of size at most n1.99 can be argued in exactly the same way, using the corresponding

shrinkage result. In particular, we can prove the analogue of Theorem 3.16, by observing

that a general formula (branching program) of size n1.99 is also likes to shrink to size below

n0.99 (for the same parameter k), and then proceeding with the rest of the proof as before.

3.5 Linear-Size Formulas over the Full Basis

Seto and Tamaki [ST12] give a satisfiability algorithm for linear-size formulas over the full

basis, generalizing Santhanam’s algorithm [San10] for de Morgan formulas. Here we give

a simplified analysis with the “supermartingale approach”.

Theorem 3.19 ([ST12]). There is a deterministic algorithm for counting the number of sat-

isfying assignments of a cn-size Boolean formula over the complete basis that runs in time

2n−δn for δ = 2−O(c3 log c).

The algorithm is based on a specific property of linear-size general formulas. Below

we first state the property and the algorithm, and then analyze the running time of the

algorithm.

Without loss of generality, we assume a Boolean formula over the complete basis is

a tree in which each leaf is labeled by a literal (x or x) and each internal node is labeled

by a gate from {∧,∨,⊕}. Any Boolean formula over the complete basis can be efficiently

transformed into this form by de Morgan’s law and the fact that x⊕ y = x⊕ y.
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Given a formula tree, we call a node linear if (1) it is a leaf, or (2) it is labeled by ⊕ and

both of its child nodes are linear. We say a linear node is maximal if its parent node is not

linear. For a node v in a formula F , we denote by Fv the subformula rooted at v. Note

that for a linear node v, the subformula Fv computes the parity of all its leaves. We say

two maximal linear nodes u and v are mergable if they are connected by a path in which

every node is labeled by ⊕. We can merge u and v in the following way. Suppose we

have Fs = Fu ⊕ Fu′ , and Ft = Fv ⊕ Fv′ , that is, s and t are the parent nodes of u and v

respectively, and u′ and v′ are the siblings of u and v. Then we can replace Fu by Fu ⊕ Fv
and Ft by Fv′ .

We have the following simplification rules, in addition to the rules for de Morgan formu-

las: (1) If 0 ⊕ ψ or 1 ⊕ ψ appears, then replace it by ψ or ψ, respectively. (2) If a variable

x appears more than once (as x or x) in a linear node, then eliminate redundancy by the

commutativity of ⊕ and the facts that x ⊕ x = 0 and x ⊕ x = 1. (3) Merge any mergable

maximal linear nodes.

Based on these simplification rules, Seto and Tamaki [ST12] identify the following struc-

tural property of linear-size general formulas.

Lemma 3.20 ([ST12]). Let F be a formula on n variables of size cn for some constant c.

Then one of the following cases must be true:

1. The formula size is small: c ≤ 3/4.

2. The total number of maximal linear nodes is less than 3n/4.

3. There exists a variable appearing at least c+ 1
8c times.

4. There exists a maximal linear node v with L(Fv) ≤ 8c such that the parent node of v

is either ∧ or ∨, and every variable in Fv appears at least c times in F .

For completeness, the proof of this lemma is given in the appendix.

Lemma 3.20 was proved in [ST12] using the following two lemmas.

Lemma 3.21. Let F be a simplified formula containing at least one node labeled by ∨ or ∧.

Let #MLin∨∧(F ) be the number of maximal linear nodes with parents labeled by ∨ or ∧.

Let #MLin⊕(F ) be the number of maximal linear nodes with parents labeled by ⊕. Then

#MLin∨∧(F ) ≥ #MLin⊕(F ).
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Proof. It is easy to see that the result holds for L(F ) ≤ 3. Also, if there is exactly one

internal node labeled by ∨ or ∧, then it is easy to see that the result holds. The rest of the

proof is by induction.

If there is a maximal linear node of size at least two, then it must have a subtree of two

leaves s ⊕ t. We can replace this subtree by a single node; this reduces the formula size

by 1, but does not change #MLin∨∧(F ) or #MLin⊕(F ). By induction, the result holds.

If every maximal linear node has size exactly one, then there must be a subtree of two

leaves s ∨ t or s ∧ t. Let u be the parent node of s and t, and v be the parent node of v. If

v is labeled by ∨ or ∧, we can replace u by a single node; this will reduce the formula size

by 1 and #MLin∨∧(F ) by 1, but #MLin⊕(F ) does not change. By induction, the result

holds.

If v is labeled by ⊕, let w be the sibling of u, then we can replace v by w; this will reduce

the formula size by 2 and #MLin∨∧(F ) by 2, and reduce #MLin⊕(F ) by at most 1. By

induction, the result also holds.

Lemma 3.22. Let F be a simplified formula of size cn, and each variable appears less than

c+ 1
8c times. (i) There are at most n/8 maximal linear nodes with more than 8c leaves. (ii)

There are at most n/8 maximal linear nodes which has a variable appearing less than c

times in F .

Proof. (i) is by an averaging argument.

Let freq(x) be the number of times x appearing in F . By assumption, no variable

appears c + 1/8c times. If a variables appears less than c times, it must also be less than

c+1/8c−1, since the frequency is an integer. There are at most n/8c such variables, since

the other variables appear less than c + 1/8c times. The total number of maximal linear

nodes containing such variables is less than c · n/8c = n/8.

The satisfiability algorithm follows directly from this property. For case 1, a brute-force

search is sufficient. For case 2, we again use a brute-force search, but this time to enu-

merate all possible assignments to maximal linear nodes, and, for each assignment, solve

a system of linear equations using Gaussian elimination. In both cases the running time

is 23n/4poly(n). For cases 3 and 4, the algorithm is based on a step-by-step restriction. At

each step, we are able to restrict a constant number of variables such that the shrinkage of

the formula size is non-trivial.
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The restriction defined in Seto and Tamaki [ST12] is analogous to the restriction for de

Morgan formulas. For de Morgan formulas, we restrict the most frequent variable and this

gives non-trivial shrinkage. For formulas over the complete basis, we are able to restrict a

constant number of variables such that the formula shrinks non-trivially, where the constant

depends on the linear size of the formula.

Now we define the restrictions for a formula in case 3 or 4 of the above analysis.

In particular, for case 3, we randomly restrict the first variable which appears at least

c+ 1/8c times; that eliminates at least c+ 1/8c leaves.

For case 4, let u be the sibling of the maximal linear node v. Consider the following two

sub-cases: (a) there exists a variable appearing in Fu but not in Fv; (b) all variables in Fu
appear in Fv.

For case 4(a), we randomly restrict all variables in the subformula Fv. Suppose there

are totally b ≤ 8c variables in Fv. Since each of them appears at least c times, we can

eliminate at least bc leaves. Furthermore, since Fv takes value 0 or 1 with equal probability,

and the parent node of v is labeled by either ∧ or ∨, the sibling node of v can be eliminated

with probability 1/2. Since there is an extra variable in the sibling, we eliminate at least

bc+ 1 leaves with probability 1/2.

For case 4(b), suppose x is one common variable in both Fv and Fu, and there are

totally b + 1 ≤ 8c variables in Fv. We randomly restrict all variables in Fv except x. This

eliminates at least bc+ 1 leaves, since each variable appears at least c times, and at least

one appearance of x in Fv and Fu can be eliminated.

To unify the cases 3, 4(a) and 4(b), in each case, we can deterministically find 1 ≤
b ≤ 8c variables such that by randomly restricting them, we eliminate at least bc leaves,

and moreover, with probability 1/2, eliminate at least bc(1 + 1/8c2) leaves. Denote by

l(F ) := logL(F ) and let F ′ be the new formula after the restriction and simplification.

Then we have l(F ′) ≤ l(F ) + log (1− b/n); and with probability 1/2, l(F ′) ≤ l(F ) +(
1 + 1/8c2

)
log (1− b/n).

Now we consider a process of adaptive restrictions; this can be viewed as constructing a

decision tree. At each step, we assume that only cases 3, 4(a) or 4(b) happens (otherwise,

we directly run the brute-force search). As analyzed above, we deterministically find 1 ≤
b ≤ 8c variables and branch on assigning each variable to be 0 or 1. The process continues

until at most k variables are free (k will be fixed later). We will argue that the formula size

shrinks non-trivially on most of the branches.
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We consider the decision tree virtually divided into layers of height 16c, which means

that at each layer, there are exactly 16c variables being restricted. For simplicity we assume

n−k is divisible by 16c. Consider a node at the top of one layer; letG be the formula labeling

the node, and suppose G is over n variables with size cn. Let G′ be the new formula after

adaptively restricting 16c variables (at the bottom of the layer). Then we have the following

bounds on the size of G′.

Lemma 3.23. It holds that

l(G′) ≤ l(G) + log

(
1− 16c

n

)
.

Moreover, with probability at least 1/2,

l(G′) ≤ l(G) + log

(
1− 16c

n

)
+

1

8c2
log

(
1− 1

n

)
.

Proof. Since each variable being restricted appears at least c times, the first inequality

holds.

Consider any path in the decision tree starting from G. There must be one descendant

node at distance 0 ≤ h < 8c from G such that case 3, 4(a) or 4(b) happens and in conse-

quence there are 1 ≤ b ≤ 8c variables restricted. Over all descendants of this particular

node at the bottom of the layer, it holds with probability at least 1/2 that

l(G′) ≤ l(G) + log

(
1− h

n

)
+

(
1 +

1

8c2

)
log

(
1− b

n− h

)
+ log

(
1− 16c− h− b

n− h− b

)
≤ l(G) + log

(
1− 16c

n

)
+

1

8c2
log

(
1− 1

n

)
.

Note that this inequality does not depend on the particular path in consideration. Thus it

holds for all descendants of G at distance exactly 16c. This ends the proof.

Now we are ready to prove the shrinkage result for linear-size general formulas.

Lemma 3.24. Denote by Fn−k the formula after restricting n− k variables. For k > 160c,

Pr

[
L(Fn−k) ≥ 2 · L(F )

(
k

n

)1+ 1
256c3

]
< 2−k.

Proof. Consider the nodes in the decision tree at depth 16c · i, for i = 0, 1, . . . , (n− k)/16c.

We define a sequence of random variables

Zi = l(F16ci)− l(F16c(i−1))− log

(
1− 16c

n− 16c(i− 1)

)
− 1

16c2
log

(
1− 1

n− 16c(i− 1)

)
.
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By Lemma 3.23, we have Zi ≤ ci := − 1
16c2

log
(

1− 1
n−16c(i−1)

)
. LetR1, R2, . . . , R16c(i−1)

be the random bits (the values of the assignments) used at each step. Conditioning on

these random bits, it holds with probability 1/2 that Zi ≤ −ci. Therefore, conditioning on

R1, . . . , R16c(i−1), Zi is upper bounded by a variable taking −ci and ci with equal probability.

By Lemma 6.4, we have for any λ ≥ 0,

Pr

 i∑
j=1

Zj ≥ λ

 ≤ exp

(
− λ2

2
∑i

j=1 c
2
j

)
.

Let i = (n− k)/16c. We first have that

i∑
j=1

Zj = l(F16ci)− l(F0)−
i−1∑
j=0

log

(
1− 16c

n− 16cj

)
−

i−1∑
j=0

1

16c2
log

(
1− 1

n− 16cj

)

≥ l(Fn−k)− l(F0)− log

(
k

n

)
− 1

256c3
log

(
k + 16c− 1

n+ 16c− 1

)
≥ l(Fn−k)− l(F0)−

(
1 +

1

256c3

)
log

(
k + 16c− 1

n+ 16c− 1

)
.

Here we use the inequality that
i−1∑
j=0

log

(
1− 1

n− bj

)
=

1

b

i−1∑
j=0

log

(
1− 1

n− bj

)b

≤ 1

b

i−1∑
j=0

log

((
1− 1

n− bj + b− 1

)
· · ·
(

1− 1

n− bj

))

=
1

b
log

(
n− bi+ b− 1

n+ b− 1

)
.

Hence,

Pr

 i∑
j=1

Zj ≥ λ

 ≥ Pr

[
L(Fn−k) ≥ eλL(F0)

(
k + 16c− 1

n+ 16c− 1

)1+ 1
256c3

]
.

Then since cj ≤ 1
16c2
· 1
n−16c(j−1)−1 , we have that

i∑
j=1

c2
j ≤

(
1

16c2

)2 i∑
j=1

(
1

n− 16c(j − 1)− 1

)2

≤
(

1

16c2

)2 i∑
j=1

(
1

n− 16cj − 1
− 1

n− 16c(j − 1)− 1

)
· 1

16c

≤ 1

163c5
· 1

n− 16ci− 1
=

1

163c5
· 1

k − 1
.
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Therefore,

Pr

[
L(Fn−k) ≥ eλL(F )

(
k + 16c− 1

n+ 16c− 1

)1+ 1
256c3

]
≤ exp

(
− λ2

2 · 1
163c5

· 1
k−1

)
= e−2048λ2c5(k−1).

In particular, for λ = ln(2/1.2) and k > 160c,

Pr

[
L(Fn−k) ≥ 2 · L(F )

(
k

n

)1+ 1
256c3

]
< 2−k.

Now we are ready to analyze the running time of the algorithm.

Proof of Theorem 3.19. Let F be a cn-size general formula on n variables. We build a de-

cision tree based on adaptively restricting variables according to the cases in Lemma 3.20.

Whenever the formula is in case 1 or 2, we run the brute-force search; otherwise we adap-

tively restrict a constant number of variables, and continue the process until there are at

most k variables left.

Let p = (4c)−256c3 and k = pn. In the worst case, we build a decision tree of n−k levels

with 2n−k branches. By Lemma 3.24, at most 2−k fraction of the branches end with formula

size

L(Fn−k) ≥ 2 · L(F )

(
k

n

)1+ 1
256c3

= 2 · cn · p1+ 1
256c3 = 2cp

1
256c3 · pn =

1

2
pn =

k

2
.

To compute #SAT for all such “big” formulas (of size at least k/2), we use brute-force

enumerations over all possible assignments to the k free variables. The running time in

total is bounded by (2n−k · 2−k) · 2k · poly(n) = 2n−k · poly(n).

For the other branches which end with “small” formulas (of size less than k/2), there

are at most k/2 variables left. To compute #SAT for all such formulas, the total running time

is bounded by 2n−k · 2k/2 · poly(n) = 2n−k/2 · poly(n).

The overall running time is bounded by 2n−δnpoly(n) where δ = 2−O(c3 log c).



Chapter 4

Compression Algorithms and Circuit
Lower Bounds

We show that circuit lower bound proofs based on the method of random restrictions yield

non-trivial compression algorithms for “easy” Boolean functions from the corresponding

circuit classes. The compression problem is defined as follows: given the truth table of

an n-variate Boolean function f computable by some unknown small circuit from a known

class of circuits, find in deterministic time poly(2n) a circuitC (no restriction on the type ofC)

computing f so that the size of C is less than the trivial circuit size 2n/n. We get non-trivial

compression for functions computable by AC0 circuits, (de Morgan) formulas, and (read-

once) branching programs of the size for which the lower bounds for the corresponding

circuit class are known.

These compression algorithms rely on the structural characterizations of “easy” func-

tions, which are useful both for proving circuit lower bounds and for designing “meta-

algorithms” (such as Circuit-SAT). For (de Morgan) formulas, such structural characteri-

zation is provided by the “shrinkage under random restrictions” results [Sub61, Hås98],

strengthened to the “high-probability” version by [San10, IMZ12, KR13]. We give a new,

simple proof of the “high-probability” version of the shrinkage result for (de Morgan) formu-

las, with improved parameters. We use this shrinkage result to get both compression and

#SAT algorithms for (de Morgan) formulas of size about n2. We also use this shrinkage

result to get an alternative proof of the recent result by Komargodski and Raz [KR13] of the

average-case lower bound against small (de Morgan) formulas.

49
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Finally, we show that the existence of any non-trivial compression algorithm for a circuit

class C ⊆ P/poly would imply the circuit lower bound NEXP 6⊆ C. This complements

Williams’s result [Wil10] that any non-trivial Circuit-SAT algorithm for a circuit class C would

imply a superpolynomial lower bound against C for a language in NEXP.

4.1 Introduction

Circuit lower bounds (proved or assumed) have a number of algorithmic applications.

The most notable examples are in cryptography, where a computationally hard problem

is used to construct a secure cryptographic primitive [BM84, Yao82], and in derandom-

ization of probabilistic polynomial-time algorithms, where a hard problem is used to con-

struct a source of pseudorandom bits that can be used instead of truly random ones when

simulating an efficient randomized algorithm [NW94]. In both cases, we in fact have an

equivalence between the existence of appropriately hard computational problem and the

existence of a corresponding algorithmic procedure (appropriate pseudorandom genera-

tor) [HILL99, NW94].

In both of the mentioned examples, a circuit lower bound is used in a “black-box”

fashion: the knowledge that a lower bound holds is sufficient to derive algorithmic con-

sequences (e.g., if some language in DTIME(2O(n)) requires circuit size 2Ω(n), then BPP =

P [IW97]). One would hope that looking inside the proofs (of the few circuit lower bounds

that we actually have at present) may yield new algorithms (for the same computational

model where we have the lower bounds).

This is indeed the case as witnessed by number of examples: a learning algorithm for

AC0-computable Boolean functions [LMN93], a Circuit-SAT algorithm for AC0 circuits [IMP12,

BIS12] (using Håstad’s Switching Lemma, a main tool used in AC0 lower bound proofs [Hås86]),

a simple pseudorandom generator for AC0 circuits [Bra10] (using [LMN93]), a Circuit-SAT

algorithm for linear-size (de Morgan) formulas [San10, ST12], and a pseudorandom gener-

ator for small (de Morgan) formulas and branching programs [IMZ12] (using a generaliza-

tion of the “shrinkage under random restrictions” result of [Sub61, Hås98]), to mention just

a few.

Trying to understand the limitations of current circuit lower bound techniques, Razborov

and Rudich [RR97] came up with the notion of a natural property that can be extracted

from every lower bound proof known at the time. Loosely speaking, a natural property is
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a deterministic polynomial-time algorithm that can distinguish the truth table of an easy

Boolean function (computable by a small circuit from a given circuit class C) from the truth

table of a random Boolean function, when given the truth table of a function as input. They

also argued that such an algorithm can be used to break strong pseudorandom generators

computable in the circuit class C; hence, if we assume sufficiently secure cryptography for

a circuit class C, then we must conclude that there is no natural property for the class C.
The latter is known as the “natural-proof barrier” to proving new circuit lower bounds.

Compression of Boolean functions. In this work, we focus on the “positive” part of the

natural-property argument: known circuit lower bounds yield a natural property. One way

to obtain such a natural property is to argue the existence of an efficient compression al-

gorithm for easy functions from a given circuit class C. Namely, given the truth table of

n-variate Boolean function f from C, we want to find some Boolean circuit (not necessarily

of the type C) computing f such that the size of the found circuit is less than 2n/n (which

is the trivial size achievable for any n-variate Boolean function)1. There are two natural pa-

rameters to minimize: the size of the found circuit and the running time of the compression

algorithm. Since the algorithm is given the full truth table as input, we consider it efficient if

it runs in time 2O(n) (polynomial in its input size). Ideally, we would like to find a circuit as

small as the promised size of the concise representation of a given function f . However,

any non-trivial savings over the generic 2n/n circuit size [Lup58] are interesting.2

Does every C-circuit lower bound known today yield a compression algorithm for C?
The positive answer would strengthen the argument of [RR97] to show that every known

lower bound proof yields a particular kind of natural property, efficient compressibility.

We hypothesize that the answer is ‘Yes,’ and make the first step in this direction by

extracting a compression algorithm from the lower-bound proofs based on the method

of random restrictions. These include the lower bounds for AC0 circuits [FSS84, Yao85,

Hås86], for de Morgan formulas [Sub61, And87, Hås98], for branching programs [Nec66],

and for read-once branching programs (see, e.g., [ABCR99]).

1This is different than C-circuit minimization considered by [AHM+08] where the task is to construct a small
circuit of the type C. Our setting is closer to that of computational learning theory (non-proper exact learn-
ing [Ang87]).

2 The compression task as defined above can be viewed as lossless compression: we want the compressed
image (circuit) to compute the given function exactly. One can also consider the notion of lossy compression
where the task is to find a circuit that only approximates the given function. This is related to the concept of
PAC learning [Val84]. The focus of the present work, however, will be on lossless compression algorithms.
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Compression Theorem: (1) Boolean n-variate functions computed by AC0 circuits of size

s and depth d are compressible in time poly(2n) to circuits of size at most 2n−n/O(log s)d−1
.

(2) Boolean n-variate functions computed by de Morgan formulas of size at most n2.49, by

formulas over the complete basis of size at most n1.99, or by branching programs of size at

most n1.99 are compressible in time poly(2n) to circuits of size at most 2n−n
ε
, for some ε > 0

(dependent on the size of the formula/branching program). (3) Boolean n-variate functions

computed by read-once branching programs of size at most 20.48·n are compressible in time

poly(2n) to circuits of size at most 20.99·n.

Finding a succinct representation of a given object is an important natural problem

studied in various settings under various names: e.g., data compression, circuit minimiza-

tion, and computational learning. Designing efficient compression algorithms for “data”

produced by small Boolean circuits of restricted type is an interesting task in its own right.

In addition, such algorithmic focus helps us sharpen our understanding of the structural

properties of easy Boolean functions, which may be exploited in both designing new meta-

algorithms, algorithms that take Boolean functions as inputs (e.g., the full truth table as in

the case of compression algorithms, or a small Boolean circuit computing the function, as

in the case of Circuit-SAT algorithms), and proving stronger circuit lower bounds.

In this vein, we also have the following additional results.

4.1.1 Our Results

In addition to the Compression Theorem mentioned above, we have results on circuit lower

bounds implied by compression algorithms. These are detailed next.

Circuit lower bounds from compression algorithms. There are a number of results

showing that the existence of a meta-algorithm for a certain circuit class C implies super-

polynomial lower bounds against that class for some function in (nondeterministic) expo-

nential time [Kan82, HS82, NW94, IKW02, KI04, Agr05, FK06, Wil10]. In particular, the

result by Williams [Wil10] essentially says that deciding the satisfiability of circuits from a

class C in time slightly less than that of the trivial brute-force SAT-algorithm implies super-

polynomial circuit lower bounds against C for a language in NEXP. Here we complement

this result, by showing the following.
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Compression implies circuit lower bounds: Compressing Boolean functions from any

subclass C of polynomial-size circuits to any circuit size less than 2n/n implies superpoly-

nomial lower bounds against the class C for a language in NEXP.

Thus, both non-trivial SAT algorithms and non-trivial compression algorithms for a cir-

cuit class C ⊆ P/poly imply superpolynomial lower bounds against that class. This sug-

gests trying to get an alternative proof of Williams’s lower bound NEXP 6⊆ ACC0 [Wil11] via

designing a compression algorithm for ACC0 functions. Apart from getting an alternative

proof, the hope is that such a compression algorithm would give us more insight into the

structure of ACC0 functions, which could lead to ACC0 circuit lower bounds against a much

more explicit Boolean function, say the one in NP or in P.

4.1.2 Our Proof Techniques

The circuit lower bounds proved by a method of random restrictions yield a nice structural

characterization of the class of n-variate Boolean functions f computable by small circuits.

Roughly, we get that the universe {0, 1}n can be partitioned into “not too many” disjoint

regions, such that the restriction of the original function f to “almost every” region is a “sim-

ple” function, where “simple” means of description size O(n). This is reminiscent of the Set

Cover problem: we want to cover all the 1s of the given function f using as few as possible

subsets that correspond to the truth tables of “simple functions” of small description size.

We show how to find such a collection of few simple functions, using a variant of the greedy

heuristic for Set Cover.

For our compression algorithms, we use the “simplicity” of functions in the disjunction

to argue that they have linear-size descriptions (as required in order to achieve poly(2n)

running time). For our #SAT algorithms, we use the “simplicity” of the functions to argue

that there will be few distinct functions associated with the regions of the partition of {0, 1}n.

Once we solve #SAT (using a brute-force algorithm) for all distinct subfunctions and store

the results, we can solve #SAT for almost all regions by the table look-up, achieving a

noticeable speed-up overall.

Our proof of the high-probability version of the shrinkage lemma for formulas follows

the supermartingale approach of [KR13]: For a de Morgan formula F on n variables, we

consider the sequence of random variables Xi, 1 ≤ i ≤ n, where Xi corresponds to the

size of the restricted and simplified subformula of F after i variables are set randomly. By
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[Sub61], setting a single variable at random is expected to shrink the formula size (with

the shrinkage exponent 3/2). Thus, the sequence {Xi} is a supermartingale. However,

to apply standard concentration bounds (Azuma’s inequality), one needs to show that the

absolute value of |Xi−Xi−1| is bounded. In our case, we have only one side of this bound,

i.e., that Xi−Xi−1 is small. We show a variant of Azuma’s inequality that holds in this case

(for one-sided bounded random variables that take two possible values with equal proba-

bility), and apply this bound to complete the shrinkage analysis. This yields a simpler proof

of the shrinkage result of [KR13] with the following differences: (1) our restrictions always

choose deterministically which variable to restrict (as opposed to restrictions of [KR13] that

define “heavy” and “light” variables, and either choose deterministically a heavy variable, if

it exists, or randomly choose a light variable otherwise), (2) after setting n−k variables, we

get that all but at most 2−k restricted formulas have shrunk in size (as opposed to 2−k
1−o(1)

in [KR13]). The fact that our restrictions are deterministic when choosing a variable to re-

strict leads to a deterministic #SAT algorithm for small (de Morgan) formulas. The fact that

our error parameter is 2−k leads to simplified analysis of Santhanam’s #SAT algorithm for

linear-size de Morgan formulas [San10].

Our proof of [KR13]’s average-case hardness result is more modular and simpler. In

particular, we adapt Andreev’s original lower bound argument [And87] to the case of not

necessarily truly random restrictions (by using randomness extractors), and use the information-

theoretic framework of Kolmogorov complexity to avoid unnecessary technicalities.

Finally, our proof of circuits lower bounds for NEXP from a compression algorithm for a

circuit class C ⊆ P/poly is a generalization of the similar result from [IKW02], showing that

the existence of a natural property (even without the “largeness” assumption) for P/poly

implies NEXP 6⊆ P/poly. Here we handle the case of any circuit class C ⊆ P/poly. Since

the existence on an efficient compression algorithm for a circuit class C implies a natural

property for the same class, the required lower bound NEXP 6⊆ C follows.

Independently, Williams also proves such a generalization of the result from [IKW02] (as

part of his equivalence between proving C-circuit lower bounds against NEXP and having

polynomial-time computable properties useful against C).

Other related work. Perhaps the earliest example of a compression algorithm for a gen-

eral class of Boolean functions is due to Yablonski [Yab59], who observed that n-variate

Boolean functions that “don’t have too many distinct subfunctions” can be computed by a
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circuit of size σ · 2n/n, for some σ < 1 (related to the number of distinct subfunctions). The

complexity of circuit minimization was studied in [Mas79, KC00, AHM+08, Fel09]. In par-

ticular, [AHM+08, Fel09] show that finding an approximately minimal-size DNF for a given

truth table of an n-variate Boolean function is NP-hard, for the approximation factor nγ for

some constant 0 < γ < 1.

Concurrent independent work. As we were completing this work, we have found out

from Ran Raz [private communication, March 2013] about his new paper with Komar-

godski and Tal [KRT13] that improves the average-case de Morgan formula lower bounds

of [KR13] to handle formulas of size about n3. In that paper, the authors prove a version

of the high-probability shrinkage result for de Morgan formulas with Håstad’s shrinkage ex-

ponent 2 (rather than Subbotovskaya’s shrinkage exponent 1.5 used in [KR13]). Similarly

to our work but independently, Komargodski et al. [KRT13] also adapt Andreev’s method to

the case of arbitrary (not necessarily completely random) restrictions by using appropriate

randomness extractors.

4.1.3 Preliminaries

Circuits

Here we recall some basic definitions of circuit classes.

A branching program F on n input variables x1, . . . , xn is a directed acyclic graph with

one source and two sinks (labeled 0 and 1), where each non-sink node is of out-degree

2 and is labeled by an input variable xi, 1 ≤ i ≤ n. The two outgoing edges of each

non-terminal node are labeled by 0 and 1. The branching program computes by starting at

the source node, and following the path in the graph using the edges corresponding to the

values of the variables queried in the nodes. The program accepts if it reaches the sink

labeled 1, and rejects otherwise. The size of a branching program F , denoted by L(F ), is

the number of nodes in the underlying graph. A branching program is (syntactic) read-once

if on every path no variable occurs more than once.

A decision tree is a branching program whose underlying graph is a tree; the size of a

decision tree is the number of leaves.

A restriction ρ of the variables x1, . . . , xn is a an assignment of Boolean values to some

subset of the variables; the assigned variables are called set, while the remaining variables



CHAPTER 4. COMPRESSION ALGORITHMS AND CIRCUIT LOWER BOUNDS 56

are called free. For a circuit (formula or branching program) F on input variables x1, . . . , xn

and a restriction ρ, we define the restriction F |ρ as the circuit on the free variables of ρ,

obtained from F after the set variables are “hard-wired” and the circuit is simplified.

A de Morgan formula can be simplified using the following simplification rules, which

have been used in [Hås98, San10]. We denote by ψ an arbitrary subformula, and y a

literal. The rules are: (1) If 0 ∧ ψ or 1 ∨ ψ appears, then replace it by 0 or 1, respectively.

(2) If 0 ∨ ψ or 1 ∧ ψ appears, then replace it by ψ. (3) If y ∨ ψ appears, then replace all

occurrences of y in ψ by 0 and y by 1; if y ∧ ψ appears, then replace all occurrences of y

in ψ by 1 and y by 0. We say a de Morgan formula is simplified if none of the above rules

are applicable. Note that in a simplified formula, by the rule 3, if a leaf is labeled with x or

x, then its sibling subtree does not contain the variable x.

Given a (bounded fan-in) circuit of size s, we can describe it using O(s log s) bits (by

specifying the gate type and at most two incoming gates for each of the s gates). The same

bound is true also for formulas and branching programs of size s.

Extractors and codes

Let X be a distribution over {0, 1}n. The min-entropy of X is defined as H∞(X) =

minx log(1/Pr[X = x]). We say two distributions X and Y over {0, 1}n are ε-close if for any

subset A ⊆ {0, 1}n, it holds that |Pr[X ∈ A]−Pr[Y ∈ A]| ≤ ε.
An oblivious (n, k)-bit-fixing source is a distribution X over {0, 1}n, where there is a

subset S ⊆ [n] of size k such that X[n]\S is fixed, while XS is uniformly distributed over

{0, 1}|S|. A seedless zero-error disperser is a function D : {0, 1}n → {0, 1}m such that for

any distribution X over {0, 1}n with min-entropy at least k, the support of D(X) is {0, 1}m.

A seedless (k, ε)-extractor is a function E : {0, 1}n → {0, 1}m such that for any distribution

X over {0, 1}n with min-entropy at least k, E(X) is ε-close to the uniform distribution over

{0, 1}m.

A binary (n, k, d)-code is a function C : {0, 1}k → {0, 1}n (mapping k-bit messages to

n-bit codewords) such that any two codewords are at least the Hamming distance d apart;

the relative minimum distance of C is d/n. For 0 ≤ ρ ≤ 1 and L ≥ 1, we say a code C is

(ρ, L)-list-decodable if for any y ∈ {0, 1}n, there are at most L codewords in C within the

Hamming distance at most ρn from y. The Johnson bound (see, e.g., [AB09]) says that, for

any δ ≥
√
ε, an (n, k, (1/2− ε)n)-code is (1/2− δ, 1/(2δ2))-list-decodable.
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Kolmogorov complexity

The Kolmogorov complexity of a given n-bit string x, denoted by K(x), is the length of a

shortest string 〈M〉w, where 〈M〉 is a description of a Turing machine M , and w is a binary

string such that M on input w produces x as an output. A simple counting argument shows

that, for every n, there exists an n-bit string x with K(x) ≥ n, and, more generally, for any

0 < α < 1, we have that K(x) ≥ αn for all but at most 2−(1−α)n fraction of n-bit strings x.

4.2 Compression from Restriction-Based Circuit Lower Bounds

Here we prove the Compression Theorem stated in the Introduction.

4.2.1 Compression of DNFs, using the Greedy Set Cover Heuristic

As a warm-up, consider the case of DNFs. It is well-known that DNFs of almost minimum

size can be computed from the truth table of f : {0, 1}n → {0, 1} using a greedy Set Cover

heuristic [Joh74, Lov75, Chv79]. We recall this heuristic next.

Let U be a universe, and let S1, . . . , St ⊆ U be subsets. Suppose U can be covered by

` of the subsets. Then the following algorithm will find an approximately minimal set cover.

Repeat the following, until all of U is covered: find a subset Si that covers at

least 1/` fraction of points in U which were not covered before, and add Si to

the set cover.

For the analysis, observe that since ` subsets cover U , they also cover every subset

of U . Hence, in each iteration of the algorithm, there exists a subset that covers at least

1/` fraction of the not-yet-covered points. After each iteration, the size of the set of points

that are not covered reduces by the factor (1 − 1/`). Thus, after t iterations, the number

of points not yet covered is at most |U | · (1 − 1/`)t ≤ |U | · e−t/`, which is less than 1 for

t = O(` · ln |U |). Hence, this algorithm finds a set cover that is at most the factor O(ln |U |)
larger than the minimal set cover.

It is easy to adapt the described algorithm to find approximately minimal DNFs. Let

f : {0, 1}n → {0, 1} be given by its truth table. Suppose that there exists a DNF computing

f such that the DNF consists of ` terms (conjunctions). With each term a on n variables,
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we associate the set Sa = a−1(1) of points of {0, 1}n where it evaluates to 1. We enumerate

over all possible terms a on n variables, and keep only those sets Sa where Sa ⊆ f−1(1)

(i.e., Sa does not cover any zero of f ); note that all ` terms of the minimal DNF for f will

be kept. Next we run the greedy set cover algorithm on the universe U = f−1(1) and the

collection of sets Sa chosen above. By the analysis above, we get O(` · log |U |) terms such

that their disjunction computes f . That is, we find a DNF for f of size at most O(n) factor

larger than that of the minimal DNF for f .

The running time of the described algorithm is polynomial in 2n and the number of sets

Sa. The latter is the number of all possible terms on n variables, which is at most 22n (we

can use an n-bit string to describe the characteristic functions of a subset of n variables,

and another n-bit string to describe the signs of the chosen variables). Thus, the overall

running time is poly(2n).

4.2.2 Compression of AC0 Functions via DNFs

The known lower bounds for AC0 circuits are based on the fact that almost all random

restrictions simplify a small AC0 circuit to a function that depends on fewer than the re-

maining unrestricted variables. Intuitively, this means that there is a partitioning of the

Boolean cube {0, 1}n into not too many disjoint regions such that the original AC0 cir-

cuit is constant over each region. This intuition can be made precise using the Switching

Lemma [Hås86, Raz93, Bea94, IMP12], yielding the following structural result saying that

each small AC0 circuit has an equivalent representation as a DNF with not too many terms.

Lemma 4.1 ([IMP12]). Every depth d Boolean circuit C with s gates on n inputs has an

equivalent DNF with at most poly(n)·s·2n(1−µ) terms, where µ ≥ 1/O(log(s/n)+d log d)d−1.

Using this structural characterization and the greedy algorithm for Set Cover considered

earlier, we immediately get the following.

Theorem 4.2. There is a deterministic poly(2n)-time algorithm A satisfying the following.

Let f : {0, 1}n → {0, 1} be any Boolean function computable by an AC0 circuit of depth d

and size s = s(n). Given the truth table of f as well as the parameters d and s, algorithm

A produces a DNF for f with at most poly(n) · s · 2n(1−µ) terms, where µ ≥ 1/O(log s)d−1.

Note the described algorithm achieves nontrivial compression for depth-d AC0 circuits

of size up to 2n
1/(d−1)

, the size for which we know lower bounds against AC0 for explicit
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functions.

4.2.3 Formulas and Branching Programs

The known lower bounds for (de Morgan) formulas are also proved using the method of

random restrictions. One of the earliest results here is by Subbotovskaya [Sub61] who

argued that the size of a de Morgan formula shrinks in expectation when hit by a random

restriction; this result was subsequently tightened by Håstad [Hås98]. However, these

results are not strong enough to provide a kind of structure of easy functions that would be

useful for compression. By analogy with the case of AC0, we would like to say something

like “for every small de Morgan formula, there is a partition of the Boolean cube into not too

many regions such that the original formula is constant on each region”. In particular, we

need a “high probability” version of the classical shrinkage results of [Sub61, Hås98].

Recently, there have been several such shrinkage results proved for different purposes.

Santhanam [San10] implicitly proved such a result for linear-size de Morgan formulas and

used it to obtain a deterministic SAT algorithm for such formulas that runs in time better

than that of the “brute-force” algorithm. Impagliazzo et al. [IMZ12] proved a version of

shrinkage result with respect to certain pseudorandom restrictions, in order to construct

a non-trivial pseudorandom generator for small de Morgan formulas. Komargodski and

Raz [KR13] proved a shrinkage result for certain random restrictions (different from the

ones in [San10]), and used it to get a strong average-case lower bound against small de

Morgan formulas.

We will give an improved and simplified proof of the shrinkage result due to [San10,

KR13]. We use the same notion of random restrictions as in [San10], which will allow us

later to get a “better than brute force” deterministic SAT algorithms for super-quadratic-

size de Morgan formulas. We get a smaller error probability than that of [KR13], which

allows us to analyze Santhanam’s SAT algorithm for linear-size de Morgan formulas as an

easy corollary. Finally, we get a clean and simple proof which avoids some of the ad hoc

technicalities from [KR13].

Structure of functions computable by small formulas

First, we state our version of the shrinkage result. Let F be a de Morgan formula on n

variables. As in [San10], we consider adaptive restrictions that proceed in i rounds, for
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0 ≤ i ≤ n, and in each round set uniformly at random the most frequent variable in the

current formula, and simplify the resulting new formula (using the standard simplification

rules). Note that these restrictions are not completely random: the next variable to be

restricted is chosen completely deterministically (as the most frequent one), but the value

assigned to this variable is then chosen uniformly at random to be either 0 or 1.

For a given de Morgan formula F , define F0 = F . For 1 ≤ i ≤ n, we define Fi to be the

random formula obtained from Fi−1 by uniformly at random assigning the most frequent

variable of Fi−1, and simplifying the result. Note that Fi is a formula on n − i remaining

(unrestricted) variables.

Lemma 4.3 (Shrinkage Lemma). Let F be any given (de Morgan) formula or a branching

program on n variables. For any k ≥ 4, we have

Pr

[
L(Fn−k) ≥ 2 · L(F ) ·

(
k

n

)Γ
]
< 2−k,

where Γ = 3/2 for the case of de Morgan formulas, and Γ = 1 for the case of formulas over

the complete basis and for the case of branching programs.

We gave the proof of Shrinkage Lemma in Section 3.2. Now we apply this lemma to

obtain the following structural characterization of small formulas and branching programs,

which will be useful for compression.

Corollary 4.4. Let F (x1, . . . , xn) be any formula (branching program) of size O(nd), where

the constant d is such that d < 2.5 for de Morgan formulas, and d < 2 for formulas over the

complete basis and for branching programs. There exist constants 0 < δ, γ < 1 (dependent

on d) such that for k = dnδe the following holds. The Boolean function computed by F is

computable by a decision tree of depth n − k whose leaves are labeled by the restrictions

of F (determined by the path leading to the leaf) such that all but 2−k fraction of the leaf

labels are formulas (branching programs) on k variables of size less than nγ .

Proof. We consider the case of de Morgan formulas only; the case of formulas over the

complete basis or branching programs can be argued analogously. Let d = 2.5 − ν, for

some constant ν > 0. Set δ := ν/3, and γ := 1− ν/2. By Lemma 4.3 applied to F , we get

that for all but 2−k fraction of the branches of the restriction decision tree of depth n − k,

the restricted formula has size less than O(nd/n1.5(1−δ)) = O(n1−ν/2).
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Generalized greedy Set-Cover heuristic

The Shrinkage Lemma allows us to decompose the Boolean cube into not too many regions

so that, over almost all regions, the original formula simplifies to a formula of sublinear size.

This falls short of our original hope to get a constant function over most regions. In fact,

the latter cannot be achieved since a de Morgan formula of size O(n2) computes the parity

of n bits, and the parity function doesn’t simplify to a constant unless all of its variables are

fixed.

Fortunately, we can still use a version of the greedy Set Cover heuristic to compress de

Morgan formulas of size about n2.5. The reason is that a similar algorithm works also for a

function f : {0, 1}n → {0, 1} computed by a circuit of the form ∨`+1
i=1Ci, for ` ≤ 2n, where all

but one circuit are small, while the remaining circuit accepts few inputs. More precisely, we

have the following.

Theorem 4.5. There is a deterministic poly(2n)-time algorithm A satisfying the following.

Let f : {0, 1}n → {0, 1} be any function computable by a circuit ∨`+1
i=1Ci, for 1 ≤ ` ≤ 2n,

where the circuits C1, . . . , C` have both circuit size and description size at most cn for a

constant c > 0, while the last circuit C`+1 evaluates to 1 on at most fraction α of points in

{0, 1}n, for some 0 ≤ α < 1.

Given the truth table of f and the parameters `, c, and α, algorithm A finds a circuit for

f of the form ∨mi=1Di, where m = O(n · `), the circuits D1, . . . , Dm−1 are of size O(n) each,

and the circuit Dm is a DNF with O(α2n) terms. Hence the overall size of the found circuit

is O(`n2 + αn2n).

Proof. Let U = f−1(1), and let β = |U |/2n. If β ≤ 2α, then our algorithm A outputs the

circuit which is a DNF with β2n terms, where each term evaluates to 1 on a single point in

U , and is 0 everywhere else. Note that the size of this circuit is O(αn2n), as required.

If β > 2α, then algorithm A does the following.

Enumerate3 all linear-size circuits C of description size at most cn, keeping only

those C where C−1(1) ⊆ f−1(1). Call the kept circuits legal. Let S = ∅.

Repeat the following until the number of not-yet-covered points of U becomes

at most 2α2n: find a legal circuit C such that the set C−1(1) covers at least

3Here we assume the correspondence between circuits and their descriptions is efficiently computable and
is known.
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1/(2`) fraction of not-yet-covered points in U , and add C to the set S.

Once the number of non-covered points in U becomes at most 2α2n, construct

a DNF D that evaluates to 1 on each non-covered point, and is 0 everywhere

else. Output the disjunction of D and the circuits in S.

For the analysis, let W = C−1
`+1(1), and let let V = U \W . We claim that at each iteration

of the algorithm before the last iteration, the set of not-yet-covered points in V is at least as

big as the set of not-yet-covered points in W . Indeed, otherwise the total number of not-

yet-covered points at that iteration is at most 2 · |W | ≤ 2α2n, making this the last iteration

of the algorithm.

Next observe that at each iteration before the last one, the set of not-yet-covered points

in V is non-empty, and is covered by ` legal circuits. Hence, there is a legal circuit that

covers at least 1/` fraction of non-covered points in V , which, by the earlier remark, consti-

tutes at least 1/(2`) fraction of all non-covered points of U . Thus our algorithm will always

find a required legal circuit C. It follows that after each iteration, the size of not-yet-covered

points in U decreases by the factor (1− 1/(2`)), and hence the total number of iterations is

t = O(` · log |U |) = O(` · n).

Thus, after at most t iterations, at most 2α2n points of U are still not covered. We

denote the t found circuits D1, . . . , Dt, and let Dt+1 be the DNF with at most 2α2n terms

which evaluates to 1 on the non-covered points of U , and is 0 everywhere else. Note

that the circuit size of Dt+1 is O(αn2n), while all Di’s, for 1 ≤ i ≤ t, are of circuit size

O(n) by construction. Also note that the overall running time of the described algorithm is

poly(2n, t) = poly(2n). The theorem follows.

Using this generalized algorithm, we get the following.

Theorem 4.6. There is an efficient compression algorithm that, given the truth table of a

formula (branching program) F on n variables of size L(F ) ≤ nd, the algorithm produces

an equivalent Boolean circuit of size at most 2n−n
ε
, for some constant 0 < ε < 1 (dependent

on d), where the constant d is such that

• d < 2.5 for de Morgan formulas, and

• d < 2 for formulas over the complete basis and for branching programs.
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Proof. Let F be a de Morgan formula, a complete-basis formula, or a branching program of

the size stated in the theorem. By Corollary 4.4, this F can be computed by a decision tree

of depth m := n−nδ such that all but at most α := 2−n
δ

fraction of the leaves correspond to

restricted subformulas of F of size nγ on k := nδ variables, for some constants 0 < δ, γ < 1

dependent on d.

Each leaf of the decision tree corresponds to a restriction of some subset of m input

variables. Let us associate with each leaf i, 1 ≤ i ≤ 2m, of the decision tree, the conjunction

ci of m literals that defines the corresponding restriction. Also let Fi, for 1 ≤ i ≤ 2m, denote

the restriction of the original F corresponding to the restriction given by ci. We get that

F ≡ ∨2m
i=1(ci ∧ Fi).

We know that all but b := α · 2m of formulas Fi are sublinear-size nγ . Let us assume,

without loss of generality, that all the first ` := 2m − b formulas Fi are small. Define the

circuits Ci := (ci ∧ Fi), for 1 ≤ i ≤ `, and C`+1 := ∨2m

i=`+1(ci ∧ Fi).
Observe that the circuit C`+1 can evaluate to 1 on at most b · 2k = α · 2n inputs from

{0, 1}n (since the decision tree of depth m partitions the set {0, 1}n into 2m disjoint subsets

of size 2k each, and C`+1 corresponds to b such subsets). Each circuit Ci, for 1 ≤ i ≤ `, is

of size at most O(m + nγ) ≤ O(n). We also claim that each such circuit can be described

by a string of O(n) bits. Indeed, we can specify the conjunction ci using 2n bits (n bits to

describe the subset of variables in the conjunction, and another n bits to specify the signs

of the variables), and we can specify the formula (branching program) Fi of size nγ by at

most O(nγ log n) ≤ O(n) bits in the standard way.

Thus we get that F ≡ ∨`+1
i=1Ci satisfies the assumption of Theorem 4.5. Running the

greedy algorithm of Theorem 4.5, we get a circuit for F of total size at mostO(`n2+αn2n) ≤
poly(n) · 2n−nδ .

4.2.4 Read-Once Branching Programs

Read-once branching programs are quite well-understood, with strongly exponential lower

bounds known. A property that makes a function f hard for read-once branching programs

is that of being m-mixed: for every set S of variables such that |S| = m every two distinct

assignments a and b to variables in S give rise to different functions fa 6≡ fb. Any read-

once branching program computing an m-mixed Boolean function must have at least 2m−1

nodes [SZ96].
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On the other hand, a function that has a small read-once branching program cannot be

m-mixed for large m. Intuitively, such a function can be represented by a decision tree of

depth m, whose leaves are labeled by subfunctions g (in the remaining n − m variables)

so that many of the leaves share the same subfunction. If a program has size s, then the

number of distinct such subfunctions is at most s. Thus, f can be computed as an OR

of at most s subformulas, where each subformula encodes the conjunction of a particular

subfunction g and the DNF describing all branches leading to this subfunction g. The fact

that f can be represented as an OR of few simple formulas allows us to use the greedy

SetCover heuristic to compress such f . We provide the details next.

It is convenient for us to use the following canonical form of a read-once branching

program. We call a program full if, for every node v of the program, all paths leading from

the start node to v query the same set of variables (not necessarily in the same order).

Lemma 4.7. Every read-once branching program F of size s on n inputs has an equivalent

full read-once branching program F ′ of size s′ ≤ 3n · s.

Proof. Given F , construct F ′ inductively as follows. Consider nodes of F in the topological

order from the start node. The start node obviously satisfies the fullness property. For

every node v of F with distinct predecessor nodes u1, . . . , ut, for t ≥ 2, let Xi denote the

set of variables queried by the paths from start to ui; note that, by the inductive hypothesis,

all paths leading to ui query the same set Xi of variables. Let X = ∪ti=1Xi. For every

i ∈ {1, . . . , t}, let ∆i = X \Xi be the set of “missing” variables. If ∆i 6= ∅, replace the edge

(ui, v) by a multi-path ui, w1, w2, . . . , wr, v, for r = |∆i|, where wj ’s are new nodes labeled

by the “missing” variables from ∆i (in any fixed order), with the edge (ui, w1) labeled as the

edge (ui, v), and each wj has two edges to its successor node on the path, labeled by 0

and by 1, respectively.

Since our original program is read-once, no variable from the set X for a node v can

occur after v. Thus, adding the queries to the “missing” variables for every predecessor of v

preserves the property of being read-once, and preserves the functionality of the branching

program. It also makes the node v and all of its predecessors satisfy the fullness property.

Hence, after considering all nodes v, we obtain a required full read-once branching program

F ′ equivalent to F . The size of F ′ is at most s+ 2sn since we add at most n dummy nodes

for each of at most 2s edges of F .
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Theorem 4.8. There is a deterministic poly(2n)-time algorithm A satisfying the following.

Let f : {0, 1}n → {0, 1} be any Boolean function computable by a read-once branching

program of size s. Given the truth table of f , algorithm A produces a formula for f of size

at most O(sn3 · 2n/2).

Proof. By Lemma 4.7, f is computable by a full read-once branching program F of size

s′ = 3sn. For 0 ≤ k ≤ n to be chosen later, consider the set B of all nodes at distance

n− k from the start node. Clearly, there are at most s′ such nodes. For every such node v,

let Xv be the set of n− k variables queried on every path from the start to v. Let Yv be the

remaining k variables. Associate with v the function hv in the variables Xv computed by

the branching subprogram with v as the new accepting terminal node (and the same start

node), and the function gv in the variables Yv computed by the branching subprogram with

v as the new start node (and the same terminal nodes). We may assume that the functions

gv are distinct for distinct nodes in B; otherwise, we merge all nodes with the same gv (on

the same subset of k variables) into a single node. We have

f ≡ ∨v∈B(hv ∧ gv). (4.1)

Consider any v ∈ B. Let ρ be a restriction of the variables Xv corresponding to some

path from the start to v. We have gv = f |ρ, and hv is the disjunction of all restrictions

ρ′ of the variables Xv such that f |ρ′ = gv = f |ρ. Thus, to describe any disjunct in the

representation of f given by Eq. (4.1), it suffices to specify a restriction of some subset of

n− k variables of f ; this can be described using O(n) bits.

We now run the greedy Set-Cover heuristic to find at most O(s′n) functions, each de-

scribable by a restriction of some n − k variables as explained above, whose disjunction

equals f . For each restriction ρ specifying one of these functions, the corresponding func-

tion can be computed as an AND of a DNF of size 2k (for the function f |ρ on k variables)

and a DNF of size 2n−k (for all restrictions ρ′ on n − k variables that yield f |ρ′ = f |ρ). The

overall circuit size of each of these O(s′n) functions is then O(n(2k+2n−k)), and the overall

size of the circuit computing f is O(s′n2(2k + 2n−k)), which is at most O(sn3 · 2n/2), if we

set k = n/2. The running time of the compression algorithm is poly(2n) since we only need

to enumerate all O(n)-size descriptions.
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4.3 Circuit Lower Bounds from Compression

Since in-compressibility of Boolean functions is a special case of a natural property in the

sense of [RR97], the existence of compression algorithms for a circuit class C implies that

there is no strong PRG in C. Here we argue that such compression algorithms would also

yield circuit lower bounds against C for a language in NEXP.

4.3.1 Arbitrary Subclass of Polynomial-Size Circuits

It was shown in [IKW02] that the existence of a natural property for P/poly would imply that

NEXP 6⊆ P/poly. In particular, the same conclusion follows if we assume the existence of a

compression algorithm for P/poly-computable Boolean functions. Here we generalize this

result by proving that the same is true if we replace P/poly with any subclass C ⊆ P/poly.

Theorem 4.9. Let C ⊆ P/poly be any circuit class. Suppose that for every c ∈ N there is a

deterministic polynomial-time algorithm that compresses a given truth table of an n-variate

Boolean function f ∈ C[nc] to a circuit of size less than 2n/n. Then NEXP 6⊆ C.

Proof. Suppose, for the sake of contradiction, that NEXP ⊆ C ⊆ P/poly. The following is a

refinement of a result in [IKW02] who showed the result for the case C = P/poly. We show

how to strengthen it to any subclass C ⊆ P/poly.

Claim 4.10. If NEXP ⊆ C, then for every L ∈ NEXP there is a c ∈ N such that, for all

sufficiently large n, every n-bit string x ∈ L has a witness computable by a C-circuit of size

nc.

Proof. By [IKW02], the assumption NEXP ⊆ P/poly implies that, for every language L ∈
NEXP, there exists a constant cL ∈ N such that every sufficiently large input x ∈ L has a

NEXP-witness that is the truth table of some Boolean function of circuit complexity ncL . For

every L ∈ NTIME(2n
e
), define a new language L′ ∈ EXP as follows: on inputs x, y, where

|x| = n and |y| = ne, search through the circuits of size ncL until find an NEXP-witness for

x ∈ L. If no such witness is found, then output 0. Otherwise, output the yth bit of the found

witness (which is the truth table of a ncL-size circuit). We get that for every x ∈ L, a string

y is such that (x, y) ∈ L′ iff the yth bit of the lexicographically first witness for x (as found

by the algorithm enumerating all ncL size circuits) is 1. Since EXP ⊆ C, we get that L′ ∈ C.
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So, every x ∈ L has a witness that is the truth table of Boolean function computable by a

polynomial-size C-circuit.

Consider now a universal language L for NE, with L ∈ NTIME(2n
2
). For NTIME(2cn) for

every c ∈ N, the witness size for inputs of size n is bounded by 2cn ≤ 2n
2

for large enough

n. We think of witnesses for NE languages (on inputs of size n) as the truth tables of m-

variate Boolean functions for m = n2: such a string of length 2m is a witness iff its prefix

of appropriate length is a witness. By Claim 4.10 above, we get that there is a constant

c0 ∈ N such that yes-instances x, |x| = n, of every language in NE have witnesses that are

truth tables of m = n2-variate Boolean functions computable in C[mc0 ].

Suppose we have a deterministic poly(2n)-time compression algorithm for n-variate

Boolean functions in C[n2c0 ]. Consider the following NE algorithm:

On input x of size n, nondeterministically guess a binary string of length 2n. Run

the compression algorithm on the guessed string. Accept iff the compression

algorithm didn’t produce a circuit of size less than 2n/n for this string.

Observe that the described algorithm accepts every input x since there are incompress-

ible strings of every length 2n. Its running time is poly(2n) dependent on the running time

of the assumed compression algorithm. Note that every witness for an input x is a string

that our compression algorithm fails to compress, which means that the witness is the truth

table of an n-variate Boolean function that requires C-circuits of size greater than n2c0 . If

we think of this 2n-bit witness as the prefix of a 2n
2
-bit truth table of an m = n2-variate

Boolean function, we conclude that the latter m-variate Boolean function requires C circuits

of size greater than mc0 . But this contradicts the fact we established earlier that every NE

language must have C[mc0 ] computable witnesses.

It is easy to get an analogue of Theorem 4.9 also for deterministic lossy compression

algorithms.

Remark 4.11. If we could show that ACC0-computable functions are compressible, we

would get an alternative proof of Williams’s lower bound NEXP 6⊆ ACC0 [Wil11]. Inter-

estingly, while such a compression algorithm would yield a natural property for ACC0, the

overall lower bound proof would still use non-natural arguments and non-relativizing argu-

ments that come from the use of [IKW02] in the proof of Claim 4.10.
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4.3.2 Other Function Classes That Are Hard to Compress

Large AC0 circuits. Compressing functions computable by “large” AC0 circuits (of size 2n
ε

with ε� 1/d, where d is the depth of the circuit) is difficult since every function computable

by a polynomial-size NC1 circuit has an equivalent AC0 circuit of size 2n
ε

(and some depth

d dependent on ε). The existence of a compression algorithm for such large AC0 circuits

would imply a natural property in the sense of [RR97] useful against NC1. The latter implies

that no strong enough PRG can be computed by NC1 circuits [RR97, AHM+08]. Also, using

Theorem 4.9, we get that such compression would imply that NEXP 6⊂ NC1.

Theorem 4.12. For every ε > 0 there is a d ∈ N such that the following holds. If there is a

deterministic polynomial-time algorithm that compresses a given truth table of an n-variate

Boolean function f ∈ AC0
d[2

nε ] to a circuit of size less than 2n/n, then NEXP 6⊂ NC1.

Monotone functions. Every monotone Boolean function on n variables can be com-

puted by a (monotone) circuit of size O(2n/n1.5) [Pip77, Red79]. We argue that compress-

ing polynomial-size monotone functions is as hard as compressing arbitrary functions in

P/poly.

Theorem 4.13. If there is an efficient algorithm that compresses a given truth table of an

m-variate monotone Boolean function of monotone circuit size poly(m) to a (not neces-

sarily monotone) circuit of size at most 2m/m1.51, then there is an efficient algorithm for

compressing arbitrary n-variate P/poly-computable Boolean functions to circuits of size

less than 2n/n.

Proof sketch. The idea is to use the well-known connection between non-monotone func-

tions and monotone slice functions [Ber82]. We use an optimal embedding of an arbitrary

n-variate Boolean function f into the middle slice of a monotone slice function g on m vari-

ables form = n+(logn)/2+Θ(1) due to [KKM12]. Given a truth table of f , we can efficiently

construct the truth table of this monotone function g. The mapping between n-bit inputs of

f and the corresponding m-bit inputs of g (of Hamming weight m/2) is computable and

invertible in time poly(m) = poly(n). Hence, a circuit for g of size at most 2m/m1.51 yields a

circuit for f of size at most O((2n/n1.01)+poly(n)), which is less than 2n/n for large enough

n. Appealing to Theorem 4.9 concludes the proof.
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Thus, a compression algorithm for monotone functions of polynomial monotone-circuit

complexity would yield a natural property for the class P/poly, as well as a proof that

NEXP 6⊆ P/poly.

4.4 Open Questions

We have shown efficient compressibility of functions computable by small circuits from

several classes C where known lower bounds are proved using the method of random

restrictions. Can we extend this to other circuit classes with known lower bounds, e.g.,

constant-depth circuits with prime-modular gates for which the polynomial-approximation

method was used [Raz87, Smo87]? Can we compress functions computable by ACC0

circuits? More generally, can we argue that all known circuit lower bound proofs yield

compression algorithms for the corresponding circuit classes?

The compressed circuit sizes for our compression algorithms are barely less than ex-

ponential. Is it possible to achieve better compression for the circuit classes considered?

We have used the ideas of our compression algorithm for small formulas to get also

a #SAT-algorithm for small formulas. Is there a general connection between compression

and SAT algorithms?

Using the independent work by Komargodski et al. [KRT13] on the “high-probability ver-

sion of shrinkage” for de Morgan formulas, we can get compression and #SAT algorithms

for de Morgan formulas of size almost n3. However, unlike our #SAT-algorithm (for n2.5-size

de Morgan formulas), the #SAT-algorithm resulting from [KRT13] is only randomized (due

to the notion of random restrictions used in [KRT13]). It is an interesting open question to

get a deterministic such algorithm for n3-size de Morgan formulas. (A similar problem is

also open for AC0-SAT algorithms, where there is a quantitative gap between the AC0 cir-

cuit size that can be handled by the randomized algorithm of [IMP12] and the deterministic

algorithm of [BIS12].) Very recently, building on the results in the present paper, [CKS13]

make a step in that direction: they give a deterministic #SAT-algorithm for de Morgan for-

mulas of size n2.63, with the running time 2n−n
Ω(1)

.

Finally, the focus of the present work has been on lossless compression. For small

AC0 circuits and small AC0 circuits with few threshold gates, one can get nontrivial lossy

compression using the Fourier transform [LMN93, GS10]. What about lossy compression

for other circuit classes?
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For example, for polynomial-size AC0 circuits with parity-gates, we know by the results of

Razborov and Smolensky [Raz87, Smo87] that every such function can be approximated

by a (poly log n)-degree polynomial over GF (2) to within error 1/n. This polynomial is

a binary Reed-Muller codeword of order poly log n that disagrees with our received word

(the given truth table of a function) in at most 1/n fraction of positions. The problem of

lossy compression leads to the following natural question on decoding: Given a received

word x of size 2n such that there is a Reed-Muller codeword (of order poly log n) within the

Hamming ball of relative radius 1/n around x, find in time poly(2n) some codeword that is

at most 1/n away from x. Note that this is different from the usual list-decoding question:

here the number of codewords within this Hamming ball can be huge, and so we don’t ask

to find all of them, but rather any single one. (The only result in this direction that we are

aware of is [TW11] for the case of binary Reed-Muller codes of order 2.)



Chapter 5

Improved #SAT Algorithm for De
Morgan Formulas

We give a deterministic #SAT algorithm for de Morgan formulas of size up to n2.63, which

runs in time 2n−n
Ω(1)

. This improves upon the deterministic #SAT algorithm of [CKK+13b],

which has similar running time but works only for formulas of size less than n2.5.

Our new algorithm is based on the shrinkage of de Morgan formulas under random re-

strictions, shown by Paterson and Zwick [PZ93]. We prove a concentrated and constructive

version of their shrinkage result. Namely, we give a deterministic polynomial-time algorithm

that selects variables in a given de Morgan formula so that, with high probability over the

random assignments to the chosen variables, the original formula shrinks in size, when

simplified using a deterministic polynomial-time formula-simplification algorithm.

5.1 Introduction

Subbotovskaya [Sub61] introduced the method of random restrictions to prove that PARITY

requires de Morgan formulas of size Ω(n1.5), where a de Morgan formula is a boolean

formula over the basis {∨,∧,¬}. She showed that a random restriction of all but a fraction

p of the input variables yields a new formula whose size is expected to reduce by at least

the factor p1.5. That is, the shrinkage exponent Γ for de Morgan formulas is at least 1.5,

where the shrinkage exponent is defined as the least upper bound on γ such that the

expected formula size shrinks by the factor pγ under a random restriction leaving p fraction

71
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of variables free.

Impagliazzo and Nisan [IN93] argued that Subbotovskaya’s bound Γ ≥ 1.5 is not opti-

mal, by showing that Γ ≥ 1.556. Paterson and Zwick [PZ93] improved upon [IN93], getting

Γ ≥ (5−
√

3)/2 ≈ 1.63. Finally, Håstad [Hås98] proved the tight bound Γ = 2; combined with

Andreev’s construction [And87], this yields a function in P requiring de Morgan formulas of

size Ω(n3−o(1)).

While the original motivation for the shrinkage results of [Sub61, IN93, PZ93, Hås98]

was to prove formula lower bounds, the same results turn out to be useful also for designing

nontrivial SAT algorithms for small de Morgan formulas. Santhanam [San10] strengthened

Subbotovskaya’s expected shrinkage result to concentrated shrinkage, i.e., shrinkage with

high probability, and used this to get a deterministic #SAT algorithm (counting the number of

satisfying assignments) for linear-size de Morgan formulas, with the running time 2n−Ω(n).

Santhanam’s algorithm deterministically selects a most frequent variable in the current

formula, and recurses on the two subformulas obtained by restricting the chosen variable

to 0 and 1; after n − Ω(n) recursive calls, almost all obtained formulas depend on fewer

than the actual number of free variables remaining, which leads to nontrivial savings over

the brute-force SAT algorithm for the original formula. A similar algorithm works also for

formulas of size less than n2.5, with the running time 2n−n
Ω(1)

[CKK+13b].

Motivated by average-case formula lower bounds, Komargodksi et al. [KRT13] (build-

ing upon [IMZ12]) showed a concentrated-shrinkage version of Håstad’s optimal result for

the shrinkage exponent Γ = 2. Combined with the aforementioned algorithm of Chen et

al. [CKK+13b], this yields a nontrivial randomized zero-error #SAT algorithm for de Morgan

formulas of size n3−o(1), running in time 2n−n
Ω(1)

.

Is there a deterministic #SAT algorithm with similar running time that works for formulas

of size close to n3? We make a step in that direction, by giving such an algorithm for

formulas up to size n2.63.

5.1.1 Our Main Results and Techniques

Our main result is a deterministic #SAT algorithm for de Morgan formulas of size up to

n2.63, running in time 2n−n
Ω(1)

.

Theorem 5.1 (Main). There is a deterministic algorithm for counting the number of satis-

fying assignments in a given de Morgan formula on n variables of size at most n2.63 which
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runs in time at most 2n−n
δ
, for some constant 0 < δ < 1.

As in [San10, CKK+13b], we use a deterministic algorithm to choose a next variable to

restrict, and then recurse on the two resulting restrictions of this variable to 0 and 1. Instead

of Subbotovskaya-inspired selection procedure (choosing the most frequent variable), we

use the weight function introduced by Paterson and Zwick [PZ93], which measures the

potential savings for each one-variable restriction, and selects a variable with the biggest

savings. Since [PZ93] gives the shrinkage exponent Γ ≈ 1.63, rather than Subbotovskaya’s

1.5, this could potentially lead to an improved #SAT algorithm for larger de Morgan formulas.

However, computing the savings, as defined by [PZ93], is NP-hard, as it requires com-

puting the size of a smallest logical formula equivalent to a given one-variable restriction.

In fact, the shrinkage result of [PZ93] is nonconstructive in the following sense: the ex-

pected shrinkage in size is proved for the minimal logical formula computing the restricted

boolean function, rather than for the formula obtained from the original formula using effi-

ciently computable simplification rules. In contrast, the shrinkage results of [Sub61, Hås98]

are constructive: the restricted formula is expected to shrink in size when simplified using

a certain explicit set of logical rules, so that the new, simplified formula is computable in

polynomial time from the original restricted formula.

While the constructiveness of shrinkage is unimportant for proving formula lower bounds,

it is crucial for designing shrinkage-based #SAT algorithms for de Morgan formulas, such as

those in [San10, CKK+13b, KRT13]. Our main technical contribution is a proof of the con-

structive version of the result in [PZ93]: we give deterministic polynomial-time algorithms

for formula simplification and extend the analysis of [PZ93] to show expected shrinkage of

formulas with respect to this efficiently computable simplification procedure. The same sim-

plification procedure allows us to choose, in deterministic polynomial-time, which variable

should be restricted next. The merit of deterministic variable selection and concentrated

and constructive shrinkage, for a shrinkage exponent Γ, is that they yield a deterministic

satisfiability algorithm for de Morgan formulas up to size nΓ+1−o(1), using an approach of

[CKK+13b].

Namely, once we have this constructive shrinkage result, based on restricting one vari-

able at a time, we apply the martingale-based analysis of [KR13, CKK+13b] to derive a

concentrated version of constructive shrinkage, showing that almost all random settings of

the selected variables yield restricted formulas of reduced size, where the restricted formu-

las are simplified by our efficient procedure. The shrinkage exponent Γ = (5−
√

3)/2 ≈ 1.63
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is the same as in [PZ93]. Using [CKK+13b], we then get a deterministic #SAT algorithm,

running in time 2n−n
Ω(1)

, that works for de Morgan formulas of size up to nΓ+1−o(1) ≈ n2.63.

Related work

The deep interplay between lower bounds and satisfiability algorithms has been witnessed

in several circuit models. For example, Paturi, Pudlak and Zane [PPZ99] give a randomized

algorithm for k-SAT running in time O(n2s2n−n/k), where n is the number of variables and s

is the formula size; they also show that PARITY requires depth-3 circuits of size Ω(n1/42
√
n).

More generally, Williams [Wil10] shows that a “better-than-trivial” algorithm for Circuit Satis-

fiability, for a class C of circuits, implies a super-polynomial lower bounds against the circuit

class C for some language in NEXP; using this approach, Williams [Wil11] obtains a super-

polynomial lower bound against ACC0 circuits1 by designing a nontrivial SAT algorithm for

ACC0 circuits.

Following [San10], Seto and Tamaki [ST12] get a nontrivial #SAT algorithm for general

linear-size formulas (over an arbitrary basis). Impagliazzo et al. [IMP12] use a generaliza-

tion of Håstad’s Switching Lemma [Hås86], an analogue of shrinkage for AC0 circuits2, to

give a nontrivial randomized zero-error #SAT algorithm for depth-d AC0 circuits on n inputs

of size up to 2n
1/(d−1)

. Beame et al. [BIS12] give a nontrivial deterministic #SAT algorithm

for AC0 circuits, however, only for circuits of much smaller size than that of [IMP12].

Recently, the method of (pseudo) random restrictions has also been used to get pseu-

dorandom generators (yielding additive-approximation #SAT algorithms) for small de Mor-

gan formulas [IMZ12] and AC0 circuits [TX13].

Remainder of this chapter. Section 5.2 contains our efficient formula-simplification pro-

cedures. We use these procedures in Section 5.3 to prove a constructive and concentrated

shrinkage result for de Morgan formulas. This is then used in Section 5.4 to describe and

analyze our #SAT algorithm from Theorem 5.1. Section 5.5 contains some open questions.

1constant-depth, unbounded fanin circuits, using AND, OR, NOT, and (MOD m) gates, for any integer m
2constant-depth, unbounded fanin circuits, using AND, OR, and NOT gates
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Preliminaries

Recall that a (de Morgan) formula is a binary tree where each leaf is labeled by a literal

(a variable x or its negation x) or a constant (0 or 1), and each internal node is labeled by

∧ or ∨. Let F be a formula with no constant leaves. We define the size of F , denoted by

L(F ), as number of leaves in F . Following [PZ93], we define a twig to be a subtree with

exactly two leaves. Let T (F ) be the number of twigs in F . We define the weight of F as

w(F ) = L(F ) + α · T (F ), where α =
√

3 − 1 ≈ 0.732. For convenience, if F is a constant,

we define L(F ) = w(F ) = 0. We say F is trivial if it is a constant or a literal. Note that we

define the size and weight only for formulas which are either constants or with no constant

leaves; this is without loss of generality since constants can always be eliminated using a

simplification procedure below.

It is easy to see that L(F ) + α ≤ w(F ) ≤ L(F )(1 + α/2), since the number of twigs in a

formula is at least one and at most half of the number of leaves.

We denote by F |x=1 the formula obtained from F by substituting each appearance of x

by 1 and x by 0; F |x=0 is similar. We say a formula ∨-depends (∧-depends) on a literal y if

there is a path from the root to a leaf labeled by y such that every internal node on the path

(including the root) is labeled by ∨ (by ∧).

5.2 Formula Simplification Procedures

5.2.1 Basic Simplification

We define a procedure Simplify to eliminate constants, redundant literals and redundant

twigs in a formula. The procedure includes the standard constant simplification rules and

a natural extension of the one-variable simplification rules from [Hås98].

Simplify(F ):

If F is trivial, done. Otherwise, apply the following transformations whenever

applicable. We denote by y a literal and G a subformula.

1. Constant elimination.

(a) If a subformula is of the form 0 ∧G, replace it by 0.

(b) If a subformula is of the form 1 ∨G, replace it by 1.
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(c) If a subformula is of the form 1 ∧G or 0 ∨G, replace it by G.

2. One-variable simplification.

(a) If a subformula is of the form y ∨ G and y or y appears in G, replace

the subformula by y ∨G|y=0.

(b) If a subformula is of the form y ∧ G and y or y appears in G, replace

the subformula by y ∧G|y=1.

(c) If a subformula G is of the form G1 ∨G2 for non-trivial G1 and G2, and

G ∨-depends on a literal y, then replace G by y ∨G|y=0.

(d) If a subformula G is of the form G1 ∧G2 for non-trivial G1 and G2, and

G ∧-depends on a literal y, then replace G by y ∧G|y=1.

We call a formula simplified if it is invariant under Simplify. Note that a simplified

formula may not be a smallest logically equivalent formula; e.g., (x∧ y)∨ (x∧ y) is already

simplified but it is logically equivalent to y.

The rules 1(a)–(c) and 2(a)–(b) are from [Hås98, San10]. Rules 2(c)–(d) are a nat-

ural generalization of the one-variable rule of [Hås98], which allow us to eliminate more

redundant literals and reduce the formula weight. For example, the formula (x∨ y)∨ (x∧ y)

simplifies to x∨y under our rules but not the rules in [Hås98, San10]. For another example,

the formula (x ∨ y) ∨ (z ∧ w) with weight 4 + 2α simplifies to x ∨ (y ∨ (z ∧ w)) with weight

4 + α.

The next lemma shows Simplify is efficient.

Lemma 5.2. Simplify runs in polynomial time.

To prove Lemma 6.1, we first show that Simplify reduces the formula size but it does

not increase the number of twigs.

Lemma 5.3. Let F be a formula with no constant leaves. Suppose we substitute k leaves of

F by constants, and run Simplify which produces a new formula F ′. Then L(F ′) ≤ L(F )−k
and T (F ′) ≤ T (F ).

Proof. If F is a literal, this is obvious. Suppose that F is not trivial.

We first consider constant-elimination rules. Each replacement removes at least one

leaf, so the formula size reduces by at least k. For rules 1(a)–(b), at most one new twig

may be formed, but at least one old twig is removed. For rule 1(c), if G is not a literal, the
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twigs will not change; if G is a literal, one old twig is removed and at most one new twig is

formed.

Now consider one-variable simplification rules. For rules 2(a)–(b), new constants are

introduced, which will be eliminated later; the number of twigs does not increase by con-

stant elimination. For rules 2(c)–(d), the formula size does not increase; if G|y=0 is a literal,

then a new twig is formed but at least one old twig will be removed; otherwise, the twigs

will not change.

Proof. (Lemma 6.1) Simplify checks if any simplification rule is applicable, and terminates

when none of the rules are applicable. At each round, it takes polynomial time to check

whether a rule applies and, if so, to transform the formula by the rule. Next we bound the

number of rounds.

For rules 1(a)–(c), at least one leaf is eliminated. For rules 2(a)–(b), at least one con-

stant leaf is introduced and will then be eliminated. So, the number of rounds where one

of 1(a)–(c) or 2(a)–(b) is active is at most 2 · L(F ). Next we bound the number of rounds

where one of 2(c)–(d) is active.

Call a nontrivial subformula G without constant leaves stable if none of the rules 2(a)–

(d) are applicable to G; that is, G is either y ∨H or y ∧H where y or y does not appear in

H, or G does not ∨-depend or ∧-depend on any literal. For a non-trivial formula F without

constant leaves, we define q(F ) =
∑

G L(G) where G ranges over all subformulas of F

which are unstable.

Consider rules 2(c)–(d). When we replace an unstable subformula G by y ∨ G|y=0 or

y ∧ G|y=1 and eliminate the constants, the quantity q(F ) reduces by at least one, since

either all of G is eliminated or the new unstable formula is smaller than G. Since q(F ) ≤
poly(L(F )), the number of rounds where one of 2(c)–(d) is active is at most poly(L(F )).

5.2.2 Simplification under All One-Variable Restrictions

Here we consider how a formula simplifies when one of its variables is restricted. Let F be

a formula. We define a recursive procedure RestrictSimplify which produces a collection

of formulas for F under all one-variable restrictions. We denote the output of the procedure

by {Fy}, where y ranges over all literals. Note that each Fy is logically equivalent to F |y=1.

The idea behind the transformations in RestrictSimplify is the following. When a for-

mula simplifies to a literal under some one-variable restriction, then the formula must be
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logically equivalent to some special form. For example, if we know that F |x=1 simplifies to

a literal y, then F itself must be logically equivalent to (x ∧ y) ∨ (x ∧ G) for some G. This

logically equivalent form may help to simplify F under other one-variable restrictions.

RestrictSimplify(F ):

If F is a constant c, then let Fy := c for all y. If F is a literal, then let Fy := F |y=1

for all y.

If F is G ∨H or G ∧H, recursively call RestrictSimplify to compute {Gy} and

{Hy}, and initialize each Fy := Simplify(Gy∨Hy) or Fy := Simplify(Gy∧Hy),

respectively. Then apply the following transformations whenever possible. We

suppose there are two literals x and y over distinct variables such that Fx = y.

1. If Fx = y, then let Fw := y|w=1 for every literal w.

2. If Fx = z for some literal z /∈ {x, x, y}, then let Fw := Simplify((x ∧ y) ∨
(x ∧ z)|w=1) for every literal w.

3. (a) If neither x nor x appears in Fy, then let Fy := 1; (b) otherwise, let

Fy := Simplify(x ∨ (Fy|x=0)).

4. (a) If neither x nor x appears in Fy, then let Fy := 0; (b) otherwise, let

Fy := Simplify(x ∧ (Fy|x=0)).

5. For z /∈ {x, x, y, y}, if neither x nor x appears in Fz, then let Fz := y.

Correctness of RestrictSimplify. The above transformations are based on logical im-

plications. In case 1, Fx = Fx = y implies that F ≡ y. In case 2, Fx = y and Fx = z

implies that F ≡ (x ∧ y) ∨ (x ∧ z). Note that in this case z might be y. In case 3, we have

Fy|x=1 ≡ Fx|y=1 = 1; if neither x nor x appears in Fy then Fy = Fy|x=1 ≡ 1, otherwise

Fy ≡ x∨ (Fy|x=0). Case 4 is dual to case 3. In case 5, if neither x nor x appears in Fz then

Fz = Fz|x=1 ≡ Fx|z=1 = y.

Remark 5.4. It is possible to introduce more simplifications rules in RestrictSimplify, e.g.,

when Fx is a constant for some literal x, or when, in case 5, x or x appears in Fz3. However,

such simplifications are not needed for our proof of constructive shrinkage.

3then we could let Fz := (x ∧ y) ∨ (x ∧ Simplify(Fz|x=0))



CHAPTER 5. IMPROVED #SAT ALGORITHM FOR DE MORGAN FORMULAS 79

It is easy to show that RestrictSimplify is effiicent. We prove a proof of the following

lemma in the Appendix.

Lemma 5.5. RestrictSimplify runs in polynomial time.

Proof. The base case is obvious. For induction, suppose F = G ∨ H, where F is on n

variables. The procedure makes two recursive calls on G and H, and then simplifies the

collection {Fy}. The transformations on the collection {Fy}, except case 3(b) and 4(b),

reduce the formulas to the smallest possible size. In case 3(b) (similarly 4(b)), Fy becomes

constant 1, or literal x, or non-trivial; this will not trigger another transformation. Thus the

transformations on the collection {Fy} run in time poly(n,L(F )).

We conclude that the time spent at each node of the formula F is poly(n,L(F )), and so

the overall time is L(F ) · poly(n,L(F )) = poly(n,L(F )), as required.

We will need the following basic property of RestrictSimplify.

Claim 5.6. For F = G ∨H or F = G ∧H, we have w(Fy) ≤ w(Gy) + w(Hy), for all literals

y except those where Gy and Hy are literals over distinct variables.

Proof. Let F = G ∨H; the other case is identical. We initialize Fy := Simplify(Gy ∨Hy),

and so the required inequality holds initially. All transformations, except 3(b) and 4(b),

produce the smallest logically equivalent formula; rules 3(b) and 4(b) do not increase the

weight of the formula.

The solo structure of a formula F is the relation on literals defined by x ⇒ y if Fx = y,

where the collection of formulas {Fx} is produced by the procedure RestrictSimplify. The

following lemma gives all possible solo structures; it resembles the characterization of solo

structures for boolean functions from [PZ93]. We provide the proof in the Appendix.

Lemma 5.7. The solo structure of a non-trivial formula F must be in one of the following

forms:

(i) the empty relation,

(ii) there exists y such that for all literals x /∈ {y, y} we have x⇒ y in the relation,

(iii) {x1 ⇒ y, . . . , xk ⇒ y} for some k ≥ 1 and xi’s are over distinct variables,

(iv) {x⇒ y, y ⇒ x, x⇒ y, y ⇒ x} for some literals x, y,
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(v) {x⇒ y, x⇒ z} for some literals x, y, z,

(vi) {x⇒ y, y ⇒ x} for some literals x, y,

(vii) {x⇒ y, y ⇒ x} for some literals x, y.

Proof. If none of Fx is a literal, then this is case (i). Otherwise, suppose that Fx = y

for some literals x, y. If x is the only literal such that Fx is a literal, then this is case (iii)

with k = 1. Next we assume there is another literal x′ such that Fx′ = y′ for some literal

y′. We consider different possibilities of x′ and the implications by the transformations in

RestrictSimplify.

If x′ = x, consider different cases of y′. If y′ = y, then by the transformation 1 in

RestrictSimplify we have Fw = y for all w /∈ {y, y} and this gives case (ii). If y′ /∈ {x, x, y},
then by the transformation 2 in RestrictSimplify we have Fw := Simplify((x ∧ y) ∨ (x ∧
y′)|w=1); this gives either case (iv) if y′ = y or case (v) if y′ /∈ {x, x, y, y}.

If x′ = y, then we have both Fx = y and Fy = y′. By the transformation 3(a)-(b) in

RestrictSimplify, the only possibility for y′ is that y′ = x. This gives either case (iv) if

Fx = y or case (vi) otherwise.

If x′ = y, then we have both Fx = y and Fy = y′. By the transformation 4(a)-(b) in

RestrictSimplify, the only possibility for y′ is that y′ = x. This gives either case (iv) if

Fx = y or case (vii) otherwise.

If x′ /∈ {x, x, y, y}, then by the transformation 5 in RestrictSimplify, the only possibility

for y′ is y′ = y. Note that y′ cannot be x or x since y′|x=1 = Fx′ |x=1 ≡ Fx|x′=1 = y|x′=1 = y.

This gives case (iii) with k ≥ 2.

5.3 Constructive and Concentrated Shrinkage

Here we prove a constructive and concentrated version of the shrinkage result from [PZ93].

For each literal y of a given formula F , we define the savings (reduction in weight of F ) when

we replace F by the new formula Fy, as computed by the procedure RestrictSimplify. We

first prove that the lower bound on the average savings (over all variables of F ) shown by

[PZ93] continues to hold with respect to our efficiently computable one-variable restrictions

Fy.
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5.3.1 Average Savings under One-Variable Restrictions

Assume a formula F is simplified; otherwise, let F := Simplify(F ). For a formula F and

a literal y, we define σy(F ) = w(F ) − w(Fy), where Fy is produced by RestrictSimplify.

Let σ(F ) =
∑

x(σx(F ) + σx(F )), where the summation ranges over all variables of F . The

quantity σ(F ) measures the total savings under all one-variable restrictions.

Theorem 5.8. For any formula F , it holds that σ(F )/w(F ) ≥ 2γ, where γ = (5 −
√

3)/2 ≈
1.63.

The proof is by induction, as in [PZ93]. The difficulty here is that we need to apply the

“syntactic simplifications” defined by the procedure RestrictSimplify, instead of using the

smallest logically equivalent formulas as in [PZ93].

For the base case, the following lemma can be proved by enumerating all possible

formulas of size at most 4 (the proof is given in the Appendix).

Lemma 5.9. For any simplified F of size at most 4, we have σ(F )/w(F ) ≥ 2γ.

Proof. Table 5.1 lists all simplified formulas (or their duals) of size at most 4, together with

the savings. The cases labeled by * were not consider in [PZ93] since they are not the

smallest logically equivalent formulas.

Table 5.1: Savings for all formulas with 2 ≤ L(F ) ≤ 4

Formula Weight w(F ) Savings σ(F ) σ(F )/w(F )

x ∨ y 2 + α 6 + 4α = 2γ
x ∨ (y ∧ z) 3 + α 10 + 3α = 2γ
x ∨ (y ∨ z) 3 + α 12 + 3α > 2γ

x ∨ (y ∧ (z ∧ w)) 4 + α 17 + 4α > 2γ
x ∨ (y ∧ (z ∨ w)) 4 + α 15 + 2α > 2γ
x ∨ (y ∨ (z ∧ w)) 4 + α 16 + 2α > 2γ
x ∨ (y ∨ (z ∨ w)) 4 + α 20 + 4α > 2γ
(x ∧ y) ∨ (z ∧ w) 4 + 2α 12 + 8α = 2γ

* (x ∧ y) ∨ (x ∧ y) 4 + 2α 14 + 8α > 2γ
* (x ∧ y) ∨ (x ∧ y) 4 + 2α 14 + 8α > 2γ

(x ∧ y) ∨ (x ∧ y) 4 + 2α 12 + 8α = 2γ
* (x ∧ y) ∨ (x ∧ z) 4 + 2α 16 + 9α > 2γ

(x ∧ y) ∨ (x ∧ z) 4 + 2α 14 + 8α > 2γ
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For formulas of size larger than 4, we consider whether one child of the root is trivial.

Without loss of generality, we assume the root is labeled by ∨; the other case is dual. The

following lemma considers if one child of the root is trivial. The proof is similar to [PZ93]

and is given in the Appendix.

Lemma 5.10. If F is a simplified formula of the form x∨G for some literal x and subformula

G, and L(F ) ≥ 5, then σ(F )/w(F ) ≥ 2γ.

Proof. The proof is similar to [PZ93]. Without loss of generality, assume x is a variable.

Since F is simplified, we get that x does not appear in G. Let k be the number of literals

y such that Gy is a literal. We will show that the k twigs produced by restricting these

literals can be compensated. For k ≤ 4, by the induction hypothesis on G and the fact that

w(F ) = 1 + w(G), we have

σ(F ) = σx(F ) + σx(F ) + σ(G)− kα

≥ 1 + w(F ) + 2γ · (w(F )− 1)− 4α

= 2γ · w(F ) + w(F )− (4α+ 2γ − 1) ≥ 2γ · w(F )

since w(F ) ≥ L(F ) + α > 5.7 > (4α+ 2γ − 1) ≈ 5.2.

If k ≥ 5, then

σ(F ) ≥ 1 + w(F ) + 5(w(F )− (2 + α))

≥ 6w(F )− (9 + 5α) ≥ 2γ · w(F )

since w(F ) > 5.7 > (9 + 5α)/(6− 2γ) ≈ 4.7.

Now we consider formulas where both children of the root are non-trivial.

Lemma 5.11. Suppose F is of the form G ∨ H with L(F ) ≥ 5 and G,H are non-trivial.

Then σ(F )/w(F ) ≥ 2γ.

Intuitively, we need to take care of the cases where both G and H simplify to literals on

distinct variables (thereby forming a new twig); otherwise the result holds by the induction

hypothesis. Suppose Gx∨Hx is a twig for some literal x. Then σx(F ) = σx(G)+σx(H)−α,

i.e., we get the savings from restricting x in G and H, but then need to pay the penalty α for

the twig created. We will argue that there are “extra savings” from restricting other literals

in the formula F that can be used to compensate for the penalty α at x.
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Proof. We first prove that, for a literal x, if Gx and Hx are not literals over distinct variables,

then σx(F ) ≥ σx(G) + σx(H). Since w(F ) = w(G) +w(H), the claim follows from w(Fx) ≤
w(Gx) + w(Hx), which holds by Claim 5.6.

Let k be the number of different literals x such that Gx∨Hx is a twig (i.e., Gx and Hx are

literals over distinct variables). Thus there are k twigs created as we consider all possible

one-variable restrictions. We will argue that, for different cases of k, the weight kα of these

new twigs can be compensated from savings in other restrictions.

Case k = 0: We have σy(F ) ≥ σy(G) + σy(H) for all literals y, and thus σ(F ) ≥ σ(G) +

σ(H). The result follows directly by the induction hypothesis on G and H.

Case 1 ≤ k ≤ 2: Let x be such that Gx = y and Hx = z. Without loss of generality,

assume x, y, z are distinct variables. Consider F under the restrictions y = 1 and z = 1.

We will argue that the extra savings from applying Simplify on Gy ∨Hy and Gz ∨Hz are at

least 2 > kα.

Since Gx = y, transformation 3(a)–(b) in RestrictSimplify guarantee that either Gy is

constant 1 or it ∨-depends on x. Similarly either Hz is constant 1 or it ∨-depends on x.

Since Hy|x=1 ≡ Hx|y=1 = z, we get that Hy is not a constant (it depends on z), and if it is

a literal it must be z. Similarly Gz is not a constant (it depends on y), and if it is a literal it

must be y.

We first consider the case that either Gy or Hz is constant 1. If Gy = Hz = 1, then there

are at least 2 savings from simplifying Gy ∨ Hy and Gz ∨ Hz by eliminating constants. If

Gy = 1 and Hy is not a literal, then there are at least 2 savings from simplifying Gy ∨Hy. If

Gy = 1, Hy = z and Hz 6= 1, we first have one saving from simplifying Gy ∨Hy; then since

Hy = z and Hz 6= 1, by the transformation 3(b) in RestrictSimplify Hz ∨-depends on y,

and since Gz depends on y, we get another saving from simplifying Gz ∨ Hz. The cases

where Hz = 1 are similar.

Next we consider that both Gy and Hz ∨-depends on x. In the following we analyze

different possibilities for Hy and Gz.

• If x appears in both Hy and Gz, then there are at least 2 savings from simplifying

Gy ∨Hy and Gz ∨Hz by eliminating x.

• If x appears in Hy but not Gz, then by the transformation 5 in RestrictSimplify we

have Gz = y, and thus Gy ∨-depends on both x and z. Then since Hy depends on
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both x and z, we have two savings from simplifying Gy ∨Hy by eliminating both x and

z from Hy.

• If x appears in Gz but not Hy, this is similar to the previous case.

• If x appears in neitherHy norGz, then by the transformation 5 in RestrictSimplify we

have Gz = y and Hy = z. Thus Gy ∨-depends on both x and z, and Hz ∨-depends

on both x and y. Therefore we have at least 2 savings, one from simplifying Gy ∨Hy

by eliminating z, and another from simplifying Gz ∨Hz by eliminating y.

Case k ≥ 3: By Lemma 5.7, the solo structure of G and H must be one of cases (ii), (iii),

or (iv).

First assume that either G or H is in case (ii) of Lemma 5.7. Without loss of generality,

suppose G is in case (ii); then G is logically equivalent to a literal y but itself is non-trivial,

which implies that w(G) ≥ 4 + α. (The smallest non-trivial, simplified formula equivalent

to a literal has size at least 4). We have that w(Gz) = 1 for at least k literals z /∈ {y, y},
and w(Gy) = w(Gy) = 0. Then by the fact that w(F ) = w(G) + w(H) and the induction

hypothesis on H, we have

σ(F ) ≥ k(w(G)− 1) + 2w(G) + σ(H)− kα

≥ 2γ · w(F ) + (2 + k − 2γ)w(G)− k(1 + α) ≥ 2γ · w(F ).

If both G and H are in case (iv), then, under each restriction, they reduce to literals on

the same variable. Since in case (iii) all xi’s are over distinct variables, it is not possible

that one of G and H is in case (iv) while the other is in case (iii). Thus, we now only need

to analyze if both G and H are in case (iii).

Without loss of generality, suppose that x1, . . . , xk, y, z are distinct variables such that

Gxi = y and Hxi = z for i = 1, . . . , k. By the transformation 3 in RestrictSimplify, either

Gy = 1 or Gy ∨-depends on x1, . . . , xk; and Hz is similar.

If every xi appears in Hy, then there are k savings from simplifying Gy ∨ Hy by elimi-

nating xi’s. Similarly, if every xi appears in Gz, there are also k savings from simplifying

Gz ∨Hz.
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If some xi does not appear in Hy and some xi does not appear in Gz. By the transfor-

mation 5 in RestrictSimplify, we have Hy = z and Gz = y. Therefore,

σxi(F ) = w(F )− (2 + α), i = 1, . . . , k

σy(F ) ≥ 1 + (w(H)− 1) = w(H)

σz(F ) ≥ 1 + (w(G)− 1) = w(G)∑
v

σv(F ) ≥ L(F ) ≥ w(F )/(1 + α/2), v ranges over all variables of F

Summing the above cases together yields σ(F ) ≥ 2γ · w(F ).

Proof of Theorem 5.8. The proof is by combining the base case in Lemma 5.9 and the two

inductive cases in Lemma 5.10 and Lemma 5.11.

5.3.2 Concentrated Shrinkage

Theorem 5.8 characterizes the average shrinkage of the weight of a formula when a ran-

domly chosen literal is restricted. Given a formula F on n variables, if we randomly pick

one variable and randomly assign it 0 or 1, the weight of the restricted formula (produced

by RestrictSimplify) reduces by at least γ · w(F )/n on average.

The procedure RestrictSimplify also allows us to deterministically pick the variable

with the best savings in polynomial time. That is, given a formula F , we run Restrict-

Simplify to produce a collection of formulas {Fy}, and then pick a variable x such that

σx(F ) + σx(F ) is maximized. We show that randomly restricting such a variable signifi-

cantly reduces the expected weight of the simplified formula.

Lemma 5.12. Let F be a formula on n variables. Let x be the variable such that σx(F ) +

σx(F ) is maximized. Let F ′ be Fx or Fx with equal probability. Then we have w(F ′) ≤
w(F )− 1 and

E[w(F ′)] ≤
(

1− 1

n

)γ
· w(F ).

Proof. Restricting one variable eliminates at least one leaf; therefore w(F ′) ≤ w(F ) − 1.

By Theorem 5.8, n(σx(F ) + σx(F )) ≥ σ(F ) ≥ 2γ · w(F ). Then we have

E[w(F ′)] = w(F )− 1

2
(σx(F ) + σx(F )) ≤

(
1− γ

n

)
· w(F ) ≤

(
1− 1

n

)γ
· w(F ).
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Next we use the martingale-based analysis from [KR13, CKK+13b] to derive a “high-

probability shrinkage” result from Lemma 5.12. Let F0 = F be a formula on n variables. For

1 ≤ i ≤ n, let Fi be the (random) formula obtained from Fi−1 by assigning the variable with

the best savings with a random value Ri ∈ {0, 1}. The following Lemma shows the weight

of a given de Morgan formula reduces with high probability under the restriction process.

The proof, which is similar to [CKK+13b], is provided in the Appendix.

Lemma 5.13 (Concentrated weight shrinkage). Let F be any given de Morgan formula on

n variables. For any k > 10, we have

Pr

[
w(Fn−k) ≥ 2 · w(F ) ·

(
k

n

)γ]
< 2−k/10.

Recall that a sequence of random variables X0, X1, X2, . . . , Xn is a supermartingale

with respect to a sequence of random variables R1, R2, . . . , Rn if E[Xi | Ri−1, . . . , R1] ≤
Xi−1, for 1 ≤ i ≤ n. We use the following version of Azuma’s inequality.

Lemma 5.14 ([CKK+13b]). Let {Xi}ni=0 be a supermartingale with respect to {Ri}ni=1. Let

Yi = Xi−Xi−1. If, for every 1 ≤ i ≤ n, the random variable Yi (conditioned on Ri−1, . . . , R1)

assumes two values with equal probability, and there exists a constant ci ≥ 0 such that

Yi ≤ ci, then, for any λ, we have

Pr[Xn −X0 ≥ λ] ≤ exp

(
− λ2

2
∑n

i=1 c
2
i

)
.

Let F0 = F be a formula on n variables. For 1 ≤ i ≤ n, let Fi be the (random) formula

obtained from Fi−1 by assigning the variable with the best savings with a random value

Ri ∈ {0, 1}. We define random variables Wi := w(Fi), wi := logWi and

Zi := wi − wi−1 − γ log

(
1− 1

n− i+ 1

)
.

We have the following.

Lemma 5.15. Let X0 = 0 and Xi =
∑i

j=1 Zj . Then the sequence {Xi} is a supermartin-

gale with respect to {Ri}, and, for each Zi, we have Zi ≤ ci := −γ log
(

1− 1
n−i+1

)
.

Proof. Since wi ≤ wi−1, we have Zi ≤ ci. By Jensen’s inequality and Lemma 5.12, we get

E[wi | Ri−1, . . . , R1] ≤ logE[Wi | Ri−1, . . . , R1]

≤ log

(
Wi−1

(
1− 1

n− i+ 1

)γ)
= wi−1 + γ log

(
1− 1

n− i+ 1

)
.
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This implies E[Zi | Ri−1, . . . , R1] ≤ 0 and so {Xi} is a supermartingale.

Now we can prove that the weight of a given de Morgan formula reduces with high

probability under the restriction process defined above.

Proof of Lemma 5.13. Let λ be arbitrary, and let ci’s be as defined in Lemma 5.15. By

Lemmas 5.15 and 6.4, we get

Pr

 i∑
j=1

Zj ≥ λ

 ≤ exp

(
− λ2

2
∑i

j=1 c
2
j

)
.

For the left-hand side, we get by the definition of Zj ’s that
∑i

j=1 Zj = wi − w0 − γ log n−i
n .

Hence,

Pr

 i∑
j=1

Zj ≥ λ

 = Pr

[
wi − w0 − γ log

(
n− i
n

)
≥ λ

]
= Pr

[
Wi ≥ eλW0

(
n− i
n

)γ]
.

For each 1 ≤ j ≤ i, we have cj ≤ γ
n−j , using the inequality log(1 + x) ≤ x. Thus,

∑i
j=1 c

2
j

is at most

γ2
i∑

j=1

(
1

n− j

)2

≤ γ2
i∑

j=1

(
1

n− j − 1
− 1

n− j

)
= γ2·

(
1

n− i− 1
− 1

n− 1

)
≤ γ2· 1

n− i− 1
.

Taking i = n− k, we get

Pr

[
Wn−k ≥ eλW0

(
k

n

)γ]
≤ exp

(
− λ2

2
∑n−k

j=1 c
2
j

)
≤ e−λ2(k−1)/2γ2

.

Choosing λ = ln 2 concludes the proof.

Finally, by w(F )/(1 + α/2) ≤ L(F ) ≤ w(F ) for all F , we get from Lemma 5.13 the

desired concentrated constructive shrinkage with respect to the restriction process defined

above.

Corollary 5.16 (Concentrated constructive shrinkage). Let F be an arbitrary de Morgan

formula. There exist constants c, d > 1 such that, for any k > 10,

Pr

[
L(Fn−k) ≥ c · L(F ) ·

(
k

n

)γ]
< 2−k/d.
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5.4 #SAT Algorithm for n2.63-Size Formulas

Here we prove our main result.

Theorem 5.17. There is a deterministic algorithm for counting the number of satisfying

assignments in a given formula on n variables of size at most n2.63 which runs in time

t(n) ≤ 2n−n
δ
, for some constant 0 < δ < 1.

Proof. Suppose we have a formula F on n variables of size n1+γ−ε for a small constant

ε > 0. Let k = nα such that α < ε/γ. We build a restriction decision tree with 2n−k

branches as follows:

Starting with F at the root, run RestrictSimplify to produce a collection {Fy},
pick the variable x which will make the largest reduction in the weight of the

current formula. Make the two formulas Fx and Fx the children of the current

node. Continue recursively on Fx and Fx until get a full binary tree of depth

exactly n− k.

Note that constructing this decision tree takes time 2n−kpoly(n), since the procedure

RestrictSimplify runs in polynomial time. By Corollary 5.16, all but at most 2−k/d fraction

of the leaves have the formula size L(Fn−k) < c · L(F )
(
k
n

)γ
= cn1−ε+γα.

To solve #SAT for all “big” formulas (those that haven’t shrunk), we use brute-force

enumeration over all possible assignments to the k free variables left. The running time is

at most 2n−k · 2−k/d · 2k · poly(n) ≤ 2n−k/d · poly(n).

For “small” formulas (those that shrunk to the size less than cn1−ε+γα), we use memo-

ization. First, we enumerate all formulas of such size, and compute and store the number

of satisfying assignments for each of them. Then, as we go over the leaves of the decision

tree that correspond to small formulas, we simply look up the stored answers for these

formulas.

There are at most 2O(n1−ε+γα)poly(n) such formulas, and counting the satisfying assign-

ments for each one (with k inputs) takes time 2kpoly(n). Including pre-processing, comput-

ing #SAT for all small formulas takes time at most 2n−k ·poly(n) + 2O(n1−ε+γα) ·2k ·poly(n) ≤
2n−k · poly(n).

The overall running time of our #SAT algorithm is bounded by 2n−n
δ

for some δ > 0.
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5.5 Open Questions

The main open question is whether there is a nontrivial deterministic #SAT algorithm for

de Morgan formulas of size up to n3−o(1). Is it possible to derandomize the randomized

zero-error algorithm of [KRT13] that is based on Håstad’s shrinkage result [Hås98]?

Is it possible to improve the analysis of the shrinkage result of [PZ93] (by considering

more general patterns than just twigs), getting a better shrinkage exponent? If so, this

could lead to a deterministic #SAT algorithm for larger de Morgan formulas.



Chapter 6

Correlation Bounds and #SAT for
Small Circuits

We revisit the gate-elimination method, generalize it to prove correlation bounds of boolean

circuits with Parity, and also derive deterministic #SAT algorithms for small linear-size cir-

cuits. In particular, we prove that, for boolean circuits of size 3n − n0.51, the correlation

with Parity is at most 2−n
Ω(1)

, and there is a #SAT algorithm running in time 2n−n
Ω(1)

; for

boolean circuits of size 2.99n, the correlation with Parity is at most 2−Ω(n), and there is a

#SAT algorithm running in time 2n−Ω(n). Similar correlation bounds and algorithms also

exist for circuits over the full binary basis B2 of size almost 2.5n.

6.1 Introduction

Proving circuit lower bounds is one of the most important tasks in computational complexity.

However, little progress was made on lower bounds for general circuits. The best known

explicit lower bounds (for functions even in NP) is 3n − o(n) for circuits over the full binary

basis B2, and 5n− o(n) for circuits over U2 = B2 \ {⊕,≡}.
The connection between circuit lower bounds and efficient algorithms has been explic-

itly exploited in many recent breakthroughs. For certain restricted circuit classes, such

as boolean formulas and AC0 circuits, several previous work derive non-trivial satisfiability

algorithms from known lower bounds proofs; oftentimes, such results also imply average-

case lower bounds (correlation bounds).

90
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Santhanam [San10] gave a #SAT algorithm for linear-size formulas over U2 running

in time 2n−Ω(n); the algorithm is based on a generalization of the “shrinkage under ran-

dom restrictions” result which was used to prove lower bounds [Sub61, Hås98]. Moreover,

Santhanam [San10] showed the correlation of linear-size formulas with Parity is at most

2−Ω(n). This result was extended to linear-size formulas over B2 [ST12] and n2.49-size for-

mulas over U2 [KR12, CKK+14]. Finally, Komargodski, Raz and Tal [KRT13] improved the

analysis to give a function in P which has correlation at most 2−n
Ω(1)

with n2.99-size formulas

over U2; the analysis also implies a randomized 2n−n
Ω(1)

-time #SAT algorithm for n2.99-size

formulas.

We note that the above correlation bounds of formulas with Parity [San10, KRT13]

are optimal, up to constant factors in the exponent. This can be seen from the following

construction of approximate formulas for Parity. We divide the n inputs into l groups each

of size n/l, use formulas of size (n/l)2 to compute Parity for each group, and then take

the disjunction of the outputs from all groups. This formula outputs 1 on most inputs, and

moreover, whenever it outputs 0, it agrees with Parity. Thus the correlation of this formula

with Parity is at least 2−l. The formula size is at most (n/l)2 · l + l < 2n2/l.

6.1.1 Our results

In this work, we consider correlation bounds and #SAT algorithms for small linear-size

boolean circuits. We prove that, for U2-circuits of size 3n − nε for ε > 0.5, the correlation

with Parity is at most 2−n
Ω(1)

, and there is a #SAT algorithm running in time 2n−n
Ω(1)

; for

U2-circuits of size 3n − εn for ε > 0, the correlation is at most 2−Ω(n), and there is a #SAT

algorithm running in time 2n−Ω(n). We note that, the correlation bounds here are optimal, up

to constant factors in the exponents. Using a similar construction as the one for formulas,

we can get a circuit of size 3n− l which has correlation at least 2−Ω(l) with Parity.

For B2-circuits, we also give a similar #SAT algorithms for circuit size almost 2.5n, and

show the average-case hardness of affine extractors against such circuits.
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Table 6.1: Lower bounds and upper bounds for computing Parity

Worst-Case Lower Bounds Average-Case Upper / Lower Bounds
AC0 s = exp(nθ(

1
d−1

)) [Yao85, Hås86] ε = 2−Ω(n/(log s)d−1) [Hås12]
De Morgan s = n2−θ(1) [Sub61] ε = 2−Ω(n2/s) ε = 2−Ω(n/

√
s) [BBC+01, Rei11]

formulas ε = 2−Ω(n/c2) for s = cn [San10]
U2-circuits s = 3n− θ(1) [Sch74] ε = 2−Ω(3n−s) ε = 2−Ω((3n−s)2/n) (This work)

6.1.2 Preliminaries

Circuits

For two nodes u and v, we will write u → v if there is a directed edge from u to v. We

call a circuit over the basis B as B-circuit. We consider two binary bases: the full basis

B2, which contains all boolean functions on two variables, and the basis U2 = B2 \ {⊕,≡}.
Specifically, the basis B2 contains the following 16 functions f(x, y):

• six degenerating functions: 0, 1, x, ¬x, y, ¬y;

• eight ∧-type functions: x∧y, x∨y, and their variations by negating one or both inputs;

• two ⊕-type functions: x⊕ y, x ≡ y.

The size of a circuit C, denoted by s(C), is the number of gates in C. The circuit size

of a function f : {0, 1}n → {0, 1} is the minimal size of a boolean circuit computing f . For

convenience, we define µ(C) = s(C) + N(C), where N(C) is the number of inputs that C

depends on. We let µ(C) = 0 if C is constant, and µ(C) = 1 if C is a literal.

A restriction ρ is a mapping from the inputs to {0, 1, ∗}. For a circuit C, the restricted

circuit C|ρ is obtained by assigning xi = b for all xi such that ρ(xi) = b ∈ {0, 1}.
It is convenient to work with circuits with no redundant nodes or wires. We will call a

non-constant circuit (over U2 or B2) simplified if it does not contain

1. a node labeled by a constant,

2. a gate labeled by a degenerating function, or

3. a non-output gate with out-degree 0, or
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4. an input x and two gates u, v with three wires x→ u, x→ v, u→ v.

Lemma 6.1. For any circuit C, there is a polynomial-time algorithm transforming C into an

equivalent simplified circuit C ′ such that s(C ′) ≤ s(C) and µ(C ′) ≤ µ(C).

Proof. Cases (1)-(3) are trivial. For case (4), suppose w is the other node with w → u. If C

is over B2, then v computes a binary function of x and w; if C is over U2, then v computes

an ∧-type function of x and w (because any ⊕-type function requires at least 3 gates). In

either case, we can connect w directly to v, remove the wire u→ v, and change the label at

v. By checking through each input and gate, the transformation can be done in polynomial

time.

Correlation

Definition 6.2. Let f and g be two boolean functions on n inputs. The correlation of f and

g is defined as

Corr(f, g) = |Pr[f(x) = g(x)]−Pr[f(x) 6= g(x)]| = |2Pr[f(x) = g(x)]− 1| ,

where x is chosen uniformly from {0, 1}n.

Note that, f has correlation c with g if and only if f computes g or its negation correctly

a fraction (1 + c)/2 of the inputs. Correlation bound is also referred to as average-case

lower bound in the literature.

Decision Tree

A decision tree is a tree where (1) each internal node is labeled by a variable x, and has

two outgoing edges labeled by x = 0 and x = 1, and (2) each leaf is labeled by a constant

0 or 1. A decision tree computes a boolean function by tracking the paths from the root to

leaves. The size of a decision tree is the number of leaves in the tree.

A parity decision tree extends a decision tree such that each internal node is labeled by

the parity function of a subset of variables. We insist that, for each path from the root to a

leaf, the parities appearing in the internal nodes are linearly independent.
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Concentration bounds

Theorem 6.3 (Chernoff bounds). [AB09] Let {Xi}ni=1 be mutually independent random

variables over {0, 1}, and let µ =
∑n

i=1 E[Xi]. Then, for every c > 0,

Pr

[∣∣∣∣∣
n∑
i=1

Xi − µ

∣∣∣∣∣ ≥ cµ
]
≤ 2 · e−min{c2/4, c/2}µ.

A sequence of random variables X0, X1, . . . , Xn is called a supermartingale with re-

spect to a sequence of random variables R1, . . . , Rn if E[Xi | Ri−1, . . . , R1] ≤ Xi−1, for

1 ≤ i ≤ n. The following is a variant of Azuma’s inequality which holds for supermartin-

gales with one-side bounded differences.

Lemma 6.4. [CKK+14] Let {Xi}ni=0 be a supermartingale with respect to {Ri}ni=1. Let

Yi = Xi−Xi−1. If, for every 1 ≤ i ≤ n, the random variable Yi (conditioned on Ri−1, . . . , R1)

assumes two values with equal probability, and there exists a constant ci ≥ 0 such that

Yi ≤ ci, then, for any λ ≥ 0, we have

Pr[Xn −X0 ≥ λ] ≤ exp

(
− λ2

2
∑n

i=1 c
2
i

)
.

6.2 U2-circuits

For U2-circuits, the best known lower bound is 5n−o(n) by Iwama et al. [ILMR02], improving

a 3n − c lower bound for Parity by Schnorr [Sch74], and a 4n − c lower bound for certain

symmetric functions by Zwick [Zwi91]. All these lower bounds were proved using the gate-

elimination method.

We generalize the gate-elimination method by defining a random process of restrictions

under which the circuit size shrinks with high probability. This allows us to get a #SAT

algorithm for U2-circuits of size almost 3n, and also prove a correlation bound with Parity.

6.2.1 Concentrated shrinkage under restrictions

We call an ∧-type function of two variables as a twig. We now define a random process of

restrictions, where, at each step, we uniformly assign a random value (0 or 1) to either a

variable or a twig, and simplify the circuit by eliminating unnecessary gates. The choice of

variables or twigs at each step is determined based on the following cases:
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• If the circuit is a literal, choose the variable in the literal.

• If there is an input x with out-degree at least two, choose x.

• Otherwise, there must be a gate u which is fed by two variables each with out-degree

1; we choose u (which computes a twig).

Let C be a simplified U2-circuit on inputs x1, . . . , xn. Let C ′ be the simplified circuit

obtained after one step of restriction. Then we have the following lemma on the shrinkage

of µ(C).

Lemma 6.5. Suppose µ(C) ≥ 4. Let σ = µ(C)−µ(C ′). Then we have σ ≥ 3, and E[σ] ≥ 4.

Proof. We consider the following cases:

1. Suppose there is an input xi feeding into two gates u and v. By Lemma 6.1, there

are no edges between u and v. We randomly assign 0 or 1 to xi, and consider the

following sub-cases on the successors of u and v.

(a) If u and v feed into two different successors, we have the following possibili-

ties on gate elimination. (1) Under one assignment to xi, both u and v become

constants (eliminating xi, u, v and the two successors), and under the other as-

signment to xi, neither of u, v become constants (eliminating xi, u, v); then we

have Pr[σ ≥ 5] ≥ 1/2, and σ ≥ 3. (2) Under both assignments to xi, exactly one

of u, v becomes a constant (eliminating xi, u, v and one successor); then σ ≥ 4.

(b) If u and v feed into one single common successor w, we have similar situations

as above. (1) Under one assignment to xi, both u and v become constants

(eliminating xi, u, v, w and a successor of w), and under the other assignment

to xi, neither of u, v become constants (eliminating xi, u, v). (2) Under both

assignments, exactly one of u, v becomes a constant (eliminating xi, u, v, w).

2. When all inputs have out-degree 1, there must be a gate u fed by two inputs, say xi
and xj . We randomly assign 0 or 1 to u; this will eliminate xi, xj , u and at least one

successor of u. Then we have σ ≥ 4.

In all cases we have σ ≥ 3, and E[σ] ≥ 4.
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Case 1(a)

w
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Case 1(b)

u

xi xj

Case 2

Figure 6.1: Cases in Lemma 6.5

We next consider the shrinkage of µ(C) under multiple steps of restrictions. Let C0 = C,

and, for i = 1, . . . , d, let Ci be the circuit obtained at step i. For convenience, we let

µi := µ(Ci). Denote by Ri the random value assigned to the variable or twig at each step.

We define a sequence of random variables {Zi} as follows:

Zi =

µi − (µi−1 − 4), µi−1 ≥ 4,

0, µi−1 < 4.

Note that 0 < µi−1 < 4 holds only when Ci−1 itself is a literal or a twig, which means Ci is

a constant and µi = 0.

Lemma 6.6. Let X0 = 0 and Xi =
∑i

j=1 Zi. Then we have Zi ≤ 1, and {Xi} is a super-

martingale with respect to {Ri}.

Proof. By Lemma 6.5, conditioning on R1, . . . , Ri−1, when µi−1 ≥ 4, we have µi ≤ µi−1− 3

and E[µi] ≤ µi−1 − 4. Therefore, we get Zi ≤ 1, E[Zi] ≤ 0, and E[Xi] ≤ Xi−1. Thus {Xi}
is a supermartingale with respect to {Ri}.

Lemma 6.7. For λ ≥ 0,

Pr [µd ≥ max{µ0 − 4d+ λ, 1}] ≤ exp(−λ2/2d).

Proof. Conditioning on R1, . . . , Ri−1, the variable Zi assumes two values with equal prob-

ability. By Lemma 6.6, we have {Xi} is a supermartingale with respect to {Ri}, and
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Zi ≤ ci ≡ 1. Applying the bound in Lemma 6.4, we have

Pr

[
d∑
i=1

Zi ≥ λ

]
≤ exp

(
−λ

2

2d

)
.

When µd > 0, we have
∑d

i=1 Zi = µd − µ0 + 4d. Let E1 be the event that µd > 0, and let

E2 be the event that
∑d

i=1 Zi ≥ λ. Then the final probability is Pr[E1 ∧ E2] ≤ Pr[E2] ≤
exp(−λ2/2d).

6.2.2 #SAT algorithms

We now give a #SAT algorithm for circuits of size almost 3n based on the concentrated

shrinkage in Section 6.2.1.

Theorem 6.8. For U2-circuits of size s < 3n, there is a deterministic #SAT algorithm running

in time 2n−Ω((3n−s)2/n).

Proof. Let C be a circuit on n inputs x1, . . . , xn with size s < 3n. Let µ0 := µ(C) ≤ s+ n.

We use the following procedure to construct a generalized decision tree, where each

internal node might be labeled by a variable or a twig. We start with the root node and C.

• If C is a constant, label the current node by this constant and return.

• Use the cases in Section 6.2.1 to find either an input variable or a twig; denote it by

u. Label the current node by u.

• Build two outgoing edges with labeled by u = 0 and u = 1. For each child node,

simplify the circuit, and recurse.

We say an assignment to x1, . . . , xn is consistent with a path if it satisfies the assign-

ments to individual variables and twigs along the path. Since an assignment could be

consistent with only one path, the paths give a disjoint partitioning of the boolean cube

{0, 1}n. To count the number of satisfying assignments for C, one can count the assign-

ments consistent with each path, and sum over the paths with leaves labeled by 1. Edges

along each path essentially defines a read-once 2CNF, for which counting can be done in

polynomial time. We next only need to bound the total number of paths.
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We wish to bound the probability that a random path has length bigger than n−k, for k to

be chosen later. Let λ = 4(n−k)−µ0 +1. Then by Lemma 6.7, at depth n−k, the restricted

circuit becomes a constant with probability at least 1− exp(−λ2/2(n− k)) ≥ 1− 2−cλ
2/n for

some constant c. The number of paths with length bigger than n− k is at most

2n−k · 2−cλ2/n · 2k ≤ 2n−cλ
2/n.

Therefore, the size of the decision tree is at most 2n−k + 2n−cλ
2/n. Choosing k = (3n −

s)/8, both the size of the decision tree and the running time of the counting algorithm are

bounded by 2n−Ω((3n−s)2/n).

Corollary 6.9. (1) For U2-circuits of size 3n − εn with ε > 0, there is a deterministic #SAT

algorithm running in time 2n−Ω(n). (2) For U2-circuits of size 3n− nε with ε > 0.5, there is a

deterministic #SAT algorithm running in time 2n−n
Ω(1)

.

6.2.3 Correlation with Parity

Schnorr [Sch74] proved a 3n − c lower bound for computing Parity using the following

property: A simplified U2-circuit computing Parity can not have any input with out-degree

exactly 1. Indeed, if such an input x exists, one could substitute all other variables by

constants such that the gate fed by x becomes a constant, and this makes the function

independent of x.

We next generalize this lower bound to the average-case, and show that a U2-circuit

of size less than 3n does not correlate well with Parity. We will convert the decision tree

constructed in the proof of Theorem 6.8 into a regular decision tree without twigs, and

argue that the decision tree size will not blow up too much.

Lemma 6.10. Any function computed by a U2-circuit of size s < 3n has a decision tree of

size 2n−Ω((3n−s)2/n).

Proof. Let T be the (generalized) decision tree as constructed in the proof of Theorem 6.8.

We next expand each node labeled by a twig into two nodes labeled by variables in the

twig. For example, suppose we have a node labeled by x ∨ y, we replace it by a node

labeled by x and another node labeled by y under x = 0; attach the original subtree under

x ∨ y = 0 to the new edge y = 0, and attach the original subtree under x ∨ y = 1 to both
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x = 1 and y = 1. We denote the new decision tree by T ′, and we wish to bound the size of

T ′.

For a twig, such as x ∨ y, we say an assignment is good if it allows three different

configurations of the two variable involved, e.g., x∨y = 1; otherwise, we say the assignment

is bad, e.g., x∨y = 0. We note that, for a path in T which has l twigs with good assignments,

it will be replace by 2l paths in T ′.

We first consider paths in T of length bigger than n − k. As shown in Theorem 6.8, at

depth n−k of T , there are at most 2n−k ·2−cλ2/n nodes which are not leaves. Let v be such

a node, and let l be the number of twigs on the path from the root to v. Then all paths in T

passing through v will be replaced by at most 2l · 2k−l = 2k paths in T ′. Therefore, all paths

in T of length bigger than n− k will be replaced by at most 2n−cλ
2/n paths.

For a path in T of length at most n − k, let l be the number of twigs with good assign-

ments along the path. If l ≤ k/2, then this path is replaced by at most 2k/2 paths in T ′.

For all paths in T with length at most n − k and l ≤ k/2, they will be replaced by at most

2n−k · 2k/2 = 2n−k/2 paths.

Consider a path of length at most n − k which has l > k/2 twigs with good assign-

ments. After expanding the twigs, it is replaced by 2l paths. When expanding a twig with

a bad assignment, the path length increases by 1; when expanding a twig with a good

assignment, the path becomes two paths with length increased by 0 and 1, respectively.

Thus, by Chernoff bounds (choosing µ = l/2 and c = 1/2 in Theorem 6.3), over the 2l new

paths, at most a fraction 2 ·e−l/32 < 2−k/d (for some constant d) will have length bigger than

n− l+ 3l/4 = n− l/4 < n− k/8. Therefore, for all paths in T with length at most n− k and

having l > k/2 twigs with good assignments, they will be replaced by at most 2n−k/8 paths

of length less than n− k/8, and at most 2n · 2−k/d = 2n−k/d longer paths.

Choosing k = (3n− s)/8 gives the result.

The following is a simple relationship between the size of a decision tree and its corre-

lation with Parity. It was used in [San10, IMP12] to derive correlation bounds for de Morgan

formulas and AC0 circuits.

Lemma 6.11. A decision tree of size 2n−k has correlation at most 2−k with Parity.

Proof. Consider a path from the root to a leaf in the decision tree. If the path has length

smaller than n, then, over the inputs that are consistent with this path, the correlation of
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the decision tree with Parity is zero. The total number of paths of length n is at most 2n−k,

thus the decision tree can compute Parity correctly on at most a fraction (1 + 2−k)/2 of the

inputs.

Theorem 6.12. Let C be a U2-circuit of size s < 3n. Then its correlation with Parity is at

most 2−Ω((3n−s)2/n). In particular, for s = 3n − εn with ε > 0, the correlation is at most

2−Ω(n); for s = 3n− nε with ε > 0.5, the correlation is at most 2−n
Ω(1)

.

Remark. Iwama et al. [ILMR02] proves a 5n− o(n) lower bound for functions which are

called strongly two-dependent, that is, functions such that fixing any two inputs results in

four different sub-functions. The proof of this worst-case lower bound relies on a detailed

case analysis on the circuit structure. It is not clear on how to generalize it to the average

case; a major difficulty is that an approximate circuit may no longer have the “strongly

two-dependent” property.

6.2.4 Applications

Lemma 6.10 shows that, a circuit of size almost 3n has a decision tree of non-trivial size.

As applications of this property, one can get compression algorithms following [CKK+14]

and Fourier concentration result as in [IK14].

Corollary 6.13. There is an algorithm running in time 2O(n) such that, given the truth table

of an (unknown) n-input boolean circuit of size s < 3n, the algorithm produces an equivalent

DNF of size 2n−Ω((3n−s)2/n) · poly(n).

Corollary 6.14. Let f be a function computable by a boolean circuit of size s < 3n. Then,∑
A⊆[n] : |A|≥n−Ω((3n−s)2/n)

f̂(A) ≤ 2−Ω((3n−s)2/n).

6.3 B2-circuits

In this section, we derive #SAT algorithms and correlation lower bounds for B2-circuits of

size almost 2.5n.
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6.3.1 Concentrated shrinkage and #SAT algorithms

Given a simplified circuit C, we will construct a generalized parity decision tree for C, where

each internal node of the tree is labeled by either a twig or the parity of a subset of variables

(this includes one variable as a special case). Starting with the root node of the tree

and the circuit C, we use the following case analysis to identify labels and build branches

recursively.

If the circuit is a constant, we label the current node by the constant, and the node

becomes a leaf. If the circuit is a literal or a gate fed by two variables, we choose the

variable in the literal or the circuit itself as the label, and build two branches of the decision

tree with the constant circuits. Otherwise, consider a topological order on the gates of the

circuit, and let u be the first gate which is either ⊕-type of out-degree at least 2 or ∧-type.

1. If u is a ⊕-type gate of out-degree at least 2, then it computes a function ⊕i∈Ixi (or

its negation) for some subset I ∈ [n]. We choose ⊕i∈Ixi as the label, and build two

branches; for the circuit in the branch with assignment ⊕i∈Ixi = b, we can replace

u by a constant, and substitute an arbitrary variable xj for j ∈ I by a sub-circuit

⊕i∈I\{j}xi ⊕ b. In both branches, we can eliminate one input variable xj , and at least

3 gates (u and its two successors).

2. If u is an ∧-type gate fed by some ⊕-type gate v, suppose the other gate/input feeding

into u is w.

• If w has out-degree 1, then we choose the parity function computed at v as the

label, and build two branches similar to the previous case. In one branch, we

can eliminate some input xj and two gates v and u; in the other branch, we can

eliminate additionally w and a successor of u.

• If w has out-degree at least 2, then it must be a variable. We choose w as the

label, and build two branches. In one branch, we can eliminate w and its two

successors (including u); in the other branch, we can eliminate two more gates

(v and a successor of u).

3. If u is an ∧-type gate fed by two inputs xi and xj where xi has out-degree at least

2, then we choose xi as the label and build two branches. In one branch, we can

eliminate xi and its two successors; in the other branch, we can eliminate one more

gate (a successor of u).
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u⊕

(1)

u∧

v⊕ w

(2)

u∧

xi xj

v

(3)

u∧

xi xj

(4)

Figure 6.2: Cases for eliminating gates in B2-circuits

4. If u is an ∧-type gate fed by two inputs each of out-degree 1, then choose the twig

computed at u as the label. In both branches, we can eliminate xi, xj , u and a suc-

cessor of u.

Consider a random path from the root of the decision tree to its leaves. Let C0 = C, and

let Ci be the restricted circuit obtained at depth i. Let µi := µ(Ci). The following lemma

follows directly from the above case analysis.

Lemma 6.15. If µi > 4, then µi−µi+1 ≥ 3, and E[µi−µi+1] ≥ 3.5. If µi ≤ 4, then µi+1 = 0.

Then we have the following concentrated shrinkage; the proof is essentially the same

as Lemma 6.7.

Lemma 6.16. For λ ≥ 0,

Pr [µd ≥ max{µ0 − 3.5d+ λ, 1}] ≤ exp(−λ2/2d).

Theorem 6.17. For B2-circuits of size s < 2.5n, there is a deterministic #SAT algorithm

running in time 2n−Ω((2.5n−s)2/n). In particular, for s = 2.5n − εn with ε > 0, the algorithm

runs in time 2n−Ω(n); for s = 2.5n− nε with ε > 0.5, the algorithm runs in time 2n−n
Ω(1)

.

The proof, which we omit here, is similar to the proof of Theorem 6.8. The algorithms

runs by constructing the generalized parity decision tree as stated above, and the count

the number of satisfying assignments for each path of the tree. The size of the tree can be

bounded by applying Lemma 6.16.
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6.3.2 Correlation bounds

Demenkov and Kulikov [DK11] proved that affine dispersers for sources of dimension d

requires B2-circuits of size 3n − Ω(d). In the following, we extend this to show that affine

extractors have small correlations with B2-circuits of size almost 2.5n.

Definition 6.18. Let F2 be the finite field with elements {0, 1}. A function AE : Fn2 → F2

is a (k, ε)-affine extractor if for any uniform distribution X over some k-dimensional affine

subspace of Fn2 ,

|Pr[AE(X) = 1]− 1/2| ≤ ε.

We will need the following known constructions of affine extractors.

Theorem 6.19. [Bou07, Yeh11, Li11] (1) For any δ > 0 there exists a polynomial-time

computable (k, ε)-affine extractor AE1 : {0, 1}n → {0, 1} with k = δn and ε = 2−Ω(n). (2)

There exists a constant c > 0 and a polynomial-time computable (k, ε)-affine extractor

AE2 : {0, 1}n → {0, 1} with k = cn/
√

log log n and ε = 2−n
Ω(1)

.

We will prove correlation bounds using the following representation of small B2-circuits

by parity decision trees. Although the correlation bounds can be proved more directly, the

representation with parity decision trees might be of independent interests.

Lemma 6.20. Any function computed by a B2-circuit of size s < 2.5n is computable by a

parity decision tree of size 2n−Ω((2.5n−s)2/n).

The proof is this lemma is almost the same as the proof of Lemma 6.10. That is, one

can construct a generalized parity decision tree which might have twigs, and then expand

the twigs and argue that the tree size will not blow up too much. We note the property that,

when we restrict a twig, the two variables of the twig will be completely eliminated from the

circuit; when we restrict a parity function, one of the variables is substituted, and thus all

restrictions are linearly independent.

Lemma 6.21. (1) For any δ > 0, a parity decision tree of size 2n−k for k = δn has correlation

at most 2−Ω(n) with AE1. (2) There is a constant c > 0 such that a parity decision tree of

size 2n−k for k = cn/
√

log logn has correlation at most 2−n
Ω(1)

with AE2.

Proof. Consider a parity decision tree of size 2n−k for k = δn. Note that all paths in the

tree gives a disjoint partitioning of the boolean cube {0, 1}n.
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For a path of length at most n − k/2, the inputs that are consistent with the path form

an affine subspace of dimension at least k/2. Over all such short paths, the parity decision

tree computes AE1 correctly on at most 2n · (1/2 + 2−Ω(n)) of the inputs. For long paths of

length larger than n − k/2, there are at most 2n−k of them, and the number of inputs that

are consistent with such paths is at most 2n−k ·2k/2 = 2n−k/2. Therefore, the parity decision

tree computes AE1 correctly on at most a fraction 1/2 + 2−Ω(n) + 2−k/2 = 1/2 + 2−Ω(n) of

the inputs.

The proof for the second case is similar.

The next theorem follows directly by combining Lemma 6.20 and Lemma 6.21.

Theorem 6.22. (1) For any δ > 0 and any B2-circuit of size 2.5n − δn, its correlation with

AE1 is at most 2−Ω(n). (2) There exists a constant c > 0 such that, for any B2-circuit of size

2.5n− cn/ 4
√

log log n, its correlation with AE2 is at most 2−n
Ω(1)

.



Chapter 7

Lower Bounds Against
Weakly-Uniform Circuits

An ongoing line of research has shown super-polynomial lower bounds for uniform and

slightly-non-uniform small-depth threshold and arithmetic circuits [All99, KP09, JS11]. We

give a unified framework that captures and improves each of the previous results. Our main

results are that PERMANENT does not have threshold circuits of the following kinds.

1. Depth O(1), no(1) bits of non-uniformity, and size nO(1).

2. Depth O(1), polylog(n) bits of non-uniformity, and size s(n) such that for all constants

c the c-fold composition of s, s(c)(n), is less than 2n.

3. Depth o(log log n), polylog(n) bits of non-uniformity, and size nO(1).

(1) strengthens a result of Jansen and Santhanam [JS11], who obtained similar parameters

but for arithmetic circuits of constant depth rather than Boolean threshold circuits. (2)

and (3) strengthen results of Allender [All99] and Koiran and Perifel [KP09], respectively,

who obtained results with similar parameters but for completely uniform circuits. Our main

technical contribution is to simplify and unify earlier proofs in this area, and adapt the proofs

to handle some amount of non-uniformity. We also develop a notion of circuits with a small

amount of non-uniformity that naturally interpolates between fully uniform and fully non-

uniform circuits. We use this notion, which we term weak uniformity, rather than the earlier

and essentially equivalent notion of succinctness used by Jansen and Santhanam because

105
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the notion of weak uniformity more fully and easily interpolates between full uniformity and

non-uniformity of circuits.

7.1 Introduction

Understanding the power and limitation of efficient algorithms is the major goal of com-

plexity theory, with the “P vs. NP” problem being the most famous open question in the

area. While proving that no NP-complete problem has a uniform polynomial-time algorithm

would suffice for separating P and NP, a considerable amount of effort was put into the

more ambitious goal of trying to show that no NP-complete problem can be decided by

even a nonuniform family of polynomial-size Boolean circuits. More generally, an important

goal in complexity theory has been to prove strong (exponential or super-polynomial) circuit

lower bounds for “natural” computational problems that may come from complexity classes

larger than NP, e.g., the class NEXP of languages decidable in nondeterministic exponen-

tial time. By the counting argument of Shannon [Sha49], a randomly chosen n-variate

Boolean function requires circuits of exponential size. However, the best currently known

circuit lower bounds for explicit problems are only linear for NP problems [LR01, IM02],

and polynomial for problems in the polynomial-time hierarchy PH [Kan82] and counting hi-

erarchy CH [Tod91]. Super-polynomial lower bounds are known only for classes such as

MAEXP [BFT98, MVW99].

To make progress, researchers introduced various restrictions on the circuit classes.

In particular, for Boolean circuits of constant depth, with NOT and unbounded fan-in AND

and OR gates (AC0 circuits), exponential lower bounds are known for the PARITY func-

tion [FSS84, Yao85, Hås86]. For constant-depth circuits that additionally have (unbounded

fan-in) MODp gates, one also needs exponential size to compute the MODq function, for any

distinct primes p and q [Raz87, Smo87]. With little progress for decades, Williams [Wil11]

has recently shown that a problem in NEXP is not computable by polynomial-size ACC0

circuits, which are constant-depth circuits with NOT gates and unbounded fan-in AND, OR

and MODm gates, for any integerm > 1. However, no lower bounds are known for the class

TC0 of constant-depth threshold circuits with unbounded fan-in majority gates1, a class of

circuits that includes ACC0 circuits as a sub-class (see, e.g., [BIS90]).

1A plausible explanation of this “barrier” is given by the “natural proofs” framework of [RR97], who argue it
is hard to prove lower bounds against the circuit classes that are powerful enough to implement cryptography.
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To make more progress, another restriction has been added: uniformity of circuits.

Roughly speaking, a circuit family is called uniform if there is an efficient algorithm that can

construct any circuit from the family. There are two natural variations of this idea. One can

ask for an algorithm that outputs the entire circuit in time polynomial in the circuit size; this

notion of uniformity is known as P-uniformity. In the more restricted notion, one asks for an

algorithm that describes the local structure of the circuit: given two gate names, such an

algorithm determines if one gate is the input to the other gate, as well as determines the

types of the gates, in time linear (or polynomial) in the input size (which is logarithmic or

polylogarithmic time in the size of the circuit described by the algorithm); such an algorithm

is said to decide the direct-connection language of the given circuit. This restricted notion is

called DLOGTIME- (or POLYLOGTIME-) uniformity and is commonly viewed as the viewed

as “the right” notion of uniformity for circuit classes below P [Ruz81, BIS90, AG94]. We will

use the notion of POLYLOGTIME-uniformity by default, and, for brevity, will omit the word

POLYLOGTIME.

It is easy to show (by diagonalization) that, for any fixed exponential function s(n) = 2n
c

for a constant c ≥ 1, there is a language in EXP (deterministic exponential time) that is not

computable by a uniform (even P-uniform) family of Boolean s(n)-size circuits.2 Similarly,

as observed in [All99], a PSPACE-complete language requires exponential-size uniform

TC0 circuits – due to the space hierarchy theorem and the fact that uniform TC0 circuits

can be decided by a logarithmic space Turing machine. For the smaller complexity class

#P ⊆ PSPACE, Allender and Gore [AG94] showed PERMANENT (which is complete for

#P [Val79]) is not computable by uniform ACC0 circuits of sub-exponential size. Later, Al-

lender [All99] proved that PERMANENT cannot be computed by uniform TC0 circuits of size

s(n) for any function s such that, for all k, s(k)(n) = o(2n) (where s(k) means the function

s composed with itself k times). Finally, Koiran and Perifel [KP09] extended this result to

show that PERMANENT is not computed by polynomial-size uniform threshold circuits of

depth o(log log n).

Recently, Jansen and Santhanam [JS11] have proposed a natural relaxation of uni-

formity, termed succinctness, which allows one to interpolate between non-uniformity and

uniformity. According to [JS11], a family of s(n)-size circuits {Cn} is succinct if the direct-

connection language of Cn is decided by some circuit of size s(n)o(1). In other words, while

2Unlike the nonuniform setting, where every n-variate Boolean function is computable by a circuit of size
about 2n/n [Lup58], uniform circuit lower bounds can be > 2n.
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there may not be an efficient algorithm for describing the local structure of a given s(n)-

size circuit Cn, the local structure of Cn can be described by a non-uniform circuit of size

s(n)o(1). Note that if we allow the non-uniform circuit to be of size s(n), then the family of

circuits {Cn} would be completely non-uniform. So, intuitively, the restriction to the size

s(n)o(1) makes the notion of succinctness close to that of non-uniformity.

The main result of [JS11] is that PERMANENT does not have succinct polynomial-size

arithmetic circuits of constant depth, where arithmetic circuits have unbounded fan-in ad-

dition and multiplication gates and operate over integers. While relaxing the notion of

uniformity, [JS11] were only able to prove a lower bound for the weaker circuit class, as

polynomial-size constant-depth arithmetic circuits can be simulated by polynomial-size TC0

circuits. A natural next step was to prove a super-polynomial lower bound for PERMANENT

against succinct TC0 circuits. This is achieved in the present work.

7.1.1 Weakly-Uniform Circuit Families

Before stating our main results, we introduce the notion of weakly-uniform circuits which we

use to phrase our results. Recall that the direct-connection language for a circuit describes

the local structure of the circuit. The language answers questions such as – is a particular

gate an AND gate, or is the output of a particular gate connected to the input of another

particular gate? For the definition of weakly-uniform circuits an important point is that for

circuits {Cn} of size s(n), queries to the direct-connection language Ldc for {Cn} are of

length O(log s(n)) – because any gate in the circuit can be indexed by this many bits. That

is, let m denote the input length of queries to Ldc; then queries concerning Cn are of length

m = O(log s(n)). We define weakly-uniform circuits as follows.

Definition 7.1. Let {Cn} be a circuit family of size s(n), and let m be the input length of its

direct-connection language Ldc. Then for a function α : N → N, {Cn} is α-weakly-uniform

if Ldc can be decided using α(m) bits of advice in poly(m + α(m)) time, where the advice

string only depends on the input size m.

More precise definitions of the direct connection language and weakly-uniform circuits

are given in Section 7.1.5. Readers unfamiliar with definitions of uniform circuits are en-

couraged to consult that section before continuing. We stress that here we have param-

eterized the advice as a function of the input length for Ldc, which is a logarithm of the

size of the circuit. We view this as the correct definition because the advice is associated
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with the machine deciding Ldc, as opposed to being associated with the circuits Cn directly.

With m = O(log s(n)), as a function of the input length n, a circuit of size s(n) that is 2o(m)-

weakly-uniform uses so(1)(n) bits of advice for its direct-connection language, and a circuit

that is mO(1)-weakly-uniform uses polylog(s(n)) bits of advice for its direct-connection lan-

guage. The notion of α-weakly-uniform is essentially equivalent to the notion of α-succinct

introduced in [JS11]. One notable difference is that our definition fully interpolates between

non-uniform and uniform circuits; setting α(m) = 2m in our definition corresponds to fully

non-uniform circuits, while setting α(m) = 0 corresponds to fully uniform circuits. On the

other hand, there is no setting of parameters for succinct circuits which corresponds to fully

uniform circuits. See Section 7.1.5 for details.

7.1.2 Our Main Results

We improve upon [JS11] by showing that PERMANENT does not have succinct polynomial-

size TC0 circuits, in our terminology – weakly-uniform, polynomial-size TC0 circuits. In

addition to strengthening the main result from [JS11], we also give a simpler proof. Our ar-

gument is quite general and allows us to extend to the weakly-uniform setting all previously

known uniform circuit lower bounds of [AG94, All99, KP09]. Our main results are as below.

First, we strengthen the lower bound of [JS11].

Theorem 7.2. PERMANENT is not computable by 2o(m)-weakly-uniform poly-size TC0 cir-

cuits, where m = O(log n).

We state the weak-uniformity in terms of the input length m to the direct-connection

language due to the reasons stated above. Note that in Theorem 7.2, the amount of ad-

vice, the weak-uniformity, is no(1). Let us call a function s(n) sub-subexponential if, for any

constant k > 0, we have that the k-wise composition s(k)(n) ≤ 2n
o(1)

. We use subsubexp

to denote the class of all sub-subexponential functions s(n). We extend a result of Allen-

der [All99] to the “weakly-uniform” setting.

Theorem 7.3. PERMANENT is not computable bymO(1)-weakly-uniform subsubexp-size TC0

circuits, where m = O(log s(n)).

Note that the amount of advice in Theorem 7.3 is polylog(s(n)). We extend the result of

[KP09] to the weakly-uniform setting as well.
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Theorem 7.4. PERMANENT is not computable by mO(1)-weakly-uniform poly-size threshold

circuits of depth o(log log n), where m = O(log n).

Note that the amount of advice in Theorem 7.4 is polylog(n).

Other Results

The proofs of Theorems 7.2, 7.3, and 7.4 all use the same strategy, but require different

settings of parameters. We also state a single parameterized result that implies a tradeoff

between the amount of non-uniformity, circuit size, and depth. The precise statement is

given in Section 7.4 and implies Theorems 7.2, 7.3, and 7.4. Finally, we obtain lower

bounds for weakly-uniform ACC0, AC0, and general circuits. These results are stated and

proved in Section 7.5.

7.1.3 Our Techniques

The proofs of our main results are indirect diagonalization arguments. Such arguments

begin by assuming the intended lower bound does not hold, and then using this assump-

tion and known separation results to obtain a contradiction. The choice of which known

separation to use points the direction for much of the rest of the argument. We give two

different proofs of our main results, resulting from using two different known separations as

the basis of an indirect diagonalization argument. Both proofs are similar, but each implies

corollaries that cannot be achieved by the other. We give an outline of how each of the

two different proofs comes to a contradiction if we assume PERMANENT has 2o(m)-weakly-

uniform polynomial-size constant-depth threshold circuits (Theorem 7.2). For the setting

of poly-size circuits, m, the input length for the direct connection language of the circuit, is

O(log n) – meaning the non-uniformity is no(1). As this fact is key to the proofs, we refer

to no(1)-weak-uniformity throughout the proof outlines. Before outlining the two different

proofs we discuss the key ingredients that are common to both proofs.

Collapse of the counting hierarchy if PERMANENT is easy The counting hierarchy is an

analogue of the polynomial hierarchy, where counting is used in place of non-determinism.

There are a number of equivalent formulations of the counting hierarchy. One is based on

PP machines – nondeterministic machines where an input x is defined to be accepted by



CHAPTER 7. LOWER BOUNDS AGAINST WEAKLY-UNIFORM CIRCUITS 111

the machine if a majority of computation paths accept. The dth level of the counting hier-

archy, CHd, is defined as PPCHd−1 where CH0 = P. One of the main properties we use of

PERMANENT is that PERMANENT is hard for PP, and thus if PERMANENT is easy then the

counting hierarchy collapses. For example, suppose Theorem 7.2 does not hold, namely

that PERMANENT has constant-depth poly-size threshold circuits that use no(1) bits of ad-

vice. Consider a language in CH2 = PPPPP
= PPPP. Using the paddability of PERMANENT

and the hardness of PERMANENT for PP, all of the PP oracle queries can be replaced by

queries to a single no(1)-weakly-uniform poly-size constant-depth threshold circuit. The CH2

computation can be replaced, then, by a PP machine using no(1) bits of advice. Using the

assumed easiness of PERMANENT again converts this PP computation with advice into a

poly-size threshold circuit that uses no(1) additional bits of advice. The argument can be

carried out inductively. A language in CHd is a PP computation with an oracle to CHd−1. If

PERMANENT is easy, the CHd−1 oracle queries can be solved using a poly-size constant-

depth threshold circuit that uses no(1) bits of advice. Plugging the circuit into the definition

of CHd results in a PP computation that uses advice, which in turn is converted into a poly-

size constant-depth threshold circuit that uses no(1) additional bits of advice. The resulting

constant-depth threshold circuit requires No(1) bits of advice for each level in the induction,

where N is the length of queries to PERMANENT . Furthermore, N grows by potentially a

polynomial factor at each level. As the advice needed is No(1) and there are a constant

number of levels to collapse, the total amount of advice is still no(1).

Equivalent notions of CH Our proofs use two alternate definitions of the counting hi-

erarchy. First, CH is equal to the set of languages decided by uniform constant-depth

threshold circuits of size 2poly(n). Second, CH is equal to the set of languages decided by

threshold Turing machines which run in polynomial time and make a constant number of

alternations. Threshold Turing machines are based on nondeterministic Turing machines,

but where each configuration is labeled, depending on the state of the finite control, an

existential, universal, or threshold configuration. These configurations are defined to be

accepting if, respectively, at least one computation path from the configuration accepts,

all paths accept, or a majority of computation paths accept. The machine makes an al-

ternation when there is a switch in the configuration’s type between existential, universal,

or threshold. In the equivalence between these two definitions of CH, the existential, uni-

versal, and threshold configurations of poly-time threshold Turing machines are essentially
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equivalent to the unbounded fan-in AND, OR, and majority gates of an exponential-size

uniform threshold circuit. The equivalence between uniform threshold circuits and thresh-

old Turing machines extends to the setting of weak uniformity. In particular, for the setting

of Theorem 7.2 considered here, a no(1)-weakly-uniform constant-depth poly-size threshold

circuit can be simulated by a linear-time threshold machine that uses a constant number of

alternations and no(1) bits of advice 3.

First proof of Theorem 7.2 Our first proof takes as its starting point a time hierarchy

theorem for threshold Turing machines. If PERMANENT has constant-depth no(1)-weakly-

uniform threshold circuits, our discussion above implies that every language in CH also

has such circuits. On the other hand, we show that the assumed easiness of PERMANENT

together with the time hierarchy for threshold Turing machines imply a language in CH that

is hard for these circuits – a contradiction. Consider a language LP that is complete for

P. By the known uniform reductions from P to PERMANENT and the assumed easiness of

PERMANENT , LP has constant-depth no(1)-weakly-uniform threshold circuits of depth d, for

some constant d. By the completeness of LP for P, any language decided by poly-size no(1)-

weakly-uniform circuits also has no(1)-weakly-uniform threshold circuits of depth d, and

therefore also can be decided by a linear-time threshold Turing machine that makes at most

d alternations and uses no(1) bits of advice. The time hierarchy theorem for such threshold

Turing machines states that there is a language Lhard computable by a poly-time threshold

Turing machine that makes d alternations and differs from all such languages, thus differing

from all languages computable by poly-size no(1)-weakly-uniform circuits. Lhard differs from

such machines but at the same time resides in CH, which can (by the assumed easiness

of PERMANENT and the resulting collapse of CH) be computed by poly-size no(1)-weakly-

uniform constant-depth threshold circuits – a contradiction.

Second proof of Theorem 7.2 The first proof uses the assumed easiness of PERMA-

NENT to construct a language in CH that is hard for constant-depth no(1)-weakly-uniform

circuits of any polynomial size. For the second proof, we start with an unconditional lower

bound that holds for a fixed polynomial. Namely, for any constant k there exists a language

Lhard in PPP that cannot be computed by circuits of size nk. As with the first proof, we also

3Fully uniform constant-depth poly-size threshold circuits can be simulated by threshold Turing machines
running in polylog time, but the relaxed no(1)-weak-uniformity translates to threshold Turing machines with
longer running time.
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use the easiness of PERMANENT to work in the other direction – to show that if PERMANENT

has no(1)-weakly-uniform constant-depth threshold circuits then Lhard can be computed by

circuits of size less than nk, as follows. The easiness of PERMANENT implies that any lan-

guage in PPP, in particular Lhard, can be computed by no(1)-weakly-uniform constant-depth

threshold circuits Chard of polynomial size. The circuits Chard can in turn be collapsed in

much the same manner we discussed collapsing CH above. The first level of threshold

gates closest to the inputs can be viewed as PP questions of size poly(log(n) + no(1)); us-

ing the assumed easiness of PERMANENT a circuit C1 of size no(1) can be used in place

of the threshold gates on the first level. A similar argument shows that the second level

of threshold gates reduce to PP questions of size poly(|C1|), which can be replaced by a

circuit of size poly(poly(|C1|)) using the assumed easiness of PERMANENT . This process

is repeated for each level of threshold gates in Chard. If Chard has depth d, we obtain a

circuit of size p(d)(log(n) + no(1)) +O(n) for some polynomial p after iterating for each level

of threshold gates in Chard. The conclusion is a contradiction – we have constructed a

circuit of size O(n) for computing Chard although it should require size nk.

Notes on the proofs One of the key ingredients for both proofs is that if PERMANENT is

easy then the counting hierarchy collapses, even in the presence of no(1) bits of advice.

Equivalently, weakly-uniform circuits for PERMANENT imply the collapse of weakly-uniform

threshold circuits. The same basic argument as those given above is used for each of

Theorems 7.2, 7.3, and 7.4. In fact, for our second proof we prove a single parameterized

statement that implies the theorems as corollaries. We have phrased our first proof in terms

of threshold Turing machines with advice, and our second proof in terms of weakly-uniform

threshold circuits. Due to the equivalence between the two models, both proofs could be

given in terms of either model. The Turing machine model is natural for the first proof due

to the reliance on a hierarchy theorem for Turing machines for Lhard. The circuit model is

natural for the second proof due to its use of a circuit lower bound for Lhard.

7.1.4 Relation to the previous work

A similar indirect-diagonalization strategy was used (explicitly or implicitly) in all previous

papers showing uniform or weakly-uniform circuit lower bounds for PERMANENT [AG94,

All99, KP09, JS11]. Our proofs are most closely related to those of [All99, KP09]. The

main difference is that we work in the weakly-uniform setting, which means that we need to
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handle a certain amount of non-uniform advice. To that end, we have adapted the method

of indirect diagonalization, making it modular (as outlined above) and sufficiently general

to work also in the setting with advice. Due to this generality of our proof argument, we

are able to extend the aforementioned lower bounds from the uniform setting to the weakly

uniform setting. The approach adopted by [JS11] goes via the well-known connection

between derandomization and circuit lower bounds (cf. [HS82, KI04, Agr05]). Since the

authors of [JS11] work with the algebraic problem of Polynomial Identity Testing (given an

arithmetic circuit computing some polynomial over integers, decide if the polynomial is iden-

tically zero), their final lower bounds are also in the algebraic setting: for weakly-uniform

arithmetic constant-depth circuits. By making the diagonalization arguments in [JS11] more

explicit (along the lines of [All99, KP09]), we are able to get the lower bound for weakly-

uniform Boolean (TC0) circuits, thereby both strengthening the results and simplifying the

proofs from [JS11].

The remainder of the chapter. We give the necessary background in Section 7.1.5.

Section 7.2 provides the tools needed for our proofs. These tools are then used in Sections

7.3 and 7.4 to give the two proofs of our main results (Theorems 7.2–7.4 above). We give

other weakly-uniform circuit lower bounds in Section 7.5. We give concluding remarks in

Section 7.6.

7.1.5 Preliminaries

Circuits

Recall that a Boolean circuit Cn on n inputs x1, . . . , xn is a directed acyclic graph with one

single output gate (the node of out-degree 0), n nodes of in-degree 0 (input gates labeled

x1, . . . , xn), and internal nodes of in-degree 2 (for AND and OR gates) or 1 (for NOT gates).

The size of the circuit Cn is defined to be the number of gates, and is denoted by |Cn|.
For a function s : N → N and a circuit family {Cn}n≥0, we say that the circuit family is

in SIZE(s), if for all sufficiently large n we have |Cn| ≤ s(n). The depth of a circuit Cn is

defined as the length of a longest path from some input gate to the output gate. We will be

talking about constant-depth circuits, in which case we allow all gates (other than the NOT

gates) to have unbounded fan-in. In addition to AND and OR, we may have other types

of gates: MAJ (which is 1 iff more than half of its inputs are 1), or MODm gate for some
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integer m > 0 (which is 1 iff the integer sum of the inputs is divisible by m). AC0 circuits are

constant-depth Boolean circuits with NOT gates, unbounded fan-in AND and OR gates,

and constant gates 0 and 1. For a positive integer m, AC0[m] is the set of languages

decided by AC0 circuits that are extended with unbounded fan-in MODm gates; ACC0 is the

union of AC0 over all m. Finally, TC0 circuits are AC0 circuits extended with unbounded

fan-in MAJ (or threshold) gates, where MAJ(x) = 1 if and only if more than half of the bits

in x are 1. For a function s : N→ N and a circuit type C ∈ {AC0,ACC0,TC0}, we denote by

C(s) the class of families of s(n)-size n-input circuits of type C. When s(n) is a polynomial

in n, we may drop it and simply write C to denote the class of polynomial-size C-circuits.

Finally, we drop the superscript 0 in AC0,ACC0, and TC0, when we want to talk about the

corresponding type of circuits where the depth d(n) may be a function of the input size n.

Weakly-uniform circuit families

Following [Ruz81, AG94], we define the direct connection language of a circuit family {Cn}
as Ldc = {(n, g, h) : g = h and g is a gate in Cn, or g 6= h and h is an input to g}, where n

is in binary representation, and each of g and h is a binary string encoding both the type

and the name of the gate. The name of a gate is just its indexing label. The type of a

gate could be constant 0 or 1, Boolean logic gate NOT, AND, or OR, majority gate MAJ,

modulo gate MODm for some integer m, or input x1, x2, . . . , xn. For a circuit family of size

s(n), we need c0 log s(n) bits to encode (n, g, h), where c0 is a small constant at most 4. A

circuit family {Cn} is uniform [BIS90, AG94] if its direct connection language is decidable

in time polynomial in its input length |(n, g, h)|; this was referred to as POLYLOGTIME-

uniformity in [AG94]. We say a function f(n) is constructible if there is a deterministic TM

that computes f(n) in binary in time O(f(n)), when given n in binary as the input4. Fol-

lowing [JS11], for a constructible function α : N → N, we say that a circuit family {Cn}
of size s(n) is α-succinct if its direct connection language Ldc is in SIZE(α); i.e., Ldc has

(non-uniform) Boolean circuits of size α(m), where m = c0 log s(n) is the input size for Ldc.

Trivially, for α(m) ≥ 2m, every circuit family is α-succinct. The notion becomes nontrivial

when α(m) � 2m/m. We will use α(m) = 2o(m) (slightly succinct) and α(m) = mO(1)

4We note that f(n) is constructible in our sense if and only if 2f(n) is constructible according to Allender’s
definition in [All99].
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(highly succinct). We stress that here we have parameterized the succinctness as a func-

tion of the logarithm of the size of the circuit. As a function of the input length n, a circuit

of size s(n) is slightly succinct if the direct connection language is decided by a circuit of

size so(1)(n), and is highly succinct if the direct connection language is decided by a circuit

of size poly log(s(n)). We recall the definition of Turing machines with advice from [KL82].

Given functions t : N → N and α : N → N, we say that a language L is in DTIME(t)/α, if

there is a deterministic Turing machine M and a sequence of advice strings {an} of length

α(n) such that, for any x ∈ {0, 1}n, machine M on inputs (x, an) decides whether x ∈ L in

time t(n + α(n)). If the function t(n + m) is upper-bounded by a polynomial in n + m, we

say that L ∈ P/α.

Definition 7.5 (Restatement of Definition 7.1). A circuit family {Cn} of size s(n) is α-

weakly-uniform if its direct connection language is decided in P/α; recall that the input

size for the direct-connection language describing Cn is m = c0 log s(n), and so the size of

the advice string needed in this case is α(c0 log s(n)).

The two notions are closely related.

Lemma 7.6. In the notation above, α(m)-succinctness implies α(m) logα(m)-weak unifor-

mity, and conversely, α(m)-weak uniformity implies (α(m) +m)O(1)-succinctness.

sketch. A Boolean circuit of size s can be represented by a binary string of size O(s log s);

and a Turing machine running in time t can be simulated by a circuit family of size O(t log t).

The notion of weak uniformity (succinctness) interpolates between full uniformity on

one end and full non-uniformity on the other end. For example, 0-weak uniformity is the

same as uniformity. On the other hand, α-weak uniformity for α(m) ≥ 2m is the same as

non-uniformity. For that reason, we will assume that the function α in “α-weakly-uniform” is

such that 0 ≤ α(m) ≤ 2m.

Definition 7.7. We say a circuit family {Cn} is subexp-weakly-uniform if it is α-weakly-

uniform for α(m) ∈ 2o(m); similarly, we say {Cn} is poly-weakly-uniform if it is α-weakly-

uniform for α(m) ∈ mO(1).
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Alternating Turing machines

Both the counting hierarchy and uniform threshold circuits can equivalently be defined us-

ing threshold Turing machines, which are generalizations of alternating Turing machines.

As we use this view in some of our proofs, we recall the definitions – and state the equiv-

alence in the next subsection. Following [CKS81, AG94], an alternating Turing machine

(ATM) is a nondeterministic Turing machine with two kinds of states: universal states and

existential states. In the usual definition of an ATM, each configuration has either zero or

two successor configurations; configurations with no successors, which are called leaves,

are halting configurations; a configuration in universal (existential) state is accepting iff all

(at least one) of its successors are accepting. We also consider the generalized ATMs

where each configuration has a a set of successors, obtained by replacing a subtree of

“bounded branching” configurations by a single configuration. We assume an ATM has

random access to the input. We say an ATM has k alternations if it switches from an ex-

istential to a universal sate or vice versa for no more than k − 1 times. A threshold Turing

machine is an alternating Turing machine with not only existential and universal states but

also majority (MAJ) states. A configuration in a majority state is accepting if and only if

more than half of its successors are accepting. We say a threshold TM has k alternations if

it switches from one kind of state (existential, universal, or majority) to another kind of state

for no more than k−1 times. We point out that computations such as “majority of majorities”

can be simulated by switching between threshold, existential, and threshold configurations.

Alternatively, the threshold Turing machine could be augmented with the ability to “declare”

a threshold computation as the “root” of a new threshold tree – thus counting a “majority of

majorities” computation as consisting of a single alternation.

We denote by Thd(n)TIME(t(n)) the class of languages accepted by threshold Turing

machines having at most d(n) alternations and running in time O(t(n)). Note that the class

Thd(n)TIME(t(n)) is closed under complement, since the negation of majority is the majority

of negated inputs5.

Recall that a language A is in PP (C=P) if there is a nondeterministic polynomial-time

Turing machine M such that x ∈ A iff the number of accepting paths of M on input x

is greater than (equal to) the number of rejecting paths. The counting hierarchy [Wag86,

5This is true for MAJ with an odd number of inputs, which is easily achieved by replacing MAJ(x1, x2, . . . , xk)
with MAJ(x1, x1, x2, x2, . . . , xk, xk, 0). This presupposes our definition for MAJ – that MAJ is 1 if strictly more
than half of the inputs is 1.



CHAPTER 7. LOWER BOUNDS AGAINST WEAKLY-UNIFORM CIRCUITS 118

Tor91] is defined as CH = ∪d≥0CHd, where CH0 = P and CHd+1 = PPCHd . This definition is

unchanged if we replace PP with C=P. The counting hierarchy can be equivalently defined

via threshold Turing machines: CHd = ThdTIME(nO(1)).

Alternating Turing machines can be also equipped with modulo states MODm for some

fixed m; a MODm configuration is accepting if and only if the number of its accepting suc-

cessors is 0 modulo m. We say an ATM with MODm states has k alternations if it switches

from one kind of state (existential, universal, or MODm) to another kind of state for no more

than k − 1 times. We denote by Modd(n)TIME(t(n)) the class of languages decided by

ATMs with MODm states for some fixed m > 0 dependent on the language, making at most

d(n) alternations and running in time O(t(n)). Following [GKR+95, All99], we denote by

ModPH the class ∪d≥0ModdTIME(nO(1)). It is well-known that threshold states can be used

to simulate MODm states, and thus also ModPH ⊆ CH.

In general, on different inputs, an ATM may follow computation paths with different

sequences of alternations; however, by introducing dummy states, it is always possible

to transform the machine into an equivalent machine such that all computation paths on

inputs of the same size will follow the same sequence of alternations, whereas the number

of alternations and the running time will change only by a constant factor; see [AG94] for

details.

Weak uniformity vs. alternating Turing machines with advice

It is well-known that uniform AC0(2poly(n)) equals the polynomial-time hierarchy PH [FSS84].

Similarly, the correspondence exists between uniform ACC0(2poly(n)) and ModPH [GKR+95,

AG94], as well as between uniform TC0(2poly(n)) and the counting hierarchy CH [BIS90,

All99]; see Table 7.1 below for the summary. More precisely, for constructible t(n) such

that t(n) = Ω(log n), we have ∪d≥0ModdTIME(poly(t(n))) is precisely the class of lan-

guages decided by uniform ACC0(2poly(t(n))), and ∪d≥0ThdTIME(poly(t(n))) is precisely the

class of languages decided by uniform TC0(2poly(t(n))). The following lemma gives the cor-

respondence between weakly-uniform threshold circuits and threshold TMs with advice.

Lemma 7.8. Let L be any language decided by a family of α-weakly-uniform d(n)-depth

threshold circuits of size s(n). Then L is decidable by a threshold Turing machine with

d′(n) = 3d(n)+2 alternations, taking advice of length α(m) for m = c0 log s(n), and running

in time t(n) = d′(n) · poly(m+ α(m)).
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Table 7.1: Correspondence between hierarchies and uniform circuit classes.

Alternation Hierarchy Circuits Reference
∃, ∀ PH uniform AC0 [FSS84]
∃, ∀,MOD2,MOD3, . . . ModPH uniform ACC0 [GKR+95, AG94]
∃, ∀,MAJ CH uniform TC0 [BIS90, All99]

Proof. The proof follows directly from [AG94] where ACC0 circuits are considered. Let {Cn}
be the circuit family deciding L. Its direct connection language Ldc is accepted by some

Turing machine U , on input size m = c0 log s(n), taking advice am of size α(m) and running

in time poly(m + α(m)) . We will construct a threshold Turing machine M which takes

advice and decides L. For any input x of length n, machine M takes advice bn ≡ am, and

does the following:

• (∃) guess gate g of Cn, and check that U accepts (n, g, g), i.e., g is a gate in Cn;

• (∀) guess gate h and check that U rejects (n, h, g), i.e., g is the output;

• Call Eval(g), which is a recursive procedure defined below.

The procedure Eval(g) is as follows:

• (∃) If g is an OR gate, then guess its input h; if U rejects (n, g, h) then reject, otherwise

call Eval(h).

• (∀) If g is an AND gate, then guess its input h; if U rejects (n, g, h) then accept,

otherwise call Eval(h).

• (MAJ) If g is a MAJ gate, then guess its input h and a bit b ∈ {0, 1}; if U rejects

(n, g, h), then accept when b = 1 and reject when b = 0, otherwise call Eval(h).

• If g is a constant gate, then accept iff it is 1.

• If g is an input, then accept iff the corresponding input bit is 1.

It is easy to verify that M with advice bn accepts x iff Cn(x) = 1. The number of alternations

that M takes on any computation path is at most d(n) + 2. However, each path may

follow a different sequence of states. To resolve this, we replace each state on each path
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by a sequence of three states (∃, ∀,MAJ), where two of them are dummy. This gives a

machine with each computation path following the same alternations, and the total number

of alternations is at most 3d(n) + 2. The access to inputs is only at the last step of each

computation path (corresponding to the bottom level of the circuit). At each alternation, the

machine simulates U and runs in time poly(m+ α(m)). Therefore, the total running time is

bounded by d′(n) · poly(m+ α(m)).

Similar to Lemma 7.8, we have the following correspondence between weakly-uniform

ACC circuits and alternating Turing machines with modulo states.

Lemma 7.9. Let L be any language decided by a family of α-weakly-uniform d(n)-depth

ACC circuits of size s(n) with MODr gates, for some integer r > 0. Then L is decidable by

an alternating Turing machine with MODr states and d′(n) = O(d(n)) alternations, taking

advice of length α(m) where m = c0 log s(n), and running in time d′(n) · poly(m+ α(m)).

PERMANENT

The PERMANENT problem is to compute the permanent of an n× n matrix X:

Permn(X) =
∑
σ

n∏
i=1

xi,σ(i),

where the summation is over all permutations σ of 1, . . . , n. Valiant [Val79] showed that

PERMANENT for matrices over the set of integers Z is #P-complete. The main property of

PERMANENT needed for our results is PP-hardness. It was shown in [Zan91], which builds

on [Val79], that any language in PP reduces to the 0-1-PERMANENT with a quasi-linear size

uniform AC0 reduction, where quasi-linear means n · polylog(n).

7.2 Indirect Diagonalization

Here we establish the components needed for our indirect diagonalization, as outlined in

Section 7.1.3. First, in Section 7.2.1, we give the ingredients needed for our first proof.

One result is a diagonalization argument against alternating Turing machines with advice,

getting a language in the counting hierarchy CH that is “hard” against weakly-uniform TC0

circuits of certain size. Another result formalizes the intuition that if a P-complete language



CHAPTER 7. LOWER BOUNDS AGAINST WEAKLY-UNIFORM CIRCUITS 121

has weakly-uniform small-depth threshold circuits of a certain size, then any language L

decided by weakly-uniform circuits must have weakly-uniform small-depth threshold cir-

cuits, with parameters related to the assumed circuits for the P-complete language and for

L. Section 7.2.2 contains the tools needed for the second proof of our main results. In

particular we state and prove the circuit lower bound that is used in the second proof: that

EPP contains a language that requires non-uniform circuits of size 2Θ(n). Finally, in Sec-

tion 7.2.3, we state and prove the key lemma that is used in both proofs. Namely, using

the assumption that PERMANENT has small weakly-uniform TC0 circuits, we show that CH

collapses, and our assumed hard languages are in fact decidable by weakly-uniform s′-size

Boolean circuits, which is a contradiction. Our actual argument is more general: we con-

sider threshold circuits of not necessarily constant depth d(n), and non-constant levels of

the counting hierarchy.

7.2.1 Ingredients for the First Proof

Diagonalization against ATMs with advice

Lemma 7.10. For any constructible functions α, d, t, T : N → N such that α(n) ∈ o(n) and

t(n) log t(n) = o(T (n)), there is a language D ∈ Thd(n)TIME(T (n)) which is not decided by

threshold Turing machines with d(n) alternations running in time t(n) and taking advice of

length α(n).

Proof. The proof is by diagonalization. Define the language D consisting of those inputs

x of length n that have the form x = (M,y) (using some pairing function) such that the

threshold TM M with advice y, where |y| = α(n), rejects input (M,y) in time t(n) using at

most d(n) alternations. Language D is decided in Thd(n)TIME(T (n)) by simulating M and

flipping the result6. For contradiction, suppose that D is decided by some threshold Turing

machine M0 with d(n) alternations taking advice {an} of size α(n). Consider the input

(M0, an) with |M0| = n − α(n); we assume that each TM has infinitely many equivalent

descriptions (by padding), and so for large enough n, there must exist such a description of

6 Thd(n)TIME(T (n)) is closed under complement since the negation of MAJ is MAJ of negated inputs
when MAJ has an odd number of inputs; the latter is easy to achieve by replacing MAJ(x1, . . . , xk) with
MAJ(x1, x1, . . . , xk, xk, 0). Allender [All99] uses a lazy diagonalization argument [Zák83] for nondeterministic
TMs. However, that argument seems incapable of handling the amount of advice we need. Fortunately, the
basic diagonalization argument we use here is sufficient for our purposes.
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size n− α(n). By the definition of D, we have (M0, an) is in D iff M0 with advice an rejects

it; but this contradicts the assumption that M0 with advice {an} decides D.

The following diagonalization result, combing with Lemma 7.9, says that the hierarchy

ModPH contains languages that are “hard” against weakly-uniform ACC circuits of certain

size.

Lemma 7.11. For any constructible functions α, d, t, T : N → N such that α(n) ∈ o(n) and

t(n) log t(n) = o(T (n)), and for any integerm > 1, there is a languageD ∈ Modd(n)+1TIME(T (n))

which is not decided by alternating Turing machines with MODm states and d(n) alternation

running in time t(n) and taking advice of length α(n).

sketch. The proof is similar to the proof of Lemma 7.10, except that when flipping the result,

the negation can be simulated by a MODm state, using the identity ¬x = MODm(x).

If P is unusually easy

Let L0 be a P-complete language under uniform projections (functions computable by uni-

form Boolean circuits with NOT gates only). For example, the standard P-complete set

{(M,x, 1t) : M accepts x in time t} works.

Lemma 7.12. Suppose L0 is decided by a family of α-weakly-uniform d(n)-depth thresh-

old circuits of size s(n). Then, for any constructible function t(n) ≥ n and 0 ≤ β(m) ≤
2m, every language L in β-weakly-uniform SIZE(t(n)) is decided by µ(n)-weakly-uniform

d(poly(t(n)))-depth threshold circuits of size s′(n) = s(poly(t(n))) on n inputs, where µ(n) =

α(c0 log s′(n)) + β(c0 log t(n)).

Proof. Let U be an advice-taking algorithm deciding the direct-connection language for the

t(n)-size circuits for L. For any string y of length β(m) for m = c0 log t(n), we can run U

with the advice y to construct some circuit Cy of size t(n) on n inputs. We can construct

the circuit Cy in time at most poly(t(n)), and then evaluate it in time poly(t(n)) on any given

input of size n. Consider the language L′ = {(x, y, 1t(n)) | |x| = n, |y| = β(m), Cy(x) = 1}.
By the above, we have L′ ∈ P. Hence, by assumption, L′ is decided by an α-weakly-uniform

d(l)-depth threshold circuits of size s(l), where l = |(x, y, 1t(n))| ≤ poly(t(n)). To get a circuit
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for L, we simply use as y the advice of size β(m) needed for the direct-connection language

of the t(n)-size circuits for L. Overall, we need α(c0 log s(l)) + β(m) amount of advice to

decide L by weakly-uniform d(poly(t(n)))-depth threshold circuits of size s(poly(t(n))).

7.2.2 Ingredients for Second Proof

The second proof uses the following to obtain a hard language in the indirect diagonaliza-

tion. In the theorem statement maximum circuit complexity is the largest h(n) such that

there exists a language that does not have circuits of size h(n)− 1. For completeness, we

provide a proof.

Theorem 7.13 ([Kan82]). Let c > 0 be a constant such that there are at most 2(h(n))c

circuits of size h(n) at input length n. Let h(n) be a time-constructible function such that for

all n, n ≤ h(n), (h(n))c < 2n, and h(n) is less than the maximum circuit complexity. There

is a language Lhard in TIMEPP(poly(h(n))) that does not have circuits of size h(n).

Proof. Let x1, ..., x(h(n))c+1 be the (h(n))c + 1 lexicographically smallest inputs of length n.

The PP language we use as oracle is

A = {(1n, j, b1, ..., b(h(n))c+1)| C(xj) = bj for at most 1/2

of the circuits C of size h(n) that satisfy C(xi) = bi for all 1 ≤ i < j.}

A can be decided in PP by a machine as follows. The machine guesses a circuit of size

h(n); if the circuit does not agree with one of the bi between 1 and j−1 then the PP machine

splits into two nondeterministic paths with one accepting and one rejecting; otherwise the

PP machine accepts iff C(xj) 6= bj . Then there are at least half accepting paths iff at least

half of the circuits in question disagree with bj on xj . As we can evaluate a circuit of size

h(n) in poly(h(n)) time, the running time for A is poly(h(n)), which is polynomial in the input

length, so A ∈ PP.

Lhard is defined as follows. Lhard(x1) = A(1n, 1, 0, 0, ..., 0), and already Lhard differs

from at least half of the circuits of size h(n). Lhard(x2) = A(1n, Lhard(x1), 1, 0, ..., 0). So

now Lhard differs from at least 3/4 of the circuits of size h(n). And so on. As there are at

most 2(h(n))c circuits of size h(n), we will have differed from all in at most (h(n))c + 1 steps.
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For inputs not in the set {x1, ..., xh(n)+1} we can define Lhard arbitrarily (e.g., set it to 0).

Notice that Lhard can be decided in poly(h(n)) time with access to the PP oracle A.

Since separations for high resources imply separations for low resources, it will be

optimal to set h(n) large. Because there exist languages that require circuits of size 2n/c

for all constants 0 < c < 1 [Sha49] we have the following corollary, which we use in the

second proof of our main results.

Corollary 7.14. For every 0 < c < 1, there is a language Lhard in DTIMEPP(2O(n)) that

does not have circuits of size 2n/c.

7.2.3 Key Lemma – Collapse of CH if PERMANENT is Easy

Since PERMANENT is hard for the first level of the counting hierarchy CH, assuming that

PERMANENT is “easy” implies the collapse of CH (see, e.g., [All99]). It was observed

in [KP09] that it is also possible to collapse super-constant levels of CH, under the same

assumption. Below we argue the collapse of super-constant levels of CH by assuming that

PERMANENT has “small” weakly-uniform circuits. We use the notation f ◦ g to denote the

composition of the functions f and g, and the notation f (i) is used to denote the composi-

tion of f with itself for i times; we use the convention that f (0) is the identity function.

Lemma 7.15. Suppose that PERMANENT is in γ-weakly-uniform SIZE(s(n)), for some

γ(m) ≤ 2o(m). For every d(n) ≤ no(1), every language A in Thd(n)TIME(poly) is also in

(2d(n) · γ)-weakly-uniform SIZE((s ◦ q)(d(n)+1)(n)), for some polynomial q dependent on A.

Proof. The idea of the proof is to convert the computation of A into a threshold circuit and

then replace majority gates by the circuit for the permanent, beginning with the level of

gates closest to the input and working inductively higher – as described in the outline of

the second proof of Theorem 7.2 in section 7.1.3. The language A is computable by a

uniform threshold circuit family {Cn} of depth d(n) and size poly(n), as follows. Let M be a

polynomial-time TM deciding the direct-connection language of {Cn}. More precisely, we

identify the gates of the circuit with the configurations of the given threshold TM for A; the

output gate is the initial configuration; leaf (input) gates are halting configurations; deciding

if one gate is an input to the other gate is deciding if one configuration follows from the

other according to our threshold TM, and so can be done in polynomial time (dependent
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on A); finally, given a halting configuration, we can decide if it is accepting or rejecting also

in polynomial time (dependent on A). Consider an arbitrary n. Let d = d(n). For a gate g

of C, we denote by Cg the sub-circuit of C that determines the value of the gate g. We say

that g is at depth i, for 1 ≤ i ≤ d, if the circuit Cg is of depth i. Note that each gate at depth

i ≥ 1 can be simulated by a majority gate because threshold gates can simulate AND and

OR gates, and NOT gates can be pushed to the inputs. For every 0 ≤ i ≤ d, let Bi be a

circuit that, given x ∈ {0, 1}n and a gate g at depth i, outputs the value Cg(x).

Claim 7.16. There are polynomials q and q′ dependent on A such that, for each 0 ≤ i ≤ d,

there are 2iγ-weakly-uniform circuits Bi of size (s ◦ q)(i) ◦ q′.

Proof. We argue by induction on i. For i = 0, to compute B0(x, g), we need to decide

if the halting configuration g of our threshold TM for A on input x is accepting or not; by

definition, this can be done by the TM M in deterministic polynomial time. Hence, B0 can

be decided by a completely uniform circuit of size at most q′(n) for some polynomial q′

dependent on the running time of M . Assume we have the claim for i. Let s′ be the size

of the γ′-weakly-uniform circuit Bi, where s′ ≤ (s ◦ q)(i) ◦ q′ and γ′ ≤ 2iγ. Consider the

following TM N :

“On input z = (x, g, U, y, 1s
′/2), where |x| = n, g is a gate of C, |U | = γ(c0 log s′),

|y| = γ′(c0 log s′), interpret U as a Turing machine that takes advice y to decide

the direct-connection language of some circuit D of size s′ on inputs of length

|(x, g)|. Construct the circuit D using U and y, where to evaluate U on a given

input we simulate U for at most s′ steps. Enter the MAJ state. Nondeterministi-

cally guess a gate h of C and a bit b ∈ {0, 1}. If h is not an input gate for g, then

accept if b = 1 and reject if b = 0; otherwise, accept if D(x, h) = 1 and reject if

D(x, h) = 0.”

We will be interested in the case where U is a polynomial-time TM. For any such U , the

running time on any input is bounded by poly(c0 log s′ + γ′(c0 log s′)), which is less than s′

by our assumptions that γ(m) ≤ 2o(m) and d ≤ (s′)o(1). Thus, to evaluate U on a particular

input, it suffices to simulate U for at most s′ steps, which is independent of what the actual

polynomial time bound of U is. It follows that we can construct the circuit D (given U

and y) in time p(s′), where p is a polynomial that does not depend on U . Also, to decide

if h is an input gate to g, we use the polynomial-time TM M . We conclude that N is a
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PP machine which runs in some polynomial time (dependent on A). Since PERMANENT

is PP-hard [Val79, Zan91], we have a uniform reduction mapping z (an input to N ) to an

instance of PERMANENT of size q(|z|), for some polynomial q (dependent on A). By our

assumption on the easiness of PERMANENT, we get that the language of N is decided by

γ-weakly-uniform circuits CN of size at most s′′ = s(q(s′)). If we plug in for U and y the

actual TM description and the advice needed to decide the direct-connection language of

Bi, we get from CN the circuit Bi+1. Note that the direct-connection language of this circuit

Bi+1 is decided in polynomial time (using the algorithm for direct-connection language of

CN ) given the advice needed for CN plus the advice needed to describe U and y. The total

advice size is at most γ(c0 log s′′) + γ(c0 log s′′) + γ′(c0 log s′) ≤ 2(i+ 1)γ(c0 log s′′).

Finally, we take the circuitBd and use it to evaluateA(x) by computing the valueBd(x, g)

where g is the output gate of C, which can be efficiently constructed (since this is just the

initial configuration of our threshold TM for A on input x). By fixing g to be the output gate

of C, we get the circuit for A which is 2dγ-weakly-uniform of size at most (s ◦ q)(d)(r(n)),

where the polynomial r depends on the language A. Upper-bounding r by (s ◦ q) yields the

result.

7.3 First Proof of Main Results

Here we use the technical tools from the previous section in order to give the first proof

of our main results, as outlined in Section 7.1.3. The proofs for each of Theorems 7.2,

7.3, and 7.4 follow the same steps, with the key difference being how parameters are

set. It is possible to leave all of the parameters free to obtain a single statement that

would encapsulate each of the main theorems. As doing so would make the proofs seem

overly complicated, we instead prove each of the results separately. For the second proof

of our main results in the next section, we take the other approach – proving a single

parameterized statement that implies each of the main theorems. Recall that we let L0

be a P-complete language under uniform projection, e.g., L0 = {(M,x, 1t) : M accepts x

in time t}. Also recall that we use “subexp-weakly-uniform” and “poly-weakly-uniform” as

shorthands for 2o(m)-weakly-uniform and mO(1)-weakly-uniform, respectively.
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7.3.1 Proof of Theorem 7.2

First, assuming L0 is easy, we construct a hard language in CH.

Lemma 7.17. Suppose L0 is in subexp-weakly-uniform TC0 of depth d. Then, for a constant

d′ dependent on d, there is a language Ldiag ∈ CHd′ which is not in subexp-weakly-uniform

SIZE(poly).

Proof. Let α(m) ∈ 2o(m) be such that L0 is in α-weakly-uniform TC0 of depth d. Consider

an arbitrary language L in β-weakly-uniform SIZE(poly), for an arbitrary β(m) ∈ 2o(m).

By Lemma 7.12, L has µ(n)-weakly uniform threshold circuits of depth d and polynomial

size, where µ(n) = α(O(log n)) + β(O(log n)) ≤ no(1). By Lemma 7.8, we have that L is

decided by a threshold Turing machine with d′ = O(d) alternations, taking advice of length

µ(n) ≤ no(1) ≤ n/ log2 n, and running in time d′ · poly(O(log n) + no(1)) ≤ no(1) ≤ n/ log2 n.

Note that n/ log2 n can be replaced by any f(n) such that f(n) log n ≤ o(n). We conclude

that every language in subexp-weakly-uniform SIZE(poly) is also decided by some threshold

TM in time n/ log2 n, using d′ alternations and advice of size n/ log2 n. Using Lemma 7.10,

define Ldiag to be the language in Thd′TIME(n) which is not decidable by any threshold

Turing machine in time n/ log2 n, using d′ alternations and advice of size n/ log2 n. It follows

that Ldiag is different from every language in subexp-weakly-uniform SIZE(poly).

Next, assuming PERMANENT is easy, we have that every language in CH is easy. The

proof is immediate by Lemma 7.15.

Lemma 7.18. If PERMANENT is in subexp-weakly-uniform SIZE(poly), then every language

in CH is in subexp-weakly-uniform SIZE(poly).

We now show that L0 and PERMANENT cannot both be easy. The proof is immediate

by Lemmas 7.17 and 7.18.

Theorem 7.19. At least one of the following must be false:

1. L0 is in subexp-weakly-uniform TC0;

2. PERMANENT is in subexp-weakly-uniform SIZE(poly).

To unify the two items in Theorem 7.19, we use the next lemma and its corollary.
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Lemma 7.20 ([Val79, AG94]). For every language L ∈ P, there are uniform AC0-computable

functions M (mapping a binary string to a polynomial-size Boolean matrix) and f such that,

for every x, we have x ∈ L if and only if f(PERMANENT(M(x))) = 1.

This lemma immediately yields the following.

Corollary 7.21. If PERMANENT has α-weakly-uniform d(n)-depth threshold circuits of size

s(n), then L0 has α-weakly-uniform (d(nO(1))+O(1))-depth threshold circuits of size s(nO(1)).

Now we prove Theorem 7.2, which we re-state below.

Theorem 7.22. PERMANENT is not in subexp-weakly-uniform TC0.

Proof. Otherwise by Corollary 7.21, both claims in Theorem 7.19 would hold, which is

impossible.

7.3.2 Proof of Theorem 7.3

Recall that a function r(n) is sub-subexponential if, for every constant k > 0, r(k)(n) ≤
2n

o(1)
. Also recall that subsubexp denotes the class of all sub-subexponential functions r(n).

Below, we will use the simple fact that, for every constant k > 0, the composition of k

sub-subexponential functions is also sub-subexponential.

Lemma 7.23. Suppose that the P-complete language L0 is in poly-weakly-uniform TC0(subsubexp)

of depth d. Then, for a constant d′ = O(d), there is a language Ldiag ∈ CHd′ which is not in

poly-weakly-uniform SIZE(subsubexp).

Proof. The proof is similar to that of Lemma 7.17. Let α(m) ∈ poly(m) and s(n) ∈ subsubexp

be such that L0 is in α-weakly-uniform d-depth TC0(s(n)). Consider an arbitrary language

L in β-weakly-uniform SIZE(t(n)), for arbitrary β(m) ∈ poly(m) and t(n) ∈ subsubexp. By

Lemma 7.12, L is in µ(n)-weakly uniform d-depth TC0(s′(n)), where s′(n) = s(poly(t(n)))

and µ(n) = α(c0 log s′(n)) + β(c0 log t(n)) ≤ no(1) (since s′ and t are sub-subexponential).

By Lemma 7.8, we have that L is decided by a threshold Turing machine with d′ = O(d)

alternations, taking advice of length µ(n) ≤ no(1) ≤ n/ log2 n, and running in time d′ ·
poly(c0 log s′(n) + α(c0 log s′(n))) ≤ no(1) ≤ n/ log2 n. We conclude that every language in

poly-weakly-uniform SIZE(subsubexp) is also decided by some threshold Turing machine in

time n/ log2 n, using d′ alternations and advice of size n/ log2 n. Using Lemma 7.10, define
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Ldiag to be the language in Thd′TIME(n) which is not decidable by any threshold Turing

machine in time n/ log2 n, using d′ alternations and advice of size n/ log2 n. It follows that

Ldiag is different from every language in poly-weakly-uniform SIZE(subsubexp).

Now we are ready to prove Theorem 7.3, which we re-state below.

Theorem 7.24 (Theorem 7.3 restated). PERMANENT is not in the class poly-weakly-uniform

TC0(subsubexp).

Proof. Suppose that, for some α(m) ∈ poly(m) and s(n) ∈ subsubexp, PERMANENT is

in α-weakly-uniform TC0(s(n)); this also implies that PERMANENT is in α-weakly-uniform

SIZE(poly(s(n)). By Corollary 7.21, L0 is in α-weakly-uniform TC0(poly(s(n))), and so,

by Lemma 7.23, there is a language Ldiag ∈ CH which is not in poly-weakly-uniform

SIZE(subsubexp). But, by Lemma 7.15, every language L in CH is in poly-weakly-uniform

SIZE(subsubexp). A contradiction.

7.3.3 Proof of Theorem 7.4

Lemma 7.25. Suppose L0 is in poly-weakly-uniform poly-size threshold circuits of depth

o(log log n). Then there is a language Ldiag ∈ Thlog lognTIME(n) which is not in poly-weakly-

uniform SIZE(npoly(logn)).

Proof. Let α(m) ∈ poly(m), s(n) ∈ poly(n), and d(n) ∈ o(log log n) be such that L0 is

computable by α-weakly-uniform d(n)-depth threshold circuits of size s(n). Consider an

arbitrary language L in β-weakly-uniform SIZE(t(n)), for arbitrary β(m) ∈ poly(m) and

t(n) ∈ npoly(logn). By Lemma 7.12, L is in µ(n)-weakly uniform d′(n)-depth threshold circuits

of size s′(n), where d′(n) = d(poly(t(n))) ≤ o(log log n), s′(n) = s(poly(t(n))) ≤ npoly(logn),

and µ(n) = α(c0 log s′(n)) + β(c0 log t(n)) ≤ poly(log n).

By Lemma 7.8, we have that L is decided by a threshold Turing machine with at most

O(d′(n)) < log logn alternations, taking advice of length µ(n) ≤ no(1) ≤ n/ log2 n, and

running in time O(d′(n)) · poly(c0 log s′(n) + α(c0 log s′(n))) ≤ no(1) ≤ n/ log2 n. We con-

clude that every language in poly-weakly-uniform SIZE(npoly(logn)) is also decided by some

threshold TM in time n/ log2 n, using log log n alternations and advice of size n/ log2 n.
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Using Lemma 7.10, define Ldiag to be the language in Thlog lognTIME(n) which is not

decidable by any threshold TM in time n/ log2 n, using log log n alternations and advice of

size n/ log2 n. It follows that Ldiag is the required language.

Now we prove Theorem 7.4, restated below.

Theorem 7.26 (Theorem 7.4 restated). PERMANENT is not computable by poly-weakly-

uniform poly-size threshold circuits of depth o(log log n).

Proof. Assume otherwise. Then PERMANENT is also in poly-weakly-uniform SIZE(poly),

and so, by Lemma 7.15, every language in Thlog lognTIME(n) is in poly-weakly-uniform

SIZE(npoly(logn)). On the other hand, by Corollary 7.21, L0 is computable by poly-weakly-

uniform threshold circuits of poly-size and depth o(log log n), and so, by Lemma 7.25,

there is a language Ldiag ∈ Thlog lognTIME(n) such that Ldiag is not in poly-weakly-uniform

SIZE(npoly(logn)). A contradiction.

7.4 Second Proof of Main Results

In this section we give a second proof of our main results. Both proofs use the same

key ingredient – the collapse of the counting hierarchy under the assumed easiness of

PERMANENT (Lemma 7.15). The proofs differ in how this collapse is used to derive a

contradiction to a known lower bound.

7.4.1 Parameterized Statement and Proof

Our second proof yields the following parameterized result. This result is proved using the

strategy outlined in Section 7.1.3, but letting the circuit size, depth, and amount of advice

be parameters. Let L0 be the P-complete language used earlier.

Theorem 7.27. Let s(n) be time-constructible, and let m = O(log s(n)) be the input length

for a uniformity Turing machine for a circuit of size s(n). Let s(n) ≥ n, α(m), and d(n)

be non-decreasing functions such that α(m) and d(n) ≤ s(n) for all n. Assume also that

α(m) ≤ 2o(m) and d(n) ≤ (log s(n))o(1). Let N = poly(s(O(2n))), M = O(log s(N)) and

s′ = (s ◦ q)O(d(N))(log(s(N)) + α(M))
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where each big-O constant is an absolute constant independent of the other parameters.

If s′ < 2n/c then either

• PERMANENT does not have α(m)-weakly-uniform SIZE(s(n)) circuits,

• Or L0 does not have α(m)-weakly-uniform threshold circuits of size s(n) and depth

d(n).

Since L0 reduces to PERMANENT , a corollary is that unconditionally PERMANENT does

not have weakly-uniform threshold circuits with the given parameters. Each of Theorems

7.2, 7.3, and 7.4 can be obtained by setting the parameters in Theorem 7.27 appropriately.

To prove Theorem 7.27, we combine the hard language Lhard resulting from Corollary 7.14

(which is in EPP and requires circuits of size 2Θ(n)) with the following two claims.

Claim 1. Let s(n) be time-constructible, and let m = O(log s(n)) be the input length for

a uniformity Turing machine for a circuit of size s(n). Let s(n) ≥ n, α(m), and d(n) be

non-decreasing functions such that α(m) and d(n) ≤ s(n) for all n.

Suppose PERMANENT is in α(m)-weakly-uniform SIZE(s(n)), and L0 has α(m)-weakly-

uniform threshold circuits of size s(n) and depth d(n). Then Lhard has O(α(M))-weakly

uniform threshold circuits of depth O(d(N)) and size O(s(N)), for N = poly(s(O(2n))) and

M = O(log s(N)).

Claim 1 is proved by plugging in the assumed computations for PERMANENT and L0

into the EPP computation of Lhard.

Proof. Consider the EPP computation of Lhard of Corollary 7.14, which asks at most 2n

queries of its PP oracle on any given input. From the proof of Theorem 7.13, the PP oracle

A from the definition of Lhard is computable in polynomial PPTIME, and the instances

of A needed to solve Lhard are of size O(2n). These can be reduced to instances of

PERMANENT that are also of some length nA = O(2n) 7. Given the assumed easiness of

PERMANENT , the oracle queries can be decided by a weakly-uniform circuit CA of size

poly(s(O(2n))) with advice α(O(log s(O(2n)))). Deciding membership in Lhard amounts

to querying the oracle A on at most 2n inputs. This gives an oracle circuit that makes

7We can assume all queries are the same size because there are paddable PP-complete languages, in-
cluding language versions of PERMANENT . A language is paddable if queries of smaller length can efficiently,
e.g. by a uniform AC0 reduction, be made longer to match the longest query.
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exponentially many adaptive queries to A. In this circuit we replace each oracle gate with

the circuit CA, obtaining a single circuit deciding Lhard that is of size poly(2n · s(O(2n)))

that uses α(O(log s(O(2n)))) bits of advice. This circuit can be viewed as a circuit value

problem of size poly(2n · s(O(2n))). By the P-completeness of L0, this computation can be

reduced to an instance of L0 of size N = poly(2n · s(O(2n))). Let M = O(log s(N)).

By using a uniform AC0 reduction to L0 and using the assumed weakly-uniform thresh-

old circuits for L0, Lhard can be computed by a weakly-uniform threshold circuit of depth

O(d(N)) and size O(s(N)) that uses α(O(log s(O(2n)))) advice for the creation of the cir-

cuit CA and α(O(log s(N))) advice from the application of the easiness assumption for L0.

The total advice is O(α(O(log s(N)))). N can be simplified to N = poly(s(O(2n))) since

s(n) ≥ n.

Claim 2. Let s(n) be time-constructible, and let m = O(log s(n)) be the input length for

a uniformity Turing machine for a circuit of size s(n). Let s(n) ≥ n, α(m), and d(n) be

non-decreasing functions such that α(m) and d(n) ≤ s(n) for all n. Assume also that

α(m) ≤ 2o(m) and d(n) ≤ (log s(n))o(1). Suppose PERMANENT is in α(m)-weakly-uniform

SIZE(s(n)), and L0 has α(m)-weakly-uniform threshold circuits of size s(n) and depth d(n).

Then Lhard is contained in

SIZE(s ◦ q)O(d(N))(log s(N) + α(M))

for some polynomial q, for N = poly(s(O(2n))) and M = O(log s(N)).

To prove Claim 2, we use the threshold circuit from Claim 1 and use the assumed

easiness of PERMANENT to “collapse” the threshold circuit. For the latter we apply Lemma

7.15 – the same key step in both proofs of the main result.

Proof. Under the assumptions of the claim, we have a threshold circuit for Lhard due to

Claim 1. We would like to apply Lemma 7.15. To do so, we need the computation for

Lhard to be contained in Thd′(n)TIME(poly(n′)) for some d′ and n′ such that d′(n′) ≤ n′o(1).

Due to the equivalence of weakly-uniform threshold circuits and threshold Turing machines

with advice, we have that Lhard is in ThO(d(N))TIME(d(N) · poly(log s(N) + α(M))) using

O(α(M)) advice, with N and M from Claim 1. We set

n′ = d(N) + log(s(N)) + α(M).
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Then the running time for the threshold computation of Lhard is poly(n′) with depthO(d(N)).

Assuming d(N) ≤ (log s(N))o(1), we have that the depth is n′o(1). We have also assumed

that the amount of advice α(m) in the weakly-uniform circuit for PERMANENT is ≤ 2o(m),

which is required to apply Lemma 7.15. The only remaining issue before applying Lemma

7.15 is that the lemma does not allow for the initial threshold computation for Lhard to use

advice. An examination of the proof of Lemma 7.15 shows that a linear amount of advice

does not change the parameters – the advice is passed through the argument and is added

onto the amount of advice needed by the final circuit. In the current application, the thresh-

old computation for Lhard uses O(α(M)) advice, which is indeed O(n′). By our assumption

that d(N) ≤ (log s(N))o(1) we have that n′ = O(log s(N)+α(M). Plugging into Lemma 7.15

we obtain a circuit for Lhard that is of size (s◦q)(O(d(N))(n′) = (s◦q)O(d(N))(log s(N)+α(M))

for some polynomial q.

(Proof of Theorem 7.27.) If the size of the circuit for Lhard in Claim 2 is less than the

hardness proved for Lhard in Corollary 7.14, which is 2n/c, we conclude that one of the

assumptions in the claim must be false.

7.4.2 Corollary to the Second Proof

In this section we observe that Theorem 7.27 can be improved by examining the proof more

carefully. We state the corollary and then argue why it holds.

Corollary 7.28. Let s(n) be time-constructible, and let m = O(log s(n)) be the input length

for a uniformity Turing machine for a circuit of size s(n). Let s(n) ≥ n, α(m), and d(n)

be non-decreasing functions such that α(m) and d(n) ≤ s(n) for all n. Assume also that

α(m) ≤ 2o(m) and d(n) ≤ (log s(n))o(1). Let N = poly(s(s(O(2n)))), M = O(log s(N)) and

s′ = (s ◦ q)O(d(N))(log s(N) + α(M))

where each big-O constant is an absolute constant independent of the other parameters.

If s′ < 2n/c then either

• PERMANENT does not have non-uniform circuits of size s(n),

• Or SAT does not have α(m)-weakly-uniform threshold circuits of size s(n) and depth

d(n).
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The easiness of PERMANENT is used in the proof of Theorem 7.27 for two key purposes.

(i) Corollary 7.14 and Claim 1 show that if PERMANENT has weakly-uniform circuits and

L0 has small-depth weakly-uniform threshold circuits, Lhard has large weakly-uniform

small-depth threshold circuits.

(ii) Claim 2 shows that if PERMANENT has small circuits, the circuit from (i) can be itera-

tively made smaller by appealing to Lemma 7.15.

For step (i), we can replace the combination of PERMANENT and L0 by any language that, if

assumed to have small-depth threshold circuits, implies a small-depth threshold circuit for a

language with high circuit complexity. For example, we can use an NP-complete language

and the following fact.

Theorem 7.29 ([Kan82, MVW99]). For any 0 < c < 1, there is a language Lhard2 in

TIMEΣp2(2O(n)) that does not have circuits of size 2n/c.

Using an NP-complete language such as SAT, Claim 1 becomes instead the following.

Claim 3. Let s(n) be time-constructible, and let m = O(log s(n)) be the input length for

a uniformity Turing machine for a circuit of size s(n). Let s(n) ≥ n, α(m), and d(n)

be non-decreasing functions such that α(m) and d(n) ≤ s(n) for all n. Suppose SAT

has α(m)-weakly-uniform threshold circuits of size s(n) and depth d(n). Then Lhard2

has O(α(M))-weakly uniform threshold circuits of depth O(d(N)) and size O(s(N)), for

N = poly(s(s(O(2n)))) and M = O(log s(N)).

The change in the value of N is due to working in the third level of the exponential

alternating hierarchy, whereas in Claim 1 the hard language was in the second level of

the exponential counting hierarchy. For step (ii), the proof only requires that PERMANENT

has small general circuits – the small-depth and uniformity are not used in the argument.

Combining these two observations, we have a result stating that if both (1) SAT has small

weakly-uniform small-depth threshold circuits, and (2) PERMANENT has small general cir-

cuits, then Lhard2 has small circuits. Specifically, we have the following claim in place of

Claim 2.

Claim 4. Let s(n) be time-constructible, and let m = O(log s(n)) be the input length for

a uniformity Turing machine for a circuit of size s(n). Let s(n) ≥ n, α(m), and d(n) be
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non-decreasing functions such that α(m) and d(n) ≤ s(n) for all n. Assume also that

α(m) ≤ 2o(m) and d(n) ≤ (log s(n))o(1). Suppose PERMANENT is in non-uniform SIZE(s(n)),

and SAT has α(m)-weakly-uniform threshold circuits of size s(n) and depth d(n). Then

Lhard2 is contained in

SIZE(s ◦ q)O(d(N))(log s(N) + α(M))

for some polynomial q, for N = poly(s(s((O(2n))))) and M = O(log s(N)).

If the resulting circuit is of size less than 2n/c, then the assumed circuits for either SAT

or PERMANENT must not exist.

7.5 Other Lower Bounds

Here we use diagonalization against advice classes to prove exponential lower bounds for

weakly-uniform circuits, of both constant and unbounded depth.

7.5.1 Lower Bounds for ACC0 and AC0

The following result generalizes the result in [AG94] on uniform ACC0 circuits.

Theorem 7.30. PERMANENT is not in poly-weakly-uniform ACC0(2n
o(1)

).

Proof. It is shown in [BT94, AG94] that every language L in uniform ACC0(2n
o(1)

) is also

decidable by uniform depth-two circuits of related size s′(n) ∈ 2n
o(1)

where (i) the bottom

level consists of AND gates of fan-in (log s′(n))O(1), and (ii) the top level is a symmetric

gate (whose value depends only on the number of inputs that evaluate to one). Using this

fact as well as the #P-hardness of PERMANENT [Val79], Allender and Gore [AG94] argue

that L is in DTIME(n9)PERMANENT[1] (with a single oracle query to PERMANENT). This result

can be easily generalized to the case when L has weakly-uniform circuits. That is, for

α(m) = mO(1) where m = O(log s(n)), any language in α-weakly-uniform ACC0(2n
o(1)

) is

also in DTIME(n9)PERMANENT[1]/γ(n) for some γ(n) = no(1).

For the sake of contradiction, suppose that PERMANENT is in α-weakly-uniform ACC0(2n
o(1)

).

Consider a language L ∈ DTIME(n10)PERMANENT[1] which is not in DTIME(n9)PERMANENT[1]/no(1);

the existence of such an L is easy to argue by diagonalization (similarly to the proof of
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Lemma 7.10). Let M be the corresponding oracle machine deciding L. Consider the fol-

lowing languages:

L′ = {(x, y) : M uses y as the answer of the oracle query and accepts x},

L′′ = {(x, i) : the ith bit of the oracle query made by M on input x is 1}.

Clearly, both L′ and L′′ are in P. Since P is reducible to PERMANENT via uniform AC0

reduction, we get that both L′ and L′′ are in α-weakly-uniform ACC0(2n
o(1)

). To construct

circuits for L, on any input x, we use the circuit for L′′ to construct the oracle query, use

the circuit for PERMANENT to answer the query, and then use the circuit for L′ to decide

whether x ∈ L. Since L′, L′′ and PERMANENT all have α-weakly-uniform ACC0(2n
o(1)

)

circuits, the resulting circuit is also in α-weakly-uniform ACC0(2n
o(1)

). This implies that L is

in DTIME(n9)PERMANENT[1]/no(1). A contradiction.

We note that one can also show a lower bound for NP against weakly-uniform AC0

circuits.

Theorem 7.31. NP is not in poly-weakly-uniform AC0(subsubexp).

sketch. The proof is analogous to that of Theorem 7.3, by replacing PERMANENT with SAT,

CH with PH, and threshold circuits with Boolean circuits.

Note, however, that this lower bound is weaker than the well-known result that PARITY

requires exponential-size non-uniform AC0 circuits [Hås86].

7.5.2 Lower Bounds for General Circuits

We use the following diagonalization result.

Lemma 7.32 ([HM95, Pol06]). For any constants c and d, EXP 6⊆ DTIME(2n
d
)/nc, and

PSPACE 6⊆ DSPACE(nd)/nc.

The proof of Lemma 7.32 follows a very similar pattern as the proof that EPP has a

language that requires circuits of size 2Θ(n), which was proved in Section 7.2.

Corollary 7.33. EXP is not in poly-weakly-uniform SIZE(2n
o(1)

).
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Proof. Let L be an arbitrary language in poly-weakly-uniform SIZE(2n
o(1)

). For any input

length n, given advice of length poly(log 2n
o(1)

) ≤ no(1), we can construct a circuit for L of

size 2n
o(1)

in time at most 2n
o(1)

, and evaluate it on any given input of size n in time at most

2n
o(1)

. Thus, L ∈ DTIME(2n
o(1)

)/no(1). Using Lemma 7.32, construct Ldiag ∈ EXP which is

not in DTIME(2n)/n. By the above, this Ldiag is not in poly-weakly-uniform SIZE(2n
o(1)

).

Recall that a Boolean circuit is called a formula if the underlying DAG is a tree (i.e.,

the fan-out of each gate is at most 1). We denote by FSIZE(s(n)) the class of families of

Boolean formulas of size s(n). We use a modified definition of the the direct-connection

language for bounded fan-in formulas with AND, OR, and NOT gates: we assume that, for

any given gate in the formula, we can determine in polynomial time who its parent gate is,

and who its left and right input gates are. Lynch [Lyn77] gave a log-space algorithm for

the Boolean formula evaluation problem, which can be adapted to work also in the case of

input formulas given by the direct connection language (instead of the usual infix notation).

Lemma 7.34 (implicit in [Lyn77]). Let {Fn} be a uniform family of Boolean formulas of size

s(n). There is a poly(log s(n))-space algorithm that, on input x of length n, computes Fn(x).

sketch. The input formula can be viewed as a tree, where each node has at most two

children, and the evaluation algorithm will traverse the tree following specific rules. We

assume that the formula is well-formed, which can be verified in poly(log s(n))-space. The

traversal starts from the left-most leaf, which can be identified in space poly(log s(n)). Then,

we traverse the tree such that, for each node A, (i) when we arrive at A from its left child,

we either go to its parent (if the value of the left child fixes the value of A), or go to its

right child and continue traversing the tree; (ii) when we arrive at A from its right child, we

go directly to A’s parent (the value of A is now determined by the value of the right child,

as we know the left child has already been visited). The final node in this traversal is the

root, which has no parent. The traversal is in poly(log s(n))-space since we only need to

remember the current node of the tree (and the direct-connection language is decided in

time, and hence also in space, at most poly(log s(n))) .

We have the following.

Theorem 7.35. PSPACE is not in poly-weakly-uniform FSIZE(2n
o(1)

).
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Proof. Let L be an arbitrary language decided by a family {Fn} of poly-weakly-uniform

Boolean formulas of size 2n
o(1)

; its direct connection language is decided in deterministic

time no(1) with advice of size no(1). Using Lemma 7.34 (generalized in the straightforward

way to handle weakly-uniform formulas), we get that L can be decided in DSPACE(no(1))/no(1).

Appealing to Lemma 7.32 completes the proof.

7.6 Conclusion

We have shown how to use indirect diagonalization to prove lower bounds against weakly-

uniform circuit classes. In particular, we have proved that PERMANENT cannot be computed

by polynomial-size TC0 circuits that are only slightly uniform (whose direct-connection lan-

guage can be efficiently computed using sub-linear amount of advice). We have also ex-

tended to the weakly-uniform setting other circuit lower bounds that were previously known

for the uniform case.

One obvious open problem is to improve the TC0 circuit lower bound for PERMANENT

to be exponential, which is not known even for the uniform case. Another problem is to get

super-polynomial uniform TC0 lower bounds for a language from a complexity class below

#P (e.g., PH). Strongly exponential lower bounds even against uniform AC0 would be very

interesting. One natural problem is to prove a better lower bound against uniform AC0 (say

for PERMANENT) than the known non-uniform AC0 lower bound for PARITY.

Another natural question is if our techniques allow the no(1) amount of non-uniformity in

our results to be pushed any higher. It seems progress in this direction will need new ideas

and/or a new framework. The framework used in this and previous work all encounter a

roughly inverse relationship between the size of circuits in the lower bound and the amount

of non-uniformity that can be handled. In Theorem 7.27 hardness holds if the inequality

stated in the theorem holds. The inequality requires that the amount of advice be an inverse

of s(d(n)). This arises in the proof due to the nature in which the assumed easiness of

PERMANENT is used repeatedly in Lemma 7.15, and a similar issue arises in earlier work

in this area [All99, KP09, JS11]. Furthermore, the proofs of our main results relativize,

but it is known that proving results with larger non-uniformity, say ≥ n bits, requires non-

relativizing techniques. Thus to make progress we ought to look at utilizing techniques such

as the interactive proofs for the PERMANENT, random self-reducibility, and combinatorial
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properties of threshold circuits.



Chapter 8

Conclusions and Future Work

In this thesis we explore connections between meta-algorithms (algorithms analyzing com-

puting objects such as circuits) and circuit lower bounds, deriving several non-trivial satisfi-

ability algorithms and average-case lower bounds for small boolean formulas and circuits.

Furthermore, we introduce the notion of compressibility of truth tables, show that non-

trivial compression algorithms imply circuit lower bounds, and also derive compression

algorithms for several restricted circuit classes.

It was derived in [KRT13] the best known average-case lower bounds for de Morgan

formulas of size O(n2.99) and formulas over the full basis of size O(n1.99), almost match-

ing with the worst-case lower bounds. Combining with our techniques in Chapter 3 and 4,

the results in [KRT13] give non-trivial compression algorithms and randomized #SAT algo-

rithms for formulas of sizes for which the lower bounds hold. The best known deterministic

#SAT algorithms for de Morgan formulas are for size O(n2.63) as shown in Chapter 5. An

immediate open question is to get a deterministic #SAT algorithms for de Morgan formu-

las of size O(n2.99). More generally, we will need new techniques to get lower bounds or

non-trivial algorithms for de Morgan formulas of size Ω(n3).

In Chapter 6, we get average-case lower bounds and non-trivial #SAT and compression

algorithms for small-sized boolean circuits (almost 3n-size over the de Morgan basis and

almost 2.5n-size over the full basis). There is still a gap to match with the best known worst-

case lower bounds (size 5n for the de Morgan basis and 3n for the full basis). Another open

question is to get pseudo-random generators for circuits of such small size. A long-term

goal along this direction is to derive superlinear-size circuit lower bounds.
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[SZ96] P. Savický and S. Zák. A large lower bound for 1-branching programs. Elec-
tronic Colloquium on Computational Complexity, TR96-036, 1996. 63

[Tod91] Seinosuke Toda. Pp is as hard as the polynomial-time hierarchy. SIAM J.
Comput., 20(5):865–877, 1991. 106

[Tor91] J. Torán. Complexity classes defined by counting quantifiers. Journal of the
Association for Computing Machinery, 38:752–773, 1991. 118

[TW11] M. Tulsiani and J. Wolf. Quadratic Goldreich-Levin theorems. In Proceedings
of the Fifty-Second Annual IEEE Symposium on Foundations of Computer Sci-
ence, pages 619–628, 2011. 70

[TX13] L. Trevisan and T. Xue. A derandomized switching lemma and an improved
derandomization of AC0. In Proceedings of the Twenty-Eighth Annual IEEE
Conference on Computational Complexity, pages 242–247, 2013. 74

[Val79] L. Valiant. The complexity of computing the permanent. Theoretical Computer
Science, 8:189–201, 1979. 107, 120, 126, 128, 135

[Val84] L.G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, 1984. 51

[Wag86] K.W. Wagner. The complexity of combinatorial problems with succinct input
representation. Acta Inf., pages 325–356, 1986. 118

[Wil10] R. Williams. Improving exhaustive search implies superpolynomial lower
bounds. In Proceedings of the Forty-Second Annual ACM Symposium on The-
ory of Computing, 2010. 16, 18, 50, 52, 74

[Wil11] R. Williams. Non-uniform ACC circuit lower bounds. In Proceedings of the
Twenty-Sixth Annual IEEE Conference on Computational Complexity, pages
115–125, 2011. 14, 16, 18, 22, 53, 67, 74, 106

[Yab59] S.V. Yablonski. On the impossibility of eliminating perebor in solving some
problems of circuit theory. Doklady Akademii Nauk SSSR, 124(1):44–47, 1959.
English translation in Soviet Mathematics Doklady. 54

[Yao82] A.C. Yao. Theory and applications of trapdoor functions. In Proceedings of the
Twenty-Third Annual IEEE Symposium on Foundations of Computer Science,
pages 80–91, 1982. 50

[Yao85] A.C. Yao. Separating the polynomial-time hierarchy by oracles. In Proceedings
of the Twenty-Sixth Annual IEEE Symposium on Foundations of Computer Sci-
ence, pages 1–10, 1985. 51, 92, 106

[Yeh11] A. Yehudayoff. Affine extractors over prime fields. Combinatorica, 31(2):245–
256, 2011. 103



BIBLIOGRAPHY 150

[Zák83] S. Zák. A Turing machine time hierarchy. Theoretical Computer Science,
26:327–333, 1983. 10, 121
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