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Abstract

In this thesis we present a new method to detect pedestrian in video sequences. Unlike

most of the common detection methods which only rely on the appearance of an object

for detection, our proposed method uses the motion information of the object as well as

its appearance to improve the detection quality. The idea is to capture the motion of each

body part and use these motion patterns and add them to an appearance based detector to

improve the detection results. We try to model the distinct motion patterns of pedestrians

using a set of latent variables. The proposed method is tested on two separate datasets

and the quantitative results are outperforming two of the commonly used pedestrian detec-

tors in the literature and showing the capacity of motion patterns to improve the detections.

Keywords: Pedestrian detection, Motion patterns, Object detection, Computer vision
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Chapter 1

Introduction

1.1 Introduction

As the computation power got cheaper and cheaper in the last decades and capturing images

and videos became a simple push of buttons, computer vision became very important and

everyday researchers try to introduce methods to automatically perceive the world through

cameras. Computer vision widely discusses object recognition, digital photography, auto-

matic surveillance, navigation, content based media retrieval and in general any application

whose goal is to replace or improve human visual and recognition system with a (semi-)

automatic system.

One of the first steps in many machine vision applications is to detect and track an object

in the input video stream or static image, in this thesis we introduced a new method for

detecting pedestrians in videos. Detection of humans using video stream data is usually very

challenging due to various poses, different clothing and partial occlusion of the subjects. To

accomplish this task many methods and features are introduced in the machine vision and

machine learning community. Unfortunately, most of the current methods in the literature

use information from static images and ignore the information about the motion of the

subject which carries a lot of information about the moving object, we tried to capture and

use this information to improve our detection results.

1
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1.1.1 Human detection

Computer-vision based analysis of videos is a broad active area of research. To solve this

problem many approaches are introduced in the literature, these solutions stretch from

detecting very low level features (color, motion, texture, etc) and combining them to do the

classification to high level approaches where they try to detect high level features (actions,

concepts, etc) and use them to do the classification. It seems that the human mind does

something in the middle where it tries to detect objects and then combines the object

detection with other information such as location, motion, etc to do the classification, Serre

et al. [22]. One of the most important objects of interest is humans, since we have a human

in most of the activities and we are interested in a reliable human detector. The solution to

this problem can be used in automatic surveillance, computer game industry and content

based video retrieval. Surveillance is usually needed in secured areas such as airports to

decrease the emergency service arrival time. In video retrieval we usually interested to

retrieve videos where people did action of interest and to do that we first have to detect

humans in the videos.

In this thesis we focused on detecting pedestrians in videos, especially surveillance videos

where we usually have videos viewing pedestrians from steep downward angle where pedes-

trians can be covered by each other, vehicles, tress and all other structures in an urban

environment, these occlusions plus different clothing styles and different items which a pedes-

trian carries in an urban environment makes human detection in surveillance videos very

difficult. Another difficulty in detecting pedestrians in surveillance cameras is that usually

the camera is far away from the subject so the size of the pedestrian might become very

small(e.g. 20-30 pixels in height) which results in poor performance for most of the common

human detectors.

An important observation is that although the shape of the humans is very informative

and can help to detect pedestrians, its usefulness is drastically reduced when the subject is

occluded or when it is far away from the camera. Another cue which seems to be very helpful

in detecting humans is the motion patterns of the humans, these patterns are very distinctive

and they are usually visible and distinct even if the subject is partially occluded. In this

thesis we are introducing a new method for human detection using motion patterns. Since

these motion patterns are hard to detect and formulate we treat them as latent variables in

our model and use the latent Support Vector Machine (SVM) [15] to do the detection. The
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results of this method shows improvements in the detection of pedestrians over the baselines

especially when the subjects are partially occluded.

The approach we took in this thesis is to divide the bounding box of the pedestrian into

different parts which would roughly cover different parts of body (hands, feet and head).

Then we track each part in subsequent frames which will capture the motion patterns of

different parts of the body. We do the joint tracking which means that the path of different

parts are related to each other for instance the head can’t go leftward while the body is

going rightward.

The main contribution of this thesis is to propose a model to capture motion patterns

and use these motion patterns to improve human detection. To model the motion patterns

we track different parts of body and then use the obtained tracklet and the relation between

these tracklets as an indicator of the motion patterns.



Chapter 2

Literature Review

2.1 Introduction

In this chapter we will review some of the most successful methods to detect humans in

static images and then continue to methods which rely on motion information as well as the

information from static images. Finally we will review some methods to handle occlusion in

single frame and video sequences. The literature for human detection is vast and different

features for human detection were introduced. In this survey we mainly focus on the methods

which are widely used in the computer vision community. For a more extensive review of

the human detection methods the reader can look at Dollár et al. [13].

2.2 Human Detection Based on Appearance

One of the most popular and influential methods to detect humans is introduced in Dalal

and Triggs [8]. This paper introduced a new and powerful feature, Histogram of Oriented

Gradient (HOG), for human detection. The intuition behind this method is that local

object appearance and shape can often be characterized rather well by the distribution of

local intensity gradients or edge directions, even without precise knowledge of the responding

gradients or edge positions. To do so they divide the window of interest into cells and for

each cell they generate a histogram of gradient directions or edge orientations. Then they

concatenate the histograms of different cells and generate a complete feature vector and

finally they feed this feature vector to a SVM classifier to do the detection. The authors

investigated the effect of different parameters on the performance of the whole system. The

4
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complete proposed system can be seen in Fig. 2.1.

Figure 2.1: HOG feature extraction and pedestrian detection system. Figure taken from
[8].

The first block in the detection chain is the Gamma Color Normalization block where the

authors chose square root gamma compression for normalizing the color of the window. In

order to have a good feature the authors divided each input image to some overlapping blocks

(16 × 16 pixels blocks) and then they divided each block to some cells (8 × 8 pixels cells),

the normalization block is applied to the blocks. However because of other normalization

blocks in the chain the effect of this block on the whole performance is negligible.

The performance of the system is very sensitive to the calculation of the gradients, it

turned out that the simplest method to calculate the gradients is the most effective one.

The gradient calculation block is realized using simple 1-D point derivatives without any

pre-smoothing on the input image. For color images the gradients are calculated on each

color channel separately and then for each pixel the channel with largest norm is picked as

the pixel’s gradient vector.

The next step is to define the feature vector using the calculated gradients. In each

cell, each pixel calculates a weighted vote for an edge orientation histogram channel based

on the orientation of the gradient element centred on it, then these votes are accumulated

into orientation bins in the cell area to generate the feature vector. The bins are evenly

distributed between 0◦ and 180◦ and the weight of the vote is defined as the magnitude of

the gradient at the point.

The last step for generating feature is to define the blocks and how to generate the cells

in each block. The authors checked the two common schemes to define blocks and divide

them (rectangle and circular blocks) and found out that the rectangular blocks with spatial

overlap would result in good performance. Each block’s feature vector is then normalized

using the L2norm, v → v/
√
||v||22 + ε2. After this step the feature vector is ready for the

classifier to do the classification.

The classifier used in this paper is the SVM classifier. They investigated the effect
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of different kernels in the performance of the whole system, although the Gaussian kernel

generates the best results but the computation efficiency of the linear kernel makes this

kernel more suitable for the task.

HOG detection system achieves near perfect detection on the MIT pedestrian database [21]

so the authors introduced a new and more challenging dataset to test their method, ”IN-

RIA” [8], and they outperform the other methods available in that time. The results can

be seen in Fig. 2.2.

We used the HOG pedestrian detector as one of our baselines and also integrated it

with our system to help our system detect non-moving pedestrians. An extension of simple

Figure 2.2: The performance of HOG versus other detectors. Figure taken from [8].

HOG detection system is introduced in Felzenszwalb et al. [15] where the authors used HOG

features and introduced a set of latent variables to do the detection. These latent variables

represent the formation of different parts of the body and with the scoring scheme used

in this paper, the authors achieved better detection performance over the original HOG

method.

The proposed method uses a pyramid scheme to do the detection similar to the Dalal et

al. [8]. They modelled human body with a star like structure in which a node for each body

part and to model the interaction between different parts they added an edge between two

nodes, the star term means there is no loop in the final structure. In their proposed star

model, a root detection is done in coarse level which covers the object and then in the finer

levels they used some local filters which covers smaller parts of the object. These smaller
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parts can be interpreted as different body parts. If we could detect and locate the body

parts accurately then we could detects humans more precisely. Unfortunately this is not the

case here so the authors treated the part detections as latent variables which means that

these detection may be inaccurate but still useful for human detection. An example of the

detection of these parts and its meaning is given in Fig. 2.3. As it can be seen there is no

need to exactly localize the body parts and it still has a good detection.

Figure 2.3: An example of human detector and the body part detection. Figure taken from
[15].

To solve the problem properly the authors proposed a latent SVM framework which can

solve deformable part based model detection efficiently. There is a vast literature on human

detection using different sets of features and representations of body parts but the the above

mentioned methods are widely accepted and used in many other systems and proved their

effectiveness in real world problems.

2.3 Detecting Pedestrians Using Appearance and Motion In-

formation

The simplest idea to use motion is to extract the background and then calculate the dif-

ference between background and the current frame to extract the objects which are added
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Figure 2.4: Body part detection. Figure taken from [15].

to the scene and highlight them as the region of interest. Haritaoglu et.al [17] proposed a

method in which they extract background in the frames where there is no human in the

scene and then use the information about the background, min value and max value of each

pixel in the background, to determine if a pixel belongs to foreground or not. Then they

clean the foreground using morphological operations and do the detection and the action

recognition on the extracted blob. In their work they assume that they have scenes with

only background in it but if the camera is fixed the background can be extracted by cal-

culating mean or median of a pixel over a period of time. Although this method used the
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motion information to highlight the object of interest but it doesn’t differ between the hu-

man motion or other object’s motion. In the next few parts we will explain methods which

are trying to capture the difference between the motion of a human and other objects in

the scene.

One of the first successful usage of motion patterns to do the human detection is proposed

in Viola et al. [24], where the authors used the Haar wavelet to extract appearance feature

and used a simple motion descriptor to extract the motion pattern of the subject. They

also used a cascade structure to improve the detection results.

The most important piece of this work is the motion descriptor, instead of using optical

flow, which is very common to describe motion, they used a simple descriptor using shifted

frames and Sum of the Absolute Difference to estimate the displacement between frames.

The formulation of their motion descriptor is as follow,

∆ = abs(It − It+1)

U = abs(It − It+1 ↑)
L = abs(It − It+1 ←)

R = abs(It − It+1 →)

D = abs(It − It+1 ↓)

(2.1)

Where It and It+1 are two frames of the video and ↑, ↓,←,→ are the shift operators which

shift their inputs by one pixel in their direction. Using these operators the authors in-

troduced 3 types of filters which each one captures a specific kind of motion. The most

important filter is a set of Haar wavelet filters, the very same filters used for extracting

appearance features. An example of these filters ans motion displacement is shown in Fig.

2.5.

Although the filtering is done using integral image but to speed up the process more

the authors proposed to use a cascade structure for their detector, they trained the cas-

cade structure and the detector using AdaBoost learning structure. AdaBoost scheme is

very useful when using wavelets as the input features because AdaBoost can select most

discriminative features and ignore the rest.

Inspired by Viola et al. [24], the authors of [8], Dalal and Triggs, proposed an extension

to their work where they added motion information to their detector to improve the results,

Histogram of Optical Flow (HOF). This new information captures the relative motion of

different body parts and add it to the classifier to improve the results of the detection. The
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Figure 2.5: Haar wavelet filters and displacement images. Figure taken from [24].

main advantage of this work over Viola et.al [24] is that the motion representation here

is more robust to camera motion and background motions. An overview of the proposed

method can be seen in Fig. 2.6. The motion descriptor used in this paper is based on flow

Figure 2.6: Feature extraction and detection process. Figure taken from [9].

differential which can remove camera rotation and slow movement of the camera, because

these movements results in smooth variation in optical flow. The independent motions are

the largest at motion boundaries so this feature can simply highlight the outline of the

subject but the internal dynamics of the subject is very important and differential optical

flow can capture the relative motions of the limbs which are useful for the classification

which would be a very informative addition to the system.

In order to use optical flow efficiently the authors proposed many different filters to

compute motion patterns, we will explain the filters in the following part.

IMHdiff is the first filter, it takes derivatives and uses the (Ixx , I
y
x) and (Ixy , I

y
y ) to create
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Figure 2.7: Illustration of the HOF descriptor. (a,b) Reference images at time t and t+1.
(c,d) Computed optical flow, and flow magnitude showing motion boundaries. (e,f) Gradient
magnitude of flow field Ix, Iy for image pair (a,b). (g,h) Average HOF descriptor over all
training images for flow fieldIx, Iy. Figure taken from [9].

two relative-flow-direction based oriented histograms, where Ix and Iy are the magnitude of

the optical flow in x and y directions and (Ixx , I
x
y ) (Iyx , I

y
y ) are the gradient of those optical

flows in the x and y directions,an example of (Ixx , I
y
x) and (Ixy , I

y
y ) can be seen in Fig. 2.7.

IMHcd uses 3× 3 blocks of cells, in each of the 8 outer cells computing flow differences

for each pixel relative to the corresponding pixel in the central cell and histogramming to

give an orientation histogram.

IMHmd is similar to IMHcd the only difference is that instead of doing the calculation

on each pixel of the cell the calculation are done on the average of the cells and results in 9

histograms.

IMHwd is similar to IMHcd except that instead of using non-central differences, Haar

wavelet operators are used as the filter.

In addition to the mentioned filters the authors utilized the motion descriptor used in

Viola et al. [24] and named it ST DIFF.

One of the first steps in this method is to compute the optical flow. It turns out the

calculation method can significantly affect the performance of the whole system. Different

experiments showed that any smoothing before calculation of the optical flow can reduce

the performance of the system. They proposed to use the simplest method to calculate the

optical flow without any smoothing and in a coarse to fine manner. They calculate the

initial flow in the coarse level of pyramid and refine the results in the finer levels.

The methods proposed in Viola et al. and Dalal et al. [24, 9] are the basis of most of the
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other detection systems which use motion features as their input feature. We will review

another paper on using motion features to do the detection in the next section and then

explore the problem of occlusion.

2.4 People Detection using Tracking

Another interesting trend in human detection is to track an object in different frames and

then use the highest score of a shape based detector in the frames to decide whether an

object is a human or not.

Garcia-Martin et al. [16] introduced a two level detection where an initial detection is

done using appearance and motion model then they do a tracking on the candidate and

then update their detection on the estimated position of the bounding box in the next few

frames to get a more reliable detection, an overview of their system can be seen on Fig. 2.8.

Figure 2.8: System overview. Figure taken from [16].

For their appearance model the authors used Implicit Shape Model (ISM) by Leibe and

Schiele [18], this model consists of a codebook of local appearances that are the prototype

of the objects. Each prototype has its own probability distribution which is used for classi-

fication, to generate the codebook a clustering is applied on the input space and divide it

into K classes.

To generate a motion model the authors used the idea of ISM and applied it to motion
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information. To build the motion model a variation of SIFT point detector and descriptor

is used, this variation can capture the interest points based on their appearances and local

motion. This descriptor is called motion SIFT or MoSIFT and is generated using SIFT,

the generation of this feature has 3 steps. First SIFT is applied to the input frame and the

interest points are extracted then optical flow is calculated around these points and finally

the MoSIFT is generated, an example of this feature is shown in Fig. 2.9.

Figure 2.9: SIFT (left) and MoSIFT (right) interest points. Yellow circles indicate interest
points and their scales, red arrows indicate the dominant motion orientation. Figure taken
from [16].

After calculating MoSIFT they build the codebook which tries to categorize the motion

patterns of the subjects. To do testing on an input image, first SIFT and MoSIFT points

are extracted and then the motion patterns are extracted, then the distance between these

patterns and different clusters are calculated. Each cluster casts votes for hypothetical

positions of the person center according to the learned spatial distribution PC . These

centers are considered as hypothesises, and the overlapping hypothesises are simplified to

the highest score one. Results of this method can be seen in Fig. 2.10.

In Felzenszwalb et al. [15], the authors tried to improve the HOG by detecting different

body parts. Similarly the natural extension over the idea presented in Garcia-Martin et

al. [16] is to detect and track body parts and improve the detection results.

Andriluka et al. [2] introduced a method in which they try to detect limbs and estimate

the human pose to detect the humans and then track each limb and improve their detection

using this tracking information. Their method is also capable of handling occlusion since
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Figure 2.10: Detection process examples. Voting space (black lines), center hypotheses
(green points), hypotheses (red rectangles) and final hypothesis (green rectangles). Figure
taken from [16].

they model the humans as a set of limbs and the problem of having some occluded limbs

can be handled by detecting other visible limbs.

They introduced a pictorial model to model the body. In order to cope with the variations

of the body shape during walking the authors introduced auxiliary state variables that

represent the articulation state which stands for different phases in the walking cycle of a

person. Knowing the walking phase the pictorial model can be modelled as a star model so

the inference can be done efficiently using dynamic programming.

The proposed method detects humans from the information of the single frame but to

add the motion information to improve the performance they used a chain-like structure to

capture the dependencies between consequent poses. This chain is modelled using hierar-

chical Gaussian Process Latent Variable Model (hGPLVM) where the latent variables are

the pose dynamics an example of their method can be seen in Fig. 2.11.

Another important line of research in pedestrian detection is to handle occlusions. Occlu-

sions frequently happen in real world scenarios, these occlusions make the task of detection

very hard because some parts of the body would be missing so the total score of the whole

body detectors may reduce significantly and as a result the detector fails. There are many

available methods to handle occlusion. Here we will describe some of these papers.
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Figure 2.11: An example of the detection. Figure taken from [2].

2.5 Detection of Multiple and Partially Occluded Humans

One of the methods to handle occlusion is introduced by Wu et al. [26]. In this work

the authors tried to detect three parts of the body: head-shoulder, torso and legs, and

combine these detections to detect humans. As the feature they introduced an edgelet

feature which is calculated on the edge of the silhouette of the subject. Calculating the

feature on silhouettes reduces the effect of different clothing on detection and also their

proposed method is capable of handling some variation in view point.

The system has some assumptions about the condition for the detection, first the camera

is looking down to ground and the scale of people closer to the camera is bigger and the

head of the pedestrians are always visible. Using these assumptions the system builds an

occupancy map which captures the relative positions of possible candidates based on the

responses from whole body detector and head detector.

Having the occupancy map, the system tries to estimate the possible occlusions in the

scene and based on those possible occlusions and responses of different part detectors the

system refines its detection and update the occupancy map, Fig. 2.12 shows an example of

these steps.

The system models the problem using Maximum a Posteriori Estimation (MAP), fol-

lowing the notation in [26] the system models the observation as follows:

p(I|S) = p(Z|S̃) = p(ZFB|PFB)p(ZHS |PHS)p(ZT |P T )p(ZL|PL) (2.2)

where S̃ =

{{
PFBi

}mFB

i=1
,
{
PHSi

}mHS

i=1
,
{
P Ti

}mT

i=1
,
{
PLi

}mL

i=1

}
, is the reduced version of S by

removing all occluded body parts and superscripts FB, HS, T and L stand for full-body,

head-shoulder, torso and legs respectively and mFB,mHS ,mT ,mL are the number of visible

parts, P = FB,HS, T, L. In order to decide if a part is occluded or not the authors
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Figure 2.12: Search for the best interpretation of the image: a) initial state; b) occupancy
map of the initial state; c) an intermediate state; and d) final state. Figure taken from [26].

calculated the ratio of the visible part to the total area of the part and if it is above a

threshold then it is considered to be visible.

Most of the presented papers worked in less crowded scenes and when the number of

people in the image increases they fail to detect pedestrians accurately. There are two main

problems in crowded scenes. First the computation cost usually increases exponentially as

the number of the subjects in the scene increases. The other problem with crowded scenes

is that with routine sliding window scheme there would be many detections around a single

pedestrian and these many detections usually are removed using a non-maxima suppression

(NMS) to generate a single detection. But in a crowded scene a NMS can remove many

true detections and degrade the performance of the system. The proposed method in Yan

et al. [27] can handle multiple detections without using NMS. They used Latent Rank SVM

which has a reasonable computation cost.

The model tries to combine appearance cues and spatial information. They propose a

probabilistic model to explore the relationship between two clues and solve the model using

MAP. They used Felzenszwalb et al. [15] part based model as their appearance model and

the spatial model is used to describe the interactions of the subjects the interaction model
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uses the scale of the candidates and their relative positions to capture the interaction of the

candidates.

In order to handle the occlusion, the authors proposed a method to find out what kind

of occlusion happened. Based on the type of occlusion they re-weight the Felzenszwalb

et al. [15] part based model weights and try to put more weight on visible parts while

suppressing the effect of the occluded parts on the total score of the detector. The type of

the occlusion is not available and it is not the output of the final system so it will be treated

as a latent variable.

Unfortunately the type of occlusion is usually not provided in the training sets so an

EM-like approach is employed to estimate the occlusion type as well as the true label of

input window. In order to have a good initialization a clustering is applied to the data and

divide the input space to K clusters. Instead of solving the latent model using the common

latent SVM model they formulated the problem as a ranking problem where the true label

should get a higher score while the other getting lower score.

An important contribution of this paper is that they utilized the spatial information of

the image in the detection so their final system doesn’t need any NMS and can work in

crowded scene, an example of the detection in a crowded scene is provided in Fig. 2.13.

Figure 2.13: An example of detection in a crowded scene. Figure taken from [27].

While Yan et al. [27] tried to capture different types of occlusions using clustering, Shu et

al. [23] proposed another system where they limit the types of occlusion. Then by assuming

they know the type of the occlusion they tried to solve the detection problem in the presence

of occlusion.

Like many other works done on pedestrian detection, this paper introduced a discrim-

inative model for pedestrian detection and used a part based model to do the detection.

They considered 3 predefined types for the appearance of the visible parts, namely, head
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only, upper body parts and all body parts.

In order to decide which type of occlusion happened Yan et al. [27] choose a subset of

parts P = {p0...pn} which maximize the following score for a given bounding box at the

position of (x,y0),

score(x0, y0) = b+ argmaxSm

1

|Sm|
×
∑
i∈Sm

1

1 + exp(A(pi).s(pi) +B(pi))
(2.3)

where s(pi) is the score of the part i from the part detector and A,B are learned using

a sigmoid fitting approach. |Sm| is the set cardinality. This formulation is very similar

to other works done on occlusion handling but they tried to add some information from

tracking to handle the occlusion better.

The first important observation is that the occlusions are highly correlated in the adja-

cent frames of video, so it is reasonable to share the information about the occlusion state

of a subject between frames. The authors proposed an occlusion prediction method and

used it in their tracking algorithm. In their tracker they have a person classifier to detect

individuals using an specific detector for every person in scene which learns the appearance

of the subject in an online manner. Using the information about the occlusion in the frames

they update the appearance model only on visible parts. Also, they use their occlusion pre-

dictor to focus on more visible parts in the next frames to do the detection so they would

have a more reliable tracking. An example of their detection and tracking can be seen in

Fig. 2.14.

2.6 Oriented Energy Features

Events in a video sequence will generate diverse structures in the spatiotemporal domain.

For instance, a textured, stationary object produces a much different signature in image

space-time than if the same object were moving. One method of capturing the spatiotem-

poral characteristics of a video sequence is through the use of oriented energies Adelson et al.

[1]. These energies are derived using the filter responses of orientation selective bandpass

filters when they are convolved with the spatiotemporal volume produced by a video stream.

Responses of filters that are oriented parallel to the image plane are indicative of the spatial

pattern of observed surfaces and objects (e.g., spatial texture) whereas, orientations that

extend into the temporal dimension capture dynamic aspects (e.g., velocity and flicker).
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Figure 2.14: An example of detection and tracking in a crowded scene. Figure taken
from [23].

Cannons and Wildes [5] used these Spatiotemporal Oriented Energies (SOE) to track

objects. The idea behind used approach is that energies computed at orientations which

span the space-time domain can provide an extremely rich description of a target for visual

tracking. Multiscale processing is important in this tracker, as coarse scales capture gross

spatial pattern and overall target motion while finer scales capture detailed spatial pattern

and motion of individual parts (e.g., limbs). With regard to dynamic aspects, simple motion

is captured (orientation along a single spatiotemporal diagonal) as well as more complex

phenomena, e.g., multiple juxtaposed motions as limbs cross (multiple orientations in a

spatiotemporal region). By encompassing both spatial and temporal target characteristics in

an integrated fashion, tracking is supported in the presence of significant clutter. In addition

to robustness against occlusions this tracker can be made invariant to local image contrast

to support tracking in the presence of substantial illumination changes which makes this

method an excellent choice for a system which needs to work in uncontrolled environment.

To calculate the SOEs, filtering was performed using broadly tuned, steerable, separable
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filters based on the second derivative of a Gaussian, G2, and their corresponding Hilbert

transforms H2, with responses point-wise rectified (squared) and summed. Filtering was

executed across θ = (η, ξ), 3D orientations ((η, ξ) specifying polar angles) and σ scales

using a Gaussian pyramid formulation. This Gaussian pyramid approach allows for efficient

analysis of the space-time structure across multiple scales. Hence. a measure of local energy,

e, can be captured according to,

e(X; θ, σ) = [G2(θ, σ) ? I(X)]2 + [H2(θ, σ) ? I(X)]2 (2.4)

where X = (x, y, t) corresponds to spatiotemporal image coordinates, I is the image se-

quence, and ? denotes convolution. This initial measure of local,local with respect to θ and

sigma, energy is dependent on image contrast. To attain a purer measure of the relative

contribution of different orientation irrespective of local contrast, e(x; θ, σ) is normalized as

ê(x; θ, σ) =
e(x; θ, σ)∑

σ̃

∑
θ̃(x; θ̃, σ̃) + ε

(2.5)

where ε is a bias term to avoid instabilities when the energy content is small and the

summations in the denominator cover all scale and orientation combinations.

Fig 2.15 displays a subset of the energies that are computed for a single frame of a

MERL traffic sequence, Brand et al. [4]. Here, there is a white car moving to the left near

the center of the frame. Notice how the energy channel that is tuned for leftward motion

is very effective at distinguishing this car from the static background. Consideration of the

channel tuned for horizontal structure shows how it captures the overall orientation structure

of the white car. In contrast. while the channel tuned for vertical textures captures the

outline of the crosswalks, it shows little response to the car. as it is largely devoid of vertical

structure at the scales considered. Finally, note how the energies become more diffuse and

capture more gross structure at the coarser scale.

Given that the tracking problem being considered, the goal is to locate the target’s

position as precisely as possible. However, as seen in Fig 2.15, the energies computed at

coarser scales are diffuse due to the downsampling/upsampling that is employed in pyramid

processing. Coarse energies are important because they provide information regarding the

target’s gross shape and motion, but a method is required to improve their localization for

accurate tracking. To that end, a set of weights are applied to the normalized energies of

Eq. 2.6 according to

Ê(x; θ, σ) = ê(x; θ, σ)b(x; θ) (2.6)
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Figure 2.15: Frame 29 of the MERL traffic video sequence with select corresponding energy
channels. Finer and coarser scales are shown in rows two and three, resp. From left to
right, the energy channels roughly correspond to horizontal structure, vertical structure,
and leftward motion.

where b is pixel-wise weighting factor for a particular orientation channel, θ. The weighting

factors for a specific orientation are computed by integrating the energies across all scales

and applying a threshold, Tθ, according to

b(x; θ) =
∑
σ̃

ê(x; θ, σ̃) > Tθ (2.7)

When computing the weights, summing across scales allows the better localized fine scales

to sharpen the coarse scales, while the coarse scales help to smooth the responses of the fine

scales. Furthermore, by calculating weights separately for each orientation, being prejudiced

toward any particular type of oriented structure (e.g., static vs. dynamic) is avoided.

The proposed oriented energy feature set has two important advantages. First, normal-

ized energy, as defined by Eq. 2.6 and Eq. 2.7, captures local spatiotemporal structure at a

particular orientation and scale with a degree of robustness to scene illumination. By virtue
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of the bandpass filtering, Eq. 2.6, invariance will be had to changes that are manifest in

the image as additive offsets to image brightness, by virtue of the normalization, Eq. 2.7,

invariance will be had to changes that are manifest in the image as multiplicative offsets.

Second, the calculation of the defined normalized oriented energies requires nothing more

than 3D separable convolution and pointwise nonlinear operations, and is thereby amenable

to compact and efficient implementation, Derpanis et al. [10].

As defined, oriented energies provide local characterisation of image structure. There-

fore, the pointwise measurements can be aggregated over target support to provide region-

based descriptors (e.g., in conjunction with mean shift tracking [7]). Also, the information

about the image structure can be used to describe the shape of the objects in image and do

object detection.

Since the proposed tracker is a inspired by mean shift tracker [7], authors collapsed

the spatial information in energy measurements and represent the target as a histogram.

The target histogram is constructed using the energies of Eq. 2.8. Each histogram bin

corresponds to the weighted energy content of the target at a particular scale and orien-

tation. Hence, the entire histogram displays the weighted energy of the target across all

scales and orientations. The energy histograms are created in a different fashion than the

color histograms seen in many mean shift algorithms. Unlike most of mean shift tracking

algorithms, when computing energy-based histograms, each target pixel affects every bin in

the histogram. This histogram is calculated in the first frame of the video sequence by,

q̂u = C
n∑
i=1

k(||x∗i ||2)Ê(x∗i ;φu) (2.8)

where k is the profile of the tracking kernel, C is a normalization constant to ensure the

histogram sums to unity, x∗i = (x∗, y∗) is a single target pixel at some temporal instant, i

ranges so that x∗i covers the template support, and φu is the scale and orientation combi-

nation which corresponds to bin u of the histogram.

When tracking a target between frames, it may be necessary to evaluate several tar-

get candidates before a final, optimal target position is found for the current frame. The

histograms for the target candidates are evaluated using

p̂u(y) = Ch

nh∑
i=1

k

(
||y − x

∗
i

h
||2
)
Ê(x∗i ;φu) (2.9)

where y is the center of the target candidate’s tracking window. h is the bandwidth of the
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tracking kernel and i ranges so that x∗i covers the candidate support. The kernel bandwidth

allows for scale changes of the target throughout the video sequence.

A sample energy histogram for the target region shown in Fig. 2.15 (represented by the

white box) is shown in Fig. 2.16. The bin corresponding most closely to leftward motion

at finest scale (bin 5) has by far the most energy. The next two high energy counts are

found in bins 2 and 9 which are tuned to combinations of dynamic and static structure,

with an emphasis on leftward motion and spatial orientation similar to that of the target.

The overall horizontal structure of the car is captured by the energy in bins 1 and 4. In

contrast, bins 3 and 6, which roughly represent static, vertical structure, do not have strong

responses, given the nature of the car target. The histogram also shows that the oriented

energies for the highest frequency structures have the strongest response, as the target is

fairly small and dominated by relatively finer scale structure.

Figure 2.16: Oriented energy histogram for the target region in Fig. 2.15.



Chapter 3

Human detection using latent

tracking

In this chapter we are going to explain the model for human detection as well as datasets

and methods used to train and test the proposed pedestrian detection method.

In the first part we will explain the model and the formulation of our system and in

the following parts we will explain the datasets and the experiment setups and in the final

section we will see the results and do the discussion.

The main idea behind the proposed detection system is to use the motion patterns to

improve detection results and adding robustness to the detection system. We are modelling

the motion patterns by tracking different parts of the bounding box and using its track and

its relative displacements with respect to its neighbours. This model tries to capture the

common motion patterns of the pedestrians, for instance the motions of feet and the relative

motions of hands and feet. The idea of the total system can be seen in Fig. 3.1.

3.1 Model

For our model we start from a bounding box and calculate a global feature on the whole

bounding box (HOG feature and SOEs). Then we divide the bounding box of the first

frame into some sub-rectangles and then track each sub-rectangle in the next few frames

and then use these tracks and the relations between tracks to do the detection. We define

different types of the weights for each track and also we have different set of weights for

24
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Figure 3.1: Overview of the whole system.

the interactions between tracks. In this thesis we divide the initial bounding box into 6

sub rectangles and track each rectangle separately. These tracks are considered as latent

variables and then used to detect pedestrians. These tracklets are very meaningful and

they can help detecting pedestrians reliably, these tracklets will help detecting rigid moving

objects such as cars and motorbikes since they don’t have any rhythmic motion or any other

kind of patterned movements except for simple displacements while the human body parts

show some kind of rhythmic (patterned) motion.

Since the output of a tracker is a continuous variable and it can get any number in the

search region. We quantize the output of the tracker, round to the nearest multiple of 5,

to reduce the number of possible values for the latent variables. At the end of this step we

have a set of latent variables which show the track of each body part in the frames. We will

use this tracklets to do the detection.

We defined different types of relations between our latent variables our model has both

unary and pairwise terms, we have a unary term for each latent variable but for the pairwise

term it is way more complicated to generate a term for each possible pair so we restricted

the pairwise relations to the adjacent blocks, the pairwise relations can be seen in the Fig.

3.2.

Given an input bounding box, we use the latent SVM formulation to solve our problem.

Here is the formulation of our model:



CHAPTER 3. HUMAN DETECTION USING LATENT TRACKING 26

Figure 3.2: The pairwise relation between latent variables.

fw(x, h) = wTΨ(x, h) (3.1)

= wT0 φ0(y, x0) +
∑
j

wT1 φ1(hj) +
∑
j

wT2 φ2(hj , xj,b)

+
∑
j

∑
i

wT3 φ3(hi, hj) (3.2)

wT1 φ1(hj) =
∑
b∈H

w1,b1(hj == b) (3.3)

wT2 φ2(hj , xj) =
∑
b∈H

wT2,b1(hj == b)xj,b (3.4)

wT3 φ3(hi, hj) =
∑
b∈H

∑
c∈H

w3,b,c1(hi == b)1(hj == c) (3.5)

where fw(x, h) is the score of input bounding box, the higher this score is the more chance

that the input bounding box is a human. x is our feature vector and h is our quantized

displacement vector for each part, h ∈ {(0, 0), (0, 5), ..., (0, N∗5), (5, 0), (5, 5)..., (N∗5, N∗5)}.
Function 1(.) is the indicator function where it equals one when the inner term is true and

0 otherwise. The term wT0 φ0(y, x0) models our global feature which we used HOG and a

HOG like feature which is defined on SOEs, this term can give us some assurance that

our system in the worse case (where our new features are completely random and have no

correlation with detection) would perform like HOG and hopefully our method and features

will improve over HOG. We are using linear SVM for this model which is very fast and

commonly used for detection systems, as a result the φ0(y, x0) would be the HOG features

of the original image concatenated with the HOG features calculated from SOE channels.
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φ1(y, hj) models the unary term which is the relation between the our latent variables

(displacement of each part in each frame) and the detection results, in its simplest form

we can say that this model somehow checks if the speed of each body segment is similar to

the speed of a human or not, we have a constant frame rate so the displacements between

frames can be seen as the speed of that part. For example the speed or displacement of

the head part should not be very high because there is an upper limit for the speed of a

pedestrian which is different from the speed of other moving objects in the scene.

φ2(hj , xj) models the compatibility between the displacement of size hj and the its

corresponding image feature xj . xj is the feature vector extracted from the images we are

doing the tracking on them. This term ensures that the model does track different parts. xj

is generated similar to the method introduced in [5]. It contains information about shape

and speed of the tracked part.

Finally, φ3(y, hi, hj) models the relationship between our latent variables, based on our

model, Fig. 3.2, it basically checks two important relations, the first one is the relation

between the displacements(speeds) of one body part between frames which we expect to be

similar and not very different, seconds it model the relative displacements of two adjacent

body parts. This term can capture motion patterns which are useful for human detection, for

instance it captures the relative displacement of hands and feet which is a very discriminative

feature for detecting walking pedestrians.

In order to have a reasonable latent variable we define the latents as the displacement of

a patch from its position in the previous frame. In theory these displacements can be any

value and if we don’t limit these values the inference and finding the maximum would be

intractable so we will limit our displacement values to a limited set of numbers.

In the inference part of algorithm we have to find proper values for latent variables

based on the possible output value and the values for other latent variables. Solving the

exact inference for this problem is very time consuming because we have to do a tracking

with all the possible weights and this is a computationally expensive task, so we use a

beam search based approach to solve the inference and maximize the goal function. The

scheme of this beam search is shown in Fig. 3.3. Beam search is a search method from greedy

optimization family so the computation time expands linearly by adding more frames. Since

we are limiting the search space the beam search solution might not be the best solution but

the experience results showed that with a proper choice for limiting the search space this

inaccuracy wouldn’t be significant and it wouldn’t affect the performance of the detection
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system. In the used beam search we save the top 25 candidates and each frame we do search

on each top 25 candidates and after the search we cut the solutions to the top 25 based on

their score.

Figure 3.3: Beam search scheme.

3.2 Learning

For finding the weights of the system we used Non convex Regularized Bundle Methods

(NRBM) package of Do and Artières [11] to optimize the goal function this package is

guaranteed to converge to a local optima, we used a linear kernel for our goal function so

this package would work efficiently for finding the weights.

We use y∗ = argmaxyE(x, y;w) as the predicted label of x where y can be ±1. Given

(x1, y1), (x2, y2), ..., (xn, yn), the set of training data, we aim to find parameters that the

sign of score xi and yi represent the class of the Xi. Similar to Felzenszwalb et al. [15] we

formulate the training criteria in the Max-Margin framework. We set w by:

minw,ξi
λ

2
||w||2 +

N∑
i=1

ξi (3.6)

s.t. yi(E(xi;w) + b) ≥ 1− ξi, ξi ≥ max(0, 1− yi(E(xi;w) + b))

where λ is a tradeoff constant and is determined using cross validation in different experi-

ments. These constraints would force the score of positive samples to be positive and greater
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than one while forcing the score for negative samples to be negative and less than -1.



Chapter 4

Experiments and results

In this chapter we will explain the used datasets and their characteristics as well as the

experiments we ran on them and the parameters used for the experiments. Since most of

the current datasets for evaluating the performance of human detection systems are consist

of still images and the main idea of this thesis is to use motion information for improving

the detection results we had to adapt datasets from other domains of machine vision to test

our method. We used two different publicly available datasets to evaluate our method and

we ran two sets of different experiments on these datasets. The first dataset is the ETHZ

crossing dataset. This dataset is used in Leibe et al. [19] for the coupled detection and

tracking. The second dataset is the VIRAT video dataset, this dataset is introduced in Oh

et al. [20], the main purpose of this dataset is to provide a benchmark for event recognition

in surveillance video. We used a subset of this dataset to test our method.

4.1 ETHZ Central Pedestrian Crossing

This dataset is introduced for the tracking task and since most of the tracking methods

heavily relies on the detection results it seems to be a good benchmark for our pedestrian

detection method. This dataset consists of 3 sequences which are recorded using a public

webcam at 15fps, 320 × 240 pixels resolution and they contain severe MPEG compression

artifacts. In the scenes of this dataset we have different moving objects, cars, motorbikes and

trains as well as the objects which are carried by the pedestrians such as suitcases, strollers

and shopping carts. This variety of objects and different types of occlusions available in this

dataset makes it a good choice for testing our method.

30
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Each frame of this dataset contains at least 2 pedestrians, this dataset contains 1400

frames and in total it does have 5000 pedestrians. We spotted a few issues when we used this

dataset. First of all there are some inconsistencies in the labelling where some pedestrians

are not labelled in some frames while they are labelled in other frames. The other issue with

this dataset is that when the pedestrians go under trees they are not labelled. However,

since one of the advantages of our method is to detect partially occluded pedestrians we

relabelled the dataset and labelled those pedestrians.

4.2 Experiments

We ran 3 sets of experiments on this dataset with 3 different setups. We compared the results

of our method with the results of our baselines, HOG and HOF. In all of the experiments

we did we used 300 frames of the first sequence to do the training. This dataset provides the

bounding box for the pedestrians which we used as positive examples but for the negative

example we have to generate them ourselves. To do so we used a window of a random size,

the mean of this random size is the mean size of bounding boxes in the dataset and we set

a high and low value for each bounding box and uniformly generated bounding boxes and

then randomly put the bounding box on the image, if the bounding box has less than 50%

overlap with positive examples of the frame we accept it as a valid negative example. For

the first round of the training we generated 20 negative examples per frame which means

we would have a total of 6000 of negatives while having 650 positive samples.

We trained our latent model using the positive and negative examples we generated

using the above mentioned algorithm. Then we used the obtained classifier and used it to

detect positive examples in the training dataset using a sliding window scheme where the

size of the window is the average size of the bounding boxes of the dataset, then we used

the top ten false positives in each frame and added them to the training set to do a round

of bootstrapping. We trained our classifier again to achieve the final classifier. We do the

same procedure for HOG and HOF, we use the same initial training set for all the methods

but for the bootstrapping step we extract the hard negatives for each method separately.

We ran 3 sets of experiments on this dataset. In the first test we used the dataset in its

original format without any changes to the dataset, as we can see in Fig. 4.1 our methods

performs slightly better than the other method especially at the false positive rate of 10−4,

which in our resolution means 1 false detection per image, our miss rate is lower.
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Figure 4.1: Comparison of different methods results on ETHZ crossing dataset.

Some of the false positives for our method comes from the point that we do the detec-

tion in the occluded area and those areas are marked as negative in the annotation. So

we relabelled the dataset by putting bounding boxes over occluded pedestrians as well as

completing the labelling for the misclassified pedestrians and relabelled the dataset. With

this new relabelled dataset we extract the negative examples again and train our classifier

again. As it can be seen in Fig. 4.1, the performance of our system gets much better than

the other two systems specially in lower miss rates.

The last test we did on this dataset shows the performance of our system where there

is no major occlusion. To that end we eliminated the occluded pedestrians as well as some

pedestrians in the corners of the image are way too small and highly occluded with fences

(these pedestrians are mainly the ones which were mislabelled in the original dataset) and

then with this newly labelled dataset we retrain everything and then test the results of

our algorithm on this dataset. Since this dataset has a much easier setup all the methods

produce good results on the test set. But our method is significantly better than the 2 other

methods. Some example detection results of our method on ETHZ dataset can be seen in

Fig. 4.2.
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Figure 4.2: Detections on ETHZ dataset(blue boxes are true positive, red box is the false
negative)

4.3 VIRAT Video Dataset

This dataset is a benchmark for human event detection, especially single person events,

person and vehicle events and person facility events. This dataset consists of many natural

outdoor scenes with actions occurring by non-actors in continuously captured videos from

security cameras. The dataset includes large numbers of instances for 23 event types dis-

tributed throughout 29 hours of video. This data is accompanied by detailed annotations

which include both moving object tracks and event examples. Since the data for this dataset

is captured from various cameras and locations, there is a great variety in the resolution of

the videos as well as scenes and the scales of the people in the videos.

The number of pedestrians in each frame varies between different sequences ranging from

no pedestrians for a long time to around 10 pedestrians per frame. Since this dataset is

very huge and has a lot of variety in it we initially took 12 sequences which have different

types of scenes and setups. Since we introduced a detection method we try to evaluate

its performance only and avoid the other parameters which can affect the performance of

the detection system, so we used the sequences with limited perspective changes because

if there is a great amount of the perspective changes in the scene we have to use camera

calibration and rescale each part of the image separately and do a lot of engineering to make

the systems work so we try to avoid this part by choosing the input sequences wisely.

Although this dataset is widely used for the human event detection, unfortunately there

are so many mislabelled subjects in its ground truth. Further some sequences missed humans

in the whole sequence. Because of this we had to remove 2 out of the 12 videos from our

dataset even though we got good qualitative results from those sequences. However, since

we couldn’t provide any quantitative results for those sequences we had to remove them
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Figure 4.3: Different scenes of the VIRAT dataset.

from the results.

4.4 Domain Adaptation

In the first round of experiments with the ETHZ dataset we showed that our method

outperforms the other 2 baselines when all the methods are trained on the parts of the

dataset which they are going to be tested on. This is very common in testing most of the

detection systems. But a more difficult and more realistic task is to train the detectors

on some dataset and then test the classifier on an unseen dataset which is called domain

adaptation. This task is very useful because if it can be done successfully, we can save the

time and money for labelling a new dataset and also it makes the detection system more

automatic. We tried to do this task on this dataset so we trained our baselines on the ETHZ

crossing dataset then we tested our method on the VIRAT dataset. Unfortunately this

experiment failed and none of the classifiers could produce acceptable results on this task.

So we tried to improve the performance of the system by adding some realistic assumptions

to the system. Although labelling the positive examples in different sequences is a very

time consuming and expensive task but we can extract some reliable negative examples.

The idea behind getting the negative samples is simple, since we know that usually most of

the humans in the sequences walk so they don’t stay at one place for too long. Using this

fact, we extract the background using median filtering. Since humans are usually walking

it is very unlikely that this background contains any human. Having the background as our
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negative we train our systems on the ETHZ crossing dataset and then test these models

on the background and use the results of this experiment and do a round of bootstrapping.

This round of bootstrapping is significantly improving the performance our detectors. The

comparison between results of our method and the other two baselines can be seen in Fig.

4.4.

Figure 4.4: Comparison of different methods results on VIRAT dataset.

The basic idea behind our domain adaptation system is simple but we have to consider

many minor and yet important points when trying this algorithm. The first issue is the frame

rate which may cause difficulties when doing the domain adaptation. The ETHZ dataset is

captured at the rate of 15 fps which is uncommon but it is very useful because we can use

5 frames for the tracking and get enough information for detecting the motion patterns but

when we are using another test dataset with different fps we should consider this difference.

For compensating the difference between fps of two sequences we downsampled the VIRAT

dataset and since VIRAT is captured at 30 fps we only need to skip every other frame to

reach the correct performance.

Another practical point about the VIRAT dataset is that this dataset is captured in

higher quality than what we had in the ETHZ dataset. Although we can compute the SOEs

on the original format of the dataset but that would be very computationally expensive

and also it need a lot of space to store the SOEs. So we resized the original dataset to

reduce the computation overhead but since we can run HOG and HOF in the original size
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of the dataset it is not fair for them to downsample the dataset for them so we produce

the results for these algorithm in the original size of the dataset. This difference between

working resolution may lead to some difficulty when we want to compare the results of our

method to the other methods. We can use two different approaches to solve this problem

and they produce almost same results. In the first method we can downsample the results of

the other methods to the resolution of our method and then compare the results. Although

this is a valid comparison, it might seems unfair to the methods which can work in high

resolution. So in the second solution we resized the results of our method to the results of

other methods using bilinear interpolation. Both methods show similar results and in both

comparisons proposed method outperforms the baselines.

4.5 Implementation Details

There are a few tricks and tweaks in the system to get reasonable results, here we discuss

those tweaks. First of all we are using SOEs with 12 channels. An observation is that

the SOE values are consistent within a video but not across the videos if we don’t do any

normalization. So we use the 12 channel energies and add a channel which captures the

energy of unstructured pixels and normalize the SOEs using that extra channel.

Another important point for our current detection system is since we don’t attempt to

detect pedestrians walking straight to the camera and all the pedestrians we are trying to

detect are moving with some kind of angle to the camera and unlike Felzenszwalb’s [15]

paper we don’t have a latent value for the direction of pedestrian so we use the SOE channels

to estimate the direction of the movement and normalize the tracklet so the subjects move

from left to right.

We are proposing a detector here and we don’t attempt to improve the results with

NMS or any other kind of post processing system so in the generation of the final Detection

Error Tradeoff (DET) curves we use Dalal and Triggs method which means we only need

one detection with over 50% overlap with the ground truth to mark the subject as a hit.

We should also mention that the current detection system ignores the pedestrians who

are too close to image boundaries and leave the scene during the tracking which reduce the

performance of our detector because the HOG and HOF still have a chance to detect these

pedestrians if they are visible in the first frame.

Some of the interesting results of our detector is that it can detect partially occluded
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pedestrians based on their motion patterns, we can see examples of these detections when the

subjects goes under tress or behind patio umbrellas. Another interesting point is although

we scale down our input image to handle the computation complexity of the SOE and

tracking we still can detect subjects with small bounding boxes which is very important

because most of the current detectors can’t perform well enough in low resolution or when

the subject is small, but it seems that the motion patterns carry enough information to

improve the detection. The detection results of our method on VIRAT dataset can be seen

in Fig. 4.5.

Figure 4.5: Detections on the VIRAT dataset.



Chapter 5

Conclusion and Future Works

5.1 Conclusion

The main contribution of this thesis is developing a human detection system using tracklets

of different body parts as motion pattern. We proposed a framework which can consider

the motion pattern as well as the appearance of the subject. The previously introduced

models only rely on the appearance or only two consequent frames for the motion model

which doesn’t really capture the rhythmic motion of the human motion.

The most important draw back of the proposed method is that it wouldn’t improve

detection over the static pedestrians and although this method can detect partially occluded

pedestrians it can mainly handle the occlusions in upper parts of the body and if the

occlusion happens over the lower parts of the body the improvements wouldn’t be significant.

5.2 Future Works

There are some drawbacks in the current system which can be fixed in future works. The

first important issue is that the performance of the system would increase if we could align

the sequences based on the gait phase of the pedestrian. This alignment can be done using

a latent variable representing the phase of the gait, so we can compare the aligned sequences

which would increase the accuracy of our detector.

The other modification which can improve the results of our method is that if we can

detect the direction of the movement and use the SOEs of that direction and apply a HOG

like operator on the SOE we will have a detector which works similar to HOF and it might

38
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be able to do the cross learning. This extra detector can help and improve the performance

of the system.

We evaluated the performance of our system without considering the rule of NMS but

a good NMS system can improve the performance of the system so in the future work we

should investigate the improvements of the different NMS schemes. To have a fully working

system we have to add the NMS and optimize it parameters.

In this thesis we didn’t consider the different scaling issue but in real world many scenes

have different scaling factors in a scene and we have to find a way to handle it. This issue

can be resolved using the calibration information of the camera or the scene configuration.

A good improvement of our system would be to replace the HOG detector by the model

proposed in [15] and do the detection. This addition would improve our results since this

method is a better detector than the HOG detector. Another possible way to continue our

work is to detect the parts using Felzenszwalb’s method [15] and then track those parts.

This way we might have better parts to track so the tracklets would be more meaningful.

This improvement would be mainly because this way we would actually track the different

parts of the body and these tracklets would have more meaning than just tracking different

parts of the bounding box.

Another possible improvement for the current system would be to train different clas-

sifiers for different view points, as we already mentioned most of our training and testing

happens in side views but we usually won’t get good results if the subjects move straight

forward to the camera. It would be possible to use exemplar SVM or clustering to determine

the type of the subject and use the proper classifier to detect class of the subject.
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