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Abstract

This project can be mainly divided into two sections. In the first section it attempts to model an

irregularly spaced time series data where time scale is being measured with a measurement er-

ror. Modelling an irregularly spaced time series data alone is quite challenging as traditional time

series techniques only capture equally/regularly spaced time series data. In addition to that, the

measurement error in the time scale make it even more challenging to incorporate measurement

error models and functional approaches to model the time series. Thus, this project is based on a

Bayesian approach to model a flexible regression function when the time scale is being measured

with a measurement error. The regression functions are modelled with regression P-splines and the

exploration of posterior is carried out using a fully Bayesian method that uses Markov chain monte

carlo (MCMC) techniques. In section two, we identify the relationship/dependency between two

irregularly spaced time series data sets which were modelled using regression P-splines and a fully

Bayesian method, using windowed moving correlations. The validity of the suggested methodology

is then explored using two simulations. It is then applied on two irregularly spaced time series data

sets each subjected to measurement errors in time scale to identify the dependency between them

in terms of statistically significant correlations.

iv



To my loving family in Sri Lanka...

v



Acknowledgments

First and foremost, I would like to express my gratitude to my supervisor Dr. David Alexander

Campbell for the useful comments, remarks and engagement through the learning process of this

master’s project as well as during my master’s program. Secondly, I would like to thank Dr. Tim

Swartz and I am most indebted to him for reposing his trust and confidence in me which enabled

me to begin this great educational experience at Simon Fraser University.

A special word of thanks should go to my examining committee Dr. David Alexander Campbell,

Dr. Tim Swartz and Dr. Jiguo Cao for a patient hearing and for the valuable inputs which I have

incorporated into my master’s project. I would like to take this opportunity to thank all the faculty

members at the Department of Statistics and Actuarial Science who taught me during last two years

especially, Dr. David Alexander Campbell, Dr. Tim Swartz, Dr. Jiguo Cao and Mr. Ian Bercovitz. I

am grateful for the financial support provided by the Department of Statistics and Actuarial Science.

Special thanks to Statistics Workshop Manager Robin Insley for his support and guidance during

my time at Simon Fraser University. My sincere gratitude to Sadika, Kelly, and Charlene for their

kind assistance.

Furthermore, I would like to thank Chris Carleton for providing me an interesting research idea

and Shirin Golchi, Abdollah Safari for their assistance during my master’s project. Thanks also to

my graduate student colleagues for their friendship and camaraderie and for the fun times we had

together. To Wijendra, Kanna and Harsha my Sri Lankan graduate colleagues at SFU, I want to say

thanks for helping me with my studies as well for settling in Vancouver.

Finally and most importantly I am fortunate to have a great family in Sri Lanka. I would not have

come this far without their encouragement.

vi



Contents

Approval ii

Partial Copyright License iii

Abstract iv

Dedication v

Acknowledgments vi

Contents vii

List of Figures ix

1 Introduction 1
1.1 Basics of Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Handling Irregularly Spaced Time Series Data . . . . . . . . . . . . . . . . . . . . . 2

1.3 FDA approach of Handling Irregularly Spaced Time Series Data . . . . . . . . . . . 3

1.3.1 Basics of Functional Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.2 Measurement Error Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Motivation / Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature Review 6

3 Methodology 8
3.1 Approximating Curves with Errors in Covariates . . . . . . . . . . . . . . . . . . . . . 8

3.1.1 Bayesian Implementation for Regression P-Splines for measurement Error

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.2 Changes required when using a Fourier Basis Function . . . . . . . . . . . . 12

3.2 Windowed Moving Correlations on Approximated curves with Errors in Covariates . 13

vii



4 Simulation Study 14
4.1 Simulation 1 - Truncated Polynomial Basis . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 Simulation 2 - Gait Data / Fourier Basis . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Analysis of Climate Change Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.1 Approximating a Curve for Oxygen Isotope Data . . . . . . . . . . . . . . . . 33

4.3.2 Approximating a Curve for Titanium Concentration Data . . . . . . . . . . . . 40

4.3.3 Identification of Dependency between Oxygen Isotope and Titanium Data . . 44

5 Further Improvements to the Study 49

Bibliography 50

viii



List of Figures

4.1 Approximated Curve for True function m(X): . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Trace Plots - Full Conditional Distributions from Gibbs Sampling: . . . . . . . . . . . 17

4.3 Samples of Unobservable X from Metropolis Hastings algorithm: . . . . . . . . . . . 18

4.4 MSE for different values of noise on Unobservable Covariate: . . . . . . . . . . . . . 20

4.5 Approximated Curve for Knee Angle of Child 2: . . . . . . . . . . . . . . . . . . . . . 22

4.6 Approximated Curve for Hip Angle of Child 2: . . . . . . . . . . . . . . . . . . . . . . 23

4.7 Convergence of the Full Conditional Distributions - Knee Angle of Child 2: . . . . . . 24

4.8 Convergence of the Full Conditional Distributions - Hip Angle of Child 2: . . . . . . . 25

4.9 Samples of Unobservable Gait times - Knee Angle of Child 2: . . . . . . . . . . . . . 26

4.10 Samples of Unobservable Gait times - Hip Angle of Child 2: . . . . . . . . . . . . . . 27

4.11 MSE calculation for Knee Angle of Child 2: . . . . . . . . . . . . . . . . . . . . . . . 28

4.12 MSE calculation for Hip Angle of Child 2: . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.13 Intercept and Hip Regression Coefficient with their 90% confidence intervals: . . . . 31

4.14 Windowed Moving Correlations between Knee angle and Hip angle data: . . . . . . 32

4.15 Approximated Curve for Noisy Oxygen Isotope Data: . . . . . . . . . . . . . . . . . . 34

4.16 Trace Plots - Full Conditional Distributions from Gibbs Sampling: . . . . . . . . . . . 35

4.17 Samples of Unobservable time ”t” from Metropolis Hastings algorithm: . . . . . . . . 36

4.18 Approximated Curve for Noisy Oxygen Isotope Data: . . . . . . . . . . . . . . . . . . 37

4.19 Trace Plots - Full Conditional Distributions from Gibbs Sampling: . . . . . . . . . . . 38

4.20 Samples of Unobservable time ”t” from Metropolis Hastings algorithm: . . . . . . . . 39

4.21 Approximated Curve for Noisy Titanium Data: . . . . . . . . . . . . . . . . . . . . . . 41

4.22 Trace Plots - Full Conditional Distributions from Gibbs Sampling: . . . . . . . . . . . 42

4.23 Samples of Unobservable time ”t” from Metropolis Hastings algorithm: . . . . . . . . 43

4.24 Windowed Moving Correlations between Oxygen Isotope and Titanium data: . . . . 45

4.25 Windowed Moving Correlations between Oxygen Isotope and Titanium data: . . . . 46

4.26 Windowed Moving Correlations between Oxygen Isotope and Titanium data: . . . . 47

ix



Chapter 1

Introduction

Time series methods are used to identify patterns and for prediction purposes. Time series methods

work best for regularly spaced data. For irregularly spaced time series data, methods are still

developing. When we encounter measurement errors or errors in covariates in relation to irregularly

spaced time series data, even the methods that are currently available tend to fail. Thus, the

objective of this project is to address/explore methods for irregularly spaced time series data when

the covariate is subject to measurement errors.

1.1 Basics of Time Series

Time series data can be described as sequence of measurements of a variable collected over time.

They can be divided mainly into univariate and multivariate time series data and most of the time

those measurements are made at regular time intervals. In comparison to standard linear regres-

sion, time series data are not necessarily independent and not necessarily identically distributed.

One defining characteristic of time series is that this is a list of observations where the ordering mat-

ters and changing the order could change the meaning of the data. Time series models describe

important patterns, identify of the effect of past data on present data and, forecast future values.

We can divide time series models mainly in to two components based on the time domain. The first

is, ordinary regression models that use time indices as variables and these can be helpful for an

initial description of the data and form the basis of several simple forecasting methods. The second

is, models that relate the present value of a series to past values and past prediction errors and

these are called ARMA (Auto-Regressive Moving Average) models.

One of the simplest ARMA models is the AR(1) model and it stands for Auto-Regressive order 1

model. The order of the model indicates how many previous measurements we use to predict the

1



CHAPTER 1. INTRODUCTION 2

present time. Using parameters δ and θ for predicting state X at time t, the AR(1) model,

xt = δ + θ1xt−1 + ωt

includes ωt as independently and identically distributed normal errors with mean zero and a con-

stant variance. In order to assess the order of the AR model we could use the Autocorrelation

Function(ACF) and Partial Autocorrelation Function(PACF). ACF gives correlations between the

series xt and lagged values of the series. On the other hand partial correlations are conditional

correlations. If we consider a regression context in which y being the response variable and x1, x2,

and x3 are predictor variables, the partial correlation between y and x3 is the correlation between

the variables determined taking into account how both y and x3 are related to x1 and x2.

The other part of a ARMA model is the MA component. A moving average (MA) term in a time

series model is a past error and again the order of the moving average too can be assessed by

looking at the combination of both ACF and PACF. The simplest of the MA models which is MA(1)

which models states X at time t with parameters µ and θ as,

xt = µ+ ωt + θ1ωt−1.

Again, ωt can be described as independently and identically distributed normal errors with mean

zero and a constant variance.

1.2 Handling Irregularly Spaced Time Series Data

The models discussed in section 1.1 assume that measurements are made at regular intervals.

They are therefore not appropriate for irregularly spaced time series (IRTS) data. When it comes to

IRTS the key difference from regular series is that we need to keep track of both {tn, Xn}, as the

observation times are not constant. A very common approach of modelling IRTS is to convert them

into regular time series using techniques such as interpolation, and then model the resultant series

using regular time series methodologies. Such methods results in higher bias/errors.

As a result it can be said that best way to model IRTS is to model directly from irregularly spaced

data rather than converting them into regular spaced data. Some work has been carried out in

the statistics literature on this aspect. One such published work [2], models irregularly spaced time

series data directly using an extension of AR models considering both stationary and non-stationary

circumstances.

Another study [5], presents a computer program (REDFIT), which estimates the AR(1) parameter
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directly from unevenly spaced time series data (xi, ti) with arbitrary spacing in the following manner

and x represent a discrete AR(1) process with times ti(i = 1, 2, ..., N).

x(ti) = ρix(ti−1) + εti

ρi = exp(
−(t1 − ti−1)

τ
)

Here the additional unknown quantity τ (a constant representing the characteristic time scale) is es-

timated from an irregularly spaced time series using a least squares algorithm. Then the estimated

AR(1) model is transformed from the time domain into the frequency domain using Lomb-Scargle

Fourier Transformation. That paper assumes that paleoclimatic data can be fitted via a AR(1) pro-

cess, hence begins its model identification using the traditional AR(1) process. Thus the paper

defines AR(1) process, autocorrelation function and its spectrum respectively for unevenly spaced

time series data.

A study associated with GARCH (Generalized Autoregressive Conditional Hetroskedasticity) mod-

elling [8], too looks into modelling unevenly spaced time series data. This paper looks at the mod-

elling of hetroscedasticity in time series in the context of irregularly sampled time series data. The

paper introduces a continuous version of the GARCH model, referred to as COGARCH with a pure

jump Levy Process while preserving the main characteristics of the original GARCH process.

1.3 FDA approach of Handling Irregularly Spaced Time Series

Data

The papers discussed above, have a common limitation, as they do not account for possible errors

in the covariate. In other words there could be measurement errors related to covariates and this

is not well captured in the papers discussed above. Thus, this project is an attempt made to model

irregularly spaced time series data with errors in covariates from the Functional Data Analysis per-

spective.

1.3.1 Basics of Functional Data Analysis

Functional data analysis (FDA) is a branch of statistics that analyses data providing information

about curves, surfaces or anything else varying over a continuum. The continuum is often time, but

may also be spatial location, wavelength, probability, etc. It is worth mentioning that if the continuum

is time, it doesn’t matter whether time intervals are regularly spaced or not as FDA do account for

both scenarios.
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When these curves are estimated, it is the assumption that they are intrinsically smooth that de-

fines a FDA. In particular, functional data analyses often make use of the information in the slopes

and curvatures of curves, as reflected in their derivatives. Plots of first and second derivatives as

functions of t (time), or plots of second derivative values as functions of first derivative values, may

reveal important aspects of the processes generating the data. As a consequence, curve estimation

methods designed to yield good derivative estimates can play a critical role in FDA.

Models for functional data and methods for their analysis may resemble those for conventional

multivariate data, including linear and non-linear regression models, principal components analysis,

and many others. More importantly in this project we will be using FDA to model irregularly spaced

time series data with measurement errors in covariates.

1.3.2 Measurement Error Models

Measurement error models can be divided into two classes. They are classical measurement error

models and Berkson measurement error models. The classical measurement error model assumes

a probability distribution for the observed (error contaminated) covariate conditional on unobserved

(uncontaminated) covariate. On the other hand Berkson measurement error model assumes a

probability distribution for the unobserved (uncontaminated) covariate conditional on the observed

(error contaminated) covariate. Out of the two commonly used measurement error models, the

classical measurement error model will be used in this project and following set of equations provide

a standard format of the model.

Y = m(X) + ε

W = X + U

where Y being the response variable and X being the predictor variable with measurement error

which is also not observable. Hence we observe W with error, and we use W to approximate

X. Here we assume both ε and U follow normal distributions. Here our ultimate objective is to

approximate our mean function m(X) when covariate X is not observable.

1.4 Motivation / Objectives

The motivating factor which led to carry out this thesis was the limitation encountered in detecting

the role of the climate change in the development and demise of Classic Maya civilisation [1]. The

original study [1] attempts to make comparisons between two time series data sets which were
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collected over a period from 300CE to 1750CE. The two time series data sets were irregularly

spaced and had measurement error on the time axis. One of the objectives of [1] was to identify

whether there was any relationship between these two time series data sets. However the detection

was controversial because of the absence of well dated climate sequences.

Time series data sets recount rainfall amounts and its changes were constructed using Oxygen

Isotope (δ18O) and Titanium concentrations. Measurements on Oxygen isotopes were taken from

stalagmite samples from Yok Balum cave in terms of Uranium-thorium (U-Th) dates. Those dates

had an analytical precision ranging from ±1 to ±17. With regard to Titanium concentrations, those

measurement were taken from marine sediments from the Cariaco Basin. Analysis in [1] does not

examine quantitative relationships between these data sets because they are irregularly spaced

and subject to measurement error. Instead they report potential quantitative relationships.

Therefore this thesis attempts to address this limitation which is identifying the statistically significant

correlations in the presence of uncertainty in the time scale. The three main objectives of the study

are,

• Modelling irregularly spaced time series data

• Incorporating measurement error model into time series model

• Identification of dependency between two irregularly spaced time series functions

Methodology used to overcome these three challenges are discussed in chapter 3 and the analysis

carried out to identify correlations between the Oxygen Isotope data and the Titanium data are

discussed in chapter 4.



Chapter 2

Literature Review

This chapter will focus on some of the previous work that has been carried out in statistics literature

in modelling data when covariates have a measurement error. In statistics literature, existing meth-

ods for dealing with measurement error problems can be categorised into functional and structural

approaches. The main difference between these two approaches is that, structural approaches as-

sume a parametric distribution for unobserved covariates, where as the functional approaches do

not. However in the presence of measurement error the true covariates are not observable. Thus it

is very hard to check whether the suggested parametric distribution satisfies the unobserved covari-

ate or not. As a result, most of the time functional approaches are considered above the structural

approaches when modelling data with measurement errors.

Even though structural approaches seem to be challenging, considerable work has been carried

out modelling data at the presence of covariate measurement errors. Use of flexible paramet-

ric approach for avoiding biased inference on response covariate, due to mismeasured continuous

covariates has been discussed in [9]. In this study authors consider skew-normal and flexible gener-

alized t-distributions to model the unobserved true covariate. Then for inference and computational

purposes they use a Bayesian approach based on conditional independence along with Markov

chain monte carlo (MCMC) methods. [6] attempts to model birth weight using the gestational age,

where gestational age associated with measurement error. In this study authors use both classical

and Berkson measurement error models to handle measurement errors. With regard to parametric

assumptions on the true covariate with measurement error, they use Box-Cox transformation rather

than assuming that true covariates follow a normal distribution. For estimation and inference pur-

poses, authors suggest a Bayesian approach rather than conventional maximum likelihood / EM

algorithm. However they avoid using a fully Bayesian methodology to overcome the computational

difficulties. [7] introduce the use of flexible parametric models (mixture of normals) at the presence

of departures of standard parametric models when modelling with covariates having measurement

6
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errors. This project considers both classical and Berkson measurement error models discussed

above to demonstrate their methodology with a Bayesian (MCMC) approach in the estimation and

inferential phase.

Functional approaches used in statistics literature to handle measurement errors are simulation-

extrapolation (SIMEX), regression calibration (RC), conditional score approach (CS), corrected

score approach (CTS) etc. [4] develops a semi-parametric estimation method for Accelerated Fail-

ure Time (AFT) model with covariate subject for measurement errors. They use the traditional

measurement error model and estimation and inference is carried out using SIMEX approach.

Additionally [10] discusses the possibility of estimating a regression function non-parametrically at

the presence of covariate measurement error. [10] uses Bayesian approaches in modelling a flexible

regression function when the predictor variable is measured with the measurement error using

a classical measurement error model. Here the regression function is modelled with smoothing

splines and the estimation is carried out using partial (Iterative conditional modes) and fully (MCMC)

Bayesian methods. Thus, this project uses an extended approach of [10] to model irregularly spaced

time series data at the presence of measurement errors in the time domain.



Chapter 3

Methodology

Chapter 3.1 discusses the methodology associated with modelling irregularly spaced time series

data in the presence of the measurement error in the time scale as a smooth function approximating

the underlying process. Chapter 3.2 discusses the methodology behind identifying the dependency

between approximated functions via Windowed moving correlations.

3.1 Approximating Curves with Errors in Covariates

This section introduces the notation for the measurement error model and fits an approximating

curve using Bayesian smoothing methodology discussed in [10]. Our objective is to approximate a

function m(Xi) for the response Ri at time Xi using following measurement error model

Ri = m(Xi) + εi, (i = 1, ..., n), (3.1)

where εi is an independent random normal variable with mean 0 and variance σ2
ε . X is not observ-

able, hence surrogate from the observable W as follows,

Wij = Xi + Uij , (3.2)

where Uijs are independent normal errors with mean 0 and variance σ2
u. As mentioned above, our

primary objective is to approximate function m(Xi) when the covariate X is not observable. For that

we introduce another function g(Xi) which is a natural cubic spline estimator of m(Xi). We use the

following log likelihood to approximate the mean function m(Xi).

LogLikelihood ∝ −n log(σ2
ε )− 1

2σ2
ε

n∑
i=1

{Ri − g(Xi)}2

8
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We use a partially improper Gaussian prior for g(Xi) to control the roughness of the approximated

mean function m(Xi)

(
Prior ∝ (γ2 )exp(−γ

b∫
a

{g′′
(x)}2dx)

)
. Here the penalty parameter γ controls

the roughness of the approximation. If the penalty parameter is close to zero then m(X) will be less

smooth. On the other hand, if the penalty parameter tends to infinity, then the approximated curve

will be smoother.

Therefore it can be said that this is a Bayesian representation for the penalised least squares esti-

mator when its covariate is not observable by minimizing

S(g) =
1

2σ2
ε

n∑
i=1

{Ri − g(Xi)}2 +

γ b∫
a

{g
′′
(x)}2dx

 . (3.3)

g(Xi) can be represented as a linear combination of basis functions, g(X) = φ(X)Tβ. Where β

is the vector of basis coefficients and φ(X) = {φ1(X), ..., φN (X)}T , N . n is the corresponding

spline basis. The Basis function considered in this project is a truncated polynomial basis and can

be written by adding any (x− tk)p component to basis if the corresponding (x− tk) term is positive

which is indicated by the plus sign, φ(X) = (1, x, x2, ..., xp, (x − t1)p+, ..., (x − tk)p+)T . We define

t1, ..., tk to be k equally spaced knots on the range of Xi for convenience purposes, even though

they do not necessarily be equally spaced. However the same methodology can be used even with

a Fourier basis with some minor changes. Those changes required will be discussed in chapter

3.1.2. We can re-write equation (3.3) with β and φ(X) in the following form.

1

2σ2
ε

n∑
i=1

{Ri − φ(Xi)
Tβ}2 + γβTDβ (3.4)

In equation 3.4, D represents a vector with p+1 zeros and k 1’s. Now we can think of β as a function

of penalty parameter γ and then the optimal vector of coefficients can be obtained from the following

expression, with Φ being a nxN matrix with ith row equal to φ(Xi)
T .

β̂ = (ΦTΦ + γD)−1ΦTR (3.5)

At this point we have five parameters of interest (β,X, σ2
ε , σ

2
u, γ) and their joint posterior distribution

can be written using a latent variable model in the following form,

[β,X, σ2
ε , σ

2
u, γ|R,W ] ∝ [R|β,X, σ2

ε ][X|W,σ2
u][β|γ][σ2

u][σ2
ε ][W ][γ] (3.6)

having prior distributions on all parameters including the hyper parameters µx, σx (parameters of

the prior distribution of X) and the variance components σε, σU .
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List of prior distributions,

• σ2
ε ∼ IG(Aε, Cε) - Variance of the error in R

• σ2
u ∼ IG(Au, Cu) - Variance of the error in X

• γ ∼ G(Aγ , Cγ) - Penalty parameter

• µx ∼ N(dx, τ
2
x) - Mean of the prior distribution of X

• σ2
x ∼ IG(Ax, Cx) - Variance of the prior distribution of X

Hence we can write joint posterior density (as per [10]) as follows.

exp{− 1

2σ2
ε

n∑
i=1

{Ri − φ(Xi)
Tβ}2 − 1

2σ2
u

n∑
i=1

mi∑
j=1

{Wij −Xi}2 −
1

2σ2
x

n∑
i=1

{Xi − µx}2 −
1

2τ2x
{µx − dx}2}∗

exp{−(γ/2){φ(X)Tβ}TD{φ(X)Tβ} − 1

Cεσ2
ε

− 1

CUσ2
U

− γ

Cγ
− 1

Cxσ2
x

}∗

σ−2(n/2+Aε+1)
ε ∗ σ

−2(1/2
n∑
i=1

mi+AU+1)

U ∗ σ−2(n/2+Ax+1)
x ∗ γAγ+M/2−1

3.1.1 Bayesian Implementation for Regression P-Splines for measurement
Error Model

This section discusses the estimation of function g(X) which approximates the true function m(X).

The estimation is based on the methodology suggested in [10] which gives emphasis to φ(X), the

basis function (in this case a truncated polynomial basis) and β, the basis coefficients.

For fixed-knot P-splines, g(x) can be written as, g(X) = φT (X)β. We can write g = (g(X1); ...; g(Xn))T

as g = Φβ where Φ being, a vector φ(X) evaluated based on a vector X. Here N (=1+p+k) repre-

sents number of basis functions where, p is the order of the polynomial and k is the number of knots.

With regard to φ(X), we apportion φ(X) = (φT1 (X), φT2 (X)T ) where φT1 (X) is the first p+1 elements

and similarly apportion β as β = (βT1 , β
T
2 )T . The improper prior (a Gaussian with infinite variance)

of β1 can be written as N(0, δI) and the Gaussian prior of β2 can be written as N(0, γ(−1)I). The

diagonal matrix D∗ can be written as, D∗ = σ2
εdiag(I/δ, γI).

β, can be sampled using the following full conditional distribution (obtained from the joint posterior
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distribution discussed in chapter 3.1) and its respective parameters in the following manner.

β|R,X,W ∼ N(QH,Q)

H = σ−2
ε

n∑
i=1

φ(Xi)Ri = σ−2
ε ΦTR

Q = σ2
ε

(
n∑
i=1

φ(Xi)φ
T (Xi) +D∗

)−1

= σ−2
ε (ΦTΦ +D∗)−1

Once we have the basis coefficients β together with the basis function evaluated at initial covariate

values, then we could find an initial estimate for g(x) as follows.

g(x) = φT (x)β

This initial sample of g(x) can be used to sample values from rest of the full condition distributions

which were extracted from the joint posterior distribution discussed in chapter 3.1. Full conditional

distributions obtained were as follows (as stated in [10]).

Full conditional distribution of ”X”,

[Xi|Wi, g, σ
2
ε , σ

2
u, R,W ] ∝ exp

− 1

2σ2
u

mi∑
j=1

(Wij −Xi)
2 − 1

2σ2
ε

(Ri − g(Xi))
2 − 1

2σ2
x

(Xi − µx)


(3.7)

Full conditional distribution of ”σ2
ε ”,

σ2
ε |g,X,R,W ∼ IG

(
Aε + n/2, [1/Cε, (1/2)

n∑
i=1

{Ri − g(Xi)}2]−1

)
(3.8)

Full conditional distribution of ”σ2
u”,

σ2
u|X ∼ IG

Au + (1/2)

n∑
i=1

mi, [1/Cu, (1/2)

n∑
i=1

mi∑
j=1

{Wij −Xi}2]−1

 (3.9)

Full conditional distribution of ”γ”,

γ|β ∼ G
(
Aγ +

k

2
, [1/Cγ + (1/2)βT2 β2]−1

)
(3.10)
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Full conditional distribution of ”µx”,

µx|X ∼ normal
(
nx̄τx + dxσ

2
x

nτ2x + σ2
x

,
σ2
xτ

2
x

(nt2x + σ2
x)

)
(3.11)

Full conditional distribution of ”σx”,

σx|X ∼ IG

(
Ax + n/2, [C−1

x + (1/2)

m∑
i=1

(Xi − µx)2]−1

)
(3.12)

Except for the full conditional distribution of X, all other full conditional distributions have known

forms. Therefore the project uses Metropolis Hastings within Gibbs to sample from full conditional

distributions. In Metropolis Hastings step, candidate values of Xprop are generated from a nor-

mal proposal distribution with a mean of current value of Xcurrent. This Project uses an adaptive

Metropolis Hastings algorithm. Thus the algorithm begins with an initial guess for standard devia-

tion, which is adjusted during the sampling process according to the acceptance rate. The adjust-

ment stops when number of iterations reach half of the sample size and this first half of the samples

will be discarded as burn-in.

3.1.2 Changes required when using a Fourier Basis Function

Use of a Fourier basis in place of a truncated polynomial basis require few key changes to the

methodology discussed in chapter 3.1. Changes required have an effect on estimation of β, basis

coefficients and full conditional distribution γ|β.

Estimation of basis coefficients β requires the calculation of matrix D∗. In comparison to degree of

polynomial and number of knots in truncated polynomial basis, Fourier basis only has the number

of basis functions as a parameter. Thus D∗ becomes a diagonal matrix of the following form.

D∗ = diag(1/δ, nbasis)

Fourier basis also affects the form of full conditional distribution γ|β. Fourier basis no longer needs

to be apportioned into basis coefficients, β = (βT1 , β
T
2 )T . Thus the full conditional distribution will

take the following form.

γ|β ∼ G(Aγ + nbasis/2, {C−1
γ + βTβ/2}−1)

Apart from these changes, methodology stated in [10] can be followed when approximating curves
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with Fourier basis.

3.2 Windowed Moving Correlations on Approximated curves

with Errors in Covariates

The primary objective of this project is to identify the dependency between the two time series data

sets (Oxygen Isotope data and Titanium Data) in terms of significant correlations. The concept of

windowed moving correlation can be used to identify this dependency between the two time series

data sets. The moving correlations especially becomes useful in identifying dependency when we

cannot differentiate our time series data sets between response and predictor functions.

The methodology for calculation of windowed moving correlations is somewhat similar to the cal-

culation of moving averages, that we use in traditional time series analysis. When calculating win-

dowed moving correlations we define a ”Window Size”, which is similar to ”Moving Average Cycle”

in moving averages. In moving correlations we calculate the correlations between our two time se-

ries data sets for a predetermined window size. Window size is a subset of the sample size and in

order to calculate moving correlations both data sets should have a equal length.

In this project, the moving correlations were calculated using the following methodology. The study

obtains estimated basis coefficients (β) from each of the two posterior samples relating to two data

sets of interest. Those coefficients were evaluated on a fine grid which gives a sample size of equal

length to each data set. Those two vectors of equal length were then used in the windowed moving

correlation calculations. The final result of the code will be a vector of windowed moving correlations.

From which we could determine whether our two time series data sets (Oxygen Isotope data and

Titanium Data) relate to each other with significant correlations or not.



Chapter 4

Simulation Study

This chapter demonstrates the methodology suggested in chapter 3 by using two simulations fol-

lowed by a analysis on a real data set. In chapter 4.1 we explore the methodology suggested in

chapter 3.1. It approximates a curve which is subject to a covariate measurement error using a

Truncated polynomial Basis. This is a replication of one of the simulations in [10].

Simulation 2 will be based on a real life data set (Gait Data), where it uses a Fourier basis to ap-

proximate both response and predictor functions which are subjected to measurement error. The

dependency between response and predictor functions will be evaluated using the functional regres-

sion mechanism and the windowed moving correlations. Time series data will be used in chapter

4.3, where it explores the method suggested in chapter 3.1 with a Truncated polynomial basis in ap-

proximating both Oxygen Isotope data and Titanium data. The dependency between the two time

series data sets will be evaluated using windowed moving correlations. Here we use windowed

moving correlations in place of functional regression mechanism as we cannot differentiate Oxygen

and Titanium data in terms of predictor and response functions.

4.1 Simulation 1 - Truncated Polynomial Basis

Simulation considered in this section is a recreation of [10] and was carried out using the following

model.

m(x) =
sin(πx/2)

1 + 2x2{sign(x) + 1}

The objective is to find an approximated curve for m(x), where X is subjected to measurement

error. The simulation was carried out with a sample size of 100. A Truncated polynomial basis was

used with 15 basis functions (polynomial degree(p)=4, number of knots(k)=10). In this simulation

14
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we generated two values for W (m=2) to approximate the unobservable covariate X. Noise in W

was created using a normal distribution, N(mean=0, SD=0.05). This noise was added on top of

the desired range of X which is a sequence from -3 to +3 having a sample size of 100. The

measurement error model used in the simulation takes the following form.

Ri = m(Xi) + εi, (i = 1, ..., 100)

Wij = Xi + Uij

εi ∼ N(0, σ2
ε )

Uij ∼ N(0, σ2
u)

Following prior distributions were used in the simulation.

• σ2
ε ∼ IG(1, 1) - Variance of the error of R

• σ2
u ∼ IG(1, 1) - Variance of the error of X

• γ ∼ G(3, 1000) - Penalty parameter

• µx ∼ N(0, 102) - Mean of the prior distribution of X

• σ2
x ∼ IG(1, 1) - Variance of the prior distribution of X

With these prior parameters we update full conditional distributions (eq. 3.7 to 3.12) and use these

updated distributions for sampling purposes. The sampling was carried out iteratively for 10,000

iterations and the first 5000 samples were removed as a burn-in. The rest of the samples were

used in the approximation. The figure 4.1 gives the approximation for the function m(X). The trace

plots of each of the full conditional distributions from Gibbs sampling methodology are provided in

figure 4.2 and samples obtained for unobservable X from Metropolis Hastings algorithm are shown

in figure 4.3.
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Figure 4.1: Approximated Curve for True function m(X):

Figure compares the approximated curve with the true curve. The true curve is given in ”Red”.
”Green” points are the point wise estimates for the true curve. The ”Black” curve is the curve which
approximates the true curve which is obtained by evaluating the estimated coefficients on a fine
grid. The approximation was carried out using posterior means on the second half of the iterations
as first half was discarded as burn-in. Estimation uncertainty is indicated by the two Gray lines
which are 90% point wise confidence intervals.
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Figure 4.2: Trace Plots - Full Conditional Distributions from Gibbs Sampling:

Five figures in the graph represent each of the full conditional distributions sampled during the
MCMC iterations. The vertical lines on each of the five figures give an idea on burn-in. Estimation
we carried out using the samples obtained beyond the vertical line, as previous samples were
discarded as burn-in.



CHAPTER 4. SIMULATION STUDY 18

Figure 4.3: Samples of Unobservable X from Metropolis Hastings algorithm:

Figure represent the sampling of unobservable covariate(X) using the M-H algorithm. The vertical
line at iteration 5000 indicate the stoppage for adapting the M-H algorithm for variance adjustment
and also the point for burn-in. The samples prior to vertical axis were discarded as burn-in and the
samples after vertical axis were only considered for estimation purposes

Figure 4.1 indicates that the methodology in chapter 3.1 succeeds in providing a reasonable ap-

proximation for the true curve. The figures 4.2 and 4.3 ensure that sampling from full conditionals

are stable. In order to identify the quality of the approximation, we calculated Mean Square Errors

(MSE) for different values of σU .

• MSE = Bias2 + Variance

• Bias = mean(true value - fitted)

• Variance = Variance of point wise estimate for a time point over MCMC iterations averaged

over time points

• Average MSE over time points = Average Bias(over time points and MCMC iterations) + Aver-

age Variance(of fitted time point values over MCMC runs)
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Project uses two MSE calculations. The First, in the direction of Y axis for different values of

measurement error and the other in the direction of X axis for different values of measurement error.

Therefore an ideal plot would be a plot with increasing MSE values for increasing measurement

errors. To generate noisy data, we considered following values for the standard deviation (σU ).

σU = [0.05, 0.1, 0.15, 0.25, 0.4, 0.5, 0.75, 1, 2, 3]

Uij ∝ N(0, σ2
u)

Wij = Xi + Uij

Ri = m(rowMeans(Wi)) + εi

For different values of σU , we have different Wi and Ri. The MSE calculations were carried out in

the directions of both Y axis and X axis using those values respectively.
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Figure 4.4: MSE for different values of noise on Unobservable Covariate:

Top panel of the figure provides the MSE calculation for approximated Xs for different values of σU .
Similarly, bottom panel provides the MSE calculation for approximated Rs for different values of
σU . Both MSE curves suggest that method suggest in chapter 3.1 succeeds in providing a
reasonable fit as MSE tend to increase with more noise on data.
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4.2 Simulation 2 - Gait Data / Fourier Basis

Simulation 2 will be based on the real data set, namely Gait data [3] and explores the methodology

suggested in chapters 3.1 and 3.2. The Gait data is from Motion Analysis Laboratory at Children’s

Hospital, San Diego, CA, and consisted of the angles formed by the hip and the knee of each of 39

children over their gait cycles. Objective is to measure ”The Control of the Hip Angle that has over

Knee Angle”. However it should be noted that this data set does not have a measurement error in its

time axis. Therefore we introduce a measurement error to the data set for our simulation purposes.

During this simulation [10] was used to smooth both knee angle and hip angles for each of the 39

students. The smoothing process was carried out using 10,000 iterations, where 10,000 samples

were obtained for each of the full conditional distributions using both Metropolis Hastings and Gibbs

sampling methods. The first 1/2 of the iterations were removed as burn-in and rest of the 5,000

samples were used in the estimation. Prior distributions that were considered in chapter 4.1 were

used as it is.

In Gait data, time points had a range from 0.5 to 19.5. Thus basis range was set up from 0 to

20. The measurement error on covariate was generated randomly from a normal distribution with

0 mean and a variance of σU for different values of σU (0.05, 1, 0.15, 0.25, 0.4, 0.5, 0.75, 1, 2, 3).

This simulation has a sample of size 20. It should be noted that the figure 4.5 was obtained with a

measurement of 0.05 (σU ). During the simulation, for each true observation two values (W) were

generated having this measurement error. Figures 4.5 and 4.6 provide the approximated mean

curves for both hip and knee angles of child 2.
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Figure 4.5: Approximated Curve for Knee Angle of Child 2:

Figure compares the approximated curve to the true curve of the knee angle of child 2 obtain over
a time period from 0.5 to 19.5. True curve is given in ”Red”. ”Green” points are the point wise
estimates for the true curve. The ”Black” curve is the curve which approximates the true curve
which is obtained by evaluating the estimated coefficients on a fine grid. The approximation was
carried out using posterior means on the second half of the iterations as first half was discarded as
burn-in. Estimation uncertainty is indicated by the two Gray lines which are 90% point wise
confidence intervals.
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Figure 4.6: Approximated Curve for Hip Angle of Child 2:

Figure compares the approximated curve to the true curve of the hip angle of child 2 obtain over a
time period from 0.5 to 19.5. True curve is given in ”Red”. ”Green” points are the point wise
estimates for the true curve. The ”Black” curve is the curve which approximates the true curve
which is obtained by evaluating the estimated coefficients on a fine grid. The approximation was
carried out using posterior means on the second half of the iterations as first half was discarded as
burn-in. Estimation uncertainty is indicated by the two Gray lines which are 90% point wise
confidence intervals.
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Figure 4.7: Convergence of the Full Conditional Distributions - Knee Angle of Child 2:

Five figures on the graph represent each of the full conditional distributions sampled during the
MCMC iterations. The vertical lines on each of the five figures give an idea on burn-in. For
estimation we used the samples obtained beyond the vertical line as previous samples were
discarded as burn-in.
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Figure 4.8: Convergence of the Full Conditional Distributions - Hip Angle of Child 2:

Five figures on the graph represent each of the full conditional distributions sampled during the
MCMC iterations. The vertical lines on each of the five figures give an idea on burn-in. For
estimation we used the samples obtained beyond the vertical line as previous samples were
discarded as burn-in.
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Figure 4.9: Samples of Unobservable Gait times - Knee Angle of Child 2:

Figure represent the sampling of unobservable gait times of the knee angle of child 2 using M-H
algorithm. The vertical line at iteration 5000 indicate the stoppage for adapting the M-H algorithm
for variance adjustment and also the point for burn-in. The samples prior to vertical axis were
discarded as burn-in and the samples after vertical axis were only considered in the estimation
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Figure 4.10: Samples of Unobservable Gait times - Hip Angle of Child 2:

Figure represent the sampling of unobservable gait times of hip angle of child 2 using M-H
algorithm. The vertical line at iteration 5000 indicate the stoppage for adapting the M-H algorithm
for variance adjustment and also the point for burn-in. The samples prior to vertical axis were
discarded as burn-in and the samples after vertical axis were only considered in the estimation
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Figure 4.5 and 4.6 indicate that the methodology in chapter 3.1 succeeds in providing a reasonable

approximation for the true curves, the knee and hip angles of child 2. Figures 4.7 and 4.8 ensure

that sampling from full conditionals are stable. we assessed the fit of the approximated curves via

MSE plots introducing different measurement error on true data.

Figure 4.11: MSE calculation for Knee Angle of Child 2:

Top panel of the figure provides the MSE calculation for approximated Xs for different values of σU .
Similarly, bottom panel provides the MSE calculation for approximated Rs for different values of
σU . both MSE curves suggest that method suggest in chapter 3.1 succeeds in providing an
approximation as MSE tend to increase with more noise on data.
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Figure 4.12: MSE calculation for Hip Angle of Child 2:

Top panel of the figure provides the MSE calculation for the approximated Xs for different values of
σU . Similarly, bottom panel provides the MSE calculation for the approximated Rs for different
values of σU . By looking at both panels it can be seen that MSE tend to decrease with the increase
in measurement error after an increase. However ideally this should increase if the approximation
works well. The reason for this decrease in MSE could be a fact due to less variability in true hip
angle

The same procedure was used in approximating the Knee and the Hip angles of rest of the 38

individuals and these results were used in regressing Hip angle on Knee angle using the functional

regression methodology. The model of interest in functional regression analysis can be given as

follows,

yi(t) = ω0(t) +

q−1∑
j=1

xij(t)ωj(t) + εi(t)

We define yi(t), a functional vector of length N and it represents our response function knee angle.

xij(t) is the functional predictor and it represents hip angle. The parameters that need to be esti-

mated are functions. We define ω0(t) and ωj(t) as the functional parameters to be estimated. ω0(t)
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represents intercept function and ωj(t) represents hip angle coefficient function. The estimation

of these functional parameters were carried out using an iterative approach. At each iteration 39

curves of hip angles and knee angles were approximated using methodology suggested in chapter

3.1. These approximated curves from the knee and the hip angles were regressed at each iteration.

The results of the functional regression analysis are provided in figure 4.13.

Figure 4.13 provides estimated intercept function and the estimated hip regression coefficient func-

tion with their uncertainty in terms of 90% confidence intervals. From which we could observe that

more hip bend results in more knee bend. Here both red curves on figure 4.13 were obtained by

regressing 39 mean curves of the hip angles and 39 mean curves of the knee angles. The point

wise confidence intervals were obtained by taking the quantiles, regressing 39 curves approximated

at each iteration during the MCMC sampling process.
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Figure 4.13: Intercept and Hip Regression Coefficient with their 90% confidence intervals:

Figure provides the estimated intercept function (top panel) and the estimated hip regression
coefficient function (bottom panel) for the Gait cycle with 90% point wise confidence intervals.
Here the red line represent the mean curve from latter 5000 samples ignoring first 5000 samples
as burn-in. The 90% point wise confidence intervals were obtained by taking respective quantiles
for each point considering their respective sample paths

The study moves into windowed moving correlations between the Knee angle data and the hip

angle data of child 2 to explore the methodology suggested in chapter 3.2. Figure 4.14 provides

moving correlations between Knee angle data and Hip angle data of child 2 for a window size of

25%. The Knee angle and the Hip angle data were evaluated on a fine grid of 1000 points with

its respective estimated basis coefficients to obtain two vectors of equal length. The point wise

confidence intervals were calculated by taking quantiles, of windowed moving correlations, which

were calculated iteratively for each point considering their sample paths.
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Figure 4.14: Windowed Moving Correlations between Knee angle and Hip angle data:

Figure provides windowed moving correlations calculated at a window size of 25% when two data
sets have the same length of 1000 data points. The two Black lines indicate the 90% point wise
confidence intervals.

If compare the two figures 4.13 and 4.14, whenever the hip coefficient has a upward trend in fig-

ure 4.13, the corresponding moving correlations have a positive correlation in figure 4.14 and vice

versa. Not only that, windowed moving correlations plot confirm that there are significant correla-

tions between knee and hip angle through out its range. It confirms the fact that both functional

regression or moving correlations could be used to identify the dependency between two functions.

Furthermore, moving correlations will be extremely useful above functional regression, when we

cannot distinguish the two functions in terms of predictor and response functions.

4.3 Analysis of Climate Change Data

This section discusses the analysis on time series data which created the motivation to carry out

this project. The project takes into account two irregularly spaced time series data sets which were

subject to time scale measurement error. The two time series data sets are, Oxygen isotope (δ18O)
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measurements that were taken from stalagmite samples from the Yok Balum cave and Titanium

concentrations which were taken from marine sediments in the Cariaco Basin. The primary objec-

tive with these two data sets is to identify the dependency between them from a statistical view point

as [1] only rely on graphical interpretation.

To overcome this challenge we first model irregularly spaced time series data sets using the method-

ology suggested in chapter 3.1 and then we find the dependency between the two data sets using

windowed moving correlations.

4.3.1 Approximating a Curve for Oxygen Isotope Data

The approximation was carried out based on 1440 data points collected over a period of 2000

years. Oxygen Isotope measurements had a range from 0 to 1. The point wise errors on the

Oxygen Isotope measurement (σε) was given. From a programming perspective we were aware of

σε, thus we no longer need to sample σε during the approximation process. The time scale had

a range from 300CE to 1750CE and it has a measurement error from ±1 to ±17. Again from a

programming perspective we had to divide all time values by 2000 including measurement errors to

overcome numerical complexities in the program. Instead of sampling σU , we used
8.5

2000
as our σU

in the approximation. Sampling was carried using 25,000 iterations, removing first 10,000 samples

as burn-in. This project uses a truncated polynomial basis with 20 basis functions (p=4(degree of

polynomial), k=15(number of knots)) in this approximation. The prior distributions used were as

follows,

• γ ∼ G(1, 10−3)

• µx ∼ N(0.5, 1)

• σ2
x ∼ IG(0.5, 1)
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Figure 4.15: Approximated Curve for Noisy Oxygen Isotope Data:

Figure provides a approximated curve for Oxygen Isotope data. The noisy data is given in ”Red”.
”Green” points are the point wise estimates for Oxygen Isotope data eliminating measurement
error. The ”Black” curve is the curve obtained by evaluating the estimated coefficients on a fine
grid. The approximation was carried out using posterior means. Estimation uncertainty is indicated
by the two Gray lines which are 90% point wise confidence intervals.



CHAPTER 4. SIMULATION STUDY 35

Figure 4.16: Trace Plots - Full Conditional Distributions from Gibbs Sampling:

Three plots on the figure represent each of the full conditional distributions sampled during the
MCMC iterations. The vertical lines on each of the three figures give an idea on burn-in. For
estimation we used the samples obtained beyond the vertical line as previous samples were
discarded as burn-in.



CHAPTER 4. SIMULATION STUDY 36

Figure 4.17: Samples of Unobservable time ”t” from Metropolis Hastings algorithm:

Figure represents the sampling of noisy covariate(time points) using the M-H algorithm. The
vertical line at iteration 10000 indicate the stoppage for adapting the M-H algorithm for variance
adjustment and also the point for burn-in. The samples prior to vertical axis were discarded as
burn-in and the samples after vertical axis were only considered for estimation purposes

Figure 4.15 indicates that, approximated curve for Oxygen Isotope data provides a reasonable

fit. However observing same plot we can identify that the mean curve fails in approximating two

extremes of the noisy data. The reason for this drawback can be seen in figure 4.17. The sampled

Xs from Metropolis Hastings algorithms tend to converge to the middle in figure 4.17. In other words

Xs attempt to converge to a single µx value. This is a drawback in [10] as the model in [10] attempts

to sample Xs against a single µx at each iteration for a sample size of 1440 data points. This makes

sampled values to pull toward to the middle of the plot as seen in figure 4.17. This adversely results

in final approximation as seen in figure 4.15.

To overcome this issue, this project slightly modifies the model in [10] by introducing a fixed value

for σx rather than sampling σx from its full conditional distribution. The objective is to minimize the

effect of µx in the model so that Xs will not pull towards to the middle of the data range. In other
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words it is recommended to use a very informative prior for σx. Therefore, this project uses the

following prior distributions.

• γ ∼ G(1, 10−3)

• µx ∼ N(0.5, 1000)

• σ2
x = 0.0005

Figure 4.18: Approximated Curve for Noisy Oxygen Isotope Data:

Figure provides a approximated curve for Oxygen Isotope data. The noisy data is given in ”Red”.
”Green” points are the point wise estimates for Oxygen Isotope data eliminating measurement
error. The ”Black” curve is the curve obtained by evaluating the estimated coefficients on a fine
grid. The approximation was carried out using posterior means. Estimation uncertainty is indicated
by the two Gray lines which are 90% point wise confidence intervals.
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Figure 4.19: Trace Plots - Full Conditional Distributions from Gibbs Sampling:

Three plots on the figure represent each of the full conditional distributions sampled during the
MCMC iterations. Here the vertical lines on each of the three figures give an idea on burn-in. For
estimation we use the samples obtained beyond the vertical line as previous samples were
discarded as burn-in.
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Figure 4.20: Samples of Unobservable time ”t” from Metropolis Hastings algorithm:

Figure represent the sampling of noisy covariate(time points) using the M-H algorithm. The vertical
line at iteration 10000 indicate the stoppage for adapting the M-H algorithm for variance
adjustment and also the point for burn-in. The samples prior to vertical axis were discarded as
burn-in and the samples after vertical axis were only considered for estimation purposes

Figure 4.18, indicates that the slight alteration to the model in [10] succeeds in providing an ap-

proximation for the entire range of the data. Even the sampled values from Metropolis Hastings

algorithm as shown in figure 4.20 indicate that they are no longer pulled to the middle of the plot,

which was the case in figure 4.17. The figure 4.19 and figure 4.20 confirm that all full conditional

distributions are stable, hence our posterior is obtained. 90% posterior confidence intervals given

on figure 4.18 in Gray does not capture most of the variations in noisy Oxygen data. However we

do not wish to capture all of the variation within our confidence intervals as our primary objective is

to find a smooth underlying process for noisy data.
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4.3.2 Approximating a Curve for Titanium Concentration Data

The approximation of Titanium data will be carried out based on two time series data sets each hav-

ing 264 data points collected over a period of 2000 years. The time scale had a range from 300CE

to 1750CE. Both error on time measurements and error in Titanium levels were not given. Hence

σε and σU were sampled during the MCMC iterations. Similar to Oxygen Isotope approximation, all

time values were divided by 2000 for numerical reasons and sampling was carried out for 25,000

iterations, removing first 10,000 as burn-in. For Titanium data a truncated polynomial basis with 45

basis functions (p=4(degree of polynomial), k=40(number of knots)) was used in the approximation.

The prior distributions used were as follows,

• σ2
ε ∼ IG(1, 0.5)

• σ2
U ∼ IG(1, 10−3)

• γ ∼ G(1, 10−10)

• µ ∼ N(0.5, 1)

• σ2 ∼ IG(0.5, 1)
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Figure 4.21: Approximated Curve for Noisy Titanium Data:

Figure provides a approximated curve for Titanium data. The noisy data is given in ”Red”. ”Green”
points are the point wise estimates for Titanium data. The ”Black” curve is the curve which is
obtained by evaluating the estimated coefficients on a fine grid. The approximation was carried out
using posterior means. Estimation uncertainty is indicated by the two ”Gray” lines which are 90%
point wise confidence intervals.
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Figure 4.22: Trace Plots - Full Conditional Distributions from Gibbs Sampling:

Five plots on the figure represent each of the full conditional distributions sampled during the
MCMC iterations. The vertical lines on each of the five figures give an idea on burn-in. For
estimation we use the samples obtained beyond the vertical line as previous samples were
discarded as burn-in.
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Figure 4.23: Samples of Unobservable time ”t” from Metropolis Hastings algorithm:

Figure represent the sampling of noisy covariate(time points) using the M-H algorithm. The vertical
line at iteration 10,000 indicate the stoppage for adapting the M-H algorithm for variance
adjustment and also the point for burn-in. Thus the samples prior to vertical axis were discarded
as burn-in and the samples after vertical axis were only considered for estimation purposes

Figure 4.21 approximates noisy Titanium data and it indicates that the approximated curve provides

a reasonable fit even though it does not capture all the variations in the noisy data. At the same

time it should be mentioned that we do not wish to capture all the variation as the data comes with

error. We only look for a reasonable fit as our main objective is to identify whether the two data

sets correlate or not. Similar to Oxygen data Figures 4.22 and 4.23 indicate that, 25,000 samples

obtained from each of the full conditional distributions are adequate to obtain our desired posterior

distribution to approximate the Titanium data. The 90% posterior confidence intervals given on

figure 4.25 in Gray indicate that they capture large proportion of data within them.
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4.3.3 Identification of Dependency between Oxygen Isotope and Titanium
Data

This section discusses the dependency between the two time series data sets, Oxygen Isotope

and Titanium data using the approximated curves in chapters 4.3.1 and 4.3.2. The concept of

windowed moving correlations which was discussed in chapter 3.2 will be used for this purpose.

Windowed moving correlations between the two approximated curves were calculated at window

sizes of 10%, 25% and 50%. The estimated basis coefficients from Oxygen Isotope and Titanium

data were obtained and evaluated them on a fine grid of 1000 point to obtain two vectors of same

length. In order to asses significance of the windowed correlations the posterior correlations was

obtained. For each sample of smooth functions for Oxygen and Titanium obtained above, the

windowed correlations were obtained. The highest density interval estimates for the correlation

distributions were then obtained. Results of the windowed moving correlations are provided in the

following figures.
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Figure 4.24: Windowed Moving Correlations between Oxygen Isotope and Titanium data:

Figure provides the moving correlations calculated at a window size of 10%. The vertical lines on
the figure represent years 400, 800, 1200 and 1600 CE. The horizontal line represent the zero
correlation between the two data sets. The Gray lines indicate the 90% point wise confidence
intervals of moving correlations.
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Figure 4.25: Windowed Moving Correlations between Oxygen Isotope and Titanium data:

Figure provides the moving correlations calculated at a window size of 25%. The vertical lines on
the figure represent years 400, 800, 1200 and 1600 CE. The horizontal line represent the zero
correlation between the two data sets. The Gray lines indicate the 90% point wise confidence
intervals of moving correlations.
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Figure 4.26: Windowed Moving Correlations between Oxygen Isotope and Titanium data:

Figure provides the moving correlations calculated at a window size of 50%. The vertical lines on
the figure represent years 400, 800, 1200 and 1600 CE. The horizontal line represent the zero
correlation between the two data sets. The Gray lines indicate the 90% point wise confidence
intervals of moving correlations.

Figures 4.24, 4.25 and 4.26 indicate that most of the point wise moving correlations are close

to zero. This means that the chance of having any association between Oxygen Isotope data

and Titanium data is much less. Our primary goal is to identify whether there are any significant

correlations between the two data sets or not. We could get an idea on significance by looking at the

90% point wise confidence intervals and hence we can observe that a large proportion of point wise

moving correlations are insignificant as point wise confidence intervals have value zero throughout

the range. Therefore, we can conclude that these two time series data sets do not correlate each

other.

In [1], the two data samples (Oxygen Isotope and Titanium) were obtained from two different ge-

ographic locations. By looking at three moving correlation plots with non-significant correlations,

what we can say is, there could be some geographical factors that could have had an impact on
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rainfall. In other words, such geographical factors may have resulted in non-significant correlations

which were observed in figures 4.24, 4.25 and 4.26.

As a final remark, it should be mentioned that the methodology suggested in this project could

be used to find statistically significant correlations between two data sets which are irregularly

spaced and subjected to measurement errors even though these specific data sets resulted in

non-significant correlations.



Chapter 5

Further Improvements to the Study

This project is a methodological development and during this development we can identify three key

stages. They are developing a measurement error model to incorporate the measurement error of

the time scale, modelling irregularly spaced time series data via regressions P-splines and Bayesian

sampling mechanism and identification of dependency between two data sets either via functional

regression or using windowed moving correlations.

The first limitation of the study can be found at the development of measurement error model for

time series data. If we look at our data in chapter 4.3, we can identify that they are time dependent

measurements because they come from sediment cores. Thus, there is an important ordering

of points. This ordering was ignored during the estimation process and due to error imposed in

time scale (σU ), the time points could move around ignoring the order of the time points. This is

an area that we need to rectify during the estimation process in a potential future study and one

possible remedy is to have a small error (σU ) on top of time points in our measurement error model.

Alternatively we could use a likelihood function with an indicator or a Dirichlet sorting process.

The second limitation can be observed at the approximation of Oxygen Isotope data. As seen in

figures 4.15 and 4.17 it fails to give an approximation for the full range of Oxygen data. A possible

remedy for this could be to have an observation specific µx (prior), which makes Xs evenly spaced

rather than pulling them to a single value.
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