
Multiple-sized Bucketization For

Privacy Protection

by

Peng Wang

B.Sc., University of Science and Technology of China, 2010

Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Science

in the

School of Computing Science

Faculty of Applied Sciences

c© Peng Wang 2014

SIMON FRASER UNIVERSITY

Summer 2014

All rights reserved.

However, in accordance with the Copyright Act of Canada, this work may be

reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,

research, criticism, review and news reporting is likely to be in accordance

with the law, particularly if cited appropriately.

APPROVAL

Name: Peng Wang

Degree: Master of Science

Title of Thesis: Multiple-sized Bucketization For Privacy Protection

Examining Committee: Dr. Qianping Gu, Professor

Chair

Dr. Ke Wang, Professor

Senior Supervisor

Dr. Wo-shun Luk, Professor

Supervisor

Dr. Jiangchuan (JC) Liu, Associate Professor

Internal Examiner

Date Approved: May 5th, 2014

ii

Partial Copyright Licence

iii

Abstract

Publishing data without revealing the sensitive information about individuals is an important issue

in the field of computer science. In recent years, there are several methods widely used to protect

people’s privacy: generalization, bucketization and randomization. In this thesis, we begin with

giving definition of several well-known privacy protection notions: k-anonymity, `-diversity and t-

closeness, and discussing their three major drawbacks, namely, 1) the lack of flexibility for handling

different types of variable sensitivity; 2) the large loss of information utility; 3) the vulnerability to

auxiliary information. We then propose a new approach by generating the multiple-sized buckets

to offer a better protection of individual privacy. This approach also has a higher information utility

without violating personal privacy. We design two pruning algorithms for two-sized bucketing: lose-

based pruning and privacy-based pruning. Both of them make the two-sized bucketing algorithm

perform efficiently for the real data. We also implement a recursive algorithm to test our multiple

size bucketing approach. Finally, we apply it to the empirical studies on the real data to demonstrate

its effectiveness.

iv

Acknowledgments

I would like to thank my senior supervisor Professor Ke Wang for his support, invaluable guidance,

sharing of the knowledge and every opportunity he gave to me. He has always been there giving

me advice and direction in research during last three years. At the writing-up stage, he carefully

read every version of the draft and put his effort to improve my thesis. I really appreciate his help.

His dedication and passion for research has always been exemplary to me. I am grateful to Dr.

Wo-shun Luk for being my co-supervisor. I would also thank Dr. Qianping Gu, Dr. Jiangchuan Liu

for their advice on my research and defence.

To my friends Bo Hu, Chao Han, Hongwei Liang, Jiahua Yu, Jian Peng, Jiahua Yu, Jing Xv,

Judy Yeh, Jun Gan, Peng Peng, Ryan Shea, Weiguang Ding, Weipeng Lin, Xiaoqiang Ma, Yao

Wu, Yi Zhong, Yuechen Feng, Zhihui Guo, Zhensong Qian. Thank you for your constant support,

encouragement and the great time I have with you during my study in Simon Fraser University.

Finally, I would like to thank my family for their forever love.

v

Contents

Approval ii

Partial Copyright License iii

Abstract iv

Acknowledgments v

Contents vi

List of Tables viii

List of Figures ix

List of Programs x

1 Introduction 1
1.1 Assumptions of Data Collecting and Publishing . 2

1.2 Privacy-Preserving Data Publishing . 3

1.3 Contribution . 4

2 Background Knowledge 6
2.1 Related Research Areas . 6

2.2 The Record Linkage Model . 8

2.3 The Attribute Linkage Model . 9

2.3.1 `-Diversity . 10

2.3.2 t-Closeness . 11

2.3.3 β - Likeness . 12

3 Privacy and Utility Specification 14
3.1 Limitations of `-diversity . 14

vi

3.2 Bucketization . 15

3.3 Privacy Specification . 17

3.4 Utility Metric . 18

3.5 Problem Definition . 19

4 One-sized Bucketing 21
4.1 Data Assignment . 21

4.2 Validity Checking . 22

5 Two-sized Bucketing 25
5.1 Validity Checking . 25

5.2 Record Partitioning . 26

5.3 Pruning Algorithm for Two-sized Bucketing . 29

5.3.1 Indexing Bucket Setting . 29

5.3.2 Loss-Based Pruning . 31

5.3.3 Privacy-Based Pruning . 32

5.3.4 The Pruning Algorithm . 36

6 Multi-Sized Bucketing 38
6.1 Validity checking . 38

6.2 Top-Down Algorithm . 39

7 Empirical Studies 43
7.1 Criterion 1: Handling Varied Sensitivity . 44

7.2 Criterion 2: Data Utility . 45

7.2.1 Information Loss . 45

7.2.2 Relative Error . 46

7.3 Criterion 3: Scalability . 47

7.3.1 Scalability with |T | . 48

7.3.2 Scalability with |SA| . 49

8 Conclusion 50

Bibliography 51

vii

List of Tables

2.1 Table of Original Patient Data in Example 1 . 8

2.2 Table of External Data in Example 1 . 9

2.3 Data Set of 3-anonymous Patient Data . 9

3.1 Data Set of Example 4 . 16

3.2 Published Table T ∗ of Example 4 . 16

3.3 Data Set T of Example 5 . 19

3.4 Optimal Bucketing of Example 5 . 20

4.1 Procedure of Assignment of Example 6 . 22

4.2 Record Assignment for RRB of Example 6 . 22

5.1 Data Set of Example 8 . 28

5.2 Record Assignment of Example 8 . 28

5.3 Data Set of Example 10 . 34

6.1 Data Set of Example 13 . 40

7.1 Table of CENSUS Statistics . 43

7.2 Table of Parameter Settings . 44

viii

List of Figures

3.1 Frequency Distribution of SA . 15

6.1 Example for Top-down Bucketing Algorithm . 42

7.1 Frequency Distribution of SA . 44

7.2 The Relation Between ` (y-axis) and Privacy Coefficient θ (x-axis) 45

7.3 Information Loss (y-axis) vs Privacy Coefficient θ (x-axis) 46

7.4 Relative Error (%) (y-axis) vs Privacy Coefficient θ (x-axis) 47

7.5 Runtime (seconds) (y-axis) vs Cardinality |T | (x-axis) 48

7.6 Runtime (seconds) (y-axis) vs Scale-up Factor γ for |SA| (x-axis) 48

ix

List of Programs

5.1 Algorithm of Determining Records for B1 and B2 . 27

5.2 Two-sized Loss-Based Pruning Algorithm . 33

5.3 Two-sized Full Pruning Algorithm . 37

6.1 Top-down Bucketing Algorithm . 40

x

Chapter 1

Introduction

Data mining is an important research area in computer science nowadays when computers have

been widely used in all parts of business from the production to the management methods. Large-

scale data is collected and accumulated in dramatic pace. There is a huge demand to turn such

voluminous data into useful information. Data Mining is the process of extracting useful and previ-

ously unknown information from large data sets. It is also known as the analysis step of the “Knowl-

edge Discovery in Databases” process [1]. The main motivation for this research is its real-world

applications ranging from the policies making of the governments to marketing for business.

To succeed in data mining, we need high quality data and effective information sharing. The data

set must be large enough to contain useful information while remaining concise enough to be mined

within an acceptable time limit. Driven by mutual benefit and by regulations that require certain data

to be published, the demand for sharing data among various parties is increasing. The ability to

exchange data in different formats and the openness to share among different parties are required

for effective information sharing. Since detailed data in its original form often contains sensitive

information of individuals, sharing such data could potentially leak personal private information [2].

The current privacy protection practice primarily relies on rules and guidelines on the type of

publishable data, the use and storage of sensitive data. Rules and guidelines can not prevent those

adversaries who do not follow them in the first place. Contract and agreement can not keep a

person away from leaking personal information because of carelessness. For example, in 2007,

two computer discs holding the personal details of all families with a child under 16 went missing in

the UK. The Child Benefit data on them includes name, address, date of birth, National Insurance

Number and, where relevant, bank details of 25 million people [3].

It is very important to develop methods and tools for publishing data so that the published data

can remain practically useful while individual privacy is well protected. This undertaking is called

privacy-preserving data publishing (PPDP), which can be viewed as a technical response to com-

plement privacy policies. PPDP has received considerable attention in the community of computer

1

CHAPTER 1. INTRODUCTION 2

science. In recent papers [2] [4] [5] , the authors gave an excellent introduction on recent develop-

ment related to PPDP. They systematically reviewed and compared different approaches, discussed

the properties of PPDP and proposed future research directions. In what follows, we will first give

a brief account on data collecting and data publishing. Then, we outline the arrangement of this

thesis.

1.1 Assumptions of Data Collecting and Publishing

There are two phases involved in data collecting and publishing. In the data collection phase, the

data holders collect data from record owners. For example, if the hospital collects the personal

information from patients, then the data holder is the hospital, and the record owners are the pa-

tients. In the data publishing phase, the data holder releases the collected data to a data miner

or the public, called the data recipient, who will conduct data mining on the published data. If the

hospital publishes the collected data to the health research centre, then the health research centre

is the data recipient. The health research centre could conduct data mining (analysis) on the data

received.

Data holders can be classified as two types: the untrusted holders and the trusted holders [6].

Untrusted data holders may attempt to identify sensitive information from record owners. Various

cryptographic solution, anonymous communication [7], and statistical methods are proposed to

collect records anonymously from their owners. For the trusted data holders, record owners are

willing to provide their personal information to them. Throughout the whole thesis, we assume that

the data holders can be trusted and only consider the privacy issues in the data publishing phase.

Every data publishing situation in practice has its own assumptions and requirements on the

data holders, the data recipients, and the data publishing purpose. We can make the following

assumptions:

• The data holder is non-expert. The data holder does not have the ability or need to perform

data mining. Any activities of data mining are performed only by the data recipient. In some

cases, the data holder does not even know who will perform the data mining. Thus, the data

holder could only release anonymized data set for publishing. In other cases, the data holder

is likely interested in the data mining results and knows the data recipient in advance. To

obtain the expected result, the data holder could release customized data set with certain

specific patterns. In any case, the data recipient will get the data which is different from the

original data.

• The data recipient is possibly an adversary (attacker) . For example, we give the data to a

trusted company. However, it is impossible to guarantee every employee in the company is

trustworthy. This makes the encryption approaches useless, in which only the trustworthy

CHAPTER 1. INTRODUCTION 3

recipients have the key to encryption. The encryption does not work because encryption aims

to prevent an unauthorized party from accessing the data, but allows the authorized party to

have full access to the data. When we give the trustworthy company the access to the data,

we will take the risk that some untrustworthy people have the full access to the data too.

1.2 Privacy-Preserving Data Publishing

In the most basic forms of privacy-preserving data publishing (PPDP), the data holder has a table

of data in the form

T (Explicit Identifier, Quasi Identifier, Sensitive Attributes) (1.1)

where the “Explicit Identifier” is a set of attributes, such as names and social security numbers

(SSN), containing information that can be used to explicitly identify record owners. The “Quasi

Identifier (QID)” [8] is a set of attributes that could potentially, but not sufficiently, identify record

owners, such as sex, date of birth and zip codes. The combination of them is distinct ID for the

record. The “Sensitive Attributes (SA)” consists of sensitive person-specific information such as

disease, salary, disability status and so on [9]. These three sets of attributes are disjoint, that is, the

intersection of any two sets is the empty set.

Anonymization [10] is an approach to protect personal privacy by hiding the identity of records

and/or the sensitive data of record owners, even after modifying the data, it still can be used for

data analysis. Obviously, the “Explicit Identifiers” of record owners must be removed. Even after

all the “Explicit Identifiers” have been removed, the personal privacy of data owners can still be

leaked to adversaries. Sweeney showed an example in 2002 [11]. He stated that more than 87% of

the population in the U.S (216 million of 248 million) are likely unique based on only three “Quasi-

Identifiers”: 5-digit ZIP, gender and date of birth. Each of these attributes does not uniquely identify

a record owner but their combination, called the QID, often singles out a unique or a small number

of record owners. This approach is called linking attack.

To perform such linking attacks, the attacker needs two pieces of prior knowledge: the victim’s

record in the released data and the QID of the victim. For example, the attacker notices the victim

was hospitalized, and therefore knows that the victim’s medical record would appear in the released

patient database. It is rather easy for the attacker to obtain the victim’s zip code, date of birth, and

sex, which could serve as the “Quasi-Identifier” in linking attacks. Another famous example is the

release of detailed search logs of a large number of users by AOL (American Online). One data

mining researcher identified a lot of users based on the logs. AOL quickly acknowledged it was a

mistake and removed the logs due to re-identification of the researcher [12].

To prevent linking attacks, the data publisher published an anonymized table

CHAPTER 1. INTRODUCTION 4

T ∗ (QID, Sensitive Attributes),

where QID in the published data set T ∗ is an anonymized version of the original QID obtained

by applying anonymization operations to the attributes of QID in the original table T, defined in

(1.1). By anonymization operations, some detailed information is concealed so that several records

become indistinguishable with respect to QID. Consequently, if a person is linked to a record through

QID, this person is also linked to all other records that have the same value for QID. This makes

the link between the record owner and QID ambiguous. Alternatively, anonymization operations

could generate synthetic data table T ∗ based on the statistical properties of the original table T ,

or add noise to the original table T . Such methods usually reduce information represented in the

records. This reduction may lead to some loss in data management or the effectiveness of mining

algorithms. The anonymization problem is to produce an anonymized T ∗ that satisfies a given

privacy requirement determined by the chosen privacy model and to retain as much data utility as

possible. The utility of an anonymized table is measured by information metric.

1.3 Contribution

The main concern of this thesis is privacy-preserving data publishing, that is, publishing data allow-

ing data analysis while preserving data privacy. Below we will discuss the main contributions and

arrangement of this thesis.

In Chapter 2, we first discuss the difference between privacy-preserving data publishing and

its related works such as privacy-preserving data mining. We then focus on two privacy protection

models and introduce some concepts such as k-anonymous, `-diversity, t-closeness and β-likeness.

We also discuss some their major limitations, focusing on the poor utility and vulnerability to auxiliary

knowledge. They use a uniform privacy requirement. Therefore, all of them cannot deal with the

varied sensitivity and varied frequency distribution of different sensitive value very well.

In Chapter 3, we develop so-called multiple-sized bucketing approach to address the limitation

of `-diversity. We first discuss the limitations of `-diversity. Then we propose the definition of F ′-

privacy to specify the different privacy requirement for each sensitive value. Thus the records can

be put into buckets of different sizes. The flexibility of bucket sizes makes it easy to find a solution

to satisfy the privacy protection requirements. Then we define the utility metric to quantify the

information loss of bucketing. At last, we clearly state the problem we are going to solve in this

thesis using the definitions of privacy F ′-privacy and utility metric. In the next three chapter, we

design the protocols to solve this defined problem.

In Chapter 4, we discuss the simplest case of bucketing: one-sized bucketing. We first introduce

the Round-Robin bucketing method to assign the records as evenly as possible. Then we propose

the validation condition for the one-sized bucketing. Using this condition, we are able to eliminate

the unqualified bucket setting without trying to assign records to the buckets.

CHAPTER 1. INTRODUCTION 5

In Chapter 5, we propose the two-sized bucketing approach. First, we state the validation check-

ing condition in this case and give a partitioning algorithm. To find the optimal bucket setting, we

need to list all possible bucketing to do the validation checking. The valid bucket setting with small-

est information loss is the optimal solution. There are many possible settings to check. In order to

improve the speed of algorithm, we introduce two pruning algorithms for two-sized bucketing: one

is loss-based pruning and the other is privacy-based pruning.

In Chapter 6, we first model the multiple-sized bucketing problem and state its validation con-

dition. The multiple-sized bucketing can be solved by Integer Linear Programming (ILP) algorithm.

However, as we know, the ILP algorithm is NP hard. Hence, we propose a top-down algorithm by

recursively calling the two-sized bucketing algorithm to get an approximate solution for the multiple-

sized bucketing.

In Chapter 7, we evaluate several bucketing algorithms, including loss-based pruning and privacy-

based pruning algorithm and top-down multiple size algorithm on the real data set CENSUS. The

figures illustrate that the high performance of top-down multiple size bucketing algorithm, and effec-

tiveness of the two pruning strategies.

In Chapter 8, we sum up what we did in this thesis and discuss further work to be explored in

this direction.

Chapter 2

Background Knowledge

In this chapter, we begin with discussing some related research such as privacy-preserving data

mining, privacy-preserving data publishing and statistical disclosure control. We then introduce

several well-known anonymization approaches of data publishing by going through two main privacy

protection models. Finally, we outline some drawbacks of these approaches.

2.1 Related Research Areas

Motivated by the growing concern about the personal privacy information in published data, a con-

cept called privacy-preserving data mining (PPDM) was introduced in 2000s [13] [14] [15]. The

initial idea of PPDM was to extend traditional data mining techniques to work with the modified data

after hiding sensitive personal information. One of the key issues was how to process the data

mining to the modified data. Usually we need to take the data mining algorithms into consideration.

In contrast, privacy-preserving data publishing (PPDP) does not necessarily consider specific data

mining tasks, which is usually unknown in the data publishing phase.

The difference between PPDP and PPDM lies in the following several aspects.

• The main focus of PPDP is on the techniques for publishing data rather than the the tech-

niques for data mining. It is expected that standard data mining techniques are applied to the

published data. The data holder in PPDM needs to randomize the data in such way that data

mining results can be recovered from the randomized data. In this case, the data holder must

fully understand the data mining tasks and the algorithms involved. However, the data holder

in PPDP usually is not an expert in data mining.

• Both randomization and encryption do not preserve the truthfulness of values at the record

6

CHAPTER 2. BACKGROUND KNOWLEDGE 7

level. Therefore, the released data is basically meaningless at the record level to the recipi-

ents. In such case, the data holder in PPDM may consider releasing the data mining results

rather than publishing the modified data.

• PPDP primarily “anonymizes” the data by hiding the identity of record owners, whereas PPDM

seeks to directly hide the sensitive data. So PPDP can keep more information in the modi-

fied data set, people can use the data mining techniques to find the interesting information

according their needs.

Another related research area is in the field of statistical disclosure control (SDC) [16], where the

research focuses on privacy-preserving publishing methods for statistical tables. There are mainly

three types of data disclosures: 1) identity disclosure, 2) attribute disclosure, 3) inferential disclosure

[17]. Identity disclosure occurs when an individual is linked to a particular record in the released

table. Attribute disclosure occurs when new information about some individuals is revealed. For

example, the released data makes it possible to infer the characteristics of an individual more accu-

rately than it would be possible before the data release. Identity disclosure often leads to attribute

disclosure. Once there is identity disclosure, an individual is re-identified and the corresponding

sensitive values are revealed. Attribute disclosure can occur with or without identity disclosure.

Inferential disclosure occurs when information can be inferred with high confidence from statistical

properties of the released data. For example, the data may show a high correlation between income

and purchase price of a home. As the purchase price of a home is typically public information, a

third party might use this information to infer the income of a data subject.

The work of SDC involves the non-interactive query model [18] and the interactive query model

[19] [20]. In the study of the non-interactive query model, the data recipient can submit one query to

the system. This type of non-interactive query model may not fully address the information needs of

data recipients because, in some cases, it is very difficult for a data recipient to accurately construct

a query for a data mining task in one shot. In the study of the interactive query model, the data

recipients, including adversaries, can submit a sequence of queries based on previously received

query results. The database server is responsible for keeping track of all queries of each user and

determine whether or not the currently received query has violated the privacy requirement with

respect to all previous queries.

There has been a series of results [18] [20] [21] [22] that suggests an adversary (or a group

of corrupted data recipients) will be able to reconstruct all but 1 − o(1) fraction of the original data

exactly, which is a serious violation of privacy. The interactive privacy-preserving query model may

only answer a sub-linear number of queries in total. When the maximum number of queries is

reached, the query service must be closed to avoid privacy leak. In the case of the non-interactive

query model, the adversary can issue only one query and, therefore, the non-interactive query

CHAPTER 2. BACKGROUND KNOWLEDGE 8

Job Sex Age Disease
Engineer Male 35 Cancer
Lawyer Male 38 HIV

Engineer Male 38 Cancer
Singer Female 30 Flu
Singer Female 30 HIV
Dancer Female 30 HIV
Dancer Female 30 Flu

Table 2.1: Table of Original Patient Data in Example 1

model can not achieve the same degree of privacy defined by the interactive model. We can con-

sider that privacy-preserving data publishing is a special case of the non-interactive query model.

The main focus of this thesis is PPDP. We will discuss two main privacy protection models in

PPDP, namely the record linkage model and the attribute linkage model.

2.2 The Record Linkage Model

If a privacy threat occurs when an attacker is able to link a record owner to a record in a published

data table, this threat is called record linkage [23] [24]. In the record linkage model, some value of

QID identifies a small number of records in the published table T. If the victim’s QID get identified,

the victim is vulnerable to being linked to the small number of records in this group. Hence, there

are only a small number of possibilities for the victim’s record, the adversary has a good chance to

uniquely identify the victim’s record from this group under the help of additional knowledge.

Example 1. Suppose that a hospital publishes patients’ records in Table 2.1 to a research center.

Suppose that the research center has access to the external Table 2.2 and knows that every person

with a record in Table 2.2 has a record in Table 2.1. If two tables on the QID attribute (Job, Sex, Age)

are joined, the adversary may link the identity of a person to his/her Disease. For example, Bob,

a 35-year-old male engineer, is identified as an cancer patient by QID =< Engineer,Male, 35 >

after the join.

In 1998, Samarati and Sweeney [25] [26] [11] proposed the notion of k-anonymity in order to

prevent the record linkage attack through QID: if one record in the table have some value of QID, at

least k-1 other records also have the same value of QID. This means that the minimum group size

on QID is at least k. A data publishing policy satisfying this requirement is called k-anonymous.

For the k-anonymous policy, each record in the data set is indistinguishable from at least k-1 other

records with respect to same QID. Thus the probability of linking a victim to a specific record through

QID is at most 1/k.

CHAPTER 2. BACKGROUND KNOWLEDGE 9

Name Job Sex Age
Bob Engineer Male 35
John Lawyer Male 38
Jack Engineer Male 38
Alice Singer Female 30
Mary Singer Female 30

Gayze Dancer Female 30
Emily Dancer Female 30

Table 2.2: Table of External Data in Example 1

Definition 1. Given a table, if its minimum group size on QID is at least k, we say this table satisfies

k-anonymity.

Job Sex Age Disease
Professional Male [35− 40) Cancer
Professional Male [35− 40) Cancer
Professional Male [35− 40) HIV

Artist Female [30− 35) Flu
Artist Female [30− 35) HIV
Artist Female [30− 35) HIV
Artist Female [30− 35) HIV

Table 2.3: Data Set of 3-anonymous Patient Data

Example 2. Table 2.3 shows a 3-anonymous table generated from Table 2.1. It has only two

distinct groups on QID, namely {Professional,Male, [35− 40)} and {Artist, Female, [30− 35)}.
Since each group contains at least 3 records, the table is 3-anonymous. If we try to link the records

in Table 2.2 to the records in Table 2.3 through QID, each record is linked to either no record or at

least 3 records. By this way the privacy of data owners is protected.

Notice that k-anonymity does not take the sensitive information into account. So the records

in one group may share one sensitive value, which causes the information leak. The sensitive

attributes play an important role in the attribute linkage model we are going to discuss next section.

2.3 The Attribute Linkage Model

If a privacy threat occurs when an attacker is able to link a sensitive attribute in a published data

table, this threat is called attribute linkage [2]. In the attribute linkage model, the adversary could

infer his/her sensitive values from the published data T ∗ without being able to identify the record

CHAPTER 2. BACKGROUND KNOWLEDGE 10

of the target victim exactly. That is done by associating the set of sensitive values associated to

the group that the victim belongs to. Even if k-anonymity is satisfied, attribute linkage can still pose

privacy into threat since an attacker can still find out the relation for some sensitive values in a

group. This can be seen in the following example.

Example 3. Consider the 3-anonymous data in the Table 2.3. Suppose the attacker knows that

the target victim Mary is a female singer at age 30 and owns a record in the table. The adversary

may infer that Mary has HIV with 75% confidence because 3 out of 4 female artists within the age of

[30, 35) have HIV. Regardless of the correctness of the inference, Mary’s privacy has been disclosed.

To eliminate attribute linkage threat, Clifton [27] suggested limiting the released data size. As we

know that some sensitive data such as HIV patients’ data should be hard to obtain. Limiting data

size will make the data easy to attack. Several other approaches have been proposed to address

the issue of privacy threat caused by attribute linkage. The main idea is to disconnect the link

between QID attributes and sensitive attributes.

In what follows we will discuss three approaches: `-diversity, t-closeness and β-likeness.

2.3.1 `-Diversity

Although k-anonymity protects against identity disclosure, it is insufficient to prevent attribute disclo-

sure. To solve this problem, Machanavajjhala et al. [28] introduced a new notion of privacy principle,

called `-diversity, to prevent attribute linkage. It not only maintains the minimum group size, but also

maintains the diversity of the sensitive attributes. The `-diversity model for privacy is defined as

follows:

Definition 2. Let qid be a value of the QID attribute in published table T ∗. A qid-block is defined

to be a set of tuples such that their qid values are generalized into the unified value. We say a

qid-block is `-diversity if it contains at least ` well-represented values for sensitive attribute. A table

is `-diversity if every qid-block is `-diversity.

The principle of `-diversity is to ensure ` well-represented values for the sensitive attribute in

every qid-block. Distinct `-diversity ensures that each qid-block has at least ` distinct values for sen-

sitive attribute. Distinct `-diversity does not prevent probabilistic inference attacks. It may happen

that in an anonymized class one value appears much more frequently than other values, enabling

the adversary to conclude that an entity in the qid-block is very likely to have that value. For exam-

ple, in one qid-block, there are ten tuples. In the “Disease” attribute, one of them is “Cancer”, one is

“HIV”, and the remaining eight are “Flu”. This satisfies 3-diversity, but the attacker can still get the

conclusion that the person’s disease is “Flu” with the accuracy of 80%.

In 2006, Xiao and Tao [29] defined the `-diversity partition that guarantees the `-diversity. A

partition consists of several subset of T ∗ such that each tuple in T ∗ belongs to exactly one subset.

CHAPTER 2. BACKGROUND KNOWLEDGE 11

We refer to these subsets as qj (1 ≤ j ≤ m). Namely, ∪mj=1qj = T and, for any 1 ≤ j1 6= j2 ≤ m,

qj1 ∩ qj2 = ∅.

Definition 3. (`-diversity partition) A partition of the table T ∗ with m subsets is `-diversity if each

subset qj (1 ≤ j ≤ m) satisfies the following condition. Let v be the most frequent value in qj , and

cj(v) the number of tuples in this subset. Then

cj(v)/ |qj | ≤ 1/` (2.1)

where |qj | is the size (the number of tuples) of the subset qj .

Later in the thesis, we mean `-diversity partition whenever we use the terminology `-diversity.

An `-diversity partition exists if and only if the original data T satisfies the eligibility condition

[28]: at most n/` tuples are associated with the every sensitive value, where n is the size of T.

The `-diversity has some advantages. It does not require the knowledge of the full distribution of

the sensitive values. We only need the number of tuples with most frequent sensitive values. The

larger ` is, the more information is hidden in the data. However, for all different sensitive value,

it require them to have unified privacy requirement. This is unnecessary and hard to achieve. For

example, we have a data set containing 10000 patients with sensitive attribute being disease. In this

data, one of patients has HIV, 100 of them have Cancer and the rest of them have Flu. Obviously

we have n = 10000. Following from the above eligibility condition, for any ` larger than 1 we can not

achieve the `-diversity since, for the sensitive value Flu, we have

10000− 1− 100 = 9899 > 10000/`

when ` > 1. The `-diversity cannot be satisfied if the distribution is skewed, or small ` must be used,

which does not provide sufficient protection.

2.3.2 t-Closeness

Li et al. [30] observed that when the overall distribution of a sensitive attribute is skewed, `-diversity

does not prevent from attribute linkage attacks. Consider a patient table where 95% of records have

Flu and 5% of records have HIV. Suppose that a QID group has 50% of Flu and 50% of HIV and,

therefore, satisfies 2-diversity. We can not assign any value of ` > 2 to solve this problem. If ` = 3,

the possibilities of these two sensitive values are both smaller than or equal to 1/3 according to

Definition 3. The QID group is not fully filled. However, this group presents a serious privacy threat

because any record owners in the group could be inferred as having HIV with 50% confidence,

compared to 5% in the overall table.

To prevent skewness attack, Li et al. proposed a privacy criterion, called t-closeness, which

requires the distribution of a sensitive attribute in any group on QID to be close to the distribution of

the attribute in the overall table.

CHAPTER 2. BACKGROUND KNOWLEDGE 12

Definition 4. A subset is said to have t-closeness if the distance between the distribution of a

sensitive attribute in this class and the distribution of the attribute in the whole table is no more than

a threshold t. A table is said to have t-closeness if all subsets have t-closeness.

In this definition, the Earth Mover’s Distance(EMD) [31] function is used to measure the distance

between two distributions of sensitive values. We will not give the definition of this function here.

We refer to [31] for the details.

There are several limitations and weakness in t-closeness. First, it lacks the flexibility of spec-

ifying different protection levels for different sensitive values. We can only specify the value t rep-

resenting the overall distribution changes. Second, it is not clear how the value t is related to

the information gain. Its relation to the level of privacy is also very complicated. Third, enforcing

t-closeness would greatly degrade the data utility because it requires the distribution of sensitive

values to be the same in all QID groups. This would significantly damage the correlation between

QID and sensitive attributes. One way to reduce the damage is to relax the requirement by adjust-

ing the thresholds with the increased risk of skewness attack, or to employ the probabilistic privacy

models [32].

2.3.3 β - Likeness

In 2012, Jianneng Cao and Panagiotis Karas stated that just like `-diversity is open to many ways

of measuring the number of “well-represented” value in qid-block, the t-closeness model is open

to diverse ways of measuring the cumulative difference between the overall distribution and that a

privacy model should provide grounds for effective and human-understandable policy. They pointed

out that any functions aggregate absolute difference, including EMD, do not provide a clear privacy

guarantee. So they introduced the β-likeness [33], which is an appropriately robust privacy model

for microdata anonymization. It guarantees that adversary’s confidence on the likelihood of a certain

SA value should not increase by a predefined threshold.

Definition 5. For table T with sensitive attribute SA, let V = {v1, . . . , vm} be the SA domain, and

P = (p1, . . . , pm) the overall SA distribution in T. An equivalence class with SA distribution Q =

(q1, . . . , qm) is said to satisfy β-likeness if and only if maxi{D(pi, qi), pi ∈ P, qi ∈ Q, pi < qi} ≤ β,

where D is a distance function between pi and qi and β > 0 is a threshold.

They define the distance function as D(pi, qi) = qi−pi

pi
, so they can get the relative difference

instead of the absolute difference. They greatly improve the performance of t-closeness. Two

anonymization schemes are used. One is based on generalization, and the other one is based

on perturbation. They use unified threshold for every different sensitive value. `-diversity has one

absolute bond for the possibility distribution 1/`. And β-likeness use a unified relative bond for the

possibility distribution. D(pi, qi) = qi−pi

pi
≤ β. The threshold requires the possibility distribution

CHAPTER 2. BACKGROUND KNOWLEDGE 13

in modified data must be related to the original possibility distribution. The sensitivity level is not

necessary related to the original possibility distribution. For example, as we know, HIV is very

sensitive for a medical data set. If we have one original medical data set, the possibility of HIV

in it is relatively high, it does not mean HIV is less sensitive in this data set. They also have

noticed the phenomenon that when the distribution of SA value is skewed, it is highly possible to

get unsatisfactory solution by generation.

In the next chapter, to overcome the disadvantage of the `-diversity, we will propose a multiple-

sized bucketization approach to protect the personal privacy. We require that the sizes of buckets

are only related to the records in the buckets. The more sensitive records are put into the larger

buckets. The less sensitive records are put into the smaller buckets.

Chapter 3

Privacy and Utility Specification

In the rest of this thesis, we will describe our protocol for multi-sized bucketization approach to

address the limitations of `-diversity defined in Section 2.3.1. To do so, we first define the privacy

requirement and the information loss metric in this chapter. Then we will define the problem we are

going to study in this thesis. The main motivations come from limitations of the `-diversity.

3.1 Limitations of `-diversity

It is sometimes difficult and unnecessary to achieve `-diversity. Moreover, `-diversity is insufficient

to prevent personal information disclosure. For `-diversity, each subset requires not only having

enough different sensitive values, but also the different sensitive values being distributed evenly.

Thus it is unable to handle sensitive values that have skewed distribution and varied sensitivity.

However, in many real-life applications the privacy thresholds vary for different sensitive values. For

example, we assume that HIV is more sensitive than Flu, so HIV requires a smaller threshold 1/`,

thus, a larger ` for `-diversity principle must set according to the most sensitive value. According

to the eligibility condition of `-diversity, it is very difficult to achieve `-diversity for large `. Such

specification is unnecessarily hard to satisfy, which leads to either excessive distortion or no data

being published. For example, the CENSUS data have 300k records with “Occupation” attribute or

“Education” attribute as a sensitive attribute. As the Figure 3.1 shows, the frequency distribution

of “Education” is more skewed. In the case of considering “Occupation” as a sensitive attribute,

the maximum and the minimum frequency are 7.5% and 0.18%, so the maximum ` for `-diversity is

13 because of the eligibility condition is defined by the most frequent sensitive attribute ` ≤ 1/7.5%

= 13.33. Therefore, it is impossible to protect the sensitive records which have higher privacy

protection requirement by having bigger `, such as ` = 25.

Even if it is possible to achieve such `-diversity, enforcing `-diversity with big ` for all different

14

CHAPTER 3. PRIVACY AND UTILITY SPECIFICATION 15

sensitive values leads to a large information loss of answering queries after the bucketization [34]

[35]. Bucketization hides the association between QID values and the SA values of every record in

the buckets. This is widely used in information protection of large data set. For example, if we put

ten records into one bucket, we only know ten of them share the ten SAs, we loss the information

about their original SAs. The bucket size indirectly determines the information loss. If we put 500

records into one bucket, the information loss of it is not as small as if we put them into 100 buckets,

which have 5 records in each bucket.

(a) EDU (b) OCC

Figure 3.1: Frequency Distribution of SA

3.2 Bucketization

We consider a bucketization problem in which buckets of different sizes can be formed to satisfy

different privacy requirements. The large buckets are used for records having more sensitive at-

tributes and the small buckets are used for records having less sensitive attributes. This approach

is called multiple-sized bucketing. In this approach, the records in T are grouped into different size

buckets. Each bucket of QID is related to a bucket of SA. Consider a data table T (QID, SA),

where QID is a set of attributes {A1, · · · , Ad}, called the quasi-identifier, and SA is the sensitive

attribute. The domain of SA is {x1, · · · , xm}. The symbol oi denotes the number of records for

xi in T and fi = oi/|T | denotes the frequency of xi in T , where |T | is the number of records in

T . When we publish the data, we will put records into different buckets, with an unique bucket ID,

called “BID”. Let T ∗ denote the published version of T . We use g to refer to both a bucket and the

bucket ID of a bucket, depending on the context. T ∗ is published in two tables, QIT (QID,BID)

and ST (BID, SA). Every record r in T is grouped into a bucket g. Attacker wants to infer the SA

value of a target individual t. The adversary has access to T ∗. For each SA value xi, Pr(xi|t, T ∗)

CHAPTER 3. PRIVACY AND UTILITY SPECIFICATION 16

denotes the probability that an individual t is inferred to have a sensitive value xi. For now, we con-

sider an adversary with the following auxiliary information: a t’s record is contained in T , t’s values

on QID, i.e. t[QID], and the algorithm used to produce T ∗.

For a target individual t with t[QID] contained in a bucket g, |g, xi| denotes the number of

occurrence of (g, xi) in ST and |g| denotes the size of bucket g. The probability of inferring the SA

value of xi is Pr(xi|t, g), which is equal to |g, xi|/|g|.

Pr(xi|t, g) = |g, xi|/|g|

We use Pr(xi|t, T ∗) to define maximum Pr(xi|t, g) for any bucket g containing t[QID].

Pr(xi|t, T ∗) = max(Pr(xi|t, g)) ∀g

Example 4. A hospital maintains a data set for answering count queries on the medical data such

as T in Table 3.1, which contains four columns, Gender, Age, Zipcode and Disease. Among them,

the Gender, Age and Zipcode are QID. The Disease is SA. Names of data holders have already

been deleted to protect the privacy of patients.

Gender Age Zipcode Disease
Male 40 54321 Brain Tumor

Female 20 54321 Flu
Female 20 54324 HIV

Male 32 54322 Flu
Female 57 61234 Cancer
Female 22 61434 HIV

...

Table 3.1: Data Set of Example 4

Table 3.2(a) and Table 3.2(b) show the tables of QIT and ST for one bucketization. To infer the

SA value of Alice with QID = 〈Female, 61434〉, the adversary first locates the bucket that contains

(a) QIT of anonymized table T ∗

Gender Age Zipcode BID
Male 40 54321 1

Female 20 54321 1
Female 20 54324 1

Male 32 54322 2
Female 57 61234 2
Female 22 61434 2

...

(b) ST of anonymized table
T ∗

BID Disease
1 Brain Tumor
1 Flu
1 HIV
2 Flu
2 Cancer
2 HIV
... ...

Table 3.2: Published Table T ∗ of Example 4

CHAPTER 3. PRIVACY AND UTILITY SPECIFICATION 17

〈Female, 61434〉, i.e., BID = 2. There are three diseases in this bucket, Flu, Cancer and HIV,

each occurring once. So Pr(xi|Alice, 2) = 33.3%, where xi is Flu, Cancer or HIV. Both two buckets

satisfy the 3-diversity partition rule mentioned in the Definition 3, for all diseases, Pr(xi|t, g) ≤
1/3. It means this partition satisfies the 3-diversity principle. Now the adversary only knows the

patients have one of the three diseases, but does not know which one of three diseases is. So this

bucketization causes the information loss.

3.3 Privacy Specification

To overcome constraints of `-diversity mentioned in the Section 2.3.1, which is unified privacy re-

quirements for different sensitive value, we propose the corresponding privacy requirement for each

sensitive value xi as follows:

Definition 6. [F ′-Privacy] For each SA value xi, f ′i -privacy specifies the requirement that Pr(xi|t, T ∗) ≤
f ′i , where f ′i is a real number in the range (0, 1]. F ′-privacy is a collection of f ′i -privacy for all SA

values xi.

For example, the publisher may set f ′i = 1 for some xi’s that are not sensitive at all, set f ′i
manually to a small value for the highly sensitive values xi, and set f ′i = min{1, afi + c} for the rest

of SA values whose sensitivity grows linearly with their frequency, where a and c are constants. In

our approach, we assume that f ′i is specified but does not depend on how f ′i is specified and f ′i

is not necessarily related to fi. Since we do not use unified privacy requirement as for `-diversity,

the relatively more sensitive records, such as the ones having HIV, which has higher privacy re-

quirement, are put into the bigger buckets, and less sensitive records, such as the ones having Flu,

which has lower privacy requirement, are put into smaller buckets. This meets the privacy protection

requirement with lower information loss. It makes the F ′-privacy specification suitable for handling

SA of skewed distribution and varied sensitivity. We will evaluate this claim on real life data sets in

Chapter 7. For the rest of thesis, we assume f ′i ≥ fi for all xi. This assumption can be justified by

the following statement:

Lemma 1. If a bucketization T ∗ satisfying F ′-privacy exists, then f ′i ≥ fi for all xi.

Proof. Suppose that we put the data into n buckets gj (j = 1, . . . , n), each bucket size |gj | < |T ∗|.
Pr(xi|t, T ∗) is the maximum Pr(xi|t, gj) of any buckets gj . We know the occurrence of xi is oi.

oi =
∑
j

Pr(xi|t, gj)|gj | ≤
∑
j

Pr(xi|t, T ∗)|gj | = Pr(xi|t, T ∗)
∑
j

|gj |

so we can get

fi =
oi∑
j |gj |

≤ Pr(xi|t, T ∗) = f ′i

Therefore, f ′i is bigger than or equal to fi.

CHAPTER 3. PRIVACY AND UTILITY SPECIFICATION 18

It follows from the above lemma that, if there exists one xj such that f ′j < fj , there is no

bucketization to satisfy it.

3.4 Utility Metric

One concern for data publishing is the information loss when the privacy requirement is satisfied.

For each bucket g, every record in it is associated to the SA values in g with an equal chance. In

the original data set, each record can be treated as a bucket. The accuracy to infer its sensitive

attribute is 100%. After the bucketization, if we have two records in one bucket, one of them has

Flu, and the other one has Cancer. The accuracy of them having Flu or Cancer is 50%. For the

same data set, the records in small buckets have high accuracy to be associated with the SA, and

the records in large buckets have low accuracy to be associated with the SA. Thus the bucket size

|g| can represent the accuracy level of associating sensitive values with records. We define the

information loss as follows:

Definition 7. Let T ∗ consist of a set of buckets {g1, · · · , gb}. The Information Loss (IL) of T ∗ is

defined by

IL(T ∗) =

√∑b
i=1(|gi| − 1)2

|T ∗| − 1
(3.1)

The immediate result we can get from this definition is as follows:

Lemma 2. For any bucketization T ∗ consisting of a set of buckets {g1, · · · , gb}, the values of IL(T ∗)

lie in the range of [0, 1].

Proof. The raw data T ∗ is one extreme case in which each record itself is a bucket, then |gi| = 1,

therefore IL = 0. The single bucket containing all records is the other extreme case where |g1| =

|T ∗| and IL = 1. We now consider all other cases of T ∗. Obviously, IL > 0 We only need to prove

that √√√√ b∑
i=1

(|gi| − 1)2 < |T ∗| − 1, that is,
b∑

i=1

(|gi| − 1)2 < (|T ∗| − 1)2.

Knowing |T | =
∑b

i=1 |gi|, by direct calculation we can prove the above inequality.

Since |T | is constant, to minimize IL, we shall minimize the following loss metric:

Loss(T ∗) =

b∑
i=1

(|gi| − 1)2 (3.2)

Note that the loss metric Loss has the additivity property: if T ∗ = T ∗1 ∪ T ∗2 , then Loss(T ∗) =

Loss(T ∗1) +Loss(T ∗2). This is very useful when we use the Top down bucketing algorithm in Section

CHAPTER 3. PRIVACY AND UTILITY SPECIFICATION 19

6.2. This definition will also be extensively used for the information loss of the buckets in next

chapter when we compare the information losses to decide whether we should divide the data into

two parts or not.

3.5 Problem Definition

In this section, we consider the general form of the bucketization problem where the number of

different size buckets are unknown and are determined by the minimization of the loss function.

Let Bj be a set of all Sj-sized buckets and the quantity of elements in Bj is denoted by bj ,

where S1 < · · · < Sk and bj > 0, j = 1, · · · , k. We say that ∪jBj is a solution with respect to

(T, F ′) if there is a distribution of records in T to the buckets in B1, · · · , Bk such that all bucket slots

are filled and no frequency of a value xi in a bucket is more than its f ′i . Following from Equation

(3.2), the collection of buckets specified by ∪Bj has the loss
∑q

j=1 bj(Sj − 1)2, we denote this loss

by Loss(∪Bj). A solution is optimal if it has the minimum loss among all solutions with respect to

(T, F ′). The generalized problem is defined below.

Definition 8. (Optimal Multiple-sized Bucket Setting) Given a table T and F ′-privacy, the general-

ized bucketing problem is to find (b1, · · · , bk, S1, · · · , Sk) such that ∪jBj has the minimum Loss(∪Bj)

with respect to (T, F ′).

Notice that the input to this problem is only T and F ′; the number k of different bucket sizes is

unknown and must be determined.

x1 x2 x3 x4 x5 x6 x7 x8 x9
oi 2 2 2 4 4 4 4 7 7
fi 0.056 0.056 0.056 0.11 0.11 0.11 0.11 0.19 0.19
f ′i 0.187 0.187 0.187 0.353 0.353 0.353 0.353 0.603 0.603
S∗ 6 6 6 3 3 3 3 2 2

Table 3.3: Data Set T of Example 5

Example 5. Assume we have a data set T with 36 records as shown in Table 3.3. The privacy

requirement F ′ is defined by f ′i = 3fi+0.02. S∗ in Table 3.3 represents the possible smallest buckets

which records can be put into without violating the privacy requirement. The optimal solution is the

solution which can get the smallest information loss without violating privacy requirements. So we

can get the optimal buckets setting with smallest information loss, defined in the Equation (3.2):

Loss(T ∗) =

b∑
i=1

(|gi| − 1)2 = 2 ∗ (6− 1)2 + 4 ∗ (3− 1)2 + 4 ∗ (2− 1)2 = 70

CHAPTER 3. PRIVACY AND UTILITY SPECIFICATION 20

Bucket1 x1 x2 x3 x8 x8 x9
Bucket2 x1 x2 x3 x8 x9 x9
Bucket3 x4 x5 x6
Bucket4 x4 x5 x6
Bucket5 x4 x5 x6
Bucket6 x4 x5 x6
Bucket7 x8 x9
Bucket8 x8 x9
Bucket9 x8 x9
Bucket10 x8 x9

Table 3.4: Optimal Bucketing of Example 5

shown in Table 3.4. We also show the non-optimal solution as shown in the next example. In this

buckets setting, we get six buckets of six records. The information loss is

Loss(T ∗) = 6 ∗ (6− 1)2 = 150.

The example clearly demonstrate the optimal bucketing has the smallest information loss. Next,

we will introduce the one-sized bucketing, two-sized bucketing and multiple-sized bucketing accord-

ingly. One-sized bucketing means there is only one kind of bucket size while two-sized bucketing

represent a bucket setting having two kinds of bucket size. Multiple-sized bucketing protocol is the

the protocol we are looking for this problem.

Chapter 4

One-sized Bucketing

In this chapter, we discuss the simplified version of multiple bucketizaiton: one-sized bucketing. We

first introduce the data assignment for one-sized bucketing. Then we define the validation conditions

for one-sized bucketing.

4.1 Data Assignment

In this section, we consider the bucketing with only one kind of bucket size, that is, a set of b buckets

of same size S. So we have B = {g0, . . . , gb−1}. Let |B| denote the total capability of all buckets

in B, i.e., |B| = b ∗ S . Suppose that we want to assign the records in T to the buckets in B. We

assume that B has exactly the same capacity as the number of records in T , i.e., |T | = |B|. For

a given F ′-privacy, which is defined in Definition 6, we say that there exists a solution for (T, F ′) if

there is a distribution of records in T to the buckets in B such that all bucket slots are filled and no

frequency of a value x in the bucket is more than its required frequency f ′. To assign the records as

evenly as possible, we introduce a Round-Robin Bucketing (RRB) method. In the RRB, the records

for xi are assigned to buckets in circular order with same possibility. We start from the first positions

of buckets. After all of them are filled, we go to fill the next positions of all buckets until all the records

are assigned to the buckets. Therefore, the maximum and minimum occurrences of records with

same sensitive value in any bucket differ by at most 1. A RRB solution is an assignment obtained

by RRB method. The order of assignment for oi does not matter in the one size bucketing.

For each value xi, 1 ≤ i ≤ m, we assign the t-th record of xi to the bucket gs, where s =

(o1 + · · · + oi−1 + t) mod b, where oi is the number of occurrence of xi in T . In other words, the

records for xi are assigned to the buckets in a round-robin manner. It is easy to see that the number

of records for xi assigned to a bucket is either b|oi|/bc or d|oi|/be.

21

CHAPTER 4. ONE-SIZED BUCKETING 22

Example 6. We are given a table containing 36 tuples with oi given in the Table 3.3. Suppose that

the F ′-privacy is given by f ′i = 3fi + 0.02. For the least frequent sensitive value, we have o1 = 2,

f1 = 0.005556. So f ′1 = 0.1866 and S = d 1
f ′
1
e = 6. Consider the bucket setting S = 6, b = 6.

We put the records into the buckets. The order of records assignment is not important in the one

size bucketing, the key point is assigning the records into buckets as evenly as possible. For the

two-sized bucketing and multiple-sized bucketing, the order of assignment is important, so we will

introduce the record partitioning in Section 5.2. After the record partitioning, the records assignment

for two-sized bucketing can be treated as one-sized bucketing, the order of records assignment

becomes not important. Step one, we assign x9 and obtain the result as shown in the Table 4.1(a).

Step two, we deal with o8, which has the same frequency as o9. We get the Table 4.1(b). We assign

the rest tuples accordingly. Eventually we complete the assignment and obtain in Table 4.2.

(a) Step one

Bucket1 x9 x9
Bucket2 x9
Bucket3 x9
Bucket4 x9
Bucket5 x9
Bucket6 x9

(b) Step two

Bucket1 x9 x9 x8
Bucket2 x9 x8 x8
Bucket3 x9 x8
Bucket4 x9 x8
Bucket5 x9 x8
Bucket6 x9 x8

Table 4.1: Procedure of Assignment of Example 6

Bucket1 x9 x9 x8 x6 x5 x3
Bucket2 x9 x8 x8 x6 x5 x3
Bucket3 x9 x8 x7 x6 x4 x2
Bucket4 x9 x8 x7 x6 x4 x2
Bucket5 x9 x8 x7 x5 x4 x1
Bucket6 x9 x8 x7 x5 x4 x1

Table 4.2: Record Assignment for RRB of Example 6

4.2 Validity Checking

Lemma 3. (Validating One-Size Bucket Setting) Let B denote a set of b buckets of size S, T de-

note a set of records, and F ′ denote the parameter for F ′-privacy. The following statements are

equivalent:

(1). There exists a solution B, a set of b buckets of size S for given T and F ′. In this case, we

simply say V alid(B, T, F ′) = true.

CHAPTER 4. ONE-SIZED BUCKETING 23

(2). There is a assignment of RRB from T to B with respect to F ′.

(3). For each value xi, the number of records for it is:

doi/be
S

≤ f ′i (4.1)

(4). For each value xi, the number of records for it is

oi ≤ bf ′iScb (4.2)

Proof. We are going to show (4)⇒ (3)⇒ (2)⇒ (1)⇒ (4). Observe that if r is a real number and i

is an integer, r ≤ i if and only if dre ≤ i, and i ≤ r if and only if i ≤ brc. Using this observation, we

have:

doi/be
S

≤ f ′i ⇔ doi/be ≤ f ′iS ⇔ doi/be ≤ bf ′iSc ⇔ oi/b ≤ bf ′iSc ⇔ oi ≤ bf ′iScb (4.3)

This shows the equivalence of (4) and (3). To prove (3)⇒ (2), notice that doi/beS is the maximum

frequency of xi in a bucket generated by RRB. Statement (3) implies that this assignment is valid.

(2)⇒ (1) follows because every valid RRB is a valid assignment.

Notice that F ′-privacy implies that the number of occurrence of xi in a bucket of size S is at most

bf ′iSc. Thus for any valid assignment, the total number of occurrence oi in the b buckets of size S is

no more than bf ′iScb. This complete the proof of (1)⇒ (4).

When we have a possible buckets setting B(b, S), for every sensitive values, we apply the

Lemma 3 to check the validation. When we are given original data T and privacy requirement

F ′, if we want to know whether there is a possible data assignment for the bucket setting. We only

need to check the occurrence of each sensitive value whether it is no more than the bf ′iScb. If so,

it means we have a validated bucket setting B(b, S) for the records assignment. Let us apply the

validation checking to the Example 6.

Example 7. In Example 6, we used the bucket setting B(b = 6, S = 6). We will check the validation

condition for each sensitive value:

• x1-x3: oi = 2, fi = 0.0056 and f ′i = 0.187. So oi = 2 < bf ′iScb = b0.187× 6c × 6 = 6 holds.

• x4-x7: oi = 4, fi = 0.11 and f ′i = 0.353. So oi = 4 < b0.353× 6c × 6 = 12 holds.

• x8-x9: oi = 7, fi = 0.19 and f ′i = 0.603. So oi = 7 < b0.603× 6c × 6 = 18 holds.

Therefore, the bucket setting b = 6, S = 6 is valid.

We now check whether another bucket setting is valid. We take the bucket setting B(b = 9, S =

4). In this case, we have:

CHAPTER 4. ONE-SIZED BUCKETING 24

• x1-x3: oi = 2, fi = 0.0056 and f ′i = 0.187. So oi = 2 < bf ′iScb = b0.187× 4c × 9 = 0 does not

hold.

• x4-x7: oi = 4, fi = 0.11 and f ′i = 0.353. So oi = 4 < b0.353× 4c × 9 = 9 holds.

• x8-x9: oi = 7, fi = 0.19 and f ′i = 0.603. So oi = 7 < b0.603× 4c × 9 = 18 holds.

Therefore, the bucket setting b = 9, S = 4 is not valid.

Lemma 3 is the foundation of validation of two-sized bucketing and multiple-sized bucketing

discussed later.

Chapter 5

Two-sized Bucketing

In this chapter, we treat the case of two-sized bucketing. We first state the validation condition. Then

we propose the recording partition algorithm for two-sized bucketing. To improve the efficiency of

the two-sized bucketing, we also implement the two pruning algorithms.

5.1 Validity Checking

We consider a two-sized bucket setting where the buckets have two different sizes: b1 buckets of

size S1 and b2 buckets of size S2, where S2 > S1 and bj ≥ 0. Let Bj denote the set of buckets of

size Sj and let |Bj | = bjSj , j = 1, 2. As before, a solution requires that all bucket slots are filled and

the frequency of any value in each bucket is no more than its threshold f ′. If such solution exists,

we denote as V alid(B1 ∪B2, T, F
′) = “Y ”. We consider the following two problems. In the validity

checking problem, given B1, B2, T, F
′, we want to know whether V alid(B1 ∪ B2, T, F

′) = “Y ”. In

the bucket generation problem, we assume V alid(B1 ∪B2, T, F
′) = “Y ” and we want to assign the

records in T to the buckets in B1 and B2.

Given a table T , B1, and B2, where Bj is a set of bj buckets of size Sj , j = 1, 2, and privacy

constraint F ′, it is easy to see that V alid(B1 ∪B2, T, F
′) = “Y ” if and only if there exists a partition

of T denoted by {T1, T2}, such that V alid(B1, T1, F
′) = “Y ” and V alid(B2, T2, F

′) = “Y ”. We are

going to use this observation to test whether V alid(B1 ∪B2, T, F
′) = “Y ”.

For a given table T , recall that oi is the number of records for a value xi. If we specify the

F ′- privacy requirement, it follows from Lemma 3, for each xi, the set Bj contains no more than

uij = bf ′iSjcbj records in it, j = 1, 2. This is the theoretical upper bound on the number of records

for xi can be allocated to Bj without violating the f ′i constraint assuming unlimited supply of xi
records. We now define aij = min{uij , oi}, which is the practical bound limited by the actual supply

of xi records. In the following theorem, we give the checkable necessary and sufficient conditions

25

CHAPTER 5. TWO-SIZED BUCKETING 26

for the existence of a solution for (B1 ∪B2, T, F
′).

Theorem 1. (Validating Two-sized Bucket Setting) Given a table T ,B1,B2 and the privacy constraint

F ′, where Bj is a set of Sj-sized bj buckets and S1 < S2, V alid(B1 ∪B2, T, F
′) = “Y ” if and only if

all of the following relations hold.

∀i : ai1 + ai2 ≥ oi (Privacy Constraint(PC)) (5.1)

j = 1, 2 :
∑
i

aij ≥ |Bj | (Fill Constraint(FC)) (5.2)

|T | = |B1|+ |B2| (Capacity Constraint(CC)) (5.3)

Inequality (5.1) is the “no overflow rule”: the occurrence of xi does not exceed the theoretical

bound imposed by the F ′-privacy. Inequality (5.2) is the ”fill up rule”: it is possible to fill up Bj without

violating the F ′-privacy. Equation (5.3) says that the buckets have the right total capacity for T .

Proof. Intuitively, relation (5.1) says that the number of occurrence of xi does not exceed the upper

bound ai1 + ai2 imposed by F ′-privacy on all buckets collectively, that is, the Privacy Constraint.

Equation (5.2) says that under this upper bound constraint it is possible to fill up the buckets in Bj

without leaving unused slots, that is, the Fill Constraint. Equation (5.3) says that the total bucket

capacity matches the data cardinality, namely Capacity Constraint. Clearly, all these conditions are

necessary for a valid assignment. This completes the proof for “only if”. The proof for “if” part is

given by the algorithm in Section 5.2 to find a valid assignment of the records in T to the buckets in

B1 and B2 under the assumption of (5.1)-(5.3).

5.2 Record Partitioning

Suppose that PC, FC and CC in Theorem 1 hold. We are going to show how to find a partition

{T1, T2} of T such that V alid(B1, T1, F
′) = true and V alid(B2, T2, F

′) = true. This provides the

sufficiency proof for Theorem 1 since this leads naturally to V alid(B1∪B2, T, F
′) = true. By finding

the partition {T1, T2}, we also provide an algorithm for assigning records from T to the buckets in

B1 ∪ B2, that is, simply applying RRB to each of (Tj , Bj), j = 1, 2. The partition {T1, T2} we look

for must be such that the condition in Lemma 3 holds for each of (B1, T1, F
′) and (B2, T2, F

′). The

partition {T1, T2} can be created as follows.

First, we consider distributing records to the buckets in B1. Let T1 contain any ai1 records with

the value xi for each xi. Inequality (5.2) implies |T1| ≥ |B1|. If we move out any |T1| − |B1| records

from T1, the resulting T1 satisfies inequality (4.2) in Lemma 3.

Next, let T2 contain all records in T − T1. Inequality (5.1) implies oi − ai1 ≤ ai2 ≤ ui2 for all xi,

that is, T2 contains no more records of xi than the maximum number imposed by the F ′-privacy. If

|T1| = |B1|, we are done.

CHAPTER 5. TWO-SIZED BUCKETING 27

PopulatingBuckets(T,B1, B2)
Input: T , B1, B2

Output: the set of records T1 for B1 and the set of records T2 for B2

1: let T1 contain any ai1 records from T for each xi, and let T2 be T − T1
2: let x′1, · · · , x′m, x′m+1 be the longest prefix of the list such that

∑m
i=1(ai2 − ni2) ≤ |B2| − |T2| and∑m+1

i=1 (ai2 − ni2) > |B2| − |T2|
3: let w = |B2| − |T2| −

∑m
i=1(ai2 − ni2).

4: for all 1 ≤ i ≤ m do
5: move (ai2 − ni2) records of x′i from T1 to T2
6: end for
7: move w records of x′m+1 from T1 to T2
8: return T1 and T2

Program 5.1: Algorithm of Determining Records for B1 and B2

Assume that |T1| > |B1|. Then we have |T2| < |B2| according to Equation (5.3). From Inequality

(5.2) there must be some xi for which less than ai2 records are found in T2. For any such xi value,

we move records of xi from T1 to T2 until the number of records for xi in T2 reaches the maximum

ai2 or |T2| = |B2|, whichever comes first. As long as |T2| < |B2|, relation(5.2) implies that some xi
have less than ai2 records in T2. We can move records for such xi from T1 to T2 without violating

the F ′-privacy. Eventually, |T2| = |B2|. Such T1 and T2 form the required partition of T .

The Program 5.1 provides the method of partition T1 and T2. At Line 2, x′1, · · · , x′m, x′m+1 is the

longest prefix of the list such that:

m∑
i=1

(ai2 − ni2) ≤ |B2| − |T2|

m+1∑
i=1

(ai2 − ni2) > |B2| − |T2|

Let w = |B2| − |T2| −
∑m

i=1(ai2 − ni2). For 1 ≤ i ≤ m, we move (ai2 − ni2) of x′i from T1 to T2,

and move w records of x′m+1 from T1 to T2.

Assume that ai1, ai2, oi have been collected. Step 1 takes one scan of T . Step 2 and 3 take

m logm, where m is the number of distinct values. Step 5 - 7 take one scan of T because each

record is moved at most once. In fact, the algorithm can be made more efficient by only keeping

the number of records for each xi in all tables T , T1 and T2. This is because the privacy constraint

depends only on the number of records of xi, not on the actual records. With this optimization, Step

1 and Step 5 - 7 take a time proportional to the number of distinct values, m. Thus the complexity

of the algorithm is m logm.

Example 8. We are given a table containing 50 tuples with oi given in the Table 5.1. Suppose that

the F ′-privacy is given by f ′i = 2fi + 0.05. Consider the bucket setting B1(S1 = 4, b1 = 9), B2(S2 =

CHAPTER 5. TWO-SIZED BUCKETING 28

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

oi 1 1 1 1 1 1 1 1 6 6 6 6 9 9
fi 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.12 0.12 0.12 0.12 0.18 0.18
f ′i 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.29 0.29 0.29 0.29 0.41 0.41

Table 5.1: Data Set of Example 8

(a) The bucket for B1

x9 x10 x12 x13
x9 x11 x12 x14
x9 x11 x13 x14
x9 x11 x13 x14
x9 x11 x13 x14
x10 x11 x13 x14
x10 x12 x13 x14
x10 x12 x13 x14
x10 x12 x13 x14

(b) The buckets for B2

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

Table 5.2: Record Assignment of Example 8

14, b2 = 1). Note CC in Theorem 1 holds. Let us compute ai1 and ai2. Suppose there are b1 = 9

buckets of sizes S1 = 4 and b2 = 1 buckets of size S2 = 14. |B1| = 36 and |B2| = 14. We apply

Theorem 1 to verify that there is a solution for (B1 ∪ B2, T, F
′). It is easy to see that equality (5.3)

holds. To verify inequality (5.1), we compute aij for xi and Bj . Recall that ai1 = min{uij , oi} and

ai2 = min{ui2, oi}. We have

• x1-x8: oi = 1, fi = 0.02 and f ′i = 0.09. So ui1 = bf ′iS1cb1 = b0.09× 4c × 9 = 0, ai1 = 0.

• x9-x12: oi = 6, fi = 0.12 and f ′i = 0.29. So ui1 = b0.29× 4c × 9 = 9, ai1 = 6.

• x13-x14: oi = 9, fi = 0.18 and f ′i = 0.41. So ui1 = b0.41× 4c × 9 = 9, ai1 = 9.

• x1-x8, ui2 = bf ′iS2cb2 = b0.09× 14c × 1 = 1, ai2 = 1.

• x9-x12, ui2 = b0.29× 14c × 1 = 4, ai2 = 4.

• x13-x14, ui2 = b0.41× 14c × 1 = 5, ai2 = 5.

It can be verified that PC and FC in Theorem 1 hold. To find the partitioning {T1, T2}, initially T1
contains ai1 = 0 record for each of x1-x8, ai1 = 6 records for each of x9-x12, and ai1 = 9 records

for each of x13-x14. T2 contains the remaining records in T . Since T1 contains 42 records, but size

of B1 is 36, we need to move 6 records from T1 to T2 without exceeding the upper bound ai2 for T2.

CHAPTER 5. TWO-SIZED BUCKETING 29

This can be done by moving one record for each of x9−x14 from T1 to T2. Table 5.2 shows a record

assignment generated by RRB for (B1, T1) and (B2, T2).

After we introduce the validation condition and records partition for two-sized bucketing, we will

introduce the pruning algorithms for two-sized bucketing in next section.

5.3 Pruning Algorithm for Two-sized Bucketing

In this section, we tackle the problem of finding the optimal bucket setting b1, b2, S1, S2 (or simply

say B1, B2) using the notation in Section 3.5 such that the loss function defined in Section 3.4 is

minimized for given T and F ′-privacy under the requirement: b1S1 + b2S2 = |T |. A naive algorithm

is to enumerate all (b1, b2, S1, S2) and apply Theorem 1 to test if a solution exists, and return the

solution that gives the minimum of the loss function. This algorithm is not efficient because both b1
and b2 can take a large range and S1, S2 related to the F ′-privacy can be very small. For example,

for the real data set of CENSUS, which we will use in the Chapter 7, there are 500 thousand records.

If we treat the occupation as the sensitive attribute and we think f ′ = 0.05 can satisfy our privacy

protection requirement of the most sensitive value, then the largest bucket size constrained by the

privacy will be 20. There are also other bucket sizes smaller than 20. As we can see, bi is very

large, around 500, 000/20 = 25, 000. If we check all the possible setting one by one, it takes a lot of

time. Thus we propose a more efficient algorithm in later section.

Let M and M ′ denote the minimum and maximum possible bucket sizes constrained by the

privacy constraints, that is, M ≤ S1 < S2 ≤ M ′. The lower bound M can be determined by the

largest f ′i , i.e., M = mini{d1/f ′ie}. The upper bound M ′ can be determined by the maximum

allowable loss of a record. We have M ′ ≥ maxi{d1/f ′ie} if there is a solution. We will assume

that M ′ is given. In general, M ′ is a relatively small value because a large M ′ leads to too much

information loss. Note that the valid bucket setting may not exist in the range of bucket size.

5.3.1 Indexing Bucket Setting

Our strategy is to enumerate all pairs (S1, S2) such that M ≤ S1 < S2 ≤M ′. For each pair (S1, S2),

we search for the pair (b1, b2) such that

|T | = b1S1 + b2S2 (5.4)

and the loss metric defined by Equation (3.2) is minimized. In this case, we explicitly write out the

loss metric

Loss(b1, b2, S1, S2) = Loss(B1 ∪B2) = b1(S1 − 1)2 + b2(S2 − 1)2. (5.5)

CHAPTER 5. TWO-SIZED BUCKETING 30

We call such setting {b1, b2, S1, S2} the optimal setting. For a given pair (S1, S2), there are many

possible pairs (b1, b2). We need to organize all pairs (b1, b2) and to prune the ones that do not satisfy

(5.4) or do not minimize the function (5.5) as much as possible. To do so, we introduce index to all

such pairs.

Considering the sizes S1 and S2, a pair (b1, b2) is feasible if satisfying (5.4). As we have dis-

cussed in Section 5.1, the setting (b1, b2, S1, S2) is valid means there is a solution satisfies the

privacy requirement. A valid pair will be kept if function (5.5) is smallest among all valid pairs in the

index of (S1, S2) since it can be used to generate the optimal setting.

Let us sort all feasible pairs (b1, b2) as follows: (b1, b2) precedes (b′1, b
′
2) if b1 > b′1; in this case,

b2 < b′2 because b1S1 +b2S2 = b′1S1 +b′2S2. We define Γ(S1, S2) to be the sorted list of feasible pairs

for S1 and S2. Below, we will show that the i-th pair in Γ(S1, S2) can be generated directly using the

position without scanning the list. We will use this property to locate all valid pairs by binary search

on the index without storing the list.

The first pair in the index Γ(S1, S2) is denoted by (b01, b
0
2). The setting (b01, b

0
2) must satisfy the

requirement (5.4) and thus b02 is the smallest. In a way (b01, b
0
2) is the solution to min{v2} subject to

S1v1 + S2v2 = |T |, where v1 and v2 are variables of positive integers. According to this index, the

earlier pair of (b1, b2) get more buckets with small sizes, it means, a smaller Loss than the latter pair.

So the first feasible pair is an optimal solution.

Let (b1, b2) be a feasible pair and let (b01 −∆1, b
0
2 + ∆2) be the next feasible pair. Note that

S1(b01 −∆1) + S2(b02 + ∆2) = |T |

and

S1b
0
1 + S2b

0
2 = |T |

These equalities imply S1∆1 = S2∆2. Note that both ∆1 and ∆2 must be integers. To meet this

constraint, S2∆2 must be a common multiple of S1 and S2. Since we want the smallest ∆2, S2∆2

must be the least common multiple of S1 and S2, denoted by LCM(S1, S2). Then ∆2 and the

corresponding ∆1 are given by

∆2 = LCM(S1, S2)/S2; ∆1 = LCM(S1, S2)/S1. (5.6)

Hence Γ(S1, S2) has the form:

(b01, b
0
2)

(b01 −∆1, b
0
2 + ∆2)

· · ·
(b01 − k∆1, b

0
2 + k∆2)

Here k can be determined by the minimum number of S1-sized buckets. Since the decrement step

for b1 is ∆1, the minimum number of S1-sized buckets must be smaller than ∆1, so 0 ≤ (b01−k∆1) <

∆1. This gives rise to b01/∆1−1 < k ≤ b01/∆1. The only integer k satisfying this condition is bb01/∆1c.

CHAPTER 5. TWO-SIZED BUCKETING 31

Example 9. Let |T | = 28, S1 = 2, S2 = 4. Then we have LCM(S1, S2) = 4, ∆2 = 4/4 = 1 and

∆1 = 4/2 = 2. Therefore, we get b01 = 14, b02 = 0 and k = b14/2c = 7. So the sorted list of feasible

pairs for the given S1 and S2 is

Γ(S1, S2) = [(14, 0), (12, 1), (10, 2), (8, 3), (6, 4), (4, 5), (2, 6), (0, 7)].

Suppose S1 = 3 and S2 = 5. Then we have ∆1 = 5, ∆2 = 3, b01 = 1, b02 = 5 and k = b1/5c = 0.

So Γ(S1, S2) = [(1, 5)].

Remark 1. Γ(S1, S2) has several important properties for dealing with a large data set. Firstly, we

can access the i-th element of Γ(S1, S2) without storing or scanning the list. Secondly, we can

represent any sublist of Γ(S1, S2) by the parameter k. To clarify it, an interval [i, j] denotes a sublist,

where i is the starting position and j is the ending position of the sublist. For example, the interval

[1, 2] denotes the list of two elements: (b01−∆1, b
0
2 + ∆2), (b01− 2∆1, b

0
2 + 2∆2). Thirdly, the common

sublist of two sublists L and L′ of Γ(S1, S2), denoted by L ∩ L′, is given by the intersection of the

intervals of L and L′.

Note that there is no need to explicitly materialize the list Γ(S1, S2) because we have known that

all we need is the first pair (b01, b
0
2), ∆1,∆2 and k. Sometimes the list can be very long. For example,

we have data set of 300k records. The assumed bucket sizes are same as it in Example 9, namely,

S1 = 2 and S2 = 4. So we get LCM(S1, S2) = 4, ∆1 = 2 and b01 = 150k. Then the length of

possible setting (b1, b2) is as long as b01/∆1 = 75k. So a linear scan is not efficient. Ideally we want

to examine as few feasible (b1, b2) as possible. Thus we explore two pruning strategies: one based

on the loss minimization and the other one based on the privacy requirement:

5.3.2 Loss-Based Pruning

Our first strategy is to prune the pairs in Γ(S1, S2) that do not have the minimum loss with respect

to (S1, S2) by exploiting the following monotonicity of the Loss metric (5.5).

Lemma 4 (Monotonicity of loss). If (b1, b2) precedes (b′1, b
′
2) in Γ(S1, S2), then

Loss(B1 ∪B2) < Loss(B′1 ∪B′2),

where set Bj contains bj buckets of size Sj , and set B′j contains b′j buckets of size Sj , j = 1, 2.

Proof. Because S1 < S2, the total number of records |T | is fixed, |T | = b1S1 + b2S2, it is obvious

that the Loss metric defined by (5.5) is smaller when b1 is larger. It means we get more buckets with

small sizes and less buckets with big sizes. According to the definition of the index, b1 is larger than

b′1 if (b1, b2) precedes (b′1, b
′
2) and this implies the statement.

CHAPTER 5. TWO-SIZED BUCKETING 32

From Lemma 4, for a given pair (S1, S2), if we examine Γ(S1, S2) sequentially, and if a feasible

setting is found for the first time, this setting must be optimal for (S1, S2). Lemma 4 can also be

exploited to prune pairs across different (S1, S2). Let Bestloss be the minimum loss found so far and

(S1, S2) be the next pair of bucket sizes to be considered. From Lemma 4, all the pairs in Γ(S1, S2)

that have a loss less than Bestloss must form a prefix of Γ(S1, S2). Let k′ be the cutoff point of this

prefix, where b′1 = b01 − k′∆1 and b′2 = b02 + k′∆2. The integer k′ is the maximum integer satisfying

b′1(S1 − 1)2 + b′2(S2 − 1)2 < Bestloss, given by

k′ = max{0, bBestloss − b
0
1S1 − 1)2 − b02(S2 − 1)2

∆2(S2 − 1)2 −∆1(S1 − 1)2
c} (5.7)

Let Γ(k′) denotes the prefix of Γ(S1, S2) that contains the first k′ + 1 pairs. It is sufficient to

consider this list instead of the whole list of feasible pairs. This method is called loss-based pruning.

The pruning algorithm revises the sorted list of feasible pairs by the cut off point based on Bestloss.

The algorithm for finding the optimal (b1, b2, S1, S2) is given in Program 5.2. Recall that M and

M ′ denote the minimum and maximum bucket sizes, respectively. The algorithm consists of a

nested loop that enumerates all pairs (S1, S2) within the range of M ≤ S1 < S2 ≤ M ′ in Lines 3

and 4. For each pair (S1, S2), it goes through the ordered list of all feasible pairs with the first pair

being (b01, b
0
2) and the step sizes ∆1 and ∆2 determined by Equation (5.6). In Line 10, we get the k′

according to Equation (5.7). Using the loss based pruning, we significantly shorten the list we need

to check. If V alid(B1 ∪ B2, T, F
′) = “Y ” as shown in Line 12, it updates the best solution so far, if

necessary, and terminates the search for the current S1 and S2 (by letting k′ = −1). After examining

all pairs of S1, S2, it returns the best setting Bestsetting.

5.3.3 Privacy-Based Pruning

In previous subsection we can see that the loss minimization pruning reduces the length of the list

Γ(k′) by the Loss-based pruning. We still need to search the list sequentially until the first valid pair

is found. Our second strategy is to identify the first valid pair in Γ(k′) directly by exploiting a certain

monotonicity property of privacy constraints.

Definition 9. We say that a property P is monotone on a sorted list if whenever P holds for (b1, b2),

it holds for (b′1, b
′
2), where (b1, b2) proceeds (b′1, b

′
2) in Γ, and anti-monotone on Γ if whenever P fails

on (b1, b2), it fails on (b′1, b
′
2), where (b1, b2) proceeds (b′1, b

′
2) in Γ.

Importantly, such a monotonicity divides the sorted list Γ into two sublists such that P holds

in one of them and fails in the other, and the splitting point of the two sublists can be found by

performing a binary search on Γ. In the rest of this section, we show that Equations (5.2) and (5.1)

are monotone or anti-monotone, and use such properties to identify the exact location of the valid

pairs in Γ(k′).

CHAPTER 5. TWO-SIZED BUCKETING 33

Two-Sized Loss-Based Bucketing(T, F ′,M,M ′)
Input: T , F ′-privacy, minimum and maximum bucket sizes M,M ′

Output: optimal (b1, b2, S1, S2)

1: Bestloss ← d |T |M ′ e(M ′ − 1)2

2: Bestsetting ← NULL
3: for all S1 ∈ {M, · · · ,M ′ − 1} do
4: for all S2 ∈ {S1 + 1, · · · ,M ′} such that Γ(S1, S2) is not empty do
5: (b01, b

0
2)← the first feasible pair in Γ(S1, S2)

6: ∆2 ← LCM(S1, S2)/S2

7: ∆1 ← LCM(S1, S2)/S1

8: b1 ← b01
9: b2 ← b02

10: k′ is defined in Equation (5.7)
11: repeat
12: if V alid(B1 ∪B2, T, F

′) = ”Y ” then
13: if Bestloss > Loss(b1, b2, S1, S2) then
14: Bestsetting ← (b1, b2, S1, S2)
15: Bestloss ← Loss(b1, b2, S1, S2)
16: end if
17: k′ ← −1
18: else
19: b1 ← b1 −∆1

20: b2 ← b2 + ∆2

21: k′ ← k′ − 1
22: end if
23: until k′ < 0
24: end for
25: end for
26: return Bestsetting

Program 5.2: Two-sized Loss-Based Pruning Algorithm

CHAPTER 5. TWO-SIZED BUCKETING 34

Lemma 5. Equation (5.2) is monotone on Γ(k′) for j = 1 and anti-monotone on Γ(k′) for j = 2.

Proof. We write out Equation (5.2) for j = 1 and j = 2 explicitly.∑
i

min
i
{bf ′iS1cb1, oi} ≥ S1b1 (5.8)∑

i

min
i
{bf ′iS2cb2, oi} ≥ S2b2 (5.9)

Consider two pairs (b1, b2) and (b′1, b
′
2) on Γ(k′), where (b1, b2) proceeds (b′1, b

′
2), that is, b1 > b′1 and

b2 < b′2. As b1 decreases to b′1, both bf ′iS1cb1 and S1b1 decreases by a factor by b′1/b1, but oi remains

unchanged. Therefore, if Equation (5.8) holds for (b1, b2), it holds for (b′1, b
′
2). Then Equation (5.8)

is monotone on Γ(k′). For a similar reason, if Equation (5.9) fails on (b1, b2), it remains to fail on

(b′1, b
′
2); thus Equation (5.9) is anti-monotone on Γ(k′).

In order to clearly describe our algorithm below, we introduce the following notations.

Notation 1. Equation (5.8) divides Γ(k′) into two sublists Λ−1 and Λ+
1 . Here Λ−1 donates the sub-

list containing all pairs not satisfying the equation and Λ+
1 donates the sublist containing all pairs

satisfying the equation. Similarly, Equation (5.9) also divides Γ(k′) into two sublists Λ+
2 and Λ−2 ,

where Λ+
2 donates the sublist containing all pairs satisfying the equation and Λ−2 donates the sublist

containing all pairs not satisfying the equation.

It is possible that one of Λ−1 and Λ+
1 or one of Λ−2 and Λ+

2 may be empty. According to Notation

1, Λ+
2 ∩ Λ+

1 contains exactly the pairs that satisfy both Equation (5.8) and Equation (5.9) (order

preserved).

Example 10. We are given the data set |T | = 28, the privacy requirement is f ′i = 2fi. The distribu-

tion of sensitive attribute xi is shown in Table 5.3. We focus the possible buckets set S1 = 2, S2 = 4.

As shown in the Example 8, The feasible pair (b1, b2) is

Γ(S1, S2) = [(14, 0), (12, 1), (10, 2), (8, 3), (6, 4), (4, 5), (2, 6), (0, 7)].

x1 x2 x3 x4 x5
oi 4 4 4 8 8
fi 0.1428 0.1428 0.1428 0.286 0.286
f ′i 0.286 0.286 0.286 0.57 0.57

Table 5.3: Data Set of Example 10

Applying the Equation (5.8) to the data set, we get the fill constrain for the first kind of bucket:

3 min{b0.286× 2cb1, 4}+ 2 min{b0.57× 2cb1, 8} ≥ 2b1,

CHAPTER 5. TWO-SIZED BUCKETING 35

so we get simple version of fill constrain:

min{b1, 8} ≥ b1.

It means when b1 ≤ 8, the Equation (5.9) holds. Otherwise, when b1 > 8, the equation does not

hold. Thus

Λ+
1 = [(8, 3), (6, 4), (4, 5), (2, 6), (0, 7)],

Λ−1 = [(14, 0), (12, 1), (10, 2].

Using the Equation (5.9), we get the fill constrain for the second kind of bucket

3 min{b0.286× 4cb2, 4}+ 2 min{b0.57× 4cb2, 8} ≥ 4b2,

then we get when b2 > 7, the equation does not hold. It means Λ+
2 is the whole list, the Λ−2 is empty.

The monotonicity of Equation (5.8) and the anti-monotonicity of Equation (5.9) imply that we can

find Λ−1 and Λ+
1 by a binary search on Γ(k′), and find Λ+

2 and Λ−2 by a binary search on Γ(k′). These

binary searches take O(log k′) evaluations of Equations (5.8) and (5.9).

We will do the similar analysis for Equation (5.1). For each value xi, we rewrite it as:

min{bf ′iS1cb1, oi}+ min{bf ′iS2cb2, oi} ≥ oi. (5.10)

Observe that, as we scan the list Γ(k′), b1 decreases and b2 increases. Therefore, for each xi, the

first term on the left side in Equation (5.10) divides Γ(k′) into two sublists: Ω+
1i contains all pairs

satisfying bf ′iS1cb1 ≥ oi, and Ω−1i contains all pairs satisfying bf ′iS1cb1 < oi. One of these two

sublists may be empty. Similarly, the second term on the left side in Equation (5.10) divides Γ(k′)

into two sublists: Ω−2i contains all pairs satisfying bf ′iS2cb2 < oi, and Ω+
2i contains all pairs satisfying

bf ′iS2cb2 ≥ oi.

Example 11. We will use the same data set of Example 9. In the case of i = 1, we get

bf ′1S1cb1 = b0.286× 2cb1 = 0 ∗ b1 = 0 < o1 = 4.

It implies Ω+
11 is empty and Ω−11 is the whole list.

In this case, we also have:

bf ′1S2cb2 = b0.286× 4cb2 = b2 < o1 = 4.

It leads to b2 < 4. Thus, we get

Ω−21 = [(14, 0), (12, 1), (10, 2), (8, 3)]

Ω+
21 = [(6, 4), (4, 5), (2, 6), (0, 7)].

CHAPTER 5. TWO-SIZED BUCKETING 36

Equation (5.10) holds for all pairs in either Ω+
1i or Ω+

2i. The remaining part of Γ(k′) is the inter-

section of Ω−2i ∩Ω−1i. Below we assume that this part is not empty. For the pairs in this list, Equation

(5.10) degenerates into

bf ′iS1cb1 + bf ′iS2cb2 ≥ oi (5.11)

Consider two consecutive pairs (b1, b2) and (b1−∆1, b2 + ∆2) in Ω−2i ∩Ω−1i. If the following condition

holds

bf ′iS2c∆2 ≥ bf ′iS1c∆1 (5.12)

then Equation (5.11) holding for (b1, b2) implies it holds for (b1−∆1, b2 +∆2). If Equation (5.12) fails,

then Equation (5.11) failing for (b1, b2) implies that it fails for (b1 − ∆1, b2 + ∆2). The next lemma

summarizes these observations.

Lemma 6. If Equation (5.12) holds, Equation (5.10) is monotone on Ω−2i ∩Ω−1i; otherwise, Equation

(5.10) is anti-monotone on Ω−2i ∩ Ω−1i.

Let Ω−12i denote the sublist of Ω−2i ∩ Ω−1i such that Equation (5.11) holds for its elements. Let Ωi

denote the part in Γ(k′) in which Equation (5.10) holds for each xi. The next lemma, which follows

from Lemma 6 and the above discussion, summarizes the location of Ωi.

Lemma 7. The sublist Ωi consists of the prefix Ω+
1i and the suffix Ω−12i ∪ Ω+

2i of Γ(k′); if Equation

(5.12) fails, Ωi consists of the prefix Ω+
1i ∪ Ω−12i and the suffix Ω+

2i of Γ(k′).

Let ∩iΩi denote the intersection of Ωi over all xi. This intersection contains exactly the pairs

satisfying Equation (5.10) for all xi.

5.3.4 The Pruning Algorithm

We now present an efficient algorithm for the optimal two-size bucketing. Combining the loss-based

pruning and privacy-based pruning, Λ+
2 ∩ Λ+

1 ∩ (∩iΩi) contains exactly the valid pairs in Γ(k′), i.e.,

the pairs that satisfy all of Equations (5.1)-(5.3).

Theorem 2. If the optimal bucket setting (b1, b2) for (S1, S2) exists, it is the first pair in Λ+
2 ∩ Λ+

1 ∩
(∩iΩi).

To compute Λ+
2 ∩Λ+

1 ∩ (∩iΩi), we observe that Λ+
1 , Λ+

2 and Ωi depend on Λ+
2 , Λ+

1 , Ω+
1i, Ω−1i, Ω−2i,

Ω+
2i, all of which can be computed by a binary search on Γ(k′). Therefore, Λ+

2 ∩Λ+
1 ∩ (∩iΩi) can be

computed in time O(m log k′). Moreover, since binary search and intersection of sublists only deal

with the ranges of sublists, instead of actual lists, this computation requires little space.

Theorem 3. For each (S1, S2), Λ+
2 ∩Λ+

1 ∩ (∩iΩi) can be computed in time O(m log k′) and in space

O(m), where k′ is defined in Equation (5.7).

CHAPTER 5. TWO-SIZED BUCKETING 37

2SizeBucketing(T, F ′,M,M ′)
Input: T , F ′-privacy, minimum and maximum bucket sizes M,M ′

Output: optimal bucket setting (b1, b2, S1, S2)

1: Bestloss ← d|T |/M ′e(M ′ − 1)2

2: Bestsetting ← NULL
3: for all S1 ∈ {M, · · · ,M ′ − 1} do
4: for all S2 ∈ {S1 + 1, · · · ,M ′} do
5: compute b01, b02,∆1,∆2, k

′

6: compute k′ using Equation (5.7)
7: if Λ+

2 ∩ Λ+
1 ∩ (∩iΩi) is not empty then

8: let (b1, b2) be the first pair in it
9: let Bj be the set of bj buckets of size Sj , j = 1, 2

10: if Bestloss > Loss(B1 ∪B2) then
11: Bestsetting ← (b1, b2, S1, S2)
12: Bestloss ← Loss(B1 ∪B2)
13: end if
14: end if
15: end for
16: end for
17: return Bestsetting

Program 5.3: Two-sized Full Pruning Algorithm

Program 5.3 finds the optimal bucket setting (b1, b2, S1, S2) based on Theorem 2. The input is a

table T , a privacy parameter F ′, and the minimum and maximum bucket sizes M and M ′. At Line

1 and 2, it initializes Bestloss to an upper bound of loss obtained assuming that every bucket has

the size M ′, i.e., b|T |/M ′c(M ′ − 1)2, where b|T |/M ′c is the number of such buckets and (M ′ − 1)2

is the Information Loss of a bucket of size M ′. Lines 3 and 4 enumerate all pairs (S1, S2) with

M ≤ S1 < S2 ≤M ′. For each pair (S1, S2), Line 5 computes b01, b02,∆1,∆2, k and Line 6 determines

the length k′ of the prefix Γ(k′) of Γ(S1, S2) based on (S1, S2) and Bestloss. Line 7 computes

Λ+
2 ∩ Λ+

1 ∩ (∩iΩi) as discussed above. At Lines 8-12, if Λ+
2 ∩ Λ+

1 ∩ (∩iΩi) is not empty, the loss of

the first pair in it is computed and is used to update Bestloss if the loss is smaller than Bestloss.

Chapter 6

Multi-Sized Bucketing

In this chapter, we extend the solution for the two size problem to the multiple size problem. We first

adjust the validation condition for the the multi-sized bucketing. Then we implement the top-down

algorithm by recursively calling two-sized bucketing algorithm to an approximate solution for it.

6.1 Validity checking

To find the validation condition for multiple sized bucketing, we must first extend the Theorem 1 to

validate a three size bucket setting. The Example 12 shows that a direct extension of Inequalities

(5.1 - 5.3) does not work for multiple size problem.

Example 12. Let |B1| = |B2| = 20, |B3| = 30, and |T | = 70. There are 11 values in the SA:

x1, · · · , x11. For 1 ≤ i ≤ 10, xi has 5 records, and x11 has 20 records, i.e., oi = 5 when 1 ≤ i ≤ 10,

and o11 = 20. Further suppose that for 1 ≤ i ≤ 10, ui1 = ui2 = 0, ui3 = 5, and u11,1 = u11,2 =

u11,3 = 20. We can see that the following inequalities hold:

∀i : ai1 + ai2 + ai3 ≥ oi

j = 1, 2, 3 :
∑
i

aij ≥ |Bj |

|T | = |B1|+ |B2|+ |B3|

However, since ui1 = ui2 = 0, 1 ≤ i ≤ 10, xi cannot be assigned to B1 and B2, thus, 50 of them

can only be assigned to B3, which exceeds the capacity of B3, 30. Therefore, there is no solution.

So we first propose an Integer Linear Programming for the multiple size bucketing problem. Then

we introduce a top down algorithm.

38

CHAPTER 6. MULTI-SIZED BUCKETING 39

We show that the generalized problem can be solved by integer linear programming. Let M

and M ′ denote the minimum and maximum bucket sizes, and let n = M ′ − M + 1. We define

Sj = M + j − 1, where j = 1, · · · , n. Notice S1 = M , Sn = M ′, and Sj+1 = Sj + 1 for 1 ≤ j ≤ n− 1.

For j = 1, · · · , n, let bj be variables of non-negative integers representing the number of Sj-sized

buckets, let Bj denote the set of such buckets, with |Bj | = bjSj . Let x1, · · · , xm be the sensitive

values with the occurrence times o1, · · · , om respectively. For 1 ≤ i ≤ m and 1 ≤ j ≤ n, let

vij denote the times of the occurrence of xi in Bj . Let uij = bf ′iSjcbj , which is the maximum

occurrence of xi in Bj imposed by the F ′-privacy, according to Lemma 3. To find a solution of the

multiple-sized bucketing problem is to determine the values of vij and bj such that the following

constraints are satisfied:

• ∀i :
∑n

j=1 vij = oi

• ∀j :
∑m

i=1 vij = Sjbj

• ∀i, j : vij ≤ uij

•
∑n

j=1 Sjbj = |T |

vij and bj are variables of non-negative integers and Sj , oi, uij are constants. Our objective is

min

n∑
j=1

bj(Sj − 1)2

The first constraint is the sum of the number of sensitive values in every buckets is exactly equal

to the total number oi. The second constraint is for each bucket with same size, the sum of quantity

of different sensitive value is equal to the capacity of this kind of buckets. The third one is the

limitation of privacy protection as we discussed in Lemma 3. The last constraint is about the total

capability of all buckets of different size, it is equal to the total number of records.

This is an integer linear programming. Let b1, · · · , bn be the optimal bucket numbers found by

solving the above programming problem. Let bt1, · · · , btk be the subsequence of b1, · · · , bn such

that btj 6= 0. We define Bj as the set of btj Stj-sized buckets, j = 1, · · · , k. For each value xi, we

assign vij records to Bj , j = 1, · · · , k. Then we apply RRB to Bj to distribute the assigned records

to each bucket in Bj .

6.2 Top-Down Algorithm

In general, integer linear programming problems are NP-hard, thus the above solution is not efficient

for solving problems with a large m and n. We present an efficient heuristic algorithm by greedily

and repeatedly applying the 2-size bucketing. The algorithm, TopDownBucketing, is described in

CHAPTER 6. MULTI-SIZED BUCKETING 40

TDBucketing (T,B, F ′,M,M ′)

1: (b1, b2, S1, S2)← 2SizeBucketing(D,P,min size,max size)
2: if (b1, b2, S1, S2) 6= NULL then
3: let Bi be a set of bi Si-sized buckets, i = 1, 2
4: We apply data partitioning in the (D,B1, B2), we get (D1, D2)
5: if Loss(D1, B1) + Loss(D2, B2) < Loss(D,B) then
6: TDBucketing(D1, B1, P,M,M ′)
7: TDBucketing(D2, B2, P,M,M ′)
8: else
9: return(D,B)

10: end if
11: else
12: return(D,B)
13: end if

Program 6.1: Top-down Bucketing Algorithm

Program 6.1. It takes as the input a set of records D, a set of buckets of same size B, the privacy

requirement F ′, the minimum and maximum bucket sizes min size and max size. It applies the 2-

sized bucketing algorithm to find the best 2-size buckets (B1, B2) for D. Let D1 and D2 be the sets

of records in B1 and B2. If Loss(D1, B1)+Loss(D2, B2) < Loss(D,B), recursively it applies the two

size bucketing to (D1, B1) and (D2, B2) independently; otherwise, the current recursion terminates

and returns the current (D,B).

Given the raw data T , the privacy requirement F ′, and the minimum and maximum bucket sizes

M and M ′, let B be the single bucket containing all the records in T . The heuristic solution is given

by calling the Top-down bucketing algorithm: TDBucketing(T,B, F ′,M,M ′).

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
oi 2 2 2 2 4 4 4 4 7 8
fi 0.051 0.051 0.051 0.051 0.102 0.102 0.102 0.102 0.179 0.205
f ′i 0.174 0.174 0.174 0.174 0.327 0.327 0.327 0.327 0.558 0.635

Table 6.1: Data Set of Example 13

Example 13. We are given a table containing 39 tuples with oi given in the Table 6.1. The F ′-privacy

is given by f ′i = 3× fi + 0.02, where

• fi = 0.05128, f ′i = 0.1738 for i = 1, 2, 3, 4;

• fi = 0.10256, f ′i = 0.32769 for i = 5, 6, 7, 8;

• fi = 0.17948, f ′i = 0.5584 for i = 9;

• fi = 0.20512, f ′i = 0.6353 for i = 10.

CHAPTER 6. MULTI-SIZED BUCKETING 41

The result of Top-down bucketing algorithm is shown in the Figure 6.1 (The bold table is the final

results of bucketing): First, we get two kinds of buckets: B1(b1 = 3, S1 = 5) and B2(b2 = 4, S2 = 6).

We partition the data by applying data partitioning in the data. B1 can not be apart any more. The

data of B2 is treated as Data Set and call the Top-down bucketing algorithm again. We will do this

recursively until all buckets can not be apart any more.

• First around: the input data is the the original data set. We get the bucket setting B1(b1 =

3, S1 = 5) and B2(b2 = 4, S2 = 6). The Information Loss is b1(S1 − 1)2 + b2(S2 − 1)2 = 132.

• Second around: the input data is B1 and B2. B1 can not be apart any more. We separate

B2 to get the bucket setting B3(b3 = 3, S3 = 4) and B4(b4 = 3, S4 = 4). Combining with

B1(b1 = 3, S1 = 5), the Information Loss is b1(S1 − 1)2 + b3(S3 − 1)2 + b4(S4 − 1)2 = 125.

• Third around: the input data is B3 and B4. B3 can not be apart any more. We separate B4

to get the bucket setting B5(b5 = 2, S5 = 4) and B6(b6 = 2, S6 = 2). Combining with the

B1(b1 = 3, S1 = 5) and B3(b3 = 3, S3 = 4), the Information Loss is b1(S1 − 1)2 + b3(S3 − 1)2 +

b5(S5 − 1)2 + b6(S6 − 1)2 = 118

As we can see, every time we increase the kinds of buckets, the information loss decrease. After

three rounds, we get four kinds of buckets. The Information Loss is only 118. The information loss

of the optimal two-size bucketing is 132. It clearly shows the multiple-size bucketing can generate a

better buckets setting than two-size bucketing.

In the next chapter, we will imply these algorithms in the real data to evaluate the effectiveness

and accuracy of our algorithm.

CHAPTER 6. MULTI-SIZED BUCKETING 42

 DATA SET

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

��	(�� = 3, �� = 5)

�� �� �� �� ��� ���

�� �� �� �� ��� ���

�� �� �� �� ��� ���

�� �� �� �� ��� ���

��	(�� = 4, �� = 6)

�� �� ��� ���

�� �� ��� ���

�� �� ��� ���

��		(�� = 3, �� = 4)

�� �� � �� �� ���

�� �� �� �� �� ���

�� (�� = 2, �� = 6)

�� �� ��� ���

�� �� ��� ���

��	(�� = 2, �� = 4)

�� ���

�� ���

��	(�� = 2, �� = 2)

Figure 6.1: Example for Top-down Bucketing Algorithm

Chapter 7

Empirical Studies

We evaluate the effectiveness and efficiency of the algorithms proposed in Chapter 5.3. For this

purpose, we utilize the real data set CENSUS containing personal information of 500K American

adults. This data set was previously used in [11], [36] and [28]. Table 7.1 shows the eight discrete

attributes of the CENSUS data. We are going to test our algorithms on the two selected data sets

generated from CENSUS. The first data set OCC has Occupation as SA and the 7 remaining at-

tributes as the QID-attributes. The second data set EDU has Education as SA and the 7 remaining

attributes as the QID-attributes. We use OCC-n and EDU-n to denote the data sets of OCC and

EDU of the cardinality n. Figure 7.1 shows the frequency distribution of SA. The parameters and

settings are summarized in Table 7.2 with the default setting in bold face.

Attribute Domain Size
Age 76

Gender 2
Education 14

Marital 6
Race 9

Work-Class 10
Country 83

Occupation 50

Table 7.1: Table of CENSUS Statistics

We evaluate our algorithms by three criteria: suitability for handling varied sensitivity, data utility,

and scalability.

43

CHAPTER 7. EMPIRICAL STUDIES 44

Parameters Settings
Cardinality |T | 100k, 200k, 300k, 400k, 500k
f ′i -privacy for xi f ′i = min{1, θ × fi + 0.02}

Privacy coefficient θ 2, 4, 8, 16, 32
M mini{d1/f ′ie}
M ′ 50

Table 7.2: Table of Parameter Settings

(a) EDU (b) OCC

Figure 7.1: Frequency Distribution of SA

7.1 Criterion 1: Handling Varied Sensitivity

Our first objective is to study the suitability of F ′-privacy for handling varied sensitivity and skewed

distribution of sensitive values. For concreteness, we specify F ′-privacy by f ′i = min{1, θ×fi+0.02},
where θ is the privacy coefficient chosen from {2, 4, 8, 16, 32}. This specification models a linear

relation between the sensitivity f ′i and the frequency fi for xi. Since f ′i ≥ fi for all xi’s, a solution

satisfying F ′-privacy always exists following from Lemma 1 in Section 3.3. In fact, we can find a

solution even when we set up the constraint for the maximum bucket size to be M ′ = 50.

For comparison purposes, we apply `-diversity to model the above F ′-privacy, where ` is set to

d1/mini{f ′i}e . For the OCC-300K and EDU-300K data sets, the minimum fi of 0.18% and 0.44%,

respectively. Figure 7.2 shows the relation between θ and `. Except for θ = 32, a rather large ` is

required to enforce F ′-privacy. As such, the buckets produced by Anonymity [11] have a large size

` or `+ 1. Thus, the information loss is rather large. A large ` also renders `-diversity too restrictive

since 1/` ≥ maxi{fi} is necessary for the existence of a `-diversity solution. With OCC-300K’s

maximum fi being 7.5% and EDU-300K’s maximum being 27.3%, this condition is violated for all

` ≥ 14 in the case of OCC-300K and for all ` ≥ 4 in the case of EDU-300K. This study suggests that

CHAPTER 7. EMPIRICAL STUDIES 45

`-diversity is not suitable for handling sensitive values of varied sensitivity and skewed distribution.

0

10

20

30

40

50

2 4 8 16 32

(a) OCC

0

10

20

30

40

2 4 8 16 32

l

(b) EDU

Figure 7.2: The Relation Between ` (y-axis) and Privacy Coefficient θ (x-axis)

7.2 Criterion 2: Data Utility

Our second objective is to evaluate the utility of T ∗. We consider two utility metrics, Information

Loss (Definition 7 in Section 3.4) and Relative Error (RE) for count queries previously used in [11].

We compare Two-Size Bucketing, denoted by “TwoSize”, and Multi-Size Bucketing, denoted by

“MultiSize”, against two other methods. The first one is Optimal Multi-Size Bucketing, denoted by

“Optimal”. This is the exact solution to the optimal multi-sized bucket setting problem solved by an

integer linear program. “Optimal” provides the theoretical lower bound on Loss, but it is feasible

only for a small domain size |SA|. The second one is Anonymity [11] with `-diversity being set to

` = d1/mini{f ′i}e. For our algorithms, the minimum bucket size M is set to be mini{d1/f ′ie} and

the maximum bucket size M ′ is set to be 50.

7.2.1 Information Loss

Figure 7.3 shows information loss vs the privacy coefficient θ on the default OCC-300K and EDU-

300K. The study in Section 7.1 shows that for most F ′-privacy polices, the corresponding `-diversity

cannot be achieved on the OCC and EDU data sets. For comparison purposes, we compute the

information loss for “Anonymity” based on the bucket size of ` or ` + 1 while ignoring the privacy

constraint. “Anonymity” has a significantly higher information loss than all other methods across all

settings of θ due to the large bucket sizes ` and `+ 1 are large. The information losses for the other

CHAPTER 7. EMPIRICAL STUDIES 46

three are almost close. “TwoSize” has only a slightly higher information loss than “MultiSize”, which

has only a slightly higher information loss than “Optimal”. This study suggests that the restriction to

the two-size bucketing problem causes only a small loss of optimality and that the heuristic solution

is a good approximation to the optimal solution of the multi-size bucket setting problem.

0

10

20

30

40

50

2 4 8 16 32

Anatomy TwoSize

MultiSize Optimal

(a) OCC

0

10

20

30

40

2 4 8 16 32

Anatomy TwoSize

MultiSize Optimal

(b) EDU

Figure 7.3: Information Loss (y-axis) vs Privacy Coefficient θ (x-axis)

7.2.2 Relative Error

We adapt count queries Q of the form:

SELECT COUNT(*) FROM T

WHERE pred(A1) AND ... AND pred(Aqd) AND pred(SA)

Here A1, · · · , Aqd are randomly selected QID-attributes. The total number of QID-attributes is

7. The query dimensionality qd is randomly selected from {1, · · · , 7} with equal probability. For any

attribute A, pred(A) has the form

A = a1 OR ... OR A = ab,

where ai is a random value from the domain of A. The value of b depends on the expected query

selectivity, which was set to be 1% here. The answer act to Q using T is the number of records

in T that satisfy the condition in the WHERE clause. We created a pool of 5,000 count queries

of the above form. For each query Q in the pool, we compute the estimated answer est using T ∗

instead of table T . The Relative Error (RE) on Q is defined to be RE = |act − est|/act, where act

is its original data, and est is the estimate computed from the bucketized table. RE reflects the

CHAPTER 7. EMPIRICAL STUDIES 47

0

2

4

6

8

10

12

2 4 8 16 32

TwoSize MultiSize Optimal

(a) OCC

0

2

4

6

8

10

12

2 4 8 16 32

TwoSize MultiSize Optimal

(b) EDU

Figure 7.4: Relative Error (%) (y-axis) vs Privacy Coefficient θ (x-axis)

difference between the original data set and modified data set. We report the average RE over all

queries in the pool.

Figure 7.4 shows RE vs the privacy coefficient θ on the default OCC-300K and EDU-300K. For

the OCC data set, the maximum RE is slightly over 10%. The RE’s for “TwoSize”, “MultiSize”,

and “Optimal” are relatively close to each other. For the EDU data set, all RE’s are no more than

10%. “MultiSize” improves upon “TwoSize” by about 2%, and “Optimal” improves upon “MultiSize”

by about 2%. This study suggests that the solutions of the optimal two-size bucketing and the

heuristic multi-size bucketing are highly accurate for answering count queries, with the RE below

10% for most F ′-privacy considered. “Anonymity” was not included since there is no corresponding

`-diversity solution for most F ′-privacy considered (see Section 7.1).

7.3 Criterion 3: Scalability

We now evaluate the scalability for handling large data sets. We focus on Two-Size Bucketing

because it is a key component of Multi-Size Bucketing. “No-pruning” refers to the sequential search

of the full list Γ (defined in the Section 5.3.1) without any pruning; “Loss-pruning” refers to the

loss-based pruning in Section 5.3.2; “Full-pruning” refers to Two-Size Bucketing in Section 5.3.4,

which exploits both loss-based pruning and privacy-based pruning. “Optimal” refers to the integer

linear program solution to the two-size bucketing problem. We study the Runtime with respect to

the cardinality |T | and the domain size |SA|. The default privacy coefficient setting θ = 8 is used.

The algorithm of ”Optimal” is implemented in MATLAB 7.11.0 (R2010b), using the computing power

of the Gurobi Optimizer, which is widely used in data processing. Algorithms except ”Optimal” are

implemented in C++. All the programs run on a Windows 64 bits Platform with CPU of 2.53 GHz

and memory size of 12GB. Each algorithm was run 100 times and the average time is reported

CHAPTER 7. EMPIRICAL STUDIES 48

below.

0

3

6

9

12

15

100k 200k 300k 400k 500k

Optimal Loss-based
Full-pruning No-pruning

(a) OCC

3

4

Optimal Loss-based
Full-pruning No-pruning

0

1

2

3

4

100k 200k 300k 400k 500k

Optimal Loss-based
Full-pruning No-pruning

0

1

2

3

4

100k 200k 300k 400k 500k

Optimal Loss-based
Full-pruning No-pruning

(b) EDU

Figure 7.5: Runtime (seconds) (y-axis) vs Cardinality |T | (x-axis)

7.3.1 Scalability with |T |

Figure 7.5 shows Runtime vs the cardinality |T |. “Full-pruning” takes the least time and “No-

pruning” takes the most time. “Loss-pruning” significantly reduces the time compared to “No-

pruning”, but has an increasing trend in Runtime as |T | increases because of the sequential search

of the first valid pair in the list Γ′. In contrast, a larger |T | does not affect “Full-pruning” much be-

cause “”Full-pruning” locates the first valid pair by a binary search over Γ′. “Optimal” takes less time

than “No-pruning” because the domain size |SA| is relatively small. The next experiment shows that

the comparison is reversed for a large domain size |SA|.

0

20

40

60

80

100

120

140

*2 *4 *8 *16 *32 *64

Optimal Loss-based

Full-pruning No-pruning

(a) OCC

20

25

30

Optimal Loss-based

Full-pruning No-pruning

0

5

10

15

20

25

30

*2 *4 *8 *16 *32 *64

Optimal Loss-based

Full-pruning No-pruning

0

5

10

15

20

25

30

*2 *4 *8 *16 *32 *64

Optimal Loss-based

Full-pruning No-pruning

(b) EDU

Figure 7.6: Runtime (seconds) (y-axis) vs Scale-up Factor γ for |SA| (x-axis)

CHAPTER 7. EMPIRICAL STUDIES 49

7.3.2 Scalability with |SA|

We scale up |SA| for OCC-500K and EDU-500K by a factor γ, where γ is ranged over 2, 4, 8, 16,

32 and 64. Assume that the domain of SA has the form {0, 1, · · · ,m − 1}. For each record t in T ,

we replace t[SA] in t with the value γ × t[SA] + r, where r is an integer selected randomly from the

range [0, γ − 1] with equal probability. Thus the new domain of SA has the size m × γ. Figure 7.6

shows Runtime vs the scale-up factor γ. As γ increases, Runtime of “Optimal” increases quickly

because the integer linear programming is exponential in the domain size |SA|. Runtime of the

other algorithms increases little because the complexity of these algorithms is linear in the domain

size |SA|. Interestingly, as |SA| increases,Runtime of “No-pruning” decreases. A close look reveals

that when there are more SA values, fi and f ′i become smaller and the minimum bucket size M

becomes larger, which leads to a short Γ list. A shorter Γ list benefits most the sequential search

based “No-pruning”.

In summary, we showed that the proposed methods can better handle sensitive values of varied

sensitivity and skewed distribution, therefore, retain more information in the data, and the solution

is scalable for large data sets.

Chapter 8

Conclusion

Publishing data that allows data analysis to satisfy the demands for disclose sensitive information

without compromising individual privacy is an important research field.

In this study we propose a new idea of multiple size bucketization, which has two advantages

compared with `-diversity. The first advantage is that it is easy to find a feasible solution for buck-

etization even when the distribution of data set is very unbalanced. The second advantage is that

even if `-diversity can find a solution, our algorithm can get a better bucket setting with less infor-

mation loss. We also propose an effective top-down algorithm for the multiple size bucketing, which

calls the two size algorithm recursively. We propose two pruning strategies to improve the speed

of the two size algorithm: 1) Lose-based pruning strategy; 2)Privacy-based pruning strategy. The

figures in Section 7.3 show both of them effectively accelerate the speed of the algorithm. The top-

down bucketing algorithm also is proven that have got similar bucket setting with the Integer Linear

Programming, and the speed of Top-down algorithm is much faster than ILP algorithm.

This project focuses on the static data set to publish. Our future work will try to apply the multiple

size bucketization policy to the dynamic data sets. So we can handle a practical problem, where

people can add and delete the record in the data set without violating the privacy protection.

50

Bibliography

[1] Usama Fayyad, Gregory Piatetsky-shapiro, and Padhraic Smyth. From data mining to knowl-

edge discovery in databases. AI Magazine, 17:37–54, 1996. 1

[2] Benjamin C. M. Fung, Ke Wang, Rui Chen, and Philip S. Yu. Privacy-preserving data publish-

ing: A survey of recent developments. ACM Comput. Surv., 42(4):14:1–14:53, June 2010. 1,

2, 9

[3] S Bowers. 2008 HSBC loses disk with policy details of 370,000 customers. The Guardian

News and Media Ltd UK., 8th April 2008. 1

[4] Wong Raymond Chi-Wing, Fu Ada Wai-Chee, Wang Ke, and Pei Jian. Minimality attack in

privacy preserving data publishing. In Proceedings of the 33rd international conference on

Very large data bases, VLDB ’07, pages 543–554. VLDB Endowment, 2007. 2

[5] Raymond Chi-Wing Wong, Jiuyong Li, Ada Wai-Chee Fu, and Wang Ke. (a, k)-anonymity: an

enhanced k-anonymity model for privacy preserving data publishing. In Proceedings of the

12th ACM SIGKDD international conference on Knowledge discovery and data mining, pages

754–759, New York, NY, USA, 2006. 2

[6] Johannes Gehrke. Models and methods for privacy-preserving data publishing and analysis:

invited tutorial. In Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART sympo-

sium on Principles of database systems, PODS ’05, pages 316–316, New York, NY, USA,

2005. 2

[7] Markus Jakobsson, Ari Juels, and Ronald L. Rivest. Making mix nets robust for electronic vot-

ing by randomized partial checking. In Proceedings of the 11th USENIX Security Symposium,

pages 339–353, Berkeley, CA, USA, 2002. USENIX Association. 2

[8] T. Dalenius. Finding a needle in a haystack - or identifying anonymous census record. Journal

of Official Statistics, 2:329–336, 1986. 3

51

BIBLIOGRAPHY 52

[9] L Burnett, K Barlow-Stewart, AL Proos, and H Aizenberg. The ”genetrustee”: a universal

identification system that ensures privacy and confidentiality for human genetic databases.

Journal of Law and Medicine, 10:506–513. 3

[10] L. H. Cox. Suppression methodology and statistical disclosure control. Journal of the American

Statistical Association, 75:377–385, 1980. 3

[11] Latanya Sweeney. Achieving k-anonymity privacy protection using generalization and suppres-

sion. Int. J. Uncertain. Fuzziness Knowl.-Based Syst., 10(5):571–588, October 2002. 3, 8, 43,

44, 45

[12] M. Barbaro and T. Zeller. A face is exposed for aol searcher. New York Times, August 2006. 3

[13] Charu C. Aggarwal and Philip S. Yu. Privacy-Preserving Data Mining: Models and Algorithms.

Springer Publishing Company, Incorporated, 2008. 6

[14] Chris Clifton, Murat Kantarcioglu, Jaideep Vaidya, Xiaodong Lin, and Michael Y. Zhu. Tools

for privacy preserving distributed data mining. SIGKDD Explor. Newsl., 4(2):28–34, December

2002. 6

[15] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining. SIGMOD Rec.,

29(2):439–450, May 2000. 6

[16] Nabil R. Adam and John C. Worthmann. Security-control methods for statistical databases: a

comparative study. ACM Comput. Surv., 21(4):515–556, December 1989. 7

[17] Confidentiality and Data Access Committee. Report on statistical disclosure limitation method-

ology. Technical Report 22, Office of Management and Budget, December 2005. 7

[18] Avrim Blum, Katrina Ligett, and Aaron Roth. A learning theory approach to non-interactive

database privacy. In Proceedings of the 40th annual ACM symposium on Theory of computing,

STOC ’08, pages 609–618, New York, NY, USA, 2008. 7

[19] Blum, Avrim, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical privacy: the SuLQ

framework. pages 128–138, 2005. 7

[20] Irit Dinur and Kobbi Nissim. Revealing information while preserving privacy. In Proceedings

of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on Principles of database

systems, PODS ’03, pages 202–210, New York, NY, USA, 2003. ACM. 7

[21] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitiv-

ity in private data analysis. In Proceedings of the Third conference on Theory of Cryptography,

TCC’06, pages 265–284, Berlin, Heidelberg, 2006. Springer-Verlag. 7

BIBLIOGRAPHY 53

[22] Cynthia Dwork, Frank McSherry, and Kunal Talwar. The price of privacy and the limits of lp

decoding. In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing,

STOC ’07, pages 85–94, New York, NY, USA, 2007. ACM. 7

[23] William E Winkler. Overview of record linkage and current research directions. Technical

report, BUREAU OF THE CENSUS, 2006. 8

[24] Ke Wang, P.S. Yu, and S. Chakraborty. Bottom-up generalization: a data mining solution to

privacy protection. In Data Mining, 2004. ICDM ’04. Fourth IEEE International Conference on,

pages 249–256, 2004. 8

[25] Pierangela Samarati and Latanya Sweeney. Generalizing data to provide anonymity when

disclosing information (abstract). In Proceedings of the seventeenth ACM SIGACT-SIGMOD-

SIGART symposium on Principles of database systems, PODS ’98, pages 188–193, 1998.

8

[26] L. Sweeney P. Samarati. Protecting privacy when disclosing information: k-anonymity and

its enforcement through generalization and suppression. Technical Report, SRI International,

1998. 8

[27] C. Clifton. Using sample size to limit exposure to data mining. Journal of Computer Security,

8:281–307, November 2000. 10

[28] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakrishnan Venkita-

subramaniam. L-diversity: Privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data,

1(1), March 2007. 10, 11, 43

[29] Xiaokui Xiao and Yufei Tao. Anatomy: simple and effective privacy preservation. In Proceed-

ings of the 32nd international conference on Very large data bases, VLDB ’06, pages 139–150.

VLDB Endowment, 2006. 10

[30] Ninghui Li, Tiancheng Li, and S. Venkatasubramanian. t-closeness: Privacy beyond k-

anonymity and l-diversity. In Data Engineering, 2007. ICDE 2007. IEEE 23rd International

Conference, April 2007. 11

[31] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. The earth movers distance as a metric

for image retrieval. International Journal of Computer Vision, 40:2000, 2000. 12

[32] Manas A. Pathak, Shantanu Rane, Wei Sun 0008, and Bhiksha Raj. Privacy preserving prob-

abilistic inference with hidden markov models. In ICASSP, pages 5868–5871. IEEE, 2011.

12

BIBLIOGRAPHY 54

[33] Jianneng Cao and Panagiotis Karras. Publishing microdata with a robust privacy guarantee.

Proceedings of the VLDB Endowment, 5(11):1388–1399, 2012. 12

[34] Bijit Hore, Sharad Mehrotra, and Gene Tsudik. A privacy-preserving index for range queries.

In Proceedings of the Thirtieth international conference on Very large data bases - Volume 30,

VLDB ’04, pages 720–731. VLDB Endowment, 2004. 15

[35] Hakan Hacigümüş, Bala Iyer, Chen Li, and Sharad Mehrotra. Executing sql over encrypted

data in the database-service-provider model. In Proceedings of the 2002 ACM SIGMOD in-

ternational conference on Management of data, SIGMOD ’02, pages 216–227, New York, NY,

USA, 2002. ACM. 15

[36] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Efficient full-domain k-anonymity. SIGMOD

Conference, 2005. 43

	Approval
	Partial Copyright License
	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	List of Programs
	Introduction
	Assumptions of Data Collecting and Publishing
	Privacy-Preserving Data Publishing
	Contribution

	Background Knowledge
	Related Research Areas
	The Record Linkage Model
	The Attribute Linkage Model
	-Diversity
	t-Closeness
	 - Likeness

	Privacy and Utility Specification
	Limitations of -diversity
	Bucketization
	Privacy Specification
	Utility Metric
	Problem Definition

	One-sized Bucketing
	Data Assignment
	Validity Checking

	Two-sized Bucketing
	Validity Checking
	Record Partitioning
	Pruning Algorithm for Two-sized Bucketing
	Indexing Bucket Setting
	Loss-Based Pruning
	Privacy-Based Pruning
	The Pruning Algorithm

	Multi-Sized Bucketing
	Validity checking
	Top-Down Algorithm

	Empirical Studies
	Criterion 1: Handling Varied Sensitivity
	Criterion 2: Data Utility
	Information Loss
	Relative Error

	Criterion 3: Scalability
	Scalability with |T|
	Scalability with |SA|

	Conclusion
	Bibliography

