
Understanding Video Propagation in Online Social Networks:

Measurement, Analysis, and Enhancement

by

Haitao Li

M.Sc., Tsinghua University, 2010

B.Sc., Beihang University, 2006

Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree of

Doctor of Philosophy

in the
School of Computing Science
Faculty of Applied Sciences

c© Haitao Li 2014
SIMON FRASER UNIVERSITY

Spring 2014

All rights reserved.
However, in accordance with the Copyright Act of Canada, this work may be

reproduced without authorization under the conditions for “Fair Dealing.”
Therefore, limited reproduction of this work for the purposes of private study,
research, criticism, review and news reporting is likely to be in accordance

with the law, particularly if cited appropriately.



APPROVAL

Name: Haitao Li

Degree: Doctor of Philosophy

Title of Thesis: Understanding Video Propagation in Online Social Networks:
Measurement, Analysis, and Enhancement

Examining Committee: Dr. Mark Drew
Professor
Chair

Dr. Jiangchuan Liu
Senior Supervisor
Associate Professor

Dr. Qianping Gu
Supervisor
Professor

Dr. Jie Liang
Internal Examiner
Associate Professor

Dr. Zongpeng Li
External Examiner
Associate Professor, University of Calgary

Date Approved: April 24th, 2014

ii



iii 

Partial Copyright Licence 
 

  

 
 



Abstract

The deep penetration of Online Social Networks (OSNs) has made them major portals for
video content sharing recently. It is known that a significant portion of the accesses to video
sharing sites (VSSes) are now coming from OSN users. For example, YouTube reported that,
as of January 2012, more than 700 tweets per minute containing a YouTube link, and over
500 years’ worth of YouTube videos are watched by Facebook users every day. Although the
videos shared in OSNs are mostly from VSSes, OSNs provide quite different mouth-to-mouth-
like sharing mechanisms, leading to distinctive user access patterns. Yet the unique features
of video sharing over OSNs and their impact remain largely unknown.

In this thesis, we conduct a systematic study on the video propagation in OSNs based on
large-scale real-world data. Our study unveils the unique characteristics of video requests from
OSNs, showing that an OSN can dramatically amplify the skewness of video popularity that 2%
most popular videos account for 90% of total views; and video popularity also exhibits much
more dynamics with multiple request bursts. We then closely analyze the video propagation
process in OSNs with both measurement and modeling, identifying the key influential factors.
We further examine the popularity prediction of videos shared in OSNs. We demonstrate that
conventional methods largely fail in this new context, and develop a novel propagation-based
prediction model. Finally, based on the above studies, we present SNACS (Social Network
Aware Cloud Assistance for Video Sharing), which enables OSN operators to cost-effectively
enhance the video viewing experience of their users through utilizing content cloud services.
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Chapter 1

Introduction

1.1 Background and Motivation

Traditionally, users discover videos on the Web by browsing or searching. Recently, word-of-
mouth has emerged as a popular way of discovering videos, particularly over online social
network (OSN) sites such as Facebook and Twitter, where users discover video contents fol-
lowing their friends’ shares. It has been a key driving force toward the uprise of accesses to
video sharing sites (VSSes). YouTube reported that, as of January, 2011 more than 500 tweets
per minute containing a YouTube link, and over 150 years worth of YouTube video is watched
by Facebook users every day. Till June 2012, the numbers have increased to 700 tweets and
500 years [65]. According to comScore’s latest statistics in September 2013 [13], Facebook
ranked No.2 in terms of the number of viewers (67 millions), and No.3 in terms of the num-
ber of video views (975 millions). Besides Facebook and Twitter, we have seen similar trend
around the world. For example, as of May 2011, more than 54 million unique RenRen [45] (the
largest Facebook-like OSN in China) users have participated in video viewing and 20 million
participated in sharing, generating 12.4 million views, and 1.64 million shares every day [33].

Video propagation in OSNs is based on the friend relationships, and its process can be
described as follows. Initially, a user posts a video link from a VSS in an OSN; This link
immediately appears on her/his friends’ main page as a “News Feed“ in chronological order;
Meanwhile, this shared video is also listed in the sharer’s home page, which lists all her/his
ever shared contents. Then her/his friends will probably click the shared video appeared in
“News Feed“; or they may regularly visit friends’ home pages to watch those shared videos,
though this frequency is much lower than the first way. A video can be further propagated if
some viewers share the link again.

Although the videos shared in OSNs are from VSSes, OSNs provide quite different video
sharing mechanisms. Videos in VSSes are mainly viewed via related videos, their search
engines and front pages [4], whereas the videos in OSNs are viewed via friends’ direct shares.
In VSSes, users can hardly discover niche content, or content that is not properly categorized

1



CHAPTER 1. INTRODUCTION 2

or ranked. Instead, a recommendation strategy plays an important role. While in OSNs, each
video has a fair opportunity to be propagated along friendship links and the attractiveness of
video content itself is the most important factor that determines its popularity. These differences
lead to distinguished video popularity distributions and evolutions. Understanding the new
characteristics of video sharing behaviors in OSNs can thus provide valuable information to
ISPs, CDN providers, video site administrators, and content owners.

Exploring the characteristics of video sharing OSNs however has many challenges. First,
privacy protection generally prevents crawling video viewing information as easily in OSNs
(e.g., Facebook/RenRen) as in VSSes (e.g., YouTube/Youku). Second, unlike dedicated video
sites, OSNs rarely provide rich statistics about shared videos. Finally, given the wide distri-
bution of OSN users, tracing traffic from a small set of network routers/switches can hardly
reveal the geographic evolution of video sharing, not to mention the sheer volume of the mixed
network traffic to be analyzed. Due to such challenges, the unique features of video sharing
over OSNs and their impact remain largely unknown.

1.2 Contributions of this Thesis

In this thesis, we present a comprehensive study on the video propagation in OSNs: from the
perspectives of measurement, modeling and system enhancement. The work and contribu-
tions of this thesis are summarized as follows:

• We closely collaborate with RenRen, a large-scale Facebook-like OSN in China, to an-
alyze its user access logs spanning over four months, and conduct a long-term and ex-
tensive measurement of video sharing in RenRen. Our measurement reveals a number
of distinctive features of video requests from OSNs, which noticeably differ from that
of conventional videos, including the latest report on YouTube videos with inherent so-
cial features. We observe that the OSN amplifies the skewness of video popularity so
largely that about 2% most popular videos account for 90% of total views; furthermore,
video popularity evolution shows much more dynamics. Our measurements also unveil
the video propagation process in OSNs, and user behaviors during the process. These
measurement works have motivated our other works such as popularity prediction and
system enhancement, and we believe they definitely will trigger much more subsequent
studies on this topic.

• To further understand the measured results, we provide modeling analyses. First, we
build a simple but effective model-based emulator to generate synthetic video requests
from OSNs. Our emulator well captures the observed characteristics in the empirical
data, including the video popularity distribution and dynamics. This tool is especially
helpful for these studies that need user requests as the input, such as caching strategy
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study. We further propose an S2I3R model which extends the conventional epidemic
models to accommodate diverse types of users and their probabilistic viewing and shar-
ing behaviors. This model is useful in studying the impact of diverse parameters to the
video propagation, and thus can be used as a tool to make a preliminary test for system
design (e.g., recommendation strategy) before real deployment.

• Popularity prediction, with both technological and economic importance, has been exten-
sively studied for conventional VSSes, where the videos are mainly found via searching,
browsing, or related links. Yet the popularity prediction in the OSNs context remains
largely unexplored. We present an initial study on the popularity prediction of videos
propagated in OSNs along friendship links. We find that typical views-based prediction
models are generally ineffective, if not totally fail, especially when predicting the early
peaks and later bursts of accesses, which are common during the video propagations
in OSNs. To overcome these limits, we develop a novel propagation-based video pop-
ularity prediction solution, namely SoVP. Instead of relying solely on the early views for
prediction, SoVP considers both the attractiveness of a video and the influence of the
underlying propagation structure. The effectiveness of SoVP, particularly for predicting
the peaks and bursts, have been validated through our trace-driven experiments.

• Propagated through chains of friends, the coverage of OSN-shared videos can be much
broader with stronger micro- and macro-dynamics. Given that the contents are still
hosted by external VSSes, such distinct access patterns from OSN users have created
significant new challenges to VSSes. To this end, we present SNACS, a cost-effective
social network-aware cloud assistance for video sharing. The SNACS module sits be-
tween VSSes and an OSN, and is managed by the OSN to improve its users’ video
access experience using both centralized cloud resources and edges servers. Given the
strong dynamics of the access patterns, we are particularly interested in the content man-
agement and update strategies in the SNACS’ implementation. Motivated by realworld
data traces, we show that conventional cache replacement can be quite inefficient in this
context. We then develop an optimal offline algorithm with minimized cache misses and
replacements. It also motivates an online solution that makes effective use of the video
propagation information in the OSN. Our design has been extensively evaluated and its
superiority has been validated under diverse network and user configurations.

1.3 Related Works

There have been some related researches on video sharing in OSNs from the perspectives
of measurement, modeling and system enhancement. First, some measurement analyses
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have been conducted by analyzing proprietary log data provided by RenRen1 [33, 30, 34, 12]
and Tencent Weibo2 [58, 57], or by analyzing the crawled data of video propagation in Twitter
through its official API [47, 55]. Second, based on these measurement results, both epidemic
model [12] and branching model [30] have been proposed to capture user behaviors and video
propagations in OSNs. Third, incorporating video propagation information, P2P [61], cloud [64,
32], and hybrid [58, 57] paradigms have been proposed to enhance networking distribution of
shared videos in OSNs so that users can enjoy more frequent viewing experience.

1.3.1 Information Propagation and Video Sharing

Recently there have been pioneering data-driven analysis of information propagation in dif-
ferent kinds of OSNs, e.g., photos propagation in Flick network [9], likes and fans pages in
Facebook [5, 52, 62], links and retweets in Twitter [23, 47, 10, 17, 28, 40, 67], and voting in
Digg [28, 51, 29]. Rorigues et al. [47] studied the propagation of URL links posted in Twitter,
using large data gathered from Twitter. They presented the distribution of height, width, and
size of propagation trees. Sun et al. [52] studied distribution chains and large-scale cascades
across Facebook. Scellato et al. [49] focused on the geographic property of social cascades
of videos by tracking social cascades of YouTube links over Twitter. Cha et al. [8, 9] con-
ducted a large-scale measurement study on the Flickr social network. They found that even
popular photos spread slowly through the network. While we found that the videos in an OSN
spread much faster. This comparison indicates that different kinds of contents propagate in
diverse patterns in OSNs. A very recent work [58] studied the propagation-based social-aware
replication strategies for social video contents. They found similar power-law video popularity
distribution in another large OSN in China. Instead of making a comprehensive measurement
and analysis as we do in our thesis, they focused on the system optimization based on these
new traffic patterns.

Comparing with the characteristics of the videos shared in VSSes can provide us more
in-depth understanding of the characteristics of the videos shared in OSNs. There are a lot
of measurement works on the VSSes videos either by crawling meta-data their websites [7,
11, 16, 14] or tracing traffic from a set of network routers/switches [19, 70]. Cha et al. [7]
presented an in-depth study of the static popularity distribution of videos in two large-scale
VSSes, finding that the video popularity shows a power-law waist with a long truncated tail for
huge unpopular videos. Cheng et al. [11] also studied the distribution of videos in YouTube,
and found similar results. They further presented other statistics of YouTube video files such
the length, bitrate, and size. Figueiredo et al. [16] found that the popularity growth pattern
depends on the choice of the video dataset. Crane et al. [14] categorized videos by their
popularity evolution patterns into three types: viral videos, quality videos, and junk videos. Gill

1http://www.renren.com/
2http://t.qq.com/
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et al. [19] and Zink et al. [70] both analyzed YouTube video requests from a campus network
and observed that the video requests follow a Zipf-like distribution. Our work focuses on similar
aspects as pervious works, yet aiming to demonstrate the distinctive characteristics due to
the word-of-mouth based sharing mechanism. In particular, we find more skewed popularity
distribution, and more complex popularity evolution patterns.

1.3.2 Propagation Modeling and Popularity Prediction in OSNs

To characterize information propagation, a series of epidemic models have been proposed in
the literatures [42, 36, 18, 68, 56, 20], among which the SIR (Susceptible-Infectious-Recovered)
model is a typical example. Newman et al. [42] solved SIR cases in which the time and prob-
ability distribution are nonuniform and correlated. Liu et al. [36] investigated the SIR model
in scale-free and random networks, claiming that a substantial proportion of nodes can never
be infected and scale-free networks are more robust against spreads of infection. Ganesh et
al. [18] further examined the effect of network topologies on the spread of epidemics. These
works again have not considered modern social networks, not mention video link propagation.
Substantial revisions are needed to apply the SIR model in this new context, as we will show
in Chapter 3.

The works on video requests modeling and generation date back to the 1990’s, when online
video services just became popular. Two early works GISMO [25] and MediSyn [54] modeled
the video access patterns in traditional (compared with UGC-based video services) video ser-
vices. To capture the popularity dynamics of modern user-generated videos, like in YouTube, a
model was proposed by Borghol et al. [6]. They found in empirical data that the videos’ relative
popularity stays stable in three different phases, and thus can simply distribute user requests
according to three popularity distributions. Nowadays, OSNs are becoming major portals for
users to share and view videos. To this end, we provide a novel approach to model these
unexplored requests based on video propagation information.

There have also been efforts towards prediction in the OSN context [17, 23, 29]. Galuba
et al. [17] proposed a propagation model that predicts which users are likely to mention which
URLs in Twitter. Hong et al. [23] treated the retweets prediction on Twitter as a classification
task. They investigated a wide spectrum of features to determine which ones can be success-
fully used as predictors of popularity. Kooti et al. [27] investigated the prediction of emerging
social conventions on Twitter. The most close research to ours was conducted by Lerman et
al. [29]. They predicted popularity of news on Digg, by incorporating aspects of the web site
design. They showed that their model-based prediction improves prediction based on simply
extrapolating from the early votes. Our work has been inspired by these studies, and differs
from theirs in that we focus on video, which, as one of the most information-rich data objects,
preserves unique characteristics that are yet to be examined for prediction.
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1.3.3 Enhancement of Video Sharing Systems

Works on system enhancement have been conducted from two perspectives: finding interested
video content more easily and viewing videos more smoothly. The former one mainly involves
video recommendations [60, 37]; the latter one mainly involves video server developments,
which is the focus of this section. Incorporating video propagation information, P2P [61],
cloud [64] or hybrid [58] paradigms have been proposed to enhance distribution of shared
videos in OSNs so that users can enjoy more frequent viewing experience.

Wang et al. [61] advocated to utilize social reciprocities among peers for efficient contribu-
tion incentive and upload scheduling, to enable efficient social media sharing with low server
costs. They designed efficient peer-to-peer mechanisms for social media distribution based on
a combination of peers social relationship and historical contribution levels. Wu et al. [64] intro-
duced a proactive, online algorithm to scale social media streaming applications for operating
in geo-distributed clouds. Specifically, they formulated an optimal content migration and re-
quest distribution problem, with long-time and one-shot flavors, respectively. Efficient methods
were proposed to solve the one-shot optimization, and a novel Δ(t)-step lookahead mecha-
nism was designed with guarantees to adjust the one-shot optimum to the offline optimum,
which is based on solid theoretical analysis. Wang et al. [58] proposed a propagation based
social-aware replication framework using a hybrid edge-cloud and peer-assisted architecture,
namely PSAR, to serve the social video contents. Specifically, they designed three replication
indices: a geographic influence index, a content propagation index and a social influence in-
dex, which can guide the region selection, bandwidth reservation and cache replacement in
the joint edge-cloud and peer-assisted replication.

1.4 Organization of this Thesis

The remainder of the thesis is structured as follows:

• In Chapter 2, we examine the characteristics of video requests from OSNs, comparing
them with that in VSSes. In addition, we build a simple but effective model to generate
synthetic video requests to make them exhibit similar characteristics with the real trace.

• In Chapter 3, to further understand the underlying reasons behind the characteristics of
video requests, we study the video propagation process and user behaviors in OSNs
from the perspectives of measurement and modeling.

• In Chapter 4, we present an initial study on the popularity prediction of videos shared in
OSNs. Particularly, we confirm the ineffectiveness of conventional methods (e.g., ARIMA,
kNN, and MLR) in the OSN context, and propose an effective propagation-based predic-
tion model.



CHAPTER 1. INTRODUCTION 7

• In Chapter 5, we propose a framework, called SNACS, for OSN operators to cost-effectively
enhance their video viewing experience by leveraging content cloud service.

• In Chapter 6, we conclude the thesis, and also discuss some future works.



Chapter 2

Characteristics of Video Requests
from OSNs

2.1 Introduction

Although the videos in OSNs are most from VSSes, OSNs provide quite different video sharing
mechanisms, leading to distinctive user access patterns. In VSSes, videos are mainly viewed
via related videos, their search engines and front pages [69]; whereas in OSNs, videos are
viewed via friends’ direct shares. In VSSes, users can hardly discover niche content, or con-
tent that is not properly categorized or ranked. Instead, recommendation strategies play an
important role. In OSNs, each video has a relatively fair opportunity to be propagated along
friendship, and both the video quality and the property of the target OSN can affect the video’s
popularity. Compared with plenty of research on the video requests in VSSes (e.g., YouTube),
the characteristics of requests from OSNs have not yet been comprehensively measured at
large scales, not to mention video requests modeling and generation.

To unveil the characteristics of video viewing in OSNs, we closely collaborate with RenRen
to analyze its server access logs. Starting from March, 2011, we collected the detailed user
video viewing and sharing behaviors over four months. Leveraging the proprietary data, we
characterize the user requests from the aspects of video popularity1 distribution and evolu-
tion, unveiling a number of distinctive characteristics compared with the video requests directly
from VSSes. In particular, we observe that OSNs amplify the skewness of video popular-
ity so largely that about 2% most popular videos account for 90% of total views (compare to
20%-90% in conventional YouTube statistics [7]). We also observe that the video requests
distribution exhibits perfect power-law feature except for one hundred most popular videos,
where in YouTube, it exhibits a power-law waist with a long truncated tail for huge unpopular
videos [7]. For popularity evolution, we find that plenty of very popular videos stay a long term

1We use the number of views to denote a video’ popularity.

8
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dormancy before a sudden burst in requests. Our dataset can be used to explore the propaga-
tions of individual videos, by tracing the viewer-sharer relationships. We can not only see the
dynamics of popularity but also what happened there.

To further understand the characteristics observed in the empirical analysis, we build an
emulator to model the video viewing and sharing behaviors in OSNs. Our emulator generates
user requests that well capture the video popularity distribution and dynamics observed in our
empirical data. Using this emulator as a tool, we find that although the top popular videos
mostly have large sharing rate (sharing rate (ShRi) is defined as the probability viewers will
reshare the video i after viewing), videos with high ShR do not definitely gain large user re-
quests. We also confirm that the large difference of the number of sharers’ friends is a major
reason for the video popularity dynamics. Our emulator can also be used to synthesize user
requests for examining video sharing with assistances from peer-to-peer, content distribution
networks, or cloud platforms [58, 59].

2.2 Measurement Methodology

This section introduces our data set, which is also used in other chapters in this thesis.

2.2.1 The RenRen Social Network

Launched in 2005, RenRen is the earliest and so far the largest OSN in China. RenRen
can be best characterized as Facebook’s Chinese twin, implementing Facebook’s features,
layout, and a similar user interface. Like Facebook, RenRen’s users can post video links from
VSSes. Unlike Facebook, RenRen has two unique features that make it an attractive platform
for our study. First, while RenRen users have full privacy control over their private profiles, their
shared videos are public and thus can be crawled. For example, each individual user has a
page that list all shared videos with their statistics, including the number of views and shares
within RenRen. Second and perhaps more importantly, RenRen provides certain proprietary
information about users’ viewing behaviors, as we will be exploring.

Since the shared videos in RenRen are from VSSes 2, many characteristics of video view-
ing in RenRen are of little difference than that in VSSes, such as object sizes, user activi-
ties (e.g., VCR-like stop/fast-forward/rewind/pause), and the bit-rate of streaming objects. Yet
OSNs and VSSes provide different sharing mechanisms. While videos in VSSes are mainly
viewed via related videos and their searching engines [24], videos in OSNs are viewed via
friends’ shares. Video sharing in RenRen is based on the friend relationships. Initially, a user
posts a video link from a VSS in RenRen; This link immediately appears in her/his friends’ main

2The videos discussed in this thesis are those linked from third-party VSSes. They do not include private videos
that users upload directly in RenRen, which account for a relatively small portion and are usually only shared among
direct friends.
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page as a “News Feed”‘ in chronological order; Meanwhile, this shared video is also listed on
the sharer’s home page, which lists all her/his ever shared contents. Then her/his friends will
probably click the shared video appeared in “News Feed”; or they may regularly visit friends’
home pages to watch those shared videos, though this frequency is much lower than the first
way. A video can be further propagated if some viewers share the link again.

2.2.2 Data Set

Our dataset consists of proprietary data provided by RenRen as well as the crawled data from
Youku and RenRen websites.

To get the statistics of the videos shared in RenRen, we randomly crawl the information of
25997 shared videos from 10000 individual users. For each video in our data set, we crawl
the detailed information, including the sharing time, the URL in the VSS, total shares, and the
total views in RenRen. As comparison, we also crawl the statistics of these videos in Youku
using the URLs crawled from Renren. We use Youku as the representative VSS in our study,
both because almost 80% of shared videos in RenRen are from this site, and also because it
enables access to certain valuable detailed information, including the number of their views,
likes, dislikes, comments, favorites and external links. Using these data, we can know that
for those videos ever shared in OSNs, what percentage of the requests from OSNs among the
total requests. We can also analyze whether a popular video in a VSS will be still popular when
it is shared in the OSN.

To further understand video spreading in OSNs, we closely collaborate with RenRen, to
collect and analyze its video-related user behaviors 3. Like Facebook, its users primarily in-
teract with information through an aggregated history of their friends’ recent activity, called the
“News Feed”. For video sharing, typically a user may post a video link from a VSS, and the
link will appear in its friends’ “News Feed”. Some friends may click and view the video, and
such viewers can then decide whether to re-share the video. If they click the “share” button, the
video link will appear in their friends’ “News Feed” and hence the video can further propagate.

The data collection process works as follows: when a user clicks a video link shared by
her/his friend, a record will be sent to a log server; and the data format is: (Starting Time,
Video URL, Viewer ID, Direct Sharer ID, Initial Sharer ID). We use an example in Fig. 2.1 to
illustrate the video propagation and the corresponding log record. Initially at time T0, user A

(denoted as UA) posted Video x (denoted as Vx) from a VSS, and then a record (T0, Vx, UA,
UA, UA) is sent to log server. Since UA is the initial user, both direct sharer and initial sharer
are itself; At time T1, UB viewed Vx through the share link created by UA, and then UB further
shared Vx after watching it; and then a record (T1, Vx, UB, UA, UA) is sent to log server. Also
as UA is the initial user, the initial sharer is UA; At the Time T2, UC viewed Vx through the share

3To protect user privacy, we translate real User IDs by some hash function, and user IPs are not included in our
date set.
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Figure 2.1: Illustration of video propagation and corresponding logs

link created by UB . A new record (T1, Vx, UC , UB, UA) is sent to log server. Note that there is
a dotted line without any arrow between the friends UA and UC , which means although UA’s
shared video was exposed in UC ’s “News Feed”, UC did not click it maybe because s/he is
offline.

Table 2.1: Summary of trace in one-day period
Views Shares Users Videos New

Videos
12,432,708 1,628,852 3,514,461 201,517 71,236

Using (Video URL, Viewer ID), we can extract the number of views of any video in each day.
We then use this information to analyze the video popularity evolution patterns, and test views-
based prediction models. Using (Video URL, Viewer ID, Direct Sharer ID), we can examine
the share-view relationship between two friends. And together with the initial Sharer ID, we
can restore a video’s propagation process. Such information is useful to analyze the reason
underlying the popularity evolution patterns, and inspire the design of our propagation-based
prediction model. Our study is based on a one-month trace that began from March 24th, 2011,
since we find that most requests of a video are generally cumulated in the first month, and
after that the daily requests decline to a very small scale. Table 2.1 presents the statistics in
a typical one-day period (March 24th, 2011) during the measurement. Our records covered all
video requests in the measurement period. During the one-month period, we recorded about
370 million views and 49 million shares.

2.3 Characteristics of Video Popularity

2.3.1 Popularity Distribution

The Pareto principle (also known as the 80-20 rule) is widely used to describe the skewness
in distributions. For example, the analysis of YouTube shows that 10% of the most popular
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Figure 2.2: Skewness of requests across all videos
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videos account for 80% of user requests [7]. Then one may wonder whether social-network-
based sharing results in a less skewed request distribution across the videos in OSN, since
all videos have equal chance to become popular As shown in Fig. 2.2, we can see a counter-
intuitive result that 0.4% videos account for more than 80% of requests; the rest 99.6% of the
videos, on the other hand, only account for 20% requests (the x-axis of this figure represents
the videos sorted from the most popular videos to the least popular ones, with video ranks
being normalized between 0 and 1). An intuitive explanation is that the popular videos will
become even more popular since the users are more likely to recommend these videos to their
friends. The unpopular videos, however, will fade out very soon in the social communities.
The difference of video’s attraction can be magnified over the propagation process along friend
links. As shown in Fig. 2.3, we can observe that 80% of videos only have less than 4 requests
and 90% of videos only have less than 10 requests in one-day period. Considering the great
number of RenRen user, this result confirms that the social-network-based sharing will result
to a more skewed popularity distribution across the videos.



CHAPTER 2. CHARACTERISTICS OF VIDEO REQUESTS FROM OSNS 13

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized video index (ranked by popularity)

Fr
ac

tio
n 

of
 to

ta
l r

eq
ue

st
s

One day
Two days
One week
One month

0 0.02 0.04 0.06 0.08 0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Figure 2.4: Skewness of requests across the videos initially shared in the same day

100 101 102 103 104 105
100

101

102

103

104

105

106

Video index (ranked by popularity)

N
um

be
r o

f r
eq

ue
st

s 
in

 o
ne
−d

ay
 p

er
io

d

1.48

Figure 2.5: Log-log plot of number of requests versus video ranks

To further analyze user requests distribution, we also take a closer look at the videos that
are initially shared in the same day (March 24th). Since most users are more interested in
newly updated videos, this analysis will avoid the possible bias due to the video age. We count
the cumulative requests of those videos within one day, two days, one week and one month
separately since they were initially shared in RenRen. We plot the results in Fig. 2.4. Similar
to Fig. 2.2, the popularity of those videos also exhibits such a high skewness that the top 2%
popular videos account for 90% of total requests. We also notice that the skewness increases
as the time-window increases, and becomes converged after one week.

The power-law model has been increasingly used to explain various statistics appearing in
the computer science and network systems. A distinguished feature of power-law is a straight
line in the log-log plot. To check the power-law pattern of videos in OSN, we first plot the
requests against ranks based on all requests in a given day (March 24th) and show the result
in Fig. 2.5. We find that except for the top-100 videos, the plot exhibits perfect power-law
pattern except for one hundred most popular videos (as a comparison, the video popularity
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Figure 2.6: Log-log plot of frequency versus number of requests

on YouTube shows a power-law waist with a long truncated tail for huge unpopular videos [7]).
The fitted power-law exponents is also shown in the figure. Normally, the power-law distribution
arises from a rich-get-richer principle. And this principle seems perfect to explain the popularity
distribution of videos shared in OSN. The probability of a request for each video is proportional
to the existing shares of this video, because more shares mean that more users can discover
this video and thus watch this video. We also show the popularity distribution in another way
in Fig. 2.6–a plot of frequency against requests. As expected, it also shows the power-law
behavior. In Section 2.4 we design a model to simulate the video propagation process in the
OSN and the model generates very similar popularity distribution like that in Fig. 2.5, which
indicates that the power-law behavior is the natural shape for videos shared in OSN.

Based on the above analysis, we can see that the social-network-based sharing has changed
the pattern of video popularity in the existing video sharing systems. In particular, users’ in-
terests are significantly cumulated to a few very popular videos. These videos are widely
shared/recommended by many users and become even more popular. The unpopular videos,
on the other hand, will fade out very soon in such an environment with “user selection”. To
better understand this feature, it is thus important to clarify the video popularity evolution in
OSN especially for those popular videos.

2.3.2 Popularity Dynamics

Although the videos show similar popularity distribution along the time, we find that their relative
positions in the distribution are highly non-stationary. In other words, some current rarely-
requested (or low-ranked) videos may become frequently-requested (top-ranked) videos in the
near future.

After every 500,000 aggregate requests, we snapshot the number of added views for each
video that was initially shared on March 24th. Fig. 2.7 shows scatter plots for the number
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Figure 2.7: The number of added views at snapshot 1 versus snapshots 2, 3, 4

of added views received by a video at snapshot 1 and snapshots 2, 3, 4. It also shows the
Pearson correlation coefficient (ρp) [46] and Spearman’s rank correlation coefficient (ρs) [38] 4

between the number of added views at different snapshots. With our notion of added views at a
snapshot, this figure illustrates the change in viewing rate between two snapshots. Overall, we
observe substantial non-stationarity in the popularity of individual videos. Although the added
views of two adjacent snapshots show weak correlation, it is not the case for two non-adjacent
snapshots. The correlation declines quickly with the distance of two snapshots. Note that the
scatter plots have fewer points for later snapshots owing to the increasing videos that received
no views in these snapshots (and hence are not shown on the log-log plots).
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To further explore popularity dynamics, we examine the correlation between early and later
views, which is a simple but effective indicator to show whether the number of early views is
an effective factor in the prediction of future views. In the span of 30 days, we compute the

4ρp has been widely used for measuring the strength of linear dependence between two variables, and ρs

assesses how well the relationship between two variables can be described using a monotonic function. The
ranges of both ρp and ρs are from -1 to 1, where a value greater than 0 indicates positive correlation, and less than
0 indicates negative correlation. The value of 0.8 or more is considered to reflect strong positive correlation [7].
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Pearson correlation coefficients [46] in terms of the number of views across the top-2% videos
at early and later days and show the result in Fig. 2.8. Both early day and later day vary from
1 to 30. We can see that the correlation is very high when the later day is within 2-3 days of
the early day, and becomes very small when the later day is out of this range. This contradicts
the conclusion in the previous works that the correlation is still very high even when the later
day is tens of days after the early day [7].

2.3.3 Popularity Evolution
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Figure 2.9: Aggregated views of all videos in each hour over one week

In this subsection, we measure the video popularity evolution in OSNs. Like most streaming
systems, our measurement shows that video accesses are not distributed uniformly but exhibit
diurnal pattern. The diurnal access pattern defines how the number of accesses to a site
varies during a given period of time, e.g., a day. To explore such pattern, we count the number
of views in each bin of one hour over one week and show the result in Fig. 2.9. First, we find a
little more requests during the weekend. Second, there are local peak values during the lunch
time, especially in working days; Third, though it is common that the lowest requests appear in
the early morning around 6am and highest requests appears appear around 10pm, the large
gap between the peak value and the lowest value is out of our expectation. The diurnal access
pattern is important for capturing the burst of resource consumption within a given time period.
Due to the diurnal access pattern, the inter-arrival times within a given day do not simply follow
the exponential distribution. Instead, it is better to be modeled as a nonhomogeneous Poisson
process [38], where only the request arrivals within each bin can be modeled by a Poisson
process. The request arrival rate for a given bin is computed based on the diurnal pattern
specified by the user and the number of accesses within a day determined by system scale.

We also examine the evolution patterns of the videos of different popularity. We randomly
select 1000 highly popular videos with more than 10, 000 total requests over three months; 1000
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medium popular videos with 400 to 600 requests and 1000 unpopular videos with 10 requests.
Fig. 2.10 shows the popularity evolution of these three groups of videos. As we can see,
the unpopular videos can only attract some users in the first day of the share. After that,
their popularity decreases very quickly to a near-zero level. This means the lifetimes of most
unpopular videos are less than one day, and the OSN users will soon lose interest to these
videos in their social communities. The medium popular videos, on the other hand, show a
very different evolution pattern over time. Although they also achieve the peak value in the first
day, the decreasing of popularity is much slower compared to the unpopular videos. For the
highly popular videos, their peak values generally arrive after two or three days, and the video
popularity will stay at a relative high level for a long time. For example, most of them still have
more than 3000 requests after one month. The findings confirm our analysis in the IV.A that
the unpopular videos will die out quickly and the popular videos will flourish over a long time.
Note that there are many local bursts after the global peak along the evolution of the group of
popular videos. This is because some popular videos stay dormant for a relatively long time
(e.g., one week to several weeks) before the bursts of requests. These dormant videos are
unique due to the unique information propagation in OSNs.
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Figure 2.10: Popularity evolutions of groups of different-popularity videos

We then investigate how the popularity of individual videos evolves over time. Here we
focus on the popular videos, since only 0.4% most popular videos almost determine the pop-
ularity of the whole system. Concretely, we examine the popularity growth of top 100 popular
videos from those initially shared on March 24th. All of them attract more than 10000 cumu-
lative views till July 24th and we approximately take this cumulative views as the total views
of these videos. We find that the popularity of individual videos evolves differently. We select
three representative videos and show how their popularity evolves over ten days in Fig. 2.11.

At a first glance, the three videos show different growth patterns. Video A (golden video)
is the most popular video in our dataset. It kept an active-growth for a long time and still
gained many requests even after one week. Video B (silver video) experienced a surge-growth
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Figure 2.11: Popularity evolution since videos first appear in RenRen

over two days, acquiring 90% accesses, after that it turned to the sluggish state. Video C
(bronze video) stayed dormant for nearly six days after it was first shared in RenRen; then it
experienced a dramatic increase and attracted 40% of total views within 2 days. To explore
which growth pattern is dominant, Fig. 2.11 also plots the aggregated trend of all 100 videos
in our dataset. We make two key observations about the long-term growth. First, many videos
show an active rise in popularity during the first few days after they are shared in RenRen.
This is similar to the silver videos. Second, after the first few (e.g., 4) days, most videos,
enter a period of steady linear growth. At that point, they have already attracted nearly 80% of
requests. A previous measurement [7] explored the popularity evolution of videos in YouTube.
But it spends a week for videos in Youku to gain 60% of total requests, which indicates that the
popularity decays slowly in VSSes.

To cluster videos in terms of popularity evolution technically, we further use the k-means
method, which is very popular in networking field. Given a set of observations (x1, x2, , xn),
where each observation is a d-dimensional real vector (y1, y2, , yd), k-means clustering aims
to partition the n observations into k sets (k ≤ n) S = S1, S2, , Sk so as to minimize the within-
cluster sum of squares (WCSS):

arg min
S

k∑
i=1

∑
xj∈si

‖ xj − μi ‖
2 (2.1)

where μi is the mean of points in Si.
In our example, yi is the normalized cumulative views after i days since a video is initially

shared. We use 30-days trace as the input in our example, thus here d=30. Our result shows
that 40% of these popular videos are golden videos, 35% are silver videos, and surprisingly,
up to 25% videos are bronze videos.
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2.3.4 Popularity Comparison in OSN and VSS
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Figure 2.12: Video views in RenRen vs in Youku

We explore whether videos have similar popularity in OSNs and the VSSes. Among all
video sharing sites that ever share videos in RenRen, Youku alone accounts for nearly 80%
of all shared videos, and the top-5 video sites account for nearly 95%. Fig. 2.12 shows the
video views in RenRen against that in Youku. They exhibit a relatively close relationship, which
reflects that content itself plays a fundamental role in a video’s popularity. The fitted curve
suggests about 37% (1/2.67) video views on Youku come from RenRen. Note that we only
consider the statistics of those Youku’s videos that were ever shared in RenRen. The ratio
of the videos in Youku that are ever shared in RenRen is around 11% in March, 2011. The
ratio increased to 15% when we measured it in October, 2011. Considering the benefits of
this interaction for both OSNs and VSSes, we believe that this ratio will steadily increase in the
future.

Table 2.2: Correlation between the video views in RenRen and statistics in Youku
Correlation Views Likes Dislikes Comments
ρp 0.6937 0.2780 0.0188 0.2203
ρs 0.8493 0.6801 0.6186 0.6189

To analyze the correlations between the number of video views in RenRen and in Youku
more specifically, we leverage two widely used metrics: Pearson correlation coefficient (ρp) and
Spearman’s rank correlation coefficient (ρs). The former has been widely used for measuring
the strength of linear dependence between two variables, and the latter assesses how well the
relationship between two variables can be described using a monotonic function. The ranges
of both ρp and ρs are from -1 to 1, where a value greater than 0 indicates positive correlation,
and less than 0 indicates negative correlation.

We can see that the value of ρs is 0.84, which is a relatively high positive correlation and
confirms the result in Fig. 2.12. As a comparison, ρp is 0.69, which is much smaller than ρs.



CHAPTER 2. CHARACTERISTICS OF VIDEO REQUESTS FROM OSNS 20

It reflects that the video popularity in RenRen and that in Youku does not have a good linear
correlation relationship. To understand what kind of videos are popular in RenRen, we show
the correlation coefficients between the video views in RenRen and three other statistics in
Table 2.2, including likes, dislikes and comments. We find the number of views in VSSes has
the highest correlation. Since a video is generally first uploaded to a VSS and then discovered
and shared by some users in OSNs after the video becomes popular, the video popularity in
the VSS can be used as an alternative predictor for the potential popular ones when they are
first shared in OSNs.

2.4 Synthetic Video Requests Generation

In this section, we provide a synthetic video requests generator by emulating the users’ video
viewing behaviors in OSNs. As shown in Fig. 4.1, our emulator is designed to assign a se-
quence of user requests to a set of videos, and the generated requests should capture the
video popularity distribution and dynamics observed in the empirical data. Specifically, when a
request comes, the emulator needs to decide the probability for each video to be assigned for
this request. The probability is not a constant value, but calculated in real time, leveraging his-
torical information of views and shares, as well as the video property such as sharing rate and
viewing rate. Leveraging this emulator as a tool, we can analyze above measurement results
and various factors that impact the video popularity in OSNs. It can also be used to generate
synthesize user requests, which are very helpful for such related researches as video caching
and peer-to-peer algorithms. For convenience, Table 4.1 summarizes the major notations in
our modeling.

Table 2.3: Summary of major notations
Notation Meaning
T random variable, indicating the inter-arrival time between two requests;
D random variable, indicating the out-degree of a sharer;
U random variable, with continuous uniform distribution U(0, 1);
M number of videos in the system;
N number of the total requests;
Vi number of views of video i until current time;
Si number of shares of video i until current time;
ShRi sharing rate(ShR) of video i, indicating the probability users will share the

video i after viewing;
V iRi viewing rate(ViR) of video i, indicating the probability users will view the

video i shared by their friends;
BrFi branching factor(BrF) of video i, indicating how many friends view watch

it, if one user shares a video i;
Pi the probability that a request is distributed to the video i; it should be

recalculated when a new request arrives;
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Figure 2.13: Framework of our emulator

2.4.1 Modeling Request Distribution

Note that our work in this chapter only focuses on the effect of the word-of-mouth on the
dissemination of content. This word-of-mouth mechanism is widely adopted by a large number
of OSNs (e.g., Facebook, Tittwer, Flicker, RenRen) as the basic information dissemination
mechanism. It is also a distinctive feature of OSNs from traditional VSSes. Other mechanisms,
such as featuring, links between content, and search results, are undoubtedly at play in some
OSNs, but studying their impact requires a richer dataset and is beyond the scope of this work.

Now we model how the user requests are distributed across videos (Pi), in order to capture
the video popularity distribution and evolution observed in the empirical data. One simple
model is distributing requests according to a constant distribution, which is taken in some
previous work [25]. This method must assume that the relative popularity of videos maintains
stable in a certain time, which is not observed in our empirical data. Another alternative method
is using rich-get-richer distribution mechanism[66]. In our case, it is expressed as Pi = Vi∑M

j=1 Vj
,

where M is the number of videos in the system, and Vi is the number of historical views of video
i. The probability (Pi) that a new request is assigned to the video i is proportional to its Vi. The
most important property of this process is that it generates a distribution following a power
law in its tail, as is observed in our empirical dataset. Yet it it can not well reflect the video
propagation process in OSNs and hence fail to capture the dynamics of propagation.

Besides viewing history, we try to leverage the video propagation process to provide a more
reasonable request distribution mechanism. Our model assumes that users can only find and
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view videos shown in the “News Feed” of their homepages. And all these videos are shared
by their friends and be pushed to their “News Feed” in a chronological order. Therefore, videos
will have more chance to be found and thus be viewed in the future, if they have already been
shared by many sharers and at the same time these sharers have plenty of friends. Besides,
another two factors are also important: how many of these potential viewers have already
watched, and the probability that users will view the video if it appears in their “News Feed”.
We define Ei as the expected number of requests for all Si existing shares of the video i.

Ei =

Si∑
k=1

(Dk
i ∗ V iRi) (2.2)

where Si is the number of sharers of video i until now; Dk
i is out-degree of the kth sharer of the

video i; Dk
i indicates how many users the video i can be exposed to if the kth sharer shares

it. Note that similar to Vi and Si, Ei is a variable changing over time. Accordingly, we get the
following rich-get-richer equation:

Pi =
Ei − Vi∑M

j=1(Ej − Vj)
(2.3)

where the value of Ei − Vi reflects the number of expected viewing requests in the future.
Larger value of Ei − Vi means more chances to be assigned for the next new request.

2.4.2 Emulator

Based on the above model, Algorithm 1 describes an implementation of our emulator for the
video viewing and sharing behaviors in an OSN. It introduces a new request to system after
each inter-arrival time (T ). We discussed the calculation of the distribution of T in the Section
V. D. For each request, the emulator assigns it to the video i according to the Pi defined in
Eq. 2.3. For the chosen video i, the number of its views (Vi) is increased by one. After that,
this video should be judged whether to be reshared with the probability ShRi. If so, the number
of shares (Si) of this video is increased by one, and the expected views (Ei) of this video is
increased by D ∗ V iRi.

In this emulator, the input parameters include the degree distribution of sharers (D), video
sharing rate (ShRi), and viewing rate (ViRi) for each video. The emulator distinguishes the
attractiveness of videos by assigning different ShRi and ViRi to them. Note that it does not
distinguish the difference of individual users in the probability of viewing and sharing the same
video. The ViRi and ShRi are the properties of videos not users. The distribution of D reflects
a topological property of the targeted OSN.
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Algorithm 1 Emulator for video viewing and sharing behaviors in an OSN
1: for request = 1 to N do
2: generate a inter-arrival time T ;
3: current time t=t+T ;
4: a new request arrives, and be assigned to the video i with the probability Pi;
5: Vi++;
6: extract a random variable U , with continuous uniform distribution U(0, 1);
7: if U < ShRi then
8: Si++;
9: extract a random variable D;

10: for i=1 to D do
11: extract a random variable U ;
12: if U < V iRi then
13: Ei++;
14: end if
15: end for
16: end if
17: end for

2.4.3 Validation

We now validate the efficacy of our emulator in reflecting the video popularity distribution
and dynamics by inputting the parameters extracted from real-world trace. For the number
of videos and requests, we configure the same values (M=63,591 and N=2,905,276) as those
in Fig. 2.5. To get the distribution of ShR, we collect all 12,432,708 views on March 24th and
record whether there is a following share behavior after the view. We count the average ShR
for each video separately and show the distribution of ShR along with the fitting function in
Fig. 2.14. We find the ShR of 90% videos are less than 0.30, with the average value 0.11.
Instead of parameterizing ViR and D separately, the emulator needs only the product of them,
which is denoted as the branching factor (BrF). To get the distribution of BrF, we collect all
1628852 shares created on March 24th and count their followed requests over three months.
The distribution along with the fitting function are shown in Fig. 2.15. We call the above BrF dis-
tribution as the basic BrF. To distinguish the values of BrF across different videos, we configure
each video with the product of the basic BrF and a random factor that uniformly distributes in
(0.5-1.5).

With the above parameters as the input, we first examine the video popularity distribution
of the generated user requests. One key observation from the empirical data about the video
popularity distribution is the power-law distribution under the plot of video views versus ranks.
Another key observation is that the popularity shows high skewness. As shown in Fig. 2.16,
we can see the simulation result and real-world data are pretty matched. We also count the
skewness of the video popularity distribution, and the simulation result shows that the top-2%
videos account for 85% of the total requests, which is very close to our observation (2%-90%).
The most popular videos in our simulation are not as popular as that in the empirical data.
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Figure 2.16: Comparison of popularity distribution

In our examined OSN system, a small number (e.g., 120) of popular videos is featured as
the most popular videos and are listed on a public page. This behavior can further increase
the popularity of the featured videos. We do not include this exogenous factor in our current
emulator, considering that it is not a general case in other systems and also does not affect the
overall pattern of user requests.

Then, we examine the popularity dynamics. We calculate the Pearson correlation coeffi-
cient (ρp) and Spearman’s rank correlation coefficient (ρs) between the numbers of added views
at different snapshots, and shown the results in Table 2.4. Overall, the coefficients between the
simulation result and the empirical data are very close. A closer look will find that our emulator
produces less dynamic. This is because our simulation simply configures each video with a
constant ShR that never changes over time. In fact, the ShR of different videos change over
time with diverse patterns, which can also affect the video popularity dynamics. Considering
the complexity of ShR evolution pattern yet much less importance to the popularity dynamics,
we do not model the evolution of ShR in the current emulator and leave it for our future work.
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In summary, since the generated requests are the consequence of the emulation algorithm
and the input parameters derived from empirical data, rather than directly fitted from the empiri-
cal data, the above tests validate the efficiency of our emulator in reflecting the video popularity
distribution and dynamics.

Table 2.4: Correlation coefficients between the added views at different snapshots
(ρp, ρs) S1 vs S2 S2 vs S3 S3 vs S4 S1 vs S3 S1 vs S4
simulation (0.845,0.722) (0.710,0.473) (0.774,0.430) (0.623,0.383) (0.183,0.175)
empirical (0.821,0.647) (0.708,0.462) (0.773,0.428) (0.512,0.338) (0.175,0.161)

2.4.4 Analysis
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Based on the verified emulator, we first analyze the impact of ShR value to a video’s pop-
ularity. Fig. 2.17 shows the scatter plots for ShR and views. On one hand, we find the high
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ShR does not definitely result in many requests. As shown in this figure, the correlation co-
efficients between them are very low. On the other hand, almost all frequently-viewed videos
have high ShR. For example, 87.8% videos which gain more than one thousand views have
ShR with value 0.17 or 0.18. It indicates the popularity of a video shared in OSN exhibits much
randomness and unpredictability, for example owing to the randomness of friends’ number of
sharers.

We then analyze the impact of BrF to the video popularity dynamics. D can range from
zero to a large number, leading to the dynamics of BrF. We assume that the dynamic of BrF
is regarded as one main reason for the popularity dynamic. To illustrate this, we set the BrF
with a constant value (e.g., 6) for all 63,591 videos and show the scatter plot of added views
in snapshot 4 versus snapshot 5 in Fig. 2.18. For comparison, Fig. 2.18 also presents the
result with BrF extracted from the empirical data. Here we only choose snapshot 4 and 5 as
the example, since other snapshots show the similar results. Both the plot and the correlation
coefficient verify our hypothesis that the BrF dynamic is the major reason for the popularity
dynamic.

2.4.5 Discussion

Our emulator can be easily extended to include more features, such as the properties of in-
dividual request sessions (session duration, video bitrate, VCR-like user interaction, and geo-
graphical information). We can also add the new video introduction process. For each request,
a new video may be added to the system with the probability 1

k , as we find that the number of
requests and the number of new videos roughly show a linear relationship in our empirical data
(k=175). Once a new video i is introduced to system, the emulator configures Ei=ShRi ∗ D,
Si=1, and Vi=0.

We only consider the impact of dynamics of BrF to the popularity dynamics in this work.
The diverse ShR evolution patterns can also impact the video popularity dynamics. We found
that modeling these complex patterns is a great challenging work that cannot be well explored
in this work, thus the model validation and analysis parts simply configure a video’s ShR with
a constant value. We would like to make an in-depth study of ShR’s evolution and analyze
its impact on the popularity dynamics in our future work. Our work also does not analyze the
impact of ViR and D, due to the lack of ViR information from real systems. Instead, we only
analyze the product of them.

2.5 Summary

In this chapter, we provided the first major stab at characterizing these requests, by analyzing
the logs of video viewing and sharing behaviors in a large-scale OSN over several months. Our
measurement unveiled both static and temporal characteristics of video requests from OSNs,
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highlighting several distinctive features from the requests directly from VSSes. To better un-
derstand the characteristics observed in our empirical data, we built an emulator to model
video viewing and sharing behaviors in OSNs. Although simple, our emulator well captures the
observed characteristics in the empirical data, including the video popularity distribution and
dynamics. Leveraging this emulator as the tool, we analyzed the impact of dynamics of branch-
ing factor and the videos’ sharing rate to the user requests patterns. Future work involves the
measurement of geographic locality of user requests, study of the model’s applicability for other
contents (e.g., articles and pictures) shared in OSNs, and the impact of the rising traffics to the
system design such as P2P, CDN and cloud.



Chapter 3

Video Propagation in OSNs

3.1 Introduction

A common video propagation process is like this: Initially, a user shares a video link to an
OSN directly from a VSS. Immediately, this user’s friends can find this video in their newsfeed,
and some of them watch this video. After that, some portion of these viewers will share this
video and can recommend it to their friends. We assume a user never views or shares a video
more than once 1. Some popular videos are generally brought to an OSN by multiple users.
Therefore, the propagation structure of a video becomes a forest, which consists of multiple
rooted trees. Each node is a user who ever shared or watched this video. The roots of these
trees are the users who brought the video to the OSN. If user A watched a video shared by
user B, then a direct edge (from A to B) is added to the tree.

To specify this process, we give the following definitions like that in the work [20]. We call the
users in the root of a propagation tree initiators. These users are the ones who independently
shared the video directly from VSSes. We call the users who re-shared the video spreaders.
We call the users who watched the shared video viewers. Since spreaders generally watched
the video before re-shared it, most of them are also viewers. The definition of viewers is
different from that in [20]. In their model, the viewers are exclusive of spreaders. We define a
video’s popularity as the number of its viewers. We define the BranchingFactor(BrF ) as the
number of viewers directly follow a spreader. We define the ShareRate(ShR) as the ratio of
the viewers that re-share the video after watching it.

3.2 Characteristics of Video Propagation

By measurement analysis, this section explores the video propagation structure and investi-
gates what factors could potentially affect the video spreading process.

1This assumption is reasonable, since in our dataset a user views the same video more than once with less than
0.1% probability.

28
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3.2.1 Propagation Structure of a Popular Video

Figure 3.1: Propagation illustration of one video with two initiators
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Figure 3.2: Viewers evolution along the level of the tree

This subsection presents a detailed propagation structure of a popular video, which con-
sists of 1022 initiators, 153,185 spreaders, and 995,707 viewers over one month propagation.
By studying this representative video, we will get some important conclusions, which motivate
our models. An illustration of its propagation structure over several hours is shown in Fig. 3.1.
We choose two among its 1022 trees. They exhibit unique propagation patterns. We can ob-
serve some super spreaders in the left tree, who are followed by many viewers. The super
spreaders and especially the ones that appeared in the early spread stage generally play an
important role in the further explosion of the tree. In fact, the left tree has finally become the
largest tree among these 1022 trees. We can also observe that a large portion of viewers does
not share this video.

Then we show some quantitative results of its biggest component, which consists of 96,220
spreaders, and 625,493 viewers. Fig. 3.2 shows the number of viewers at each level. Fig. 3.3
shows the BrF evolution along the level of the tree. Fig. 3.4 shows the ShR evolution along
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Figure 3.3: BrF evolution along the level of the tree
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the tree. The most important observation from this example is that BrF and ShR is level-
independent: except for a few exceptional values, the values of BrF and ShR are less corre-
lated with their distance to the root. In fact, this finding is also observed in most other video
spreading trees in our data set. This is important for our model, since we can simply set the
same BrF distribution for all spreaders and probability of ShR for all viewers, regardless of its
distance to the root. Actually, at the beginning of our research, we wonder that the BrF and
ShR should decrease along the level of the tree, because the distance of a viewer to the root of
the tree may reflect the viewing time. Yet we find two facts which can explain this wonder. First,
the relationship between the distance of a viewer to the root and its viewing time is very weak.
Second, within a short time, the attraction (reflected by the ShR) of a video has no obvious
change.

We also notice that there are some exceptional value in these figures. For example, the
viewers suddenly increases to a dramatic high value at level 8 in Fig. 3.2. The average BrF is



CHAPTER 3. VIDEO PROPAGATION IN OSNS 31

153 at level 7 in Fig. 3.3. The BrF is obviously larger at first 7 levels than latter levels. These
exceptional values can be explained by one fact that some spreaders have extreme large BrF .
We here list the largest five BrF in this tree: 53946, 53532, 1443, 410, 384. There are super
nodes (such as movie stars, and public figures) in RenRen, some of them have even more
than one million fans. Once they share a video, they get very large BrF and thus accelerate
the video spread process in an unusual way. The large spreading trees of a video often have
super spreaders at the early stage of propagation. While those small trees generally do not
reach to these super spreaders before their propagations die out.

3.2.2 Influencing Factors

In this subsection, we further give some statistics across videos and analyze influencing factors
to the video popularity. We first analyze initiators. A video can be shared in OSNs only if some
users of OSNs initiate the share directly from VSSes. Intuitively, the number of initiators should
have a positive relationship with video’s popularity. Surprisingly, the Pearson’s coefficient be-
tween them is only 0.189. It suggests that the number of initiators does not reflect or affect the
video popularity. There are two possible reasons for this measurement result. Fig. 3.5 shows
the distribution of initiators for individual videos. Since most videos have an extremely small
number of initiators, this parameter is unsuitable to predict a video’s popularity in OSNs. We
can find that 90% of videos have less than 10 initiators. In addition to the nature of video’s
attraction, the number of initiators is also affected by the characteristics of original websites,
such as the scale and convenience of share button.
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Figure 3.5: Distribution of the number of initiators for individual videos

We also find the number of followed viewers varies a lot for each initiator of the same video.
And it is not uncommon that an initial share A is no later than another initial share B of the same
video, but B has much more followers (e.g., 547) than A (e.g., 57). It suggests that the spread
of a video shows obvious stochastic properties. A further observation shows that generally
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the number of viewers followed each initial share of a popular video is either extremely large
or small. For example, the numbers of viewers following each initiator of our representative
video are 3, 10, 11, 12, 17, 63, 77, 2904, 12130, and 13896 respectively. It suggests that once
a shared video from VSSes can survive during the first several rounds of the propagation, it
could be followed by a large number of viewers; Otherwise, it will extinct quickly.

We now consider the BranchingFactor(BrF ), which is an important metric that reflects the
probability that users would like to view friends’ shared videos. Fig. 3.6 shows the distribution
of BrF for each video. The most frequent values appear around 6 and 7. A few videos have
branching factor even more than 25. The work of [24] showed that one user has an average of
78.7 friends in an OSN. Hence the probability a user will view friends’ shared videos is around
10% on average.
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Figure 3.6: Distribution of the average BrF for individual videos

It may be expected that a popular video can attract more total shares, and more viewers
for each share. While there is indeed a high correlation (ρp=0.91) between the shares and the
views of a video, the correlation coefficient between the views and the branching factor is sur-
prisingly low (ρp=-0.0014). The average branching factor of the top 10% most popular videos
is 6.3, which is indeed much smaller than the average value 6.9. One possible explanation is
that an extremely popular video will be shared by many users. Therefore, many friends of a
user will likely share the same video, but the user generally watches a video once. In addition,
even those users with a very small number of friends also share the extremely popular videos.

We next examine the ShareRate(ShR), which reflects the possibility of share after a view.
Compared with BrF , ShR is a better metric to reflect users’ interests in a video, since BrF

is also affected by the number of a user’s friends. Fig. 3.7 shows the cumulative distribution
of ShR. We find the ShR of 90% videos are less than 0.3. The average of ShR of all videos
in our dataset is 0.13. This low value needs to be further analyzed. If it is a design problem,
there are much improvement space. Again, we calculate the relationship coefficient between
a video’s ShR and its popularity. Small values of ρp (0.009202), and ρs (0.1357) indicate no
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obvious relationship between a video’s ShR and its popularity.
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Figure 3.7: Distribution of ShR for individual videos

Figure 3.8: Propagation structures of two demonstrated videos

In the above measurements, we have shown that a video’s popularity has no obvious cor-
relation with the average value of BrF and ShR, and only has a weak relationship with the
number of initiators. Then we suspect the duration of users’ interest in a video should be a
more important factor determines the video popularity. Although the average value of BrF and
ShR can reflect average users’ interest in a video to some extent, it ignores a fact that only
long-lasted popular videos can cumulate large views. A simple example to illustrate this phe-
nomenon is shown in Fig. 3.8. It consists of two trees, illustrating the propagation of video A
and video B. Obviously, A has a smaller BrF (19/7 ≈2.7) than B (17/5=3.4), but attracts more
viewers. From this example, we can see that a temporary larger BrF can accelerate the video
spread in a short time, but it will die out quickly as the users’ interest in the video declines.
Thus, the evolution of users’ interest in videos as well as their average statistic values are the
fundamental factors determining a video’s popularity. We confirm this assumption by measur-
ing the relationship between the video popularity and the height of the propagation tree. Only
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those videos that keep high attractions to users can continue propagating and produce prop-
agation trees with a large height. The coefficients are ρp=0.564, and ρs=0.856 respectively,
which are relatively high values.

Table 3.1 summarizes the relationship between the five parameters and video popularity.
A direct finding is that the video popularity has no obvious relationship with the average value
of BrF and ShR, weak relationship with the number of initiators, and strong linear relationship
with the number of shares and the height of the video propagation tree. The number of shares
and views are determined by users’ interest in videos as well as the duration that the interest
persists.

Table 3.1: Correlation between five factors and a video’s popularity
Correlation Initiators BrF ShR Height Shares
ρp 0.1895 -0.0014 0.0092 0.564 0.9138
ρs 0.2342 -0.1453 0.1357 0.856 0.9730

3.3 Characteristics of User Behaviors

This section presents characteristics of user behaviors in initiating, viewing and sharing, and
their temporal properties.

3.3.1 Initiating, Viewing, and Sharing

We start by examining the initiators, each of which triggers the first share of a video. From the
dataset, we extract 827 thousand initiating records. While this number is not small, it is only
6.5% out of the 12.8 million sharing records. This indeed reflects the pervasiveness and power
of video share propagation. The rank distribution of the initiators (in terms of the number of
initiated videos) is plotted in Fig. 3.9. Without surprise, it is long-tail scale-free, suggesting that
most users initiate few videos, but a few active users have initiated a remarkable number of
videos. The most active user indeed has initiated over two thousand videos in one week.

The Zipf’s law is usually used to fit the long-tail distributions, and the probability distribution
function (PDF) y = C

xa is a straight line in logarithmic scale. Our data cannot be simply fitted
by one Zipf’s line: the data after top-10 appear to be a straight line, but the top-10 data clearly
differ from the rest. Yet they can be roughly fitted by another Zipf’s line. The distinction implies
the existence of two possible types of users with different initiating behavior.

We compute the ratio of the number of viewed videos and that of the received videos from
friends, defined as the reception rate for each user. Since the number of received videos is es-
timated and the accuracy would be affected if the sample size is small, we have removed those
users that receive less than 4 videos to obtain a more representative result, and the cumulative
distribution function (CDF) of the reception rate is shown as the blue line in Fig. 3.10. This curve
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Figure 3.9: Number of initiated videos against rank

can be well fitted by the CDF of a Generalized Pareto Distribution (GPD) y = 1−(1+ξ · x−μ
σ )−

1
ξ .

On average, we find that a user watches 16% of videos shared by its friends.
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Figure 3.10: CDF of reception rate

We next examine the user behavior on sharing videos after watching, a key step toward
propagation. The distribution of the number of each user’s shares is again scale-free, clearly
indicating that there are some extremely active users sharing a great number of videos, and
most of the users only share a small number of videos. To understand how a user reacts upon
finishing watching a video, that is, whether or not to further spread the video, we calculate the
ratio of the number of shared videos against the number of viewed videos, defined as the share
rate, for each user. In the calculation, we include the users that have not shared any videos but
have watched at least two videos. For the cases where the number of shares is greater than
that of views, the share rate is defined as 1. The CDF of share rate is shown as blue solid line
in Fig. 3.11. Similar to the reception rate, the share rate can be well fitted by a Generalized



CHAPTER 3. VIDEO PROPAGATION IN OSNS 36

Pareto Distribution. The average value of share rate is 13%.
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Figure 3.11: CDF of share rate

We notice that there are over half of the users do not share any video. We further examine
these users by plotting a CDF of the number of views in Fig. 3.12. Among these users, most
of them have only watch a few videos, but we do find the most “selfish” users have watched
more than one thousand videos without sharing any. Such free-riders, like those in peer-to-
peer systems, largely hinder the propagation. Note that, most users generally consume video
rather than interacting with it. As a result, for those users who have watched a few number of
videos without sharing one, we do not consider them as the free-riders. Therefore, we next
propose a simple method to identify free-rider.

It is well known that a power-law distribution usually results in “K/(100 − K)” rules, such
as 80/20, indicating that a majority of the effects comes from a minority of the causes. We
thus utilize this method to identify free-riders. Specifically, we only examine the free-riders with
views between 1 and 3882. As a result, we find a 94.5/5.5 rule, i.e., 94.5% users have watched
less than 5.5% videos, which is 388 · 5.5% = 22. We define users that have watched more
than 22 videos without sharing one as free-riders, which are around 320 thousand and count
for about 3.5% of the all observed users.

3.3.2 Temporal Property

We first check the time span between sharing a video and the actual view of this shared video
by the sharer’s friends. We examine the sharing records that are created in the first two days,
and the corresponding viewing records within 6 days. The reason we do not examine all the
sharing records is that, sharing records created in the last day only have less than 24 hours
to be watched, leading to unfair comparisons. We define the view from the first friend that

2One outlier free-rider has watched 1151 videos, and all others have watched no more than 388.
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Figure 3.12: CDF of views for free-riders

watches the video as “first view”, and if a shared video has not been watched in 6 days, we
set the “first view” value to 8640 (minutes of 6 days); all the views by friends are defined as “all
view”. The respective CDFs of the time spans for both are plotted in Fig. 3.13.
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Figure 3.13: CDF of time span from share to view

We observe that 13% of the shared videos will not be watched in 6 days, and for those
videos that have been watched, 68% can be watched within one hour. This indicates that videos
can quickly propagate to friends in OSNs, exhibiting strong temporal locality. By examining the
data of “all view”, we find that only 2.6% views appearing after 4 days and less than 1% after
5 days. This implies that the life span of video propagating in OSNs is in general of short
durations, and thus our one-week dataset is suitable for the study.

We tried several common distributions to fit the curve (we only fit the “all view” distribution
which will be utilized in our model in Section 3.4), but none of them fits well. Therefore, we tried
a combined distribution with Weibull (y = 1 − e−(x/λ)k ) and Generalized Pareto, and obtained
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Figure 3.14: CDF of time span from view to share

a good fit.
We then compute the time span between watching a video and sharing it, i.e., how long it

takes a user to share a video to friends after clicking to watch it. We find that over 90% of views
are not followed by sharing. For the rest of the records, they are clearly affected by the video
lengths: 88% of shares are created within 10 minutes after the users starting watching a video,
which can be well explained that the videos shared in OSNs are mostly short user-generated-
content (UGC) [11]. Fig. 3.14 plots the CDF of the time span within two hours, as well as a
combined Weibull CDF fit. Note that, there are only 1.3% of shares occuring after two hours,
and thus we only fit the data within two hours. The curve implies that not only the videos are
short, but also the users tend to share them right after finishing watching (or even before the
finish).

Again, the modeling of time spans from share to view and from view to share facilitate the
video sharing propagation model in Section 3.4.

3.4 Modeling Video Propagation in OSNs

In this section, we propose an extended epidemic model to capture the video propagation in
OSNs. First, we describe the classical SIR model and extend it to our S2I3R model. Then,
we validate it based on real trace. Finally, using this S2I3R model, we analyze an interesting
observation from the measurement.

3.4.1 S2I3R model

An epidemic model describes the spread of a contaminative disease through individuals [15].
One of the classical epidemic model is the SIR (Susceptible-Infectious-Recovered) model. It
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considers a fixed population with three compartments: Susceptible (S), Infectious (I), and Re-
covered (R). The initial letters also represent the number of people in each compartment at a
particular time t, that is, S(t): the number of individuals not yet infected with the disease, or
those susceptible to the disease; I(t): the number of individuals who have been infected with
the disease and are capable of spreading the disease to those in the susceptible category;
R(t): the compartment used for those individuals who have been infected and then recovered
from the disease, and those in this category are not able to be infected again or to transmit the
infection to others.

In the SIR model, we have the following ordinary differential equations:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dS(t)

dt
= −β · S(t) · I(t) (3.1)

dI(t)

dt
= β · S(t) · I(t) − γ · I(t) (3.2)

dR(t)

dt
= γ · I(t) (3.3)

where parameter β is infection rate of the disease, and parameter γ represents the recovery
rate.

No direct mapping exists from the classical SIR model for video propagation in an OSN.
New compartments and new derivative equations are needed. Six major compartments are
introduced:

• Safe (S1) represents the individuals who are far away from sharers. Initially, all users are
Safe expect the friends of the initiator;

• Susceptible (S2) represents the individuals who have a chance to see the shared video.
If an individual shares a video, the shared video will appear in its friends’ news feed, and
its friends who are on Safe stage become Susceptible;

• Infected (I1) represents the individuals who are watching the video. Note that individuals
at this stage still cannot infect others;

• Immune (I2) denotes the individuals who choose not to watch the video;

• Infectious (I3) denotes the individuals who choose to share the video after finishing
watching. Only individuals who are at Infectious stage can infect other individuals;

• Recovered (R) denotes the individuals who choose not to share the video.

In the classical SIR model, the transition is time-dependent, that is, at any time, there is a
chance that the stage transits to the next one. While for video sharing propagation in OSNs, the
transition of the stages depends on decisions at a certain time, e.g, the user needs to choose
watch or not, and share or not share. Therefore, we introduce two temporary decision stages
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in S2I3R: D1 and D2. The user makes watching decision at stage D1, and makes sharing
decision at stage D2.
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Figure 3.15: S2I3R model

The enhanced S2I3R (Safe-Susceptible-Infected-Immune-Infectious-Recovered) model is
illustrated in Fig. 3.15. For a particular video object, the propagation process is like this: Ini-
tially, a user shares this video from an external video sharing site and this initiator becomes
Infectious. All other users in the social network are Safe except the friends of the initiator. The
shared video appears in the news feed of the initiator’s friends and thus they become Sus-
ceptible. After a while, these friends log into the social network gradually and decide whether
to watch the video (Infected) or not (Immune). For those Infected users, they will usually de-
cide whether to share after watching the video. They become Recovered if they choose not
to share. They will become Infectious if they choose to share. Again, these Infectious users
will make their friends who are on Safe stage become Susceptible. Note that the case of “not
watching but share” is not considered in S2I3R. That is because this case accounts for only a
small portion (e.g., less than 5%) among all “share” cases. Moreover, omitting this case can
let us simplify the model and focus on those more important parameters.

The following derivative equations formally describe the relationships between those com-
partments:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS1(t)

dt
= −

dI3(t)

dt
· F ·

S1(t)

N
(3.4)

dS2(t)

dt
= −

dS1(t)

dt
− β · S2(t) (3.5)

dI1(t)

dt
= β · S2(t) · Pv − γ · I1(t) (3.6)

dI2(t)

dt
= β · S2(t) · (1 − Pv) (3.7)

dI3(t)

dt
= γ · I1(t) · Ps (3.8)

dR(t)

dt
= γ · I1(t) · (1 − Ps) (3.9)

where F is the number of the sharer’s friends and N is the number of total users in the system.
The transition rate from S to D1 is β, and thus a Susceptible user will spend 1/β unit time to
receive a shared video from a friend. The user then makes a decision whether or not to watch
the video. We denote the probability of the user watching the video as PV . Similarly, we denote
the transition rate from I to D2 by γ, and the probability of a user deciding to share the video
by PS .

The S2I3R model has four important parameters: β, γ, Pv, and Ps. They can be studied
from real traces. Specifically for RenRen system, the cumulative distribution function of 1/β,
the time span from share to watch, is well fitted by a combined Weibull and a Generalized
Pareto distribution

fk,λ,μ,σ,ξ(x) =

⎧⎨⎩ 1 − e−(x/λ)k
x ≤ 2100

1 −
(
1 + ξ · x−μ

σ

)− 1
ξ

x > 2100

with parameters (k=0.392, λ=1945, μ=-2654, σ=6315, ξ=-0.669). The cumulative distribution
function of 1/γ, the time span between watching a video and sharing it, is well fitted by two
combined Weibull distributions

fk1,λ1,k2,λ2(x) =

{
1 − e−(x/λ1)k1 x ≤ 5

1 − e−(x/λ2)k2 x > 5

with parameters (k1=1.168, λ1=3.591, k2=0.497, λ2=2.129)
The cumulative distribution functions of both Pv and Ps follow a Generalized Pareto Distri-

bution
fμ,σ,ξ(x) = 1 −

(
1 + ξ ·

x − μ

σ

)− 1
ξ

with parameters (μ=-0.004, σ=0.182, ξ=-0.215) and (μ=-0.227, σ=0.305, ξ=-0.048), respec-
tively.
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Table 3.2: Validation of S2I3R Model
fitting model R2 of fitting

model
R2 of simulation

reception
rate

GPD 0.9978 0.9952

share rate GPD 0.9959 0.9540

time to watch Weibull + GPD 0.9991 0.9348

time to share 2 Weibulls 0.9989 0.9813

3.4.2 Model Validation

We have simulated the S2I3R model multiple times to validate its accuracy. We generate 10000

users participating in 100 video sharing propagations for 8640 minutes (6 days). Specifically,
we simulate the propagation of one video each time and run 100 times. For each video prop-
agation, for each minute the simulator checks and updates the state for each of 10000 users
according to the derivation equations (3.4) to (3.9). And it runs 8640 rounds for each video
propagation. The parameters β, γ, Pv, and Ps are given in Section 3.3. The work [24] provided
the distribution of the number of friends in RenRen and we use it in our simulation.

We extract a series of statistics, such as number of received, watched, shared videos for
each user, time span from share to watch, and time span from watch to share. We examine
these statistics with the real dataset, specifically, we compute R2, the coefficient of determina-
tion3 of the generated data and the real data. We list those goodness of fit, as well as statistical
fit names and the corresponding R2 in Table 3.2. The high values of R2 (above 0.99) indicates
that our model accurately characterizing the user behavior in video propagation.
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Figure 3.16: Cumulated video views (I3 + R) and video shares (I3) along time

We next investigate evolutions of the number of users on each stage along the time. We
again generate 10000 users participating in 100 video sharing propagations for 8640 minutes

3The coefficient of determination R2 is a goodness of fit describing how well it fits a set of observations, defined
as 1−

∑
i
(yi−fi)

2∑
i
(yi−ȳ)2

, where f are generated data or modeled values, y are the real data and ȳ is the mean of the real
data.
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(6 days). We run the model 100 times under the same system setting (including β, γ, Pv, and
Ps), and for each time it simulates a propagation for one video. We calculate the average,
maximum and minimum of the cumulated video views (I3 + R) and video shares (I3) along
time in Fig. 3.16. From the figure, we can see that the views and shares are quite diverse for
each video even under the same system setting. This result confirms our early measurement
results in work [30], in which we found that the number of video views and the number of video
shares have very weak correlations with the average share rate (Ps) and reception rate (Pv).

3.4.3 Implications from This Model

In this subsection, we use this model to analyze an interesting measurement finding: the
limited propagation range, and evaluate our proposed recommendation strategy which aims to
increase the propagation range. The measurement in the work [12] showed that the sizes of
most propagation trees are below 100, and even the most popular videos are relatively small
as compared with the total number of users in the system. In other words, a vast majority of the
cascades vanish quickly and even the top-popular videos do not reach “epidemic” proportions
in social networks. This certainly contradicts to the expectation that the shared videos should
spread as broadly as possible, not to mention that many of these videos imported into social
networks are popular ones in the original video sharing sites.

An underlying reason that limits the spread of videos in the social networks is the mech-
anism for social contagion [51]. According to the current contagion mechanism, only a video
shared by a user’s friend will appear in the user’s page. The videos watched but not shared
by a user’s friend will not appear as a news feed for the user. In other words, even if a video
is watched by many users, if they do not share the video, the propagation will stop. Unfortu-
nately, according to our statistics in Sections 3.3, an average of 16% users will watch a video
shared by a friend, and, among them, only 13% will further share the video. Assume there are
n friends for a user. For a sharer, the expected number of his/her friends who will share this
video after watching is thus n·0.16·0.13, which we refer to as as the epidemic index. For n

being less than 48, the epidemic index is smaller than 1; in this case, the sharers will become
fewer and fewer, and hence the propagation quickly stops. Furthermore, the measurement in
Section 3.3 shows that there exist many free-riders who watch a lot but almost never share any
videos, which further confines video propagations.

Since friends number, share rate, and reception rate are intrinsic system properties, which
can hardly be tuned, a practical way to boost propagation is to modify the contagion mecha-
nism, in particular, leveraging the users’ viewing information. A simple solution is that, once a
user watches a video, the link of this video will appear in the news feed of the user’s friends as
an event of this user. This watching behavior well reflects the popularity of the video among the
friends, and can be even more directly than the sharing behavior. Yet it does not preserve the
user privacy as the information about all its watched videos are now available among friends.
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Therefore, we suggest an anonymous solution: for a user, once a video has been viewed by
K friends, the video will appear in this user’s news feed as a system suggested news, even
if none of the friends have shared the video. A possible system comments with the shared
video link might be “K friends have viewed this video” , and there is no need to mention the
names of the friends, so that privacy of other users is well preserved. The key issue for this
view-aware contagion strategy is to set the threshold K. A small K would be more effective
for promoting the propagation, but might trigger excessive news feeds. Then we will closely
examine its impact through trace-driven experiments.

Now we use S2I3R-based simulations to examine the effectiveness of our view-aware con-
tagion strategy. We are particularly interested in how the parameter K (the threshold for trig-
gering the news feed that a certain number of friends’s watching a video) affects the video
views and the number of system suggestions under different settings. Our simulations were
run on a RenRen subgraph of 10000 nodes, with an average degree of friends being 17. We
fixed Pv to 0.16, but varied Ps and K, respectively.
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Figure 3.17: Effect of K
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Figure 3.18: Effect of Ps

First, we set Ps as a fixed value 0.2, and let K vary. For each K, we ran simulations ten
times and recorded the average values of user views, user shares, and system suggestions.



CHAPTER 3. VIDEO PROPAGATION IN OSNS 45

The results are shown in Fig. 3.17. We can see that the view-aware contagion strategy has
notably accelerated video propagations. The gain in the number of viewers is remarkable when
K is small. On the other hand, small K may increase the ratio of system recommendations
to the sum of user shares and system recommendations. Note that the recommendations are
generally reasonable, because these suggested videos have been widely viewed by the users’
friends and the users are likely to be interested in them. In the RenRen case, we set K as 2
mainly considering its effect on the views increasing. System operators can adjust this value
according to their own concerns.

Second, we set K as a fixed value 2, and let Ps vary. Again we ran simulations ten times for
each Ps and recorded the average values. The results are shown in Fig. 3.18. We can see that
the increase to views promoted by our view-aware contagion strategy is remarkable for small
Ps. Since Ps is generally smaller than 15% in real systems, our strategy is practically working.

3.5 Summary

This chapter measured and analyzed the video propagation in OSNs. We first characterized
how a popular video is propagated in RenRen, and the effect of potential factors to the prop-
agation size. We then measured user behaviors including initiating, viewing and sharing, and
their temporal properties. We further introduced an S2I3R Model which extends the conven-
tional epidemic models to accommodate diverse types of users and their probabilistic viewing
and sharing behavior. We validated our model and showed that it effectively captures the
propagation process of video sharing in social networks. Therefore, the model can serve as a
valuable foundation for such applications as workload synthesis, traffic prediction, and resource
provision of video servers.



Chapter 4

On Popularity Prediction of Videos
Shared in OSNs

4.1 Introduction

Content providers, advertisers, and Web hosts all expect to predict how many view accesses
individual videos might generate for a given site. For advertising, the popularity count is tied
directly with the ad revenue (see for example the ads shown with YouTube videos); an accurate
population prediction thus offers a good revenue (or cost) indication for both YouTube and its
content generators. For content-distribution networks, the computation, storage, and band-
width resources can be well planned with a good prediction of the access patterns [58, 35].
There have been extensive studies on popularity prediction for conventional VSSes, mostly
leveraging earlier views of a video as the key predictor [53, 43, 21, 50, 63].

Although the videos shared in OSNs are generally hosted by VSSes, an OSN proactively
spreads videos among its users along friendship relations. As such, a video’s views are not
only determined by the users’ interest in it, but also the underlying propagation structure, which
generates unique request patterns than that in VSSes. It has been found that the propagation-
based video spreading mechanism generates distinguished video popularity distribution [33].
We further find that it would lead to high video popularity dynamics due to the great difference of
the numbers of users’ friends. As such, even though it is proved that the conventional prediction
models perform well in predicting video views in VSSes [53], it is necessary to evaluate their
effectiveness in the OSN context and if needed, to develop new tools.

We conduct an initial study on the popularity prediction of videos shared in OSNs. We first
test the performance of conventional views-based prediction models. We then propose a novel
propagation-based prediction solution. Our contributions are summarized as follows:

• We test the performances of the conventional prediction tools including Autoregressive

46
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Integrated Moving Average (ARIMA) model, Multiple Linear Regression (MLR), and k-
Nearest Neighbors (kNN). These models only need the number of early views as the
input, and can be easily developed by VSSes without assistances of OSNs. We find that
they are generally ineffective, if not totally fail, especially when predicting the early peaks
and later bursts of accesses, which are common during video propagations in OSNs.

• We present a novel propagation-based prediction tool, namely SoVP (Social network
assisted Video Prediction). SoVP considers both the intrinsic attractiveness of a video
and the influence of the underlying propagation structure. The effectiveness of SoVP,
particularly for predicting the request bursts, has been validated through our trace-driven
experiments.

4.2 Views-based Prediction

One target of this work is to investigate whether the number of future (e.g., one-day ahead)
views can be accurately predicted simply based on early views, which can be easily obtained
by VSSes so that they can do predictions without assistances of OSNs. To do this, we will
examine three conventional prediction models: ARIMA [43], MLR [48], and kNN [41]. To make
predictions, they either utilize the early views of the predicted video itself or utilize the similarity
of the popularity evolution pattern with early published videos. Here we provide some primary
knowledge of these models, and present their performance in Section 4.4.

4.2.1 Autoregressive Integrated Moving Average (ARIMA)

We first examine Autoregressive Integrated Moving Average (ARIMA), one of the most popular
time series models for predicting future values of a time series [43, 21]. Given the time series
of video popularity in the past several days, it can make fine-grained prediction for the video’s
future evolution, leveraging the trend, periodicity and autocorrelation exhibited in the history
information. ARIMA consists of three parts: an Autoregressive (AR) model, a Moving Average
(MA) model and an integrated part. They are applied in the cases where data show evidence
of non-stationarity and an initial differencing step (corresponding to the “integrated” part of the
model) can be used to remove the non-stationarity. Given a time series Y , an AR model of
order p is defined as:

Y (t) =

p∑
i=1

βiY (t − i) + ε (4.1)

where Y (t) is the number of views in the tth day; β1,..., βp are the parameters of the model;
and ε is a white noise error term. An MA model of order q is defined as follows:
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Y (t) =

q∑
i=1

θiεt−i + εt (4.2)

where θ1,...,θq are the parameters of the model and εt,...,ε1 are again white noise error terms.
Combing Eq. 4.1 and 4.2, an ARIMA model of order (p, q) is written as follows:

Y (t) =

p∑
i=1

βiY (t − i) +

q∑
i=1

θiεt−i + εt (4.3)

The error terms, εt, are generally assumed to be Gaussian random variables with zero mean
and constant variance.

4.2.2 Multiple Linear Regression (MLR)

A major drawback of ARIMA model is that it needs a relatively long period of historical infor-
mation for prediction. For our data set, the numbers of views of at least the first 4 days are
required to generate the model and thus the initial population evolution for a newly released
video cannot be predicted using ARIMA. The high correlation of neighbor days motivates us
to use regression models. Multiple Linear Regression (MLR) [48] is widely used to model the
relationship between a dependent variable and several explanatory variables. In our scenario,
early views are regarded as explanatory variables and used to predict later views, which is
shown in Eq. 4.4:

Y (t) = α +

t−1∑
i=t−n

βiY (i) + εt (4.4)

where Y (t) is the number of views in the tth day; α is a constant number; βi is the weight for
the ith day; and εt is the residual value. n is the critical parameter in this model that defines the
number of early days used for prediction.

4.2.3 k-Nearest Neighbors Regression (kNN)

kNN regression [41] is also a widely used regression model. It estimates the value of an
unknown function at a given point based on the values of its nearest neighbor points. The kNN
estimator is defined as the weighted average function value of the nearest neighbors. In our
scenario, the views of the videos in the training set are used to predict the views of the videos
in the test set, as shown in Eq. 4.5:

Yx(t) =
∑

x′∈N(x)

1/d(x, x′)∑
x′′∈N(x) 1/d(x, x′′)

Yx′(t) (4.5)

where Yx(t) is the number of views of video x in the tth day; N(x) is the set of k nearest
points to video x in the training set with regard to the views in previous days; d(·) denotes
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the distance function; and k is the parameter defining the number of neighbors. We choose
Euclidean distance as the distance function. Similar to MLR, we use the early views as the
vector to compute the distance between future days. To break ties in neighbor selection, we
include all the videos with equal distance since the late views can vary a lot with equal early
views, especially when only a short period of early views are considered.

4.3 Propagation-based Prediction

Compared with VSSes, OSNs know much more information about a video beyond the number
of its early views, such as viewers, sharers, whether viewers would like to share the video after
viewing, whether users would like to view the videos shared by their friends. Yet, how to utilize
such information in video popularity prediction is not clear, as the previous work has shown
that they have no simple (e.g., linear) relationship with the video popularity [30]. In this section,
we propose a novel propagation-based prediction framework to predict video future views in
the OSN.

4.3.1 Modeling Video Propagation

Before modeling the video propagation, we first define some notations. For a given video, V (t)

and S(t) are defined as the sets of its viewers and sharers by the time t, respectively. We use
—V (t)— to denote the number in the set V (t), and this notation can also apply to other sets
such as S(t). ShR(t) (short for Sharing Rate) is the probability that a user will reshare a video
after viewing it. V iR(t) (short for Viewing Rate) is the probability that a user will eventually
view the video shared by his/her friend. To some extent, both ShR(t) and V iR(t) reflect how
interesting the video is. W (t) is the number of sharers’ friends by time t who have not yet
viewed the video. In other words, W (t) = the number of all sharers’ friends - —V (t)—. Similar
to [22], we assume the W (t) users view the video at a constant rate, which is denoted by
λ. f(S(t)) is the number of friends of the new sharer exclusive of those friends who viewed
the video before the time t. Generally, the average new potential viewers brought by per new
sharer will decrease as the increase of the number of sharers in S(t), because most of the new
sharer’ friends may have already viewed the video from his/her other friends who also shared
the video earlier than the new sharer.

Based on the above notations, the propagation process of one video can be described by
the following three equations:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d|V (t)|

dt
= λ · W (t) (4.6)

d|S(t)|

dt
= ShR(t) ·

d|V (t)|

dt
(4.7)

dW (t)

dt
=

d|S(t)|

dt
· f(S(t)) · V iR(t) −

d|V (t)|

dt
(4.8)
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where Eq. 4.6 reflects that the increased viewers during the time dt come from the potential
viewers W (t), who are going to view the video at a rate of λ. Eq. 4.7 reflects that ShR(t)

portion of new viewers (d—V(t)—) will become sharers during the time dt. Based on the
previous measurement work [12], here we assume that viewers will immediately share the
video after the viewing, otherwise will never share the video. Recalling that we define W (t) as
the number of all sharers’ friends - —V (t)—. Accordingly, the variation of W (t) during time dt

(dW(t)) can be expressed as the combination of the growth in the number of potential viewers
brought by new sharers (d|S(t)| ·f(S(t)) ·V iR(t)) and the reduction caused by the views during
dt (−d|V (t)|). This relation is given in Eq. 4.8.

Initially, there is only one sharer (we call it initiator ), who posted the video from a VSS.
Thus, S(0)=1, V (0)=1, and W (0) is equal to the number of friends of the initiator multiplying
V iR(0). There are four parameters that will affect the evolution of W (t): ShR, V iR, f(S(t)) and
λ. ShR and V iR reflect the characteristics of specific videos to some extent; f(S(t)) depends
on the friends of the sharers and social topology around them; λ depends on the frequencies
users visit the OSN and watch videos. Our prediction framework in the following subsections
will introduce how these parameters can be extracted from real trace.

For ease of exposition, Table 4.1 provides a reference for major notations used in this
chapter. Generally, we use upper superscript k (e.g., k in V k) to denote a video k, and lower
subscript i (e.g., i in Vi) to denote a user i. Note that for concise presentation, sometimes we
may omit the video superscripts under the premise of no concept confusion (e.g., use V (t) to
denote V k(t) of video k).

4.3.2 Framework of SoVP
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Figure 4.1: Framework of SoVP

The propagation-based prediction architecture, as shown in Fig. 4.1, consists of a data
collection module, a graph learning module, a video analysis module, and a popularity predic-
tion module. First, the data collection module collects logs that record user viewing actions.
The basic log format is (Video ID, Viewer ID, Sharer ID, Time), the meaning of which is de-
scribed in Section 2.2. Then the logs are taken as the inputs by the graph learning module and
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Table 4.1: Summary of major notations
NotationDescription
Fi set of the friends of user i;
Vi→j set of videos shared by user i and viewed by user j;
Vi set of videos viewed by user i;
Si set of videos shared by user i;
SFi

set of videos shared by user i’s friends;
ShRi the average probability that user i will share the videos that s/he viewed;
V iRi→j the average probability that user j will view the videos shared by its friend

user i;
BrFi the average number of friends will view a video shared by user i;
V k(t) set of viewers of video k until time t;
Sk(t) set of sharers of video k until time t;
vk
Δ number of views of video k during period of Δ

W k(t) number of waiting viewers of video k at time t

αk a factor that reflects the normalized ShR of video k;
βk a factor that reflects the normalized ViR of video k;
ShRk the average probability video k will be shared after being watched;
V iRk the average probability video k will be viewed by a friend of a sharer;
ShRk

i probability user i will share video k that s/he viewed;
V iRk

i→j the probability that user j will view the video k shared by its friend user i;
tki sharing time of video k by sharer i;
λ the rate of users counted in W (t) who will view video in current time instance;
Φ(t) the CDF of time (t) between a share and the viewing from the sharers’ friends;
f(S(t)) the number of potential viewers brought by a new sharer given S(t);

the video analysis module. For the graph learning module, historic user viewing records are
used as the input. The graph learning module generates a graph called video-active graph,
which records the viewing-sharing relationships between users as well as the statistics of user
sharing and viewing actions. The video analysis module takes two kinds of inputs: video in-
formation (sharers Sk and viewers V k) that is gotten directly from the data collection module,
and the video-active graph that is generated by the graph learning module. The video analysis
module analyzes video attractiveness (αk,βk) in the context of the video-active graph. Finally,
the popularity prediction module uses both the video-active graph and the video attractiveness
to make predictions.

4.3.3 Video-active Graph Learning Module

The topology of an OSN is an important influencing factor in the propagation of videos shared
in it. Instead of simply using the original unweighed friend-friend graph, we build a weighted
graph called video-active graph. There is a directed edge from user i to user j if the user j

ever viewed a video shared by the user i. We assign weights to vertices and edges according
to users’ viewing and sharing activity. Users show inhomogeneous activity in sharing and
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viewing videos. For example, as shown in Fig. 4.2, the power-law distribution indicates that the
numbers of videos viewed by each user in one-month period exhibits large skewness.
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Figure 4.2: Distribution of user views in one month

Fig. 4.3 illustrates the properties of vertices and edges in the video-active graph. The
properties of a vertex i include a set of viewed videos (Vi), a set of shared videos (Si), and
sharing rate (ShRi). The properties of an edge (i, j) include Vi→j, which is defined as the set
of video viewed by user j and shared by user i, and V iRi→j, which is defined as the ratio that
user j has viewed the videos shared by user i. Taking records (Video ID, Viewer ID, Sharer ID)
as the input in a chronological order, Vi, Si, Vi→j can be extracted directly. ShRi and V iRi→j

can thus be calculated by ShRi = |Si|
|Vi|

, and V iRi→j =
|Vi→j |
|Si|

, respectively.

i jVi,Si
ShRi

Vi j
ViRi j

Vj i
ViRj i

Vj,Sj
ShRj

Figure 4.3: Propeties of the video-active graph

In real OSN systems, the video-active graph grows gradually, continuing to bring new ver-
tices and edges especially at their early stage. Statistics of these newly added edges and
vertices cannot be measured directly from real trace at such an early stage. The learning pro-
cess should adapt to this dynamic. For a new friend link created between two users i and j,
time is needed for the V iRi→j be learned from the interaction between the two users. As such,
it is necessary to estimate it from the relationships between i, j and their friends Fi, Fj . We
denote the estimated value as V̂ iRi→j, and use Eq. 4.9 to calculate its value:

V̂ iRi→j =
|Vj|

|Si ∩ SFj
|

(4.9)

where Vj is the set of videos that are viewed by the user j; Si is the set of videos that are
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shared by the user i; SFj
is the set of videos that are shared by the user j’s friends. We take

V̂ iRi→j as the initial value for V iRi→j .

4.3.4 Video Analysis Module

For a given video k, the video analysis module uses the video statistics (V k, Sk) provided by
the data collection module to analyze its attractiveness in the context of the video-active graph.
Both ShR and V iR are influenced by the video’s attractiveness as well as the characteristics of
involved users, so that they are not suitable be used to exactly reflect a video’s attractiveness.
For example, one video is shared among the users who are very active to share and watch
videos, while the other video is shared among the users with less activeness. The two videos
may happen to have same ShR and V iR based on the simplest definition. Therefore, to gain
real values of a video’s attractiveness, the video analysis module should remove the effect of
the involved users.

For the video k, the video analysis module calculates two factors (αk(t) and βk(t)) to reflect
the normalized video attractiveness. The calculation methods are shown in Eq. 4.10 and 4.11,
respectively.

αk(t) =
|V k(t)|∑

i∈Sk(t)(Φ(t − tkj ) ·
∑

j∈Fi
V iRi→j)

(4.10)

where Φ(t) is the cumulative distribution function (CDF) of time span between sharing a video
and the actual view of this shared video by the sharer’s friends. We studied the fitting function
in the prior work [12]. It is a combined distribution with Weibull (t≤2100, k=0.392, λ=1945)
and Generalized Pareto (x≥2100, μ=-2654, σ=6315, ξ=0.669) [12]. tkj is the sharing time of
video k by sharer j. |V k(t)| is the actual number of cumulated viewers of video k by time t.∑

i∈Sk(t)

∑
j∈Fi

(V iRi→j · Φ(t)) is the estimated average number of cumulated viewers over all
videos. The α of an attractive video is usually bigger than 1.

βk(t) =
|Sk(t)|∑

i∈V k(t) ShRi
(4.11)

where |Sk(t)| is the actual number of cumulated sharers of video k by time t.
∑

i∈V k(t) ShRi

is the estimated average number of cumulated sharers over all videos. The β of an attractive
video is usually bigger than 1.

When making predictions, we use Eq. 4.12 and Eq. 4.13 to decide whether a user will view
or share the video k, respectively. The decisions depend on both the video attractiveness and
social context.

V iRk
i→j = αk(t) · V iRi→j (4.12)

ShRk
i = βk(t) · ShRi (4.13)
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4.3.5 Popularity Prediction Module

Based on our propagation model, the popularity prediction module takes the information of
both video attractiveness and the video-active graph as the input to make predictions.

We rewrite Eq. 4.6 as Eq. 4.14, which calculates the number of video views during the time
Δ (e.g., one day in this work). And vΔ is what we finally need to calculate to be as the predicted
views during the time Δ. According to Eq. 4.14, we need W (t) to calculate vΔ. We can easily
calculate the W (t) at the beginning time of Δ by Eq. 4.15. Then what we also need to do is to
infer W (t) during the time Δ.

vΔ = |V (T + Δ)| − |V (T )| =

∫ T+Δ

T
λ · W (t) dt (4.14)

W (T ) =
∑

i∈Sk(T )

∑
j∈Fi

V iRk
i→j − |V (T )| (4.15)

From Eq. 4.6, 4.7, and 4.8, we get Eq. 4.16.

dW (t)

dt
= λ · W (t) · (ShR(t) · V iR(t) · f(S(t)) − 1) (4.16)

We define ω as:

ω = λ(ShR(t) · f(S(t)) · V iR(t) − 1) (4.17)

Then Eq. 4.16 can be rewritten as Eq. 4.18.

dW (t)

dt
= ω · W (t) (4.18)

Since in a short period the users’ interest in a video will not vary a lot, we assume ω is a
constant value from time T to T + Δ, Eq. 4.18 can be further expressed as Eq. 4.19.

W (t) ≈ δ · eωδt (4.19)

where δ can be calculated using the initial value of W (t) at time T , as is shown in Eq. 4.15.
Finally, from Eq. 4.14 and 4.19, we get:

vΔ = |V (T + Δ)| − |V (T )| ≈
λ

ω
(eωδ(T+Δ) − eωδT ) (4.20)

where T and T + Δ are the beginning time and the end time of the day when we need to
predict.



CHAPTER 4. ON POPULARITY PREDICTION OF VIDEOS SHARED IN OSNS 55

4.4 Performance Evaluation

In this section we compare the performances of conventional views-based prediction models
with our propagation-based prediction model, SoVP. We first examine their overall performance
on a large set of popular videos. We further examine their performances on the three typical
popular videos, which can provide a direct illustration about what kind of evolutions may make
the conventional prediction models inefficient.

4.4.1 Performance Metrics

We evaluate the efficiency of the prediction models using the metric of Relative Absolute Error
(RAE). For the video k on the day t, we have:

RAEk(t) =
|N̂k(t) − Nk(t)|

Nk(t)
(4.21)

where N̂k(t) is the predicted number of views of video k on the day t, and Nk(t) is the actual
number of views. For the average RAE of all testing videos on the day t, we have:

RAE(t) =

∑
k |N̂k(t) − Nk(t)|∑

k Nk(t)
(4.22)

For the average RAE of all testing videos on all testing days, we have:

RAE =

∑
t

∑
k |N̂k(t) − Nk(t)|∑

t

∑
k Nk(t)

(4.23)

4.4.2 Prediction Results

As shown in the previous work [33], video popularity distribution exhibits extremely high skew-
ness that top-2% videos account for over 90% views. For the remaining 98% unpopular videos,
any of them only received less than 10 views per day on average. Therefore, we take those
top-2% popular videos that were initially shared on the same day (March 24th, 2011) as our
test set.

First, we need to select proper models for MLR and kNN. We split our data set into a
training set that contains the viewing information of 27000 videos, and a test set that contains
the viewing information of another 5000 videos. For both MLR and kNN regression, we vary
the value of n from 1 to 9; for kNN regression, we also vary the value of k from 1 to 4. We
evaluate the performance of each setting on the test data set and the results are shown in
Fig. 4.4 and 4.5, respectively. Considering the tradeoff of RAE and complexity, we select n = 5

for MLR, and n = 1, k = 3 for kNN.
Then, we evaluate the overall performance of SoVP as well as the three conventional mod-

els with the selected parameters. The average RAE over all test videos for each day is shown
in Fig 4.6. Overall, the SoVP has much better prediction performance than other three models.
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Figure 4.6: Average performance for testing videos

It is worth noting that ARIMA requires several (e.g., 4 in our experiments) days of early views to
learn the model, and so its prediction starts from the fifth day. For MLR, n = 5 is used starting
from the sixth day, and smaller values are used in earlier days (e.g., n = 1 for the second
day and n = 2 for the third day). ARIMA works well in later days, say after 12 days. It can
dynamically select the length of historical information used to predict for each day. For MLR, it
works better during the first 10 days and its performance is rather stable. kNN shows dynamic
performance. For some days it has the most accurate prediction while for others it performs
much worse. The reason is that only the number of views during the last day is used and the
popularity distribution could change significantly day by day.

Table 4.2: RAE of predictions for the type-1 video
day 2 day 3 day 4 day 5 day 6

kNN 0.823 0.580 0.765 0.720 0.314
MLR 0.886 0.952 0.907 0.820 0.742
SoVP 0.262 0.247 0.186 0.208 0.157
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Figure 4.7: Type-1 video prediction
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Figure 4.8: Type-2 video prediction

We also apply prediction models to the three typical videos that are depicted the early
section. The original daily views as well as the prediction results are shown in Fig. 4.7, 4.8,
and 4.9 respectively. Overall, we can see that the predictions of the three conventional models
deviate a lot from the real values, while SoVP works much better than other three models,
especially when predicting during the request bursting periods. Since views during the short-
term bursts usually count for most proportion of the video’s life-time views, we further give
the RAEs of the four models during three videos’ bursting days, in Table 4.2, 4.3, and 4.4
respectively. It confirms our observations in the figures. While some further optimizations can
be made on those views-based models, they have inherent limits in predicting views with highly

Table 4.3: RAE of predictions for the type-2 video
day 2 day 3 day 4 day 5 day 6

kNN 2.729 2.386 1.199 0.212 2.659
MLR 0.843 0.811 0.661 0.538 0.233
SoVP 0.179 0.087 0.108 0.129 0.183
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Figure 4.9: Type-3 video prediction

Table 4.4: RAE of predictions for the type-3 video
day 26 day 27 day 28 day 29 day 30

kNN 0.926 0.920 0.937 0.808 0.932
MLR 0.951 0.942 0.921 0.832 0.805
ARIMA 0.826 0.684 0.947 0.631 0.219
SoVP 0.400 0.525 0.290 0.327 0.429

dynamic evolution. Solely based on early views, they have difficult to judge a video’s sudden
increase or decreases in views from its own early evolution pattern, or learning from other
early published videos. By contrary, SoVP knows exactly the video’s propagation process
in the OSN and can extract useful statistics, so that can easily judge whether a video is on
increasing stage or decreasing stage, and how fast of this trend.

4.5 Summary

In this chapter, we presented an initial study on popularity prediction of videos shared in OSNs.
Our measurement results in chapter 2 suggested that the video views in early and later times
exhibits much less correlation than that in VSSes, which poses significant challenges on con-
ventional views-based prediction models. Our experiments with such conventional prediction
models as ARIMA, MLR, and kNN confirmed their ineffectiveness in this new context, espe-
cially when predicting the requests bursts that are common for the evolutions of videos shared
in OSNs. To overcome the limits, we developed a dynamic model to analyze the video propa-
gation process, and accordingly presented a propagation-based prediction framework, SoVP.
SoVP considers both video attractiveness and social context in predicting future video views,
whose accuracy has been demonstrated by our trace-driven experiments.



Chapter 5

Cloud Assistance for Video Sharing in
OSNs

5.1 Introduction

Traditionally, VSS videos are mainly discovered through search engines, front pages, and re-
lated videos [69]. The OSNs however offer quite different sharing mechanisms, where the video
links are propagated through chains of friends. The coverage of such OSN-shared videos can
be much broader with much faster propagation speed. It also leads to more micro- and macro-
dynamics in the access pattern, as a super user with a great number of friends can easily
trigger a surge of accesses [31], and in the long run, a video often has a series of peaks
in terms of user access. Given that the video contents are still hosted by VSSes, such dis-
tinct access patterns from OSNs have created significant challenges to VSS service providers,
particularly for resource provisioning.

There have been pioneering works on joint design and optimization for both VSSes and
OSNs with shared information [64][57][58]. In the real market, however, VSS and OSN opera-
tors are not necessarily close collaborators, nor the VSSes are to be urgently and completely
re-engineered for OSN shared videos given that the demands from traditional users remain
strong. On the other hand, for OSN operators, building their own video storage and distribution
services is not necessarily the best business model, either, not to mention the complexity and
cost involved in joint design. Instead, we believe that, since an OSN knows best about the
video sharing patterns from its users, it should provide necessary assistance for its users to
access the external VSSes, which in turn will also mitigate the impact to the VSSes.

To this end, we develop SNACS (social network-aware cloud assistance for video sharing),
which provides a cost-effective enhancement for video accesses from an OSN. The SNACS
module sits between VSSes and an OSN, and is managed by the OSN to improve its users’
experience in retrieving the videos from the VSSes. It utilizes both centralized cloud resources
(e.g., Amazon S3 [4]) and edge servers (e.g., Amazon CloudFront [3]) to collectively serve

59
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video accesses from within the OSN, which otherwise cannot be well served by the exter-
nal VSSes. Given the strong dynamics of the access patterns, we are particularly interested
in the content management and update strategies in the SNACS’ implementation. Motivated
by data traces from real world measurement, we show that the conventional cache replace-
ment for video object can be quite inefficient in SNACS. We then develop an optimal offline
replacement algorithm that generates minimum misses in this new context. We further offer
guidelines to minimize replacements among the solutions of the lowest misses. The optimal
offline solutions not only provide a benchmark for comparison but also motivate the design of
an online replacement algorithm, which makes effective use of the video sharing patterns in
the OSN. Our design has been extensively evaluated and its superiority has been validated
under diverse network and user configurations.

The rest of the chapter is organized as follows. We present background and motivation
in Section 5.2. Section 5.3 proposes our framework and discusses major design issues. We
develop optimal offline replacement algorithms in Section 5.4, and an online algorithm in Sec-
tion 5.5, respectively. The results and discussions for performance evaluations are presented
in Section 5.6. Finally, we conclude in Section 5.7.

5.2 Background and Motivation

There have been significant data-driven measurement and modelling studies on the video
content shared through OSNs, e.g., tracking social cascades of YouTube links over Twitter [49]
and video popularity distribution and propagation in TencentWeibo, a Twitter-like OSN in China
[58]. Our earlier works have also examined videos propagated over RenRen, a Facebook-like
social network [30], which leads to the design of a synthetic traffic generator for video requests
from OSNs [34].

Our work is motivated by these studies. To further understand the distinct characteristics
of video request patterns from OSNs as compared with traditional video accesses and their
impact to resource provisioning, we closely collaborate with 56.com, one of the most popular
VSSes in China to analyze its server access logs. The logs record video requests within
56.com website as well as requests from external OSNs. Our analysis shows that among all
the video requests, over 36% are from the OSNs, most notably RenRen. For individual videos,
however, the ratio of requests from RenRen to the total requests varies significantly, as shown
Fig. 5.1. We have calculated the Pearson correlation coefficient1[46] between video views in
RenRen and the total views, with a result of 0.59, which is statistically insignificant. In other
words, while statistical histories have often been used to predict the video popularity [7], it can

1It has been widely used for measuring the strength of linear dependence between two variables. The range
is from -1 to 1, where a value greater than 0 indicates positive correlation, and less than 0 indicates negative
correlation.
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hardly predict the percentage of the requests from OSNs for a newly uploaded video.
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Figure 5.1: Distribution of fraction of RenRen views over the total views
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Figure 5.2: Video popularity evolution (normalized by maximum values of daily views)

We also examine how the popularity evolves for videos shared by both 56.com and Ren-
Ren. Fig. 5.2 compares the overall video popularity evolutions over 5 weeks. We can see that
the views from RenRen users exhibit much stronger dynamics, with more peaks when com-
pared to the overall views in 56.com. We then take a closer look at how the popularity evolves
for a single video in a smaller time scale. Fig. 5.3 shows the results of a typical video investi-
gated during our analysis. We find that, in OSNs, there are super users with a large number of
friends or followers, and such users, once propagate a video, can trigger a significant number
of follow-up accesses. This can lead to a peak of accesses even long after the release of
the videos, in which stage the accesses from traditional VSSes users have long decayed. As
such, today’s VSSes, even equipped with the state-of-art prediction and resource provisioning
modules, can still experience frequent under-provisioning.

A series of pioneer works have offered service enhancement of social video sharing by
joint design and optimization for both VSSes and OSNs with mutually-shared information
[64][58][57]. Since video services are critical to social network users, OSN operators do have
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Figure 5.3: Video popularity evolution of a single video in one-day period

strong motivation to offer better service quality to its users. Yet whether they need to fully
disclose the social information to external VSS providers remain questionable in the current
market, and building their own video content services is not necessarily the best practice, ei-
ther. On the other hand, the accesses from traditional VSS users remain strong (over 50%),
and there is no immediate need for a VSS to re-engineer its services. Therefore, we need a
new framework which still works effectively without the assumption that OSN and VSS must be
fused together into a unified system. Considering that OSN has the best knowledge of its video
requests and the propagation patterns, we suggest that the OSN should take the initiative to
offer assistance to its users accessing the videos. In turn, it will also benefit external VSSes
given a large portion of accesses from the OSN are absorbed by OSN servers.

5.3 SNACS: Social Network-Aware Cloud Assistance for Video Shar-
ing

Motivated by above ideas, we propose a new framework called SNACS: social network-aware
cloud assistance for video sharing. The SNACS module sits between VSSes and an OSN,
and is managed by the OSN to improve its users’ experience in retrieving the videos from
the VSSes. It utilizes cloud resource to serve video accesses within the OSN that otherwise
cannot be well served by the external VSSes. Fig. 5.4 offers a more detailed view of the work
flow in SNACS. An OSN user will initially request video data from the VSS servers. According
to feedback of the downloading speed, the OSN user may redirect the video request to the
OSN-operated content cloud if it cannot be well served by VSSes.

As illustrated in Fig. 5.5, the cloud service for content (e.g., video) delivery usually consists
of an origin server, and a distributed delivery network which includes multiple edge servers dis-
tributed in different geographical locations [1]. Initially, a cloud customer should apply an origin
server to store its video files, and choose several edge locations to serve its user requests.
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Figure 5.4: SNACS: Social Network-aware Cloud Assistance for Video Sharing

When the videos are ready to be delivered, they will be first uploaded to the origin server, and
then copied to the edge locations. Take Amazon’s Cloud as an example, to delivery video
content globally, it suggests Amazon S3 [4] as the origin server, and Amazon CloudFront [3]
as the distributed delivery network.

B C D E
F G H I J K G L

M N O P
Q R S T U V R W

X Y Z [
\ ] ^ _ ` a ] b

c d e f
g h i j k l h m

n o p q p r s t
u v o w v o

x

y

z

{

|

Figure 5.5: System model of content cloud

Considering the strong dynamics of the access patterns of OSN users, we are particularly
interested in the content management and update strategies in the SNACS’ implementation,
including reducing the number of misses, selecting the right edge locations for each request,
and running at a low cost. The cost to use content cloud service consists of three parts (1)
charges for storing objects with original servers (e.g., Amazon S3), (2) charges for data transfer
between original servers and edge locations (e.g., CloudFront), and (3) charges for serving
data from edge locations. The storage is charged by usage time on a per unit time rate; and
we let Ps denote the unit storage price of storing objects in cloud origin servers. The last
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two are by traffic volume on a per byte rate; and we let Pe be the unit data transfer price of
serving objects from edge locations, and Pc be the unit data transfer price of copying objects
to edge locations. Given a sequence that has a length of time T , the cost during time T can be
formulated as

Cost = Sz · Ps · T + Bc · Pc + Be · Pe (5.1)

where Sz is the storage size of the original server; Bc is the data transfer of copying objects
from the original servers to edge locations; Be is the data transfer of serving videos from edge
locations.

Given the storage size and the user request sequence, our SNACS needs to maximize
the video sharing performance while still maintaining low costs. Since Amazon’s CloudFront
has already offered edge locations selection algorithms that are known to be effective [44], we
mainly focus on minimizing the misses and replacements so as to reduce the cost of SNACS.

5.4 Optimal Off-line Scheduling Algorithm

In this section, we propose off-line solutions that can yield optimal results if the user requests
are known a priori, which then motivates our online algorithm design in the next section.

5.4.1 Scheduling with Minimum Miss Rate

We start by proposing a scheduling algorithm that minimizes the miss rate and proving its
optimality. We then extend the algorithm to also minimize the replacement rate in the next sub-
section. It worths noting that our problem is different from the classic miss and replacement
problem [26], since in our problem, even a miss happen, we may not always do the replace-
ment as in the classic problem. For example, we assume the request sequence is ”A B C B

A”. The storage is of size 2 and initially empty. When a miss happens, the optimal solution
(known as SFF for Farthest-in-Further scheduling [39]) for the classic problem will always take
in the missed video to replace the video in the storage whose next request occurs furthest in
the future request sequence, which leads to 4 misses and 1 replacement for the aforemen-
tioned example. Yet we can easily find the optimal solution for our problem is 3 misses and 0

replacement, if we do not update C into the storage when its request misses. This shows that
the solution for the classic problem actually does not work well in our problem. To this end,
we propose a new algorithm SOPT M as shown in Algorithm 2 to address this new problem
optimally.

For ease of exposition, we use dist[x] to denote the distance from the current position to the
position where the first request to video x after the current position. We also define reduced
scheduling algorithm if in the algorithm, a replacement can only happen when a request misses
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Algorithm 2 SOPT M

if current request to video d misses then
search the rest request sequence until each video vi currently in the storage and d occur
at least once;
if ∃ vi such that dist[d]< dist[vi] then
find the video v in the storage that maximizes dist[v];
replace v for video d;

else
do no replacement;

end if
else

do no replacement;
end if

(although when a request misses, a replacement may not happen.). We thus have the following
two lemmas:

Lemma 1. For any giving scheduling algorithm S, there exists a reduced version S̄ of S, where
S̄ is a reduced scheduling algorithm that brings in at most as many videos as the scheduling
algorithm S does.

Proof. We prove the lemma by constructing S̄ as follows: each time when S replaces a video
d that has not been requested into the storage, we can defer the replacement of video d until d
is actually requested. Hence, the number of replacements by S̄ is at most as many as S.

Lemma 2. Let S be a reduced scheduling algorithm that makes the same decision as SOPT M

through the first j requests in the request sequence, for a number of j. Then there is a reduced
scheduling algorithm S′ that makes the same decisions as SOPT M through the first j + 1

requests, and incurs no more misses than S does.

Proof. To prove that there must exist such a reduced scheduling algorithm S′, we should con-
struct S′ by trying to get the storage content back to the same state as S as quickly as possible,
while not incurring more misses. If the storages of S and S′ are the same, we can finish the
construction of S′ by just making it behave exactly same as S afterwards.

The detailed proof can be found in the Appendix.

The optimality of the scheduling algorithm SOPT M can then be shown by the following
theorem:

Theorem 3. SOPT M incurs no more misses than any other schedule S and hence is optimal
in terms of achieving the minimum miss rate in our problem.

Proof. To prove that the scheduling algorithm SOPT M is optimal, we begin with an optimal
schedule S∗, and use Lemma 2 to construct a schedule S1 that agrees with SOPT M through
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the first step. We then continue applying Lemma 2 inductively for j = 1, 2, 3, · · · ,m, producing
schedules Sj that agree with SOPT M through the first j requests. Each scheduling algorithm
incurs no more misses than the previous one. We then have Sm = SOPT M , since it agrees
with it through the whole sequence.

5.4.2 Extension to Minimize Miss Rate and Replacement Rate

Although SOPT M minimizes the miss rate, we find it may not always minimize the replacement
rate. For example, assume the video request sequence is “A B C B C A”, and the storage size
is two. SOPT M will put video C into the storage at the third request by replacing A, and it will
lead to 3 misses and 1 replacement. While a better way could be 3 misses and 0 replacement
if there is no replacement when the third request to C misses in the storage. To further reduce
the cost according to Eq. 5.1, it is necessary to find a solution which incurs both minimum miss
rate and replacement rate.

To this end, one naı̈ve approach is to use the exhaustive search on the scheduling decision
tree, where for each request in the request sequence, we need to explore decision options
such as whether to do replacement and if so, which video in the storage should be replaced
out and which video should be taken in. However, even the exhaustive search can be further
improved by using our SOPT M as a bound on the miss rate, the solution space can still be very
large. We thus introduce two rules that can actually help analyze and improve the optimality
of SOPT M for the replacement rate, which, together with SOPT M , will be incorporated into
a guided search algorithm that can greatly shrink the solution space and efficiently find the
optimal solution. We start from the first rule:

Rule 1: If a miss for requesting video d happens, and for each video v currently cached in the
storage, we have dist[d] ≥ dist[v], then there is no replacement for d.

And we have the following lemma:

Lemma 4. Given a reduced scheduling algorithm S, if Rule 1 is broken at least once, then
there always exists a scheduling algorithm S′ that never breaks Rule 1 and incurs no more
misses and replaces than S does.

To prove Lemma 4, we can assume that when a miss for requesting video d happens, S

breaks Rule 1 and replaces video f for d. To construct S′, we still try to have S′ agrees with S in
the storage content as quickly as possible. We can then finish the construction of S′ by setting
S′ = S thereafter. Note that, after requesting d misses, S and S′ are slightly different in that S

has video d and S′ has video f . We can then use a similar approach to the proof for Cases 2-4
in Lemma 2 to prove this lemma. Due to the space limitation, we omit this proof as well as the
proofs for Lemma 5 and Theorem 6, where the latter two can be proved by approaches similar



CHAPTER 5. CLOUD ASSISTANCE FOR VIDEO SHARING IN OSNS 67

to proving Lemma 2 and Theorem 3, respectively. The detailed proofs for Lemma 4, Lemma 5
and Theorem 6 can be found in the Appendices.

From Lemma 4, we can directly get that by enforcing Rule 1 in Algorithm SOPT M , we
can not only achieve minimized miss rate, but also incur no unnecessary replacements if
dist[d] ≥ dist[v] for a missed request to video d and any video v in current storage. We
now go on with the second rule:

Rule 2: If there is a miss and a replacement is required, then only replace the video v in current
storage such that dist[v] ≥ dist[v′] for any other video v′ in current storage.

And we then have the following lemma:

Lemma 5. Let S be a minimum-miss scheduling algorithm and agrees with Rule 2 through the
first j requests. There exists a scheduling algorithm S′, which agrees with Rule 2 through the
first j + 1 requests and incurs the same number of misses and no more replacements than S.

Algorithm 3 SOPT MR

if reach the end of the request sequence then
compare the current schedule with the best schedule found till now and keep the better
one;

else
if current request to video d misses then

search the rest request sequence until each video vi currently in the storage and d
occur at least once;
if ∃ vi such that dist[d]< dist[vi] then

recursively handle next request with SOPT MR;

// enforce Rule 2
find the video v in storage that maximizes dist[v];
replace v for video d;

recursively handle next request with SOPT MR;
else

// enforce Rule 1
do no replacement;

recursively handle next request with SOPT MR;
end if

else
do no replacement;
recursively handle next request with SOPT MR;

end if
end if

Lemma 5 tells that when Rule 2 is enforced in Algorithm SOPT M , if a replacement is
necessary, replacing by Rule 2 can still keep the solution optimal in terms of both miss rate
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and replacement rate. Therefore, instead of using the naı̈ve exhaustive search, we can apply
Algorithm SOPT M with Rule 1 and Rule 2 to do an efficient guided search that only explores
the branches potentially leading to the optimal solution on both miss rate and replacement rate,
while intelligently cutting off all the others. We call this new algorithm SOPT MR and summarize
it in Algorithm 32. We then have the following theorem:

Theorem 6. SOPT MR incurs no more misses and replacements than any other schedule S

and hence is optimal in terms of achieving the minimum miss rate and replacement rate in our
problem.

5.5 Online Scheduling Implementation

Different from the offline scheduling algorithm for which the optimality on the miss rate and
replacement rate is of the first importance, the online scheduling implementation requires that
the solution is simple and highly efficient yet achieving reasonably good performance and only
based on the information that the system currently has, i.e., not relying on the future information
as the offline algorithm does.

For the classic miss and replacement problem, LRU (Least Recently Used) is a well ac-
cepted implementation that approximates the optimal offline scheduling algorithm SFF . Thus
one straightforward solution is to directly apply LRU to our problem. However, like SFF , LRU
also has the same limitation for solving our problem, i.e., it always does replacement when
a miss happens. In addition, LRU simply replaces the least recently used item when a miss
occurs, and hence fails to consider the specific features of online social video sharing. Yet one
major principle that we can still learn from LRU is that it actually uses historical statistics to
approximate the future request sequence used in SFF . Therefore, in this section, we will first
discuss how we can approximate future user requests in our problem. We will then propose
our online scheduling implementation that can successfully incorporate what we have learned
from the optimal offline scheduling algorithm discussed in the previous section.

5.5.1 Approximate Future User Requests

To incorporate the lessons learned from the offline optimal algorithm, for each video v currently
cached in the storage and the missed video d, we need to know dist[v] and dist[d], respectively.
In other words, we need to know how soon each of these videos will be requested in the future.
To achieve this, we need to predict the popularity of these videos based on the information in
the OSN. There are a number of studies [31][64] to address this problem. Yet most of them
are based on a relatively large time scale, say, one hour or even one day. To afford a finer

2For ease of exposition, we use the recursive version here, while the non-recursive version can be more efficient
for implementation.
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time granularity which is essential to our online solution, we develop an efficient approximation
algorithm based on the approach proposed in [31].3

The approximation solution works as follows: we first search backwards within previous
K video requests and identify those users who recently issued the requests for the videos
currently cached in the storage as well as for the missed video. If a user decides to share
the video after watching the requested video, we then look at its neighbors in the OSN and
count those who have not requested this video. We also maintain the popularity of this user.
In particular, for each video previously shared by this user, we count the number of neighbors
who actually viewed the video and divide it by the total number of neighbors. The popularity of
this user is thus the average value on all the videos previously shared by this user. For each
video that we are interested in, we calculate the sum for each user who requests this video
by adding the number of the potential viewers of this user weighted by the popularity of this
user. We then use the reciprocal value of this sum to approximate how soon this video will be
requested in the future. For brevity, we call this reciprocal value as the approximation value.

Note that the rationale of this approximation is that, if a video is very popular in the OSN,
i.e., there are a large number of OSN users who tend to request it (which is different from
a large number of users who have viewed and shared it), then it is likely for this video to be
requested soon in the future. In the next subsection, we will use this approximation algorithm
to incorporate what we have learned from the optimal offline solution, which leads to our online
scheduling implementation.

5.5.2 Incorporate Lessons Learned from Offline Optimal Solution

Algorithm 4 SOSN MR

if current request to video d is not in the storage then
search the request sequence backwards for K requests;
calculate the approximation value for each video vi currently in the storage and for the
missed video d;
if ∃ vi such that approx[d]< approx[vi] then
find video v in the storage that maximizes approx[v];
replace v for video d;

else
do no replacement;

end if
else

do no replacement;
end if

Remember that, from the design of optimal offline scheduling algorithm, we have learned

3Note that our focus here is on how to use a highly efficient prediction solution to effectively approximate the
future user requests for our online implementation. While proposing an algorithm with better predication results for
OSNs is very important and can be useful to our solution, it is generally out of the scope of this chapter.
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the following lessons:

1. When a video request misses, a replacement may not always happen. Especially when
the situation in Rule 1 happens, we should never do the replacement.

2. When a replacement must be done, we should always do the replacement according to
Rule 2.

With the approximation algorithm proposed in the last subsection, we can now interpret
Rule 1 as follows: if the approximation value of the missed video is larger than that of any
video currently in the storage, then there is no replacement for the missed video. Similarly,
Rule 2 can be interpreted as follows: if there is a miss and a replacement is required, then we
should replace the video with the largest approximation value in current storage.

Based on these interpretations, we can then propose our online scheduling implementation
for OSN video sharing, called SOSN MR, as shown in Algorithm 4, where approx[x] denotes the
approximation value of the video x. Compared to the aforementioned straightforward solution
using LRU, our solution is still reasonably simple and highly efficient. More importantly, it
fully exploits the specific features of online social video sharing and successfully incorporates
what we have learned from the optimal offline solution. In the next section, we will further
demonstrate its superiority by our extensive performance evaluation with the real traces from
one of the largest OSN in China.

5.6 Performance Evaluation

We have conducted extensive trace-based simulations to evaluate our solutions for SNACS. To
this end, we collected the traces of video requests in the RenRen OSN [33] over three months.
We find the video requests show a strong daily pattern [34] and thus choose a trace in a typical
one-day period (April 19th, 2011) for our simulations, which contains 19, 473, 512 requests and
involves 278, 922 unique videos.

5.6.1 Comparison of Offline Algorithms

To evaluate our offline algorithms SOPT M and SOPT MR, we also implement the optimal offline
solution SFF for the classic miss and replacement problem. Fig. 5.6 shows the results on the
miss number and the replacement number4. It is clear to see that both SOPT M and SOPT MR

outperform SFF for solving our problem. In particular, although SFF is the optimal solution
for the classic miss and replacement problem, we can see that by allowing no replacement,

4In worst case, each offline algorithm may traverse the whole trace to find if a video is requested in the future
and thus causes enormous time to finish. To this end, we shrink the trace to a subset by randomly sampling 10%

of the requests in the April 19th trace.
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Figure 5.6: Comparison between offline algorithms
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Figure 5.7: Comparison between online algorithms and the optimal algorithm

our SOPT M and SOPT MR can achieve even fewer misses (Fig. 5.6(a)), which becomes even
observable as the storage size decreases. This result further confirms with our theoretical
analysis on optimality in Section 5.4.

In terms of replacement number (Fig. 5.6(b)), our SOPT M and SOPT MR perform even
much better than SFF , by successfully reducing the replacement number for 75% to 85%. One
interesting observation is that for the replacement number, SOPT M performs very close to
SOPT MR. This further demonstrates the effectiveness of our Rule 1 and Rule 2 derived in
Section 5.4.2, since these two rules are also reflected in SOPT M implicitly.

5.6.2 Online Implementation vs. Offline Algorithm

Now we go on to compare the performance of our online implementation SOSN MR with the
offline solution. Since SOPT M performs very close to the optimal offline algorithm SOPT MR

and is more efficient, we thus use SOPT M for this comparison. In addition, we also implement
LRU. The results on miss number and replacement number are shown in Fig. 5.7. It is easy to
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see that our SOSN MR performs much better than LRU and stays close to SOPT M , especially
in terms of the replacement number. This is because our solution can well approximate the
video popularity and thus the user requests in the future with the information from OSNs, while
LRU always replaces the least recently requested video when a miss occurs.

Another observation comes from comparing the miss number and replacement number
together. Unlike LRU, which performs bad on both the miss number and replacement number,
SOSN MR incurs fewer replacements than SOPT M at a cost of a slight increase in the miss
number. Therefore, in the future work, it is interesting to investigate such tradeoffs between
miss rate and replacement rate.

5.6.3 Impacts to Served Ratio and Cost of OSN
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Figure 5.9: Comparison between three architectures

Besides the miss number and replacement number, we also investigate the impacts to the
cost by using the cloud assistance. To this end, we adopt a typical setting as used in [64].
We assume each video has the same file size denoted as Fz. Then the storage size can be
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represented as the number (denoted as Ns) of stored videos in the cloud. The data transfer
of copying objects to edge locations can be represented as the product of the number of edge
locations (Ne) and the number (Nr) of video replacements in the cloud. The data transfer of
serving videos from edge locations can be represented as the number (Nh) of hit requests by
the cloud. The cost in Eq. 5.1 can be rewritten as Eq. 5.2.

Cost = Ns · Fz · Ps · T + Nr · Fz · Ne · Pc + Nh · Fz · Pe (5.2)

According to Amazon pricing model [2], we set Pe=$0.12 per GB, Ps=$0.08 per GB per month,
Pc=$0.02 per GB. For other parameters, we set Ne=5, Fz=20MB in this chapter. We also
conduct simulations under other parameter settings and find the results generally follow a
similar trend.

Fig. 5.8 shows the results of the served ratio (the fraction of the video requests from the
OSN that are well served by VSS or OSN servers over the total requests from the OSN) and
the money spent by the OSN. Again our SOSN MR still outperforms LRU especially when the
storage size is small. Moreover, compared to LRU, our SOSN MR can also greatly reduce the
total costs by 5% to 15%. Besides comparing with the SNACS framework, we also conduct
simulations to compare our SNACS solution with the VSS-only and OSN-only solutions. The
VSS-only solution, which is the current development architecture in real life, assumes that all
the video requests from OSNs are served by VSSes. The OSN-only solution, which idea is
reflected in early work [64], assumes all the video requests from OSNs are served by the video
servers operated by the OSN. We vary the percentage (5% to 50%) of daily requests that are
unserved by VSSes due to under-provision, and examine how the served ratio and cost would
change. Fig. 5.9 shows the results. We can see that although both OSN-only and SNACS
can fundamentally improve the user experience, SNACS can achieve similar performance with
significantly less cost.

5.7 Summary

In this chapter, we proposed a framework, called SNACS, for the OSN to cost-effectively en-
hance its video viewing experience by leveraging content cloud service. Given the strong dy-
namics of the video access patterns in the OSN, we were particularly interested in the content
management and update strategies in the SNACS’implementation. We showed that conven-
tional cache replacement strategies can be quite inefficient in SNACS. We then developed an
optimal offline replacement algorithm that generates minimum misses in this new context. We
further offered guidelines to minimize replacements among the solutions of the lowest misses.
The optimal offline solutions not only provide a benchmark for comparison but also motivate
the design of an online replacement algorithm, which makes effective use of the video sharing
patterns in the OSN. The superiority of our design was confirmed by trace-driven simulations.



Chapter 6

Conclusion

In this thesis, we investigated a broad spectrum of issues about video propagation in OSNs,
from perspectives of measurement, modeling analysis, and system enhancement. Even though,
this is a relatively new research topic and many further works are needed.

6.1 Summary of this Thesis

First, we provided the first major stab at characterizing video requests from OSNs, by analyzing
the logs of video viewing and sharing behaviors in a large-scale OSN over several months.
Our measurement unveiled both static and temporal characteristics of video requests from
OSNs, highlighting several distinctive features from the requests directly from VSSes. To better
understand the characteristics observed in our empirical data, we built an emulator to model
video viewing and sharing behaviors in OSNs. Although simple, our emulator well captures the
observed characteristics in the empirical data, including the video popularity distribution and
dynamics. This emulator can work as a video request generator.

Second, we further explored video propagations in OSNs from both measurement and
modeling. Specifically, we measured video propagation structure, factors influencing video
popularity, and user sharing and viewing behaviors. We further proposed an S2I3R model
which extends the conventional epidemic models to accommodate diverse types of users and
their probabilistic viewing and sharing behavior. This model can serve as a valuable foundation
for such applications as traffic prediction, and resource provision of video servers.

Third, we conducted an initial study on popularity prediction of videos shared in OSNs. Our
measurement results show the video views in early and later times exhibit a much less cor-
relation than that in VSSes, which poses significant challenges on conventional views-based
prediction models. Our experiments with such conventional prediction models as ARIMA, MLR,
and kNN confirmed their ineffectiveness in this new context, especially when predicting the re-
quests bursts that are common for the evolutions of videos shared in OSNs. To overcome the
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limits, we developed a dynamic model to analyze the video propagation process, and accord-
ingly presented a propagation-based prediction framework, SoVP. SoVP considers both video
attractiveness and social context in predicting future video views, whose accuracy has been
demonstrated by trace-driven experiments.

Fourth, we proposed a framework, called SNACS, for the OSN to cost-effectively enhance
its video viewing experience by leveraging content cloud service. Given the strong dynamics
of the video access patterns in the OSN, we were particularly interested in the content man-
agement and update strategies in the SNACS’implementation. We showed that conventional
cache replacement strategies can be quite inefficient in SNACS. We then developed an op-
timal offline replacement algorithm that generates minimum misses in this new context. We
further offered guidelines to minimize replacements among the solutions of the lowest misses.
The optimal offline solutions not only provide a benchmark for comparison but also motivate
the design of an online replacement algorithm, which makes effective use of the video sharing
patterns in the OSN. The superiority of our design was confirmed by trace-driven simulations.

6.2 Future Directions

Extending measurements to other OSNs. Our current measurements are mainly based on
RenRen OSN. First, it might be interesting to compare video propagations in Facebook and
RenRen. They have similar layouts and functions but different user bases (RenRen users are
mainly from China, while rarely Chinese users use Facebook). By comparing this, we can see
how the culture difference affects user behaviors and thereby video propagations. Second,
Twitter and lots of its copycats around the world (e.g., Weibo 1 in China) are another kind
OSN, which provide microblogging services. Extending measurements to Twitter-like OSNs
can provide more comprehensive understanding on video propagation in social networks.

Enhancing current system with closer collaboration between OSNs/VSSes. Enabling
users sharing videos from VSSes to OSNs has brought additional traffic for both of them. Yet,
their collaborations are still limited. A closer collaboration between them could benefit them
more in enhancing their current systems. First, they can collaborate by sharing statistics such
as the total views, likes, shares in their system. With such information, we can design more
efficient recommendation and prediction strategies. Second, they can make joint effect to
provide storage and networking service for the shared videos.

Further works on video popularity prediction. We have made a first attempt to make
video popularity predictions using its propagation information in OSNs, but the current work still
has limitations. First of all, although the proposed SoVP model can generally get better pre-
diction than the conventional views-based prediction models, its complexity and scalability are
not as good as them. Therefore, a compromised solution between SoVP and the conventional

1http://www.weibo.com/
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models may be a better choice. For example, one possible solution could simplify SoVP by only
leveraging recent video propagation information; another choice is to incorporate propagation
information into conventional prediction models. Furthermore, our current work only consid-
ered predictions in the granularity of one day. It is also important to predict finer granularity
such as one hour or longer granularity such as one week or one month.
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Appendix A

Proof of Lemma in Chapter 5

A.1 Proof of Lemma 2

Consider the (j + 1)th request to video d. If the request hits, then we can just let S′ = S, since
S and SOPT M make the same decision on the (j + 1)th request and have the same storage
before the (j + 1)th request happens. Therefore, S′ incurs no more misses than S does.

If the (j + 1)th request to video d misses, then there are 4 more cases as following:

1. S does not replace and S′ does not replace
Similar to the above request hit case, we can set S′ = S.

2. S replaces and S′ replaces
If S and SOPT M both replace the same video in the storage for d, again we can set
S′ = S.

The interesting case arises when S replaces video f for d while SOPT M replaces video
e 
= f for d. Then S and SOPT M do not agree through the (j + 1)th request. In this case,
to make the S′ has the same content of S as quickly as possible, we can let S′ behave
exactly the same as S until one of the following subcases happens for the first time from
the (j + 2)th request.

(a) There is a request to video g 
∈ {e, f} and S replaces e for g. In this subcase, we
can let S′ replace f for g. S and S′ then have the same storage content. And we set
S′ = S afterwards.

(b) There is a request to video f and S does replacement. If S replaces video e, then
after this step, S′ agrees with S in the storage content. If the video replaced by S is
not e, say e′, then S′ can replace e′ as well, but for video e instead of f , which can
make S′ and S are the same. However, after this behavior, S′ is no longer a reduced
scheduler, because it replaces e′ for e into the storage when it is not immediately
needed. So we can further transform S′ to S̄′ using Lemma 1, which does not
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increase the number of videos brought in by S′. S̄′ also incurs no more misses than
S does and still keeps the consistent with SOPT M during the (j + 1)th request.

(c) There is a request to video e. Note that due to the property of SOPT M , before
there is a request for e, the farthest video in the future request sequence (line 5 in
Algorithm 2), one of the above 2 subcases must have happened and S′ has already
been constructed. We thus do not need to discuss this subcase.

Therefore, for all subcases, there must exist a new reduced schedule S′ (or S̄′) that
makes the same decisions as SOPT M through the first j + 1 requests, and incurs no
more misses than S does.

3. S does not replace and S′ replaces
Assume SOPT M replaces the video e and according to the property of SOPT M , e is
farther than d. Here S and SOPT M do not agree at the (j + 1)th request since S has
video e in the storage while SOPT M has video d in the storage. So like the Case 2 where
S has e and S′ has f , we can use the same approach to prove the lemma holds for this
case.

4. S replaces and S′ does not replace
Assume S replaces the video e for d while S′ did no replacement. Thus, S and S′ have
slight difference after the (j + 1)th request since S has item d in the storage and S′ has
video e in the storage. Again, we can use the same approach to prove the lemma holds
for this case as for Case 2 and Case 3.

This finishes the proof for the situation that video d misses and concludes the proof for the
whole lemma.

A.2 Proof of Lemma 4

Proof. S′ have agreed up to this point, they have the same cache contents.If d is in the cache
for the both,then no decision is necessary.However, if d is missed, the interesting case happens
when d needs to be bought into the cache,and to do this, S evicts item f while S′ does not evict
item .Here S and S′ do not already agree through step j+1 since S has d in cache while S′ has
f in cache. Hence, we must actually do something nontrivial to construct S′.As the previous
proof, we’ll have S′ try to get this cache back to the same state as S as quickly as possible,
while not incurring unnecessary misses and replaces. Once the caches are the same, we can
finish the construction of S′ by just having it behave like S.
Without loss generality, we assume that when a miss for requesting video d happens, S breaks
Rule 1 and replaces video f . To construct S′, we still try to have S′ agrees with S in the storage



APPENDIX A. PROOF OF LEMMA IN CHAPTER 5 84

content as quickly as possible. Once the storages of S and S′ are the same, we can finish the
construction of S′ by making it behave exactly the same as S. Note that, after requesting d

misses, S and S′ have slight different that S has video d and S′ has video f . Then there are 2

cases we need to consider.

1. dist[d]=dist[f ]
This case happens when d and f never occur again in the request sequence thereafter.
Thus, after current request for d, S′ behaves exactly like S until the following case hap-
pens for the first time.
There is a request for video g 
∈ {d, f} that is not in the storage of both S and S′ and S

replaces d for g. In this case, we can let S′ replace f for g, and now the storages of S and
S′ are the same. We can then make S′ behave exactly like S for the rest of the sequence.
In this case, S′ is better than S by having one less replace than S.

2. dist[d] > dist[f ]
This case happens when all of the cached videos will appear in the rest of the request
sequence. Thus, after current request for d, we still can let S′ behave exactly like S until
one of the following two cases happens for the first time. First, there is a request for video
g 
∈ {d, f} that is not in the storage of S and S replaces d for g. This proof is the same as
case 1. Second, there is a request to f . There are three kinds of behaviors in S.

(a) S does no replacement. To make the storage content of S′ back to the same state
as S as quickly as possible, S′ replaces f for d. However, we must notice that S′

is no longer a reduced scheduling algorithm, since it bought in d although it is not
immediately needed. Thus, we use Lemma 1 to get the reduction S̄′ of S′ and this
does not increase the number of videos brought in by S̄′. Hence, we are done as S̄′

has one less miss than S. longer a reduced schedule: it brought in d when it wasn’t
immediately needed. So to finish this part of the construction,we further transform
S′ to its reduction S̄′ using Lemma 1; this doesn’t increase the number of items
brought in by S′, and it still agrees with SOPT through step j +1.Hence, we are done
and S′ is better than S by having one less miss than S.

(b) S replaces d for f . In this case, we are all set: S′ can simply access f from the
storage, and after this step the storages of S and S′ will be the same. Now, S′ is
better than S by having one less miss and one less replacement.

(c) S replaces e′ 
= d for f . we have S′ replaces e′ as well, and bring in d to the storage.
This results in S and S′ having the same storages. We still should notice that S′ is
no longer a reduced schedule and again, we transform S′ to its reduction S̄′, thus
we are done. brought in d when it wasn’t immediately needed. So to finish this part
of the construction,we further transform S′ to its reduction S̄′ using Lemma 1; this
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doesn’t increase the number of items brought in by S′, and it still agrees with SOPT

through step j + 1.

Hence, in all these cases, we have a new reduced schedule S′ that incurs no more
misses and replacements than S that breaks Rule 1 at least once.

A.3 Proof of Lemma 5

Proof. Without loss generality, we assume it requires a replace in step j + 1. If S evicts an
item, which is farthest in the future which agrees with Rule 2 through step j + 1, then we can
just set S′ = S.

The interesting case happens when S evicts item f , which is not the farthest item in the
future, while S′ evicts item e 
= f by Rule 2 and we assume e is the farthest item in the future.
Hence, S and S′ do not agree through step i+1 since S has e in cache while S′ has f in cache.
Our plan to construct S′ is still to try to get this cache back to the same state as S as quickly
as possible, while incurs same misses and no more replaces than S. Once the caches are the
same, we can finish the construction of S′ by just having it behave like S.
Specially, from request i + 2 onward, S′ behaves exactly like S until one of the following this
happens for the first time.

1. There is a request to an item g 
= e, f that is not in the cache both of S and S′ and S

evicts e. We can have S′ evict f , and now the caches of S and S′ are the same. We can
then have S′ behave exactly like S for the rest of the sequence.

2. There is a request to an item f . Then in this case, S′ hits while S misses, which is
impossible to happen, since it is against with the assumption that S is a miss-optimal
schedule.

Hence, in both these cases, we have a new reduced schedule S′ that agrees with Rule 2
through the first j + 1 items and incurs the same misses and no more replaces than S.


