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Abstract

The solvency risk, contribution rate risk, and benefit risk of a hybrid pension plan with

stochastic investment returns are studied in this project. Gaussian, autoregressive and

moving average processes are used to model the rate of return. The first two moments of

the funding level, the contribution rate and the benefit payment are presented both at the

stationary status and during evolution. Three investment strategies are considered and the

risks generated in the hybrid pension plan are compared. Different sets of valuation rates of

interest are used to understand the impact of regulative environmental change on the hybrid

pension plan. The trade-off between the contribution and benefit risks and the optimum

region of risk sharing are discussed to provide an insight of the relationship between plan

sponsors and employees under a hybrid pension plan.

Keywords: Hybrid Pension Plan; Investment Risk; Gaussian Process; AR(1) Process;

MA(1) Process; Risk Sharing
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“It is our choices that show what we truly are, far more than our abilities. ”
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Chapter 1

Introduction

1.1 Background and Motivation

We live in a world full of uncertainties. When it comes to saving for retirement, the risks

in the investment return of a pension fund have been a challenge for both employers and

employees. The shortcomings of the two typical pension structures are well known. A defined

benefit (DB) plan ensures the promised retirement benefit to employees, while shifting all

the risks to plan sponsors. By predetermining the contribution rates required, a defined

contribution (DC) plan leaves the participants to worry about the value of the accumulated

savings at the time of retirement. Both plans have their disadvantages and attempts to

share the risk among both the plan sponsors and employees have been around for a while.

Hybrid pension plans which combine features of both DB plans and DC plans are a great

solution.

In practice, there still exists lots of limitations of legislation and plan management

challenges for hybrid pension plans. In addition, more theoretical study of hybrid pension

plans is needed. This project tries to answer the questions below so as to add to the

understanding of the plan dynamics.

1. How does the hybrid plan behave and evolve when the investment rate of return is

stochastic?

2. How do different investment strategies affect the risks embedded in the plan?

3. How do different valuation rates of interest affect the risks embedded in the plan?

1



CHAPTER 1. INTRODUCTION 2

4. Is there an optimal risk sharing scheme that can help the negotiations between plan

sponsors and participants?

1.2 Literature Review

In this section, we review some research papers in the literature that are closely related to the

topic studied in this project. This review is composed of two parts. The first part covers

different forms of hybrid pension plans that have been proposed in the actuarial science

literature. The second part reviews the previous work conducted to study the stochastic

rates of return in pension funds.

1.2.1 Hybrid Pension Plan

Since the 1980s, hybrid pension plans have existed and evolved into very different forms.

Many pension plans are named ‘hybrid’ because they are neither a pure defined benefit plan

nor a pure defined contribution plan. In a broad sense, as long as a pension plan has some

of the characteristics of both plans, it can be called ‘hybrid’.

A comprehensive summary of hybrid pension plan practice over the world was presented

by Wesbroom et al. (2005). In this paper, hybrid pension plan was defined as ‘private

pension schemes which are neither pure Defined Benefit (DB) nor Defined Contribution

(DC) arrangements, where pure DB arrangements are taken to mean final salary pension

schemes’. Under this definition, they categorized the available plan schemes into these types:

career average and career average revalued earnings plans, sequential hybrids where members

can join a DB scheme after a period of DC membership, combination hybrids where both

DB and DC benefits are accrued, final salary lump sum plans, self-annuitising plans where

a DC plan offers an in-house annuity option (rather than an open market option), underpin

arrangements where the benefit is calculated as the greater of a DB or a DC benefit (also

known as a floor-offset plan), and cash balance or retirement balance plans. The advantages

and disadvantages of these plans were compared and a vision of the development of these

designs were enlisted.

The hybrid plans that are intensively studied in the actuarial literature are the floor-

offset pension plan, the cash balance plan, and the pooled variable balance plan. We briefly
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summarize them below.

i. Floor-Offset Pension Plan

A floor-offset pension plan usually provides a guaranteed minimum benefit with a top

up tied to a DC account. It is also called ‘underpin arrangement’, or the ‘greater of’ benefit

plan. The DC feature of the plan gives members the benefit of favourable investment

performance. The guaranteed minimum benefit is predetermined to protect members from

market downturns. The minimum benefit is calculated from a formula which accounts for

age, years of service, etc.. If the DC account provides a benefit equal to or higher than the

minimum benefit, the employees receive the DC benefit. If the DC account does not meet

the minimum benefit, the DB plan fills the gap. An example of this scheme is the York

University Pension Plan1.

Sherris (1995) considered pricing the ‘greater of’ benefit plan. The ‘greater of’ benefits

are assumed to be a function of two state variables, the rate of return, and the growth rate

of salary. It applied a contingent claims valuation approach using options and obtained a

partial differential equation for the benefit value. Simulation results showed that a tradi-

tional deterministic actuarial valuation understates the plan costs by as much as 35 percent.

However, this paper did not consider funding or risk management issues.

Similar to Sherris (1995), Bacinello (2000) proposed a scheme with a ‘greater-of’ benefit

option, which provides the option to exchange benefits calculated from a DB formula with

benefits calculated from a DC formula, or vice versa. Bacinello (2000) presented a valuation

model, in which nominal interest rates, retail price index, unit value of investment portfolio

and individual salary are modeled as state-variables.

Blake (1998) described a DC plan with a DB underpin and used option pricing theory

and different pension funding methods to price the plan, and proposed some approaches to

smooth the guarantee costs.

Interested readers can also refer to Chen and Hardy (2009, 2010) for more recent work

on this type of plan.

A variation on the ‘floor-offset’ idea is a ‘protected DC’ plan where the sponsor guaran-

tees a minimum return on investments. Mody (2004) suggested a target retirement account

assigned to each individual member. In the proposed plan, the investment strategy is under

1http://www.yorku.ca/hr/documents/pension/York University Pension Plan.pdf
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the control of plan trustees, and the rate of accumulation is guaranteed at a minimum to

protect members from adverse experience. In spite of the many advantages claimed for this

plan design, there was no formulation or numerical proof of the idea.

ii. Cash Balance Plan

A cash balance plan is a defined benefit plan with some defined contribution features.

The benefit of the plan is a promised lump-sum payment or annuity at retirement. Each

member has a notional account. The employer promises to make contributions (usually

a percentage of salary) to the account, and to credit the account with a specified rate of

return. The employer invests the contributions, retains earnings and bears the investment

losses.

The differences between a cash balance plan and a DB plan are:

• each member has a hypothetical individual account, which is similar to a DC plan;

• the benefit is a lump-sum amount in a cash balance plan, as opposed to a series of

monthly payments for life in a DB plan. That is to say, the investment risk and

longevity risk are transferred to the members at the time of retirement in a cash

balance plan.

Cash balance plans differ from DC plans in the sense that the size of an individual account

is not directly linked to the returns of investments. The returns in employees’ accounts may

be guaranteed, or smoothed by sponsors, or subject to some form of underwriting by the

scheme. Often, benefits are subject to some manual adjustments and therefore are smoother

and more predictable than the benefits under DC plans.

Hardy et al. (2013) analysed the cash balance plan to give a market consistent valuation

of the costs of the liabilities of the plan, using the tools of financial economics.

iii. Pooled Variable Benefit Plan

Pooled variable benefit plans have fixed employer contributions, which are pooled to-

gether in a pension fund and invested. The plan usually sets a target benefit using a defined

benefit plan formula. The target benefit acts as a goal, not a promise of benefit to the

employees. Employers are not obliged to achieve the goal. When there is a deficit in the

fund, the benefits are reduced. If there is a surplus in the fund, plan managers can save it
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to smooth future deficits, or spend the surplus by increasing the benefit. These plans are

also known as target benefit plans in Canada.

An early example of a pooled variable benefit plan is found in Khorasanee (1995), which

explored the possibility of operating an integrated DB/DC plan, whose defined benefit scale

has a fixed target rate of payment and is linked to career average salaries. This design

distinguishes itself from a pure DB plan by varying actual benefit accruals based on the

surplus or deficit of the fund.

A ‘Variable payment Plan’ was proposed in Khorasanee and Ng (2000). The contribution

allocated to each participant is a fixed contribution plus the difference between the asset

shares and benefit payment at the same time. The benefit paid is equal to the product of a

constant and the sum of the contribution allocations. As a result, the benefit depends on

past investment experience.

Sanders (2010) explored a target benefit plan design with fixed contributions and future

benefit accruals being adjusted by reference to an aggregate valuation.

Khorasanee (2012) modified the traditional DB design by adding an adjustment param-

eter to the annual benefit payment. The annual benefit payment is the annual target benefit

payment in together with some adjustments from unfunded liability, and the annual contri-

bution level is the normal cost adjusted by unfunded liability. This hybrid plan is discussed

in details in Section 2.

1.2.2 Stochastic Rate of Return

The investment risk in DB plans has been studied under a stochastic approach extensively

since the 1980s. Here we briefly cover some popular topics in this area, and then discuss

in detail the major references used in this project, followed by a summary of some further

discussions on DB and other pension plans.

Markov processes have proved themselves to be a powerful modeling tool when it comes

to describing possible changes in economic, financial and demographic environment. Balcer

and Sahin (1983) used a semi-Markov reward process to characterize the ultimate benefits,

which enables the investigation of many structural characteristics of a pension plan. The

employment patterns are captured by a two-state semi-Markov process. Combined with a

reward function, they derived the first two moments of the benefit and contribution. To be

realistic and to reflect the non-homogeneous properties of the parameters in pension model-

ing, Janssen and Manca (1997) furthered the theoretical work of Janssen and De Dominicis
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(1984) and presented a discrete time non-homogeneous semi-Markov pension fund model.

This model enables the study of different scenarios of salary inflation, population growth,

etc. Chang and Cheng (2002) modified the model to include changes in plan demographics,

showcased a procedure for implementing the proposed mechanism into a monitoring system,

and illustrated the risk management tools in Taiwan Public Employees Retirement System.

Implementation of their work requires a powerful computer environment to conduct the

simulations.

There are papers studying the problem under a continuous time, which is close to reality

since the value of a pension fund does evolve with time continuously. Interested readers

can refer to O’Brien (1986), Dufresne (1990), Cairns (1996, 1997). However, it is worth

noting that the differential equations are hard to understand and popularize, and applying

the model also requires a lot of computational work. In addition, pension valuation and

adjustment decisions are usually carried out once a year or less frequently.

Dynamic optimization is a very popular approach to determine the optimal contribu-

tion level of DB plans. Haberman and Sung (1994) proposed a dynamic model of pension

funding that measures ‘contribution rate risk’ and ‘solvency risk’. Dynamic optimization

method is used to minimize the two risks in an objective function. Chang (1999) integrated

this dynamic programming approach with a stochastic simulation to determine the optimal

contribution level. An improvement of these two papers was presented by Chang et al.

(2003). The performance criterion function is revised to give more weight to under-funding

and over-contribution risks, since these scenarios raise more concern in practice. Instead

of using the assumption of independent identically distributed rates of return, this paper

assumed autoregressive rates of return.

As was mentioned earlier, the purpose of this project is to study the mechanism of hybrid

pension plans when rates of return are stochastic. We focus on modelling investment returns

and observe the patterns we get from the illustration results. With similar purposes, a lot

of work has already been done for DB plans.

In Dufresne (1986a), the evolution of funding level and contribution level were studied

using a mathematical model. It firstly examined and compared traditional actuarial cost

methods; then the model was modified to include stochastic rates of return and inflation,

in which case the other actuarial assumptions are borne out by experience. Recursive

formulas were derived for the first two moments of funding and contribution level, and an

optimal region was found under a so-called spread method. Similar work was conducted in
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continuous time.

As a special case of Dufresne (1986a), Dufresne (1988) studied the moments of pension

contributions and fund levels when only the rate of return was assumed to be stochastic. To

simplify the formulas, it is assumed that the population is stationary, the salary increase is

nil, and the valuation rate of interest is equal to the mean of the earned rates of return. This

approach was adopted by other authors who aimed to focus on studying the stochastic rate

of return. From the plot of the standard deviations of funding level against the standard

deviations of the contribution level in the stationary case, it identifies an ‘inadmissible’

region for the spread period, where both standard deviations are an increasing function

of the spread period. Both pension sponsors and members would prefer to move to a

different region so as to reduce the risks taken by both parties. An ‘admissible’ region is

also recognized, where there is a trade-off between the standard deviation of funding level

and the standard deviation of contribution level. For finite time periods, there may or may

not exist an ‘inadmissible’ region, depending on the spread period and the properties of the

stochastic return.

Haberman (1990, 1991, 1994) developed Dufresne’s work further assuming that the rate

of return follows an autoregressive (AR) process. To simplify the numerical illustration, the

limiting values of the first two moments of the funding level and the contribution level were

approximated under certain conditions. It was shown that the approximation works well

when the coefficients are not too close to ±1. Since the variance of the contribution rate

is proportional to the actuarial liability, an attempt to minimize the variance could lead to

a reduction in actual liability. The paper used the coefficient of variation as the main risk

measurement, which divides the standard deviation by the mean. We also use the coefficient

of variation as the main measurement of risks in this project. For some combinations of

parameters, Haberman found a similar pattern of relationships between funding level and

contributions as the one described in Dufresne (1988). However, in some cases, all choices

of spread period lay in an ‘admissible’ region; in other cases, the optimal spread period is 1

because both coefficients of variation are monotonically increasing functions of the spread

period.

Parallel to Haberman (1994), similar results were derived when assuming the rate of re-

turn follows a moving average (MA) process in Haberman and Wong (1997). They observed

similar patterns to what was found in Haberman (1994). Since the coefficient φ3 plays a

different role in MA process than in AR process, the relationship between the spread period
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and the coefficient is different. Bédard and Dufresne (2001) generalized this result to a

moving average process of any order, by recognizing the actuarial losses as a bilinear time

series process. They also noticed that when the valuation rate of interest is set different from

the average rate of return, the funding level does not converge on average to the actuarial

liability.

Khorasanee (2012) modified the model in Dufresne (1988) and proposed a hybrid pen-

sion model, assuming that investment returns are independent and identically distributed.

It assumed that the surpluses and deficits are amortized by adjusting both the benefit

outgo and the contribution, which enables risk sharing between plan sponsors and mem-

bers. The concept of ‘Aggregate Risk’ was introduced as the sum of the standard deviations

of contribution level and benefit level. The optimum spread periods for different investment

portfolios were illustrated. The performance of this hybrid plan was compared with a DC

plan providing the same expected retirement benefit. It is shown that the hybrid plan is

more efficient in managing investment risk than a DC plan.

Some extensions on the above framework are summarized below.

1. Dufresne (1989) investigated the stability conditions based on the first order and

second order stability of actuarial losses. Gerrard and Haberman (1996) extended the

analysis to an autoregressive model.

2. Instead of focusing on minimizing the variance of the contribution level in DB plan,

Haberman (1997) explored the situation where the objective is to minimize the vari-

ability in the present value of future contributions.

3. Since previous work assumed that the valuation rate of interest is equal to the mean

of the distribution of the earned rates of return, Cairns and Parker (1997) investigated

the cases where the valuation rate of interest was set at different levels. An ‘efficient

frontier’ was introduced which captured the minimum variance of contribution, given

the level of mean contribution rate. They also found bounds for the moments of the

funding level when rates of return follow an autoregressive process, which are more

precise than the approximations in Haberman (1994). The moments and distribution

functions of funding given the initial funding level were studied in their paper.

4. Owadally and Haberman (1999) compared three different methods of adjusting the

unfunded liability when rates of return are assumed to be random. They found that the
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amortization method achieves greater fund security than the spread method, but it is

less efficient because of the feedback of delayed information. Owadally and Haberman

(2004) further examined the mathematical results in Dufresne (1989) and Owadally

and Haberman (1999) with stochastic simulations in which AR(1) and MA(1) rates

of return are assumed. The results supported the conclusion that the spread method

is more efficient. A more realistic simulation using fitted equity returns, bond yields

and price inflation in Canada, the United Kingdom, and the United States were also

performed. Efficient spreading and amortization periods are suggested for the three

countries.

5. Since the past work looked at the variability in pension funding and contribution

separately, Haberman et al. (2000) introduced a performance criterion aiming at min-

imizing both risks at the same time.

Another important work on stochastic returns in pension plan was done by Sanders

(2010) for a target benefit plan with fixed annual contributions and variable benefit pay-

ments. A recursive formula for the annual benefit payment was derived, assuming that the

rate of return follows an AR(1) process. Due to the existence of a feedback loop in the

model, a simulation study was conducted to estimate the distributional properties of the

benefit payments and the total pension entitlement. It is observed that a near-stationary

distribution exists over the 200-year horizon when asset returns are independent year to

year. When the correlation between assets returns increases, it takes longer for the distri-

butions to converge to a stationary status, if they converge at all. Compared with a DC

plan with the same contributions, the target benefit plan provides less pension entitlement

and performs worse in terms of intergenerational equity.

A very realistic study of the volatilities in pension plan projections was conducted by

Yuen (2011). Time series models for key economic variables were selected and their param-

eters were estimated. The resulting economic variables were used in modeling a sample DB

plan and a sample DC plan. The results highlight the high volatility of employer contribu-

tions in DB plans and the inadequacy of retirement income in DC plans.
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1.3 Outline

The purpose of this project is to study the risks in a hybrid pension plan, using the model

proposed by Khorasanee (2012). The first two moments of the funding level, annual contri-

bution rate, and annual benefit payment are calculated, when the rate of return is assumed

to follow a Gaussian process, AR(1) process, and MA(1) process. In addition to the illus-

tration of the stationary status results, we also show the evolution of the hybrid pension

plan, and the impact of different choices of valuation rates of interest. Table 1.1 below sum-

marizes the major references used in this project and the structure of our study. The check

marked cells represent the model scenarios that are studied in this project. Dufresne (1988)

and Khorasanee (2012) assumed that the rates of return are independently and identically

distributed, but we assume that they follow a Gaussian process in this scenario.

Table 1.1: Major References and Project Outline

Pension Plan iv = E(it) iv 6= E(it)

Gaussian AR(1) MA(1) Gaussian AR(1) MA(1)
Hybrid Khorasanee (2012) X X X X X
DB Dufresne (1988) Haberman (1994) Haberman (1997) Cairns and Parker (1997) Cairns and Parker (1997) X
Pseudo Hybrid X X X X X X

This project is arranged in the following way. A hybrid plan and its modeling is presented

in Chapter 2 to study the performance of Khorasanee’s hybrid plan. The DB plan and the

pseudo hybrid plan are considered as special cases. Chapter 3 presents the derivations

of important results in order to measure the risk of hybrid pension plans. The first two

moments of the contribution, benefit and funding level under different investment return

assumptions are studied. In Chapter 4, numerical illustrations are presented to answer the

questions set in the beginning of this report. Chapter 5 concludes the project and suggests

future work that could be done.



Chapter 2

Hybrid Pension Plan and Its

Modeling

In this chapter, we first present a hybrid plan structure, which was proposed by Khorasanee

(2012). Some risk measures and criteria are laid out for convenience. Then we discuss the

defined benefit plan and pseudo hybrid plan as special cases of the proposed hybrid plan.

2.1 The Hybrid Pension Plan

The hybrid pension plan studied in this project was proposed by Khorasanee (2012), follow-

ing a similar mathematical structure to the DB plan studied in Dufresne (1988). It assumed

that the surpluses and deficits are amortized by adjusting both the benefit outgo and the

contribution, which enables risk sharing between plan sponsors and members.

The difference between the actuarial liability and the actual pension fund is called un-

funded liability. When the actuarial liability is higher than the fund level, there is a de-

ficiency; when the actuarial liability is lower than the fund level, there is a surplus. The

plan adjusts the contribution and benefit in order to absorb the deficiency and surplus. The

adjustment is equal to the unfunded liability divided by the present value of an annuity for

a fixed term, calculated at the valuation rate of interest. This is called the ‘spread’ method.

Khorasanee (2012) has answered part of the questions we raised at the beginning of the

report. It derived the first two moments in finite time and pointed out that the expected

benefit outgo at finite time is different from its target value by some fraction of the difference

11
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between the initial funding and actuarial liability. It illustrated that a riskier investment

portfolio produces higher aggregate risk than a less risky portfolio. A suggestion was made

to set the sum of the spread parameters equal to the value that minimize the aggregate risk.

Our project differs from Khorasanee (2012) in the following aspects.

1. Instead of setting the target benefit to one unit, we assume that the target benefit is a

lump sum payment that equals the present value at retirement of a life annuity due with

annual payments of 1/3 of the final salary.

2. We loosen the assumption for the valuation interest rate and explore the impact of

different valuation interest rates.

3. Khorasanee (2012) studied the case where the effective investment returns are indepen-

dent and identically distributed. In this project, we model the forces of interest of the

investment return using Gaussian, AR(1), and MA(1) processes.

2.2 Assumptions

We make the following assumptions when studying the risks in a hybrid pension plan.

1. All actuarial assumptions are realized exactly, except for investment returns.

2. The population is stationary.

3. There are no salary increases, whether from inflation or promotion. If we were to assume

a deterministic salary increase rate, since the benefits are proportional to the salary, the

benefits would increase at the same rate as salaries. For simplicity, we therefore consider all

the variables to be in real terms and set the annual salary at entry to be one unit.

4. The valuations are carried out annually. The effective valuation interest rate is fixed at

iv per year.

2.3 Modelling and Risk Measurement

Having the hybrid plan of interest described, we introduce the notation and present the

model in a mathematical form following Khorasanee (2012). The variables used in the

model are defined below.
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• Ft: the value of the pension fund at time t, and t = 0, 1, 2, . . . unless otherwise

specified. We assume that F0 is a known constant.

• Ct: the total annual contribution paid by the plan sponsor at time t.

• Bt: the total actual annual benefit outgo at time t.

• it: the effective rate of return on the pension fund between time t − 1 and t; the

corresponding force of interest is δt.

• iv: the valuation interest rate. It is treated as a constant given for the pension

valuation.

• indNC(iv): the normal cost of each plan member; it is determined by the valuation

interest rate iv and the mortality assumption.

• NC(iv): the total normal cost of the plan; it is determined by the valuation interest

rate iv and the mortality assumption.

• AL(iv) is the actuarial liability of the plan; it is determined by the valuation interest

rate iv and the mortality assumption.

• TB: the total annual target benefit outgo.

• k: the spread parameter of the plan. It is equal to 1/äm , where m is the number of

years that the unfunded liability is spread into. We call m the spread period.

• kc is the spread parameter for contributions. It is equal to a proportion pc of k,

kc = pc∗k. It means that pc of the unfunded liability is adjusted into the contributions

in m years. We let 0 ≤ pc ≤ 1.

• kb is the spread parameter for benefit outgo. It is equal to a proportion pb of k,

kb = pb ∗ k. It means that pb of the unfunded liability is adjusted into the benefit in

m years. We let 0 ≤ pb ≤ 1.

Note that pc + pb = 1, and k = kc + kb.
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For t = 0, 1, 2, . . . , the following relationships exist:

Ft+1 = (1 + it+1)(Ft + Ct −Bt), (2.1)

Ct = NC(iv) + kc (AL(iv)− Ft) , (2.2)

Bt = TB − kb (AL(iv)− Ft) . (2.3)

The contribution at time t is equal to the sum of the normal cost and a proportion of the

unfunded liability. The benefit at time t is the sum of the target benefit and a proportion

of the unfunded liability.

Both the employer and the employees are concerned with whether the pension fund can

meet the actuarial liability, which is sometimes called ‘solvency risk’. A reasonable objective

of a pension scheme is to minimize the variation in the fund level, which can be measured

by the variance of the funding level, V ar(Ft). At the same time, plan sponsors hope to

maintain a stable contribution level so as to minimize the impact of the pension funding

on the business. ‘Contribution rate risk’ is measured by the variance of the contribution

level, V ar(Ct). For plan members, the stability and predictability of the benefit is crucial for

financial planning. As a result, they may focus on keeping the variance of the annual benefit,

V ar(Bt), in a reasonable range. We call this ‘benefit risk’. These measurements are good

indicators of the risks borne by the plan sponsor, and participants, when contributions and

benefits are expressed in the same unit, say Canadian dollars. However, as Haberman (1994)

pointed out, a pure attempt to minimize the variances may lead to a lower contribution level

and a lower benefit level. In this project, we use the coefficient of variation as the main

criteria to determine the optimum spread period so that the level of the variable of interest

is also taken into account.

2.4 Defined Benefit Plan as a Special Case

In a defined benefit plan, the benefits are predetermined and only the contributions are

adjusted to fund the benefit. It can be considered as a special case of the hybrid plan

presented above. Setting kb to 0, there is no adjustment made to the benefits. The model

becomes the DB model studied in Dufresne (1988).
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2.5 Pseudo Hybrid Plan as a Special Case

Another special case of the hybrid plan is to set kc to 0, meaning that the contribution level

is fixed. The plan has a target benefit that employees and employers have agreed to aim

for. When there is a deficit or surplus in the fund, the benefit is adjusted away from the

target, but the contributions do not change. This plan is called a pseudo hybrid plan in

Khorasanee (2012).



Chapter 3

Model and Assumptions

This chapter presents the risk measurement framework of the hybrid pension plan. We start

by introducing the interest rate models and reviewing their important results; then we state

the main assumptions we made in order to derive the first two moments of the funding

level. Finally, mathematical results for the risk measurement of the hybrid pension plan are

presented.

3.1 Interest Rate Models

3.1.1 Gaussian Model

We denote by it+1 the effective rate of return earned on the pension fund during the period

[t, t+ 1). The corresponding force of interest is denoted by δt+1, and 1 + it+1 = eδt+1 .

We assume that the forces of interest {δt+1 : t = 0, 1, 2, . . . } are independent and identi-

cally distributed, and they follow a normal distribution with mean θ1 and variance ν2
1 . Under

these assumptions, {δt+1 : t = 0, 1, 2, . . . } follows a weakly stationary Gaussian time series

process, since the first two moments are independent of time t. Unless specified otherwise,

the times t and s take values in {0, 1, 2, . . . }.
Since 1 + it+1 = eδt+1 , it is easy to conclude that {it+1 : t = 0, 1, 2, . . . } are independent

and identically distributed as well, and are lognormally distributed. We denote the mean

16
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and variance of it+1 as i and σ2, which can be derived using the following relationships:

E(1 + it) = 1 + i

= E(eδt) = exp

{
θ1 +

1

2
ν2

1

}
,

(3.1)

and

V ar(1 + it) = V ar(it) = σ2

= V ar(eδt) = exp
{

2θ1 + ν2
1

} (
exp

{
ν2

1

}
− 1
)
.

(3.2)

3.1.2 AR(1) Model

Another model that is of great interest is the autoregressive process of order 1 (AR(1)). We

assume that the force of interest follows a discrete stationary AR(1) process, namely,

δt = θ2 + φ2(δt−1 − θ2) + εt, t = 1, 2, 3, . . . (3.3)

where θ2 is the long term mean of the forces of interest. The autoregressive coefficient φ2

satisfies the stationary condition |φ2|< 1. The noises {εt : t = 1, 2, . . . } are independent and

identically distributed normal random variables with mean 0 and variance γ2
2 . We call γ2

2

the local variance of δt+1 given δt. The noise εt is also referred to as error, residual, white

noise or random shock in the literature.

Equation (3.3) can be interpreted as follows: the distance between the force of interest

δt and the long term mean θ2 is a proportion φ2 of the distance between the force of interest

during the last period, δt−1, and the long term mean θ2, plus a white noise εt. Unlike the

independent and identical assumption in the Gaussian model, the current force of interest

is correlated with all the previous ones, although with decreasing coefficients. The name of

the process, autoregressive, refers to the regression on the process itself.

The long term mean and variance of the process can be expressed as

E(δt) = θ2,

V ar(δt) =
γ2

2

1− φ2
2

, ν2
2 , (3.4)

and

Cov(δt, δs) =
γ2

2

1− φ2
2

φ
|t−s|
2 , γ2(t, s).
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The sum of forces of interest is denoted by ∆(t) =
∑t

u=1 δu with ∆(0) = 0. The following

results are derived in Haberman (1994) and frequently used in the derivation of moments

for the hybrid pension plan.

First, we have

E [∆(t)] = E

[
t∑

u=1

δu

]
= tθ2,

V ar [∆(t)] = V ar

(
t∑

u=1

δu

)
= 2µ2

2G(t, 0),

where G(t, s) = 1+φ2
2(1−φ2)(t− s)− φ2(1−φt−s

2 )

(1−φ2)2
.

Equation (3.3) can be expressed as

δt − θ2 = φt2(δ0 − θ2) +

t∑
i=1

φi2εt−i. (3.5)

Given δ0, δt is normally distributed, and hence ∆(t) also follows a normal distribution. The

accumulation factor from time s to time t calculates the accumulated value at time t of 1

dollar at time s. It can be expressed as e∆(t)−∆(s) and it follows a lognormal distribution.

For 0 ≤ s < t, the expected value of this accumulation factor is

E
[
e∆(t)−∆(s)

]
= ct−se−z(1−φ

t−s
2 ), (3.6)

where  c = exp
{
θ2 + 1+φ2

2(1−φ2)ν
2
2

}
z = ν2

2φ2(1− φ2)−2
.

Furthermore, we state the following result for the cross-product expectation, for 0 ≤ s <
r < t

E
[
e∆(t)−∆(s)+∆(t)−∆(r)

]
= exp

{
(t− s)θ2 + (t− r)θ2 + ν2

2H(t, r, s)
}
, (3.7)

where

H(t, r, s) =
1 + φ2

2(1− φ2)
[t− s+ 3(t− r)]− 1

(1− φ2)2
[φ2(3− 2φt−r2 − 2φt−s2 + φr−s2 )].

The derivations of Equations (3.6) and (3.7) can be found in Appendix A.
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3.1.3 MA(1) Model

In this section, we use a stationary MA(1) process to model the force of interest. We

assume that the force of interest follows a moving average process in discrete time of order

1 (MA(1)):

δt = θ3 + et − φ3et−1, t = 1, 2, 3, . . . (3.8)

where {et : t = 1, 2, . . . } are independent and identically distributed normal random vari-

ables with mean 0 and variance γ2
3 . We assume that the moving average coefficient satisfies

|φ3|< 1, which makes the process invertible, as was stated in Shumway and Stoffer (2000).

As we can tell from Equation (3.8), the force of interest δt is the sum of its long term

mean θ3, a noise term et, and a proportion −φ3 of the noise term at the last time step, et−1.

We assume that {et : t = 1, 2, . . . } are independent and identically distributed.

The long term mean and variance of the process can be expressed as

E(δt) = θ3, (3.9)

V ar(δt) = (1 + φ2
3)γ2

3 , ν2
3 , (3.10)

and the covariance is

Cov(δt, δs) =

−φ3γ
2
3 |t− s|= 1

0 , |t− s|> 1
.

The following results are used in the derivation of moments for the hybrid pension plan.

Similar to the AR(1) process case, ∆(t) =
∑t

u=1 δu is also normally distributed but with

mean and variance

E [∆(t)] = E

[
t∑

u=1

δu

]
= tθ3,

V ar [∆(t)] = V ar

(
t∑

u=1

δu

)
= tν2

3 − 2(t− 1)φ3γ
2
3 .

The lognormal random variable e∆(t) has mean

E
[
e∆(t)

]
= exp

{
(θ3 +

1

2
ν2

3)t− (t− 1)φ3γ
2
3

}
.
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Similarly, for t, s = 0, 1, . . . and t > s

E
[
e∆(t)−∆(s)

]
= exp

{
(t− s)

(
θ3 +

1

2
ν2

3

)
− (t− s− 1)φ3γ

2
3

}
= f t−sexp

{
−(t− s− 1)φ3γ

2
3

}
, (3.11)

where f = exp
{
θ3 + 1

2ν
2
3

}
.

In addition, for 0 ≤ s < r < t, the cross-product expectation is

E
[
e∆(t)−∆(s)+∆(t)−∆(r)

]
= αt−sβt−rg, (3.12)

where α = f ∗ exp
{
−φ3γ

2
3

}
, β = exp

{
θ3 + 3

2ν
2
3 − 3φ3γ

2
3

}
, and g = exp

{
3φ3γ

2
3

}
.

The derivation of Equations (3.11) and (3.12) can be found in Appendix A.

We make a remark here that when r = s, Equation (3.12) becomes

E
[
e2(∆(t)−∆(s))

]
= exp {2(t− s)θ3 + 2V ar [∆(t)−∆(s)]}

= exp

{
(t− s)

(
θ3 +

1

2
ν2

3 − φ3γ
2
3

)
+ (t− s)

(
θ3 +

3

2
ν2

3 − 3φ3γ
2
3

)
+ 4φ3γ

2
3

}
= (αβ)t−sg4/3.

3.2 Risk Measurement of Hybrid Pension Plan

We first point out how to derive the first two moments of the annual contribution rate and

benefit payment, using the first two moments of the funding level. Next we present the first

two moments of the funding level, under different assumptions for the rate of return. The

main results for a Gaussian model are from Dufresne (1988) and Khorasanee (2012), the

derivation for the AR(1) case can be found in Haberman (1994), and the results for the

MA(1) case are from Haberman (1997).

From Equations (2.2) and (2.3), the following results hold, given the expectation of

funding level, E(Ft):

E(Ct) = NC(iv) + kc (AL(iv)− E(Ft)) , (3.13)

E(Bt) = TB(iv)− kb (AL(iv)− E(Ft)) , (3.14)

V ar(Ct) = k2
cV ar(Ft), (3.15)

V ar(Bt) = k2
bV ar(Ft). (3.16)
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Taking the square root of Equations (3.15) and (3.16). Respectively, we have

SD(Ct) = kcSD(Ft), (3.17)

SD(Bt) = kbSD(Ft). (3.18)

Since kc+kb = k, the sum of the standard deviation of the annual contributions and benefits

is equal to a proportion k of the standard deviation of the funding level. In addition, the

ratio SD(Ct)/SD(Bt) is a constant equal to kc/kb. As a special case, when the spread

period is 1 year, k = 1, the sum of the standard deviation of the contributions and the

benefits equals the standard deviation of the funding level.

In the following sections, we focus on deriving results for E(Ft) and V ar(Ft). The first

two moments of benefit payment and contribution can be derived accordingly, using the

above relationships.

We further denote AggR as the aggregate risk, which is the sum of the standard deviation

of the contributions and the standard deviation of the benefits, namely,

AggR = SD(Ct) + SD(Bt) = kSD(Ft). (3.19)

This is a convenient notation when we are mainly concerned about the total risk in the

contribution and benefit levels. Again, it is worthwhile noting that this notation only has a

good interpretation when contributions and benefits are measured in the same unit.

If we replace Ct and Bt in Equation (2.1) with their corresponding expressions in (2.2)

and (2.3), we have, for t = 0, 1, 2, . . . ,

Ft+1 = (1 + it+1)(Ft + Ct −Bt)

= (1 + it+1) ((1− k)Ft +NC(iv)− TB(iv) + kAL(iv)) .
(3.20)

When t → ∞, the plan is said to reach its ultimate situation, or a stationary status.

The stationary status captures the main characteristics of a mature pension plan, without

specifying the time period. Since models with different parameters converge at different

speeds, focusing on the ultimate status makes the comparison between different scenarios

and rate of return models more convenient. To simplify the derivation, Haberman (1994)

took F0 = 0 when deriving the ultimate funding level and second moment, since the starting

value does not affect the ultimate value when t → ∞. We take the same approach in this

project.
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3.2.1 Gaussian Model

In Section 3.1.1, we have stated that {it+1 : t = 0, 1, 2, . . . } are independent and identi-

cally distributed, and follow a lognormal distribution with E(it) = i, and V ar(it) = σ2.

Equation (3.20) can be re-expressed as

Ft+1 = wt+1 [qFt +Rv(1 + i)] , (3.21)

where wt+1 = 1+it+1

1+i , q = (1 + i)(1− k), and

Rv = NC(iv)− TB(iv) + kAL(iv). (3.22)

1. Transient Situation

Taking expectations on both sides of Equation (3.21), we have the following recursive

formula

E(Ft+1) = qE(Ft) +Rv(1 + i).

It is not difficult to have, for t = 1, 2, . . . ,

E(Ft) = qtF0 +Rv(1 + i)
1− qt

1− q
. (3.23)

For the second moment,

E(F 2
t+1) = E(w2

t+1)E[q(Ft − E(Ft)) + qE(Ft) +Rv(1 + i)]2

= E(w2
t+1)

[
q2V ar(Ft) + [E(Ft+1)]2

]
,

and since we have

E(w2
t+1) =

E[(1 + it+1)2]

(1 + i)2
=

(1 + i)2 + σ2

(1 + i)2
,

the following results hold

V ar(Ft+1) = E(F 2
t+1)− [E(Ft+1)]2

= E(w2
t+1)q2V ar(Ft) +

[
E(w2

t+1)− 1
]

[E(Ft+1)]2

= (1− k)2
[
(1 + i)2 + σ2

]
V ar(Ft) +

σ2

(1 + i)2
[E(Ft+1)]2

= aV ar(Ft) + b[E(Ft+1)]2,

where a = (1− k)2
[
(1 + i)2 + σ2

]
, and b = σ2(1 + i)−2.
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Since F0 is a known constant, V ar(F0) = 0, we have, for t = 1, 2, . . . , that

V ar(Ft) = b
t∑

j=1

at−j [E(Fj)]
2. (3.24)

2. Ultimate Situation

If we let q < 1, Equation (3.23) converges to

lim
t→∞

E(Ft) = E(F∞) = Rv
1 + i

1− q
. (3.25)

The convergence condition q < 1 is equivalent to k > i/(1 + i), which means that as long as

the annual adjustment to the contributions and the benefits exceeds the interest earned on

the unfunded liability, the funding level eventually converges to a stationary status.

Under the condition a < 1, which is equivalent to

k > 1− 1√
(1 + i)2 + σ2

,

it has been proven in Dufresne (1988) that

lim
t→∞

V ar(Ft) =
b

1− a
lim
t→∞

[E(Ft)]
2. (3.26)

3. A special case

When we set iv = E(it) = i, the above results have a simpler form. Since the equation

of equilibrium is

AL(iv) = (1 + iv) [AL(iv) +NC(iv)− TB(iv)] ,

we have

i

1 + i
AL(i) = TB(iv)−NC(i),

implying by (3.22) that

1− q
1 + i

AL(i) = Rv,

and Equations (3.25) and (3.26) become

lim
t→∞

E(Ft) = AL(i), (3.27)

lim
t→∞

V ar(Ft) =
b

1− a
[AL(i)]2. (3.28)
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Accordingly, the aggregate risk given by (3.19) can be expressed as

AggR = k
√
V ar(Ft) = k

√
b

1− a
AL(i).

Given the mean and variance of it, AggR is a function of the spread parameter k. Taking

the first derivative of AggR with respect to k, and noting that a is also a function of k, we

can find the optimum k∗ that minimizes the aggregate risk:

k∗ = 1−
(
σ2 + (1 + i)2

)−1
. (3.29)

3.2.2 AR(1) Model

Recall that from Equation (3.20), Ft+1 = (1 + it+1)[(1 − k)Ft + Rv]. Our presentation is

different from Haberman (1994) in that we allow iv 6= i. Given iv, NC(iv) and AL(iv) are

constants, so is Rv given by (3.22). This difference would not affect the derivations in the

AR(1) case, and we can safely replace R in Haberman (1994) by the counterpart in our

report Rv.

We denote Q = 1− k for simplicity. Now Ft can be expressed as

Ft = (1 + it)(QFt−1 +Rv), (3.30)

and we can write it recursively as

Ft = F0Q
te∆(t) +Rv

t−1∑
s=0

Qt−s−1e∆(t)−∆(s), t = 1, 2, . . . . (3.31)

Taking expectations on both sides of Equation (3.31) and using Equation (3.6), we have

E(Ft) = F0Q
tE(e∆(t)) +Rv

t−1∑
s=0

Qt−s−1E[e∆(t)−∆(s)]

= F0(Qc)tez(φ
t
2−1) +

Rv
Q

t−1∑
s=0

(Qc)t−sez(φ
t−s
2 −1).

(3.32)

Using the results from Haberman (1994), when Qc < 1, E(Ft) converges to an ultimate

value as t→∞. This value is approximated as

lim
t→∞

E(Ft) ∼= e−z
Rvc

1−Qc
. (3.33)
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For the second moment, applying Equations (3.7) and (3.6), we have

E(F 2
t ) =F 2

0Q
2tE(e2∆(t)) + 2F0Q

tRv

t−1∑
s=0

Qt−s−1E
[
e∆(t)e∆(t)−∆(s)

]
+R2

vE

[
t−1∑
s=0

t−1∑
r=0

Qt−s−1Qt−r−1e∆(t)−∆(s)e∆(t)−∆(r)

]

=F 2
0Q

2tE(e2∆(t)) + 2F0Q
2t−1RvE(e2∆(t)) + 2F0Q

tRv

t−1∑
s=1

Qt−s−1E
[
e2∆(t)−∆(s)

]
+

2R2
v

Q2

t−1∑
r=1

r−1∑
s=0

Qt−sQt−rE
[
e∆(t)−∆(s)+∆(t)−∆(r)

]
+
R2
v

Q2

t−1∑
s=0

Q2(t−s)E
[
e2∆(t)−2∆(s)

]
= (F 2

0Q
2t + 2F0Q

2t−1Rv)c
2texp

{
2ν2t

1 + φ2

1− φ2
+ 4z(φt2 − 1)

}
+ 2F0Q

tRv

t−1∑
s=1

Qt−s−1exp
{

(2t− s)θ2 + ν2H(t, s, 0)
}

+
2R2

v

Q2

t−1∑
r=1

r−1∑
s=0

Q2t−s−rexp
{

(2t− s− r)θ2 + ν2H(t, r, s)
}

+
R2
v

Q2

t−1∑
s=0

Q2(t−s)c4(t−s)exp
{
−2(t− s)θ2 − 4z(1− φt−s2 )

}
. (3.34)

Using the results from Haberman (1994), when Qc < 1 and Q2cp < 1, limt→∞ E(F 2
t ) exists,

and it is approximately equal to

lim
t→∞

E(F 2
t ) ∼= e−3z 2R2

vQc
2p

(1−Qc)(1−Q2cp)
+ e−4z R2

vcp

1−Q2cp
,

where p = exp
{
θ2 + 3

2
1+φ2
1−φ2 ν

2
2

}
, and

lim
t→∞

V ar(Ft) ∼= e−3z 2R2
vQc

2p

(1−Qc)(1−Q2cp)
+ e−4z R2

vcp

1−Q2cp
− e−2z R2

vc
2

(1−Qc)2
. (3.35)

Remark: It should be noted that when the spread period m = 1, it implies that k = 1 and

hence Q = 0, and then (3.30) can be simplified to

Ft = Rv(1 + it) = Rve
δt .

Recall that eδt follows a lognormal distribution and hence the first two moments of F∞ are

E(F∞) = Rvexp

{
θ2 +

1

2
ν2

2

}
, (3.36)

V ar(F∞) = R2
ve

2θ2+ν22 (eν
2
2 − 1). (3.37)
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3.2.3 MA(1) Model

Similar to the case of the AR(1) model, the result in Haberman and Wong (1997) can be

applied by replacing R in the paper by Rv.

We start with Ft+1 = (1 + it+1)[QFt +Rv], which also gives

Ft = F0Q
te∆(t) +Rv

t−1∑
s=0

Qt−s−1e∆(t)−∆(s), t = 1, 2, . . . ..

Taking expectations on both sides of the equation, we get

E(Ft) = F0Q
tE(e∆(t)) +Rv

t−1∑
s=0

Qt−s−1E[e∆(t)−∆(s)]

= f

[
F0Q(Qα)t−1 +Rv

1− (Qα)t

1−Qα

] (3.38)

using the result from Equation (3.11) where f = exp
{
θ3 + 1

2ν
2
3

}
and α = f ∗ exp

{
−φ3γ

2
3

}
.

According to Haberman and Wong (1997), when Qα < 1, the ultimate value of the expec-

tation is given by

lim
t→∞

E(Ft) =
fRv

1−Qα
. (3.39)

For the second moment, we assume r > s and use Equations (3.11) and (3.12)

E(F 2
t ) =F 2

0Q
2tE(e2∆(t)) + 2F0Q

tRv

t−1∑
s=0

Qt−s−1E
[
e∆(t)e∆(t)−∆(s)

]
+R2

vE

[
t−1∑
s=0

t−1∑
r=0

Qt−s−1Qt−r−1e∆(t)−∆(s)e∆(t)−∆(r)

]

=F0g
4
3

(
F0 +

2Rv
Q

)
(αβQ2)t + 2F0gRv(βQ)t

1− (Qα)t−1

1−Qα

+
2gR2

vα
2βQ

1−Qα

[
1− (Q2αβ)t−1

1−Q2αβ
− (Qα)t−1 1− (Qβ)t−1

1−Qβ

]
+R2

vg
4
3αβ

1− (Q2αβ)t

1−Q2αβ
.

(3.40)

Haberman (1997) has derived that when Qα < 1 and Q2αβ < 1, limt→∞ E(F 2
t ) exists and

is equal to

lim
t→∞

E(F 2
t ) =

2Rvgα

Q(1−Qα)

Q2αβ

1−Q2αβ
+

R2
vgQ

2αβ

Q2(1−Q2αβ)
eφ3γ

2
3 ,

and

lim
t→∞

V ar(Ft) =
2R2

vgα
2Qβ

(1−Qα)(1−Q2αβ)
+

R2
vgαβ

1−Q2αβ
eφ

2
3 − R2

vα
2

(1−Qα)2
e2φ3γ23 . (3.41)
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Remark: It should be noted that when the spread period m = 1, we can obtain similar

results as the ones we have shown for the AR(1) process with m = 1, that is:

E(F∞) = Rvexp

{
θ3 +

1

2
ν2

3

}
,

V ar(F∞) = R2
ve

2θ3+ν23 (eν
2
3 − 1).

These results indicate that with a spread period of 1, that is eliminating the unfunded

liability each year, the first two moments of the funding level in the stationary case will be

the same for both processes, AR(1) and MA(1), as long as they have the same long term

means and variances.



Chapter 4

Numerical Illustrations: Gaussian

Case

This chapter is composed of two parts. In the first two sections, we present the assumptions

we make and the pension funding method used in the numerical illustrations in Section 4.3,

Chapter 5 and 6. In Section 4.3, we illustrate the numerical calculation results for a hybrid

pension plan using the Gaussian assumption. The first two moments of the funding level,

contribution and benefit are shown, when investment strategies differ. We also analyze the

impact of using different valuation interest rates. The trade-off between different spread

parameters for the contributions and benefits is also studied.

4.1 Assumptions

We first lay out the assumptions used in the illustrations, in addition to those assumptions

we have stated in Section 2.2.

• For valuing the retirement benefit, we use the UP94 male life table1, projected to year

2020.

• Members join the plan at age 25 and retire at age 65. There is one active member at each

age from 25 to 64 inclusive. There are no decrements prior to age 65, which leads to a

stable workforce with 40 active members in the plan at all times.

1See Appendix B

28
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• The investment portfolio of the pension fund is composed of two parts: (1− x) ∗ 100% of

the portfolio is invested in risk free government bonds earning 0% return in real terms,

and the remaining x∗100% of the portfolio is invested in equities earning an effective real

annual rate of return of 5% with a standard deviation of 20%.

• The investment strategy is implemented by choosing x, the proportion of the equity in

the portfolio. We set x = 0.1 to be a conservative strategy, x = 0.4 to be a neutral

strategy, and x = 0.9 to be an aggressive investment strategy. Since the three rate of

return models we have chosen model the force of interest, we convert the parameters

presented above in discrete terms into the equivalent means and variances of force of

interest, using Equations (3.1) and (3.2). Table 4.1 summarizes the mean and standard

deviation of the effective real annual rates of return, and the corresponding means and

standard deviations of the force of interest.

Table 4.1: Parameters Used under Different Investment Strategies

Strategy E(it) SD(it) E(δt) SD(δt)

Aggressive 0.045 0.180 0.029 0.171

Neutral 0.020 0.080 0.017 0.078

Conservative 0.005 0.020 0.005 0.020

Remark 1: In this project, for the convenience of description, when we observe that the

third digits of the value are the same for two successive time steps, we say that the plan has

reached ‘plateau’.

Remark 2: As we have discussed in Section 1.2.2, we prefer to use the coefficient of variation

as the main measurement of risk instead of using the standard deviation. However, we

sometimes come across very small average values, which drives the coefficient of variation

to an extremely big value. In this situation, we make our analysis and comparisons based

on the standard deviation.

Remark 3: Since the population is stationary and the liabilities of the plan are mature,

the initial funding level F0 is set to be the actuarial liability (i.e., F0 = AL(iv)) for each

analysis of plan evolution.
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4.2 Pension Funding Method

We use the individual entry age normal method to calculate the actuarial liability and

normal cost in the illustration. All the actuarial symbols in this section use the valuation

interest rate iv.

Since there is only one member retiring every year, the target benefit payout of the plan

is

TB(iv) =
1

3
ä65, (4.1)

which is the present value of the annuity, evaluated at the current valuation interest rate.

In reality, the discount rate of a life annuity at the time of retirement is unknown. A more

realistic approach is to use the projected discount rate of an annuity product in the market

at the time of retirement.

Normal cost is defined as the level amount needed to fund the benefit over the working

life time of each employee. There are two common definitions of the actuarial liability.

Prospectively, the actuarial liability is the difference between the actuarial present value of

future benefits and the actuarial present value of future normal costs; retrospectively, the

actuarial liability is the accumulated value of normal costs with adjustments due to interest

and benefit payment.

For one employee, the actuarial present value of the future retirement benefit valued at

entry (i.e. age 25) is

APV (future benefit) =
1

340|ä25.

Since we assume no decrements before retirement, this becomes

APV (future benefit) =
1

3
(1 + iv)

−40ä65. (4.2)

Similarly, the actuarial present value of future salaries for each new member joining the

plan at age 25 is

APV (future salary) = ä25:40 .

Under the assumption of no decrements before retirement, this is equal to

APV (future salary) = ä40 . (4.3)
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The individual normal cost is the ratio of Equations (4.2) and (4.3) and can be expressed

as

indNC(iv) =
APV (future benefit)

APV (future salary)
=

(1 + iv)
−40ä65

3ä40

. (4.4)

Since there are 40 active members in the plan, the total normal cost of the plan at any given

time is

NC(iv) = 40× indNC(iv) =
40(1 + iv)

−40ä65

3ä40

. (4.5)

Because we assume that the valuation assumptions are borne out by experience (Sec-

tion 2.2), and because retiring members are paid out in full, the following equation of

equilibrium holds

AL(iv) = (1 + iv) (AL(iv) +NC(iv)− TB(iv)) .

We can therefore express the actuarial liability as

AL(iv) =
(1 + iv)(TB(iv)−NC(iv))

iv

=
1 + iv

3iv
ä65

(
1− 40v40

ä40

)
. (4.6)

4.3 Gaussian Model

In our numerical illustrations, we first set up a benchmark case, and then change one param-

eter at a time to study the impact through comparison. Then we discuss some relationships

when two parameters are subject to change at the same time.

4.3.1 Benchmark Case

We set our benchmark case as follows:

• Investment strategy: neutral.

• Valuation rate of interest: iv = i.

• Time: t =∞. We focus on the ultimate values, that is the stationary case.
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• Optimum spread period: 30 years. This is the spread period that minimizes both the

coefficient of variation of the contribution and the coefficient of variation of the benefit.

• Spread Parameter: kc = 0.3k. We arbitrarily choose kc = 0.3k in this illustration, so as

to focus on analysing the aggregate risk and the funding level. The trade-off between the

risks in contributions and benefits is addressed later.

1. First Moments

Table 4.2 lists the first moments of the funding level, the contributions and the ben-

efit payments, respectively, calculated under the three investment strategies, using Equa-

tions (3.27), (3.13) and (3.14).

Table 4.2: Means of the Funding Level, Contribution Rate and Benefit Payment

Strategy E(F∞) E(C∞) E(B∞)

Aggressive 62.12 1.49 4.16

Neutral 92.89 3.37 5.19

Conservative 119.75 5.44 6.04

As we have shown in Section 3.2.1, when iv = E(it) = i and in the stationary case, the

average funding level converges to the actuarial liability, the expected benefit payment per

year is the target benefit, and the average contribution per year converges to the normal

cost. From Equations (4.1), (4.5) and (4.6), it is not difficult to conclude that a riskier

investment strategy requires, on average, lower contributions and implies lower expected

benefit amounts and expected funding levels than a less aggressive investment strategy.

2. Second Moments

We calculate the coefficient of variation for different values of the spread period, m, in

5-year increment, using Equation (3.28). Figure 4.1 shows the coefficients of variation of

the funding level, the annual contribution rate and the benefit payment under the neutral

investment strategy. We have similar observations as those in Dufresne (1988).

• Funding level

The variation in funding increases as the spread period increases. The longer the unfunded

liability is smoothed into the future, the more uncertainty lies in the ultimate level of the

funding level, because of the growing uncertainty of future investment rates of return.
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Figure 4.1: Coefficients of Variation under Neutral Investment Strategy with Different
Spread Periods (iv = i)

• Contribution rate

The graph of the coefficient of variation for contributions against the spread period has

a ‘U’ shape. The coefficient of variation is minimized when the spread period is 30 years.

We note that the annual contribution is composed of the normal cost and an adjustment

due to the unfunded liability. When the adjustment takes place over a shorter period, it

causes a bigger fluctuation in the contribution level. As a result, spreading the unfunded

liability over a longer period can smooth out the variation in contributions. However,

when the spread period gets too long, and the unfunded liability is deferred further into

the future, it eventually results in more variation in contributions due to investment risks.

• Benefit Payment

For similar reasons as in the case of contributions, the graph of the coefficients of variation

of the annual benefit payment has a ‘U’ shape and the coefficient of variation is minimized

when the spread period is 30 years. A moderate choice of spread period finds a balance

between smoothing out the fluctuations induced by the adjustment from the unfunded

liability and controlling the exposure to investment risks.

• Comparison

The contributions show more variation relative to their average level than the benefit

payments do. This is because the average annual benefit is about 1.5 times the mean
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level of contribution.

The standard deviation of contributions is always 3/7 of the standard deviation of benefits.

This is because we set kc = 0.3 ∗ k in the model assumption. Of the annual adjustment

due to the unfunded liability, 30% goes to contributions, and 70% goes to benefits. This

relationship is shown in Equations (3.17) and (3.18).

4.3.2 Different Investment Strategies

Now we compare the risks under different investment strategies. We plot in Figure 4.2 the

coefficients of variation of the ultimate funding level with various choices of spread period,

using different investment strategies.

Figure 4.2: Coefficients of Variation of Funding Level with Different Investment Strategies
and Spread Periods (iv = i)

The curves of coefficients of variation are cut off when the plan fails to converge when

using very long spread periods. We notice from Figure 4.2 that the riskier the portfolio is,

the shorter the maximum spread period is allowed to be if we want to achieve a stationary

status of the funding level. The cut off points are 30 and 100 years of spread period when

using the aggressive strategy and the neutral strategy, respectively; however, when using

the conservative strategy, the model has a stationary status even at m = 200. With a

risky investment portfolio, when the unfunded liability is spread over a long period, the

uncertainty of rates of return builds up in the funding value, which results in failure of
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convergence. With a conservative strategy, the variation in rates of return is really low and

we can look at the future as almost predictable. That is why the stationary status exists

even though the unfunded liability is projected many years into the future.

Figure 4.3: Coefficient of Variation of Annual Benefit Payment with Different Investment
Strategies and Spread Periods (iv = i)

Since the coefficients of variation for the contributions and the benefits behave in a

similar fashion, in Figure 4.3 we only show the coefficients of variation for the ultimate

annual benefit payment. We can see that the ‘U’ shape exists for all three investment

scenarios, even though it is relatively flat when using a conservative strategy. The optimum

spread period is 10, 30, and 130 years for the aggressive, neutral, and conservative strategies,

respectively. The ultimate values of the coefficients of variation at the optimum spread

period are higher for riskier investment strategies than that of less risky portfolios.

4.3.3 Different Valuation Interest Rates

In this section we look at how different valuation rates of interest affect the risks of the

hybrid plan. We assume a neutral investment strategy since it is most common in practice.

Recall from Table 4.1 that under this strategy, the expected real rate of return is i = 0.02

and the standard deviation is 0.08. Cairns and Parker (1997) have investigated this issue

for a DB plan, and calculated the first moments of the contribution and funding level, using

different valuation bases. We observe similar results in the hybrid plan. Since this project
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uses a different valuation method from Cairns and Parker (1997), we do not compare the

bases directly.

1. First Moment

The first moments are calculated using Equation (3.25). We notice that the plan cannot

converge to an ultimate status when m is 100 years or longer, regardless of the valuation

basis. This is because the convergence condition is only related to the investment rate of

return and has nothing to do with the valuation rate of interest.

A valuation basis affects the plan by changing the normal costs and actuarial liabilities.

From Equation (4.4), we know that a high valuation interest rate means a small present

value for future liabilities, which results in a low normal cost and therefore a low actuarial

liability.

Figure 4.4: Mean of Funding Level with Different Spread Periods (iv 6= i)

Figure 4.4 shows the mean of the ultimate funding level at different valuation rates of

interest and spread periods. We notice that a higher valuation interest rate corresponds to

a lower fund level. This is due to the lower normal costs that we project for higher valuation

interest rates.

For valuation rates that are higher than the mean investment rate of return, there may be

negative expected funding when the spread period is very long. For example, for iv = 1.2i,

when the spread period is 95 years or longer, there is a negative expected funding level,
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which is undesirable. This is due to a lack of sufficient contributions from low normal costs

and the accumulation of a deficit. When the deficit is further spread into the future, it is

like avoiding the debt by continuing to borrow more money to spend more, and then the

deficit gets worse. By contrast, for valuation rates that are lower than the mean investment

rate of return, there is a high level of normal costs. The longer the spread period is, the

higher the ultimate value of the expected funding level.

Figure 4.5: Mean of Annual Contribution and Benefit Payment with Different Spread Peri-
ods (iv 6= i)

Figure 4.5 shows the first moments of the stationary value of the annual contribution

(left) and the annual benefit payment (right), using different spread periods and valuation

bases. We have three points to make:

• For short spread periods, m ≤ 70 in our example, a lower valuation interest rate results

in a higher ultimate contribution rate, due to the higher normal cost required to fund the

pension plan.

• For longer spread periods, m > 70 in our example, a lower valuation interest rate leads to

a lower ultimate contribution rate. This is because the expected funding level is higher

when using a lower valuation interest rate (Figure 4.4), which creates a large surplus and

is adjusted by decreasing the contribution rate.
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• Without surprise, the mean annual benefit payment shown on the right in Figure 4.5

behaves the opposite of the mean contribution, but similarly to the funding level.

2. Second Moment

Next we study the second moments of funding, benefit and contribution rates with

different spread periods using Equation (3.26).

Figure 4.6: Standard Deviation of Funding Level with Different Spread Periods (iv 6= i)

In Figure 4.6, we show the standard deviation of the funding level. From the earlier

analysis, we know that the bigger the difference between the valuation rate of interest and

the long term mean i, the larger the fund surplus or deficit, thus the more variation we

expect in the funding level. A valuation basis with iv < i creates more variations in funding

than a valuation basis with iv > i in general. This is a result of high normal costs and

actuarial liabilities when iv < i, and it scales up the variability of the funding level.

In Figure 4.7, we plot the standard deviations of the contribution and benefit with

different spread periods, against their corresponding average levels. When iv = i, the mean

of the benefit payment converges to the target benefit and the mean contribution rate

converges to the normal cost. Since the target benefit and the normal cost are not related

to the spread period, the mean values of the contributions and the benefits are constant

regardless of the spread period. This relationship shows up as a vertical line in the middle

of the graphs.
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Figure 4.7: Standard Deviation of Annual Contribution and Benefit payment with Different
Spread Periods (iv 6= i)

All the other curves have a ‘U’ shape. The optimum spread periods are 25, 25, 30,

40, and 75 years, for iv = 0.8i, 0.9i, i, 1.1i, and 1.2i, respectively. On the right, we can

see clearly an efficient frontier that defines the minimum standard deviation available for a

given mean.

4.3.4 Plan Evolution

In this section, we investigate how the hybrid plan evolves with time in the benchmark case.

We project the first two moments at the optimum spread period over a 200-year horizon.

The formulas used for the illustrations are Equations (3.23) and (3.24). We choose spread

periods of 10 years, 50 years, and the optimum period 30 years for this comparison. Recall

that, in the case when t =∞, we have observed in Section 4.3.1 that the first moments are

constant, the variance of funding level increases with the spread period, and the variations

of the contribution and benefit are minimized at m = 30.

Since the initial funding level F0 is set to be the actuarial liability, the first moments are

already at their ultimate levels from the outset. The mean contribution equals the normal

cost at all times and the mean benefit outgo is the target benefit outgo each year.
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Figure 4.8: Coefficients of Variation of Funding level at Different Times with Different
Spread Periods under Neutral Strategy (iv = i)

The coefficients of variation of the funding level at different times are shown in Figure 4.8.

Similar to the observation we have made in the stationary case, the variation of the funding

level is an increasing function of the spread period, since spreading unfunded liability into

the far future brings in more investment risks in the long run. The longer the spread period

is, the longer it takes for the plan to converge in the second moment.

We plot the coefficients of variation of annual contributions and benefits in Figure 4.9.

As usual, for short spread periods, we can see a quick pick up in the variation and an early

arrival at stationary status. In our example, the benefit always has more variability than

the contribution rate, due to the fact that we spread only 30% of the unfunded liability into

contributions while 70% of it into the benefits.

4.3.5 Some Relationships

So far we have looked at the impact of different investment strategies, spread periods and val-

uation bases on the hybrid pension plan separately, holding other factors constant. We now

study and show the interactions of two factors together with the help of three-dimensional

surfaces.

1. Varying proportions of spread parameters and spread periods

In previous illustrations, we have taken kc = 0.3k for all the examples. For a given
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Figure 4.9: Coefficients of Variation of Contribution and Benefit at Different Times with
Different Spread Periods under Neutral Strategy (iv = i)
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spread period, we now allow different proportions of the spread parameters.

Figure 4.10: Standard Deviations of Contribution and Benefit with Different Spread Pa-
rameters under Neutral Strategy (iv = i)

In Figure 4.10, we choose the proportion kc/k as one variable and the spread period

m as the other variable, and calculate the corresponding standard deviations of annual

contribution rates and annual benefit payments in the stationary case. This gives us two

‘identical’ graphs, except that the kc/k turns one to the opposite direction.

When kc = 0, it is a special case of the hybrid plan, the pseudo hybrid plan, where

the contribution is fixed at the normal cost and the unfunded liability is adjusted into the

benefit only. When kb = 0, it is a special case of the hybrid plan, the DB plan, where

the annual benefit payment is fixed at the target benefit level and the unfunded liability is

adjusted into the contributions only.

Whichever kc/k we take, the optimum spread period is 30 years. This observation lines

up with Equations (3.17) and (3.18). The standard deviation of contributions and benefits

have a linear one-to-one trade off relationship. An increase in the standard deviation of

contributions means the same amount of decrease in the standard deviation of benefits.

The sum of the two standard deviations is fixed, for a given spread period.

2. Varying spread parameters for contribution and benefit

The relationship we have claimed earlier can be better illustrated without the constraint
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of a given spread period. Recall that we define the sum of the standard deviation of contri-

butions and benefits as the aggregate risk (Equation (3.19)). In Figure 4.11, we show the

aggregate risk at the stationary status on the vertical axis with the parameters kc and kb

each chosen between 0 and 1 on the floor surface. Each point in the graph represents the

aggregate risk given kc and kb.

Figure 4.11: Aggregate Risk with Different Spread Parameters under Neutral Strategy
(iv = i)

The aggregate risk drops immediately as kc and kb increase from the lower-left corner

to the upper-right corner, and rise after hitting the minimum. At the minimum level of the

aggregate risk, the sum of kc and kb is constant and equals to 0.04, which in turn means an

optimum spread period of 30, since k = 1/äm .

This observation is consistent with the findings in Khorasanee (2012). The practical

meaning of this observation is that, despite the fact that the risk in funding level is a

monotonically increasing function of the spread period, we can pick the optimum spread

period that minimizes the total risk borne in the contributions and the benefits. As for the

choice of spread parameters kc and kb, the sponsor and members can negotiate, as long as

the sum of the spread parameters is fixed at the optimum level.

3. Varying investment strategy and spread period

Last but not least, we take a look at the situation when decisions regarding investment

strategies and the optimum spread period are made simultaneously. The spread period is
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m, and the proportion of the risky assets in the portfolio is x. In Figure 4.12, we show the

aggregate risk at stationary status when these two variables are changed at the same time.

Figure 4.12: Aggregate Risk with Different Spread Parameters under Different Investment
Strategies (iv = i)

The upper-left corner of the ground surface is empty because when the portfolio is highly

risky and the spread period is very long, the plan fails to converge to a stationary status.

For a given choice of x, the aggregate risk decreases quickly first and increases slowly as

the choice of spread period increases. As x increases, the optimum m gets smaller, which

shows as a valley in the middle of the graph.

Given the spread period m, the stationary aggregate risk is an increasing function of x.

Based on the above description, we can conclude that if we were to put a golf ball on the

surface, it would roll down to the lowest point, which is the lower-left corner on the ground

surface. If pension plan managers were to look for a global minimum of the aggregate risk on

this three-dimensional surface, they would end up with the least risky investment strategy

and the longest spread period.



Chapter 5

Numerical Illustration: AR(1) Case

In this chapter, we study the behavior of and the risks inherent in our hybrid pension

plan, when the force of interest is assumed to follow an AR(1) process. Since there are

many parameters involved in this model, we set up a benchmark case, and then change one

parameter at a time to study the impact through comparison. Similar to the last chapter,

we also discuss some relationships when two parameters are subject to change at the same

time.

5.1 Benchmark Case

We set our benchmark case as follows.

• Investment strategy: neutral.

• Coefficient of AR(1) model: we arbitrarily set φ2 = 0.5, because in real life the forces of

interest usually have a positive correlation with the previous period’s rate of return.

• Valuation rate of interest: we set iv = i.

• Optimum spread period: 13 years. The spread period that minimizes the coefficient of

variation of the contributions is 12 years, compared to 14 years for the benefits. Since

the spread period that minimizes the standard deviations of the contributions and the

benefits is 13 years, we choose 13 years as the optimum spread period.

• The parameters are summarized in Table 4.1. The variance of the white noise, γ2
2 , is

obtained from Equation (3.4) given the long term variance and coefficient of the process.

45
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The optimum spread period in the AR(1) case is shorter than the optimum spread

period under the Gaussian assumption (30 years). Even though the mean and variance of

the force of interest are set to be equivalent in these two processes, the two processes behave

differently. To assist the explanation, we simulate one set of random forces of interest using

a normal distribution, and another set of random forces of interest using an AR(1) process

with φ2 = 0.9. Both simulations use the mean and variance of the neutral investment

strategy, a starting point that is equal to the means of the processes. The simulation results

are plotted in Figure 5.1 in a 200-year horizon.

Figure 5.1: Simulated Forces of Interest Using Gaussian and AR(1) Processes

As we can see from Figure 5.1, the forces of interest under the Gaussian assumption

fluctuate around the long term mean 0.029.

For an AR(1) process with φ2 = 0.9, it is very likely that the force of interest in the

next year is around the level of the force of interest in the current year. This dependency

in rates of return amplifies the level of surplus and deficiency. In order to achieve minimum

variation, it is preferable to adjust the unfunded liability sooner than later, compared with

a process with less memory.
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After setting up the benchmark case, we show the evolution of the first two moments of

the hybrid plan in Figure 5.2 and Figure 5.3.

Figure 5.2: Evolution of Means of Funding, Contribution and Benefit (iv = i)

Figure 5.2 shows the means of the funding level, annual contribution rate and benefit

payment at different times, calculated from Equation (3.32). Unlike the Gaussian case, the

stationary mean of the fund is higher than its target level, the actuarial liability. The mean

of the funding level increases from 92.9 at time 0 and reaches a plateau status around year

105. The ultimate level of the mean benefit outgo is slightly higher than the target benefit

and the ultimate level of the mean contributions is slightly lower than the normal cost.

Haberman (1994) also made the comment that the ultimate value of the funding level is

different from the actuarial liability, due to the exponentiation of forces of interest used in

the AR(1) process.

We illustrate the evolution of the coefficients of variation of the funding level, annual

contribution level, and annual benefit payment in Figure 5.3. The calculation is based on
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Figure 5.3: Evolution of Coefficients of Variation of Funding, Contribution and Benefit
(iv = i)

Equation (3.34). Since the initial funding is smaller than its stationary level, there is an

increase in the variations in the first 13 years and a slow decrease afterwards. The plateau

status is observed around year 50. The variation at year 300 is 7.8% higher than the level

at year 1. This is very different from the consistent and steady increase we have seen in the

Gaussian case.

Remark:

Haberman (1994) showed that for values of φ2 < 0.7 and under certain conditions on

ν2, the relative errors in using the approximated Equations (3.33) and (3.35) are small.

We also notice in the calculations that the approximation produces good results up until

φ2 = 0.6. As φ2 gets closer to 1, the approximation has bigger deviation from the true value.

Therefore we set φ2 = 0.5 in the benchmark case.

In spite of the disadvantage of the approximation results, we continue using the approx-

imated equations in the rest of the demonstration due to the following concerns. When

we are conducting comparison analysis using different parameter sets, the model converges

at different speeds and it is hard to decide how long the projection period needs to be if

we hope to obtain the exact result. The approximations used in Haberman (1994) signif-

icantly reduces the calculation time, and enables the comparison of results from different

parameter sets. In addition, we also check that the optimum spread period chosen by the

approximation results is also the optimum choice while using exact values. However, we do

not recommend the use of this approximation for other purposes.
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5.2 Varying Spread Periods and Model Parameters

After showing the plan evolution using an optimum spread period of 13 years and autore-

gression parameter φ2 = 0.5, we study the stationary status of the pension plan when these

two parameters change. Since it is unlikely for a real life rate of return to have negative

correlation between time steps, we focus on the positive autoregression coefficients in this

project. The parameters used in this section are:

m: integer values between 1 and 340 (steps of 1 up to 15, then in steps of 5 up to 50,

then in steps of 10 up to 100, then in steps of 20);

φ2: 0.01, 0.1, 0.3, 0.5.

1. First Moment

We plot the first moments of the stationary contribution rate, annual benefit payment

and the funding level with different choices of spread periods and φ2 in Figure 5.4.

For small values of the spread period m, the first moments show a flat shape in the

graphs as m gets bigger. This is because the stationary results are close to the target level,

regardless of choice of the spread period and φ2.

For a given coefficient φ2, the expected annual contribution in the stationary case is

a decreasing function of the spread period; the expected annual benefit and the expected

funding level are increasing functions of the spread period. For a given spread period m,

the expected annual contribution in the stationary case is a decreasing function of φ2; the

mean annual benefit and the mean funding level are increasing functions of φ2.

It is hard to tell the existence of these relationships from Equation (3.33). We simulate

two series of forces of interest to help explain the phenomenon in 200 years in Figure 5.5.

These two series have the same long term mean and variance, and follow an AR(1) process,

but with φ2 = 0.6 and 0.01. Similar to the comparison in Figure 5.1, we see more local

fluctuations for the series generated with φ2 = 0.01. For 1 unit at time 0, the values

accumulated to time 200 are 127 and 107 for series with φ2 = 0.6 and 0.01, respectively.

Assuming that the force of interest follows an AR(1) process with given long term mean

and variance, the level of a pension fund is more likely to accumulate to a large value when

the coefficient φ2 is high. This explains why a large φ2 results in a higher expected funding
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Figure 5.4: Means of Funding, Contribution, and Benefit with Different Spread Periods and
φ2 (iv = i)
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Figure 5.5: Simulated Discrete Rates of Return Using AR(1) Process

level and annual benefit, and therefore a lower contribution rate in the stationary situation.

2. Second Moment

We plot the coefficients of variation of the annual contribution rate, the annual benefit

payment and the funding level in Figure 5.6.

When φ2 = 0.01, the AR(1) process is close to a Gaussian process. Similar to Fig-

ure 4.1 in the Gaussian case, the coefficients of variation of the contribution rate and the

benefit payment have a ‘U’ shape. They are minimized at m = 30, 25, 20, and 13 for

φ2 = 0.01, 0.1, 0.3, 0.5 respectively. With higher coefficient φ2, the risks in the contribution,

benefit and funding are higher.

5.3 Varying Investment Strategies

In this section, we compare the hybrid pension plan under different investment strategies.

It is hard to decide what the short term variations γ2
2 and coefficients φ2 are under each

strategy, without an idea of the component in the investment portfolios in each strategy.

For simplicity, we assume that φ2 = 0.5 under all investment strategies. We then use

Equation (3.4) to calculate the short term variations γ2. The model parameters of the
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Figure 5.6: Coefficients of Variation (CV) of Funding, Contribution, and Benefit with Dif-
ferent Spread Periods and φ2 (iv = i)
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AR(1) process used in this section are summarized in Table 4.1.

1. First Moments

We firstly compare the means of the plan funding, contribution, and benefit in the

stationary case in Figure 5.7.

Figure 5.7: Means of Contribution, Benefit under Different Investment Strategies (iv = i)

Overall, for a relatively riskier investment strategy, the maximum spread period the

pension plan can use while having a stationary status is shorter, the mean contribution and

funding level are lower, and the average annual benefit payment is higher.

2. Second Moments

The coefficient of variation is a great measure of volatility in the pension plan; however,

we observe a large amount of fluctuation because the standard deviations are divided by

some very small values of the first moments. The resulting graph can give us a biased idea
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of the actual amount of risks involved. We therefore use standard deviations to compare

the risks under different investment strategies in Figure 5.8.

Figure 5.8: Standard Deviations of Contribution and Benefit under Different Investment
Strategies (iv = i)

Similar to what we have seen in the Gaussian case, for a relatively riskier investment

strategy, the maximum spread period the pension plan can use while having a stationary

status is shorter; the standard deviations for the contribution, benefit and funding are

higher, due to the high variance of the force of interest. The spread periods that minimize

the standard deviations of the contributions and the benefits are 2, 13, and 100 for the

conservative, neutral and aggressive strategy respectively.
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5.4 Varying Valuation Rate of Interest

Next we use different valuation rates of interest in the benchmark case. The means of

ultimate funding level, contribution rate and benefit payment show a similar pattern as

what we have observed in the Gaussian model. We do not discuss it again here. The

standard deviations, however, as shown in Figure 5.9, are slightly different from the ones in

the Gaussian case.

Figure 5.9: Standard Deviations of Contribution and Benefit with Different Spread Periods
(iv 6= i)

In Figure 5.9, we plot the standard deviations of the contributions and the benefits,

given their average levels. The curves appear to be ‘hook’ shaped, as was described in

Cairns and Parker (1997), and the ‘hooks’ for the contributions are placed in the opposite

direction as those of the benefits. There appears to be an upward trending efficient frontier

in both graphs. The optimum spread periods for all scenarios are 12, 12, 13, 14, 15 years

with respect to the valuation rates of interest from the smallest to the largest.
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5.5 Some Relationships

So far we have looked at the impact of autoregressive coefficients, spread periods, investment

strategies and valuation bases on our hybrid pension plan separately. We now use the help

of three-dimensional surfaces to study the interactions of two factors together.

1. Varying proportions of spread parameter and spread periods

In previous illustrations, we have set kc = 0.3k for all the examples. Here we look at the

trade-off between the spread parameters of contributions and benefits.

Figure 5.10: Standard Deviations of Contribution and Benefit with Different Spread Pa-
rameters (φ2 = 0.5, iv = i)

In Figure 5.10, we choose the proportion kc/k as one variable and the spread period m

as the other variable, and calculate the standard deviations of the annual contribution rate

and the annual benefit payment at stationary status. Similar to the Gaussian case, this

gives us two ‘identical’ graphs, except that the kc/k turns one to the opposite direction.

For any given kc/k, the optimum spread period is always 13 years. For any given spread

period, there is a one-to-one linear trade-off relationship between the standard deviation of

the contribution and the standard deviation of the benefit. This is determined by Equa-

tions (3.17) and (3.18).

In Figure 5.11, we use φ2 = 0.01 instead. The process is close to a Gaussian process and

the graph is similar to Figure 4.10, except that the maximum spread period allowed for the



CHAPTER 5. NUMERICAL ILLUSTRATION: AR(1) CASE 57

Figure 5.11: Standard Deviations of Contribution and Benefit with Different Spread Pa-
rameters (φ2 = 0.01, iv = i)

existence of stationary status is shorter.

2. Varying spread parameters for contributions and benefits

The relationship claimed above can be better illustrated without the constraint of op-

timum spread period. Recall that we have defined the sum of the standard deviation of

contribution and benefit as the aggregate risk. In Figure 5.12, we show the aggregate risk

at stationary status with kc and kb chosen between 0 and 1.

The left part of Figure 5.12 corresponds to the case of φ2 = 0.5. For small values of kc

and kb, the aggregate risk is high due to the long spread period. The aggregate risk drops

when kc and kb start to increase, and then it slowly climbs up, and drops again until kc

and kb are too large for the plan to converge. Unlike Figure 4.11 in the Gaussian case, the

aggregate risk is not a linear function of k.

The right part of Figure 5.12 corresponds to the case of φ2 = 0.01. It is similar to

Figure 4.11 in the Gaussian case, because the rates of return behave in a similar way.

A special case in the graph is when kc = 0, kb = 1 or kb = 0, kc = 1. In these cases,

the hybrid plan is either a pseudo hybrid plan or a DB plan, and the unfunded liability is

adjusted in one-year spread period. The calculation is based on Equations (3.36) and (3.37).

The resulting aggregate risks stand out at the upper right corner of the graph.

.
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Figure 5.12: Aggregate Risk with Different Spread Parameters for φ2 = 0.5 (left) and
φ2 = 0.01 (right) (iv = i)



Chapter 6

Numerical Illustration: MA(1)

Case

In this chapter, we study the behaviour and risks of the hybrid pension plan, when rates of

return are assumed to follow an MA(1) process. Since there are many parameters involved

in this model, we set up a benchmark case, and then change one parameter at a time to

study the impact through comparison. Similar to the last two chapters, we also discuss

some relationships when two parameters are subject to change at the same time.

6.1 Benchmark Case

We set our benchmark case as follows.

• Investment strategy: neutral.

• Coefficient of MA(1) process: we arbitrarily set φ3 = −0.7. The coefficient is negative in

order to offset the negative sign in model (3.8), which delivers a positive dependence on

the white noise from the last time step.

• Valuation rate of interest: we assume iv = i.

• Optimum spread period: 20 years.

• The parameters are summarized in Table 4.1. The variance of the white noise γ2
3 is

obtained from Equation (3.10) given the long term variance and coefficient of the process.
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We calculate the first two moments of the hybrid plan using Equations (3.38) and (3.40)

under the benchmark case.

The first moments of the funding level, annual contribution rate and benefit payment

show a similar pattern to the ones in the AR(1) case.

The second moments are increasing functions of time, and show a similar pattern to the

ones in the AR(1) case. We therefore do not show the graphs here.

Table 6.1: Summary of Observations in Plan Evolutions

Year Gaussian AR(1) MA(1)

φ3 NA 0.5 -0.7

Optimum Spread Period 30 12 20

Plateau (Second Moment) 55 50 49

We can summarize the observations we have had in the three processes in Table 6.1. We

now compare the evolution of the hybrid plan when assuming the force of interest follows

these three processes and using the optimum spread period in each scenario. The investment

strategy is neutral for all cases in Figure 6.1 and Figure 6.2.

As we can see from Figure 6.1, even though the three processes have equivalent long term

means and variances of rates of return, the funding levels and the benefits generated in the

plan are highest when using an AR(1) process, and lowest when using a Gaussian process.

The expected benefits and funding levels in both AR(1) and MA(1) processes converge to

values that are higher than their targets, but it takes a longer time for the benefits and

funding levels to converge under the MA(1) case. The differences in stationary level and

convergence speed are results of the differences in the nature of the process. The AR(1)

process possesses the highest dependency on previous values.

Figure 6.2 shows obvious differences in the standard deviations of the contribution, the

benefit and the funding level. The AR(1) process generates the highest risks in contributions

and benefits, and the Gaussian process is the least risky among the three processes. Unlike

the consistent, slow increase in variations in the Gaussian case, for the AR(1) process, the

standard deviations increase during the first 13 years and then slowly decrease and reach a

plateau. For the MA(1) process, the rise in standard deviations does not stop until year 56.

Even though the long term means and variances of the rate of return are set to be

equivalent in these three processes, the realizations of the effective rates of return behave

differently, which leads to the differences we observe here. Similar to the argument we had
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Figure 6.1: Evolution of the Means of the Contribution, Benefit, and Funding Level (iv = i)
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Figure 6.2: Evolution of the Standard Deviations of the Contribution, Benefit, and Funding
Level (iv = i)
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for Figure 5.1, the dependency in rates of return amplifies the level of surplus and deficiency.

The AR(1) process creates a high level of dependency between forces of interest, and the

process has a long memory which carries all the information from past experience. Forces of

interest that follow an MA(1) process are correlated with the past through the white noise

from the last time step only. As for the Gaussian case, the rates of return at different time

steps are independent of each other.

6.2 Varying Spread Period and Model Parameter

After showing the plan evolution using an optimum spread period of 20 years and a moving

average coefficient φ3 = −0.7, we discuss the stationary status of the pension plan when

these two variables vary, with the help of Equations (3.39) and (3.40). Recall that under

an MA(1) process, the force of interest is the sum of the long term mean, a noise at current

time, and a proportion of the noise at previous time. Since it is very unlikely for a real

life rate of return to have negative correlation between time steps, we focus on the negative

moving average coefficient in this project. The parameters used in this section are

m: integer values between 1 and 340 (steps of 1 up to 15, then in steps of 5 up to 50,

then in steps of 10 up to 100, then in steps of 20);

φ3: −0.1,−0.3,−0.5,−0.7,−0.9.

1. First Moment

We calculate the values of the first moments of the stationary contribution rate, annual

benefit payment and funding level with different choices of spread periods and φ3. The

values and patterns are similar to the ones in Figure 5.4, so we do not present the graphs

here.

2. Second Moment

We plot the coefficients of variation of the annual contribution rate and the annual

benefit payment in Figure 6.3.

When φ3 = −0.1, the MA(1) process is close to a Gaussian process. The graph shows

a similar pattern as what we have seen in Figure 4.1 and the optimum spread period is 25

years. As φ3 increases, the optimum spread period decreases.

As φ3 decrease to −0.9, the ‘U’ shape gets steep at the end with longer spread period.
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Figure 6.3: Coefficients of Variation of Contribution and Benefit with Different Spread
Periods and φ3 (iv = i)

The optimum spread period shifts from 25 years to 20 years for the coefficient of variation

of the contribution.

6.3 Varying Investment Strategy

Similar to the comparison we have performed in the AR(1) case, we compare the risks in the

benchmark case with different investment strategies. We show the coefficients of variations

of the annual benefit and the funding level using different spread periods in Figure 6.4. The

optimum spread periods are 120,20, and 6 years for the conservative, neutral, and aggressive

strategies, respectively. The calculations are based on Equations (3.39) and (3.40)

6.4 Varying Valuation Rate of Interest

In this section we deviate from the benchmark case by using different valuation rates of

interest. The first moments of the ultimate funding level, the contribution rate and the

benefit payment show a similar pattern as what we have seen in the Gaussian model and

AR(1) model. We do not discuss it again here. The standard deviations, however, as we

can see from Figure 6.5, are slightly different from the Gaussian case and AR(1) case. Since
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Figure 6.4: Coefficients of Variation of Benefit and Funding with Different Investment
Strategies (iv = i)

we are dealing with the stationary case, we find Equations (3.39) and (3.41) very helpful in

the calculation.

In Figure 6.5, we plot the standard deviations of the contribution and the benefit, with

their average levels on the horizontal axis. Recall that in the Gaussian case, the curve is a

vertical line for iv = i, due to constant first moments for all choices of spread periods. In

the MA(1) case, the ultimate value of the mean benefit payment is an increasing function

of the spread period; while the ultimate value of the mean contribution rate is a decreasing

function of the spread period.

We can recognize an upward trending efficient frontier in both graphs in Figure 6.5.

Equation (4.4) has shown that with lower valuation interest rates, the normal cost required

per year is higher, and the actuarial liability is higher, which encourages the plan manager

to spread the unfunded liability over a shorter period so as to prevent the investment risk

from amplifying the unfunded liability.

6.5 Some Relationships

So far we have looked at the impact of moving average coefficients, spread periods, in-

vestment strategies and valuation bases on the hybrid pension plan. We now study the
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Figure 6.5: Standard Deviations of Contribution and Benefit with Different Means (iv 6= i)
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interactions of two plan factors together, using the help of three-dimensional surfaces.

1. Varying proportion of spread parameters and spread period

In previous illustrations, we set kc = 0.3k for all the examples. Here we discuss the

trade-off between the spread parameters of contributions and benefits.

Figure 6.6: Standard Deviations of Contribution and Benefit with Different Spread Param-
eters (φ3 = −0.7, iv = i)

In Figure 6.6, we choose the proportion kc/k as one variable and the spread period m

as the other variable, and calculate the standard deviations of the annual contribution rate

and the annual benefit payment at the stationary status. Similar to the Gaussian case and

the AR(1) case, this gives us two ‘identical’ graphs, except that the kc/k turns one to the

opposite direction.

For any given kc/k, the optimum spread period is always 20 years. For any given spread

period, there is a one-to-one linear trade off relationship between the standard deviation of

the contribution and the standard deviation of the benefit. The other difference in the three

processes is the maximum spread period that allows the existence of a stationary status,

which is 50 in MA(1) case and 40 in AR(1) case.

In Figure 6.7, we use φ3 = −0.01 instead. The process is close to a Gaussian process
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Figure 6.7: Standard Deviations of Contribution and Benefit with Different Spread Param-
eters (φ3 = −0.01, iv = i)

and the graph is similar to Figure 4.10.

2. Varying spread parameters for contributions and benefits

Similar to the AR(1) case, we show the aggregate risk in the stationary status with kc

and kb chosen between 0 and 1 in Figure 6.8 .

The left part of Figure 6.8 corresponds to the case of φ3 = −0.7, and the right part of

Figure 6.8 corresponds to the case of φ3 = −0.01. The patterns of the graphs are similar to

Figure 4.11 in the Gaussian case. As we have pointed out in the remark in Section 3.2.3,

with the same means and variances of the force of interest, we have the same results in the

special cases when kc = 0, kb = 1 or kb = 0, kc = 1 as the ones in the AR(1) process.
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Figure 6.8: Aggregate Risk with Different Spread Parameters for φ3 = −0.7(left) and φ3 =
−0.01(right) (iv = i)



Chapter 7

Conclusion

The randomness of rates of return is an issue that actuaries deal with on a regular basis.

In this project, we study the solvency risk, contribution rate risk, and the benefit risk of

a hybrid pension plan with stochastic investment returns, by extending the methodologies

presented in Dufresne (1988), Haberman (1994), Haberman (1997), and Khorasanee (2012).

The first two moments of the funding level, the annual contribution rate, and the benefit

payment are calculated under three different models for the rate of return: the Gaussian

process, the autoregressive process and the moving average process.

We have the following observations to answer the questions we have asked at the begin-

ning of this report.

1. How does the hybrid plan behave and evolve when the investment rate of return is

stochastic?

With an initial funding level of the same amount as the actuarial liability, the expected

value of the fund starts off and stays at the stationary status when forces of interest follow

a Gaussian process. For AR(1) and MA(1) processes, the ultimate values of the expected

benefit and expected funding are higher than their targets. Variability increases with time

in the Gaussian case, while it increases for a certain period and then drops down under the

AR(1) and MA(1) processes.

2. How do different investment strategies affect the risks embedded in the plan?

In a mature plan, the conservative strategy requires the highest contribution rate, and
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generates the lowest benefit payment. In terms of convergence speed, the riskier the invest-

ment portfolio is, the shorter the optimum spread period is, and the higher the convergence

speed is. The aggressive strategy generates the highest coefficient of variation and the con-

servative strategy generates the lowest coefficient of variation, which may not be the case

for standard deviations.

3. How do different valuation assumptions affect the risks embedded in the plan?

We observe that a higher valuation interest rate corresponds to a lower funding level.

The further the valuation rate of interest is from the long term mean i, the more variation

we expect in funding level. A valuation basis with iv < i creates more variations in funding

than a valuation basis with iv > i in general. We also recognize an upward trending efficient

frontier for the benefit payment, but the relationship is not obvious for the contributions.

This observation may change when we set a different kc/k rate. As the valuation rate of

interest increases, the optimum spread period increases.

4. Is there an optimal risk sharing scheme that is ideal for both plan sponsors and partici-

pants?

As noted by Khorasanee (2012), despite the fact that the risk in funding level is a

monotonically increasing function of the spread period, we can minimize the total risk

borne in the contribution and the benefit by choosing the optimum spread period k. As for

the choice of spread parameters kc and kb, the sponsor and members can negotiate, as long

as the sum of the spread parameters k is fixed at the optimum level.

As the British statistician George Box said, “Essentially, all models are wrong, but some

are useful.” There is no known model that fits the real investment return perfectly. Even if

there is, it would be too complicated to apply in practice. It is still worthwhile to make use

of the characteristics of available stochastic models and understand their role in a pension

plan. Some limitations of our project and possible areas of further work are listed below.

As we have pointed out in Section 5.1 under the AR(1) case, the approximation approach

from Haberman (1994) does not work well for φ2 that is close to 1. An improvement of the

accuracy of our comparison analysis would be to use the upper and lower bound proposed

by Cairns and Parker (1997).

In this project, we ignore inflation and assume that there are no salary increases. It

would be interesting to consider the stochastic nature of inflation rates and salary increases.
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The design of the hybrid pension plan we adopt here treats the plan surplus and defi-

ciency in a same way, which leads to some unrealistic results, such as negative contribution

rates. It was suggested by Khorasanee (2012) that upper and lower bounds can be put on

the benefit to limit the level of benefit to a realistic region. We suggest the same for the

contribution rate.

We choose an optimum spread period and use it when illustrating the evolution of the

plan. It would be interesting to consider a more dynamic approach in the choice of spread

period and allow the plan manager to re-examine the position of the fund and adjust the

spread period after a certain time period.

It would also be interesting to fit real life data to a more realistic stochastic investment

return model, simulate multiple realizations based on the fitted model, and study the risks

in the hybrid pension plan, as done in Sanders (2010) and Yuen (2011).
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Appendix A

Derivations

A.1 The Derivation of Equation (3.6)

Firstly, for 0 ≤ s ≤ t, ∆(t)−∆(s) follows a normal distribution with mean

E [∆(t)−∆(s)] = (t− s)θ2,

and variance

V ar [∆(t)−∆(s)] =

t∑
u=s+1

t∑
w=s+1

ν2
2φ
|u−w|
2 = 2ν2

2G(t, s),

where

G(t, s) =
1

2

t∑
u=s+1

t∑
w=s+1

φ
|u−w|
2

=
1

2
(t− s) +

t−1∑
u=s+1

t∑
w=u+1

φw−u2

=
1

2
(t− s) +

t−1∑
u=s+1

t−u∑
x=1

φx2

=
1

2
(t− s) +

t−s−1∑
x=1

(t− s− x)φx2

=
1 + φ2

2(1− φ2)
(t− s)− φ2(1− φt−s2 )

(1− φ2)2
,

in which we set x = w − u at the third step.
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Therefore, by the fact that e∆(t)−∆(s) follows a lognormal distribution, we have

E
[
e∆(t)−∆(s)

]
= exp

{
(t− s)θ2 + ν2

2G(t, s)
}

= ct−se−z(1−φ
t−s
2 ),

where  c = exp
{
θ2 + 1+φ2

2(1−φ2)ν
2
2

}
z = ν2

2φ2(1− φ2)−2
.

A.2 The Derivation of Equation (3.7)

Firstly, we have, for 0 ≤ s < r < t, that

E [∆(t)−∆(s) + ∆(t)−∆(r)] = (t− s)θ2 + (t− r)θ2.

The variance can be derived as

V ar [∆(t)−∆(s) + ∆(t)−∆(r)]

= V ar [∆(r)−∆(s) + 2 (∆(t)−∆(r))]

= V ar [∆(r)−∆(s)] + 4V ar [∆(t)−∆(r)] + 4Cov [∆(r)−∆(s),∆(t)−∆(r)]

=

r∑
u=s+1

r∑
w=s+1

γ2(u,w) + 4

t∑
u=r+1

t∑
w=r+1

γ2(u,w) + 4

r∑
u=s+1

t∑
w=r+1

γ2(u,w)

=
r∑

u=s+1

r∑
w=s+1

γ2(u,w) + 4
t∑

u=s+1

t∑
w=r+1

γ2(u,w).

.

Therefore,

E
[
e∆(t)−∆(s)+∆(t)−∆(r)

]
= exp

{
(t− s)θ2 + (t− r)θ2 +

1

2

r∑
u=s+1

r∑
w=s+1

γ2(u,w) + 2
t∑

u=s+1

t∑
w=r+1

γ2(u,w)

}
= exp

{
(t− s)θ2 + (t− r)θ2 + ν2

2H(t, r, s)
}

where H(t, r, s) = 1+φ2
2(1−φ2) [t− s+ 3(t− r)]− 1

(1−φ2)2
[φ2(3− 2φt−r2 − 2φt−s2 + φr−s2 )].
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A.3 The Derivation of Equation (3.11)

Firstly, ∆(t)−∆(s) follows a normal distribution with mean

E [∆(t)−∆(s)] = (t− s)θ3,

and variance

V ar [∆(t)−∆(s)] = (t− s)ν2
3 − 2(t− s− 1)φ3γ

2
3 .

Therefore, by the fact that e∆(t)−∆(s) follows a lognormal distribution, we have

E
[
e∆(t)−∆(s)

]
= exp

{
(t− s)

(
θ3 +

1

2
ν2

3

)
− (t− s− 1)φ3γ

2
3

}
= f t−sexp

{
−(t− s− 1)φ3γ

2
3

}
,

where f = exp
{
θ3 + 1

2ν
2
3

}
.

A.4 The Derivation of Equation (3.12)

Firstly, we have

E [∆(t)−∆(s) + ∆(t)−∆(r)] = (t− s)θ3 + (t− r)θ3. (A.1)

For 0 ≤ s < r < t,

Cov [∆(r)−∆(s),∆(t)−∆(r)] =

r∑
u=s+1

t∑
w=s+1

Cov(δu, δw)

= Cov(δr, δr+1)

= −φ3γ
2
3 . (A.2)

Using (A.1) and (A.2), we get

V ar [∆(t)−∆(s) + ∆(t)−∆(r)]

= V ar [∆(t)−∆(s)] + 4V ar [∆(t)−∆(r)] + 4Cov [∆(r)−∆(s),∆(t)−∆(r)]

=
[
(r − s)ν2

3 − 2(r − s− 1)φ3γ
2
3

]
+ 4

[
(t− r)ν2

3 − 2(t− r − 1)φ3γ
2
3

]
− 4φ3γ

2
3

= [3(t− r) + (t− s)] ν2
3 − 2φ3γ

2
3 [3(t− r) + (t− s)− 3] . (A.3)
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Therefore, we have

E
[
e∆(t)−∆(s)+∆(t)−∆(r)

]
= exp

{
E [∆(t)−∆(s) + ∆(t)−∆(r)] +

1

2
V ar [∆(t)−∆(s) + ∆(t)−∆(r)]

}
= exp

{
(t− s)

(
θ3 +

1

2
ν2

3 − φ3γ
2
3

)}
exp

{
(t− r)

(
θ3 +

3

2
ν2

3 − 3φ3γ
2
3

)}
exp

{
3φ3γ

2
3

}
= αt−sβt−rg,

where α = f ∗ exp
{
−φ3γ

2
3

}
, β = exp

{
θ3 + 3

2ν
2
3 − 3φ3γ

2
3

}
, and g = exp

{
3φ3γ

2
3

}
.

A.5 The Derivation of Equation (3.40)

For the second moment, we assume r > s, then

E(F 2
t ) =F 2

0Q
2tE(e2∆(t)) + 2F0Q

tRv
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tRv
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1− (Qα)t−1

1−Qα
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2gR2

vα
2βQ
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.



Appendix B

Mortality Table

UP94 projected to 2020, Males

Source: Memorandum for McLeod (2009), Practice-Specific Standards for Actuarial

Evidence, Paragraph 4330.02, Mortality Table.

(http://www.actuaries.ca/members/publications/2009/209001e.xls).
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Age Male q Age Male q Age Male q

0 0 43 0.001091 86 0.094766
1 0.000377 44 0.001146 87 0.106362
2 0.000254 45 0.001208 88 0.119853
3 0.000211 46 0.001284 89 0.131627
4 0.000164 47 0.001378 90 0.148168
5 0.000151 48 0.001486 91 0.162051
6 0.000144 49 0.001601 92 0.181273
7 0.000138 50 0.001729 93 0.197295
8 0.000128 51 0.001875 94 0.214507
9 0.000124 52 0.002043 95 0.238449
10 0.000125 53 0.002279 96 0.256724
11 0.000132 54 0.002530 97 0.274387
12 0.000144 55 0.002889 98 0.298873
13 0.000163 56 0.003319 99 0.315657
14 0.000194 57 0.003843 100 0.332357
15 0.000225 58 0.004454 101 0.358560
16 0.000256 59 0.005012 102 0.376699
17 0.000281 60 0.005638 103 0.396884
18 0.000301 61 0.006523 104 0.418855
19 0.000316 62 0.007366 105 0.440585
20 0.000331 63 0.008549 106 0.460043
21 0.000355 64 0.009644 107 0.475200
22 0.000383 65 0.010833 108 0.485670
23 0.000427 66 0.012426 109 0.492807
24 0.000477 67 0.013799 110 0.497189
25 0.000548 68 0.014801 111 0.499394
26 0.000641 69 0.016194 112 0.500000
27 0.000686 70 0.017225 113 0.500000
28 0.000712 71 0.018838 114 0.500000
29 0.000736 72 0.020674 115 0.500000
30 0.000757 73 0.022648 116 0.500000
31 0.000775 74 0.024717 117 0.500000
32 0.000792 75 0.027733 118 0.500000
33 0.000801 76 0.030450 119 0.500000
34 0.000801 77 0.034563 120 1.000000
35 0.000803 78 0.039446
36 0.000814 79 0.045054
37 0.000841 80 0.051359
38 0.000864 81 0.058325
39 0.000896 82 0.065910
40 0.000936 83 0.072000
41 0.000983 84 0.080273
42 0.001036 85 0.087105
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