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Abstract

Computationally hard search and optimization problems occur widely in engineering, business,
science and logistics, in domains ranging from hardware and software design and verification, to
drug design, planning and scheduling. Most of these problems are NP-complete, so no known
polynomial-time algorithms exist. Usually, the available solution for a user facing such problems
involves mathematical programming for example, integer-linear programming tools, constraint logic
programming tools and development of custom-designed implementations of algorithms for solv-
ing NP-hard problems. Successful use of these approaches normally requires a deep knowledge of
programming, and is often time consuming.

Another approach to attack NP search problems is to utilize the knowledge of users to produce
precise descriptions of the (search) problem in a declarative specification or modelling language.
A solver then takes a specification, together with an instance of the problem, and produces a solu-
tion to the problem, if there is any. Model expansion (MX), the logical task of expanding a given
(mathematical) structure by new relations, is one of the well-studied directions of this approach.
Formally, in MX, the user axiomatizes their problem in a language. This axiomatization describes
the relationship between an instance of the problem (a given finite structure, i.e., a universe together
with some relations and functions), and its solutions (certain expansions of that structure).

This thesis presents the Enfragmo system for specifying and solving combinatorial search prob-
lems. Enfragmo takes a problem specification, in which the axioms are expressed in an extension of
first-order logic, and a problem instance as its input and produces a propositional conjunctive normal
form formula that is sent to a propositional satisfiability (SAT) solver. In this thesis, we describe
several techniques that we have developed in order to build our well performing solver, Enfragmo.
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Drunk, I asked my teacher, “Please, I need to know

What it means to be, or not to be.”

He answered me, said, “Go!

Relieve the suffering of the world and you’ll be free.”

— RUMI’S DIVAN-E SHAMS-E TABRIZI
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Chapter 1

Introduction

In many theoretical and real-world problems, we are looking for one or more relations satisfying
certain properties. One can name finding a Hamiltonian cycle in a graph, a solution for partially
filled Blocked N-Queens problem, or a valid vertex coloring for a graph as theoretical problems
having such a nature. Problems, such as how to plan a robot’s actions such that it can accomplish a
given mission, or how to find the shortest path in a given maze, have more applications in the real-
world. These problems, and many other similar problems, are categorized as combinatorial search
problems.

One way to solve a search problem is to use the model-based problem solving approach [71].
In this approach, the users needs to describe what the properties of a correct solution are and do not
need to worry about how a solution can be found. Users of a model-based problem solver describe
their problems and properties of solutions for the solver system in a high-level language, and the
system automatically finds solutions for the problems or proves that there is no solution. Model
expansion based problem solving is a particular kind of model-based problem solving approach.
Examples of systems working on this principle are Answer Set Programming (ASP) solvers, such
as Clasp [41] and smodels [62], IDP system [72], SPEC2SAT [20] and ESSENSE [39].

One well-studied approach to solving the model expansion problem is to use grounding: Given
a problem description in a high-level language, and an instance as the input, grounding is the task of
translating the input to a low-level language which is called the ground instance. In the next step, the
ground instance is fed into an appropriate low-level solver. The solution from the low-level solver
will be translated back into a solution to the main problem. Figure 1.1 demonstrates the components
in a grounding-based solver.

Grounding-based solvers enable users who are not familiar with programming to solve search
problems. These users usually know their problems and the properties of solutions very well. In
order to use a specific grounding-based solver, users must simply learn the input language of the
solver. The following argument can be used against usefulness of grounding-based solvers for expert
users.

Expert users usually have a deep knowledge of the problems they are trying to solve, and they
are aware of many heuristics which allow them to find solutions faster. In addition, grounding-based
solvers reduce their input to an instance of Satisfiability problem (SAT), for example, and then use
a SAT solver to find a solution. These solvers are general purpose, so their grounding algorithms

1
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Figure 1.1: Grounding-based Solver: The grounder component receives the problem specification
and an instance of that problem, and generates an appropriate reduction for the given problem in-
stance. In the next step, the low-level solver is provided with the result of reduction produced in the
previous step. The solution found by the low-level solver is passed to the translator module which
extracts the solution.

are generic and are not specialized for any specific problem. Therefore, expert users can develop
their own problem-specific programs which generate SAT instances faster than the grounding-based
solvers.
This concern can be addressed as follows:

1. Almost all approaches to finding a solution have a corresponding specification in the declar-
ative programming context. Therefore, given an algorithm to solve a problem, an expert user
can develop a specification which corresponds to that algorithm.

2. Several different reductions can be produced for a given problem, but detecting which one
outperforms the others is usually impossible without running some experiments. For almost
all interesting problems, comparing the performance of different reductions through the de-
velopment of specifications and the use of a grounding-based solver is easier than comparing
the performance through developing programs.

3. For hard enough problems, e.g., NP-Complete search problems, the solving phase, which is
handled by SAT solvers, is the most time consuming element of finding a solution, and the
time consumed in order to reduce an instance of the original problem to a SAT instance is
usually negligible. Therefore, one cannot expect to receive a huge speed-up by developing a
problem-specific grounder.

Since the properties of solutions must be described in the system’s input language, the simplicity
of the problem description task has a direct effect on how many users will adopt the system. One
way to make a solver engine more accessible for both naive and expert users, is to extend the input
language of the solver so that it includes commonly used constructs such as functions, aggregates
and arithmetical operators.

In this thesis, the Enfragmo system for solving combinatorial search problems is presented.
The input language accepted by the Enfragmo system is a rich language based on an extension of
first-order logic, augmented with complex terms, such as function and aggregates, and inductive
definitions. The low-level solver used by Enfragmo can be any SAT solver. We believe the fact that
Enfragmo can be run with any SAT solver is a huge benefit as SAT solvers are improving, every day,
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and we can plug-in the most efficient available SAT solver to Enfragmo.

1.1 Enfragmo

Given a specification and a problem instance, Enfragmo solves the problem by reducing its inputs
to a SAT instance, and then uses an off-the-shelf SAT solver to find a solution to the generated SAT
instance. The solution, if any, will then be translated into a solution to the main problem. Enfragmo
generates SAT instances in two phases:

1. Grounding Phase Enfragmo generates a variable-free first-order formula which is equivalent
to the given problem.

2. CNF Generation Phase Enfragmo then converts the variable-free first-order formula to a SAT
instance, i.e., a Boolean satisfiability problem instance in the form of Conjunctive Normal
Form (CNF).

Enfragmo is equipped with several different approaches for handling of these two phases, the
details of which are described in this thesis.

1.2 Summary of contributions

The work described in this thesis is based on joint work with with my supervisors and other coau-
thors of my papers. The main contributions described in this thesis are:

1. A new problem description language that extends GGFk logic [65]: Describing the problem
in this language is much easier comparing to GGFk (Chapter 3).

2. Several techniques for writing efficient specifications: These techniques can be used as a
guideline to develop specifications for Enfragmo and other model-based solvers (Chapter 3).

3. The relation between GGFk logic and the input language of Enfragmo: We showed that
every problem expressible in GGFk can also be expressed in the input language of Enfragmo
(Chapter 4).

4. Several new algorithms for grounding problems from the high-level language of Enfragmo
to a variable-free first-order formula: These algorithms are used by Enfragmo to reduce a
problem instance to a variable-free First-Order (FO) formula (Chapter 5).

5. Equipping Enfragmo with approaches for handling specifications with complex terms: We
extend the grounding technique introduced in Chapter 5 such that it can handle the rich syntax
of Enfragmo, efficiently (Chapter 6).

6. A new approach to generate a CNF from a given variable-free first-order formula: We describe
several modifications to the standard Tseitin transformation [67], and also describe a new
transformation to generate CNF from a given formula (Chapter 8).
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7. Two new propositional encodings for translating cardinality constraints to CNF: We propose
two new encodings for translating cardinality constraints to a Satisfiability problem expressed
as a Conjunctive Normal Form formula (Chapter 9).

8. A family of approaches for generating a CNF for a given PB-constraint: We propose a family
of encodings for translating these constraints to CNF (Chapter 10).

The contributions specific to the author are stated in each chapter. All techniques described in
this thesis have been prototyped in Enfragmo.

The structure of this thesis is as follows. In Chapter 2, the technical background and the notations
used in the rest of this thesis are set. The language accepted by the solver, Enfragmo, is presented in
Chapter 3 and through the use of some examples, we explain how one can express different problems
for our solver. Some general techniques proposed by the author of this thesis for developing better
(more efficient) problem specifications are also discussed in this chapter. In Chapter 4, the expressive
power of the input language of Enfragmo is discussed, and it is demonstrated that every NP search
problem that satisfies certain conditions can be expressed in the input language of Enfragmo. In
the next two chapters, different methods used by Enfragmo to ground the problems expressed in
its input language are described. Several techniques and algorithms for obtaining a variable-free
first-order formula from a given specification, in which no aggregates have been used, are described
in Chapter 5. In Chapter 6, we explain the algorithms that have been developed to enable Enfragmo
to deal with specifications involving complex terms. Chapter 7 describes some of the well-known
grounding-based solvers. As we mentioned, Enfragmo passes the intermediate CNF formula to a
SAT solver, while all our grounding algorithms generate variable-free first-order formulas for the
given problem instance. In Chapter 8, several methods used by Enfragmo to convert a variable-free
first-order formula to CNF are reported. Chapters 9 and 10 are dedicated to the description of
different approaches to handling Count and Sum aggregates.



Chapter 2

Background

In this chapter, we describe the concept of model expansion for knowledge representation languages
without arithmetic operators. We briefly explain the reasons why the same setting cannot be used
for the specification languages with built-in arithmetic. In [65], embedded model expansion is in-
troduced for logics with built-in arithmetic. We review embedded model expansion as well.

2.1 Notations

A vocabulary is a set τ of relation and function symbols, each with an associated arity. Constant
symbols are function symbols with arity zero. Structure A for vocabulary τ (or, τ -structure) is a
tuple containing a universe, A, and a relation (function) for each relation (function) symbol of τ .
For relation symbol R (function symbol f ) of the vocabulary, the relation corresponding to R (f ) in
a τ -structure A is denoted by RA (fA, respectively). We write

A = (A;R1
A, · · · , RnA, f1

A, · · · , fmA),

where each Ri is a relation symbol, and each fi is a function symbol. Throughout this thesis,
constants are treated as arity zero functions.

We use v̄ = 〈v1, · · · , vn〉 to represent a tuple of n elements. We say a tuple with n elements has
length n, and denote the length of tuple v̄ by |v̄|. Let x̄ = 〈x1, · · · , xn〉 be a tuple of variables. We
use φ(x̄) to denote a formula with free variables x̄. To be consistent with the previous work in our
group, when we are not referring to formulas, the set of variables occur in x̄ is denoted by X , i.e.,
X = {x | x occurs in x̄}.

In this thesis, γ represents an object mapping (assignment). Assignment γ : X 7→ T , where X
is a set of variables and T is a subset of universe elements, maps each variable in X to an element in
T . So, the result of applying assignment γ on tuple of variables x̄ is a tuple of elements with length
|x̄|. Let γ′ : X ′ 7→ T and γ′′ : X ′′ 7→ T be two assignments, and also let X ′ and X ′′ be disjoint
sets of variables. We use γ′ ∪ γ′′ to denote the assignment whose domain is X ′ ∪ X ′′ and maps
x ∈ X ′ ∪X ′′ to t ∈ T iff
• Either x ∈ X ′ and γ′(x) = t,
• Or x ∈ X ′′ and γ′′(x) = t.

5
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Let Y be a set of variables, T a subset of universe elements, and γ : Y 7→ T an assignment.
Also let x̄ be a tuple of variables and X be the set of all variables present in x̄, such that Y ⊇ X .
We use γ|x̄ to denote an assignment from variables in X , to elements in T , which maps x ∈ X to
γ(x). In other words, the two assignments, γ and γ|x̄, agree on the value they assign to all variables
in X .

We use φ(γ|x̄) to denote formula φ applied on the result of instantiation of variables in x̄ ac-
cording to γ. If γ assigns values to all the variables in x̄ we may represent φ(γ|x̄) by φ[γ]. We also
use φA[γ] to denote the truth value of φ in structure A, where structure A has an interpretation for
all relations and functions in vocab(φ). In this thesis, vocab(φ) denotes the set of functions and
relations present in φ.

Similar to formulas, we use t[γ] and f [γ], where t(x̄) is a term, f(x̄) is a function, and γ is an
assignment to x̄, to refer to the result of instantiation of variables in x̄ according to γ.

The symbols ∧, ∨, →, ↔, ¬, ⊥, > are used as logical connectives to represent “and”, “or”,
“material implication”, “material equivalence”, “negation”, “false”, and “true”, respectively. We use
⇒ and⇔ as the metalanguage symbols to denote “logical implication” and “logical equivalence”,
respectively. Also we use← as the logical symbol in inductive definitions. In addition,⇔ is used
as an abbreviation of “if and only if”.

2.2 Model Expansion

Model Expansion (MX) formalizes the task behind solving combinatorial search problems. Formally,
let σ be a vocabulary, and A be a structure over σ, A = (A;σA), where A is the domain (universe)
and σA is an interpretation for all relations in σ. Let B be a structure whose domain is A with
vocabulary σ ∪ ε, i.e., B = (A;σA ∪ εB).

Definition 1 (MX) [54] Let L be some logic and φ be an L-sentence over the union of disjoint
vocabularies σ and ε. Given a finite structure A for vocabulary σ, the model expansion problem
MX(σ, φ) asks us to find structure B which is an expansion of A to σ ∪ ε such that B |= φ.1

In this thesis, φ is called problem specification formula, and is fixed for each search problem, A
always denotes a finite σ-structure, called the instance structure, where σ is the instance vocabulary,
and ε the expansion vocabulary.

In the context of model expansion, the problem input is described using the relations and func-
tions in σ, and a solution for the problem is described using the relations and functions in ε. The
formula φ describes the properties of a correct solution in terms of relations and functions available
in the instance vocabulary, and also in terms of relations and functions in the expansion vocabulary.

Consider the following modified version of the graph 3-colouring problem.

Example 1 Given graph G = (V,E) and three sets of vertices Rp, Bp, Gp, the problem of graph
3-Colouring with Preassigned Colours asks for assigning a colour among Red, Green or Blue to
each vertex such that:

1As we see in the next section, the model expansion was generalized to infinite structures in the embedded setting, in
[65].
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1. If a vertex is in set Rp, it must be coloured Red.
2. If a vertex is in set Gp, it must be coloured Blue.
3. If a vertex is in set Bp, it must be coloured Green.
4. Adjacent vertices must have different colours.

To express this problem as a model expansion problem, for arbitrary logic L, we can use σ-structure
A = (A, σA) and formula φ such that:
• The domain of the instance structure, A, contains the set of vertices;
• σ contains the relations describing the input, i.e., {E,Rp, Gp, Bp};
• ε contains the relations describing the solution, i.e., {R,G,B};
• φ is any formula in L describing the above properties. For example, if L was chosen to be

first-order logic, the first property, above, can be expressed using axiom ∀v : Rp(v)→ R(v).
Notice that the above “problem specification” is just one of many possible ways to specify graph

3-Colouring with Preassigned Colours.

In this thesis, the focus is on first-order logic model expansion (FO MX). As described in Chap-
ter 4, FO MX can express every problem in NP, but when the problem involves numerical properties,
numbers must be encoded by domain elements and arithmetic operations defined using relations over
these encodings. There are problems for which expressing numeric properties using encoding for
numbers is not straightforward. Having logics with “built-in” arithmetic constructs provides the
ability to express the problems more naturally.

Since numbers, in this case integers, are infinite, a structure for a logic in which arithmetic
operators have their standard interpretations must have an infinite domain. In model theory, there
are two well-studied frameworks for structures with infinite domains:

1. Metafinite Model Theory [44].
2. Embedded Finite Models Theory [50].
In the next section, we describe the embedded model expansion [65], which is an extension of

model expansion in the presence of the infinite domain.

2.3 Embedded Model Expansion

Model expansion, explained at the beginning of this chapter, limits the way that arithmetic operations
can be used. The reason is that the result of summation of two variables, whose values come from
domain A, may not be in A. So the arithmetic operators may not be total. The same issue exists
when we consider aggregate operators.

Although it is possible to mimic the arithmetic operators by cautious applications of instance
functions and predicates, the problem specifications, developed based on this approach, are far from
being natural and are usually difficult to understand.

Ternovska and Mitchell proposed the concept of embedded model expansion based on the em-
bedded finite model theory [65]. In the embedded finite model theory, we are dealing with finite
relational structures whose elements come from a subset of an infinite domain. In addition, we have
access to operations which have a fixed interpretation, e.g., +, ×.

Definition 2 ([65]) Structure A is embedded in infinite background (or secondary) structureM =
(U ; ν) if it is a structureA = (U ;σ) with finite set σ of finite relations and functions where ν∩σ = ∅.
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The set of elements of U that occur in some relation or function of A is the active domain of A,
denoted by adomA (or adom if A is clear from the context).

In the context of embedded MX, the following three disjoint vocabularies exist:
1. ν: The vocabulary of background structureM,
2. σ: The vocabulary of instance structure A,
3. ε: The vocabulary of expansion structure B.

Given formula φ over vocabulary σ ∪ ν ∪ ε, and σ-structure A = (U, σ), which is embedded in
background structure M = (U, ν), embedded MX asks for expanding structure A to embedded
σ ∪ ε-structure B, such that B |= φ.

There are four different types of quantifiers, in this setting:
1. Existential quantifier: Formula ∃x φ(x, ȳ) is equivalent to formula

∨
a∈U φ(a, ȳ).

2. Universal quantifier: Formula ∀x φ(x, ȳ) is equivalent to formula
∧
a∈U φ(a, ȳ).

3. Existential quantifier over active domain: Formula ∃x ∈ adom φ(x, ȳ) is equivalent to for-
mula

∨
a∈adom φ(a, ȳ).

4. Universal quantifier over active domain: Formula ∀x ∈ adom φ(x, ȳ) is equivalent to formula∧
a∈adom φ(a, ȳ).

The first two kinds of quantifiers are called generic quantifiers and the last two are called active do-
main quantifiers. Using the generic quantifiers in logics for MX with infinite background structures
can increase the expressive power of logic. In Example 2, the set of even numbers is expressed using
an embedded MX specification.

Example 2 LetM = (N, ν), where N is the set of natural numbers and + operator, with its standard
interpretation over natural numbers, is in ν. Also assume Even is a unary expansion predicate.
Then the following axiom defines the set of even numbers.

Even(0) ∧ ∀n Even(n)→ (¬Even(n+ 1) ∧ Even(n+ 2)) .

In the above axiom, the ∀ quantifier (∀n) is a universal quantifier.

In any structure B that satisfies the above axiom, EvenB must be equal to the set of even num-
bers. This example shows that allowing universal quantifiers may result in specifications with no
finite ground formula. As long as all quantifiers in a specification are active domain quantifiers, it is
guaranteed that there is a finite ground formula for that specification.

In the next section, the concept of expressive power for logics and some other related definitions
are presented. In Section 2.5, we describe GGFk logic, [65], which is a fragment of first-order
logic enriched with arithmetic and inductive definitions. The restrictions on GGFk logic are chosen
carefully to limit the expressive power of embedded model expansion on GGFk to a subset of NP.

2.4 Descriptive Complexity

Descriptive complexity theory is a branch of computational complexity theory which analyzes the
expressive power of different logics.
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Definition 3 ([55]) Property P of structures is definable in logic L if there is sentence φ ∈ L, such
that for every structureA there is expansion structure B expandingA and B |= φ iffA has property
P.

Definition 4 ([55]) Let D be a class of finite structures, C be a complexity class, and L be a logic.
Logic L captures C on D if

1. For every fixed sentence φ ∈ L, the complexity of deciding whether the model expansion
problem, defined by formula φ and an instance structure from D, is satisfiable, belongs to the
complexity class C;

2. Every property of structures in D that can be decided with the complexity C is definable in
logic L.

The central question of descriptive complexity theory is: “Given a complexity class C, is there a
logic that captures C?”

One of the most fundamental results in this field is Fagin’s theorem. Theorem 1 states Fagin’s
theorem in the context of model expansion.

Theorem 1 Finite model expansion on first-order logic captures NP.

One of the motivations for introducing model expansion was to study the expressive power of
declarative languages which are used in declarative programming solvers. These languages are
usually very different from FO logic. The language of Answer Set Programming (ASP), the input
language of the IDP system and the input language of Enfragmo are examples of such languages.
One of our goals in developing Enfragmo was to capture NP while providing users with a language
in which specifying problems is easy.

If arithmetic operators are added to the first-order logic, an infinite set of numbers is required.
In Section 2.3, embedded model expansion which provides a framework for supporting arithmetic
operators was briefly described.

Unfortunately, in the context of embedded model expansion, having an infinite background
structure causes Fagin’s theorem to not work. Model expansion on first-order logic, in the pres-
ence of infinite background structure and arithmetic operators, can express properties belonging to
the complexity classes higher than NP.

Logic GGFk is designed carefully such that the embedded model expansion on this logic cap-
tures a subset of problems in NP. Therefore, having a specification in GGFk logic and a problem
instance, we are certain that we can construct a polynomial time reduction to a SAT problem.

2.5 GGFk Logic for Embedded Model Expansion

In [65], GGFk logic that extends the k-guarded fragment of First-Order logic (FO) was introduced.
In this logic, instance predicates are used to guard quantifiers and expansion predicates. It has
been proven that every NP problem representable by a logical structure that satisfies small cost
condition has a corresponding model expansion specification in GGFk. A structure satisfies small
cost condition if the value of the maximum integer in the structure is less than 2poly(n), where n is
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the number of elements in the domain, and poly(.) is a polynomial. In the rest of this section, the
syntax and semantics of GGFk logic are discussed.

Definition 5 ([65]) The k-guarded fragment, GFk, of FO is the smallest set of formulas that: 1)
contains all atomic formulas; 2) is closed under Boolean operations; 3) contains ∃x̄ G1 ∧G2 · · · ∧
Gm ∧ φ, provided the Gi are atomic formulas, m ≤ k, φ ∈ GFk, and each free variable of φ
appears in some Gi.

Definition 6 ([65]) The double-guarded fragment GGFk(ε) of FO, for a given vocabulary, ε, is the
set of formulas of the form Φ ∧Ψ with ε ⊆ vocab(Φ ∧Ψ), where Φ is a formula of GFk and Ψ is a
conjunction of guard axioms, one for each symbol of ε, of the form ∀x̄ E(x̄)→ G1(x̄)∧ · · ·Gm(x̄),
where m ≤ k; and the union of free variables in the Gi is precisely x̄.

The guards of GGFk(ε) which restrict the range of quantified variables are called lower guards,
and the guard axioms of GGFk(ε) are called upper guards. GGFk(ε) requires all atoms providing
upper and lower guards to be from the instance vocabulary, so ranges of variables and expansion
predicates are explicitly limited to the active domain of the instance structure.

Definition 7 ([65]) An arithmetical structure is a structure, N = (N; 0, 1, χ,<,+, .,min,max,Σ
,Π) where N is the set of natural numbers,min,max,Σ and Π are multiset operations, and χ[φ](x̄)
is the characteristic function. Other functions, predicates, and multiset operations may be included,
provided every function and relation of N is poly-time computable.

The logic for GGFk(ε) MX specifications with background structure N is obtained by extend-
ing GGFk(ε) with terms constructed from the vocabulary of N .

Definition 8 ([65]) Let τ be the vocabulary σ ∪ ν ∪ ε and V a countable set of variables. The set
of well-formed terms is the closure of the variables in V and constants in τ under the following
operations:

1. If f is a function of arity n, other than a multiset operation or the characteristic function, and
t̄ is a tuple of terms of length n then f(t̄) is a term.

2. If Γ is a multiset operation2 of ν, f(x̄, ȳ) a term, and φ(x̄, ȳ) a τ -formula in which x̄ is
guarded, then Γx̄((x̄, ȳ) : φ(x̄, ȳ)), is a term with free variables ȳ.

3. If φ(x̄) is a formula such that ∃x̄φ(x̄) is a k-guarded formula, then χ[φ] is a term with free
variables x̄.

Definition 9 ([65]) An embedded GGFk(ε) MX specification with secondary structure N is a set
of GGFk(ε) sentences over σ ∪ ε ∪ ν, with terms as in Definition 8, and the secondary ν-structure
is the arithmetical structure of Definition 7.

Example 3 ([65]) Here is an embedded MX specification of the KNAPSACK problem (search ver-
sion). Instance vocabulary σ = (O,w, v, b, k), where O is the set of objects, w is the weight

2Multisets are generalizations of sets that allow multiple occurrence of elements. A multiset operation is a function
mapping multisets to values in the range of the operator.
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function, v is the value function, b is the weight bound, k is the value target. Expansion vocabulary
ε = {O′}, where O′ is the set of selected objects. The Background structure is the arithmetical
structure N :
• Axioms:

1. Σx(w(x) : O(x) ∧O′(x)) ≤ b,
2. k ≤ Σx(v(x) : O(x) ∧O′(x)),

where ≤ has its standard interpretation.
• Upper guard axiom: ∀x(O′(x)→ O(x).
The use of the lower guard O, in the axiomatization, corresponds to introducing a type “all

objects”. In this example, we have used O as the upper guard to enforce O′(o) to be false if we have
¬O(o).

The set of numbers that may occur in a solution for given instance structureA, is restricted to the
active domain of A. However, there are problems where this is too restrictive. One way to develop
a specification for such a problem in GGFk logic, is to encode the “new” numbers (those which
are not in the active domain) using the numbers in the active domain of A. To relax this limitation,
the authors of [65] extended GGFk logic by “user-defined guard relations”. The new logic is called
DGGFk logic.

A specification in DGGFk has two formulas; D and φ. Formula D is over vocabulary σ ∪ δ,
where δ ∩ σ = ∅. Given a σ-structure A, formula D defines an expansion of A to A′ that includes
the interpretation for all the user-defined guard relations, and predicates in δ. The active domain of
A′ is the union of adomA and any elements of the user-defined guard relations. Formula φ is over
vocabulary σ ∪ δ ∪ ν ∪ ε, and defines an embedded model expansion task on the σ ∪ δ-structure A′.

The guard relations in DGGFk are defined by induction, using the syntax and semantics of
FO(ID), the extension of FO with inductive definitions [30].



Chapter 3

Enfragmo: A System for Grounding
FO+ to SAT

In this chapter, we present the Enfragmo system and demonstrate the language accepted by En-
fragmo, which is an extension of the first-order logic. Enfragmo takes as its input, a problem spec-
ification and a problem instance, and it produces a propositional CNF formula that is sent to a SAT
solver. The axioms in a problem specification of Enfragmo are formulas in first-order logic enriched
with inductive definitions, arithmetical terms, aggregates and functions.

In this chapter, we also demonstrate the role of axiomatization strategies in the system perfor-
mance, and show experimentally that the performance of Enfragmo is comparable to, if not better
than, similar systems.

3.1 Introduction

A major goal of logic programming has been to make programming more declarative. Over the last
decade, it has become clear that some computational tasks, such as solving combinatorial search
problems, can be effectively handled by purely declarative means. This has been demonstrated, for
example, by the increasing use of SAT solvers as core reasoning engines in problem solving and
reasoning systems, by the progress in answer set programming, and by related work on constraint
modelling languages. In this thesis, we investigate problem solving using the Enfragmo system de-
veloped in our group [8]. Our system allows specification of search problems using a purely declar-
ative language. This language is an extension of multi-sorted first-order logic (FO) with arithmetic,
aggregate operators, and a limited form of inductive definition.

Given a problem axiomatization and a problem instance, Enfragmo produces a formula of propo-
sitional logic in CNF (the grounding phase), and sends it to a SAT solver (the solving phase). If a
satisfying assignment is found, a solution for the original problem instance is constructed from it.
Formally, the underlying task is model expansion [54], where problem instance is a FO structure,
problem specification is a formula, and solutions are expansions of the instance structure that satisfy
the specification. In this chapter, the focus is on the specification language of Enfragmo; detail on
the techniques and algorithms used in Enfragmo are described in the following chapters.

12
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Many interesting real-world problems cannot be conveniently expressed as a model expansion
problem over FO logic without having access to built-in arithmetic operators. Specifically, express-
ing the problems involving arithmetic or inductive properties as a model expansion in such a logic
is not straightforward. Examples of the former include Knapsack and other problems involving
weights/costs, while examples of the latter include the Traveling Salesman problem and other prob-
lems involving reachability. To help users express their problems, Enfragmo’s specification language
is enriched with a limited use of inductive definitions, arithmetic and aggregate operators.

Given a rich language like that of Enfragmo, there are many different approaches for represent-
ing a problem. It is well-known that different choices of representing a problem can have a large
effect on the performance of a SAT solver (or other constraint solving system). In this chapter,
we study some techniques which can be used to develop well-performing axiomatization for En-
fragmo. These techniques are not exclusive to Enfragmo and can be used/adopted by other logic
programming systems.

It is important to mention that these techniques are already known in the problem solving and
artificial intelligence areas, specifically in the SAT solving and Integer Programming communities.
However, it was not clear that the same kind of performance benefits can be achieved in a high-level
language that extends FO logic. Section 3.3 demonstrates that order-of-magnitude performance
improvement can be obtained by applying these techniques in developing axiomatizations.

Our experiments confirm that Enfragmo performs well compared to some other logic program-
ming systems. We believe the good performance of our system is due to the following factors:

1. Separation of grounding and solving: The grounding algorithms, which are poly-time, are
focused on generating good ground representations. Extending the specification language
requires only extending the grounding algorithms, not a search algorithm. By grounding to
SAT, Enfragmo can always use the latest SAT solvers, or even different solvers for different
problems.

2. Polytime inflationary fix-point induction: This feature of the specification language allows
polytime pre-processing of instances before grounding. The pre-processing is achieved by a
purely declarative method, using a set of axioms, and allows for separation of solving of the
NP-hard core from polytime computation of useful information about the instance.

3. Effective axiomatization/modelling strategies: While it is not possible to predict, in gen-
eral, which axiomatizations are better, it is important to note that improvements are usually
obtained based on axioms that reflect understanding of the problem. That is, developing ax-
iomatizations with good performance is an outcome of understanding the domain, not merely
trial-and-error.

The rest of this chapter is organized as follows. In the next section, the syntax in which the prob-
lems can be described for Enfragmo are presented. Section 3.3 demonstrates some useful techniques
that can be used to specify problems for Enfragmo. These techniques can be applied in other systems
which have the appropriate language constructs, although of the exact effect on performance will be
system-dependent. Finally, in Section 3.4, we use some experiments to compare the performance
of our system and other existing systems. The result confirms our claims about the efficiency of
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the techniques described in this chapter and also suggests that, in most cases, our system performs
better than the other systems.

3.1.1 My Contributions

Extending the existing syntax with the concepts of Phases and FIXPOINT is contributed by Shahab
Tasharrofi and the author. The author proposed the syntax used to express aggregates, functions and
arithmetical terms. Also the author is the main developer of the Enfragmo system. The techniques
for developing better axiomatizations, presented in Section 3.3, and all the specifications in that
section are developed by the author [4].

3.2 Specification Language

In this section, we describe the specification language of the Enfragmo system, which is based on
the multi-sorted classical first-order logic extended with inductive definitions, functions, arithmetical
and aggregate operators. In Chapter 4, we relate this language to GGFk and discuss the expressive
power of the input language of Enfragmo.

An Enfragmo specification consists of four main sections, delineated by keywords: GIVEN,
FIND, PHASES and PRINT. The GIVEN section defines the sorts (types) and vocabulary used in
the specification. The FIND section identifies the vocabulary symbols for which the solver must
find interpretations, that is, the functions and relations which will constitute a solution (and possibly
some “auxiliary relations”, which sometimes make axiomatization more convenient). Interpretations
of the remaining vocabulary symbols are given by the problem instance. The third section, PHASES,
consists of one or more PHASE sections, and describes the problem axiomatization. Finally, the
specifications end with the PRINT section which identifies relations that are to be displayed if a
solution is found.

Each of the PHASE sections contains an optional FIXPOINT component, followed by a
SATISFYING component, which contains a set of sentences of first-order logic. The FIXPOINT
part, if included, contains an inductive definition, explained in Subsection 3.2.2. The language of
the SATISFYING part is multi-sorted FO logic with the sorts corresponding to the types defined
in the GIVEN section, and with arithmetic and aggregates which are described in Subsection 3.2.1.
Enfragmo solves phases in the same order as they appeared in the specification and reports unsatisfi-
ability as soon as it cannot find a model for one of the phases. A specification is satisfiable iff all its
phases have at least one model. Multiple PHASE sections can be used to carry out pre-processing or
post-processing that may support more convenient axiomatizations or more efficient solving. Some
examples to illustrate how multiple phases can be useful are provided in the next section. We now
illustrate the language with examples of specifications.

The input to the system uses an ascii-ized syntax, but we use the more readable “abstract syntax”
in our examples here. Full details are included in the “Enfragmo System Manual” [75]. In addition,
Appendix E describes the BNF for the input language of Enfragmo.

Example 4 (Graph K-Coloring) The graph colouring problem is a classic and well-studied NP-
hard search problem. The task is to assign a colour from a given set of K colours, to each vertex
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of a graph, so that no two adjacent vertices have the same colour. The following is an Enfragmo
specification in which there are two sorts (“types” in the specification language); Vtx and Clr (cor-
responding to vertices and colours, respectively). We use binary predicate Edge(u, v) to describe
the edges of the input graph, and binary predicate C(v, c) to describe the mapping of vertices to
colours. In Enfragmo, every sort is ordered, and the c2 < c in the “at most one” axiom eliminates
some symmetries during grounding.

// GC-01: Simple specification for Graph Colouring
GIVEN:

TYPES: V tx,Clr;
PREDICATES: Edge(V tx, V tx), C(V tx,Clr);

FIND: C;
PHASE:

SATISFYING:
∀v∃c : C(v, c). //each node has at least one colour
∀v c : C(v, c)→ ¬∃c2 : (c2 < c) ∧ C(v, c2). // each node has at most one colour
∀u v c : C(u, c) ∧ C(v, c)→ ¬Edge(u, v). //no two adjacent nodes have same colour

PRINT: C; // print the colouring.

3.2.1 Arithmetic and Aggregates

Arithmetic, including aggregate operators, is formalized as embedded model expansion over infinite
arithmetic structures with “built-in” predicates, arithmetic and aggregate functions [65], and the
input language utilized by Enfragmo uses the same approach. A specification in Enfragmo can have
two kinds of types: integer types and enumerated types. Terms of integer types may be used with
arithmetic operators, for example, +,−, ∗, andABS(·), which have their standard meanings for the
integers. Aggregate terms are defined with respect to structure B, in which the formula containing
the term is true.
Maxx̄{t(x̄, ȳ) : φ(x̄, ȳ); dM}, for any instantiation b̄ for ȳ, denotes the maximum value obtained

by tB(ā, b̄) over instantiations ā for x̄ for which φB(ā, b̄) is true, or dM (the default value) if
φB(ā, b̄), for all instantiations ā for x̄, is false.

Minx̄{t(x̄, ȳ) : φ(x̄, ȳ); dm} is defined dually to Max.
Sumx̄{t(x̄, ȳ) : φ(x̄, ȳ)}, for any instantiation b̄ for ȳ, denotes 0 plus the sum of all values tB[ā, b̄]

for all instantiations ā for x̄ for which φB[ā, b̄] is true.
Countx̄{φ(x̄, ȳ)}, for any instantiation b̄ for ȳ, denotes the number of tuples ā for which φB[ā, b̄]

is true.
As illustrated in Example 5, the syntax of Enfragmo allows nested aggregates.

Example 5 (A Knapsack Problem Variant) Consider the following variation of the knapsack prob-
lem: We are given a set of items (loads) L = {l1, · · · , ln}, each with an integer weight W (li), and
m knapsacks K = {k1, · · · , km}. The task is to put the n items into the m knapsacks, while satisfy-
ing the following constraints. 1) Certain items must go into preassigned knapsacks, as specified by
the binary instance predicate, P ; 2) H of the m knapsacks have high capacity, and can hold items
with total weight CapH , while the remainder have capacity CapL; 3) No knapsack may contain two
items with weights that differ by more than D. Each of CapH , CapL and D is an instance function
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with arity zero, i.e., a given constant. The following is an Enfragmo specification for this problem
where Q is the mapping of items to knapsacks that must be constructed.

GIVEN:
TYPES: Item,Knaps;
INTTYPES: Weight, ItemCount;
PREDICATES: P (Item,Knapsack), Q(Item,Knapsack);
FUNCTIONS:
W (Item) : Weight, CapH : Weight,
CapL : Weight, D : Weight,H : ItemCount;

FIND: Q;
PHASE:

SATISFYING:
// Q is a function mapping items to knapsacks:
∀l∃k : Q(l, k).
// An item cannot be placed in two different knapsacks:
∀l k1 k2 : Q(l, k1) ∧Q(l, k2)→ k1 = k2.
//Q agrees with the pre-assignment P:
∀l k : P (l, k)→ Q(l, k).
// The total weight in each knapsack is at most CapH :
∀kSuml{W (l);Q(l, k)} ≤ CapH .
// At most H knapsacks have total weight greater than CapL:
Countk{Suml{W (l);Q(l, k)} > CapL} ≤ H.
// Items in a knapsack differ in weight by at most D:
∀k l1 l2 : Q(l1, k) ∧Q(l2, k)→ ABS(W (l1)−W (l2)) ≤ D.

3.2.2 Inductive Definitions

Enfragmo supports a limited use of inductive definitions. Definitions are represented in a rule-based
syntax where predicates occurring in the heads of the rules are called the defined predicates and all
the other predicates are called open. Open predicates in a definition must be instance predicates, that
is those interpreted by the structures representing problem instances, or those constructed explicitly
in a previous PHASE section. Definitions are interpreted under inflationary fixpoint semantics. Well-
founded semantics is implemented in Enfragmo as well, but it is not yet efficient. We would like
to emphasize that we believe full support of inductive definitions, where definitions are given in
terms of “guessed” predicates, is very important. A system supporting such an approach has been
implemented by Marc Denecker’s group [73]. The IDP system uses MiniSAT(ID) – A SAT solver
which is capable of handling inductive definitions natively. But by enabling Enfragmo to use any
SAT solver, we followed a different route. However, even the limited form of inductive definitions
we implemented, has proven to be very useful in practice. Using them, our system can quickly
compute useful information, such as a bound on a predicate or a partial solution, that can be used
later to solve the problem more efficiently.

In [59], Pelov and Ternovska proposed a reduction from inductive definitions to the propositional
satisfiability problem. By implementing the reduction introduced in [59] we can enable Enfragmo
to support well-founded semantics for inductive definitions.
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3.3 Axiomatizing for Performance

In this section, we present Enfragmo specifications for a number of NP-hard benchmark problems.
To demonstrate strategies for developing axiomatizations which perform well, we present multiple
specifications for each problem and compare their performance experimentally. We also demon-
strate the value of having a fixpoint operator (polytime inductive definitions) for pre-computing
information which an axiomatization can take advantage of to obtain better solving times. Some
techniques used, such as reducing symmetries or adding redundant constraints, are common in con-
straint programming practice, but are not normally used in logic-based knowledge representation.
These techniques can be applied in other systems which have the appropriate language constructs,
although the effect on performance will be system dependent.

The problems studied in this section are Blocked N-Queens, Graph Colouring, Social Golfers,
and Hamiltonian Cycle. These are all widely used NP-hard benchmark problems. For each problem,
we describe a specification and a number of variations, each based on an observation about the
problem, and we compare the run time of Enfragmo on each of them. The instances are taken from
the Asparagus website [1].

In each subsection of this section, we first describe a problem, and then propose several speci-
fications for expressing that problem. Finally, we conclude each subsection with a table comparing
the performance of Enfragmo on different specifications. In each table, for each specification, we
report the number of instances solved within a 1800 second time-out, the time for producing the
ground CNF formula, and the time for the SAT solver to run.

3.3.1 Blocked N-Queen

In this problem, we are given an N × N board and N queens, and a list of board cells which are
“blocked”. The task is to place each of the N queens in a non-blocked cell such that no two queens
are in the same row, column, or diagonal. The declarations in the specification are as follows:

// Declarations for Blocked N-Queens Specifications
GIVEN:
TYPES: Size;
PREDICATES: Blk(Size, Size), Q(Size, Size);

FIND: Q;

The remainder of the specification consists of one PHASE with a SATISFYING part only, fol-
lowed by PRINT Q. Two versions of the SATISFYING part, BQ-01 and BQ-02, are given in
Figure 3.1. BQ-01 is, arguably, the most straightforward specification of the problem. BQ-02 uses
the Count aggregate to express all “at-most-one” constraints.

Our experience is that using Count aggregate in this way often produces a better performance
than the “direct” method used in BQ-01. This is interesting in light of the general intuition that
specifications of counting-based properties in CNF are not well handled by SAT solvers. The method
of reducing these constraints to CNF is important to the performance, of course. As demonstrated in
Chapter 9, Enfragmo implements several methods that are user-selectable. The default, used here,
is a CNF formula that models a divide-and-conquer computation of the count. The choice of this
default is justified by experience, and experiments reported in [6].
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// BQ-01 SATISFYING part.
// No queen in a blocked cell
∀ r, c : Blk(r, c)→ ¬Q(r, c).
// At least one queen in each row
∀ r∃c : Q(r, c).
// At most one queen in each row
∀ r, c1, c2 : (c1 < c2 ∧Q(r, c1))→ ¬Q(r, c2).
// At most one queen in each column
∀ c, r1, r2 : (r1 < r2 ∧Q(r1, c))→ ¬Q(r2, c).
// At most one queen in each diagonal
∀ r, c, d : Q(r, c)→ ¬Q(r + d, c+ d).
∀ r, c, d : Q(r, c)→ ¬Q(r + d, c− d).

// BQ-02 SATISFYING part.
// Using Count aggregate.
// No queen in a blocked cell
∀r, c : Blk(r, c)→ ¬Q(r, c).
// Exactly n queens on the board
Countr,c{Q(r, c)} = N.
// At most one queen in each row
∀r : Countc{Q(r, c)} ≤ 1.
// At most one queen in each column
∀c : Countr{Q(r, c)} ≤ 1.
// At most one queen in each diagonal
∀d : Countr,c{Q(r, c) ∧ r − c = d− 1} ≤ 1.
∀d : Countr,c{Q(r, c) ∧ c− r = d} ≤ 1.
∀d : Countr,c{Q(r, c) ∧ c+ r = 2d} ≤ 1.
∀d : Countr,c{Q(r, c) ∧ c+ r = 2d− 1} ≤ 1.

Figure 3.1: Specifications BQ-01 and BQ-02 for Blocked N-Queens.

Another improvement can be obtained by observing that the complement of relationBlk (blocked)
is an upper bound for the relation Q (queen): If Q(r, c) then ¬Blk(r, c). We can rewrite the axioms
by guarding Q(r, c) with its upper bound, ¬Blk(r, c), and get a logically equivalent specification.
For example, the first of the axioms for “at most one queen in each diagonal” of specification BQ-2
becomes

∀ d : Countr,c{¬Blk(r, c) ∧Q(r, c) ∧ (r − c) = d} ≤ 1.

We call the specification obtained by adding upper bounds to the expansion predicates, in all
axioms of BQ-01 (BQ-02), specification BQ-03 (BQ-04, respectively). The solving time of BQ-03
(BQ-04) is smaller than that of BQ-01 (BQ-02, respectively), but at the cost of a slightly longer
grounding time. We observe a similar trade-off by applying the same technique to many other
problems. A general, automated technique for deriving bounds is reported in [74].

Specification Axioms Number Solved Grounding Time Solving Time
BQ-01 FO 258/400 0.13 323.8
BQ-02 Count 397/400 4.4 38.4
BQ-03 FO+Upper-Guards 264/400 0.09 269.2
BQ-04 Count+Upper-Guards 400/400 4.2 24.4

Table 3.1: Mean running times, in seconds, for different specifications of Blocked N-Queens. The
best performance, shown in bold, is obtained by the specification BQ-04.
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3.3.2 Graph k-Colouring

This problem asks if there exists a mapping of vertices of a given graph to colours from a given set
of K colours, such that no two adjacent vertices have the same colour. To axiomatize this problem,
we use two sorts, V tx and Clr, corresponding to vertices in the graph and available colours, respec-
tively. We assume the graph is described using binary predicate Edge, and we are asked to return
a binary relation C, satisfying a proper colouring. One simple specification for graph K-colouring
was given in Example 4. We call that specification GC-01.

We can also use Count to express the constraints that every vertex must have exactly one colour,
and every edge is monochromatic:

// every vertex has exactly one colour
∀v : Countc{C(v, c)} = 1.
// for every colour, there is no edge whose both vertices have the same colour
∀c : Countu,v{C(u, c) ∧ C(v, c) ∧ Edge(u, v)} = 0.

Graph colouring can also be specified in a quite different manner, using binary encodings of
colours, as described in [70]. Given K colours and graph G with m edges, let L = dlg(K)e. The
colours are integers between 0, · · · ,K − 1, written as L-bit binary numbers. We write Col(v, b) if
the b-th bit of the colour assigned to vertex v is one. If there is an edge between two vertices, there
must be at least one place at which the binary representations of the colours assigned to those two
vertices are different:

∀u, v : Edge(u, v)→ ∃b : (Col(u, b) ∧ ¬Col(v, b)) ∨ (¬Col(u, b) ∧ Col(v, b)).

This axiom, alone, describes the graph 2dlg(K)e-colouring problem. Let KRep(b) be true iff the b-th
bit of K − 1, in binary representation, is one. We may ensure the colour assigned to vertex v, is
certainly less than K with:

∀b1, v : (¬KRep(b1) ∧ (∀b2 > b1 : KRep(b2)→ Col(v, b2)))→ ¬Col(v, b1).

Figure 3.2 illustrates a specification in this manner. It uses a FIXPOINT part, in which we use poly-
nomial time computable inductive definitions, to perform the transformation of binary encodings
of colours to numbers. Predicate T is an auxiliary predicate defining the relationship between the
Col(v, .), binary representation of the colour assigned to vertex v, and C(v, .), the colour assigned
to vertex v.

Often, reducing symmetries in the problems search space improves the performance of solvers [17].
To achieve this aim, we can add some axioms to break the symmetries.

Observation 1 Let v1, · · · , vl induce a clique of size l in graph G, c1, · · · , cl be l distinct colours,
and l ≤ k, then the following are equivalent:

1. G has a proper k-colouring.
2. G has a proper k-colouring in which each vi gets colour ci, 1 ≤ i ≤ l.

So, if we find a clique in G, we may fix the colours given to its vertices. Figure 3.2 shows the use
of a set of inductive definitions as a FIXPOINT section in an Enfragmo specification, to construct
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GIVEN:
TYPES: V tx,Bit, Clr;
PREDICATES:
Edge(V tx, V tx),K(Bit),
T (V tx,Bit, Clr),
C(V tx,Clr),
Col(V tx,Bit);
FIND: Col;
PHASE:
SATISFYING:
∀u, v :Edge(u, v)→

∃b : Col(u, b) ∧ ¬Col(v, b)
∨ (¬Col(u, b) ∧ Col(v, b)) .

∀v, b1 :¬KRep(b1)∧(∀b2 > b1 :
(KRep(b2)→ Col(v, b2)))
→ ¬Col(v, b1).

PHASE:
FIXPOINT: (T,C)
T (v, i, c)←¬Col(v, 1)∧

i = MAXBit ∧ c = 0.
T (v, i, c)←Col(v, 1) ∧ i = MAXBit ∧ c = 1.
T (v, i, c)← ¬Col(v, i)∧∃c2 : c = 2c2

∧T (v, i+ 1, c2).
T (v, i, c)← Col(v, i)∧∃c2 : c = 2c2 + 1

∧T (v, i+ 1, c2).
C(v, c)← T (v, 0, c).
PRINT: C

GIVEN:
· · ·
PREDICATES:
Edge(V tx, V tx), Col(V tx,Clr),
Deg(V tx, V tx), Clique(V tx),
· · ·
PHASE:
FIXPOINT: (Deg, Clique)
Deg(v) = k ← (k = Countu{Edge(u, v)}) .
InClq(u)← ∀v 6= u :(Deg(v) < Deg(u))

∨ (Deg(u) = Deg(v) ∧ u < v) .
InClq(u)← (∀v :InClq(v)→ Edge(u, v))∧

(∀v 6= u : ¬InClq(v)→
(Deg(v) < Deg(u))∨
(Deg(u) = Deg(v) ∧ u < v)
· · ·

PHASE:
SATISFYING:
· · ·
∀v : InClq(v)→ (Col(v, Countu{InClq(u)

∧u ≤ v})).

Figure 3.2: Specification techniques for Colouring: The Binary encoding specification on the left,
and Clique computation on the right.

a maximal clique in G, which can be coloured immediately. This set of axioms is correct only for
graphs with no isolated vertex, but it can be modified, slightly, to work in general.

Experimental results for Graph Colouring specifications are given in Table 3.2. GC-01 is the
basic FO specification; GC-02 is the binary encoding version with clique computation; GC-03 is
the basic FO specification with clique computation, and GC-04 combines Count-based specification
with clique computation.

An interesting sidenote is that we tried to develop a specification for IDP which asserts the same
set of facts as GC-04 does, i.e., finding a maximal clique and forcing a colour to each vertex. While
Enfragmo solved all 106 instances of graph-colouring using GC-04, the performance of IDP on
a specification equivalent to GC-04 was worse than its performance on a naive specification, like
GC-01. The inductive definitions supported by IDP are more expressive than those supported by
Enfragmo, so it is possible to write a logically equivalent specification and, in principle, in both
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Specification Axioms Number Solved Grounding Time Solving Time
GC-01 FO 73/106 0.14 360.0
GC-02 Bin + Clique 90/106 0.34 434.4
GC-03 FO + Clique 100/106 0.11 278.7
GC-04 Count + Clique 106/106 0.12 211.0

Table 3.2: Comparison of the performance of different specifications of the same problem. The best
result, shown in bold, is obtained by GC-04.

cases only a polytime computation is required to compute the defined predicates. However, the
semantics of the languages for definitions differ: inflationary semantics for Enfragmo and well-
founded semantics for IDP. It seems that, in this case, the definition for Enfragmo leads to efficient
computation, while those we have tried for IDP do not. It is reasonable to expect that the reverse
pattern will occur in some other situations.

3.3.3 Social Golfers

The Social Golfer problem describes a scenario where g×s golfers are scheduled into into g groups
of s players over w weeks, such that every two golfers play in the same group exactly once. We
know that for appropriately selected values of g, s and w, the problem always has a solution. The
problem instance specifies the number of golfers, groups, weeks and the size of each group, in unary
format. The size of each group is equal to the number of golfers divided by number of groups. We
use three sorts, Golfers, Groups and Weeks. Predicate M(w, g, p) states that golfer p plays in
group g at week w. Any interpretation for M that satisfies the following axioms is a solution for our
problem and vice versa.

1. Each group must haveGroupSize golfers in it: ∀w, g : Countp{M(w, g, p)} = GroupSize,
2. No two golfers can play in the same group more than once:
∀p1, p2 : (p1 < p2)→ Countw,g{M(w, g, p1) ∧M(w, g, p2)} ≤ 1,

3. In each week, all golfers must play in exactly one group: ∀w, p : Countg{M(w, g, p)} = 1.
These axioms are the only axioms in the SATISFYING part of specification SG-01. The search

space of the social golfer problem contains several symmetries. The following “symmetry breaking
axioms” can be used to break some of these symmetries:

1. In each week, golfer number one is going to play in group number one: ∀w : M(w, 1, 1),
2. In each week, groups are ordered based on the least index of golfers who are playing in the

groups: ∀w, g1, g2 : Succ(g1, g2)→Minp{p;M(w, g1, p); 0} < Minp{p;M(w, g2, p); 0},
3. The second smallest index of the golfers in the first group of week w1 must be less than or

equal to the second smallest index of golfers in the first group of week w2, for all w2 > w1:
∀w1, w2 : Succ(w1, w2)→Minp{p;M(w1, 1, p}∧p 6= 1; 0) < Minp{p;M(w2, 1, p)∧p 6=
1; 0}.

In the above axioms, the default values used in Min aggregates are not important and can be any
arbitrary number.
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Specification Axioms Number Solved Grounding Time Solving Time
SG-01 Basic 126/175 0.0 53.2
SG-02 Basic + Symmetry Ax. 1,2 149/175 0.02 24.8
SG-03 Basic + Symmetry Ax. 1-3 161/175 0.03 19.8

Table 3.3: Comparison of the performance of different specifications of the same problem. The best
result, shown in bold, is obtained by SG-03.

3.3.4 Hamiltonian Path

A Hamiltonian Path in directed graphG is a path visiting all vertices ofG exactly once. An instance
for this problem is a directed graph, described using sort Nodes and predicate Edge, and a vertex
which is the starting node of the Hamiltonian path, described by function Start.

We define three predicates, P (u, v), Last(l), and R(v, d), where P (u, v) is true iff the edge
(u, v) is part of the Hamiltonian path, Last(l) is true iff l is the last vertex in the path we are
constructing, and R(v, d) is true iff vertex v is the d-th node in the path. The following axioms
represent the Hamiltonian path problem:

1. There is a unique last element: Countl{Last(l)} = 1,
2. Every edge in the path is also an edge in G: ∀u, v : P (u, v)→ Edge(u, v),
3. Vertex Start is the starting node of the path: ∀v : ¬P (v, Start),
4. There is no edge in the path which leaves the last node of the path: ∀v, l : Last(l)→ ¬P (l, v),
5. Every vertex is visited exactly once: ∀v : (Countu{P (u, v)} = 1 ∨ v = Start)
∧ (Countu{P (v, u)} = 1 ∨ Last(v)),

6. All vertices are reachable from the starting node: ∀v : Countt{R(v, t)} = 1∧
∀t : Countv{R(v, t)} = 1 ∧ (R(Start, 0)) ∧ (∀u, v, d : R(v, d) ∧ P (v, u)→ R(u, d+ 1)) .

Usually adding extra axioms to a specification makes the output CNF larger but the correspond-
ing extra clauses make the task of SAT solvers easier, by helping SAT solvers to detect inconsistency
earlier and not allowing them to spend time in inconsistent branches.

Observation 2 If vertex v is the d-th vertex in a Hamiltonian path P , and there is no path of length
i from v to u in G, then u cannot be the d+ i-th vertex of path P .

Observation 3 The following set of inflationary fixpoint rules definesDist(u, v, d), such thatDist(
u, v, d) is true iff there is a path of length d from u to v:

{Dist(u, v, d)← Edge(u, v) ∧ d = 1.}
{Dist(u, v, d)←∃w, d0 :(d = 2 · d0∧

Dist(u,w, d0) ∧Dist(w, v, d− d0))
∨ (d = 2 · d0 + 1∧
Dist(u,w, d0) ∧Dist(w, v, d− d0)).}

Using Observations 2 and 3, we can infer that the following axiom can be added to the proposed
specification for the Hamiltonian path problem:

∀v, d : R(v, d)→ (∀u, n : ¬Dist(v, u, n)→ ¬R(u, d+ n)) . (3.1)
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In Axiom 3.1, we used a ternary predicate to assert a guard on the binary predicate R. We can
also use the following observation to construct a more compact upper bound for R.

Observation 4 If there is no path in graph G with length d which connects vertex Start to vertex
v, vertex v cannot be the d-th vertex in any Hamiltonian path, i.e., we can be sure R(v, d) is false.

The following set of inflationary inductive definition rules defines UR(v, d) such that UR(v, d)
is true iff there is a path of length d from Start to v:

{UR(v, d)← v = Start ∧ d = 0}.
{UR(v, d)← ∃u : UR(u, d− 1) ∧ Edge(u, v)}.

Predicate UR(., .), defined as above, describes an upper bound for predicate R(., .), and hence
we can use UR to bound R, in our axiomatizations.

In Table 3.4, HP-01 refers to the specification expressing the axioms 1-6, in pure first-order
logic. Specification HP-02 has only axioms 1 to 6. Specification HP-03 is constructed from axioms
1-6 plus the axioms defining Dist(., ., .) predicate and relating Dist and R predicates. The last
specification, HP-04, describes predicate UR using the above set of inflationary fixpoint axioms,
includes axiom 1 to 5, and has the following rewritten version of axiom 6:
∀v : Countt{R(v, t)∧UR(v, t)} = 1∧∀t : Countv{R(v, t)∧UR(v, t)} = 1∧(R(Start, 0))∧

(∀u, v, d : R(v, d) ∧ P (v, u) ∧ UR(v, d) ∧ UR(u, d+ 1)→ R(u, d+ 1)) .

Specification Axioms Number Solved Grounding Time Solving Time
HP-01 FO 56/58 4.3 14.5
HP-02 Count 58/58 0.7 30.6
HP-03 Count + Poor Guards 2/58 361.0 4.4
HP-04 Count + Upper Guards 58/58 2.8 11.27

Table 3.4: Comparison of the performance of different specifications of the same problem. The best
result, shown in bold, is obtained by HP-04.

3.3.5 Summary of Techniques for Developing Efficient Specifications

So far, we have illustrated techniques that can be used to make a given specification more efficient.
To apply these techniques, users need to know the domain well and use their knowledge of the prob-
lem for rewriting/developing specifications. For example, from our knowledge about the domain of
the Blocked N-Queens problem, we observed that ¬Blk(r, c) is an upper bound for Q(r, c). In the
Graph Colouring problem, we knew that the search space of this problem has certain kinds of sym-
metries, and to break the symmetries, we developed appropriate axioms using the features available
in the input language of Enfragmo.

From the results of our experiments, it can be concluded that SAT solvers perform better when
the search space is smaller. Essentially the aim of all of the techniques introduced in this section, is
to reduce the size of search space, without changing the satisfiability of the instance. We reduced
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the size of the search space by adding symmetry-breaking axioms and by altering the axioms to use
the information about upper and lower bounds.

Crawford showed that the computational complexity of the symmetry detection problem on
specifications developed in first-order logic is equivalent to the Graph Isomorphism problem [26].
The graph isomorphism problem is one of the few NP problems which has neither a polynomial time
algorithm nor is known to be an NP-complete problem. Since computing full symmetry-breaking
axioms is time consuming, different approaches have been developed to partially detect and break
the symmetries in the problem search space. One can name [27], [38] and [66] as examples of such
approaches.

As we mentioned, the IDP system has a mechanism for automatically inferring upper and lower
bounds, and in our group, a similar technique has been developed [69]. As the results of experiments
in [69] suggest, enabling this feature adds some overhead to the grounding phase and usually reduces
the solving times. Sometimes, the additional time Enfragmo spends in the grounding phase is much
bigger than the time it saves in the solving phase. We observe the same pattern in the IDP system,
i.e., for some problems, disabling the bounds inference makes the whole solving process faster.

On the other hand, a user who knows the domain well is usually able to detect the important
symmetries easily, and may even use some of the available tools to find these symmetries. Then, to
break the symmetries, we can augment the problem specification by extra axioms that are satisfied
by exactly one of the symmetric solutions [27]. We used the same approach in axiomatizing the
Graph Colouring and Social Golfers problems.

The techniques introduced in this chapter can be summarized as follows:
Adding Extra Axioms enables SAT solvers to detect inconsistencies, earlier.
Breaking Symmetries helps the low-level solver to solve ground problems easier/faster.
Using Upper (Lower) Guards in the Specifications helps the grounder to ground faster, produces
smaller ground program by removing redundancy (usually, the smaller the ground programs the
faster the solving phase).
Using Inductive Definitions allows computing bounds, guards and predicates which can speedup
the solving phase.
Using Aggregates enables us to express certain properties more compactly and more intelligibly.
For example, compare the following FO axiom expressing the second symmetry breaking axiom of
the Social Golfers problem with the original one (∀w, g1, g2 : Succ(g1, g2)→Minp{p;M(w, g1, p);
0} < Minp{p;M(w, g2, p); 0}):

vs
∀w, g1, g2 : Succ(g1, g2)→ ∀p1, p2(

(M(w, g1, p1) ∧ ∀p′ : (p′ < p1)→ ¬M(w, g1, p
′))∧ //p1 is the smallest indexed player in group g1

(M(w, g2, p2) ∧ ∀p′ : (p′ < p2)→ ¬M(w, g2, p
′)) //p2 is the smallest indexed player in group g2

)→ p1 < p2.

In addition to the convenience, we get speed-up when using aggregates: We showed that using
Count aggregates to bound the size of sets results in faster solving. We added the FO counterpart
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of symmetry breaking axioms to specification SG-01. The new specification failed to solve medium
and large size instances.

We believe the axiom used in the Social Golfer problem is easier to read/understand than the
above axiom. Therefore having access to aggregates in a language makes the task of expressing
complicated properties easier. In addition, using aggregates in the specification decreases the total
processing time.

3.4 Experimental Evaluation

In this section, we compare the performance of Enfragmo with that of other grounding-based sys-
tems. A set of NP-hard of problems were chosen from the second Answer Set Programming Compe-
tition [31], on which the techniques we described can be applied. All the instances and scripts used
in this experiment and the other experiments presented in this thesis can be downloaded from [2].

The other solvers used in our experiments are: Clingo (v 3.0.3) [40], DLV (v 2010-10-14) [29],
and IDP (v 2.20) [73]. For each system, we used specifications provided by the system’s authors,
obtained from [31] or [1]. The experiments were run on an Intel Xeon E5530 quad-core 2.4 GHz
processor, with a timeout of 1800 seconds.

In this set of experiments, we used the default configurations for all the solvers. The default
configuration for Enfragmo is as follow:

1. GroundingMode: TFGrounder
2. SortMode: QuickSort
3. CountMode: DC
4. CNFGenerator: FillAndRewrite
5. CNFGateFlattening: Enabled(1)
6. CNFTseitinMemorization: Enabled(1)
Since the input language accepted by each of the solvers is different, the same specification

cannot be used for all the solvers. Since the first-order fragment of the input languages of Enfragmo
and IDP are almost the same, we used the same pure first-order specifications for Enfragmo and
IDP. It should be mentioned that the syntax of the input languages of Enfragmo and IDP are very
similar, but there are differences between the semantics of these two languages. Although both DLV
and Clingo are both ASP solvers, their input languages are very different.

The rows in Table 3.5 correspond to problems, and the columns correspond to the fastest spec-
ification of each solver. Table 3.5 also has two special columns, Enf-FO and IDP-FO. These two
columns show the performance of Enfragmo and IDP on the same first-order specification.

Table 3.5 shows that Enfragmo was able to solve almost all instances in the collection, and
performed the best on five of the nine problems. Enfragmo also performed relatively well on the
first-order specifications, which a naive user may develop.

3.5 Conclusion

We have presented the Enfragmo system for modelling and solving combinatorial search problems.
It provides users with a convenient way to specify and solve computationally hard problems, in
particular search problems whose decision versions are in the complexity class NP.
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Problem # of Ins Clingo DLV IDP Enfragmo IDP-FO Enf-FO
GraphCol 105 70/342.3 20/564.8 24/159.6 105/0.9 24/159.6 95/360.0
HamPath 58 58/0.21 13/385.4 58/0.1 58/17.3 58/9.9 58/14.1
SocGol 175 134/6.34 96/541.3 142/2.7 162/19.67 78/46.06 126/53.2

SchrNum 29 29/30.6 18/92.9 28/30.4 29/22.2 28/30.4 29/22.2
BlQueens 400 400/7.6 400/0.4 395/52.2 400/28.6 385/56 264/369.2

ConnDomSet 21 20/15.1 13/362.2 18/128.8 21/41.4 14/163.4 21/41.4
DisjSched 10 10/117.4 5/358.1 10/78.5 10/42.1 5/59.2 10/42.1
15 Puzzle 27 27/24.3 9/247.6 27/63.6 27/396.8 3/325.0 27/599.0
HierClust 12 12/0.08 12/2.7 12/1.9 12/11.7 12/2.4 12/11.7

Table 3.5: Performance comparison of Enfragmo and other systems. The entry n/t means that n
instances were solved in total time of t seconds. The best result for each problem is in bold.

In the context of declarative specification-based problem solving, we demonstrated the features
of specifications that produce improved system performance over otherwise simpler but equivalent
specifications. We observed that, while predicting the effects of a particular change is not necessarily
possible, the improvements come not from sheer trial and error, but from applying an understanding
of the structure of the domain.

While the results of experimental comparisons are not precise, they confirm that Enfragmo is
competitive with existing solvers. Our experiments indicate that Enfragmo is already competitive
with other similar systems when using the most straightforward specifications, and its performance
can be sped up considerably by applying the described techniques. Our techniques can be used in
other systems with the appropriate language constructs. While the techniques are general, the exact
nature of the effect on performance will, of course, be system dependent.



Chapter 4

Expressive Power of the Input Language
of Enfragmo

In this chapter, we show that every problem expressible in GGFk logic can be expressed in the
input language of Enfragmo, and using this connection, we relate the expressive power of the input
language of Enfragmo and GGFk logic.

4.1 Introduction

There are many logic programming-based systems, each of which accepts/works with its own lan-
guage. The main goal in developing these languages is to make the task of problem description
easier. Sometimes, having certain constructs in a specification language increases the expressive
power of the language and allows users to describe properties/problems which cannot be solved by
the corresponding solver. The input language of DLV-complex, described in Subsection 7.3.1, is an
example of such languages. We believe it is always informative to study the expressive power of
logic programming-based solvers’ languages. Our aim, in this chapter, is to describe the relation
between GGFk logic [65] and the input language of Enfragmo, and show that the complexity class
expressible by the input language of Enfragmo is NP. Also, we describe a fragment of first-order
logic that corresponds to the input language of Enfragmo.

In [54], Mitchell and Ternovska emphasized the importance of capturing NP for the languages
used in specification based systems. According to the authors of [54], the capturing property is a
necessity since it shows that for a given language:
• Users can express all problems in NP: Users know that their NP problem can be certainly

specified for the system,
• Users can not express more than NP: This feature ensures that solving can be achieved by

constructing a universal poly-time reduction to an NP-complete problem such as SAT.
In the previous chapter, we discussed that supporting aggregates and arithmetic operators is a

desirable feature for a specification language/solver. In order to both allow arithmetic operators in
the input language and stay in NP, we have to use logics that are fragments of first-order logic. As we
mentioned in Section 2.5,GGFk andDGGFk logics are fragments of first-order logic enriched with

27
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arithmetic and inductive definitions. These logics are designed carefully such that the embedded
model expansion on these logics when the background structures is as what defined by Definition 7,
captures a subset of problems in NP. Therefore by using a specification in GGFk (DGGFk) logic
we can be certain that a polynomial time reduction to an instance of the SAT problem exists.

The structure of this chapter is as follows. In Section 4.2, we describe how to construct a model
preserving translation from formulas in GGFk logic to specifications for Enfragmo, and hence we
show that every NP problem expressible in GGFk logic is also expressible in the input language of
Enfragmo. In Section 4.3, we describe a logic which corresponds to the input language of Enfragmo.

4.1.1 My Contributions

The translation of formulas in GGFk logic to specifications the input language of Enfragmo is
contributed by the author. The two methods for expressing Product operator, explained in Subsec-
tions 4.2.2 and 4.2.3, are proposed by the author of this thesis.

4.2 Expressive Power of the Input Language of Enfragmo

In this section, we show that every NP problem satisfying the small-cost condition has a speci-
fication in the input language of Enfragmo. To this aim, we describe three constructions which
transform every MX specification expressed in GGFk(ε), with the background structure as defined
in Definition 7, to a specification for Enfragmo. Since we know that every NP problem satisfying
small-cost condition can be expressed in GGFk(ε), we conclude that all such NP problems can be
expressed in the input language of Enfragmo. Our proof is based on the description of algorithms
which transform formulas in GGFk(ε) with the background structure as defined in Definition 7 to
specifications in the input language of Enfragmo. In this chapter, whenever we refer to GFFk(ε)
logic, we assume the background structure is as what is defined in Definition 7.

In GGFk, the variables do not have specific sorts, and the possible sets of instantiations of vari-
ables are restricted by lower guards. Also, this logic requires expansion predicates to be bounded
by upper guards. On the other hand, in the input language of Enfragmo, each variable in the spec-
ification has a corresponding sort (type), and every expansion predicate is implicitly guarded. In
this section, we explain how to transform formula Φ ∧Ψ expressed in GGFk(ε) (Definition 6), and
structure A, describing the instance structure, to an Enfragmo problem specification, Spec(Φ ∧Ψ),
and an Enfragmo problem instance, Ins(Φ∧Ψ,A). In this chapter, we assume structureA satisfies
the small-cost condition, i.e., the value of the maximum integer in the active domain of A is less
than 2poly(|adomA|), where poly is a polynomial.

Given formula Φ ∧ Ψ in GGFk(ε), we extract the set of relations in the expansion vocabulary,
ε, from the upper guard axioms in Ψ, and set the instance vocabulary to be σ = vocab(Φ ∧Ψ)\ε.

Let Φ ∧ Ψ be a formula in GGFk(ε) and φ be a subformula of Φ. We construct specification
Spec(Φ ∧Ψ) in the input language of Enfragmo, using the following two methods:

• Method FormulaTrans(φ) translates φ ∈ GGFk(ε) to a formula in the input language of
Enfragmo;
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• Method TermTrans(t) translates term t in GGFk(ε) to a term in the input language of
Enfragmo (We explain how TermTrans(t) works later).

1. Introduce “ADOMType” as the only Type in Spec(Φ ∧Ψ);
2. Define specification Spec(Φ ∧Ψ) to have exactly one phase;
3. Set the axiom in the only phase of Spec(Φ ∧Ψ) to be FormulaTrans(Φ);
4. If φ is in form φ1 ∧ φ2, then set FormulaTrans(φ) to be FormulaTrans(φ1) ∧
FormulaTrans(φ2);

5. If φ is in form φ1 ∨ φ2, then set FormulaTrans(φ) to be FormulaTrans(φ1) ∨
FormulaTrans(φ2);

6. If φ is in form ¬φ1, then set FormulaTrans(φ) to be ¬FormulaTrans(φ1);
7. If φ is in form ∃x̄(G1∧· · ·Gm∧ψ), whereGi are atomic formulas, then setFormulaTrans(φ)

to be ∃x̄(G1 ∧ · · ·Gm ∧ FormulaTrans(ψ)), and in Spec(Φ ∧Ψ), set the sort of variables
in x̄ to be ADOMType;

8. If φ is in form P (t1(x̄), · · · , tm(x̄)), where P is a predicate, then,

• Define predicate P , in specification Spec(Φ ∧ Ψ), to be an m-ary predicate, if it is the
first time we visit P ,

• Associate each argument of predicate P , in specification Spec(Φ ∧ Ψ), with ADOM-
Type;

• Set FormulaTrans(φ) to be P (T1(x̄), · · · , Tm(x̄)), where each Ti is the transformed
form of ti, computed using TermTrans(ti).

9. If φ is in form t1(x̄) op t2(x̄), where op is a comparison operator, then set FormulaTrans(φ)
to be T1(x̄) op T2(x̄), where Ti, i = 1, 2, is the transformed form of ti, computed using
TermTrans(ti);

10. If ψ is an upper guard axiom in Ψ, such that ψ is in form ∀x̄ (E(x̄)→ G1(x̄) ∧ · · ·Gm(x̄)):

• In Spec(Φ∧Ψ), defineE as an expansion predicate and also define each of its arguments
to be from type ADOMType;

• Add axiom ∀x̄ E(x̄) → G1(x̄) ∧ · · ·Gm(x̄) to Spec(Φ ∧ Ψ), where the type of each
variable in x̄ is ADOMType.

Before describing how we can construct TermTrans, we briefly discuss how to construct an
Enfragmo instance from instance structureA. Transforming instance structureA to Enfragmo prob-
lem instance Ins(Φ ∧ Ψ,A) is straightforward: For each predicate, I , which is not defined an ex-
pansion predicate in Trans(Φ ∧Ψ), add tuple ā to the interpretation of I in Ins(Φ ∧Ψ,A), iff we
have ā ∈ IA. We also set ADOMType in Ins(Φ ∧Ψ,A) to be the active domain of A.

Now, we define the transformation for terms, TermTrans(t), recursively as follows:
1. If t is a variable x, then set TermTrans(t) to be x.
2. If t is a constant c, then introduce a new instance function, fc, in problem specification
Spec(Φ ∧ Ψ). In problem instance Ins(Φ ∧ Ψ,A), set the interpretation of fc to c. Finally,
set TermTrans(t) to fc.

3. If t is in form f(t1, · · · , tn), where f is an n-arity function, then define f as an instance
function in specification Spec(Φ ∧ Ψ). Set TermTrans(t) to f(TermTrans(t1), · · · ,
T ermTrans(tn)).
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4. If t is in form t1 op t2 where op is an arithmetical operator, then set TermTrans(t) to
TermTrans(t1) op TermTrans(t2).

5. If t is in form χ(φ(x̄)), then set TermTrans(t) to Max∅{1 : φ(x̄); 0}.
6. If t is in formminx̄{f(x̄, ȳ) : φ(x̄, ȳ)}, then set TermTrans(t) toMinx̄{TermTrans(f) :
FormulaTrans(φ); 0} where the types of all variables in x̄ are ADOMType.

7. If t is in formmaxx̄{f(x̄, ȳ) : φ(x̄, ȳ)}, then set TermTrans(t) toMaxx̄{TermTrans(f) :
FormulaTrans(φ); 0} where the types of all variables in x̄ are ADOMType.

8. If t is in form
∑

x̄{f(x̄, ȳ) : φ(x̄, ȳ)}, then set TermTrans(t) to Sumx̄{TermTrans(f) :
FormulaTrans(φ)} where the types of all variables in x̄ are ADOMType.

9. If t is in form
∏
x̄{f(x̄, ȳ) : φ(x̄, ȳ)}, since Enfragmo does not have a multiset operator

(aggregate operator) corresponding to
∏

, we need to express
∏

using the other constructs
available in the language of Enfragmo. In the rest of this section, we describe how this can be
achieved.

Proposition 1 Given formula Φ ∧ Ψ ∈ GGFk(ε) and structure A, such that
∏

does not occur
in vocab(Φ ∧ Ψ), the above construction generates specification S = Tran(Φ ∧ Ψ) and instance
I = Ins(Φ∧Ψ,A) such that there is a structure expandingA and satisfying Φ∧Ψ iff Enfragmo finds
a solution for specification S and instance I . Also, every structure B expanding A and satisfying
Φ∧Ψ can be translated to a solution for specification S and instance I , and vice versa. Specification
S does not depend on the instance structure and is computed solely based on Φ ∧ Ψ. The set of
integers in the active domain of A is the same as the set of integers in Ins(Φ ∧Ψ,A).

The proof of the above proposition is mechanical and involves using structural induction on the
formula tree of Φ ∧ Ψ. The last part of the proposition can be verified by looking at the procedure
described for constructing FormulaTrans, TermTrans and Ins. Since none of these procedures
introduces a new element, the set of integers in the active domain of A is the same as the set of
integers in the instance file constructed for A.

The proof of capturing result for GGFk(ε), presented in [65], does not work if we remove
∏

multiset term from this logic. So, to show the capturing result for Enfragmo, we have to find a way(s)
to express terms involving the prod multiset operator in an Enfragmo specification. The author of
this thesis proposed the following three approaches to construct specifications from formulas in
GGFk which use

∏
:

1. Adding Product aggregate to the input language of Enfragmo,
2. Expressing

∏
using Max aggregate,

3. Expressing
∏

using Sum aggregate.
Before describing how to express

∏
term in the input language of Enfragmo, we use an example

to illustrate how the above translation works.

Example 6 (Continuation of Example 3) Here we translate the formula in GGFk logic, presented
in Example 3, to a specification in Enfragmo.

Recall that in Example 3, Φ and Ψ are (Σx(w(x) : O(x) ∧O′(x)) ≤ b)∧ (k ≤ Σx(v(x) : O(x)
∧O′(x))), and ∀x : O′(x)→ O(x), respectively.

Method Spec(Φ ∧Ψ) generates the following specification:
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GIVEN:
TYPES: ADOMType;
PREDICATES: O(ADOMType), O′(ADOMType);
FUNCTIONS: k :ADOMType, b :ADOMType;

FIND: O′;
PHASE:

SATISFYING:
//FormulaTrans(Φ)
(Sumx{w(x) : O(x) ∧O′(x)} ≤ b) ∧ (k ≤ Sumx{v(x) : O(x) ∧O′(x)}) ;

PRINT: O, O’;

In the rest of this section, we describe how each of the proposed approaches deals with the
∏

multiset operator.

4.2.1 Expressing
∏

using Product Aggregate

The input language of Enfragmo does not have the Product aggregate. We can add this aggregate
to the input language of Enfragmo, and modify Enfragmo’s grounding algorithm to work on the new
language. Assuming Enfragmo supports the Product aggregate, we set the TermTrans(

∏
x̄{f(x̄, ȳ) :

φ(x̄, ȳ)}) to be:
Productx̄{TermTrans(f) : FormulaTrans(φ)},

where the corresponding type of each variable in x̄ is ADOMType.
So, by adding Product aggregate to the input language of Enfragmo, and extending the grounding

algorithm, we can construct specification S and instance I from Φ ∧ Ψ ∈ GGFk(ε) and structures
A such that specification S has a constant size (assuming formula Φ ∧ Ψ is fixed) and instance I
has polynomial size with respect to the size of representation ofA. The set of elements in the active
domain of A is the same as the set of values in I .

4.2.2 Expressing Product using Max Aggregate

Given term t(ȳ) =
∏
x̄{f(x̄, ȳ) : φ(x̄, ȳ)}, and having access to the instance structure A, we

can express t(ȳ) using Max aggregate. Let ā1, · · · , ān be the tuples in adomm
A where m = |x̄|

satisfying the lower guard on x̄ (Recall that we use adomm
A to denote set {〈c1, · · · , cm〉 | ci ∈

adomA, i = 1 · · · ,m}). So, the result of the following multiplication is equal to t(ȳ):

(Max∅{f(ā1, ȳ) : φ(ā1, ȳ) : 1})×
(Max∅{f(ā2, ȳ) : φ(ā2, ȳ) : 1})×

...
(Max∅{f(ān, ȳ) : φ(ān, ȳ) : 1}) .

In the above equation, each Max aggregate returns, for different assignment to ȳ, either f(āi, ȳ)
or 1 depending on the truth value of φ(āi, ȳ). The result of the product of the above nMax aggregates
is the same as the result of the corresponding Product term.
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In order to define TermTrans(t(ȳ)) as above, we need to introduce n fresh constant symbols,
g1, · · · , gn, in FormulaTrans(Φ ∧Ψ), corresponding to ā1, · · · , ān, and set the interpretation for
these constants appropriately, in Ins(Ψ ∧Ψ,A), and set the TermTrans(t(ȳ)) be:

(Max∅{f(g1, ȳ) : φ(g1, ȳ) : 1})×
(Max∅{f(g2, ȳ) : φ(g2, ȳ) : 1})×

...
(Max∅{f(gn, ȳ) : φ(gn, ȳ) : 1}) .

This way of translating
∏

creates specifications whose sizes are a function of the size of adomA.
However, the set of elements in the active domain of A is the same as the set of values in Ins(Φ ∧
Ψ,A).

4.2.3 Expressing Product using Sum Aggregate

In order to use the transformation presented in the previous Subsection to generate a problem spec-
ification, we need to have access to the instance structure. So, we cannot claim that every problem
expressible in GGFk has a corresponding specification in Enfragmo. The other issue with the previ-
ous construction is that the size of the resulting specification is not constant (the size depends on the
size of A). Here, we describe another approach for constructing specifications for Enfragmo solely
from formulas in GGFk. Therefore, we can have a constant size specification for every problem
expressible in GGFk logic. Without loss of generality, we assume the range of function f , used in∏

multiset operator, is positive integers. With a slight modification, this approach can be extended
to the general case.

Let t(ȳ) =
∏
x̄{f(x̄, ȳ) : φ(x̄, ȳ)} be a term of Φ∧Ψ ∈ GGFk and tā(ȳ) be the following term:

tā(ȳ) =
∏
x̄

{f(x̄, ȳ) : φ(x̄, ȳ) ∧ (x̄ ≤ ā)}.

The following recurrence relation defines the value of tā(ȳ):

tā(ȳ) =


1 ā is the minimum value in x̄ may take and φ(ā, ȳ) is false;
f(ā, ȳ) ā is the minimum value x̄ may take and φ(ā, ȳ) is true;
tb̄(ȳ) b̄ is the predecessor of ā and φ(ā, ȳ) is false;
tb̄(ȳ)× f(ā, ȳ) b̄ is the predecessor of ā and φ(ā, ȳ) is true.

Let M̄ denote the maximum value x̄ may take, based on the lower guards for x̄. We have t(ȳ)
and tM (ȳ) evaluate to the same value, in all structures B expanding A.

In the following, we describe a transformation which encodes the above recurrence relation. In
order to define the value of term tā(ȳ), we extend the vocabulary of and add some extra axioms to
the specification. More formally, for term t(ȳ), we modify the specification and instance as follows
(recall that x̄ is the tuple of quantified variables in term t(ȳ) =

∏
x̄{f(x̄, ȳ) : φ(x̄, ȳ)}):
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1. Introduce two new integer types Ranget and Power2t, in the specification. Let us call the
maximum value term t(ȳ) that can be obtained, under all possible assignments to ȳ and models
expanding A, MAX . In Ins(Φ ∧Ψ,A), we define the interpretation for Ranget, Ranget, to
be the set of all integers in range 1 to log(MAX), inclusive. We also define the interpretation
for Power2t, Power2t, to be the set {2r : r ∈ Ranget};

2. Introduce a new instance function P2t(v) in the specification, such that P2t maps values from
type Ranget to type Power2t. In Ins(Φ ∧Ψ,A), we define P2t such that it maps v to 2v, for
all v in Ranget;

3. Expand the vocabulary of the specification by a new instance function MINt, where MINt

is a function without any argument, i.e., it is a constant. In Ins(Φ ∧ Ψ,A), we define the
interpretation of MINt such that it returns the minimum value of ADOMTypem, where m =
|x̄|;

4. Expand the vocabulary of the specification by a new instance function MAXt, where MAXt

is a function without any argument. In Ins(Φ ∧Ψ,A), we define the interpretation of MAXt

such that it returns the maximum value of ADOMTypem, where m = |x̄|. Note that MAXt

is an instance function while MAX , used in (1), is an integer;
5. Introduce a new instance predicate Succt(· · · ), such that it has 2|x̄| arguments and all its

arguments are from type ADOMType. In Ins(Φ∧Ψ,A), we define Succt such that Succt(ā, b̄)
is true iff b̄ is the successor of ā, where ā, b̄ ∈ ADOMTypem, where m = |x̄| ;

6. Introduce a new expansion predicate Et(· · · ), with 2|x̄|+ 1 arguments , such that the first 2|x̄|
arguments are from type ADOMType, and the last argument is from type Ranget.

We add appropriate axioms to define Et(z̄, w̄, v), where both z̄ and w̄ are tuples of size m
of variables from type ADOMType, and v is a variable from type Ranget, such that for ā ∈
ADOMTypem, v ∈ Ranget and for every instantiation γ, mapping variables in w̄ to elements
in ADOMType, we have Et(ā, γ|w̄, v) is true iff:

The v-th bit, in the binary representation, of the result of evaluation of term tā(γ|w̄), is one.

If we define predicate Et as above, the value of tā(ȳ) is equal to the result of the following Sum
aggregate:

Sumv{P2t(v) : Et(ā, ȳ, v)}.
The following axioms define Et (Recall that φ is the formula used as the condition in the product
multiset operator):

1. ∀ȳ φ(MINt, ȳ)→ Sumv{P2t(v) : Et(MINt, ȳ, v)} = f(MINt, ȳ);

2. ∀ȳ ¬φ(MINt, ȳ)→ Sumv{P2t(v) : Et(MINt, ȳ, v)} = 1;

3. ∀ȳ, x̄, x̄′ (¬φ(x̄′, ȳ) ∧ Succt(x̄′, x̄))→ (∀v Et(x̄′, ȳ, v)↔ Et(x̄, ȳ, v));

4. ∀ȳ, x̄, x̄′ (φ(x̄′, ȳ) ∧ Succt(x̄′, x̄)) → Sumv{P2t(v) : Et(x̄′, ȳ, v)} = f(x̄′, ȳ) × Sumv{
P2t(v) : Et(x̄, ȳ, v)}.

Finally, we set TermTrans(t(ȳ)) to be the following:

Sumv{P2t(v) : Et(MAXt, ȳ, v)}.

The following lemmas and propositions assert the properties of the above transformation.
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Lemma 1 Given instance structureA, and formula Φ∧Ψ inGGFk logic, both the maximum and the
minimum values a term in Φ∧Ψ can take, on all possible assignments and all structures B expanding
A, are bounded by 2poly(|adomA|), where poly(.) is a polynomial. There is also a polynomial time
algorithm, with respect to |adomA|, to compute an upper bound (a lower bound) for the maximum
(minimum, respectively) value term t can take, under all assignments and all models expanding A,
assuming representation of term Φ ∧Ψ has a constant size.

Proof: We prove the first part of the lemma by induction on the structure of term t.
The base cases are when t is a variable, an instance of χ function, characteristic function, or a

function without any argument. We show the proof for two of base cases. The proof for the other
case is similar.
• Term t is χ[φ(x̄)]: The maximum (minimum) value term t can take is 1 (0, respectively),

which is clearly bounded by 2poly(|adomA|).
• Term t is a variable: Since all variables are guarded by instance predicates, the maximum

(minimum) value a variable can take is the largest (smallest, respectively) integer in the in-
stance structure. Since A satisfies small-cost property, the maximum (minimum) value in the
active domain of A is bounded by 2poly(|adomA|).

Here we just show the inductive step for terms in form t(ȳ) =
∏
x̄{f(x̄, ȳ) : φ(x̄, ȳ)}. The

proofs for the other cases are similar.
By inductive hypothesis, the maximum value f(x̄, ȳ) can take is bounded by two to the power

of a polynomial, poly1. Let G(x̄) be the conjunction of lower guards on x̄ and nG be the number of
tuples satisfying G(x̄). Since G(x̄) is composed of instance predicates, we can compute the exact
value of nG, efficiently. We have:∏

x̄

{f(x̄, ȳ) : φ(x̄, ȳ)} ≤
∏
x̄

{f(x̄, ȳ) : G(x̄) ∧ >} ≤
(

2poly1(|adomA|)
)nG

≤
(

2poly1(|adomA|)
)|adomA||x̄|

≤
(

2poly1(|adomA|)|adomA||x̄|
)
, (4.1)

which is bounded by 2poly2(|adomA|) if we select poly2(n) = poly1(n)× n|x̄|.
Given structure A, to estimate the maximum value term t can take, we use the following recur-

rence relation:

Ut =



the largest integer in the active domain if t is either a variable or constant;
the largest integer the in active domain if t is in the form f(t1, · · · , tm);

Ut1 + Ut2 if t is in the form t1 + t2;

Ut1 × Ut2 if t is in the form t1 × t2;

1 if t is in the form χ(φ(x̄)[γ];

Ut1 if t is in the form minx̄{t1 : φ};
Ut1 if t is in the form maxx̄{t1 : φ};
Ut1 × |adomA||x̄| if t is in the form

∑
x̄{t1 : φ};

U
|adomA||x̄|
t1

if t is in the form
∏
x̄{t1 : φ}.

(4.2)
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Using structural induction on the parse tree of term t, similar to the proof of the first part, we
can show that the value computed by Ut for any term t in GGFk, is bounded by 2poly(|adomA|). The
value of Ut can be computed using the above recurrence relation in linear time with respect to the
size of representation of term t and the size of the active domain of A.

Using a similar idea, one can define recurrence relation Lt to compute a lower bound for the
values term t may take.

Proposition 2 If we use the value computed byUt, described by Equation 4.2, as the value ofMAX
in our construction, both the size and the maximum value in Ranget are polynomial with respect to
the number of elements in the active domain of A.

Proof: In Proposition 1, we showed that Ut is bounded from above by 2poly(|adomA|), where poly
is a polynomial. Therefore, by selecting MAX to be Ut, the number of elements in Ranget would
be log(MAX) = poly(|adomA|). Set Ranget can be encoded using O(poly(|adomA|) log poly
(|adomA|)) bits in an Enfragmo problem instance, since we have poly(|adomA|) integers, each of
which can be represented using log poly(|adomA|) bits.

Proposition 3 The number of elements in Power2t, is polynomial with respect to the number of el-
ements in the active domain ofA. In addition, the size of representation of this set is also polynomial
with respect to the number of elements in the active domain of A.

Proof: The proof of this proposition is very similar to that of Proposition 2.
Lemma 1 and Propositions 2 and 3 imply that the size of representation of Ins(Φ ∧ Ψ,A)

is polynomial with respect to the size of the active domain of A, given that A satisfies small-cost
condition.

Proposition 4 Let Φ ∧ Ψ ∈ GGFk(ε) and A be an instance structure satisfying small-cost con-
dition. Using the above construction for transforming a

∏
term to a term in the input language

of Enfragmo results in an Enfragmo problem specification having constant size and an Enfragmo
problem instance having polynomial size with respect to the size adomA.

Proof: Equipping TermTrans with the Sum aggregate based transformation for
∏

, we obtain a
construction for transforming terms in GGFk(ε) to terms in the language of Enfragmo. This con-
struction introduces a constant number of predicates, functions, and axioms to Spec(Φ∧Ψ). More-
over, based on the above lemma and propositions, the size of the resulting instance is polynomial
with respect to the size of adomA.

We say class K of arithmetical structures satisfies small cost condition iff all arithmetical struc-
tures in K satisfy small cost condition. Theorem 2 summarizes this section.

Theorem 2 Every problem satisfying small-cost condition is expressible in the input language of
Enfragmo. Also, every problem expressible in the input language of Enfragmo is in NP.

Proof: To prove this theorem, we first show that every problem satisfying small-cost condition
has a specification in Enfragmo and then we show that every specification expressible in the input
language of Enfragmo corresponds to a problem in NP, satisfying small-cost condition.
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The first part of this theorem is already proven in Proposition 4: Since embedded model expan-
sion onGGFk(ε) logic with the arithmetic background structure, as defined in Definition 7, captures
all problems in NP, satisfying small-cost condition, using Propositions 4, we conclude that every NP
problem, satisfying small-cost condition, can be expressed in the input language of Enfragmo.

As described in Chapter 2, we assume all formulas (specifications) are fixed and instances are
finite structures. As we will explain in the next chapters, Enfragmo, given a problem, generates a
polynomial size equi-satisfiable SAT instance for any phase of the problem specification, in poly-
nomial time, with respect to the size of the instance structure. Satisfiability of a polynomial size
SAT instance is an NP-Complete problem, and there are a constant number of phases in a problem
specification. So all problems expressible in the input language of Enfragmo are reducible to SAT,
and they belong to the complexity class NP.

The rest of this section explains why small-cost constraint is necessary. In [64], Tasharrofi and
Ternovska defined language L, which corresponds to the input language of a model expansion based
solver, to be active-domain-restricted language iff for all specifications expressible in L, and for all
arithmetical structures A over σ (instance vocabulary) and all expansions of A such as B satisfying
the specification, we have adomA = adomB.

In Enfragmo, the domains of all expansion predicates are specified as the cross product of types,
which can be thought of as unary instance predicates. So the input language of Enfragmo is active-
domain-restricted.

The Integer factorization problem is one of the NP problems that does not satisfy small-cost
condition: The instance vocabulary for this problem contains a single constant integer n, and the
expansion vocabulary contains two constants, a and b. Given an instance structureA, we are looking
for a non-trivial factorization of n, i.e., n = a × b where a, b > 1. Remember that the size of the
active domain of the instance structure is one while the value of largest integer in the active domain
is n.

Tasharrofi and Ternovska also showed that the integer factorization problem cannot be expressed
in any active-domain-restricted language [64]. To express this problem, we need to expand the
active domain with some new elements. Since the input language of Enfragmo is an active-domain-
restricted language, we cannot express integer factorization for Enfragmo without changing the
instance structure. In [64], a logic which captures NP in the presence of built-in arithmetic was
proposed.

One way of expressing this integer factorization for Enfragmo is to construct a problem instance
with a type of size θ(log n), and develop a specification which describes integer factorization based
on the binary representation of numbers.

4.3 Corresponding Logic for the Input Language of Enfragmo

As we explained in the previous chapter, a specification for Enfragmo is made up of one or more
phases. Each phase consists of two parts; a set of inductive definitions and a set of axioms. The goal
of this section is to define the logic corresponding to the input language of Enfragmo.

We define logic GL with respect to a set of unary predicates G = {G1, · · · , Gm}, GL(G) , to
be the following fragment of FO:

1. It contains all atomic formulas;
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2. It is closed under Boolean operations;
3. It contains ∃x(P (x) ∧ φ), provided P ∈ G and φ ∈ GL(G);
4. It contains ∀x(P (x)→ φ), provided P ∈ G and φ ∈ GL(G).
Motivated byGGFk logic, we defineGGL(G, ε), whereG∩ε = ∅, as the set of formulas in the

form Φ ∧ Ψ with ε ⊆ vocab(Φ), where Φ is a formula of GL(G) and Ψ is a conjunction of guard
axioms, one for each symbol E ∈ ε in the form: ∀x̄ E(x̄) → (P1(x1) ∧ · · · ∧ P|x̄|(x|x̄|), where
Pi ∈ G.

Notice that although GGL(G, ε) looks similar to GGF1(ε), there are some differences between
these two logics:
• All the upper guards inGGL(G, ε) are unary instance predicates from setG, while inGGF1(
ε), there is no restriction on the arity of upper guards.
• In GGL(G, ε) logic, every variable must occur in exactly one upper guard, while GGF1(ε)

requires each of the variables to occur in at least one upper guard.
Let E be a set of predicates. We define a [G,E] inductive definition to be a set of [G,X]

inductive rules (X ∈ E), such that each [G,X] inductive rule is a formula in the form
∀x̄ : X(x̄)← P1(x1) ∧ · · · ∧ P|x̄|(x|x̄|) ∧ φ(x̄) where φ(x̄) ∈ GL(G) and Pi ∈ G. Symbol X in
a [G,X] inductive rule is called the head and the formula on the right hand side of arrow (←) is
the body of the rule. Defined symbols are those that appear in the head of at least one of the rules,
and the rest are open symbols. We assume that rules contain no free variables, and every variable
that occurs in the head also appears in the body. We use Ψ{[G,E]} to denote a [G,E] inductive
definition.

A [G, ε] axiom is a sentence (formula without any free variable) φ where φ ∈ GGL(G, ε). A
[G, ε] set of axioms is a collection of [G, ε] axioms. We use Φ{[G, ε]} to denote a [G, ε] set of
axioms.

To complete the definition of the syntax of logic, we need to define well-formed terms. We
define the well-formed terms in a way similar to Definition 8.

LetG be a set of unary predicates, ε1, · · · , εk be k disjoint sets of predicate symbols and also let
E1, · · · , Ek be k disjoint sets of predicate symbols such thatEi∩εj = ∅, for all 1 ≤ i, j ≤ k. Logic
Enf(G, 〈ε1, · · · , εk〉,〈E1, · · · , Ek〉) consists of conjunction of (Ψ1{[G,E1]}∧Φ1{[G, ε1]})∧· · ·∧
(Ψk{[G,Ek]} ∧ Φk{[G, εk]}) where for all i ≤ k, we have:

1. vocab(Ψi)\Ei ⊆ (vocab(Ψ1)\E1) ∪
⋃i−1
j=1(Ej ∪ εj).

2. vocab(Φi)\εi ⊆ vocab(Ψ1) ∪
⋃i
j=1Ej ∪

⋃i−1
j=1 εj ;

Now we describe the semantics of logic Enf(G, 〈ε1, · · · , εk〉, 〈E1, · · · , Ek〉).
Given an instance structure A, and formula Φ = (Ψ1{[G,E1]} ∧ Φ1{[G, ε1]}) ∧ · · · ∧ (Ψk

{[G,Ek]} ∧Φk{[G, εk]}) ∈ Enf(G, 〈ε1, · · · , εk〉, 〈E1, · · · , Ek〉), we say Φ is satisfiable if there is
structure B expanding A such that B |= Φ.

As explained in the previous chapter, Enfragmo solves each phase once, independently, without
considering the next phases, while a solver for logic Enf must look for a structure satisfying all
phases. So the semantics of logic Enf is slightly different from that of the input language of En-
fragmo. In some cases, there are models for formulas in logic Enf(G, 〈ε1, · · · , εk〉, 〈E1, · · · , Ek〉)
that may not be found by Enfragmo. The following example explains the difference between the
two semantics.
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Example 7 Consider problem specification S, in which E1(.) and E2(.) are unary expansion pred-
icates, and all variables in the specification are associated with type T. Also, let the interpretation
for type T be {1, 2}. Assume S has two phases:

1. The first phase of S has a single axiom: ∃x E1(x).
2. The second phase of S also has a single axiom: ∀x E1(x) ∧ E2(x).
Based on the semantic of logic Enf , this problem has a single model, in which we have the

following facts: E1(1), E1(2), E2(1) and E2(2).
Now, let us see how Enfragmo acts on this problem: Enfragmo solves the first phase, first.

Depending on the answer it receives from the SAT solver, the interpretation for E1 can be any of the
following:
• Interpretation for E1 is {1}: Having this interpretation for E1, the second phase is unsatisfi-

able.
• Interpretation for E1 is {2}: Having this interpretation for E1, the second phase is unsatisfi-

able.
• Interpretation for E1 is {1, 2}: This interpretation for E1 makes the second phase satisfiable.

One way to implement a solver for formulas in logic Enf is the following (assuming the input
is instance structure A and formula Φ has n phases):

1. LetB1 be the set of all structure B1 such that B1 expands the instance structureA and satisfies
the first phase;

2. Let Bi, i ≥ 2, be the set of all structure Bi such that Bi expands at least one structure in Bi−1

and satisfies the i-th phase;
3. If the specification has n phases, the problem is satisfiable iff Bn is non-empty.
In order to develop a solver based on the above idea, one needs to modify a SAT solver to pro-

duce and return all the solutions for a given SAT instance. Having a SAT solver with this feature,
one can compute sets B1, · · · , Bn, as described above, by using a grounding-based solver. Unfor-
tunately, a SAT instance in the form of CNF may have an exponential number of solutions, and so,
implementing such a solver is not computationally efficient.
Let assume we have specification S with n phases, and A be the instance structure:

1. Let B1 be a set of structures such that B1 ∈ B1 iff B1 expands the instance structure A and
satisfies the first phase;

2. Let Bi, 2 ≤ i ≤ n, be the set of structures such that Bi ∈ Bi iff Bi expands at least one
structure in Bi−1 and satisfies the i-th phase;

3. We use Si to denote the problem specification obtained by removing the first i phases of S
and defining the predicates defined in any of the first i phases of S as instance predicates in
Si;

4. Let Bi and B′i be two structures in Bi. The problem defined by problem specification Si, and
instance structure Bi has at least one solution iff the problem defined by problem specification
Si, and instance structure B′i has at least one solution.

For a problem specification satisfying condition 4, given an instance structure, Enfragmo finds
a solution iff the problem has a model based on the semantic of logic Enf .

The following specification rewrites the problem specification in Example 7 such that the new
specification satisfies the above properties:

1. We modify the first phase of S, by adding another axiom to it: ∃x E1(x) ∧ ∀x E1(x).
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2. We do not need to change the second phase: ∀x E1(x) ∧ E2(x).



Chapter 5

Grounding Techniques For Enfragmo

In Chapter 3, we described the input language of Enfragmo. As we explained, Enfragmo converts
its inputs to a SAT instance in two phases. In this chapter and the next, we mainly focus on the first
phase, the grounding phase, in which Enfragmo generates an equivalent variable-free first-order
formula for a given problem.

5.1 Introduction

The results of the experiments in Chapter 3 showed that the performance of Enfragmo varies for
different specifications of the same problem. Sometimes, the specifications have certain features that
cause one grounding algorithm to fail, while allowing another algorithm to perform well. MXG [56],
a solver developed by Mohebali as part of her Master thesis, and Enfragmo are both built based
on the bottom-up grounding paradigm. However in Enfragmo, we have developed several new
techniques/algorithms with the goal of accelerating the process of grounding and to shortening the
solving phase.

In this chapter, we present the bottom-up relational algebra-based grounding algorithm, intro-
duced in [58], as a generic framework, and explain the new techniques we have developed in En-
fragmo, as a particular instantiation of this framework. Each of these configurations is suitable for
certain kinds of specifications. We describe the properties of specifications for which each configu-
ration is expected to perform well.

The grounding technique presented in this chapter only works on specifications where all the
terms are variables and constants, i.e., the specifications cannot have aggregates, functions or arith-
metical operators as their terms. In Chapter 6, we extend this grounding technique so that it supports
more complex terms.

The rest of this chapter is organized as follows: In Section 5.2, the generic framework of re-
lational algebra-based grounding is introduced. We describe the grounding algorithm based on an
abstract notion of a table that supports certain operations. Section 5.3 describes several represen-
tations/data structures for tables, and discusses the advantages of each one in comparison with the
others. We describe algorithms to implement the operations for each of the representations, in Sec-
tion 5.4. In Section 5.5, we describe the experiments performed to confirm our claims regarding the
relation between the properties of specifications and configurations.

40
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5.1.1 My Contributions

The description of the relational algebra-based grounding algorithm, introduced in [58], as a generic
framework is contributed by the author. Normal table, Subsection 5.3.2, and tables with hidden vari-
ables, Subsection 5.3.4, have been introduced in MXG [56]. Extending the idea of table with hidden
variables to work with other tables is proposed by the author. True/False tables, Subsection 5.3.3, is
based on [5]. Tables with restriction, Subsection 5.3.5 is designed and implemented by the author.

The sorting-based algorithms for joining and negating tables are proposed by Shahab Tasharrofi
and the author. Also, the linear sorting algorithm for sorting the contents of tables is contributed by
the author.

5.2 Relational Algebra-based Grounding

In [58], an algorithm that constructs a ground formula by a bottom-up process is introduced. This
algorithm is based on an extension of the relational algebra [23]. In this section, we generalize this
grounding algorithm to obtain a framework which allows us to handle grounding more efficiently.

To familiarize the reader with the concepts introduced in [58], and to distinguish our proposed
generalization from the previous work, we briefly explain how the grounding algorithm introduced
in [58] works. We describe, in more detail, how this algorithm handles the task of grounding in
Subsection 7.1.1.

Given formula φ over vocabulary σ ∪ ε and σ-structure A = (A;σA), the goal of a grounding
algorithm is to obtain an equivalent first-order variable-free formula ψ. In this thesis, we bring
domain elements, A, into the syntax by expanding the vocabulary and associating a new constant
symbol with each element of the domain. For domain A, we denote the set of such constants by Ã.

Definition 10 (Reduced Grounding for MX) ([58]) Formula ψ is a reduced grounding of formula
φ over σ-structureA = (A, σA) if (1) ψ is a ground formula over ε∪Ã; and (2) for every expansion
structure B = (A, σA, εB) over vocab(φ), B |= φ iff (B, Ã) |= ψ.

An extended X-relation is a relation associated with the assignments to the tuple of variables
in set X . The grounding algorithm produces/maintains extended relations. Notice that assignment
γ : X 7→ A can be seen as a tuple of size |X|, whose elements are from A. In [58], an extended
X-relation is defined as follows.

Definition 11 (extended X-relation; function δR) ([58]) Let A = (A;σA), and X be the set of
free variables of formula φ. An extended X-relation R over A is a set of pairs (γ, ψ) s.t. (1) ψ is a
ground formula over ε ∪ Ã and γ : X → A; (2) for every γ, there is at most one ψ s.t. (γ, ψ) ∈ R.
The function represented by R, is a mapping from tuples γ of elements of domain A to formulas,
defined as:

δR(γ) =

{
ψ if(γ, ψ) ∈ R,
⊥ if there is no pair(γ, ψ) ∈ R.

Let γ be an assignment, then we use φ[γ] to denote the result of instantiating free variables in φ
according to γ.



CHAPTER 5. GROUNDING TECHNIQUES FOR ENFRAGMO 42

Definition 12 (answer to φ with respect to A) ([58]) Let φ be a formula in σ ∪ ε with free vari-
ables X , A be a σ-structure with domain A, and R an extended X-relation over A. If R is an
answer to φ with respect to A, for any γ : X → A, we have δR(γ) is a reduced grounding of φ[γ]
over A.

The standard relational algebra has the following operations, each corresponding to a connective
in FO: complement (negation); join (conjunction); union (disjunction), project (existential quantifi-
cation); divide (universal quantification). In [58], the standard relation algebra is extended to work
on extended relations.

Definition 13 (extended relational algebra operations) ([58]) Let R be an extended X-relation,
and S an extended Y -relation, both over domain A.

1. ¬R is the extended X-relation ¬R = {(γ, ψ) | γ : X → A, δR(γ) 6= >, and ψ = ¬δR(γ)};
2. R on S is the extendedX∪Y -relation {(γ, ψ) | γ : X∪Y → A, γ|X ∈ R, γ|Y ∈ S, and ψ =
δR(γ|X) ∧ δS(γ|Y )};

3. R ∪ S is the extended X ∪ Y -relation R ∪ S = {(γ, ψ) | γ|X ∈ Ror γ|Y ∈ S, and ψ =
δR(γ|X) ∨ δS(γ|Y )};

4. The Y -projection of R, denoted by πY (R), is the extended Y -relation {(γ′, ψ) | γ′ =
γ|Y for some γ ∈ R and ψ =

∨
{γ∈R|γ′=γ|Y } δR(γ)};

5. The Y -quotient ofR, denoted by dY (R), is the extended Y -relation {(γ′, ψ) | for all γ such that
γ′ = γ|Y ⇒ γ ∈ R and ψ =

∨
{γ∈R|γ′=γ|Y } δR(γ)};

{(γ′, ψ) | ∀γ : X → A ∧ γ|Y = γ′ ⇒ γ ∈ R), and ψ =
∧
{γ∈R|γ′=γ|Y } δR(γ)}.

Proposition 5 ([58]) Suppose thatR is an answer to φ1 and S is an answer to φ2, both with respect
to structure A.

1. ¬R is an answer to ¬φ1 with respect to A;
2. R on S is an answer to φ1 ∧ φ2 with respect to A;
3. R∪ S is an answer to φ1 ∨ φ2 with respect to A;
4. If Y is the set of free variables of ∃z̄φ1, then πY (R) is an answer to ∃z̄φ1 with respect to A;
5. If Y is the set of free variables of ∀z̄φ1, then dY (R) is an answer to ∀z̄φ1 with respect to A.

By applying the algebra inductively on the structure of the formula, we can obtain an answer to
a given formula.

5.2.1 Generalization of Relational Algebra-based Grounding Technique

Patterson et al., in [58], define ψ as a reduced grounding for φ over σ-structureA if ψ is a grounding
of φ over structure A and ψ does not have any symbol of σ. They also define the δ function of
an extended X-relation, where X is a set of variables, to be a total function mapping instantiations
of variables in X to reduced ground formulas. During the grounding process, the return value of
function δ, for any extended relation, is uniquely determined by Definition 13.

In this section, we extend the above definitions to describe several alternatives to what has been
proposed in [58]. We define an X-relation to be a mapping from instantiations of X to formulas,
rather than a mapping from instantiations to reduced groundings.



CHAPTER 5. GROUNDING TECHNIQUES FOR ENFRAGMO 43

Definition 14 (extended X-relation; function δR) Let A be a domain, and X a set of variables.
An extended X-relationR over A is a set of pairs (γ, ψ) such that,
1) γ : X → A;
2) ψ is a formula without any free variables;
3) for every γ, there is exactly one ψ such that (γ, ψ) ∈ R.

The function δR represented byR is a mapping from object assignments to formulas, i.e.,

δR(γ) = ψ if (γ, ψ) ∈ R.

Definition 15 (equivalent with respect to A) LetA be a σ-structure, φ1(x̄) and φ2(ȳ) be two first-
order formulas, where σ ⊆ vocab(φ1) and σ ⊆ vocab(φ2). We say φ1 and φ2 are equivalent with
respect to A (or simply φ1 and φ2 are equivalent, if A is clear from the context) iff for any structure
B expanding A, we have

B |= ∀z̄ φ1 ↔ φ2,

where z̄ = x̄ ∪ ȳ.

Example 8 Let φ1(x) be E(x)∨I(x), φ2(x) be E(x), andA be an {I}-structure. Also let IA = ∅.
Formulas φ1 and φ2 are equivalent with respect to A since for any {I, E}-structure B expanding
A, we have B |= ∀x (I(x) ∧ E(x))↔ E(x).

Example 9 Let φ1(x) and φ2(x) be the same as Example 8, and let A be an {I}-structure such
that IA = {1}. Let {I, E}-structure B be such that IB = IA = {1} and EB = {1, 2}. Clearly, B
expands A but B 6|= ∀x (I(x) ∧ E(x)) ↔ E(x). So, φ1 and φ2 are not equivalent with respect to
A.

Note that if φ1 and φ2 are logically equivalent formulas, they are equivalent with respect to A
for any structure A.

Definition 16 (answer to φ with respect to A) Let φ be a formula in σ ∪ ε with free variables X ,
A a σ-structure with domain A, and R an extended X-relation over A. We say R is an answer to
φ with respect to A if for any γ : X → A, we have δR(γ) and a reduced grounding of φ[γ] are
equivalent with respect to A.

Definition 16 is a generalization of Definition 12, used in [58]. In the latter, the return value
of function δ must be a reduced grounding while in the former, we just need the output value of
function δ to be equivalent to a reduced grounding of φ, with respect to the instance structure.

Since a sentence has no free variables, the answer to a sentence φ is a zero-ary extended X-
relation, containing a single pair (〈〉, ψ), associating the empty tuple with formula ψ, which is
equivalent to a (reduced) grounding of φ, with respect to the instance structure.

Following [58, 56], we explain the properties of extended relations corresponding to the outputs
of these operators.

Definition 17 (Extended Relational Algebra) LetR be an extendedX-relation and S an extended
Y -relation, both over domain A.
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1. ¬R is an extended X-relation such that for γ : X 7→ A, δ¬R(γ) and ¬δR(γ) are equivalent
with respect to A.

2. R on S is an extended X ∪ Y -relation such that for γ : X 7→ A, δRonS(γ) and δR(γ|X) ∧
δS(γ|Y ) are equivalent with respect to A.

3. R ∪ S is an extended X ∪ Y -relation such that for γ : X 7→ A, δR∪S(γ) and δR(γ|X) ∨
δS(γ|Y )} are equivalent with respect to A.

4. For Z ⊆ X , the Z-projection of R, denoted by πZ(R), is an extended Z-relation such that
for all γ : Z 7→ A, δπZ(R)(γ) and

∨
{γ′:X 7→A|γ=γ′|Z} δR(γ′) are equivalent with respect toA.

5. For Z ⊆ X , the Z-quotient of R, denoted by dZ(R), is an extended Z-relation such that for
all γ : Z 7→ A, δdZ(R)(γ) and

∧
{γ′:X→A|γ=γ′|Z} δR(γ′) are equivalent with respect to A.

Our definition of extended relational algebra, Definition 17, is a generalization of what has
been proposed previously. Unlike Definition 13, our definition simply describes the necessary and
sufficient properties the output value of function δ must have, for our extended relational algebra to
work correctly.

In [58], the answer to atomic formula P (x̄) is defined as follows: If P is an instance predicate,
the answer to P is defined as the extended relation corresponding to set {(ā,>) | if ā ∈ PA} ∪
{(ā,⊥) | if ā 6∈ PA}. If P is an expansion predicate, the answer is the set of all pairs (ā, P (ā)),
where ā is a tuple of elements from domain A. The atomic formulas of the form x1{≤, <,=, >,≥
}x2, where x1 and x2 are two variables, can be seen as instance predicates since one can evaluate
their truth values for any given assignment.

Definition 18 (Answer to Atomic Formula) Let φ be an atomic formula with free variables X =
{x1, · · · , xn} andR be an extended X-relation.

1. Let φ be P (x1, · · · , xn) where P is an n-ary instance predicate. Extended relation R is an
answer to φ iff for γ : X 7→ A, δR(γ) and PA[γ] are equivalent with respect to A.

2. Let φ be P (x1, · · · , xn) where P is an n-ary expansion predicate. Extended relation R is an
answer to φ iff for γ : X 7→ A, δR(γ) and P [γ] are equivalent with respect to A.

3. Let φ be x1 op x2 where op is a comparison operator. Extended relationR is an answer to φ
iff for γ : X 7→ A, δR(γ) and x1|γ op x2|γ are equivalent with respect to A.

In the context of this thesis, the above definition describes just one of the approaches to defining
the answer to an atomic formula. We propose different approaches for representing answers to the
atomic formulas in the next sections.

To ground using this algebra, we apply the algebra inductively on the structure of the formula,
just as the standard relational algebra may be applied for query evaluation. The correctness of the
method then follows, by induction on the structure of the formula, from the following proposition.

Proposition 6 Suppose that R is an answer to φ1 and S is an answer to φ2, both over domain A.
Then

1. ¬R is an answer to ¬φ1 with respect to A;
2. R on S is an answer to φ1 ∧ φ2 with respect to A;
3. R∪ S is an answer to φ1 ∨ φ2 with respect to A;
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4. If Y is the set of free variables of ∃z̄φ1, then πY (R) is an answer to ∃z̄φ1 with respect to A;
5. If Y is the set of free variables of ∀z̄φ1, then dY (R) is an answer to ∀z̄φ1 with respect to A.

Proof: Here, we prove T , where T = R on S, is an answer to φ1∧φ2 with respect toA. The proofs
of the other claims are similar to this one.

We have R is an answer to φ1(X) with respect to A, and S is an answer to φ2(Y ) with respect
to A. Based on Definition 16, for all γ : X ∪ Y 7→ A, and structure B expanding A, we have
(B, Ã) |= δR(γ|X) iff (B, Ã) |= φ1[γ|X ]. Also, we have (B, Ã) |= δS(γ|Y ) iff (B, Ã) |= φ2[γ|Y ].

Let ψ be a reduced grounding for (φ1(X) ∧ φ2(Y )) [γ] over A. Then, for all B = (A, σA, εB),
(B, Ã) |= ψ iff (B, Ã) |= (φ1(X) ∧ φ2(Y )) [γ]. From (B, Ã) |= (φ1(X) ∧ φ2(Y )) [γ], we conclude
(B, Ã) |= (φ1[γ|X ] ∧ φ2[γ|Y ]). Since R (T ) is an answer to φ1 (φ2, respectively) with respect
to A, we have (B, Ã) |= (φ1(X) ∧ φ2(Y ))[γ] iff (B, Ã) |= (δR(γ|X) ∧ δS(γ|Y )). According
Definition 17, δT (γ) and (δR(γ|X) ∧ δR(γ|Y )) are equivalent, so (B, Ã) |= (φ1(X) ∧ φ2(Y ))[γ]
iff (B, Ã) |= δT (γ).

To make the proofs easier to read, in the other proofs of this chapter, we may use B instead of
(B, Ã).

Algorithm 1 represents the grounding algorithm using the extended relational algebra technique.
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Algorithm 1 Relational Algebra-based Grounding Algorithm([56]).
Input: φ, A, σA

Output: R: R is an answer to Φ.
1: function GROUND(φ, A, σA.)
2: if φ = ¬φ1 then
3: return ¬ GROUND(φ1, A, σ

A)
4: else if φ = φ1 ∧ φ2 then
5: return GROUND(φ1, A, σ

A) on GROUND(φ2, A, σ
A)

6: else if φ = φ1 ∨ φ2 then
7: return GROUND(φ1, A, σ

A) ∪ GROUND(φ2, A, σ
A))

8: else if φ = ∃z̄φ1 then
9: return πz̄ (GROUND(φ1, A, σ

A))
10: else if φ = ∀z̄φ1 then
11: return dz̄ (GROUND(φ1, A, σ

A))
12: else if φ is an instance predicate then
13: return GROUNDINSTANCEPREDICATE(φ,A, σA))
14: else
15: return GROUNDEXPANSIONPREDICATE(φ,A, σA)
Input: φ = P (x̄) where P is an instance predicate, A, σA

Output: R: R is an answer to P (x̄)
16: function GROUNDINSTANCEPREDICATE(φ, A, σA)

ConstructR such that, for every instantiation γ : X 7→ A,
δR(γ) is equivalent to PA[γ].

Input: φ = P (x̄) where P is an expansion predicate, A, σA

Output: R: R is an answer to P (x̄)
17: function GROUNDEXPANSIONPREDICATE(φ, A, σA)

ConstructR such that, for every instantiation γ : X 7→ A,
δR(γ) is equivalent to φ[γ].

Input: φ = X1 op X2 where op is a comparison operator, A, σA

Output: R: R is an answer to φ
18: function GROUNDORDERINGFORMULA(φ, A, σA)

ConstructR such that, for every instantiation γ : X 7→ A,
δR(γ) is equivalent to φ[γ].

5.3 Different Representations for Tables

The number of tuples in an extended X-relation is |A|k, where k = |X|. In this section, we describe
different approaches to provide a compact representation of an extended relation, which may have
a huge size. In the next section, we explain how each of the relational algebra operators efficiently
computes the resulting extended relations given each of these representations.

The rest of this section is divided into subsections, in each of which we describe a different
approach for representing an extended X-relation. In each subsection, we first give a high level
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description of the idea and discuss its cons and pros, and then we describe how the result of relational
algebra operators can be computed. In Section 5.4, we discuss the most suitable data structure to
implement each representation and explain the algorithms to compute the result of operators on each
data structure.

Three of these representations (basic tables, normal tables and tables with hidden variables)
are proposed and implemented in [56] and the rest are new. In the setting of [56], to describe a
representation, one needs to introduce a new algebra. On the other hand, the generalization of the
relational algebra, introduced in the previous section, enables us to describe a representation as a
data structure. To define a representation, we just need to describe how the output of function δ can
be computed and how the extended relation resulting from the application of a relational algebra
operator can be represented.

For the sake of explanation, we restrict the Boolean operators in the axiomatizations to ¬,∧ and
the quantifiers to existential quantifier (∃), and hence, we need to describe how operators ¬, ./,Π
can be implemented for different kinds of representations.

In this chapter, we use RsX to denote the table representing extended X-relation, where the
superscript, s, can be either “B”, “N”, “TF”, “H”, “r” (The superscript identifies the table kind).
To avoid introducing new notation, we use δ, ¬, ./, Π to denote the delta function, not, join and
projection operators, respectively, on the tables.

5.3.1 Basic Table

The naive approach to represent an extended X-relation is to use a set of pairs (γ, ψ), where γ is
a tuple of elements and ψ is a formula. One can think of this set as a table with |X| + 1 columns
and |A||X| rows in which the i-th column, i ≤ |X|, corresponds to the i-th variable in X and the
last column is the formula column. This is the motivation behind calling the data structures used to
represent extended X-relations, tables.

Let RBX denote a basic table representing an extended X-relation R. We use T (RBX) to denote
the set of tuples stored in this data structure. Clearly, set T (RBX) contains |A||X| elements and
function δRBX is computed as:

δRBX
(γ) = ψ[γ] if (γ, ψ) ∈ T (RBX).

Construction 1 describes one method of representing the result of applying relational algebra
operators defined in Definition 17 on basic tables.

Construction 1 LetR be an extended X-relation and S an extended Y -relation, both over domain
A.

1. Let T be an extended X-relation defined as ¬R. The following is used to construct a basic
table for T .
T (TBX ) = {(γ,¬ψ) | (γ, ψ) ∈ T (RBX)};

2. Let T be an extended X ∪ Y -relation defined asR on S . The following is used to construct a
basic table for T .
T (TBX∪Y ) = {(γ, ψ1 ∧ ψ2) | (γ|X , ψ1) ∈ T (RBX) and (γ|Y , ψ2) ∈ T (SBY )}.
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3. Let T be an extended Z-relation defined as πZ(R). The following is used to construct a basic
table for T .
T (TBZ ) = {(γ, ψ) | ψ =

∨
{γ′:X→A|γ=γ′|Z} δRBX

(γ′)[γ′|X\Z ]}.

Proposition 7 Construction 1 is correct, that is, for each operator, the construction generates a
basic table whose δ function satisfies the properties stated in Definition 16.

Proof: Here, we provide the proof for the negation operator. The proofs for the other operators are
similar.

We show for all γ, δTBX (γ) = ¬δRBX (γ).
Let T (RBX) be the set of tuples in basic table RBX and γ : X 7→ A and φ = δRBX

(γ). Since
δRBX

(γ) = φ, we conclude the pair (γ, φ) is in set T (RBX). From Construction 1, we have (γ,¬φ) ∈
T (TBX ), and then δTBX (γ) evaluates as ¬φ. So, we have δTBX (γ) = ¬φ = ¬δRBX (γ).

A basic table for atomic formula φ(x̄) has |A||x̄| rows where the formula attached to the row
with assignment γ is a formula equivalent to φ[γ].

To illustrate the difference between the representations, we use Example 10 as a running exam-
ple.

Example 10 (Running example) Let σ = {P} and ε = {Q} where both P and Q are binary
predicates. Also let A = (A;PA), A = {1, 2, 3} and PA = {(2, 1), (2, 2), (2, 3), (3, 1)}. We study
how different data structures represent an answer to each of the following formulas:
• φ1(x, y) = P (x, y),
• φ2(x, y) = Q(x, y),
• φ3(x, y) = ¬φ1(x, y),
• φ4(x, y, z) = φ2(x, y) ∧ φ3(y, z),
• φ5(y) = ∃x z φ4(x, y, z).
Here, we illustrate how an answer to each of the above formulas, given the instance structure

A, can be represented as a Basic table.

x y ψ(x, y)

1 1 ⊥
1 2 ⊥
1 3 ⊥
2 1 >
2 2 >
2 3 >
3 1 >
3 2 ⊥
3 3 ⊥

Table 5.1: Basic table for
φ1(x, y).

x y ψ(x, y)

1 1 Q(x, y)
1 2 Q(x, y)
1 3 Q(x, y)
2 1 Q(x, y)
2 2 Q(x, y)
2 3 Q(x, y)
3 1 Q(x, y)
3 2 Q(x, y)
3 3 Q(x, y)

Table 5.2: Basic table for
φ2(x, y).

x y ψ(x, y)

1 1 >
1 2 >
1 3 >
2 1 ⊥
2 2 ⊥
2 3 ⊥
3 1 ⊥
3 2 >
3 3 >

Table 5.3: Basic table for
φ3(x, y).
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x y z ψ(x, y, z)

1 1 1 Q(x, y)
1 1 2 Q(x, y)
1 1 3 Q(x, y)
1 2 1 ⊥
...

...
...

Table 5.4: Basic table for φ4(x, y, z).

y ψ(y)

1 Q(1, y) ∨Q(2, y) ∨Q(3, y)
2 ⊥
3 Q(1, y) ∨Q(2, y) ∨Q(3, y)

Table 5.5: Basic table for φ5(y).

5.3.2 Normal Table

The first observation we use to improve the performance of basic tables is that almost all instance
predicates have sparse interpretations, i.e., there are many instantiations whose corresponding for-
mulas are false (⊥). For a given extended X-relation, if we remove all tuples whose formula parts
are ⊥ and store the rest in a table (or an array), we save a large amount of space. Then, to obtain
the corresponding formula for an instantiation, we search for that instantiation in the table. If such
an instantiation has been found, we return the corresponding formula, otherwise that instantiation is
mapped to ⊥ [56].

More formally, letRNX be a normal table representing an extendedX-relationR. We use T (RNX)
to denote the set of tuples stored in this data structure. Function δRNX , for this representation, is
defined as:

δRNX
(γ) =

{
ψ[γ] if (γ, ψ) ∈ T (RNX),

⊥ if there is no pair (γ, ψ) ∈ T (RNX).

In [56], δRNX (γ) is defined as:

δRNX
(γ) =

{
ψ if (γ, ψ) ∈ T (RNX),

⊥ if there is no pair (γ, ψ) ∈ T (RNX).

Note that the difference is when (γ, ψ) ∈ T (NX); our normal table returns ψ[γ] while the normal
table defined in [56] returns ψ. The way δRNX is defined in the latter requires creating a formula
for each instantiation γ. This method is not efficient and consumes a large amount of memory. As
can be seen in Example 11, our definition of δRNX for normal tables, allows us to use the same ψ in
different rows, while [56] does not.

Construction 2 describes how the normal tables resulting from applying relational algebra oper-
ators, defined in Definition 17, are computed.

Construction 2 LetR be an extended X-relation and S an extended Y -relation, both over domain
A.

1. Let T be an extended X-relation defined as ¬R. The following is used to construct a normal
table representing T .
T (TNX ) = {(γ,¬ψ) | (γ, ψ) ∈ T (RNX), ψ 6= >} ∪ {(γ,>) | γ : δRNX

(γ) = ⊥};
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2. Let T be an extended X ∪ Y -relation defined as R on S. The following is used to construct a
normal table representing T .
T (TNX ) = {(γ, ψ1 ∧ ψ2) | (γ|X , ψ1) ∈ T (RNX) and (γ|Y , ψ2) ∈ T (SNY )};

3. Let TNZ be the table computed as πZ(RNX). The following is used to construct a normal table
representing TNZ .
T (TNZ ) = {(γ, ψ) | there is at least one γ′ s.t. (γ′, ψ′) ∈ T (RNX) and γ = γ′|Z , ψ =∨
{γ′:X 7→A such that γ=γ′|Z} δRNX

(γ′)[γ′|(X\Z)]}.

Proposition 8 Construction 2 is correct, that is, for each operator, the construction generates a
normal table whose δ function satisfies the properties stated in Definition 16.

Proof: Here, we only provide the proof for the negation operator. The proofs for the other operators
are similar.

We consider the following three cases:

1. If δRNX (γ) = ⊥, T (RNX) does not have any entry whose first component is γ, and hence,
δTNX

(γ) = >.

2. If δRNX (γ) = >, T (RNX) contains the pair 〈γ,>〉. By our construction, there will be no pair,
in T (TNX ) whose first element is γ and so δTNX (γ) = ⊥.

3. If δRNX (γ) = φ 6∈ {⊥,>}, T (RNX) must have pair 〈γ, φ〉 in it. Based on the construction,
T (TNX ) will have 〈γ,¬φ〉, and so δTNX (γ) = ¬φ.

We show that δTNX (γ) ⇔ ¬δRNX (γ), for all γ, which is, according to Definition 17, enough to
complete the proof.

Example 11 (Continuation of Example 10) Tables 5.6,. . . ,5.10 represent answers in the form of
normal tables for φ1, . . . , φ5, in the setting of Example 10.

x y ψ(x, y)

2 1 >
2 2 >
2 3 >
3 1 >

Table 5.6: Normal table for
φ1(x, y).

x y ψ(x, y)

1 1 Q(x, y)
1 2 Q(x, y)
1 3 Q(x, y)
2 1 Q(x, y)
2 2 Q(x, y)
2 3 Q(x, y)
3 1 Q(x, y)
3 2 Q(x, y)
3 3 Q(x, y)

Table 5.7: Normal table for
φ2(x, y).

x y ψ(x, y)

1 1 >
1 2 >
1 3 >
3 2 >
3 3 >

Table 5.8: Normal table for
φ3(x, y).
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x y z ψ(x, y, z)

1 1 1 Q(x, y)
1 1 2 Q(x, y)
...

...
...

Table 5.9: Normal table for φ4(x, y, z).

y ψ(y)

1 Q(1, y) ∨Q(2, y) ∨Q(3, y)
3 Q(1, y) ∨Q(2, y) ∨Q(3, y)

Table 5.10: Normal table for φ5(y).

Comparing Table 5.1 and Table 5.6 illustrates how a normal table can save memory when we
are dealing with instance predicates.

5.3.3 True/False Tables

Although normal tables can represent some large extended relations compactly, there are extended
relations whose corresponding normal tables have too many rows. In this subsection and the next,
we describe two modifications to the normal tables that enable us to represent certain extended
relations more compactly.

Normal tables compactly represent extended relations that have many rows with false formula
attached to them. From another perspective, this type of table is a representation with false as its
default formula. If an instantiation is not in a table, it is mapped to the default formula of the table.
We can extend this idea and define two types of tables; the False Table, whose default formula is
false, and the True Table, whose default formula is true.

True/False table RTFX representing an extended X-relation R is described using a set of tuples
(set of rows), T (RTFX ), and a formula (default formula), D(RTFX ). Function δRTFX , for this repre-
sentation, is defined as:

δRTFX
(γ) =

{
ψ[γ] if (γ, ψ) ∈ T (RTFX ),

D(RTFX ) if there is no pair (γ, ψ) ∈ T (RTFX ).

Construction 3 LetR be an extended X-relation and S an extended Y -relation, both over domain
A.

1. Let T be an extended X-relation defined as ¬R. The following is used to construct a True/-
False table for T .

(a) T (T TFX ) = {(γ,¬ψ) | (γ, ψ) ∈ T (RTFX )};
(b) D(T TFX ) = ¬D(RTFX ).

2. Let T be an extended X ∪ Y -relation defined asR on S. The following is used to construct a
True/False table for T .

If both RTFX and STFY are False tables:

(a) T (T TFX∪Y ) = {(γ, ψ) | (γ|X , φ1) ∈ T (RTFX ) and (γ|Y , φ2) ∈ T (STFY ), ψ = φ1 ∧ φ2};
(b) D(T TFX∪Y ) = ⊥.

If both RTFX and STFY are True tables:
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(a) T (T TFX∪Y ) = {(γ, ψ) | (γ|X , φ1) ∈ T (RTFX ) and (γ|Y , φ2) ∈ T (STFY ), ψ = φ1 ∧ φ2} ∪
{(γ, ψ) | (γ|X , ψ) ∈ T (RTFX ) and γ|Y 6∈ T (STFY )} ∪ {(γ, ψ) | γ|X 6∈ T (RTFX ) and
(γ|Y , ψ) ∈ T (STFY )};

(b) D(T TFX∪Y ) = >.
If RTFX is a False table and STFY a True table:

(a) T (T TFX∪Y ) = {(γ, ψ) | γ|X ∈ T (RTFX ) and γ|Y ∈ T (STFY ) and δSTFY (γ|Y ) 6= ⊥, ψ =

δRTFX
(γ|X) ∧ δSTFY (γ|Y )} ∪{(γ, ψ) | (γ|X , ψ) ∈ T (RTFX ) and γ|Y 6∈ T (STFY )};

(b) D(T TF ) = false.

3. Let T TF be an extended Z-relation defined as πZ(RTF ). The following is used to construct
a True/False table for T .

RTFX is a False table:

(a) T (T TFZ ) = {(γ, ψ) | γ : there is at least one γ′ s.t. γ′ ∈ T (RTFX ) and γ = γ′|Z ,
ψ =

∨
{γ′:X→A|γ=γ′|Z} δRTFX

(γ′)[γ′|(X\Z)]};

(b) D(T TFZ ) = D(RTFX ).

RTFX is a True table:

(a) T (T TFZ ) = {(γ, ψ) | γ : for all γ′ : X 7→ A s.t. γ = γ′|Z , we have 〈γ′, φ〉 ∈ T (T TFX ),
ψ =

∨
{γ′:X→A|γ=γ′|Z}, δRTFX

(γ′)[γ′|(X\Z)]};

(b) D(T TFZ ) = D(RTFX ).

Proposition 9 Construction 3 is correct, that is, for each operator, the construction generates a
True/False table whose δ function satisfies the properties stated in Definition 16.

Proof: Here, we provide the proof for the negation and join operators.

• Correctness of construction for negation operator: By Definition 17, it is enough to show
δTTFX

(γ) = ¬δRTFX (γ), for all γ.

We consider the following two cases:

1. If δRTFX (γ) = D(RTFX ), then T (RTFX ) does not have any entry whose first component is
γ. Based on the construction, T (T TFX ) also does not have any entry whose first compo-
nent is γ. So, we have δTTFX (γ) = D(T TFX ) = ¬D(RTFX ) = ¬δRTFX (γ).

2. If δRRFX (γ) = φ 6= D(RTFX ), then 〈γ, φ〉 ∈ T (RTFX ). Based on the construction,
〈γ,¬φ〉 ∈ T (T TFX ). So δTTFX (γ) = ¬φ = ¬δRTFX (γ).

• Correctness of construction for join operator: We only present the proof for the case when
one of the tables is a True table and the other one is a False table.

By Definition 17, it is enough to show δTTFX∪Y
(γ)⇔ δRTFX

(γ)∧δSTFY (γ), for all γ. We consider
the following four cases:
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1. If δRTFX (γ) = D(RTFX ) and δSTFY (γ) = D(STFY ), then neither T (RTFX ) nor T (STFX ) has
any entry whose first component is γ. Based on the construction, T (T TFX ) does not have
any entry with the first component γ, either. So, we have δTTFX∪Y (γ) = D(T TFX ) = ⊥ ⇔
⊥∧> = δRTFX

(γ) ∧ δSTFY (γ).
2. If δRTFX (γ) = φ 6= D(RTFX ) and δSTFY (γ) = D(STFY ), then we have (γ, φ) ∈ T (RTFX ).

From the definition of δ function for True/False table, δTTFX∪Y (γ) = φ ⇔ φ ∧ > =

δRTFX
(γ) ∧ δSTFY (γ).

3. If δRTFX (γ) = D(RTFX ) and δSTFY (γ) = ψ 6= D(STFY ), then T (RTFX ) does not have any
entry whose first component is γ. Based on the construction, T (T TFX∪Y ) does not have
any entry with the first component γ, either. So, we have δTTFX∪Y (γ) = D(T TFX∪Y ) =

⊥ ⇔ ⊥∧ ψ = δRTFX
(γ) ∧ δSTFY (γ).

4. If δRTFX (γ) = φ 6= D(RTFX ) and δSTFY (γ) = ψ 6= D(STFY ), then by the construction, we
have (γ, φ ∧ ψ) ∈ T (RTFX∪Y ), which means δTTFX∪Y (γ) = φ ∧ ψ = δRTFX

(γ) ∧ δSTFY (γ).

In all four cases, formulas δTTFX∪Y (γ) and δRTFX (γ)∧ δSTFY (γ) are equivalent, which proves the
proposition.

Example 12 (Continuation of Example 10) Tables 5.11,. . . ,5.15 represent answers in the form of
True/False tables for φ1, . . . , φ5, in the setting of Example 10.

x y ψ(x, y)

2 1 >
2 2 >
2 3 >
3 1 >

D = ⊥

Table 5.11: True/False table
for φ1(x, y).

x y ψ(x, y)

1 1 Q(x, y)
1 2 Q(x, y)
1 3 Q(x, y)
2 1 Q(x, y)
2 2 Q(x, y)
2 3 Q(x, y)
3 1 Q(x, y)
3 2 Q(x, y)
3 3 Q(x, y)

D = ⊥

Table 5.12: True/False table
for φ2(x, y).

x y ψ(x, y)

2 1 ⊥
2 2 ⊥
2 3 ⊥
3 1 ⊥

D = >

Table 5.13: True/False table
for φ3(x, y).
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x y z ψ(x, y, z)

1 1 1 Q(x, y)
1 1 2 Q(x, y)
...

...
...
D = ⊥

Table 5.14: True/False table for φ4(x, y, z).

y ψ(y)

1 Q(1, y) ∨Q(2, y) ∨Q(3, y)
3 Q(1, y) ∨Q(2, y) ∨Q(3, y)

D = ⊥

Table 5.15: True/False table for φ5(y).

5.3.4 Table with Hidden variables

The table corresponding to the answer of atomic formula P (x̄), where P is from the expansion
vocabulary, is a table all of whose columns are universal; that is, the table contains all the possible
|A||x̄| rows. In practice, we may represent this table implicitly and avoid enumerating all the tuples.
As operations are applied, some columns remain universal, while others do not. The universal
columns can still be represented implicitly. The use of such implicit representations reduces the cost
of operations, therefore, it is useful to further generalize our extended X-relations. The implicitly
universal variables are called “hidden” variables, as they are hidden in the tuples. The other variables
are called “explicit” variables. This representation was first proposed in [56], and here we extend
that representation by formalizing it in such a way that any kind of tables can be equipped with
hidden variables.

Hidden table RHX representing an extended X-relationR has three components:
1. T (RHX) denotes the internal table (which can be any kind of table);
2. E(RHX) denotes the set of explicit variables;
3. H(RHX) denotes the set of hidden variables.
Based on our definition of table data structures, any table represents an extended relation. The

configuration of table with hidden variables RHX is such that:
1. T (RHX) represents an extended E(RHX)-relation;
2. E(RHX) and H(RHX) are disjoint sets of variables;
3. E(RHX) ∪H(RHX) = X .

Function δRHX , for this representation, is computed as:

δRHX
(γ) = δT (RHX )(γ|E(RHX ))[γ].

Here, we abused the notation. By T (RHX) in δT (RHX), we are referring the extended E(RHX)-relation
that is represented by T (RHX).

Before we describe how the relational algebraic operators are implemented for this representa-
tion, we need to introduce a new operation for tables with hidden variables. Let RHX be a table with
hidden variables and S a subset of its hidden variables, i.e., S ⊆ H(RHX). We define the multiplica-
tion operator to operate on a table with hidden variables and a set of variables, and produce a table
with hidden variables, THX = RHX × S, such that

1. H(THX ) = H(RHX)\S,
2. E(THX ) = E(RHX) ∪ S,
3. For all γ : X 7→ A, we have δT (γ) = δR(γ).
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Intuitively, the result of applying the multiplication operator on table RHX and set of variables S
is a table with the same number of rows as RHX . The number of columns in the resulting table equals
to the number of columns in RHX plus |S|.

Construction 4 LetR be an extended X-relation and S an extended Y -relation, both over domain
A.

1. Let T be an extended X-relation defined as ¬R. The following is used to construct a table
with hidden variables for T .

(a) H(THX ) = H(RHX);

(b) E(THX ) = E(RHX);

(c) T (THX ) = ¬T (RHX).

2. Let T be an extended X ∪ Y -relation defined asR on S . The following is used to construct a
table with hidden variables for T .

(a) H(THX∪Y ) =
(
H(RHX) ∪H(SHX )

)
\
(
E(RHX) ∪ E(SHY )

)
;

(b) E(THX∪Y ) = E(RHX) ∪ E(SHX );

(c) T (THX∪Y ) = T (RHX)×
(
H(RHX) ∩ E(SHY )

)
on T (SHY )×

(
H(SHY ) ∩ E(RHX)

)
.

3. Let T be an extended Z-relation defined as πZ(R). The following is used to construct a table
with hidden variables for T .

(a) H(THZ ) = H(RHX) ∩ Z;

(b) E(THZ ) = E(RHX) ∩ Z = Z\H(RHX);

(c) Let SHX be the table with hidden variables defined as T (RHX) ×
(
H(THX )\Z

)
. Then,

T (THZ ) = πZ\H(THX )

(
T (SHX )

)
.

Proposition 10 Construction 4 is correct, that is, for each operator, the construction generates a
table with hidden variables whose δ function satisfies the properties stated in Definition 16.

Proof: Here, we provide the proofs for the negation and join operators.
• Correctness of construction for negation operator: By Definition 17, it is enough to show that
δTHX

(γ) and ¬δRHX (γ) are equivalent with respect to A, for all γ.
Let δRHX (γ) = φ. In construction, we define T (THX ) = ¬T (RHX), and, based on the definition
of the extended relation, formulas δT (THX )(γ) and ¬δT (RHX ) are equivalent with respect to A.
Since the set of hidden variables and explicit variables of the two tables, T and R, are the
same, δTHX (γ) = ¬φ = ¬δRHX (γ).
• Correctness of construction for join operator: By Definition 17, it is enough to show δTHX

(γ)

and δRHX (γ) ∧ δSHX (γ) are equivalent with respect to A.
Let γ : X ∪ Y 7→ A, γ1 = γ|X∪(H(RHX)∩E(SHY )) and γ2 = γ|Y ∪(H(SHY )∩E(RHX)).

We define UH
X∪(H(RHX )∩E(SHY ))

as the result of multiplication of table T (RHX) and set of vari-

ables H(RHX) ∩ E(SHY ). According to the definition of multiplication:

δUH
X∪(H(RH

X
)∩E(SH

Y
))

(γ1) = δT (RHX )(γ1|X)[γ1] = δRHX
(γ1|X) = δRHX

(γ|X).
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We define V H
Y ∪(H(SHY )∩E(RHX ))

as the result of the multiplication of table T (SHY ) and set of

variables H(SHY ) ∩ E(RHX). Like the previous step, we can show

δV H
Y ∪(H(SH

Y
)∩E(RH

X
))

(γ2) = δSHY
(γ|Y ).

The construction defines T (THX∪Y ) as the result of joining UH
X∪(H(RHX )∩E(SHY ))

and

V H
Y ∪(H(SHY )∩E(RHX))

, so δT (THX∪Y )(γ)[γ] = δTHX∪T
(γ) is equivalent to δRHX (γ|X) ∧ δSHY (γ|Y ),

with respect to A.

Tables with hidden variables represent certain extended relations compactly, e.g., the extended
relation corresponding to the answer to an expansion predicate, or the extend relation corresponding
to a tautology.

Example 13 (Continuation of Example 10) Tables 5.16,. . . ,5.20 represent answers in the form of
Table with hidden variables whose inner tables are True/False tables, for φ1, . . . , φ5, in the setting
of Example 10.

T:
x y ψ(x, y)

2 1 >
2 2 >
2 3 >
3 1 >

D = ⊥
H = ∅

E = {x, y}

Table 5.16: Table with hidden
variables for φ1(x, y).

T:
ψ(x, y)

Q(x, y)

D = ⊥
H = {x, y}
E = ∅

Table 5.17: Table with hidden
variables for φ2(x, y).

T:
x y ψ(x, y)

2 1 ⊥
2 2 ⊥
2 3 ⊥
3 1 ⊥

D = >
H = ∅

E = {x, y}

Table 5.18: Table with hidden
variables for φ3(x, y).
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T:
y z ψ(x, y, z)

1 1 Q(x, y, z)
1 2 Q(x, y, z)
1 3 Q(x, y, z)
3 2 Q(x, y, z)
3 3 Q(x, y, z)

D = ⊥
H = {x}
E = {y, z}

Table 5.19: Table with hidden variables for
φ4(x, y, z).

T:
y ψ(y)

1 Q(1, y) ∨Q(2, y) ∨Q(3, y)
3 Q(1, y) ∨Q(2, y) ∨Q(3, y)

D = ⊥
H = {}
E = {y}

Table 5.20: Table with hidden variables for φ5(y).

Comparing Table 5.17 and Table 5.7 illustrates the efficiency of using tables with hidden vari-
ables.

5.3.5 Tables with Restriction

We call a formula in the form x1 op x2, where op is a comparison operator, an ordering formula.
Ordering formulas are used in specification to enforce a relation between variables and terms. In
some problems, there are many tuples satisfying each individual ordering formula within the prob-
lem specification. However, the answer to the conjunction of such ordering formulas has many rows
with false formula attached to them. As an example, we can mention the specification presented in
Example 14.

Example 14 In the blocked N queen problem, we have an N by N checkboard and N queens. Each
square on the board can hold, at most one queen. Some squares are already blocked and cannot
hold any queens. It is desired to place each of the N queens on to a non-blocked square such that no
pair of queens can capture each other, i.e., no two queens are on the same row, column or diagonal.
Given predicate Blk, representing the blocked cells, we use the binary predicate Q(., .) to represent
the position of queens. Here, we restate specification BQ-03, presented in Section 3.3:

∀r, c Blk(r, c)→ ¬Q(r, c) (5.1)
∀r1, r2, c ¬Blk(r1, c) ∧ ¬Blk(r2, c) ∧ r1 < r2 → ¬(Q(r1, c) ∧Q(r2, c)) (5.2)
∀r, c1, c2 ¬Blk(r, c1) ∧ ¬Blk(r, c2) ∧ c1 < c2 → ¬(Q(r, c1) ∧Q(r, c2)) (5.3)

∀r1, r2, c1, c2 ((¬Blk(r1, c1) ∧ ¬Blk(r2, c2)) ∧ |r1 − r2| = |c1 − c2|)→ (5.4)
¬(Q(r1, c1) ∧Q(r2, c2)).

The extended relation corresponding to an answer to atomic formula |r1 − r2| = |c1 − c2| in
(5.4), when the domain of each of r1, r2, c1, c2 is {1, . . . , n}, has n4 tuples (one tuple for each
instantiation of the four variables). Among these n4 tuples, θ(n3) of them are mapped to true
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formula, while θ(n4) of them are mapped to false formula. So, neither a True-table nor a False-table
represents this relation compactly. Note that there is no universal column (variable) in this table, and
so we cannot use a table with hidden variables to represent this extended relation.

An interesting observation about axiom (5.4) is that we are joining the extended relation obtained
for |r1 − r2| = |c1 − c2|, with the one computed for ¬Blk(r1, c1) ∧ ¬Blk(r2, c2). If Blk is dense,
i.e., the problem instance is not trivial, there are few rows whose formulas are true in the extended
relation corresponding to the answer to ¬Blk(r1, c1) ∧ ¬Blk(r2, c2). Therefore, the extended rela-
tion corresponding to the answer to (¬Blk(r1, c1) ∧ ¬Blk(r2, c2)) ∧ |r1 − r2| = |c1 − c2| has few
rows which are mapped to true, and hence, it can be represented compactly using a False-table.

Using True/False tables, Enfragmo spends a lot of time computing and storing the tuples satis-
fying |r1 − r2| = |c1 − c2|, while many of those tuples are going to be eliminated when Enfragmo
computes the answer to |r1 − r2| = |c1 − c2| ∧ ¬Blk(r1, c1) ∧ ¬Blk(r2, c2). To avoid this ex-
tra computation, we propose using a new representation for extended relations, called “Table with
Restriction”.

Table with restrictionRrX for extendedX-relationR is composed of a True/False table, T (RrX),
which represents an extended Y -relation I(RrX) where Y ⊆ X , and a formula (restriction) F (RrX).
The corresponding formula for assignment γ is the conjunction of the evaluation of the restriction
formula under assignment γ, F (RrX)[γ], and the formula which is mapped to γ|Y by extended Y -
relation T (RrX), i.e.,

δR(γ) = (F (RrX) ∧ δI(RrX)(γ))[γ].

For example, consider atomic formula φ(x̄) = P (x̄). The extended X-relation R can be de-
scribed as a table with restrictionRrX where I(RrX) is an extended ∅-relation representing an answer
to > and F (RrX) = P (x̄).

Construction 5 LetR be an extended X-relation and S an extended Y -relation, both over domain
A.

1. Let T be an extended X-relation defined as ¬R. The following is used to construct a table
with restriction for T .

(a) T (T rX) is the True/False table computed as ¬(T (RrX) ./ F TFY ), where F TFY is the
True/False table representing an answer to formula F (RrX),

(b) F (T rX) is simply > formula.

2. Let T be an extended X ∪ Y -relation defined asR on S . The following is used to construct a
table with restriction for T .

(a) T (T rX∪Y ) is the True/False table computed as T (RrX) on T (SrY ) ,

(b) F (T rX∪Y ) is the formula F (RrX) ∧ F (SrY ).

3. Let T be an extended Z-relation defined as πZ(R). The following is used to construct a table
with restriction for T .

(a) T (T rZ) is the True/False table computed as πZ(T (RrX) on F TFY ), where F TFY is the
True/False table representing an answer to formula F (RrX),

(b) F (T rZ) is formula >.
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Proposition 11 Construction 5 is correct, that is, for each operator it generates a table with restric-
tion whose δ function satisfies the properties stated in Definition 16.

Proof: Here, we provide the proof for the negation operator.
When we negate a table with restriction, we evaluate the restriction formula, F (RrX), and so

the formulas δT rX (γ) and ¬δRrX (γ) may not be equivalent formulas, but, as we show here, they are
equivalent with respect to A.

Let F TFY be the True/False table representing an answer to formula F (RrX). Since the restriction
in table T rX is >, by the definition of a table with restriction:

δT rX (γ)⇔ δT (T rX)(γ).

Since F TFY is the True/False table representing an answer to F (RrX), we know that δFTFY (γ) and
F (RrX)[γ] are equivalent with respect to A.

We consider the following two cases:

1. F (RrX)[γ] is evaluated as >, under structure A: formula δRrX (γ) is equivalent to δT (RrX)(γ)
with respect toA. Based on the construction, we set δT (TRX )(γ) to be ¬δT (RrX)(γ)∧ δFTF (γ).
Since F (RrX)[γ] and δFTF (γ) are equivalent with respect to A, we conclude that δT (TRX )(γ)

is equal to ¬δT (RrX)(γ) which is equivalent to ¬δRrX with respect to A.

2. F (RrX)[γ] is evaluated as ⊥, with respect to structure A: We have δRrX (γ) is equivalent to ⊥.
Based on the construction, we know δT rX (γ) = δT (RrX)(γ) ∨ > ⇔ >. So, we conclude that
δT rX (γ) and ¬δRrX (γ) are equivalent with respect to A.

5.4 Algorithms

In this section, we briefly describe how an input to Enfragmo is encoded and also discuss the data
structures and algorithms used in Enfragmo, to implement operations on tables.

As explained in Chapter 3, Enfragmo accepts two inputs; a problem specification and a problem
instance. Both inputs must be in ASCII format and be consistent with the grammar presented in
Appendix E. We already discussed the different parts of problem specifications, in Chapter 3. A
problem instance has the following parts:

1. Interpretation for types,
2. Interpretation for instance predicates,
3. Interpretation for instance functions.
The interpretation for a type is encoded by listing all the elements in that type. The follow-

ing illustrates how an enumerable type, Colour, and an integer type, LessThan5, are encoded for
Enfragmo:

TYPE Colour {Red,Green,Blue}
TYPE LessThan5 {1,2,3,4,5}
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To make presenting a problem instance easier, Enfragmo allows users to represent the integer
types using a compact representation, which is then translated back to the above representation.
Users can write the following to describe type LessThan5.

TYPE LessThan5 1..5

Remember that Enfragmo does not work with the compact representation of integer types, and
the compact representation is transformed to the normal representation of types, by a preprocessor
module.

The interpretations for instance predicates and functions are represented by simply listing the
tuples in the interpretations.

Remark 1 Let us assume a problem instance has a type with n distinct elements. Any encoding
for representing n distinct elements needs θ(n log n) bits. The size of a problem instance for this
problem is Ω(n log n), which is also Ω(n).

The data structure used to represent an assignment to X is an array of size |X|. Enfragmo
assumes an ordering on each of the given sorts. It uses the standard ordering for the Integer sorts
and applies an arbitrary ordering for the enumerative sorts.

A ground formula is represented using a DAG (Directed Acyclic Graph) data structure. Each
node of the DAG corresponds to a Boolean operator, e.g., AND, OR, NOT. In addition, there are
special nodes, called assignment nodes, that map a value to a variable. This representation of for-
mulas allows the reuse of some parts of a DAG formula in another one. For example, the formula
Φ ∧Ψ can be constructed by just creating a new AND node whose two children are the roots of the
DAGs representing Φ and Ψ.

A row is a pair consisting of an assignment and a formula. The sets of rows in Basic, Normal,
True/False tables are implemented as an array of rows.

In this section, we describe algorithms for computing the results of negation/join/projection
operators on True/False tables. The algorithms for computing the results of negation/join and pro-
jection on Basic and Normal tables are very similar to their corresponding algorithms for True/False
tables.

In Mohebali’s Msc thesis [56], these operations were implemented using hash functions. That
approach has the following drawback: There is no guarantee for the optimality of the selected hash
function, and so the worst-case running time of a hash-based algorithm can be much worse than
its average-case running time. Shahab Tasharrofi and the author designed algorithms whose worst-
case running times are the same as, within a constant factor, the average-case running times of the
algorithms proposed in [56].

5.4.1 Relational Algebra Operations for True/False Table by Sorting

Let RTFX be a True/False table, r1 = (γ1, ψ1) and r2 = (γ2, ψ2) two rows of T (RTFX ). We say
r1 is smaller than r2 based on variable ordering 〈X1, · · · , Xm〉, if there exists an index i such that
γ1|Xi ≤ γ2|Xi and for every j < i, γ1|Xj = γ2|Xj .

To sort a table, one can use any standard sorting algorithm, e.g., quick sort or heapsort [25].
The running time of these standard sorting algorithms on basic table TBX is θ(n2|A|n log |A|), where
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n = |X|, since comparing two rows costs O(n), and there are θ(|A|n log |A|n) comparisons to be
made. Quick sort algorithm sorts True/False table T TFX in time θ(n|T (T TFX )| log |T (T TFX )|). The
author of this thesis designed an algorithm based on the idea used in radix-sort [25], that sorts a Basic
table in n|A|n and a True/False table in n|T (T TFX )|. The details of this algorithm can be found in
Appendix F. We compare the performance of this sorting algorithm and the quicksort algorithm in
Section 5.5.

Negation

To negate True/False table RTFX , we simply scan the rows in T (RTFX ) and negate the formula part
of each row. We must set the default formula of the resulting table as ¬D(RTFX ).

Algorithm 2 Algorithm for Negating a True/False Table.
Input: RTFX is a True/False table
Output: STFX , is a True/False table representing ¬RTFX

1: function NEGATE(RTFX )
2: for 〈γ, φ〉 ∈ T (RTFX ) do
3: T (STFX ) = T (STFX ) ∪ {〈γ,¬φ〉}
4: Set D(STFX ) = ¬D(RTFX ).

Proposition 12 Algorithm 2 returns True/False table STFX that satisfies the properties described in
Construction 3. The running time of this algorithm is θ(|nT (RTFX |), where n = |X|.

Proof: Algorithm 2 visits every pair in T (RTFX ) exactly once and sets the content of T (STF ) as
defined in Construction 3. Since there are |T (RTFX )| pairs in T (RTFX ) and we need to copy each
pair, we conclude that the running time of this algorithm is θ(n|T (RTFX |).

Join

As we discussed in Subsection 5.3.3, there are three different cases for joining two True/False tables:

1. Joining Two False Tables:

The result of joining False tableRTFX and False table STFY is False table T TFZ where Z = X∪
Y . For each (γ1, φ1) in T (RTFX ) and (γ2, φ2) in T (STFY ) such that γ1|X∩Y and γ2|X∩Y are the
same assignment, we insert 〈γ, φ1∧φ2〉 into T (T TFZ ) where γ is an assignment from Z 7→ A,
γ|X = γ1 and γ|Y = γ2. Having tables RTFX and STFY sorted based on the appropriate
variable ordering, table T TFZ can be produced in linear time with respect to the number of
elements in the input and output tables.
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Algorithm 3 Algorithm for Joining two False Tables.
Input: False tables RTFX and STFY
Output: False table T TFZ = RTFX on STFY

1: Z = X ∪ Y , C = X ∩ Y , T TFZ = empty array ;
2: Sort T (RTFX ) and T (STFY ) based on variable ordering O where O prefers variables in C to the

other variables.
3: RRowInd = SRowInd = 0 These variables indicate the row of table R and T we are processing.
4: while RRowInd < |T (TFX )| and SRowInd < |T (STFY )| do
5: Let 〈γ1, φ1〉 (〈γ2, φ2〉) be row indexed RRowInd (SRowInd) in RTFX (STFY , respectively).
6: if γ1|C < γ2|C , based on variable ordering O then
7: RRowInd= RRowInd+ 1
8: else if γ1|C > γ2|C , based on variable ordering O then
9: SRowIndex= SRowIndex+ 1

10: else
11: RLast= index of the last row in T (RTFX ) whose assignment agrees with γ1 on C.
12: SLast= index of the last row in T (STFY ) whose assignment agrees with γ2 on C.
13: for each tuple γ : Z 7→ A s.t., 〈γ|X , φ1〉 (〈γ|Y , φ2〉) is a row in

T (RTFX )[RRowInd..RLast] (T (STFY )[SRowInd..RLast], respectively) do
14: Add 〈γ, φ1 ∧ φ2〉 to T (T TFZ ).

15: RRowInd= RLast+ 1
16: SRowInd= SLast+ 1

2. Joining a False table and a True table:

The result of joining False table RTFX and True table STFY is False table T TFZ where Z =
X ∪ Y . Joining a True table with a False table is similar to joining two False tables. We must
consider the tuples which are not present in the True table. Algorithm 4 shows how we can
join a True table with a False table.
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Algorithm 4 Algorithm for Joining a False Table with a True Table.
Input: False table RTFX and True table STFY
Output: False table T TFZ = RTFX on STFY

1: Z = X ∪ Y , C = X ∩ Y , T TFZ = empty array ;
2: Sort T (RTFX ) and T (STFY ) based on variable ordering O where O prefers variables in C to the

other variables.
3: RRowInd = SRowInd = 0 These variables indicate the row of tableR and T we are processing.;
4: while RRowInd < |T (TFX )| and SRowInd < |T (STFY )| do
5: Let 〈γ1, φ1〉 (〈γ2, φ2〉) be row indexed RRowIndex (SRowIndex) in RTFX (STFY , respec-

tively).
6: if γ1|C < γ2|C , based on variable ordering O then
7: for each γ : Z 7→ A s.t., γ|C = γ1|C and there is no row with assignment γ|Y in
T (STFY ) do

8: Add 〈γ, φ1〉 to T (T TFZ ).

9: RRowInd= RRowInd+ 1
10: else if γ1|C > γ2|C , based on variable ordering O then
11: SRowIndex= SRowIndex+ 1
12: else
13: RLast= index of the last row in T (RTFX ) whose assignment agrees with γ1 on C.
14: SLast= index of the last row in T (STFY ) whose assignment agrees with γ2 on C.
15: for each tuple γ : Z 7→ A s.t., 〈γ|X , φ1〉 (〈γ|Y , φ2〉) is a row in

T (RTFX )[RRowInd..RLast] (T (STFY )[SRowInd..RLast], respectively) do
16: Add 〈γ, φ1 ∧ φ2〉 to T (T TFZ ).

17: for each γ : Z 7→ A s.t., γ|X is in T (RTFX )[RRowInd..RLast] and there is no row
with assignment γ|Y in T (STFY ) do

18: Add 〈γ, φ1〉 to T (T TFZ ).

19: RRowInd= RLast+ 1
20: SRowInd= SLast+ 1
21: while RRowInd < |T (RTFX )| do
22: Let 〈γ1, φ1〉 be row indexed RRowInd in RTFX .
23: for each γ : Z 7→ A s.t., γ|C = γ1|C and there is no row with assignment γ|Y in T (STFY )

do
24: Add 〈γ, φ1〉 to T (T TFZ ).

3. Joining two True Tables: Joining two True tables is similar to joining two False tables except
that we need to consider the tuples that are not in the True tables. The algorithm for joining
two True tables is described in Algorithm 5.
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Algorithm 5 Algorithm for Joining two True Tables.
Input: True tables RTFX and STFY
Output: True table STFZ = RTFX on STFY

1: Z = X ∪ Y , C = X ∩ Y , T TFZ = empty array ;
2: Sort T (RTFX ) and T (STFY ) based on variable ordering O such that O prefers variables in C to

the other variables.
3: RRowInd = SRowInd = 0 These variables indicate the row of tableR and T we are processing.;
4: while RRowInd < |T (TFX )| and SRowInd < |T (STFY )| do
5: Let 〈γ1, φ1〉 (〈γ2, φ2〉) be row indexed RRowInd (SRowInd) in RTFX (STFY , respectively).
6: if γ1|C < γ2|C , based on variable ordering O then
7: for each γ : Z 7→ A s.t., γ|C = γ1|C and there is no row with assignment γ|Y in
T (STFY ) do

8: Add 〈γ, φ1〉 to T (T TFZ ).

9: RRowInd= RRowInd+ 1
10: else if γ1|C > γ2|C , based on variable ordering O then
11: for each γ : Z 7→ A s.t., γ|C = γ2|C and there is no row with assignment γ|X in

T (RTFX ) do
12: Add 〈γ, φ2〉 to T (T TFZ ).

13: SRowIndex= SRowIndex+ 1
14: else
15: RLast= index of the last row in T (RTFX ) whose assignment agrees with γ1 on C.
16: SLast= index of the last row in T (STFY ) whose assignment agrees with γ2 on C.
17: for each tuple γ : Z 7→ A s.t., 〈γ|X , φ1〉 (〈γ|Y , φ2〉) is a row in

T (RTFX )[RRowInd..RLast] (T (STFY )[SRowInd..RLast], respectively) do
18: Add 〈γ, φ1 ∧ φ2〉 to T (T TFZ ).

19: for each γ : Z 7→ A s.t., 〈γ|X , φ1〉 is in T (RTFX )[RRowInd..RLast] and there is no
row with assignment γ|Y in T (STFY ) do

20: Add 〈γ, φ1〉 to T (T TFZ ).

21: for each γ : Z 7→ A s.t., 〈γ|Y , φ2〉 is in T (STFY )[RRowInd..RLast] and there is no
row with assignment γ|X in T (RTFX ) do

22: Add 〈γ, φ2〉 to T (T TFZ ).

23: RRowInd= RLast+ 1
24: SRowInd= SLast+ 1
25: while RRowInd < |T (RTFX )| do
26: Let 〈γ1, φ1〉 be row indexed RRowInd in RTFX .
27: for each γ : Z 7→ A s.t., γ|C = γ1|C and there is no row with assignment γ|Y in T (STFY )

do
28: Add 〈γ, φ1〉 to T (T TFZ ).

29: while SRowInd < |T (STFY )| do
30: Let 〈γ2, φ1〉 be row indexed SRowInd in STFY .
31: for each γ : Z 7→ A s.t., γ|C = γ2|C and there is no row with assignment γ|X in T (RTFX )

do
32: Add 〈γ, φ2〉 to T (T TFZ ).
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In Algorithms 3, 4 and 5, it is necessary to find the last row which is consistent with a given
assignment. We can use either a linear or binary search to find the index of that row.

Proposition 13 Algorithms 3,4 and 5 return True/False table T TFZ that satisfies the properties de-
scribed in Construction 3. The running times of these algorithms are O(n × max(|T (RTFX )| +
|T (STFX )|, |T (T TFZ )|)), where n = |X|.

Proof: Here, we only present the proof for the correctness of Algorithm 4.
Based on Construction 3, T (T TFZ ) is the union of two sets:
• In line 8 and the second while-loop (lines 21-24), we add a pair to T (T TFX ) which corresponds

to a member of set {(γ, ψ) | (γ|X , ψ) ∈ T (RTFX ) and γ|Y 6∈ T (STFY )}.
• In line 15 to 20, we add pairs to T (T TFX ) corresponding to members of set {(γ, ψ) | γ|X ∈
T (RTFX ) and γ|Y ∈ T (STFY ) and δS(γ|Y ) 6= ⊥, ψ = δR(γ|X) ∧ δS(γ|Y )}.

In each iteration, we add one element to T (T TFZ ) and, since each row has a tuple of length n, the
running time of this algorithm is at most n|T TFZ |. On the other hand, in each iteration, we increase
either RRowInd or SRowInd or sometimes both, so the number of iterations can not be more than
|STFX |+ |RTFY |.

Projection

The result of projecting False tableRTFX on variablesZ is False table T TFZ . We need to collect all the
rows in T (RTFX ) which have the same value on variables in Z and disjunct the formula part of those
rows. For True tables, if at least one of the collected rows is mapped to True formula, the formula
corresponding to the assignment in T TFZ is True formula, and hence, no row should be inserted in
the resulting table. Algorithm 6 represents an algorithm for the projection operation on True/False
tables.

Algorithm 6 Algorithm for Projecting a True/False Table.
Input: True/False table RTFX , and a set of variables D ⊆ X
Output: True/False table T TFZ = πZ(R)

1: Sort T (RTFX ) based on variable ordering 〈Z1, · · · , Z|X|, · · · 〉, where Z = {X1, · · · , X|Z|}.
2: for each assignment γ of the set of variables X \ Z do
3: Let R be the set of tuples in T (RTFX ) sharing the same values for the variables X \ Z as γ
4: Let Ψ =

∨
〈γ,φ〉∈R φ[γ|Z ]

5: if D(RTF ) = ⊥ or D(RTF ) = > and R contains all possible instantiations of variables in
X \ Z then

6: T (T TFZ ) = T (T TFZ ) ∪ {〈γ|Z ,Ψ〉}

The set of tuples sharing the same value for a set of variables in Algorithm 6 can be constructed
either by using a linear or binary search.

Proposition 14 Algorithm 6 returns True/False table T TFZ which satisfies the properties described
in Construction 3. Also, the running time of this algorithm is O(n × max(|T (RTFX )|, |DX\Z |),
where n = |X|.
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Proof: Based on Construction 3, T (T TFZ ) = {(γ, ψ) | γ : there is at least one γ′ s.t. γ′ ∈ T (RTFX )
and γ = γ′|Z , ψ =

∨
{γ′:X→A|γ=γ′|Z} δR(γ′)[γ′|(X\Z)]}. Line 3 collects all the pairs that share

the same assignment to the variables in Z (this corresponds to γ = γ′|Z). Line 4 constructs the
disjunction of the corresponding formulas and line 6 adds the pair into T TFZ .

The for-loop, line 2, scans all the elements of DX\Z . Given that the elements in T (RTFX ) are
sorted, all the operations inside the for-loop can be implemented in constant time.

Complexity of Operations

Assuming the tables are sorted based on an appropriate variable ordering, Table 5.21 summarizes
the worst-case complexity of performing the negation, join and projection operations.

Operation Complexity
T TFX∪Y = RTFX ./ STFY θ(|X ∪ Y | ×max(|T (RTFX )|+ |T (STFY )|, |T (T TFZ )|))
T TFZ = πZ(RTFX ) |X| × |T (RTFX )|
T TFX = ¬(RTFX ) |X| × |T (RTFX )|

Table 5.21: Worst-case Complexity of Performing Operations of True/False Tables.

The operations for the other tables, Basic tables, Normal tables and etc, can be implemented
using either one of the above algorithms or a close variant of them.

Since Enfragmo uses the linear sorting algorithm described in Appendix F to sort the tables,
the algorithms discussed in this section perform faster than those used in MXG [56], both from the
worst-case and the average-case points of views.

5.5 Experimental Evaluation

In this section, we compare the grounding time of Enfragmo when it uses the described represen-
tations of the tables. We use the same encodings and benchmarks as the ones used in Section 3.4.
Rows and columns in Table 5.22 correspond to specifications and representations, respectively. In
Table 5.22, we compare the following four configurations:
• Normal: Normal tables without hidden variables;
• Normal+Hidden: Normal tables with support of hidden variables;
• TrueFalse: True/False tables with support of hidden variables;
• Restriction: Table with Restriction where the inner table is a True/False table with support of

hidden variables.
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Encoding Normal Normal + Hidden TrueFalse Restriction

SG-01 0.006/0.009 <0.001/<0.001 <0.001/<0.001 <0.001/<0.001

SG-01 0.006/0.009 <0.001/<0.001 <0.001/<0.001 <0.001/<0.001

SG-01 0.006/0.009 <0.001/<0.001 <0.001/<0.001 <0.001/<0.001

BQ-01 0.007/0.007 0.007/0.007 0.006/0.006 0.005/0.005

BQ-02 0.086/0.077 0.53/0.51 0.11/0.10 0.10/0.10

BQ-03 22.43/22.40 15.87/15.51 15.88/15.48 15.86/15.45

BQ-04 4.828/4.826 4.34/4.29 4.34/4.29 4.33/4.30

GC-01 0.157/0.159 0.144/0.143 0.139/0.137 0.138/0.137

GC-02 0.390/0.380 0.389/0.379 0.382/0.374 0.382/0.368

GC-03 0.363/0.350 0.327/0.316 0.324/0.309 0.321/0.309

GC-04 0.380/0.369 0.406/0.392 0.406/0.392 0.406/0.392

HP-01 6.720/6.189 6.720/6.189 4.511/4.291 4.508/4.287

HP-02 0.019/0.017 0.017/0.016 0.009/0.009 0.009/0.009

HP-03 */* */* */* */*

HP-04 4.071/4.043 4.033/4.008 2.353/2.305 2.351/2.305

Table 5.22: Performance comparison of different tables based on grounding time. A row (column)
represents a problem specification (a grounding configuration, respectively). There are two entries in
each cell. The first (second) entry is the grounding time, in seconds, when Enfragmo uses Quicksort
(RadixSort, respectively). None of the configurations are able to ground all the Hamiltonian path
instances using specification HP-03 within 10 minutes of timeout.

Based on the data presented in Table 5.22, we observe the following:
1. Using Hidden variables speeds up the grounding process: This can be observed by comparing

the first two columns of Table 5.22.
2. As we expected, the grounding time of configurations using Radix sort is smaller than their

corresponding configurations using Quick sort.
3. In most cases, grounding using True/False Table performs better than using Normal tables.
4. When we use Quick sort as the sorting algorithm, Table with restrictions never performs worse

than True/False tables.
5. We see a speed-up, in the grounding when we use table with restrictions in the Blocked N-

Queens and the Graph Colouring problems, as there are ordering formulas in the specifications
which are conjuncted with the instance predicates.
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5.6 Conclusion

In this chapter, we described how Enfragmo handles the grounding phase, in which, given a spec-
ification and an instance, it generates a variable free first-order formula equivalent to the problem
instance. The grounding algorithm presented in this chapter is an extension of work reported in [58].
We generalized their grounding algorithm in several ways. We presented our own grounding algo-
rithm based on an abstract notion of tables, which support certain operations. We also generalized
the notion of answer to formula, which enabled us to introduce table with restriction.

We proposed different representations for a table. True/False Tables and Table with restriction
are novel data structures, and have not been proposed elsewhere. Generalizing the table with hidden
variables is another novel idea presented in this chapter. In addition, for each representation we
described a new algorithm for computing the results of extended relational algebraic operators. From
our previous experiments we already know that different representations of tables have different
performances. We used some experiments to show that our intuition about the performance of each
representation is correct.

For computing the results of relational algebraic operators, we proposed sorting-based algo-
rithms whose worst-case complexities are the same as the average-case complexities of hash-based
algorithms. We believe one of the reasons for the good performance of Enfragmo is these fast
algorithms.



Chapter 6

Grounding Specifications with Complex
Terms

In the previous chapter, we describe a framework for grounding the specifications expressed in first-
order logic. In this chapter, we describe how to extend the method, introduced in Chapter 5, such that
it can ground the specifications expressed in the first-order logic extended with arithmetic, functions
and aggregate operators, in polynomial time.

6.1 Introduction

As described in Chapter 3, a term in an Enfragmo specification is a variable, application of an
instance/expansion function, application of an arithmetic operator on integer terms, or an aggregate
applied to an appropriate number of formulas and terms. In Chapter 5, we described how Enfragmo
deals with specifications whose terms are just variables. In this chapter, we explain how Enfragmo
grounds specifications with non-variable terms.

Adding function, arithmetic and aggregate terms to the logic on which the model expansion task
is defined can cause certain issues:

1. The expressive power of the logic may be increased in the presence of arithmetic and aggre-
gate operators, and so polynomial time reduction to an NP-complete problem such as SAT
may no longer be possible. Moreover, since the domain of arithmetic is infinite, finite ground-
ing may not be possible.

2. By adding these new constructs to the logic, there is no guarantee for the terms to be total.
For example, the value of term x/y is undefined when y takes the value 0.

3. Arithmetic and aggregate operators can enlarge the set of values (range) a term can take. For
example, term x × y + z where all variables range over the domain {0, · · · , 10} can take
all values in the set {0, · · · , 110}. Having a large domain may cause existing grounding
algorithms to work very slowly.

The first issue can be resolved by restricting the syntax and constructing a new fragment with a
controlled expressive power. For example, Ternovska and and Mitchell showed that the fragment of
double-guarded first-order logic captures NP (under “small-cost” condition) [65]. In another paper

69
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by our group, Tasharrofi and Ternovska proposed a logic that allows users to represent NP problems
involving arithmetic “naturally” (i.e., with built-in arithmetic as opposed to using binary encoding
of integers) [64]. In their approach, NP is captured without any restriction.

There are several approaches to address the second issue. The most obvious approach is to
restrict the syntax to avoid partially defined terms. Another approach is to use appropriate guards,
e.g., to rewrite P (x\y) as ∃z : x = z × y ∧ P (z). One can also deal with this issue by making
all functions total. The only terms which are not total in the input language of Enfragmo are Min
and Max aggregates. Based on the system language, users must provide a default value for these
aggregates. If the value of a Min/Max aggregate is undefined (based on the standard definitions of
these aggregates), Enfragmo defines the value of the aggregate to be the “default” value [7].

The third issue is related to the complexity of grounding. Enriching the language may result in
the poor performance of the previous grounding algorithms and may force us to introduce a new
grounding approach. One way to avoid this issue is introduce new algorithms to handle the new
constructs.

In the context of finite model expansion, arithmetic operators are not total, since the results of
these operators may be an element which does not belong to the universe of the instance structure.
For example, the result of the summation of two variables ranging over D = {1..5} is not always in
D. So, during the grounding process, we may encounter values which are not given in the instance
structureA. We have the same scenario for aggregates. To avoid this issue, we developed Enfragmo
based on embedded model expansion. As described in Section 2.3, in embedded model expansion,
besides the instance structure, there is an infinite arithmetic structure.

The input language of Enfragmo assumes that the instance file passed to it describes structure
A = (U,R) where U is the set of all integers, and R is a set of finite relations. As we explained
in Chapter 3, Enfragmo supports two different kinds of sorts (types): Enumerable and Integer sorts
(types). Enfragmo maps each element of enumerable sorts to an integer in U , so that all the elements
in the active domain are integers.

We already described a generic approach to ground a function-free first-order formula over a
given finite domain. Expressing most interesting real-world problems, e.g., the Traveling Salesman
or Knapsack problems, in function-free FO logic without having access to arithmetical operators is
not an easy task. So enriching the syntax with functions and arithmetical operators is a necessity.
In this chapter, we introduce an extension of the grounding techniques described in the previous
chapter, such that they can be used in the presence of these constructs.

Since the terms can only occur as the arguments to the atomic formulas, in order to support
new kinds of terms, we only need to extend the way our grounding framework handles the atomic
formula, and do not need to change any other components of our grounding algorithm.

6.1.1 My Contributions

The initial relational algebraic grounding approach has been proposed for function-free logic [58,
56]. The author extended the grounding approach to work in the presence of functions, arithmetical
terms and aggregates. Also the two notions of answer to terms and the idea of term tables are pro-
posed by the author of this thesis [7]. The algorithms to compute term tables and all the grounding
algorithms described in this chapter are designed by the author.
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6.2 Background

The notation used in this chapter is the same as that introduced in Section 2.1 and Chapter 5.

6.2.1 FO MX with Arithmetic

The grounding algorithm presented in the previous chapter works for specifications whose terms
are just variables while, as presented in Chapter 3, the input language of Enfragmo includes more
complex terms. In this chapter, we are concerned with specifications written in FO logic which
is extended with functions, arithmetic and aggregate operators. We assume that the domain of
any instance structure is a subset of N (set of natural numbers), and that arithmetic operators have
their standard meanings. Details of aggregate operators need to be specified, but these also behave
according to our normal intuitions. The specification language of Enfragmo restricts the range
of quantified variables and instance functions, as well as the possible interpretations of expansion
predicates and functions to finite subsets.

As we already discussed in Chapter 3, Enfragmo allows each variable to have its own domain;
however, for the sake of explanation, we assume that all variables range over type T, where its
interpretation, T , is a subset N. Notice that T and T are different. The former is a type declared in
the specification while the latter is an interpretation for type T, defined in the problem instance.

Under the assumption that all the variables are associated with the same type T, Enfragmo
rewrites φ(t1(x̄), · · · , tk(x̄)) as ∃y1, · · · , yk : y1 = t1(x̄) ∧ · · · ∧ yk = tk(x̄) ∧ φ(y1, · · · , yk),
where each yi is associated with same type T. By applying this rewriting on the specifications, each
atomic formula in the specifications is one of the following:

1. P (x1, · · · , xk), where P is an arity k predicate and xi is a variable of type T;
2. y = t(x̄), where t is a term and all variables are associated with type T;
3. t1(x̄) op t2(x̄), where t1 and t2 are terms, op is a comparison operator and all variables are

associated with type T.
Since t1(x̄) > t2(x̄) ⇔ t2(x̄) < t1(x̄), t1(x̄) ≥ t2(x̄) ⇔ t2(x̄) ≤ t1(x̄) and t1(x̄) ≤ t2(x̄) ⇔
(t1 (x̄) < t2 (x̄) ∨ t1 (x̄) = t2 (x̄)), we can rewrite specifications such that they do not have any
atomic formula in form t1(x̄){≤, >,≥}t2(x̄).

Syntax and Semantics of Aggregate Operators

In Chapter 3, we described the syntax and semantics of aggregates, but to make the content of this
chapter self-contained, we present them here, again.
• t(ȳ) = Maxx̄{t(x̄, ȳ) : φ(x̄, ȳ); dM (ȳ)}, for any instantiation b̄ for ȳ, denotes the maximum

value obtained by t(ā, b̄) over all instantiations ā for x̄ for which φ(ā, b̄) is true, or dM if there
is none.
• t(ȳ) = Minx̄{t(x̄, ȳ) : φ(x̄, ȳ); dm(ȳ)} is defined dually to Max.
• t(ȳ) = Sumx̄{t(x̄, ȳ) : φ(x̄, ȳ)}, for any instantiation b̄ of ȳ, denotes 0 plus the sum over

values of t(ā, b̄), for all instantiation of ā for x̄, for which φ(ā, b̄) is true.
• t(ȳ) = Countx̄{φ(x̄, ȳ)}, for any instantiation b̄ for ȳ, denotes the number of tuples ā for

which φ(ā, b̄) is true, where ā is an instantiation for x̄.
Through out this chapter, A always denotes a finite σ-structure, called the instance structure, σ

is the instance vocabulary, and ε the expansion vocabulary, L is the input language of Enfragmo,
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defined in Chapter 3 and φ is the conjunction of axioms in a problem specification.

6.3 A Variant of the Knapsack Problem (Running Example)

In this section, we review Example 5 and use it as a running example throughout this chapter.

Example 15 We are given a set of items (loads), L = {1, · · · , n}, and the weight of each item is
specified by an instance function W which maps items to integers (wi = W (i)). We want to check
if there is a way to put these n items into m knapsacks, K = {1, · · · ,m}, while satisfying the
following constraints:

Certain items must be placed into certain knapsacks. These pairs are specified using the instance
predicate “P”. There are m knapsacks; h of which have a high capacity, meaning they can carry
a total load of HCap, while the capacity of the other knapsacks is LCap. We cannot put two items
whose weights are very different in the same bag, i.e., the difference between the weights of the
items in the same bag must be less than Wl. Constant values HCap, LCap, Wl and h are described
as instance functions.

To encode this problem, we use a binary expansion predicate Q(, ), where Q(l, k) represents
item l placed in knapsack k. Let Φ be the conjunction of the following axioms (A1 to A5). Then,
formula Φ encodes this problem:

A1 : ∀l Countk{Q(l, k)} = 1;

A2 : ∀l, k P (l, k)→ Q(l, k);

A3 : ∀k Suml{W (l) : Q(l, k)} ≤ HCap;

A4 : Countk{Suml{W (l) : Q(l, k)} ≥ LCap} ≤ h;

A5 : ∀k, l1, l2 (Q(l1, k) ∧Q(l2, k))→ (W (l1)−W (l2) ≤Wl) .

Axiom A1 ensures that every load is placed in exactly one knapsack. Axiom A2 is to ensure we
respect the pre-arranged items. AxiomsA3 andA4 control the load of the knapsacks. Finally, axiom
A5 avoids the placing of two items whose weights are too far from each other in the same knapsack.

An instance of this problem is a structure for vocabulary σ = {P,W,Wl, HCap, LCap, h}. The
task is to find an expansion B of A that satisfies φ: A︷ ︸︸ ︷

(L ∪K;PA,WA,WAl , H
A
Cap, L

A
Cap, h

A, QB︸ ︷︷ ︸
B

) |= φ.

Interpretations of expansion vocabulary ε = {Q} in structure B give us a mapping from items to
knapsacks, satisfying the problem constraints.

Let’s assume the following is an instance of this problem:
• L = {1, 2, 3} and K = {1, 2};
• PA = {(1, 1)};
• WA = {1 7→ 2; 2 7→ 7; 3 7→ 4};
• Wl

A = 4;
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• HCap
A = 8;

• LCapA = 6;
• hA = 1.

6.4 Evaluating Arithmetic and Instance Functions

The relational algebra-based grounding algorithm, described in Chapter 5, is designed for function-
free logics. In this and the following two sections, we extend this grounding algorithm so that it can
handle specifications in which the terms have more complex forms. In this section, we present a
simple method for special cases where terms do not contain expansion predicates/functions, so they
can be evaluated purely based on the instance structure. We call these terms, evaluable terms.

Recall that an answer to subformula φ(x̄) is an extended X-relation R, where X = {x |
x occurs in x̄}. The tuples of extended relation R have length |X|. Now, consider an atomic for-
mula, ψ, whose arguments are terms containing instance functions and arithmetic operators, e.g.,
P (x + y). As discussed previously, Enfragmo rewrites ψ as ∃z(z = x + y ∧ P (z)). Although we
have not yet discussed the handling of the sub-formula z = x + y, it is apparent that the answer to
ψ, is an extended {x, y}-relation.

To modify the previous grounding algorithm, we add the following two cases to the base cases.

Definition 19 (Base Cases for Atomic Formulas with Evaluable Terms) Let φ(x̄) be an atomic
formula, and let t1 and t2 be terms used as arguments of φ. Extended X-relation R, where X =
{x | x occurs in x̄}, is an answer to φ with respect to A, iff

1. If φ(x̄) is t1(x̄) op t2(x̄), where op ∈ {=, <}, then for every γ,

(a) δR(γ) = > iff A |= t1[γ] op t2[γ].
(b) δR(γ) = ⊥ iff A 6|= t1[γ] op t2[γ].

2. If φ(x̄) is x1 = t1(x2, · · · , xn), then for every γ,

(a) δR(γ) = > iff A |= (x1 = t1)[γ].
(b) δR(γ) = ⊥ iff A 6|= (x1 = t1)[γ].

Example 16 Let’s consider the atomic formula φ(x, y) = W (x) −W (y) ≤ Wl, in Axiom A5 of
Example 15. Formula φ is an atomic formula of form t1 ≤ t2, where t1(x, y) is W (x)−W (y) and
t2 is Wl. Since both W and Wl are instance functions, we can use Definition 19 to compute the
answer to atomic formula φ. Let γ be an assignment mapping x to 1 and y to 2, then we have:

1. tA1 [γ] = WA(1)−WA(2) = 2− 7 = −5;
2. tA2 [γ] = 4.

So, δR(γ) = >.
Table 6.1 depicts a True/False table representing an answer to φ(x, y).
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x y ψ

1 1 >

1 2 >

1 3 >

2 2 >

2 3 >

3 1 >

3 2 >

3 3 >

D = ⊥

Table 6.1: True/False table for an answer to W (x)−W (y) ≤Wl.

6.5 Answers to Terms - Part 1

Terms involving expansion functions and predicates, including aggregate terms whose vocabulary
intersects with the expansion vocabulary, can only be evaluated with respect to a particular interpre-
tation of those expansion predicates/functions. Thus, they cannot be evaluated during grounding, as
in Section 6.4. We call a term which cannot be evaluated based on the instance structure a complex
term.

In this section, we further extend the relational algebra-based grounding method to handle
atomic formulas which have complex terms as their arguments. The key idea in our approach is
to introduce the notion of an answer to a term. We then extend our grounding algorithm to compute
answers to atomic formulas from answers to the terms which are their arguments. The terms we
allow here include arithmetic expressions, instance functions, expansion functions, and aggregate
operators involving them. The axioms A3 and A4 in Example 15 have these kinds of terms.

Let’s restrict the terms in the input language of Enfragmo to those that can be constructed from
instance and expansion functions, arithmetic operations, Count, Min and Max aggregates, or re-
cursive application of these constructs. We call this language, which does not include the Sum
aggregate, L′. In this section, we focus on grounding axiomatization expressed in L′ and in the next
section, we discuss grounding specifications that have occurrences of Sum aggregates.

As we said before, we assume the only type in the specifications is the integer type T. All the
constructions and definitions presented here can be extended for the general case.

Definition 20 (Answer to Term t wrt A) We say thatR = (αR, βR) is an answer to term t(x̄) with
respect to A if, for every a ∈ αR, the extended X-relation βR(a), where X = {x | x occurs in x̄},
is an answer to the formula (t = a) with respect toA, and for every a 6∈ αR, there is no structure B,
expanding A and no assignment γ, mapping variables in X to elements in T , such that tB[γ] = a.



CHAPTER 6. GROUNDING SPECIFICATIONS WITH COMPLEX TERMS 75

Intuitively, αR is the set of all possible values term t(x̄) may take. The formula obtained from
δβR(a)(γ), where γ is an assignment to variables occurring in x̄, describes the condition under
which t[γ] evaluates to a. We may use δR(γ, n) as a shorthand for δβR(n)(γ) .

Note that Definition 20 allows αR to be either the exact range of t or a superset of the range of
t. If αR is a superset of the exact range of t, it means some of the extended X-relations defined by
βR map all assignments to false.

Example 17 (Continuation of Example 15) Assume ψ(x, y) is W (l1)−W (l2) ≤ Wl. Let r = Wl,
si = li, ti = W (si) (i ∈ {1, 2}), r′ = t1 − t2 be the terms in ψ, and R, Si, Ti (i ∈ {1, 2}), R′
be answers to these terms, respectively. Then αR = {4}, αSi = {1, 2, 3}, αTi = {2, 4, 7} and
αR′ = {−5,−3,−2, 0, 2, 3, 5}. Alternatively, we can set αT2 = {2, 4, 5, 7} and δT2(γ, 5) = ⊥, for
every γ.

Below, we describe the properties that are sufficient for an extended relation to constitute an
answer to a term. Based on Definition 20, an answer to a term has two components; αR, and βR.
We first present an algorithm, Algorithm 7, to compute αR, for terms in language L′.

Let x̄ be a tuple of variables of size k. We define Dx̄ to be the set of all k-tuples of domain
elements, i.e., Dx̄ = T k.

Remark 2 Let t(x̄) be a term and A a σ-structure containing an interpretation for every function
and predicate in t, i.e., vocab(t) ⊆ σ. The exact range of t, i.e., the values t takes under different as-
signments, can be computed by evaluating tA[γ], for all possible assignments γ, mapping variables
occurring in x̄ to elements in T . If the vocabulary of t contains expansion predicates/functions, or
in other words (that is A does not interpret all the functions and predicates in t), then Algorithm 7
computes a superset of the range of t, SuperRange of t, by finding all possible values t may take,
under all expansions of A and all assignments.

Given σ-structure A, the exact range of term t(x̄), where vocab(t) ⊆ σ, can be computed in
linear time with respect to the size of Dx̄. However, since Algorithm 7 computes its return value
fast enough, we always use the return value of this algorithm as αR.
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Algorithm 7 Computing SuperRange t(x̄)

Input: t (a term in σ ∪ ε), T (interpretation for type T), A (a σ-structure).
Output: αR: R = (αR, βR) is an answer to t wrt to A.

1: function COMPUTESUPERRANGE(t, T , A)
2: if t is a variable then
3: return T
4: else if t = t1 + t2 then
5: α1 = ComputeSuperRange(t1, T,A), α2 = ComputeSuperRange(t2, T,A)
6: return {s | s = s1 + s2, s1 ∈ α1, s2 ∈ α2}
7: else if y = t1 − t2 then
8: α1 = ComputeSuperRange(t1, T,A), α2 = ComputeSuperRange(t2, T,A)
9: return {s | s = s1 − s2, s1 ∈ α1, s2 ∈ α2}

10: else if y = t1 × t2 then
11: α1 = ComputeSuperRange(t1, T,A), α2 = ComputeSuperRange(t2, T,A)
12: return {s | s = s1 × s2, s1 ∈ α1, s2 ∈ α2}
13: else if t = Countx̄{φ(x̄, ȳ)} then
14: return {0, · · · , |Dx̄|}
15: else if t = Maxx̄{t1(x̄, ȳ) : φ(x̄, ȳ); dM} then
16: α1 = ComputeSuperRange(t1, T,A)
17: return α1 ∪ {dM}
18: else if t = Minx̄{t1(x̄, ȳ) : φ(x̄, ȳ); dM} then
19: α1 = ComputeSuperRange(t1, T,A)
20: return α1 ∪ {dM}

The next two propositions assert the correctness and computational complexity of Algorithm 7.

Proposition 15 Algorithm 7, given term t(x̄), an interpretation for type T and σ-structure A, com-
putes and returns set of integers α, such that α is superset of all possible values t(x̄) may take
under all possible assignments mapping each variable occurring in x̄ to an element in T , and all
the structures expandingA. The running time of the algorithm is polynomial with respect to the size
of instance structure.

Proof: Before we start the proof, we remind readers that, as stated in Remark 1, the size of encoding
of a problem instance for Enfragmo, with a single type T, is Ω(|T |). Also, recall that the formula
describing the problem is fixed, and so it has a constant size. Therefore all the terms in the problem
specification also have a constant size.

The proof is based on the structural induction on the structure of term, t(x̄). There are two base
cases:
• Term t is a variable: all the values a variable may take under all assignments (and all interpre-

tations) is a subset or equal to T .
• Term t is a Count aggregate: Countx̄{φ(x̄, ȳ)} counts how many formulas out of a set of

formulas, with size |Dx̄|, are mapped to true by any assignment and interpretation. So, the
value of term t is certainly greater than or equal to zero, and it is less than or equal to |Dx̄| =
|T ||x̄|.
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The proof for inductive step is straightforward: Here, we prove the inductive step for t = t1 +t2.
The idea in the proofs for the other cases is similar.

Let α1 (α2) be a superset of the values term t1 (t2, respectively) may take over all possible
assignments and structures, computed by Algorithm 7. This algorithm returns S = {s | s =
s1 + s2, s1 ∈ α1, s2 ∈ α2}. To show the correctness of Algorithm 7, we must show that there is no
assignment γ and structure B expanding A, such that tB[γ] 6∈ S. Let’s assume that is not the case.
So, there must be assignment γ and structure B, such that tB[γ] = tB1 [γ] + tB2 [γ] 6∈ S. We know, by
induction hypothesis, that tB1 [γ] ∈ α1, tB2 [γ] ∈ α2, and so, the integer s = tB1 [γ] + tB2 [γ] must be a
member of set S, and hence there cannot be such γ and B.

The proof for the running time of Algorithm 7 is similar to that of Proposition 1.

Proposition 16 In the restriction of the input language of Enfragmo which does not have Sum ag-
gregate, language L′, SuperRanges of all terms, computed using Algorithm 7, have polynomially
many members with respect to the size of representation of instance structure A. The maximum and
minimum values a term may take have a polynomial size with respect to the size of representation of
the instance structure A.

Proof: The proof is based on structural induction on the parse tree of term, t(x̄).
Since in a problem instance, type T is described using a unary predicate, the size of representa-

tion of the instance structure A is Ω(|T | log |T |). So |T |k, where k is a constant integer, is bounded
by a polynomial with respect to the size of representation of the instance structure.

The base cases are when t is a variable or a Count aggregate. In both cases, the size of the
SuperRange of t is polynomial with respect to the size of the instance structure. In addition, the
values of the minimum and maximum elements in the SuperRange of t are polynomial with respect
to the size T .

Proof for the inductive step: Here we prove the correctness only for addition operator. The
proofs for the other cases are similar.

Let t = t1 + t2, S1 = ComputeSuperRange(t1, T,A) and
S2 = ComputeSuperRange(t2, T,A).

By inductive hypothesis, we know that |Si| is polynomial with respect to the size ofA, i = 1, 2.
Let S = ComputeSuperRange(t, T,A) computed using Algorithm 7. Using the construction, we
have |S| ≤ |S1||S2|. Since both |S1| and |S2| are bounded by polynomials with respect to the size
of representation of A, their product is also bounded by such a polynomial.

We use Min(T )(Max(T )), where T is a set of integers, to represent the minimum value (max-
imum value, respectively) in set T . By inductive hypothesis, we know that both Min(Si) and
Max(Si)) are bounded by polynomials with respect to the size of representation of A, i = 1, 2.
The minimum value in set S is Min(S1) + Min(S2) which is bounded by a polynomial with re-
spect to the size of representation ofA. Moreover the maximum value in S isMax(S1)+Max(S2)
which is also bounded by a polynomial with respect to the size of representation of A.

Example 18 This example demonstrates why we excluded the Sum aggregate from the other ag-
gregates in Proposition 16. Assume term t is Sumx{f(x) : E(x)} and let the corresponding type
to variable x be {1, · · · , 100}, E an expansion predicate and f an instance function, such that
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fA = {1 7→ 2, 2 7→ 4, · · · , 100 7→ 2100}. There are 2100 ways of expanding A to structure B,
and in each of them, t evaluates to a different integer, so the SuperRange of t has size 2100, while
structure A can be encoded using 1002 bits.

In the rest of this section, we assume that Sum aggregate is not allowed in our language. In
Section 6.6, we describe how to modify the notion of an answer to a term, in order to achieve a
polynomial time grounding in the presence of the Sum aggregate.

The following construction describes one approach for computing an answer to a term, satisfying
properties of Definition 20.

Construction 6 (Answers to Terms) Let R be the pair (αR, βR), and t a term. Assume that
t1, . . . tm are terms, and R1, . . .Rm (respectively) are answers to these terms with respect to A.
Also, let S be an answer to φ with respect to A. Then we construct R as an answer to term t with
respect to A as follows:
(1) t is an evaluable term,i.e., its vocabulary is a subset of instance structure vocabulary, then

αR = ComputeSuperRange(t) and for all n ∈ αR, set δR(γ, n) = > iff tA[γ] = n and set
δR(γ, n) = ⊥ iff tA[γ] 6= n.

(2) t is a term in the form of t1 + t2, then αR = ComputeSuperRange(t) and
βR(n) = ∪j∈αR1

, k∈αR2
, n=j+kβR1(j) ./ βR2(k).

(3) t is a term in the form of t1{−,×}t2, similar to case (2);
(4) t is a term in the form of f(t1, · · · , tm), where f is an instance function, then

αR = ComputeSuperRange(t),
βR(n) = ∪a1∈αR1

,...,am∈αRm , s.t.f(a1,...,am)=nβR1(a1) ./ · · · ./ βRm(am).

(5) t is a term in the form of f(t1, · · · , tm), where f is an expansion function, then we introduce an
expansion predicate Ef (x̄, y) for each expansion function f(x̄) where y has the same sort as
the range of f . Then αR = ComputeSuperRange(t), and

βR(n) = ∪a1∈αR1
,...,am∈αRmβR1(a1) ./ · · · ./ βRm(am) ./ Ta1,··· ,am,n,

where Ta1,··· ,am,n is an answer to ∃x̄ ∧i xi = ai ∧ y = n ∧ Ef (x1, · · · , xm, y).
(6) t is Countx̄{φ(x̄, ȳ)}, then αR = ComputeSuperRange(t), and we set δβR(n)(γ) to be

COUNTS,n(γ), where COUNTS,n(ȳ) is a fresh predicate, in structure B. We define
COUNTS,n(γ), for every γ, to be equivalent to:(

∃w̄1 · · · w̄n (w̄1 < w̄2) ∧ · · · ∧ (w̄n−1 < w̄n) ∧ φ(w̄1, y) ∧ · · · ∧ φ(w̄n, y) (6.1)

∧∀w̄
(
w̄ 6= w̄1 ∧ · · · ∧ w̄ 6= w̄n → ¬φ(w̄, y)

))
[γ],

where x̄ < ȳ is a shorthand for

(x1 < y1) ∨ (x1 = y1 ∧ x2 < y2) ∨ · · · (x1 = y1 ∧ · · · ∧ x|x|−1 = y|y|−1 ∧ x|x| < y|y|).

(7) t is Maxx̄{t1(x̄, ȳ) : φ(x̄, ȳ); dM )}, then αR = ComputeSuperRange(t), and set δβR(n)(γ)
to be MAXT1,S,n(γ), where MAXT1,S,n(ȳ) is a fresh predicate, in structure B. We define
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MAXT1,S,n(γ), for every γ, to be equivalent to:((
∃x̄ t1(x̄, ȳ) = n ∧ φ(x̄, ȳ)

)
∧ ∀x̄(φ(x̄, ȳ)⇒ t1(x̄, ȳ) ≤ n)

)
(6.2)

∨
(
n = dM ∧ ∀x̄ ¬φ(x̄, ȳ)

)
.

(8) t is Minx̄{t1(x̄, ȳ) : φ(x̄, ȳ); dm)}, αR and βR are defined similar to case (7).

Intuitively, Equation 6.1 asserts that there are exactly n different assignments to x̄; the values
assigned to w̄1, · · · w̄n, for which φ(x̄, ȳ) are true and so, it describes the necessary and sufficient
conditions for δβB(n)(γ). Although using our grounding algorithm we can compute, given S, n
and γ, a ground formula equivalent to Equation 6.1, in practice, many of the entries in βR(n)
will be eliminated during grounding as they are conjuncted with false or disjuncted with true. To
reduce the grounding time, we expand the vocabulary of B by predicate COUNTS,n, for 0 ≤ n ≤
|Dx̄| and each occurrence of the Count aggregate. In Chapter 9, we explain how atomic formula
COUNTS,n(γ) corresponds to a cardinality constraint and describe several approaches to translate
this formula to CNF.

Equation 6.2 asserts that there is at least one assignment to x̄ for which both φ(x̄, ȳ) is true
and t1(x̄, ȳ) = n, and for all other instantiations of x̄, either φ(x̄, ȳ) is false or t1(x̄, ȳ) is less than
or equal to n. Similar to COUNTS,n(ȳ), Enfragmo postpones describing MAXT1,S,dM ,n(ȳ) until
the MakeCNF phase. In Chapter 8, we explain how the atomic formula MAXT1,S,dM ,n(γ) can be
translated into CNF such that it is equivalent to Formula 6.2.

Proposition 17 The Construction 6 is correct meaning the pair R = (αR, βR) computed by the
construction satisfies the conditions described in Definition 20.

Proof: Since we proved the correctness of Algorithm 7, we know if n 6∈ αR, there is no γ and no B
expanding A such that tB[γ] = n. Thus based on Definition 20, we only need to show that for any
structure B expanding instance structure A, we have B |= δβR(n)(γ) iff tB[γ] = n.

The proof is by structural induction on the structure of term t (We present the proof for some of
the terms, the proofs for the other cases are similar).

There are three base cases:
1. t is a variable, then the correctness of this case is trivial.
2. t is in form f , where f is a constant from instance structure. Let’s assume fA = m. Function
f does not have any arguments, so we have:
• n = m: δβR(n)(γ) = >,
• n 6= m: δβR(n)(γ) = ⊥.

3. t is in form f , where f is a constant from expansion structure. Let’s assume Enfragmo uses
expansion predicate Ef to describe f . Function f does not have any arguments, so Ef (y) is
a unary predicate such that for all n, Ef (n) is true iff f [γ] = n. Based on the construction,
δTn(γ)⇔ Ef [γ]. So, for every γ, we have

δβR(n)(γ) = δTn(γ)⇔ Ef [γ]⇔ f [γ] = n.

4. t is in form Countx̄{φ(x̄, ȳ)}. Then the construction sets δβR(n)(γ) to be COUNTS,n(γ) and
we definedCOUNTS,n(γ) to be an atomic formula equivalent to (Countx̄{φ(x̄, ȳ)} = n) [γ].
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The proof for the inductive step is as follows:
1. Let t(x̄) be a term in form t1(x̄) + t2(x̄), and Ri = (αRi , βRi) be an answer to term ti, for
i = 1 and 2.
If tB[γ] evaluates to n, then there must be a value j such that tB1 [γ] = j and tB2 [γ] = n − j.
By induction hypothesis, we know that if j 6∈ αR1 , t1B[γ] cannot evaluate to j, therefore we
simply look at j ∈ αR1 . So, the following is the necessary and sufficient condition for tB[γ]
to evaluate to n: ∨

j∈αR1

δβR1
(γ, j) ∧ δβR2

(γ, n− j),

which is the formula corresponding to δβR(n)(γ), if we evaluate the result of union specified
in case 2.

2. Let t be a term in the form of f(t1, · · · , tm), where f is an instance function. Then the above
construction sets βR(n) such that it contains the combination of all possible ways that f can
be evaluated as n.

3. Let t be a term in the form of f(t1, · · · , tm), where f is an expansion function. Then the above
construction set βR(n) such that it asserts that f(t1, · · · , tm) evaluates as n under assignment
γ iff ti[γ] = ai, 1 ≤ i ≤ m, and Ef (a1, · · · , am, n).

4. Let t be a term in form Maxx̄{t1(x̄, ȳ) : φ(x̄, ȳ); dM )}. Then the construction sets δβR(n)(γ)
to be MAXT1,S,n(γ) and we defined MAXT1,S,n(γ) to be an atomic formula equivalent to(
Maxx̄{t1(x̄, ȳ) : φ(x̄, ȳ); dM} = n

)
[γ].

As explained in Construction 6, Enfragmo introduces some new predicates during the grounding
of complex terms. These predicates can be seen as place holders for their corresponding formulas.
In Chapters 8 and 9, we describe several approaches for expressing these special predicates in CNF.

1. Place holder for Count aggregate: We use COUNTS,n(γ) for the formula corresponding to
δR(γ, n), in Case 6 of Construction 6.

2. Place holder for Max aggregate: We use MAXT1,S,dM ,n(γ) for the formula corresponding
to δR(γ, n), in Case 7 of Construction 6.

3. Place holder for Min aggregate: We use MINT1,S,dm,n(γ) for the formula corresponding to
δR(γ, n), in Case 8 of Construction 6.

In addition to making the grounding phase faster, this design has another benefit. If we decide
to use a SAT solver which is capable of handling the aggregates natively, the place holders can be
translated to the appropriate constraints, in the MakeCNF phase.

Example 19 (Continuation of Example 17) Following Construction 6, βR(2) is an extended relation
describing Wl = 2. Since WAl = 2, this extended relation has a single row, with true attached to it.
βS1(1) is an extended {l1}-relation representing an answer to l1 = 1. Extended {l1}-relations βT1(4)

and extended {l2}-relations βT2(2) are demonstrated in the following tables. We compute βR′(2) as
βT1(4) ./ βT2(2) ∪ βT1(7) ./ βT2(5). In other words, the answer to r′ is 2 if either t1 = 4 ∧ t2 = 2
or t1 = 7 ∧ t2 = 5.
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ψ

>

D = ⊥

(a) True/False table representing βR(2).

l1 ψ

1 >

D = ⊥

(b) True/False table representing βS1
(1).

l1 ψ

3 >

D = ⊥

(c) True/False table representing βT1
(4).

l2 ψ

1 >

D = ⊥

(d) True/False table representing βT2
(2).

l1 ψ

2 >

D = ⊥

(e) True/False table representing βT1(7).

l2 ψ

D = ⊥

(f) True/False table representing βT2(5).

l1 l1 ψ

3 1 >

D = ⊥

(g) True/False table representing βR′(2).

6.5.1 Grounding Atomic Formulas in the Presence of Complex Terms

So far, we have formally described how to compute answers to different kinds of terms. Now, we
need to enhance our previous grounding algorithm, such that it is able to compute answer to an
atomic formula from the answers to its terms.

As explained in Subsection 6.2.1, Enfragmo rewrites the specification such that the atomic for-
mulas in a specification are one of the following:

1. P (x1, · · · , xk), where P is a arity k predicate;

2. y = t(x̄), where all variables are associated with type T, and t is a term;

3. t1(x̄) op t2(x̄), where all variables are associated with type T, t1 and t2 are terms and op =
{<,=}.

All the terms in the first kind of atomic formulas are variables, and Enfragmo uses the grounding
algorithm introduced in the previous chapter to compute answers to this kind of formula. The answer
to an atomic formula of the form y = t(x̄) is a Z-relation T , where Z = {z | z occurring in x̄ } ∪
{y}. LetR = (αR, βR) be an answer to variable y and S = (αS , βS) be an answer term t(x̄). Then
Enfragmo computes T as follows:

T =
⋃

n∈αR∩αS

βR(n) ./ βS(n). (6.3)
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Intuitively, Equation 6.3 says y is equal to t(x̄) iff they both evaluate to the same integer n.
The idea to compute an answer to an atomic formula of the form t1(x̄) = t2(x̄) or t1(x̄) < t2(x̄)

is similar:
Let R = (αR, βR) be an answer to term t1(x̄) and S = (αS , βS) be an answer term t2(x̄).

Then Enfragmo computes extended X-relation T , X = {x | x occurring in x̄}, as an answer to
t1(x̄) = t2(x̄) as follows:

T =
⋃

n∈αR∩αS

βR(n) ./ βS(n).

To compute an answer to an atomic formula in form t1(x̄) < t2(x̄), Enfragmo uses the following:

T =
⋃

m∈αR,n∈αS
s.t. m<n

βR(m) ./ βS(n).

Example 20 (Continuation of Example 17) Although, ψ does not have any complex terms, to demon-
strate the handling of base cases, the process of computing an answer for ψ is described here. We
have computed answers to r′ and r. To compute an answer to ψ(l1, l2) = W (l1) −W (l2) ≤ Wl,
Enfragmo computes the following union: ⋃

n∈{2},
m∈{−5,−3,−2,0}

βR′(m) ./ βR(n)

 ∪ (βR′(2) ./ βR(2)

)
.

6.6 Answers to Terms - Part 2

As Example 18 demonstrated, there are specifications in which the sizes of SuperRanges for Sum
aggregates are exponential with respect to the size of the instance structure. Remembering that our
goal is to construct a polynomial time grounding framework, we need to find more efficient ways
for dealing with specifications with the Sum aggregates.

In order to achieve polynomial time grounding, we define a new notion of an answer to a term,
which we call it binary answer to a term. In this section, we use unary answer to term to refer the
notion of answer to term introduced in Section 6.5.

Proposition 18 The length of binary representation of the values a term may take, under different
assignments and possible expansions of instance structure, is polynomial with respect to the size of
representation of instance structure.

Proof: Let t(x̄) be a valid term in the input language of Enfragmo, and A be the instance structure.
Using Proposition 1, we know that the size of binary representation of the smallest/largest possible
value t may take under all possible assignments to x̄ in all possible expansions of A is polynomial
with the size of the active domain. Since the size of active domain is strictly less than the size
of representation of the instance structure, every integer between the minimum and maximum val-
ues, inclusive, is representable by polynomially many bits with respect to the size of the instance
structure.
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Let t be a term with free variables x̄, andA a σ-structure. LetR be the tuple (mR,MR, αR, βR)
such that αR is an extended X-relation, where X = {x | x occurring in x̄}, and, βR is a function
mapping integers to extended X-relations, mR and MR are two integers.

Let B be an expansion of A. We define R, for term t, such that if δαR(γ) is evaluated to true
under structure B, tβ[γ] ≥ 0. And if B evaluates δαR(γ) to false, term t[γ] evaluates to a negative
number under structure B. Extended X-relation βR(a) represents a table such that δβR(a)(γ) is the
necessary and sufficient condition for tB[γ] to evaluate to a number whose a-th bit, in the binary
representation, is one. We define βR(a) = ∅ if the a-th bit of t is always 0. We may also use
δR(γ, n) and δβR(n)(γ) interchangeably. The two integers in R, e.g., mR and MR, represent the
minimum and maximum values t(x̄) may take under all possible assignments to x̄ and all possible
B. We use mR and MR to determine how many valuable bits t has.

Definition 21 (Binary Answer to Term t wrt A) We say that R = (mR,MR, αR, βR) is an an-
swer to term t(x̄) with respect toA iff MR (mR) is larger than or equal to the maximum value (less
than or equal to the minimum value, respectively), term t may take under all possible assignments
and all expansion of structure A, extended X-relation αR(γ), where X = {x | x occurred in x̄}, is
an answer to t ≥ 0, and extended X-relation βR(a) is an answer to the formula ∃z ≥ 0 : (2a ≤
t− 2a+1 × z < 2a+1) with respect to A.

In Example 21, we demonstrate how a binary answer to a term, for Sum aggregate can be
computed.

Example 21 (Continuation of Example 18) Let R be an answer to t. We know that the maximum
possible value for t is 2101 − 2 and the minimum possible value for t is 0. We also know that t does
not have any free variables, so all the extended relations in the answer to t must have exactly one
row. As t is always non-negative, the formula corresponding to the only row in αR is true . The
following tables show representations for βR(0), · · · , βR(5):
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ψ

D = ⊥

(a) True/False Table for βR(0).

ψ

E(1)

D = ⊥

(b) True/False Table for βR(1).

ψ

E (2)

D = ⊥

(c) True/False Table for βR(2).

ψ

E (3)

D = ⊥

(d) True/False Table for βR(3).

ψ

E (4)

D = ⊥

(e) True/False Table for βR(4).

ψ

E (5)

D = ⊥

(f) True/False Table for βR(5).

Before we explain how a binary answer to a term can be computed for different terms, we need
to introduce some new operators and place holders, as in the previous section (We use R1 and R2

as binary answers to t1 and t2).
1. LessEq operator: LessEq(R1,R2) operates on two binary answers to terms, and computes

an answer to a formula. The result of LessEq operates is an answer to the atomic formula
|t1| ≤ |t2|.

2. ADD operator: ADD(R1,R2, n) operates on two binary answers to terms and an integer n,
and computes an answer to a formula. The result of ADD operator is an answer to the atomic
formula asserting the condition under which the n-th bit in the result of adding up t1 with t2
is one.

3. SUB operator: SUB(R1,R2, n) operates on two binary answers to terms and an integer n,
and computes an answer to a formula. The result of SUB operator is an answer to the atomic
formula asserting the condition under which the n-th bit in the result of subtracting t1 from t2
is one.

4. MUL operator: MUL(R1,R2, n) operates on two binary answers to terms and an integer n,
and computes an answer to a formula. The result ofMUL operator is an answer to the atomic
formula asserting the condition under which the n-th bit in the result of subtracting t1 from t2
is one.

5. EQ operator: EQ(n,R1) operates on an integer n and a binary answer to a term, and com-
putes an answer to a formula. The result of EQ operator is an answer to the atomic formula
t1 = n.

Construction 7 (Binary Answer to Terms) Let R be (mR,MR, αR, βR), and t a term. Assume
that t1, · · · , tm are terms, and R1, · · · ,Rm are answers to those terms with respect to A, respec-
tively. Also, let S be an answer to φ. ThenR is a binary answer to term t with respect to A:
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1. If t is a variable x, then

(a) Set mR (MR) to be the minimum (the maximum, respectively) value in T .
(b) Set δαR(γ) = > iff (x ≥ 0)[γ].
(c) For n s.t. min(|mR|, |MR|) ≤ 2n ≤ max(|mR|, |MR|) set δβR(n)(γ) = > iff the n-th

bit of the binary representation of γ|x is one.
(d) For n s.t. min(|mR|, |MR|) ≤ 2n ≤ max(|mR|, |MR|) set δβR(n)(γ) = ⊥ iff the n-th

bit of the binary representation of γ|x is zero.

2. t is a term in form of t1 + t2:

(a) Set mR (MR) to be mR1 +mR2 (MR1 +MR2 , respectively).
(b) To define δαR , we use LessEq operator. We set δαR(γ) to be

(
δαR1

(γ) ∧ δαR2
(γ)
)

∨
(
¬δαR1

(γ) ∧ δαR2
(γ) ∧ δLessEq(R1,R2)(γ)

)
∨
(
δαR1

(γ) ∧ ¬δαR2
(γ) ∧ δLessEq(R2,R1)(γ)

)
.

(c) To define δβR , we use ADD and SUB operators. We set δβR(n)(γ) to be

(
¬
(
δαR1

(γ) xor δαR2
(γ)
)
∧ δADD(R1,R2,n)(γ)

)
∨((

δαR1
(γ) xor δαR2

(γ)
)
∧ δSUB(R1,R2,n)(γ)

)
.

3. t is a term in form of t1{−,×}t2: similar to case (2);

4. t is a term in form of f(x1, · · · , xm), where f is an instance function:

(a) Set mR (MR) to be the minimum (the maximum, respectively) value in T .
(b) Set δαR(γ) = > iff fA[γ] ≥ 0.
(c) Set δαR(γ) = ⊥ iff fA[γ] < 0.
(d) To define δβR , we use the EQ operator. We set δβR(n)(γ) to be

∨
k∈Range of fA s.t.

the n-th bit of k is one and
fA(a1,··· ,am)=k

m∧
i=1

δEQ(ai,Ri)(γ).

5. t is a term in form of f(x1, · · · , xm), where f is an expansion function: We introduce an
expansion predicate Ef (x̄, y), for each expansion function f(x̄), where y has the same sort
as the range of f .

(a) Set mR (MR) to be the minimum (the maximum, respectively) value in T .
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(b) Set δαR(γ) to be ∨
o:o∈T

and o≥0

Ef (γ|x̄, o).

(c) To define δβR , we use EQ operator. We set δβR(n)(γ) to be

∨
k∈T s.t.

the n-th bit of k is one

(
m∧
i=1

δEQ(ai,Ri)(γ)

)
∧ Ef (γ, n).

6. t is Countx̄{φ(x̄, ȳ)}:
(a) Set mR (MR) to be 0 (|Dx̄|, respectively).
(b) Set δαR(γ) to be >.
(c) To define δβR(n) we use COUNT (S, o, γ) place holder, defined in Section 6.5. We set

δβR(n)(γ) to be: ∨
o≤ |Dx̄| s.t.

the n-th bit of o is one

COUNTS,o(γ).

7. t is Maxx̄{t1(x̄, ȳ) : φ(x̄, ȳ); dM )}:
(a) Set mR (MR) to be mR1 (MR1 , respectively).
(b) Set δαR(γ) to be: ∨

γ′ is assignment to x̄

δS(γ′, γ) ∧ δαR1
(γ′, γ)

∨

(dM ≥ 0) ∧
∧

γ′ is assignment to x̄

¬δS(γ′, γ)

 .

(c) Set δβR(n)(γ) to be equivalent to the following expression:
• Either there exists assignment γ1, mapping variables in x̄ to elements in T , such

that the n-th bit of the result of t1[γ1, γ] is one and φ[γ1, γ] is true, and also for all
other γ2, mapping variables in x̄ to elements in T , where φ[γ1, γ] is true, t2[γ2, γ]
is less than or equal to t1[γ1, γ].
• Or for all γ1, mapping variables in x̄ to elements in T , φ[γ1, γ] is falseand the n-th

bit of dM , in the binary representation is one.
This condition can be expressed explicitly using the answer to φ, binary answer to t1
and LessEq operator. Since it would be too long, we did not include it here.

8. t is Minx̄{t1(x̄, ȳ) : φ(x̄, ȳ); dm)}: similar to case (7).

9. t is Sumx̄{t1(x̄, ȳ) : φ(x̄, ȳ)}:
(a) Set mR (MR) to be min(|A||x̄| ∗mR1 , 0) (max(|A||x̄| ∗MR1 , 0), respectively).
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(b) Set δαR(γ) to be equivalent to the following linear equation:∑
γ′ is assignment to x̄
0≤n≤log(|MR|)

2n ∗ χ
(
δT (γ, γ′) ∧ δβR1

(n)(γ, γ
′)
)

∗(2 ∗ χ
(
δαR1

(γ, γ′)
)
− 1) ≥ 0,

where χ(ψ) is the characteristic function returning 1 iff ψ is evaluated to true.
(c) Set δβR(n)(γ) to be equivalent to the following expression:

The n-th bit in the result of the following summation is 1:∑
γ′ is assignment to x̄
0≤m≤log(|MR|)

2m ∗ χ
(
δT (γ′, γ) ∧ δβR1

(m)(γ
′, γ)

)

∗(2 ∗ χ
(
δαR1

(γ′, γ)
)
− 1),

where χ(ψ) is the characteristic function returning 1 iff ψ is evaluated to true.

Similar to Proposition 17, it can be shown that Construction 7 computes a correct binary answer to
terms.

Analogous to Section 6.5, to reduce the grounding time, we introduce place holders when we
are computing binary answers to terms:

1. Place holder BLESSEQR1,R2(γ): We use BLESSEQR1,R2(γ) to express the atomic for-
mula corresponding to δLessEq(R1,R2)(γ).

2. Place holderBEQn,R(γ) : We useBEQn,R(γ) to express the atomic formula corresponding
to δEQ(n,R)(γ).

3. Place holder BADDR1,R2,n(γ) (BSUBR1,R2,n(γ), BMULR1,R2,n(γ)): We use
BADDR1,R2,n(γ) (BSUBR1,R2,n(γ), BMULR1,R2,n(γ)) to express the atomic formula
corresponding to δADD(R1,R2,n)(γ) (δSUB(R1,R2,n)(γ), δMUL(R1,R2,n(γ)).

4. Place holder COUNTS,n(γ) is the same as described in Section 6.5.
5. Place holder BMAXS,R1,dM ,n(γ): We use atomic formula BMAXS,R1,dM ,n(γ) to express

that the n-th bit of the return value of Max aggregate is one.
6. Place holder BMINS,R1,dm,n(γ): We use atomic formula BMINS,R1,dm,n(γ) to express

that the n-th bit of the return value of Min aggregate is one.
7. Place holder BSUMS,R1,n(γ): We use atomic formula BSUMS,R1,n(γ) to express that the

n-th bit of the return value of Sum aggregate is one.

6.6.1 Grounding an Atomic Formula Using Binary Term Tables

Similar to Subsection 6.5.1, here we describe how to construct an answer to an atomic formula from
binary answers to its terms.

Let t1 and t2 be terms and R1 and R2 be binary answers to them with respect to structure A.
Also, letR3 be a binary answer to term y, where y is a variable.
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1. R is an answer to y = t1(x̄) with respect to A if

R = LessEq(R1,R3) ./ LessEq(R3,R1).

2. R is an answer to t1(x̄) = t2(ȳ) with respect to A if

R = LessEq(R1,R2) ./ LessEq(R2,R1).

3. R is an answer to t1(x̄) < t2(ȳ) with respect to A if

R = LessEq(R1,R2).

6.7 Experimental Evaluation

In Chapter 3, we showed that having complex terms in system’s language enables users to express
complex axioms compactly. Table 3.5 in Section 3.4, shows that Enfragmo handles complex terms
efficiently.

As explained in Chapter 4, we extended the input language of Enfragmo with complex terms
such that it still captures NP. Our main motivation for adding support for complex terms in En-
fragmo was to help users write specifications for their problems. To show how using complex terms
makes the task of developing specifications easier, we express the three specifications described in
Chapter 3 for the Social Golfers problem without using complex terms. We also compare the per-
formance of Enfragmo and IDP on the three specifications we described for this problem; SG-01,
SG-02 and SG-03.

Recall that all three specifications for Social golfers contain the following three axioms:

1. Each group must have GroupSize golfers in it: ∀w, g : Countp{M(w, g, p)} = GroupSize,

2. No two golfers plays in the same group more than once: ∀p1p2 : (p1 < p2)→ Countw,g{M
(w, g, p1) ∧M(w, g, p2)} ≤ 1,

3. Each week, all golfers must play in exactly one group: ∀w, p : Countg{M(w, g, p)} = 1.

In Chapter 3, we described three more axioms to break the symmetries in the search space:

A-1 In each week, golfer number 1 is going to play in group number one: ∀w : M(w, 1, 1);

A-2 In each week, groups are ordered based on the least index of golfers who is playing in the
groups: ∀w, g1, g2 : Succ(g1, g2) → Minp{p;M(w, g1, p);PlayerCount) < Minp{p;M
(w, g2, p); 0};

A-3 The second smallest index of the golfer in the first group of week i must be less than or equal
to the second smallest index of golfer in the first group of week j, for all j > i: ∀w1, w2 :
Succ(w1, w2)→Minp{p;M(w1, 1, p) ∧ p 6= 1;PlayerCount) < Minp{p;M(w2, 1, p) ∧
p 6= 1; 0}.
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Specification SG-01 contains only axioms (1)-(3). Specification SG-02, in addition to (1)-(3),
contains A-1 and A-2. Specification SG-03 is the same as specification SG-01 plus axiom A-1, A-2
and A-3.

To express axiom 1, we can use arity 4 predicate CountP layer(Weeks,Group,GroupSize,
P layer), with a set of axioms asserting that for every Week w and Group g, there are exactly
GroupSize distinct players, p1, · · · , pGroupSize, such that M(w, g, pi) is true, for i = 1, · · · ,
GroupSize.

Axiom 2 can be expressed in pure FO logic as follows:

∀p1, p2 : (p1 < p2)→ ∀w1, g1, w2, g2 : (M(w1, g1, p1) ∧M(w1, g1, p2) ∧ (g1 6= g2) ∧ (w1 6= w2))

→ ¬ (M(w2, g2, p1) ∧M(w2, g2, p2)) .

The conjunction of the following two FO axioms express Axiom 3:

∀w, p : ∃g : M(w, g, p).

∀w, p, g1, g2 : (g1 6= g2) ∧M(w, g1, p)→ ¬M(w, g2, p).

Axiom A-2 can be expressed without using complex terms by the following formulas:

∀w, g1, g2 : Succ(g1, g2)→
∀p1, p2 : M(w, g1, p1) ∧ (∀p : M(w, g1, p)→ (p1 ≤ p))
∧M(w, g2, p2) ∧ (∀p : M(w, g2, p)→ (p2 ≤ p))

→ p1 < p2.

The idea to express Axiom A-3 in the first-order logic is very similar to what has been used to
express Axiom A-2.

Not only is it more difficult to develop certain specifications without using complex terms, but
the performance is also an issue. We developed the first-order specifications corresponding to SG-
01,SG-02 and SG-03, and tried them for solving Social Golfer instances, using both Enfragmo and
IDP. As one may expect, both solvers failed to solve medium and large size instances, using first-
order specifications.

Since the input languages of IDP and Enfragmo are very similar, one can translate specifications
for one of the systems to specifications to the other one. In Table 6.4, we compare the performance
of IDP and Enfragmo on SG-01, SG-02 and SG-03. Table 6.4 shows that Enfragmo performs better
than IDP on specifications with complex terms.

To summarize the experiments, we showed that if Enfragmo did not support complex terms,
developing some specifications required much effort and knowledge. Although we discussed that
Enfragmo performs poorly on the first-order axioms corresponding to complex terms, we tested the
first-order axioms on the IDP system, and we received the same poor performance. So, we can
conclude that supporting complex terms is beneficial in two ways:

• It enables users to develop their specification more easily. Also, users can describe complex
properties of their problems more conveniently in the presence of complex terms.

• It provides the user with faster solving time. To enable Enfragmo to support complex term, we
have to modify/revise its grounding algorithms. The modified algorithms are efficient and do
not cause a lot of computational overheads. The same observation is true for the IDP system.
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Specification Enfragmo IDP

SG-01 126/53.2 98/46.6

SG-02 149/24.8 142/2.79

SG-03 161/19.8 142/0.17

Table 6.4: Performance of Enfragmo and IDP on the Social Golfers problem. The entry n/t means
that n instances were solved out of 175 instances, with an average running time of t seconds. The
1800-second timeouts are included in the times.

6.8 Conclusion

In this chapter, we described how we extended our engine to handle complex terms. We proposed
three extensions of the grounding algorithm, introduced in Chapter 5. The first extension, described
in Section 6.4, is suitable for handling specifications whose terms’ vocabulary is a subset of the
instance structure vocabulary. We introduced unary answer to term in Section 6.5, and modified our
grounding algorithm such that it can ground specifications with no occurrence of the Sum aggregate,
in polynomial time. Finally, we introduced binary answer to terms and modified our grounding
approach to handle all specifications expressible in the input language of Enfragmoin polynomial
time.

The results of the experiments presented in Sections 6.7 and 3.4, confirm that Enfragmo handles
the complex terms efficiently.



Chapter 7

Related Work

In this chapter, we review some of well-known grounding-based solvers. To investigate how a
grounder works, one needs to define the syntax of its input language and the target language in which
the output is generated. The input languages of grounders we study in this section, allow users to
describe all problems in the NP complexity class. So almost every problem which is solvable by one
of them can also be solved by the other solvers, too. What makes the comparison of these grounders
difficult is the fact that the performance of a grounder (a solver) depends on how the problem has
been specified in its input language. When fixing a solver and a problem, different specifications for
the problem can result in different performances.

The grounders can be classified into the following three groups:

1. Bottom-Up Grounders: The answer1 to each part of specification is computed based on the
answers to its sub-parts.

2. Top-Down Grounders: These grounders start computing the answers from the axioms. The
answer for each subformula is computed from the answer computed from its parent, in the
parse tree of the formula.

3. Incremental Grounders (Solvers): The grounder translates a part of the input specification and
solves that part of the problem. If the obtained solution satisfies the whole problem specifi-
cation, the process is complete. Otherwise, the previous partial grounding will be extended
and passed to the solver again. Extending the partial grounding continues until a consistent
solution is found or the solver reports unsatisfiability.

7.1 Bottom-Up Grounders

7.1.1 MXG

In [54], a framework based on classical first-order logic (FO) extended with inductive definition
was proposed which captures exactly the problems in NP. This framework is based explicitly on the

1We did not define what an answer is as it depends on the algorithm used by the grounder.
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model expansion task. Patterson et al., in [58], proposed a grounding approach for the proposed
framework.

The grounding task is to produce a ground formula ψ = Gnd(φ,A), such that models of ψ
correspond to solutions for instance A. Formally, to ground, the grounder brings domain elements
into the syntax by expanding the vocabulary with a new constant symbol for each element of the
domain. For domain A, we denote the set of such constants by Ã.

Example 22 (Continuation of Example 1) Formula φ in the first-order logic together with fixed
instance vocabulary σ, constitutes a specification for the graph 3-Colouring problem where the
colour of some of the vertices are fixed:

∀x
[(
Rp(x)→ R(x)

)
∧
(
Bp(x)→ B(x)

)
∧
(
Gp(x)→ G(x)

)]
∧∀x

[(
R(x) ∨B(x) ∨G(x)

)]
∧∀x

[(
R(x)→ ¬B(x)

)
∧
(
R(x)→ ¬G(x)

)
∧
(
B(x)→ ¬G(x)

)]
∧ ∀x∀y

[(
E(x, y) ∨ E(y, x)

)
→(

¬
(
R(x) ∧R(y)

)
∧ ¬
(
B(x) ∧B(y)

)
∧ ¬
(
G(x) ∧G(y)

))]
.

Figure 7.1: Graph Colouring Instance

Assuming the input graph is the one represented in Fig 7.1, the instance structure for vocabulary
σ = {E,Rp, Gp, Bp}, isEA = {(v1, v2), (v1, v3), (v2, v4), (v3, v4)},RAp = {v1} andGAp = BAp =
{}. The task is to find an expansion B of A that satisfies φ:

(

Instance︷ ︸︸ ︷
V ;EA, Rp

A, Gp
A, Bp

A,

Solution︷ ︸︸ ︷
RB, BB, GB︸ ︷︷ ︸

B

) |= φ.

Every interpretation of the expansion vocabulary ε = {R,B,G}, for structures B that satisfies φ,
is a proper 3-colouring for G which extends the given partial colouring.

Definition 22 (Reduced Grounding for MX) ([58]) Formula ψ is a reduced grounding of formula
φ over σ-structure A = (A, σA) if (1) ψ is a ground formula over ε ∪ Ã; and (2) for every ex-
pansion structure B = (A, σA, εB) over vocab(φ), B |= φ iff (B, ÃB) |= ψ, where ÃB denotes the
interpretation of the new constants Ã.
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During grounding, the symbols of the instance vocabulary are “evaluated out” and a reduced ground-
ing is obtained.

Proposition 19 ([58]) Let ψ be a reduced grounding of φ over σ-structure A. Then A can be
expanded to a model of φ iff ψ is satisfiable.

Thus, through grounding, the model expansion problem is reduced (in polynomial time) to proposi-
tional satisfiability.

The following algorithm, which is a bottom-up process that parallels database query evaluation,
produces a grounding for a given specification. The process constructs, for each sub-formula φ(x̄)
with free variables x̄, the set of reduced groundings for φ under all possible instantiations of x̄. A
representation of this set is called an answer to φ(x̄) with respect to A.

An extended X-relation is a relation associated with tuple of variables X . This grounding
produces/maintains extended relations such that each tuple γ : X 7→ A occurs in exactly one pair
(γ, ψ), where ψ is a formula.

Definition 23 (extended X-relation; function δR) ([58]) Let A = (A;σA), and X be the set of
free variables of formula φ. An extended X-relation R over A is a set of pairs (γ, ψ) s.t. (1) ψ is a
ground formula over ε ∪ Ã and γ : X → A; (2) for every γ, there is at most one ψ s.t. (γ, ψ) ∈ R.
The function represented byR, is a mapping from tuples γ of elements of the domainA to formulas,
defined as:

δR(γ) =

{
ψ if(γ, ψ) ∈ R,
⊥ if there is no pair(γ, ψ) ∈ R.

Definition 24 (Answer to φ with respect to A) ([58]) Let φ be a formula in σ ∪ ε with free vari-
ables X , A be a σ-structure with domain A, and R an extended X-relation over A. If R is an
answer to φ with respect to A for any γ : X → A, we have that δR(γ) is a reduced grounding of
φ[γ] over A. Here, φ[γ] denotes the result of instantiating free variables in φ according to γ.

Example 23 ([58]) Let φ = ∃x∃y∃zφ′ where φ′ = P (x, y, z) ∧ E(x, y) ∧ E(y, z), σ = {P}, and
ε = {E}. Let A be a σ-structure such that PA = {(1, 2, 3), (3, 4, 5)}. Then this extended relation
R

x y z ψ

1 2 3 E(1, 2) ∧ E(2, 3)

3 4 5 E(3, 4) ∧ E(4, 5)

is an answer to φ′ with respect to A. It is easy to see, for example, that δR(1, 2, 3) = E(1, 2) ∧
E(2, 3) is a reduced grounding of φ′[(1, 2, 3)] = P (1, 2, 3)∧E(1, 2)∧E(2, 3), and δR(1, 1, 1) = ⊥
is a reduced grounding of φ′[(1, 1, 1)]. The following extended relation is an answer to φ′′ = ∃zφ′.

x y ψ

1 2 E(1, 2) ∧ E(2, 3)

3 4 E(3, 4) ∧ E(4, 5)
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Here, for example, E(1, 2) ∧ E(2, 3) is a reduced grounding of φ′′[(1, 2)]. Finally, the following
represents an answer to φ, where the single formula is a reduced grounding of φ.

ψ

[E(1, 2) ∧ E(2, 3)] ∨ [E(3, 4) ∧ E(4, 5)]

The standard relational algebra has the following operations, each corresponding to a connective
in FO: complement (negation); join (conjunction); union (disjunction), project (existential quantifi-
cation); and divide (universal quantification). Extended X-relations can be generalized as follows:

Definition 25 (Extended Relational Algebra Operations) ([58]) LetR be an extendedX-relation
and S an extended Y -relation, both over domain A.

1. ¬R is the extended X-relation ¬R = {(γ, ψ) | γ : X → A, δR(γ) 6= >, and ψ = ¬δr(γ)};
2. R on S is the extendedX∪Y -relation {(γ, ψ) | γ : X∪Y → A, γ|X ∈ R, γ|Y ∈ S, and ψ =
δR(γ|X) ∧ δS(γ|Y )};

3. R ∪ S is the extended X ∪ Y -relation R ∪ S = {(γ, ψ) | γ|X ∈ Ror γ|Y ∈ S, and ψ =
δR(γ|X) ∨ δS(γ|Y )};

4. The Y -projection of R, denoted by πY (R), is the extended Y -relation {(γ′, ψ) | γ′ =
γ|Y for some γ ∈ R and ψ =

∨
{γ∈R|γ′=γ|Y } δR(γ)};

5. The Y -quotient ofR, denoted by dY (R), is the extended Y -relation {(γ′, ψ) | for all γ such
that γ′ = γ|Y → γ ∈ R and ψ =

∨
{γ∈R|γ′=γ|Y } δR(γ)};

Proposition 20 ([58]) Suppose that R is an answer to φ1 and S is an answer to φ2, both with
respect of structure A. Then

1. ¬R is an answer to ¬φ1 wrt A;
2. R on S is an answer to φ1 ∧ φ2 wrt A;
3. R∪ S is an answer to φ1 ∨ φ2 wrt A;
4. If Y is the set of free variables of ∃z̄φ1. Then πY (R) is an answer to ∃z̄φ1 wrt A;
5. If Y is the set of free variables of ∀z̄φ1. Then dY (R) is an answer to ∀z̄φ1 wrt A.

The proof is straightforward, and can be found in [58, 56].
To ground with this algebra, the answer to atomic formula P (x̄) can be defined as follows. If P

is an instance predicate, the set of tuples {〈ā,>〉: ā ∈ PA}. If P is an expansion predicate, the set
of all tuples 〈ā, P (ā)〉, for ā a tuple of elements from the domain of A. Then applying the algebra
inductively on the structure of the formula results in a grounding.

Formally, extended relations representing expansion predicates are universal, but in practice one
may represent them implicitly and not enumerate all the tuples. As operations are applied, some
subsets of columns remain universal, while other do not. The concept of extended X-relations can
be generalized to represent this idea explicitly, and call the variables which are implicitly universal
“hidden”.

Definition 26 (Extended Hidden X-Relation) ([56]) An extended hiddenX-relationRY is an ex-
tended relation with explicit attributes X and implicit attributes Y , such that:
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Values of hidden attributes do not appear explicitly in tuples. An extended hidden relationRY =
{(γ, ψ) | γ : X → A,ψ = δR(γ)} is a compact representation of extended tableRX∪Y = {(γ, ψ) |
γ : X ∪ Y → A,ψ = δR(γ|X∪Y )}.

All the operations of the algebra generalize easily to hidden versions. The hidden variables
technique does not alter the semantics of the operations.

MXG engine enters the CNF generation phase in which a CNF formula, a SAT instance, is
created from the produced ground formula.

Cons and Pros

This grounding approach is based on algebraic database theory and almost all the optimization
techniques used in the database community can be used in this approach, too. The other advantage
of this approach is that adding a new operator (logical operator) to the syntax is easy. To do so,
one simply needs to describe the effect of that operator on its subformulas as a relational algebraic
formula (series of operations) on the subformulas’ extended relations.

MXG works well under the assumption that the instance predicates are usually sparse and have
a relatively small size. In the grounding approach used by MXG, when the algorithm encounters
a negation, it needs to enumerate all the tuples which are not in that relation. As we assumed the
instance predicates are relatively small, the size of interpretation of the negation of an instance pred-
icate would be large. So, one cannot use this approach for medium and large sized domains. This
grounding approach was developed for function-free FO formulas. We know this fragment of logic
allows us to express all NP problems [36], but expressing certain problems is not straightforward 2.

7.1.2 KodKod

The relational logic of Alloy [46] is a mixture of first-order logic quantifiers and relational algebra
operators. This logic is designed for modelling software abstractions, their properties and invariants
[47].

Kodkod [66] is a grounder which translates its input problem, described in an extension of
Alloy, into a SAT instance (directly) and, then applies an off-the-shelf SAT solver to the resulting
propositional formula. The input language of Kodkod (see Appendix A) is an extension of Alloy in
two ways: The universe of atoms for a specification is made explicit, and the value of each relation
(which is sometimes called variable) is explicitly bounded from above and below, by relational
constants (i.e., set of tuples). All bounding constants consist of tuples that are drawn from the same
finite universe of elements. The upper bound specifies the tuples that a relation may contain; the
lower bound specifies the tuples that it should contain.

Example 24 (Continuation of Example 1) The graph colouring problem, introduced in Example 1,
can be described for Kodkod by following specification:

1. {v1, v2, v3, v4}.
2. E :2 [{〈1, 3〉, 〈2, 1〉, 〈2, 4〉, 〈4, 3〉} : {〈1, 3〉, 〈2, 1〉, 〈2, 4〉, 〈4, 3〉}].

2These two issues have been addressed and two solutions have been proposed in my works [5] and [7].
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3. V :1 [{〈v1〉, 〈v2〉, 〈v3〉, 〈v4〉} : {〈v1〉, 〈v2〉, 〈v3〉, 〈v4〉}].
4. R :1 [{〈v1〉} : {〈v1〉, 〈v2〉, 〈v3〉, 〈v4〉}].
5. G :1 [{} : {〈v1〉, 〈v2〉, 〈v3〉, 〈v4〉}].
6. B :1 [{} : {〈v1〉, 〈v2〉, 〈v3〉, 〈v4〉}.
7. no(R ∩G).
8. no(R ∩B).
9. no(G ∩B).

10. (R ∪G ∪B) = V .
11. no((R×R) ∩ E).
12. no((G×G) ∩ E).
13. no((B ×B) ∩ E).

The grounding approach used by Kodkod is based on the Sparse-matrix representation of rela-
tions. The idea is that a relation over a finite universe can be represented as a matrix of Boolean
values. For example, a binary relation over universe {a1, · · · , an} can be encoded with an n×n bit
matrix that contains a 1 at the index [i, j] when the relation includes the tuple 〈ai, aj〉. More gener-
ally, given a universe of n atoms, the collection of possible values for a relation variable v :k [l, u]
(l is lower-bound and u is upper-bound from relation v) corresponds to a k-dimensional matrix M

M [i1, · · · , ik] =


1 if 〈ai1 , · · · , aik〉 ∈ l

ν(v, 〈ai1 , · · · , aik〉) if 〈ai1 , · · · , aik〉 ∈ u\l

0 if 〈ai1 , · · · , aik〉 6∈ u

 , (7.1)

where i1, · · · , ik ∈ {1, · · · , n} and ν maps its inputs to unique Boolean variables. The matrix for
non-atomic relations can be computed by the matrices of their components. The translation rules
used by Kodkod are demonstrated in Appendix B.

Example 25 The following shows how an answer to formula no(R ∩G) can be computed in Kod-
kod:

MR =


1

R2

R3

R4

 MB =


B1

B2

B3

B4



MR ∩MB =


B1

R2 ∧B2

R3 ∧B3

R4 ∧B4

 no(MR ∩MB) = ¬ (B1 ∨ (R2 ∧B2) ∨ (R3 ∧B3) ∨ (B4 ∧R4))
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Using suitable data structures for representing sparse matrices, each operation in Kodkod trans-
lation method (Appendix B) can be implemented such that the time complexity of computing the
answer depends solely on the number of non-zero entries in the input matrices (but not the sizes of
input matrices).

Pros and Cons

Although the input languages of KodKod and MXG are different, one can modify the algorithm used
in each to work for the other input language. Essentially, a table (in MXG) can be seen as a data
structure for representing a sparse matrix. Moreover every data structure for representing a sparse
matrix can be used to represent an answer for a formula in MXG.

The main difference between MXG and Kodkod is that MXG produces a variable-free proposi-
tional formula first and then converts this formula to CNF, while Kodkod directly generates a SAT
instance. As Kodkod generates CNF in a streaming manner, essentially, it assigns a CNF variable to
each subformula. By this design, one can expect the number of variables in Kodkod’s CNF be more
than the CNF generated by MXG.

It is very straightforward to use KodKod to express the problems for which one knows some parts
of the solution. Knowing that Kodkod performs well on problems whose corresponding matrices
are sparse, there are some cases in which incorporating lower/upper bounds in the computation of
matrices results in huge non-sparse matrices.

7.2 Top-Down Grounders

7.2.1 IDP

The input syntax of the IDP system [72] is very similar to that of the MXG system. IDP’s grounding
algorithm is a top-down grounder. The grounding algorithm used in IDP has two phases:

1. Computing Bounds,
2. Actual Grounding.
Given an instance structure A and a specification Φ, the IDP system tries to find two bounds,

certainly true-bound (ctb) and certainly false-bound (cfb), for each subformula in the specification
where each bound is a set of tuples. A tuple, ā, is in ctb of ψ(x̄) (cfb of ψ(x̄)), ctbψ (cfbψ) iff
ψ(ā) is true (false) in all models extending A and satisfying specification, Φ. More formally, for a
subformula of ψ of Φ:

1. Tuple ā is in ctbψ iff for every structure B that is an expansion of structure A to vocab of Φ
and satisfies Φ we have

B |= ψ(ā).

2. Tuple ā is in cfbψ iff for every structure B that is an expansion of structure A to vocab of Φ
and satisfies Φ we have

B |= ¬ψ(ā).

After the bound computation phase, the system enters the grounding phase in which a ground
formula, Ψ, is produced for the given specification, Φ, such that for every structure B which is an
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expansion of structure A to vocab of Φ, B |= Φ ⇔ B |= Ψ. Finally, the ground formula is fed into
a SAT solver which has a richer syntax than CNF (it supports sets and aggregates).

7.2.2 Computing Bounds

There are two general approaches for computing ctb and cfb for subformulas. One is to use the
instance structure information and the other one is to describe the ctb (cfb) of each subformula,
symbolically, as a first-order formula of the instance predicate. The main benefit of the latter ap-
proach is:

There are specifications for which all ct and cf bounds have a short symbolic representation
(there are short formulas describing cfb and ctb for all subformulas). As the formulas describing cfb
and ctb do not change according to the value of instance predicates, this approach can be used for
specifications with large domains.

The symbolic approach is used in the IDP system to compute the bounds. The specifications are
rewritten as a collection of Implicational Normal Form (INF) formulas. A sentence is in INF if it is
of the form ∀x̄ φ(x̄)→ L[x̄] where φ is an arbitrary formula and L[x̄] is a literal.

The IDP symbolic bound computation system computes bounds in two phases. In the first phase
(the first loop in the algorithm illustrated in appendix C), a fix-point program is built based on the
problem description (which is already transformed into conjunction of INF formulas). This fix-
point program describes the ctb and cfb of a formula based on the bounds of the subformulas of
that formula and the instance predicates. After constructing the program, the solving phase starts, in
which IDP finds the least fix-point for the program.

Example 26 Considering the specification presented in example 1, one can verify the following:

• Rp ⊆ ctb(R(x)),

• Rp ⊆ ctb(R(x) ∨B(x) ∨G(x)),

• Rp ⊆ cfb(B(x)),

• E(x, y) ∨ E(y, x) ⊆ cfb(R(x) ∧R(y)).

To compute the fix-point correctly, one needs to have access to a function which can always
detect whether the two first-order formulas are equivalent or not. We know that this problem, in its
general case, is undecidable.

IDP’s bound system uses the following technique. A canonical format for representing the
formulas has been used in the system. The formulas are stored in a first-order BDD structure. So,
if two formulas have the same canonical representation, it is guaranteed that those formulas are
equivalent. In his thesis [72], Wittocx claims that a first-order BDD with 12 decision nodes is
enough to handle most real-world specifications.

It can be shown that the above fixpoint program always has a fixpoint solution when the domains
of variables are finite. But IDP’s bound system may fail to find the solution because the computing
fixpoint will terminate after a limited time. If this occurs, the bounds passed to the grounding phase
will not complete.
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7.2.3 Grounding Using Bounds

A grounding of a FO formula over a fixed domain A can be produced by recursively replacing each
subformula in the form ∃xψ(x) with

∨
d∈A ψ(d̂), where d̂ is a (possibly new) constant symbol which

is used to denote the domain object d, and dually replacing each subformula of the form ∀xψ(x)
with a conjunction. For each fixed FO formula φ, this algorithm runs in time that is polynomial in
|A|.

Having access to bounds for all subformulas, the naive algorithm can be optimized by avoiding
some of the recursive replacing. As, if a pair of subformula and an assignment is in the bounds, the
subformula must be true/false under that specific assignment. The algorithm in IDP uses the same
logic (see Appendix D). By setting both bounds, certainly true-bound and certainly false-bound, to
be empty sets, we achieve the naive top-down grounding.

The computed bounds are incomplete iff there are a subformula φ(x̄) and an instantiation ā for x̄
s.t., one can show that the value of φ(x̄/ā) = >(⊥) and I 6|= Cctb(φ)[x̄/x̄] (I 6|= Ccfb(φ)[x̄/x̄], re-
spectively). If the computed bounds are incomplete, the procedure still produces a correct grounding
but in most cases, the resulting ground formula is large.

7.2.4 Pros and Cons

Performance of the Symbolic Bound computation procedure in IDP system is independent of the
size of variables’ domains. But this alone is not an important factor on the performance of the
whole system because the running time of the grounding system in IDP depends on the size of the
variables’ domains.

Performance of the IDP grounder deeply depends on how accurate the computed bounds are.
One can construct specifications for which IDP’s bound system fails to find complete bounds.

The propagation rules for aggregates and functions are not complete; there are many cases which
are ignored. To describe the ignored rules, one has to use a lengthy formula which in some cases
cannot be represented using a first-order BDD with 12 nodes. Wittocx [72] claims that the situations
in which the ignored rules are satisfied are not very common, and so the computed bounds are
accurate enough.

Besides the fact that the fixpoint program, used in IDP to compute bounds, is not intended to find
the best possible set of bounds, IDP’s bound computation system may fail to detect that its current
partial solution is actually a valid solution for the fix-point program, because all the computations
are performed in a symbolic way. In the latter case, the system continues to enlarge the size of
representation of bounds until it reaches the time limit.

To handle functions, the graph of a function is used in IDP. Every function, f(x̄), is replaced by
a predicate Gf (x̄, y) such that y = f(x̄) ⇔ Gf (x̄, y) and then the atomic formulas are rewritten
accordingly. This approach is not the best way to handle the function, as in certain cases, it makes
the ground formula much bigger.

Another potential disadvantage of the IDP system comes from its implementation. The IDP
system translates the resulting ground formula to an intermediate format which is an expansion of
CNF. So, it cannot use the normal SAT solvers but instead must use SAT solvers which are able to
handle their specific syntax. If a new SAT solver technique has been introduced, one must wait for
IDP developers to extend that solver to work with the IDP intermediate language.
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The advantage of using a symbolic representation for bounds is that the bounds are represented
using a small data structure (comparing to the other option which is listing all the tuples in bounds).
The disadvantage of the symbolic representation of bounds is the fact that one needs to compute the
value of a formula (bounds) for a given instance structure, to check whether a tuple is within the
bound or not.

7.3 Incremental Grounders

In this approach, a grounder selects a part of a given specification, grounds it and passes the ground
formula to a low-level solver. If the low-level solver claims that there is no solution for the partially
grounded specification, the grounder claims that the main problem does not have any solution. In the
case when the low-level solver finds a solution, the grounder checks whether the obtained solution
satisfies the whole specification or not.

If the obtained solution for the selected part is also a solution for the whole specification, the
grounder reports that solution. If this is not the case, the grounder tries to find a (minimal) set of
facts which makes the solution invalid and pass them back to the grounder. This process continues
until a solution has been found or eventually the low-level solver claims that the ground formula
does not have any solution.

While this idea is a well-studied approach in the ILP community, there is not any well-known
solver which uses this approach. The main reason for this is that the hard problems have very few
answers, while removing some of the constraints makes the problem much easier.

In the next subsection, we study a grounder for Answer Set programs.

7.3.1 DLV

DLV [49] is an Answer Set Programming (ASP, [15]) solver. Like many other ASP solvers, DLV
computes a ground program from an instance of a given ASP program. In the ASP context, an ASP
program which contains no variables is called the ground program.

Calimeri et al., in [21], extended the standard ASP language with complex terms:
• A term is either simple term or a complex term.
• A constant or a variable is a simple term.
• A functional term is defined as f(t1, · · · , tn), where f is a function symbol of arity n and
t1, · · · , tn are terms.
• A list term can take the following two forms:

1. [t1, · · · , tn], where t1, · · · , tn are terms;
2. [h|t], where h (the head of the list) is a term and t (the tail of the list) is a list term.

• A set term is defined as {t1, · · · , tn}, where t1, · · · , tn do not contain any variables.
In [21], the authors describe some interesting problems which can be easily described in this

enhanced language.
The idea used in the DLV-Complex to produce a ground program is to rewrite the complex term

as an application of a predicate on the term’s arguments. DLV-Complex assumes that the input ASP
program is safe, meaning that all rules in that program are safe. A rule is safe when if a variable
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appears in the head of a rule it also appears in the body of the same rule as an argument to a positive
literal.

Under the safety assumption, the set of feasible values for every variable is finite. The DLV-
Complex replaces any term t = f(X1, · · · , Xn) appearing in some rule r by a fresh variable F ; and
then adds one of the two following atoms to body of r (B(r)):
• #-function-pack (f,X1, · · · , Xn, F ) if t appears in the head of r;
• #-function-unpack (F, f,X1, · · · , Xn) if t appears in the body of r.
Intuitively, #-function-pack is in charge of building a function term, starting from a function

symbol and arguments. #-function-unpack unfolds a functional term and extracts its function sym-
bol and its arguments. The same procedure can be applied for more complex terms, too.

Example 27 ([21]) The rule p(f(f(X))) : −q(X, g(X,Y )). will be rewritten as follows:

p(F1) : −#function-pack(F1, f, F2),#function-pack(F2, f,X), q(X,F3),

#function-unpack(F3, g,X, Y ).

As the evaluation of a pure ASP program, an ASP program without complex terms, is not guaran-
teed to terminate in general [28]; the rewritten program is passed to a module, called Finite Domain
Checker, which checks the membership to the finite-domain programs (the programs in this class
are known to be computable) [22]. Finally, the rewritten program is given to DLV, an ASP solver
used as the low-level solver in DLV-Complex [21].

One may notice that the approach IDP uses to ground functions, using graphs of functions, is
similar to the idea used in DLV-Complex.

Pros and Cons

There are programs whose evaluations terminate but their rewritten programs, which are obtained
by the DLV-Complex rewriting module, do not belong to the class of finite-domain programs. In a
recent paper [52], it was shown that there are two equivalent programs, such that the DLV-Complex
can ground one but not the other. This issue arises because the set of all finite-domain programs is
not equal to the set of all ASP programs whose evaluations terminate.

It has been shown that the set of all programs which can be efficiently instantiated3 is undecid-
able [22]; therefore it is impossible to have either a general syntactic or algorithmic approach to
describe that class. Trying to express a larger set of finitely-ground programs is an active research
area in the logic programming community. The class of argument-restricted programs which is a
superset of the class of finite-domain programs, has been introduced [51]. This class also contains
the ω-restricted programs [63], and λ-restricted programs [42].

Theoretically, the DLV-Complex can be extended to work if the rewritten program belongs to
each of the above mentioned classes. But to be able to use DLV-Complex in practice, verifying
whether an ASP program (the rewritten program) is in a certain class should be fast (checking
whether a program is a finite-domain program is in linear time).

3Such programs are called finitely-ground programs
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Another way to handle these cases is to modify the rewriting module. Given a program to the
rewriting module, the rewriting module can automatically generate some of the programs equivalent
to the input program. In this way, one can increase the chance of obtaining a ground program, a
finite-domain program, for a given specification.

7.3.2 Other Grounding Techniques

Disjunctive Logic Programming (DLP) is an extension of Datalog that allows for disjunction in rule
head and non-monotonic negation in bodies. This logic captures Σ2 [35].

In [11], the authors proposed a grounder which reduces a program written in DLP enriched with
monotone recursive aggregates to a normal DLP program. The idea of their grounding approach
is to use the Dynamic Magic Set technique. The Magic Set method is a well-known approach in
database optimization [14].

Roughly speaking, the method involves simulating query evaluations in a top-down manner and
adding a set of rules to the original program in order to restrict the computation to a finite domain.

When discussing specifications with infinite domains, ILP solvers4 are thought to be to be a
good option. There are several ideas for using an ILP solver as the low-level solver in a model-
based solver. One of the good features of these solvers is that expressing arithmetical terms in a
linear program is usually straightforward. On the other hand, translating disjunctions in (Integer)
linear programs is not straightforward at all.

4Integer Linear Program Solvers



Chapter 8

MakeCNF Phase

We described how Enfragmo obtains a variable-free FO formula from a given problem specification
and problem instance. In order to use a SAT solver as Enfragmo’s ground solver engine, we must
develop modules which are able to translate a variable-free FO formula to an equi-satisfiable SAT
instance.

In this chapter, we describe the different approaches we developed to create a SAT-instance, in
the form of a CNF formula, from a given variable-free FO formula. We also describe how the place
holders introduced in Sections 6.5 and 6.6 can be translated into CNF.

8.1 Introduction

The most common input format accepted by SAT solvers is Conjunctive Normal Form (CNF). Given
a set of Boolean variables, X = {x1, · · · , xn}, literal l is either a Boolean variable or its negation.
A formula is in CNF if it is expressed as conjunction of clauses, where each clause is a disjunction
of literals.

According to the Cook-Levin theorem [24] and the fact that any instance of Boolean satisfiability
can be reduced to an equivalent 3SAT instance, we know that every instance of an NP problem can
be reduced to a SAT instance, expressed in CNF. Sometimes, due to the abstract syntax accepted
by SAT solvers, expressing a problem instance for these solvers is not straightforward. In the SAT
community, one commonly used technique to reduce problems related to SAT is to construct a
family of verifier Boolean circuits such that (1) the n-th circuit decides the membership of inputs
of length n; (2) the size of the n-th circuit, which is the number of gates and wires in the circuit, is
polynomial with respect to n. Each of the Boolean circuits receives a representation of the problem
instance along with a witness as its input, and outputs One/true iff the provided witness is a proof
for satisfiability of the instance.

Note that there may be several different CNF expressions for the same Boolean circuit. Also,
different SAT solvers perform differently on the same CNF [76]. But generally speaking, for a
given problem instance, the CNF expression with fewer variables is easier to solve. The length of
clauses is another factor that affects the running time of SAT solvers. A SAT instance with short
clauses is more likely to be solved than another instance with long clauses. Where there are two
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CNF expressions for the same problem instance, the one that allows unit propagation to infer more
will be easier to solve.

In the standard approach to translating a Boolean circuit to CNF, Tseitin transformation, [67],
a fresh Boolean variable, is introduced for the output of every gate in the circuit, and the relation
between the input(s) and output of each gate is described using a set of clauses.

In the Tseitin transformation, both the running time and the size of the resulting CNF formula
are linear with respect to the number of gates in the input Boolean circuit. There might be many
redundant/unnecessary variables and clauses in the resulting CNF expression. In this chapter, we
describe an approach to produce CNF expressions which are easier to solve using SAT solvers.

In Sections 6.5 and 6.6, we described how an answer to a term can be computed using MIN,
MAX, COUNT and SUM formulas (place holders). In this chapter, we explain how the first two
formulas can be translated into the CNF formula. Different methods for translating an instance of
COUNT formula (SUM formula) into CNF formula are discussed in Chapter 9 (10, respectively).

8.1.1 My Contribution

CNF Generator with “Fill and Return”, described in Section 8.4, is contributed by Shahab Tasharrofi
and the author. The methods, explained in Section 8.5, for translating place holders, COUNT ,
MIN , MAX , BMIN , BMAX , BSUM , and etc are proposed by the author. Postponing CNF
generation for place holders, Section 8.6, is another contribution of the author.

All techniques, described in this chapter, have been implemented, by David Bergman and the
author.

8.2 Background

In this section, we fix our notation and use them through the rest of this chapter. We also define what
we mean by a transformation.

8.2.1 Notations

LetX be a set of Boolean variables. A literal, l, is either a Boolean variable or negation of a Boolean
variable, and var (l) denotes the variable corresponding to l. A clause on X , C = {l1, · · · , lm}, is
a set of literals such that var (li)∈ X . An assignment τ to X is a partial function that maps some
variables in X to either true or false. By x ∈ τ+(x ∈ τ−) we mean that true (false) is assigned to
x under assignment τ . Also, we use τ [S], S ⊆ X , as a shorthand for the assignment obtained by
restricting the domain of τ to the variables in S.

Assignment τ toX is a total assignment if it assigns a value to each variable inX , i.e., τ+∪τ− =
X . Assignment τ satisfies literal l, τ |= l, if l = x and x ∈ τ+ or l = ¬x and x ∈ τ−. Assignment
τ satisfies clause C = {l1, · · · , lm} if there exists at least one literal li such that τ |= li. A total
assignment falsifies clause C if it does not satisfy any of its literals. An assignment satisfies a set of
clauses if it satisfies all the clauses in that set. We say assignment τ ′ extends assignment τ , τ ′ ⊇ τ ,
iff both τ ′+ ⊇ τ+ and τ ′− ⊇ τ− hold.
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In the rest of this thesis, we use γ to represent an assignment to first-order variables and τ to
denote an assignment to propositional variables. As in the previous chapters, we use A to represent
a finite structure, A to denote the domain of A. We assume A = {a1, · · · , an}.

Let Φ be a variable-free FO formula over vocabulary σ ∪ ε, and A be a σ-structure. In this
chapter, our aim is to develop algorithms to generate a CNF formula which is satisfiable iff there is
a σ ∪ ε-structure B, expanding A, such that B |= Φ.

Definition 27 Let Φ be a variable-free FO formula over vocabulary σ ∪ ε, and A be a σ-structure.
We define a transformation to be a Boolean variable and a set of clauses, 〈v, C〉, such that:

1. C is satisfiable,
2. C ∪ {v} is satisfiable iff there is a structure B, expanding A, and B |= Φ.

A transformation is the last component we need to describe in order to complete the reduction
of an instance of model expansion to an instance of a satisfiability problem, expressed in CNF, and
therefore solvable by SAT solvers.

8.2.2 Tseitin Transformation

Here, we briefly describe the Tseitin transformation [67], the standard method for transforming
variable-free first-order formulas to CNF. In this transformation, a fresh propositional variable is
created to represent the truth value of each subformula of the given formula. Let ψ1, ψ2, ψ be three
such subformulas and x, y, z be the associated propositional variables to ψ1, ψ2 and ψ, respectively.
The transformation works as follows:

1. ψ = ψ1 ∨ ψ2 : produce the following three clauses {z,¬x}, {z,¬y}, {¬z, x, y},
2. ψ = ψ1 ∧ ψ2 : produce the following three clauses {¬z, x}, {¬z, y}, {z,¬x,¬y},
3. ψ = ¬ψ1 : produce the following two clauses {¬z,¬x}, {z, x},
4. P (a1, · · · , an) is an atomic formula, where each ai ∈ A: If it is the first time we encounter
P (a1, · · · , an), we introduce new propositional variable x and store 〈x, P (a1, · · · , an)〉, in
an appropriate data structure. If we have already encountered P (a1, · · · , an), we return the
first argument of the pair stored in the memory.

Example 28 Let A = {v1, v2} the domain ofA, and φ = ((R(v1)∨G(v1))∨B(v1))∧ (¬R(v1)∨
¬R(v2)) be a sentence. The following is a valid transformation for φ:

Let X1 be {r1, g1, b1, r2}, where r1 represents the truth value of R(v1), g1 represents the truth
value of G(v1), and so on. Let o1, o2, o3 and o4 be four propositional variables corresponding
to R(v1) ∨ G(v1), (R(v1) ∨ G(v1)) ∨ B(v1), ¬R(v1) ∨ ¬R(v2) and φ, respectively. The Tseitin
transformation creates the following set of clauses to describe the truth value of o1, · · · , o4:
• o1 = (r1 ∨ g1): {¬r1, o1}, {¬g1, o1}, and {¬o1, r1, g1}.
• o2 = (o1 ∨ b1): {¬o1, o2}, {¬b1, o2}, and {¬o2, o1, b1}.
• o3 = (¬r1 ∨ ¬r2): {r1, o1}, and {r2, o1}, {¬o3,¬r1,¬r2}.
• o4 = (o2 ∧ o3): {o2,¬o4}, {o4,¬o4}, and {¬o2,¬o3, o4}.
In this example, tuple o2, {{¬r1, o1}, {¬g1, o1}, {¬o1, r1, g1}, {¬o1, o2}, {¬b1, o2}, {¬o2, o1

, b1}} is a transformation for (R(v1) ∨G(v1)) ∨B(v1).
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After computing a ground formula, which is a FO sentence, from the given specification and
problem instance, Enfragmo translates the ground formula to a SAT instance. The main argument
against using the Tseitin transformation is that there are problems whose corresponding CNF, gener-
ated using the Tseitin transformation, cannot be solved efficiently. The author of this thesis detected
the following issues as the main shortcomings of the Tseitin transformation:

1. The generated CNF is not compact: The CNF contains clauses which can be eliminated with-
out affecting the satisfiability of the problem,

2. There are many redundant variables in the CNF: For certain problems, some of the variables
in the generated CNF can be eliminated,

3. There are several equivalent variables in the CNF: Depending on the problem, some of the
Tseitin variables are used to represent the same formula, therefore they can be merged/elimi-
nated.

Een detected the same issues, and proposed solutions to achieve easier to solve CNFs [33].
In Section 8.3, we discuss some further modifications, proposed by the author of this thesis, to
the Tseitin transformation to address the above mentioned issues. In Section 8.4, we describe an
algorithm to construct a transformation from a variable-free FO sentences which is, to the best of
author’s knowledge, has not been proposed elsewhere.

8.3 Improving The Tseitin Transformation

In this section, we describe some modifications to the Tseitin transformation to its performance.

8.3.1 Huge CNF

Intuitively, having many clauses reduces the search space, but increases the running time of the Make
CNF phase and also the running time of the unit propagation module in the SAT solver. Therefore, it
is desirable to reduce the number of clauses without affecting the performance of unit propagation.
The following two observations can be used to produce a smaller CNF:
• If the ground formula obtained as the result of the grounding phase has an “AND” node as its

root node, we do not need to create a Tseitin variable for that node, since the ground formula
can be considered as the conjunction of two (or more) smaller formulas. We can then translate
each of those formulas to SAT separately. The same is true for “AND” nodes whose ancestors
are also “AND” nodes.
• Sometimes, the CNF generator module creates some unary clauses, and so the value of some

variables would be forced. These variables may occur in some other clauses too.
There are techniques in the literature for modifying the Tseitin transformation to address the

above observations [33].

8.3.2 Redundant Auxiliary the Tseitin Variables

The number of Boolean variables in a SAT instance may have a huge impact on the running time
of SAT solvers. Usually, the fewer the number of variables, the smaller the search space is. We
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observed that the following situations cause the Tseitin transformation to create redundant auxiliary
variables:
• If the same Boolean subformula appears in several places of the ground formula: The naive

method for generating CNF uses different Tseitin variables to describe each occurrence of that
subformula.
• If the ground formula has several layers of consecutive AND nodes: These AND nodes can

be merged together and form a single AND node (which has more children than each of the
original AND nodes). By merging the consecutive AND nodes (consecutive OR nodes), we
can reduce both the number of variables and the number of clauses.

Methods Used in Enfragmo

Here we briefly explain how we modified the Tseitin transformation in Enfragmo. These modifica-
tions can be used in any system.

Memorization To detect multiple occurrences of a formula, the CNF generator method in En-
fragmo has been equipped with a memory (implemented as a hash map data structure). Whenever
the CNF generator method needs to create a Tseitin variable for a subformula, at first, it searches the
memory. If the subformula is not found, a new variable will be created and the pair of variable and
subformula will be stored in the memory. Otherwise, the CNF generator method uses the existing
variable in the memory.

For certain problems, using this approach is not useful since the ground formula does not contain
many repeated subformulas and the search overhead increases the running time of the MakeCNF
phase drastically. One can name the ground formula obtained from the naive encoding of a graph
colouring problem as an example of such a case.

At present, Enfragmo allows users to turn on/off the memorization option in the CNF generator
method. To automate this decision, we can use the following heuristic.

It is beneficial to use memorization if there are many occurrences of the same subformulas in
the ground formula. So, we can sample a subset of subformulas in the produced CNF and count
how many are the same. If the size of the sample set is big enough, the number of similar formulas
in the sample set can be used to estimate how much we can save by turning on the memorization
switch.

Merging “AND” nodes Een proposed to create no Tseitin variable for a node if all its parents
nodes are also AND nodes [33]. As we explain in the next section, Enfragmo uses the FillAndReturn
algorithm. This algorithm extends the idea proposed in [33], and merges consecutive “AND” nodes
(“OR” nodes).

The CNF generator algorithm used in Enfragmo merges the consecutive AND nodes (OR nodes).
It avoids creating a Tseitin variable for NOT nodes (if the variable describing the node beneath a
NOT node is v, then the literal ¬v can be used as a representative for that NOT node). This idea
allows us to rewrite a NOT node whose child is an AND node as an OR node. Similarly, we can
rewrite a NOT node whose child is an OR node as an AND node.
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8.4 CNF Generation with Fill and Return

In this section, we describe a new approach for generating CNF from a variable-free FO formula.
This approach, FillAndReturn, is a generalization of the improvements proposed in [33].

Before we describe the FillAndReturn algorithm, we believe it is useful to discuss the data
structure used in Enfragmo to represent formulas. In Enfragmo, a formula is represented using a
Directed Acyclic Graph (DAG), where each internal node of the graph corresponds to an operator
in the formula, and leaf nodes of the graph are atomic formulas. To represent formulas compactly,
we introduce a special internal node, assignment node, which assigns a value to a variable.

The input to FillAndReturn algorithm is a formula, represented as a DAG. There are four main
methods in this algorithm: PositiveFill, PositiveReturn, NegativeFill and NegativeReturn. The return
methods (PositiveReturn and NegativeReturn) take a formula node,Rf , and return a Tseitin variable
corresponding to Rf . The Fill methods, PositiveFill and NegativeFill, take a formula node, Rf ,
along with an array A, and fill array A, by collecting the Tseitin variables of children of Rf . We say
the node N and its descendant node C have the same type if:

1. Both N and C are AND nodes and C is a direct child of N .
2. Both N and C are AND nodes, C is not a direct child of N and on the path P connecting
N to C, all nodes are either NOT nodes or Assignment nodes, and P has an even number of
NOT nodes.

3. N is an AND node while C is an OR node, C is not a direct child of N and on the path P
connecting N to C, all nodes are either NOT nodes or Assignment nodes and P has an odd
number of NOT nodes in it.

4. Both N and C are OR nodes and C is direct child of N .
5. Both N and C are OR nodes, C is not a direct child of N and on the path P connecting N to
C, all nodes are either NOT nodes or Assignment nodes, and P has an even number of NOT
nodes.

6. N is an OR node while C is an AND node, C is not a direct child of N and on the path P
connecting N to C all nodes are either NOT nodes or Assignment node and P has an odd
number of NOT nodes in it.

Given a formula Rf , we say node N is in a positive position (negative position) if there an even
(odd) number of NOT nodes on the path connecting N to the root of Rf . PositiveFill (NegativeFill)
is called for the nodes that are in positive position (negative position, respectively) and collects
all the Tseitin variables in an array data structure. If a child has the same type as its parent, the fill
function visits the child’s children and adds them to the array, otherwise, a Tseitin variable is created
for the child node, by calling the appropriate return method.

Algorithms 8, 9 and 10 illustrate different functions in the FillAndReturn algorithm. We have
only described how PositiveFill and PositiveReturn work. The two other methods, NegativeFill and
NegativeReturn, can be defined, dually. The methods for translating atomic formulas to CNF, e.g.,
EncodePredicate, EncodeCOUNT, EncodeMax, EncodeMin and EncodeSum, are explained in the
next section.
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Algorithm 8 POSITIVEFILL method takes Root and Assignment as its input, and fills
ANARRAY with Tseitin variables.
Input: A FormulaRoot, an array of Boolean literalsAnArray, Current AssignmentAssignment.
Output: AnArray contain a Tseitin variable for each of its descendant, with whom Root has the

same type.
1: function POSITIVEFILL(Root,AnArray,Assignment)
2: NegationCounter= 0;
3: for C such that C is a child of Root do
4: while C is a NOT node or C is an Assignment node do
5: if C is a NOT node then
6: NegationCounter++
7: C= C.GetChild ()
8: else
9: Import Assignment into Assignment

10: C= C.GetChild ()
11: if C is an atomic formula then
12: if Even (NegationCounter) then
13: AnArray.Insert (MakeCNFForAtomicFormula(C,Assignment));
14: else
15: AnArray.Insert (Negate (MakeCNFForAtomicFormula(C,Assignment)));
16: else if C and Root have the same type then
17: if Even (NegationCounter) then
18: PositiveFill (C, AnArray, Assignment);
19: else
20: AnArray.Insert (NegativeReturn (C, Assignment));
21: else{ C and Root have different types.}
22: if Even (NegationCounter) then
23: AnArray.Insert (PositiveReturn (C, Assignment));
24: else
25: NegativeFill (C,AnArray,Assignment);

The POSITIVEFILL method, given formula nodeRoot and a partial assignment, visits all nodes
beneath Root which have the same type as Root. POSITIVEFILL calls NegativeReturn for the
descendant nodes of Root which do not have the same type as Root. As we explained, this method
fills AnArray with appropriate literals.
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Algorithm 9 NEGATIVERETURN method takes Root and Assignment as its input, and it returns
a Boolean variables corresponding to Root, under assignment Assignment.
Input: A Formula Root, Current Assignment Assignment
Output: Returns a Tseitin variable corresponding to formula Root

1: function POSITIVERETURN(Root,Assignment)
2: NegationCounter = 0, Array = ∅
3: for C such that C is a child of Root do
4: while C is a NOT node or C is an Assignment node do
5: if C is a NOT node then
6: NegationCounter++;
7: C= C.GetChild ();
8: else
9: Import Assignment into Assignment

10: C= C.GetChild ();
11: if C is an atomic formula then
12: if Even (NegationCounter) then
13: Array.Insert (MakeCNFForAtomicFormula(C,Assignment));
14: else
15: Array.Insert (Negate (MakeCNFForAtomicFormula(C,Assignment)));
16: else if C and Root have the same type then
17: if Even (NegationCounter) then
18: PositiveFill (C,Array,Assignment);
19: else
20: Array.Insert (NegativeReturn(Ch,Assignment));
21: else . C and Root have different types.
22: if Even(NegationCounter) then
23: Array.Insert (PositiveReturn (C,Assignment));
24: else
25: NegativeFill (C,AnArray,Assignment);
26: Result= EncodeAtomic (Array, Root.GetOperation ());
27: return Result;

The NEGATIVERETURN method, given formula node Root and a partial assignment, gener-
ates a fresh Boolean variable by calling ENCODEATOMIC method.
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Algorithm 10 ENCODEATOMIC method takesArray and FormulaType as its input, and returns
a Boolean literal.
Input: An array of Boolean literals Array, FormulaType which is one of INST, EXP, COMP,

AND, OR, COUNT, MAX, MIN, SUM.
Output: Returns a Boolean literal for the result of applying operatorFormulaType on the Boolean

literals in Array.
1: function ENCODEATOMIC(Array, FormulaType)
2: Result= a fresh Tseitin variable
3: if FormulaType is AND then
4: for l in Array do
5: Add clause {¬Result, l}.
6: Add clause {Result, l1, · · · , lk : li ∈ Array}.
7: else if FormulaType is OR then
8: for l in Array do
9: Add clause {Result, l}.

10: Add clause {¬Result, l1, · · · , lk : li ∈ Array}.
11: else if FormulaType is COUNT then
12: EncodeCOUNT (Array, n)
13: else if FormulaType is Max then
14: EncodeMax (Array, n)
15: else if FormulaType is Min then
16: EncodeMin (Array, n)
17: else if FormulaType is Sum then
18: EncodeSum (Array, n)

return Result;

The EncodeAtomic method, given array of literals Array and a formula type, creates fresh
Boolean variable Result. This method, by using the appropriate set of clauses, relates the truth-
value of Boolean variable Result with the truth-value of the literals in Array.

It is worth mentioning that the FillAndReturn algorithm generates clauses in the PositiveReturn
and NegativeReturn methods and also whenever it reaches a place holder. The two fill methods only
collect the generated Tseitin variables.

8.5 CNF Generation for Atomic and Place Holder Formulas

In Section 8.3 and Section 8.4, we assumed that we know how to translate atomic formulas into
CNF. In this section, we describe how we deal with atomic formulas.

In all of the grounding algorithms described in the previous chapters the terms in the final ground
formulas are either variables or constants. We know there is no free variable in the result of the
grounding phase. So, if there is a node in the DAG representation of the ground formula that corre-
sponds to a variable, it is guaranteed that there is an Assignment node above it. The atomic subfor-
mulas of the final ground formula, obtained as the result of grounding, are one of the following (We
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use γ as the assignment described by Assignment variable in Algorithms 8 and 9).
1. Instance Predicate P (x1, · · · , xn): The atomic formula P (x1, · · · , xn) evaluates to true or

false, depending on whether γ ∈ PA or γ 6∈ PA.
2. Comparison between two variables, v1{≤, <,=, >,≥}v2: The atomic formula v1 op v2,

where op ∈ {≤, <,=, <,≥}, evaluates to either true or false, depending on the values as-
signed to v1 and v2 by γ.

3. Expansion Predicate: If a Boolean variable is already created for P [γ], that variable will be
returned, otherwise a fresh Boolean variable will be created and returned.

4. MIN/MAX place holders: In Subsection 8.5.1, we describe how these formulas, introduced
in Section 6.5, can be translated into CNF,

5. COUNT place holders: In Chapter 9, we describe how an occurrence of COUNT formula,
introduced in Section 6.5, can be translated to a cardinality constraint and how a cardinality
constraint can be expressed as a SAT instance,

6. SUM place holders: In Chapter 10, we describe how an occurrence of SUM formula, intro-
duced in Section 6.6, can be translated to a Pseudo-Boolean constraint and how a Pseudo-
Boolean constraint can be expressed as a SAT instance,

7. BMIN/BMAX/BEQ/BLESSEQ/BADD/BSUB/BMUL place holders: In Subsection 8.5.2, we
describe how these formula, introduced in Section 6.6, can be translated into CNF.

Similar to the previous chapter, we assume all variables are of type T . Let φ(x̄) be an atomic
formula, and γ be an assignment mapping every variable occurring in x̄ to a member of T . It is
clear how the first two types of atomic formulas can be translated to CNF, as they can be evaluated
and replaced with true or false. To translate a formula of the third type, i.e., expansion predicates,
Enfragmo is equipped with the following two techniques.
• Static Variable Generator: Let the given specification list P1, · · · , Pn ∈ ε as the expansion

predicates, and also let di be the arity of predicate Pi, (assuming we just have one sort). We
pre-allocate the first |T |d1 Boolean variables for P1, the next |T |d2 Boolean variables for P2,
and so on.
Given assignment γ, let 〈v1, · · · , vm〉 be the values assigned to 〈x1, · · · , xm〉. We define the
rank of,Rank(〈v1, ·, vm〉), to be the number of tuples in Tm which are less than 〈v1, · · · , vm〉.
Then Enfragmo uses the Boolean variable with the following index to specify the truth-value
of atomic formula Pi[γ]:

Rank(〈v1, · · · , vm〉) +
i−1∑
j=1

|T |dj .

The value of Rank(〈v1, · · · , vm〉), where T = {t1, · · · , tn}, can be computed in linear time
with respect to m using the following formula (if T is not an ordered set, we can define an
arbitrary ordering on it).

Rank(〈v1, · · · , vm〉) =

m∑
i=1

|T |i−1 ∗ rank(vi),

where rank(v) = |{x | x ∈ T, x < v}|, i.e., the number of elements in T which are less than
v.
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• Dynamic Variable Generator: In this approach, Enfragmo uses a look-up table.
The look-up table used in Enfragmo is based on the red-black tree data structure which maps
the pair of integers, 〈k,Rank〉, to a Boolean variable. Given ground atomic formula Pk[γ],
where Pk is an expansion symbol, Enfragmo computes tuple 〈v1, · · · , vm〉 such that vi is the
value assigned to xi by assignment γ. Then it checks if the look-up table contains an entry
with key equal to pair 〈k,Rank(〈v1, · · · , vm〉). If the look-up table contains such an entry,
the corresponding Boolean variable will be returned. Otherwise, a fresh Boolean variable will
be assigned to the pair 〈k,Rank(〈v1, · · · , vm〉)〉 and will be inserted into the look-up table.

The running time of the Static Variable Generator (SVG) is linear with respect to the arity of
Pk, while the running time of Dynamic Variable Generator (DVG) is linear with respect to the arity
of Pk and is logarithmic with respect to the number of entries in the red-black tree data structure.
Therefore if there are many entries in our red-black tree data structure, DVG performs slower than
SVG. On the other hand, for most of instances, the number of Boolean variables generated by SVG
is much greater than the number of variables generated by DVG for the same input. Users can select
whether to use SVG or DVG in the MakeCNF phase.

8.5.1 MakeCNF for MIN/MAX place holders

Here we focus on explaining how an instance of MIN place holder can be translated into SAT. The
procedure for translating an instance of a MAX formula is similar.

In Chapter 6, we used MINS,R,dm,n[γ], where γ is an assignment mapping each variables
occurring in x̄ to an element in T , S is an answer to formula φ(x̄, ȳ), R = (αR, βR) is a unary
answer to term t(x̄, ȳ), and both dm and n are integers, as the place holder for the ground formula
corresponding to the following formula:

(Minx̄{t(x̄, ȳ) : φ(x̄, ȳ); dm} = n)[γ]. (8.1)

Recall that we use γ ∪ γi, where γ and γi are two assignments, to describe the assignment
obtained by merging two assignments γ and γi.

Let X be the set of variables occurring in x̄. For every γi : X 7→ T and oi ∈ αR, formula
δS(γi ∪ γ) ∧ δβR(oi, γi ∪ γ) describes the conditions for satisfiability of the following expression:

(φ (x̄, ȳ) ∧ (t (x̄, ȳ) = oi)) [γ ∪ γi]. (8.2)

Satisfiability of Formula 8.2 means that the value of Minx̄{t(x̄, ȳ) : φ(x̄, ȳ); dm} is less than or
equal to integer oi. As the first step to computing a transformation for the MIN formula, we compute
the set of the following pairs, 〈vi, ci〉, and denote the set of pairs by MCγ,nR,S :

For every γi : X 7→ T and oi ∈ αR, let propositional variable vi be the first component of pair
〈vi, Ci〉 where 〈vi, Ci〉 is a transformation of formula δS(γi ∪ γ) ∧ δβR(oi, γi ∪ γ).

From the above construction, having pair 〈oi, vi〉 in MCγ,nR,S implies that there is a satisfying
assignment for Ci in which vi is mapped to true iff there is structure B expandingA and assignment
γi such that B models Formula 8.2.

Given total assignment τ , set MCγ,nR,S can be seen as a constraint (propositional constraint)
which evaluates to true iff the minimum over all oi, such that τ maps the corresponding vi to true,
is equal to n. In the other words, constraint MCγ,nR,S evaluates to true iff
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1. There is at least one i, such that oi = n and vi is mapped to true,
2. For all j where oj < n, vj is mapped to false.

Proposition 21 describes how we transform MCγ,nR,S to a CNF formula.

Proposition 21 Let V Lγ,nR,S = {vi | 〈n, vi〉 ∈MCγ,nR,S} and V Lγ,n<R,S = {vi | (oi < n) and 〈oi, vi〉 ∈
MCγ,nR,S}. Let vo be a fresh Boolean variable and C ′ be the set of clauses expressing the following
propositional formula:

vo ↔
∨

v∈V Lγ,nR,S

v ∧
∧

v∈V Lγ,n<R,S

¬v. (8.3)

Then pair 〈vo, C ′ ∪
⋃
iCi〉 is a transformation for MCγ,nR,S and also for atomic formula

MINR,S,dm,n[γ].

Proof: Set V Lγ,nR,S contains all propositional variables vi such that their corresponding oi inMCγ,nR,S
are equal to n. Similarly, set V Lγ,n<R,S contains all vi such that their corresponding oi, in MCγ,nR,S ,
are less than n. Equation 8.3 enforces that vo is mapped to true iff there exists at least one v in
V Lγ,nR,S such that v is mapped to true, and all v ∈ V Lγ,n<R,S are mapped to false. Therefore, there
exists assignment γi, such that (φ (x̄, ȳ) ∧ (t (x̄, ȳ) = n)) [γ ∪ γi] is true, and for all γj 6= γi, we
have either ¬φ (γj |x̄, γ|ȳ) or t (γj |x̄, γ|ȳ) > n. Therefore there is a satisfying assignment for the set
of clauses C ′ ∪

⋃
Ci such that it maps vo to true iff the original MIN formula is satisfiable.

8.5.2 MakeCNF for Atomic Formulas Used in a Binary Answer to Term

In this subsection, we briefly describe how an atomic formula in form of BEQn,R(γ),
BLESSEQR,S(γ),BMINT ,R,n,dM (γ) orBADDR,S,n(γ) can be transformed to CNF. The trans-
formation for the other atomic formulas used to describe binary answers to terms can be constructed
similarly.

For the sake of explanation, we assume all the integers in the range of terms are positive, and so
we ignore αR in the rest of this subsection. All the arguments and algorithms can be extended to the
general case.

Before we explain the transformations, we need to introduce new notation.

Definition 28 Let R = (αR, βR,mR,MR) be a binary answer to term t(x̄) with respect to struc-
tureA. We use LR to denote the number of bits needed to represent the absolute values of integers in
the range of t(x̄). Choosing LR to be log(max(|mR|, |MR|)) enables us to represent the absolute
value of any integer between mR to MR.

We use R(γ), where γ is an assignment to the variables occurring in x̄, to denote the binary
representation of the absolute value of t[γ], i.e., 〈δβR(LR)(γ)), · · · , δβR(0)(γ)〉.

Since we assumed all the integers in the range to be positive, R(γ) represents the value of t[γ],
too.
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Definition 29 LetR be a binary answer to term t(x̄). We define BR to be the following set

BR = {〈γ, bLR , · · · , b0〉 : bi is the first element of transformation for δβR(i)(γ), i = 0, · · · , LR}.

We use BR(γ) to refer to the tuples 〈bLR , · · · , b0〉 where 〈γ, bLR , · · · , b0〉 ∈ BR. Notice that
BR(γ) denotes the value of t[γ], in the binary representation.

Transforming BEQn,R[γ] to CNF

The atomic formulaBEQn,R(γ), where n is an integer andR is a binary answer to a term, evaluates
to true iff R(γ) equals n. Since we assumed all integers are positive, to translate an occurrence of
BEQn,R(γ) to CNF, we only need to compare the corresponding bits in the binary representation
of n and BR(γ).

Let 〈nl, · · · , n0〉 be the binary representation of n and v be a fresh Boolean variable. Also
let 〈bLR , · · · , b0〉 be the tuple represented by BR(γ). Then pair 〈v, C〉 is a transformation for
BEQn,R(γ), where C is any set of clauses equivalent to the following propositional formula:

v ↔
∧

0≤i≤LR
ni is one

bi ∧
∧

0≤i≤LR
ni is zero

¬bi.

Transforming BLESSEQR,S [γ] to CNF

Atomic formula BLESSEQR,S(γ), where both R and S are binary answers to terms, evaluates
to true iff the integer represented by R(γ) is less than or equal to the integer represented by S(γ).
Since we assumed all integers are positive, to translate an instance of BLESSEQR,S(γ) to CNF,
we just need to compare BR(γ) and BS(γ).

Let B1 and B2 be two tuples corresponding to BR1(γ) and BR2(γ), respectively. and O be
a fresh propositional variable. Let CMPT (B1, B2) denote a set of clauses such that for every
satisfying assignment τ for CMPT (B1, B2), we have:

τ |= O iff the unsigned integer represented by B1, under assignment τ , is less than or equal to
the unsigned integer represented by B2, under assignment τ .

This transformation is well-studied in the SAT community and we do not describe it here [33].

Transforming BMINS,R,n,dm [γ] to CNF

Let t(ȳ) be Minx̄{t1(x̄, ȳ) : φ(x̄, ȳ); dm}. A BMin place holder evaluates to true, iff the n-th bit
in the result of the Min aggregate is one. The result of the Min aggregate can be computed using a
well-known construct in the SAT community, called ITE gates.

In the context of this thesis, ITE(v, 〈Bl, · · · , B0〉, 〈bl, · · · , b0〉, 〈Ol, · · · , O0〉) is the CNF re-
lating the truth value of Oi to the truth values of bi and Bi, 0 ≤ i ≤ l, such that, in all satisfying
assignments for ITE(v, 〈Bl, · · · , B0〉, 〈bl, · · · , b0〉, 〈Ol, · · · , O0〉), we have

• Oi andBi have the same truth value if v is true: This can be described using any set of clauses
equivalent to: v ∧Bi → Oi and v ∧ ¬Bi → ¬Oi.
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• Oi and bi have the same truth value if v is false: This can be described using any set of clauses
equivalent to: ¬v ∧ bi → Oi and ¬v ∧ ¬bi → ¬Oi.

There are other approaches to constructing a transformation for an ITE gate [33].
Let γ1, · · · , γ|T ||x̄| be all possible assignments mapping each variable occurring in x̄ to elements

in T . Let Oi = 〈Oil , · · · , Oi0〉 be a tuple of propositional, i = 0, · · · |T ||x̄| + 1. Using ITE and
CMPT transformations, we can construct a set of clauses such that in all its satisfying assignments,
we have:

1. The truth-value of Oij is the same as the truth values of the j-th propositional variable in tuple
BR(γi), if we have δS(γ, γi) is true, and the integer R(γi) is less than or equal to the integer
represented by Oi−1; for 1 ≤ i ≤ |T ||x̄| and 0 ≤ j ≤ l.

2. The truth-value of Oij is the same as the truth values of the Oi−1
j , if either δS(γ, γi) is false, or

the integer R(γi) is less than or equal to the integer represented by Oi−1; for 1 ≤ i ≤ |T ||x̄|
and 0 ≤ j ≤ l.

We select the value of variables in O0 such that the corresponding integer is greater than the maxi-
mum value S can take, e.g., MS + 1. At the last step, we set the truth-value of variables in O|T |

|x̄|+1
j

to be the same truth-value O|T |
|x̄|

j , if the integer represented by O|T |
|x̄|

is less than or equal to MS .

Otherwise, we set the truth-value of propositional variables O|T |
|x̄|+1

j such that the integer repre-

sented by O|T |
|x̄|+1 is equal to dm.

Then the pair 〈O|T |
|x̄|+1

n , C〉 is a transformation for BMINT ,R1,n,dm [γ], where C is the set of
all clauses generated during this construction.

An occurrence of the BMAX atomic formula can be translated to CNF in a similar way.

Transforming BADDR,S,n[γ] to CNF

An occurrence of the BADD formula can be translated into CNF using a transformation for an
adder circuit which adds BR(γ) to BS(γ). One simple way to construct an adder circuit is to use a
series for full-adders [33].

To transform BSUB and BMUL to CNF, we can use subtracter and multiplier circuits.

8.6 Lazy CNF Generation for Terms

Consider the result of the grounding of the formula presented in Example 29.

Example 29 Let us assume we have a specification where I is an instance predicate, f is an in-
stance function, E is an expansion predicate and all variables are in the range of {1, · · · , 100}:

∃y E(y) ∧ ∃x I(x) ∧ (x = Miny{f(y) : E(y); 100}) . (8.4)

Assuming E(y) describes a line-up of people, E(y) is true iff person y is in the line-up, and
f(y) returns the age of person y. Then the above axiom asserts that the line-up is non-empty and
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the age of the youngest person in the line-up must be in IA. The ground formula for axiom 8.4 has
the following structure:

• For each value of x ∈ IA, the ground formula has an occurrence of the MIN formula.

• For each MIN formula corresponding to Miny{f(y) : E(y); 100} aggregate, there are 100
tuples in MCγ,nR,S , defined in Subsection 8.5.1.

• All of the sets Mγ,n
R,S , for different value of n, have exactly the same content. They differ only

in their corresponding output values, n.

Let’s set the interpretation for IA to be {2, 99} and assume S (R) is the answer computed
by grounder for formula E(x) (term f(y), respectively). There will be two occurrences of MIN
formula in the obtained ground formula (where γ is the empty assignment):

1. MINR,S,2(γ).
2. MINR,S,99(γ).
To translate MINR,S,99(γ), the encoding described in the previous section translates

MINR,S,2(γ) too. Therefore there are two different sets of Tseitin variables both describing the
same formula, MAX(R,S, 2, γ). As discussed in Section 8.3, this kind of symmetry increases the
solving time.

The author of this thesis proposed the following modifications to the EncodeAtomic method
introduced in Algorithm 10. Instead of calling the EncodeMin method, as soon as we encounter a
MIN atomic formula, Enfragmo saves the MIN formula along with a fresh propositional variable
and returns the newly introduced propositional variable as the encoding of the MIN formula. When
the MakeCNF phase has been finished, Enfragmo groups the MIN formulas with exactly the same
answer to terms and formulas, together. Then, instead of encoding each MIN formula separately,
Enfragmo computes transformations for MIN formulas in the same group.

The same technique has been used in Enfragmo for MAX, COUNT, SUM and the other place
holders.

8.7 Experimental Evaluation

In this section, we compare the performance of FillAndReturn and standard Tseitin transformations.
To do so, we implemented Tseitin transformation with all the optimization proposed in [33] in
Enfragmo.

The main advantage of FillAndReturn transformation is that it merges the consecutive AND/OR
operators. If the ground formula passed to the transformation does not have any consecutive AND/OR
operator, FillAndReturn and Tseitin transformations generate very similar CNFs, if not exactly the
same CNF.

The ground formula obtained by Enfragmo can have consecutive AND/OR connectives only if
the specification has axioms in which:

1. There is a universal quantifier whose direct child is an AND node,
2. There is an existential quantifier whose direct child is an OR node,
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3. There is an OR node (AND node) whose direct child is an OR node (AND node, respectively).
Some of the specifications presented in Chapter 3 have such axioms. We selected the following

problems and compared the performance of the two transformations on different specifications for
each of the problems: Blocked N-Queens, Hamiltonian Path, 15 Puzzle, Disjunctive Scheduling,
Graph Colouring, Social Golfer and Hierarchical Clustering. As described in the previous chapters,
for the Hamiltonian Path problem, computing fix-points for HP-03.T is time consuming, therefore
we omitted it from our experiments.

Table 8.1 shows the performance FillAndReturn Transformation, FRT, and Tseitin Transfor-
mation, TT, on different specifications. There are two factors which should be considered when
comparing the performance of transformations:

1. The running time of the transformation,
2. The running time of the SAT solver on the CNF obtained by the transformation.
Table 8.1 represents the average running time of the MakeCNF and Solving phases for each of

the two transformations (without enabling the memorization option).
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Specification TT FRT

BQ-01.T(118) 111/0.05/54.38 112/0.058/97.63

BQ-02.T(118) 118/0.00/15.31 118/0.00/2.00

BQ-03.T(118) 112/0.00/94.28 114/0.00/95.11

BQ-04.T(118) 118/0.21/17.84 118/0.03/4.36

HP-01.T(58) 58/1.45/48.79 58/0.98/12.99

HP-02.T(58) 58/0.70/28.98 58/0.68/27.93

HP-04.T(58) 58/0.69/10.98 58/0.69/11.32

15Puzzle.T(27) 25/0.75/292.67 27/0.73/380.38

DisjunctiveScheduling.T(10) 10/6.34/251.44 10/5.70/87.54

GC-01.T(106) 73/0.01/390.9 73/0.00/360.96

GC-02.T(106) 90/0.00/474.4 90/0.00/434.4

GC-03.T(106) 98/0.04/285.4 100/0.03/278.7

GC-04.T(106) 106/0.05/224.2 106/0.04/211.0

SG-01.T(175) 126/0.00/53.59 129/0.00/69.44

SG-02.T(175) 146/0.02/7.74 152/0.01/17.03

SG-03.T(175) 158/0.02/7.132 163/0.03/12.58

HierarichalClustering(12) 12/0.46/37.58 12/0.38/10.86

Table 8.1: The performance of Tseitin transformation vs FillAndReturn transformation (when the
memorization option is disabled, and Enfragmo uses Static Variable Generator). The number in
parenthesis in front of each specification is the number of instances. Each entry is in the form
n/t1/t2, where n is the number of solved instances, and t1 and t2 are the average running time of
the MakeCNF phase and Solving phase in seconds, respectively.

The general pattern in the data presented in Table 8.1 is that
• For all problems, the running time of the MakeCNF phase is much lower than the running

time of Solving phase.
• Except for 15-Puzzle problem, FillAndReturn transformation performs better than Tseitin

transformation, in the Solving phase. Either FillAndReturn transformation solves more in-
stances or its average solving time is smaller than that of Tseitin transformation.
• FillAndReturn transformation never performs worse than Tseitin transformation in the MakeCNF

phase.



CHAPTER 8. MAKECNF PHASE 120

We ran the same experiments with the memorization option enabled and found that enabling this
option does not change the pattern.

8.8 Conclusion

In this chapter we described the general approach used by Enfragmo to convert a variable-free FO
formula obtained from the grounding phase, to a CNF formula. We proposed some new modifica-
tions to the standard Tseitin transformation in Section 8.3 and also proposed a novel transformation,
FillAndReturn transformation, for converting variable-free FO formulas to CNF in Section 8.4. We
compared the performance of FillAndReturn and Tseitin transformations and showed that the pro-
posed transformation performs better than Tseitin transformation, for almost all benchmarks we
used in our experiments.

In this chapter we also explained how Enfragmo transforms an instance of MIN/MAX/BMIN/B-
MAX/BEQ/BLESSEQ place holders to CNF.



Chapter 9

Encoding For Cardinality Constraints

In this chapter, we show that a COUNT place holder, introduced in Section 6.5, can be translated as a
cardinality constraint and then we propose two new encodings for translating cardinality constraints
to CNF formulas.

9.1 Introduction

Given a set of variablesX = {x1, · · · , xn}, a non-negative integer k, and comparison operator op ∈
{<,≤,=,≥, >}, cardinality constraint |{x1, · · · , xn}}| op k is a propositional constraint which
restricts the number of true variables in set X . In this chapter, we focus on cardinality constraints
whose comparison operator is “=”. All the claims and techniques described in this chapter can be
applied to the constraints whose operators are <,≤, > or ≥.

Enfragmo uses place holder COUNTR,n(γ), where R represents an answer to φ(x̄, ȳ), n is an
integer, and γ is an assignment to variables in ȳ, to represent a formula equivalent to:

(Countx̄{φ(x̄, ȳ)} = n)[γ]. (9.1)

As in the previous chapters, we use A (B) to denote the instance structure (expansion structure,
respectively). In Chapter 6, we defined the COUNT place holder such that structure B satisfies
COUNTR,n[γ] iff exactly n formulas from the following set are true in structure B:

{δR(γ, γ′) | γ′ is an assignment to variables in x̄}.

It should be clear that there is a close connection between an instantiation of the COUNT place
holder and a cardinality constraint. In Section 9.3, we demonstrate how to translate an instance of a
COUNT place holder to an instance of cardinality constraint, and in Section 9.5 we proposed two
encodings for translating cardinality constraints to CNF. We also review some of existing encoding
in Section 9.4.

As discussed in the previous chapter, different approaches for translation usually have different
performances. The same is true for encodings of cardinality constraints. The following are some of
the attributes which can be used to compare the performance of different encodings, theoretically:
• The number of variables generated by an encoding;

121
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• The number of clauses generated by an encoding;
• Whether the generated CNF allows unit propagation to infer inconsistency efficiently.
Recall that the experiments presented in Chapter 3 show that Enfragmo performs well when the

Count aggregate is used in the specifications. We believe this is, in part, because of the efficiency
of the two proposed encodings for translating cardinality constraints to CNF. In this chapter, we
show that unit propagation can infer facts from the CNF generated by our proposed encodings while
it cannot infer the same facts on the CNF generated by the other encodings. Therefore, it can be
expected that SAT solvers will perform better on the CNFs generated by our encodings. The result of
our experiments Section 9.6 confirms that our proposed encodings perform better than the existing
encodings.

9.1.1 My Contributions

The two new encodings, DP-based and DC-based encodings, introduced in Section 9.5, are novel
and proposed by the author of this thesis [6]. Also the author showed, in Sections 9.5, that unit
propagation infers more facts on the CNF generated by the two proposed encodings.

9.2 Notations and Definitions

In this section, we fix our notations and use them throughout the rest of the chapter. Also, we define
when an encoding produces a translation for cardinality constraints.

9.2.1 Notations

In this chapter, we use the same notations used in Section 8.2, and here, we just introduce the
notations which are specific to this chapter.

Let X = {x1, · · · , xn} be a set of Boolean variables. Cardinality constraint Q on X is specified
as:

|{x1, · · · , xn}| = k, (9.2)

where xi ∈ X , 0 ≤ k ≤ n is an integer, called bound.
Total assignment τ to X satisfies a cardinality constraint Q on X , τ |= Q , iff τ maps exactly k

variables out of {x1, · · · , xn} to true, i.e., |{xi : τ |= xi}| = k.
Let φ(X) be a propositional formula, and τ be a assignment to variables in X . We use φ[τ ] to

denote the formula obtained by replacing the variables in X with their corresponding values in τ .

9.2.2 Translation

A propositional constraint is a constraint involving propositional variables. A propositional con-
straint can be seen as a propositional formula which evaluates to true under the assignments that
satisfy the constraint.

Definition 30 A translation for propositional formula φ(X) is the pair 〈v, C〉, where v is a proposi-
tional variable, C = {C1, · · · , Cm} is a set of clauses on X ∪ Y ∪ {v} and Y is a set of (auxiliary)
propositional variables where v 6∈ Y , such that
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• For every total assignment τ to X , there is at least one assignment τ ′ such that τ ⊆ τ ′ and
τ ′ |= C;

• Set of clauses C is such that C |= φ(X)↔ v.

Intuitively, C describes the relation among input variables, x ∈ X , auxiliary variables, y ∈ Y ,
and the output variable, v. The set of clauses C is such that the truth value of v is the same as the
truth value of φ(X) under all satisfying assignments for C.

Bailleux et al. defined a translation as a set of clauses [13]. It is easy to verify that these two
definitions are equivalent. It is worth mentioning that our definition of a translation is not limited to
cardinality constraints. We use the same definition in the next chapter too.

Example 30 Let Q1 be the cardinality constraint |{x1, x2, x3}| = 3. Pair 〈v1, C1〉 where C1 is the
following set of clauses is a translation for Q1:

{{¬x1,¬x2,¬x3, v1}, {¬v1, x1}, , {¬v1, x2}, {¬v1, x3}}.

Set of clauses C1 is logically equivalent to v1 ↔ x1 ∧ x2 ∧ x3. In this translation, we introduced no
auxiliary variable.

Example 31 Let Q2 be |{x1, x2, x3}| = 0.

• The pair 〈v2, C2〉 is a translation for Q2, where C2 is {{x1, x2, x3, v2}, {¬v2,¬x1}, {¬v2,
,¬x2}, {¬v2,¬x3}}.

• The pair 〈v3, C3〉 is another translation for Q2, where C3 is {{x1, x2, y1}, {¬y1,¬x1},
{¬y1,¬x2}, {¬y1, x3, v3}, {¬v3,¬x3}, {¬v3, y1}}.

We used an auxiliary variable, y1, in translation 〈v3, C3〉 for Q2.

Example 32 Let Q1 (Q2) be the cardinality constraint of Example 30 (Example 31, respectively).
To find assignment τ to X such that either τ satisfies Q1 or τ falsifies Q2, we can find a solution to
a SAT instance having C1∪C2∪{v1,¬v2} as its set of clauses, where C1, C2, v1 and v2 are defined
in the previous Examples.

Note that using the notion of translation introduced in [13], there is no easy way to check
whether there is such an assignment.

9.2.3 Unit Propagation

Unit propagation (UP) is a mechanism used by SAT solvers to accelerate the search process. UP
applies a series of unit resolutions of assignment τ with set of clauses C. Unit resolution of set of
clauses C = C ′ ∪ {l0, l1, · · · , lk} with assignment τ where τ |= ¬li for i ≥ 1, extends τ such
that τ |= l0. UP continuously applies unit resolution until the assignment τ does not change. This
process can be formalized as follows:
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Definition 31 Let τ be an assignment, C be a set of clauses and li be some literals in C. We use
up(τ, C) to denote the assignment obtained as the result of applying the unit resolution of τ with C.

up(τ, C) =

 τ ∪ {l} ∃l0, l1, · · · , lk, C ′, C = C ′ ∪ {l0, · · · , lk} s.t. τ |= ¬li, i ≥ 1

τ otherwise.

We denote the final assignment obtained as a result of unit propagation by UP (τ, C), which is
equal to the fix point of up(τ, C).

In Definition 31, we used τ ∪{l} to represent the assignment which extends assignment τ and maps
literal l to true.

9.3 Translating COUNT Place Holders to Cardinality Constraints

Recall that the place holder COUNTR,n(γ) where R represents an answer to φ(x̄, ȳ), n is an
integer, and γ is an assignment to variables occurring in ȳ, is a place holder we used instead of a
(large) formula which is equivalent to

(Countx̄{φ(x̄, ȳ)} = n) [γ].

In this section, we show how Enfragmo generates an instance of cardinality constraint from an
occurrence of COUNT place holder.

As in Chapter 6, we use assume the sort assigned to all variables is T . HavingR and γ, let Sγ,nR
be the set of pairs 〈γi, φi〉 where γi is an assignment mapping variables in x̄ mapping to elements
in T , and φi = δR(γi, γ). Our definition of an answer to a formula guarantees that φi is a formula
equivalent to (and so equi-satisfiable with) φ[γi, γ].

In Chapter 8, we defined a transformation for a formula φ to be a pair 〈v, C〉 such that C ∪ {v}
is satisfiable iff there is a structure satisfying φ. We use MakeCNF(φ) to denote the pair 〈v, C〉
produced by a transformation for φ.

We define set of pairs Cγ,nR as

Cγ,nR = {〈vi, Ci〉 : 〈γi, φi〉 ∈ Sγ,nR , and 〈vi, Ci〉=MakeCNF (φi)}.

Let V Cγ,nR and CCγ,nR be defined as

V Cγ,nR = {vi : 〈vi, Ci〉 ∈ Cγ,nR }.

CCγ,nR =
⋃

〈vi,Ci〉∈Cγ,nR

Ci.

Given assignment τ that satisfies all the set of clauses in CCγ,nR , constraint V Cγ,nR can be seen as
a cardinality constraint which evaluates to true iff τ maps exactly n propositional variables in set
V Cγ,nR to true: Since the truth value of vi corresponds to the truth value of φ[γi, γ], there exists an
expansion structure, B, that satisfies COUNTR,n(γ) iff there exists an assignment, τ , that satisfies
all the clauses in CCγ,nR and also τ |= |V Cγ,nR | = n.
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9.4 Existing Encodings for Cardinality Constraints

In this section, we review two of the existing approaches for translating cardinality constraints of
form Eqn (9.2) to SAT, and in the next section, we compare the performance of unit propagation on
our proposed encodings and these two encodings.

9.4.1 BDD Encoding

A set of clauses which encodes a cardinality constraint can be constructed based on BDD rep-
resentation of a cardinality constraint. Each BDD node is an if-then-else gate. The constraint
|{x1, · · · , xn}| = k can be described using θ(n× k) such nodes [33].

Here, we describe the BDD based encoding using the dynamic programming paradigm. Our
description of BDD encoding and what has been described in [33] produce almost the same CNF. We
selected this way of representing BDD based encoding since it allows us to compare this encoding
with our proposed encodings.

In our construction, we use (n + 1) × (k + 1) fresh propositional variables, F cr , r = 0 · · ·n
and c = 0 · · · k + 1. We produce set of clauses C such that in all assignments τ which satisfies C,
τ |= F cr iff τ |= |{xi | i ≤ r}| = c. Set C contains the following unary clauses: {F cr } if r and c are both zero;

{¬F cr } r = 0 and c > 0.

SetC also contains the set of clauses generated by the standard Tseitin transformation to express
the following formulas:  F c+1

r+1 ↔ (F cr ∧ xr+1) ∨ (F c+1
r ∧ ¬xr+1).

F 0
r+1 ↔ F 0

r ∧ ¬xr+1.

The pair 〈F kn , C〉 is a translation for constraint |{x1, · · · , xn}| = k.

9.4.2 Sorting-Network Encoding(SN)

The construction presented here is the adoption of the sorting-network encoding described in [33].
A sorting network is a circuit with n input wires and n output wires consisting of a set of

comparators with two input wires and two output wires. A comparator compares its two inputs and
outputs the greater one into its first output wire and the smaller one into its second output wire. Each
output of a comparator is used as an input to another comparator except those used as output wires
of the sorting network itself [16]. A comparator element can be defined as a circuit with two input
wires, f1 and f2, and two output wires, o1 and o2, where o1 = f1 ∧ f2 and o2 = f1 ∨ f2.

If the input to a sorting network contains Z zeros and O ones, the first O outputs of the sorting
network are one and the rest of the wires are zero. Therefore, it can be concluded that there are
exactly i ones in the input iff the value of the i-th output wire is one while the i + 1-th output wire
is zero.
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Let S be a sorting network circuit, x1, · · · , xn be the input signal to S and o1, · · · , on be the
output signals of S. There are standard techniques to construct a SAT instance, in the form of CNF,
from a Boolean circuit. The most commonly used approach to do so is to introduce a propositional
variable for the output of each gate and, using some clauses, express the relation among the inputs
and output of each gate. Let 〈Vm, Cs〉, for i = 1 · · · , n, be a transformation describing the relation
among the input signals x1, · · · , xm and the output signal om. Also let C be the set of clauses
generated by Tseitin transformation to express the following propositional formula:

Vm ↔ ¬o1 m=0,

Vm ↔ om ∧ ¬om+1 m < n,

Vm ↔ om m = n.

The pair 〈Vm, Cs ∪ C〉 is a translation for |x1, · · · , xn| = m.

9.5 Proposed Encodings

In this section, we propose two new encodings for translating cardinality constraints, and hence
COUNT place holders, to SAT.

9.5.1 Dynamic-Programming Based Encoding (DP)

In this encoding, we construct the necessary and sufficient conditions for the satisfiability of |{x1, · · · ,
xi}| = c, by using the conditions for satisfiability of |{x1, · · · , xi−1}| = c and |{x1, · · · , xi−1}| =
c− 1.

Let Dc
i , 0 ≤ c ≤ i ≤ n, be fresh Boolean variables. We generate set of clauses C such that for

any assignment τ satisfying C, we have τ |= Dc
i iff τ |= |{x1, · · · , xi}| = c, for 0 ≤ c ≤ i ≤ n. To

do so, we use the following construction:
1. If both xi and Dc

i−1 are true, Dc+1
i must be true: can be expressed using clause {¬xi,¬Dc

i−1

, Dc+1
i }, which asserts

(
xi ∧Dc

i−1

)
→ Dc+1

i ;
2. If xi is false, and Dc

i−1 is true, Dc
i must be true: can be expressed using clause {xi,¬Dc

i−1,

Dc+1
i }, which asserts

(
¬xi ∧Dc

i−1

)
→ Dc+1

i ;
3. If xi is true, andDc+1

i is false,Dc
i−1 must be false: can be expressed using clause {¬xi, Dc+1

i ,

¬Dc
i−1}, which asserts

(
xi ∧ ¬Dc+1

i

)
→ ¬Dc

i−1;
4. If xi is false, andDc

i is false,Dc
i−1 must be false: can be expressed using clause {xi, Dc

i ,¬Dc
i−1},

which asserts (¬xi ∧ ¬Dc
i )→ ¬Dc

i−1;
5. Exactly one of Dc

i , 0 ≤ c ≤ i, can be true: can be expressed using clause {¬Dc1
i ,¬D

c2
i },

c1 6= c2, which asserts (Dc1
i → ¬D

c2
i );

6. If bothDc−1
i−1 andDc

i−1 are false,Dc
i must be false: can be expressed using clause {Dc−1

i−1 , D
c
i−1,

¬Dc
i}, which asserts

(
¬Dc

i−1 ∧ ¬D
c−1
i−1

)
→ ¬Dc

i ;
7. IfDc−1

i andDc
i are true, then xi must be true. This can be expressed using clause {¬Dc−1

i−1 ,¬Dc
i ,

xi}, which asserts
(
Dc−1
i−1 ∧Dc

i

)
→ xi;
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8. IfDc
i−1 andDc

i are true, then xi must be false. This can be expressed using {¬Dc
i−1,¬Dc

i ,¬xi},
which asserts

(
Dc
i−1 ∧Dc

i

)
→ ¬xi.

We must also add unary clause ({D0
0}) to assert

|{}| = 0.

In the above encoding, the two sets of clauses (7) and (8), described above, are not necessary
and can be omitted. Having these extra clauses allows unit propagation to infer extra facts which are
not inferable without these clauses.

Let C be the set of clauses generated to assert the relationship among Dc
i and xi variables. Then

the pair 〈Dk
n, C〉 is a translation for |{x1, · · · , xn}| = k.

The idea used in developing this encoding is very similar to that of BDD encoding. The main
difference between these two encodings is that DP encoding does not need to introduce any new
Tseitin variables, while BDD encoding must introduce 2nk extra Tseitin variables, one for (F cr ∧
xr+1) and one for (F c+1

r ∧ ¬xr+1), r = 1 · · ·n, c = 1 · · · k.
We know that both F ci , in BDD encoding, and Dc

i , in DP encoding, assert that exactly c out of
the first i input variables are mapped to true. Since the set of variables in BDD encoding and DP
encoding are not exactly the same, there is no standard way to compare the performance of unit
propagation, theoretically. Restricting our attention to the variables in the two encodings, which
assert the same facts, i.e., F ci and Dc

i enables us to compare the performance of unit propagation on
these two encodings.

The following proposition shows that although both BDD and DP encodings implement a similar
idea, there are facts unit propagation can infer on the CNF generated by DP encoding but not on the
CNF generated by BDD encoding.

Proposition 22 Let X be set of propositional variables {x1, · · · , xn}, Q be a cardinality on X ,
|X| = k, and 〈v1, C1〉 (〈v2, C2〉) be the translation obtained from BDD encoding (DP encoding,
respectively). Let τ1 and τ2 be (partial) assignments to propositional variables in X . We assume τ1

and τ2 assert the same set of facts, i.e., τ1 |= xi iff τ2 |= xi, and τ1 |= ¬xi iff τ2 |= ¬xi.
If UP infers the truth value of F ji when it runs on C1 with assignment τ1, UP infers the same

truth value for Dj
i , when it runs on C2 with assignment τ2. In addition, if UP infers the truth value

of xi when it runs on C1 with assignment τ1, UP infers the same value for xi when it runs on C2

with assignment τ2.

Proof: In this proof, we use τ2 ⊇ τ1 to assert
1. If τ1 maps F ci to either true or false, τ2 maps Dc

i to the same value.
2. If τ1 maps xi to either true or false, τ2 maps xi to the same value.
To prove this proposition, we show that given constrain Q, translations 〈v1, C1〉 and 〈v2, C2〉

and two assignments τ1 and τ2, we have UP (τ2, C2) ⊇ UP (τ1, C1).
Let Rank1(τ1) denote the maximum i such that τ1 assigns a value to xi. If there is no such i,

we define Rank1(τ1) to be 0. We define Rank2(τ2) similarly. Since both τ1 and τ2 are mapping
elements in X to true/false and they agree on their assignments, we have Rank1(τ1) = Rank2(τ2).
We use strong induction on Rank1(τ1) to prove this proposition:
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The base case is when Rank1(τ1) is zero. This means τ1 is an empty assignment and since
there is no unary clause in C1, we have UP (τ1, C1) = τ1. Using the same argument, we have
UP (τ2, C2) = τ2. And so, we have UP (τ2, C2) ⊇ UP (τ1, C1).

Let us assume the proposition holds for every pair of assignments, τ1 and τ2 satisfying the
requirement on the assignments where Rank1(τ1) ≤ l. We show that the proposition holds when
assignments τ1 and τ2 have Rank1(τ1) = Rank2(τ2) = l + 1.

Let τ ′1 (τ ′2) be the assignment which is the same as τ1 (τ2, respectively) but does not map xl+1

to any value. So, Rank1(τ ′1) = Rank2(τ ′2) ≤ l. By induction hypothesis, we have UP (τ ′2, C2) ⊇
UP (τ ′1, C1). Also, from the properties of unit propagation, we have UP (τ ′1, C

′
1) ⊆ UP (τ1, C1) and

UP (τ ′2, C
′
2) ⊆ UP (τ2, C2).

Let’s assume τ1 |= xl+1 and there are i and c such that UP (τ ′1, C1) does not assign any value to
F ci but UP (τ, C1) does. We show UP (τ2, C2) assigns the same value to Dc

i .
Since we assumed τ1 is an assignment on X and τ1 |= xl+1, it is straightforward to verify that

the assignments UP (τ1, C1) and UP (τ ′1, C1) agree on the values they assign to F c
′
i′ , c′ ≤ i′ ≤ l.

Also UP (τ ′2, C2) ⊇ UP (τ ′1, C1) implies that for every c ≤ i ≤ l if UP (τ1, C1) |= F ci then
UP (τ2, C2) |= Dc

i .
Therefore, we only need to show that if there is F cl+1 which is mapped to true by UP (τ1, C1),

then UP (τ2, C2) also maps Dc
l+1 to true.

From the construction presented in Section 9.4.1 if UP (τ1, C1) |= F cl+1 and τ1 6|= F cl+1, having
UP (τ1, C1) |= xl+1, we conclude that UP (τ1, C1) |= F c−1

l .
Now, we show UP (τ2, C2) |= xl+1 and UP (τ2, C2) |= Dc−1

l :

1. We assumed τ1 |= xl+1 and so, we have τ2 |= xl+1, which implies UP (τ2, C2) |= xl+1.

2. By induction hypothesis, we have if UP (τ1, C1) |= F cl , then UP (τ2, C2) |= Dc
l .

Then from set of clauses {¬xl+1,¬Dc−1
l ,¬Dc

l+1}, UP infers that Dc
l+1 must be true.

There are three other cases which need to be considered to complete the proof:

• τ1 |= xl+1 and UP (τ1, C1) |= ¬F ci ;

• τ1 |= ¬xl+1 and UP (τ1, C1) |= F ci ;

• τ1 |= ¬xl+1 and UP (τ1, C1) |= ¬F ci .

The proofs for these three cases are similar to what has been presented here.
In Proposition 22, we assumed that τ1 is an assignment to variables in X . It can be shown that
UP (τ2, C2) ⊇ UP (τ1, C1) if we allow τ1 to be an assignment to X ∪ {F ci } and τ2 to be an assign-
ment to X ∪ {Dc

i}, such that τ1 and τ2 assert the same set of facts.
So far we have shown that the set of facts unit propagation can infer on the translation obtained

by DP encoding is a superset or equal to the set of facts inferable from the translation obtained by
BDD encoding. The following proposition shows that there are facts inferable by unit propagation,
on the CNF generated by DP encoding, which are not inferable by unit propagation, on the CNF
generated by BDD encoding.

Proposition 23 There are facts which unit propagation can infer on the CNF generated by DP
encoding but not on the CNF generated by BDD encoding.
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Proof: LetQ be |{x1, x2, x3}| = 2, τ1 = {¬F 0
2 ,¬F 1

2 } and τ2{¬D0
2,¬D1

2}. Let 〈v1, C1〉 (〈v2, C2〉)
be translation for Q using BDD encoding (DP encoding, respectively).

By applying unit propagation to C1 with τ1, we have UP (τ1, C1) = τ1 (UP cannot infer any
new fact).

By applying unit propagation toC2 with τ2, we haveUP (τ2, C2) = τ2∪{D2
2, D

1
1, x2, x1,¬D0

1}.
So, we haveD2

2 ∈ UP (τ2, C2) while F 2
2 6∈ UP (τ1, C1). This means that, on the CNF generated

by DP encoding, unit propagation infers |{x1, x2}| = 2 (also x1 and x2 must be true) if we have
|{x1, x2}| 6= 0 and |{x1, x2}| 6= 1. On the other hand, UP can infer no fact on the CNF generated
by BDD encoding.

9.5.2 Divide-and-Conquer Based Encoding (DC)

Given cardinality constraint |{x1, · · · , xm}| = n, the idea of this encoding is to divide the variables
in set X = {x1, · · · , xm} into two sets X1 = {x1, · · · , xm

2
} and X2 = {xm

2
+1, · · · , xm}, and

then find the conditions describing how many variables from each subset is True. In the next step,
appropriate conditions would be merged, creating the condition for the set X . More formally, let
Dc

(s,e) be the Tseitin variable which is true in assignment τ iff |{xi : s ≤ i ≤ e∧ τ |= xi}| = c. So,
Dc

(1,n) is the necessary and sufficient condition for having exactly c variables evaluated as true out
of set X , e.g., |{x1, · · · , xm}| = c. Then the relation among variables Dc

(s,e) is defined using sets
of clauses equivalent to the following propositional formulas:

1. If Dc1
(s,m) and Dc2

m+1,e are true, Dc1+c2
(s,e) must be true:

(
Dc1

(s,m) ∧D
c2
(m+1,e)

)
→ Dc1+c2

(s,e) ;

2. At most one of Dj
(s,e), j = 0, · · · ,m, can be true: Dc1

(s,m) → ¬D
c2
(s,m);

3. IfDc
(s,e) is false, andDc1

(s,m) is true,Dc−c1
(m+1,e) must be false: (¬Dc

(s,e)∧D
c1
(s,m))→ ¬D

c−c1
(m+1,e);

4. If Dc
(s,e) is false, and Dc2

(m+1,e) is true, Dc−c2
(s,m) must be false:

(
¬Dc

(s,e) ∧D
c2
(m+1,e)

)
→

¬Dc−c2
(s,m).

Also, we need to add unary clause ({D0
(0,0)}), stating:

|{}| = 0.

And also we need to add some binary clauses stating:

• D0
(s,s) = ¬xs;

• D1
(s,s) = xs.

In the above encoding, the two sets of clauses (3) and (4) are not necessary and can be omitted.
Having those extra clauses increases the facts that unit propagation can infer.

Let C be the above set of clauses, then pair 〈Dn
1,m, C〉 is a translation for |{x1, · · · , xm}| = n.

Proposition 24 Unit propagation performs better on the CNF generated by DC encoding compar-
ing to the CNF generated by sorting network encoding.
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The proof idea of the proof is very similar to that of Proposition 23. We construct an assignment
which asserts the same facts for both encodings and show that unit propagation can infer facts on
the CNF produced by DC encoding while it cannot infer the same facts on the CNF produced by the
sorting network.

9.6 Experimental Evaluation

In this section, we compare the performance of our proposed encodings for cardinality constraints
against Sorting Networks (SN) encoding, BDD encoding. Also, we use MXC, a SAT+Cardinality
solver, as the ground solver engine for Enfragmo.

As we described in the previous sections, DP and BDD encodings are almost the same, except
that DP encoding writes some extra clauses in order to enable unit propagation to infer inconsistency
earlier, and also it introduces fewer propositional variables. Among the specifications presented in
Chapter 3, we used Count aggregate in the Blocked N-Queens and Social Golfers problems. In
Chapter 3, we used DC encoding to translate the cardinality constraints. In this section, we compare
the performance of different encodings on the Blocked N-Queens and Social Golfers problems. We
have selected specifications SG-01, SG-02 and SG-03 for the Social Golfers problem and BQ-3
and BQ-4 for the Blocked N-Queens problem, and run Enfragmo using five different approaches to
handle the cardinality constraints.

1. BDD: the cardinality constraints are translated into CNF using BDD encoding, Subsection 9.4.1.
2. DP: the cardinality constraints are translated into CNF using DP encoding, Subsection 9.5.1.
3. DC: the cardinality constraints are translated into CNF using DC encoding, Subsection 9.5.2.
4. SN: the cardinality constraints are translated into CNF using SN encoding, Subsection 9.4.2.
5. CARD: the cardinality constraints are written directly into CNF, and then Enfragmo uses

MXC, which is a SAT+Cardinality solver, to solve the CNF.
Table 9.1 presents the performance of these five configurations.

Spec BDD DP DC SN CARD

SG-01(175) 125/61.0 125/60.6 130/72.8 128/85.7 101/39.9

SG-02(175) 151/42.5 151/41.2 150/19.7 150/21.6 125/54.1

SG-03(175) 163/29.6 163/29.3 162/7.0 162/13.3 139/48.9

BQ-02(400) 300/10.9 300/15.2 300/27.4 300/12.7 300/89.5

BQ-04(400) 397/34.3 397/27.4 400/41.2 397/27.88 389/136.6

Table 9.1: Performance of different methods for handling cardinality constraints. The number in
parenthesis is the number of instances. Each entry is in the form n/t where n is the number of
solved instances, t is Solving phase running times in second

From the data presented in Table 9.1, we can observe the following:
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1. With regard to the Solving times, DP encoding performs better than BDD encoding in almost
all of our experiments: This observation may be due to the extra clauses in the DP encoding
that enables unit propagation to infer inconsistencies earlier.

2. DC encoding performs better than SN encodings, in almost all of our experiments: This may
be due to the depth of the corresponding circuits. The circuit generated by the sorting network
is deeper than the one generated by DC.

3. In all of the experiments, MXC performed the worst.
4. Overall, there is no clear winner between DP and DC encodings: DC generates a shallower

circuit, but on the other hand, it produces larger clauses, while DP generates a relatively deep
circuit but it produces small clauses (binary and ternary clauses).

In all the experiments presented in this chapter, we used MXC as the ground solver. In another
set of experiments, we used MiniSAT to compare the performance of BDD, DP, DC and SN encod-
ings. It was interesting to observe that MXC performs on average three times faster than MiniSAT.



Chapter 10

Encoding For Pseudo-Boolean
Constraints

A Pseudo-Boolean constraint (PB-constraint) is a linear constraint over Boolean literals. PB con-
straints are widely used to express NP-complete problems. The SUM place holders, introduced in
Chapter 8, can also be easily transformed to PB-constraint.

This chapter introduces a family of algorithms for translating Pseudo-Boolean constraints into
CNF formulas. These algorithms are centered around the idea of rewriting a PB-constraint as the
conjunction of a set of easier to translate constraints, we call them PBMod-constraints. The CNF
produced by the proposed encoding has small size, and unit propagation can derive facts that it
cannot derive using the CNF formulas obtained by other commonly-used transformations.

We present the results of an experimental performance comparison of our method with other
methods, using instances of the number partitioning problem. The results show that our method is
superior in certain parameter ranges.

10.1 Introduction

A Pseudo-Boolean constraint (PB-constraint), which is also known as a 0-1 integer linear constraint
by the integer linear programming community, is a generalization of a clause. A PB-constraint is an
inequality or equality on a linear combination of Boolean literals:∑n

i=1 aili{<,≤,=,≥, >}b,

where a1, · · · an and b are integers and l1, · · · , ln are literals. The left-hand side of a PB-constraint
under truth assignment τ is equal to the sum of the coefficients whose corresponding literals are
mapped to true by τ .

One way to build a solver for sets of PB-constraints is to develop a solver capable of handling
PB-constraints natively. PBS [10] and PUEBLO [61] are examples of such solvers. Another ap-
proach is to rewrite a given PB-constraint with a logically equivalent set of clauses and then use
a SAT solver to find a solution. The main benefit of the the second approach is that every SAT
solver, even those which are going to be developed in the future, can be plugged in to the system.

132
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In this chapter, we propose a method which works based on the latter approach, i.e., rewriting PB-
constraints as a set of clauses. Our main motivation for choosing this direction is that we do not
want Enfragmo to be dependent on a specific SAT solver but want it to able to use any SAT solver
as its low-level solver engine.

There are certain NP problems which can be expressed as the combination of a relatively small
CNF formula plus one or two PB-constraints. The Vehicle Routing Problem and its variations [48]
and the Knapsack problem are examples of such problems. Having a good translation for PB-
constraints allows users to attack these problems using SAT solvers. Most professional users encode
these problems using Integer Linear Programming (ILP) tools. Although it is well-known that ev-
ery NP problem can be expressed as an ILP program, unfortunately, there is no natural way to
express certain sentences as a set of linear equality/inequalities, for example, properties involving
disjunctions of constraints, such as “Either John or Maria is wearing a green shirt and a black hat”.
The standard techniques for expressing these properties involves introducing additional variables,
but extensive use of these techniques causes performance problems. As explained in Chapter 8,
Tseitin transformation also introduces additional variables to translate these kinds of properties to
propositional CNFs but the performance penalty seems to be little.

We define a PBMod-constraint to be:∑n
i=1 aili ≡ b (mod M),

where a1, · · · an and b are non-negative integers less than M , and l1, · · · , ln are literals.
We show that a given PB-constraint can be rewritten as the conjunction of a set of appropriately

selected PBMod-constraints. So, in order to translate PB-constraints to a CNF formula, we need to
determine how to choose the set of PBMod-constraints and how to translate a PBMod-constraint to
a CNF formula. As we show in this chapter, there are many PB-constraints whose unsatisfiability
can be proven by showing the unsatisfiabiliy of a PBMod-constraint. This chapter presents two
methods for translating PBMod-constraints to CNF. Both these encodings allow unit propagation to
infer inconsistency if the current assignment cannot be extended to a satisfying assignment for that
PBMod-constraint and hence unit propagation can infer inconsistency for the original PB-constraint.
We also show that the number of PB-constraints for which unit propagation can infer inconsistency,
given the CNF formula generated by our proposed encoding, is much larger than the other existing
encodings. Also, we prove that it is impossible to translate all PB-constraints in the form

∑
aili = b

into polynomial size arc consistent CNFs unless P=NP.
We use the number partitioning problem as the benchmark to compare the performance of our

proposed translations with the other commonly used translations in the SAT community. The results
of the experiments confirm that our translations performs better than the other methods.

The structure of this chapter is as follows: The next section is devoted to background and def-
initions. The proposed encodings are presented in sections 10.3 and 10.4. In Section 10.5, four
existing translations (encodings) for converting a PB-constraint to CNF are described. In Section
10.6, we study the performance of unit propagation on the resulting CNF of proposed encodings.
Specifically, we identify a class of PB-constraints for which our proposed encodings are arc consis-
tent. We also show that there is no polynomial size arc consistent encoding for PB-constraint in the
form

∑
aili = b unless P=NP. Section 10.7 compares the performance of different encodings on the

instances of the subset sum problem.
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10.1.1 My Contributions

The idea of translating a PB-constraint to a set of PBMod-constraint is contributed by the author.
Finding the set of the modulos, Section 10.3, and all the encodings for PBMod-constraints, Sec-
tion 10.4, the proof for co-NP-hardness and the upper/lower bounds presented in Section 10.6, are
author’s contributions [3].

10.2 Background

In this section, we fix our notations and use them through the rest of the chapter.

10.2.1 Notations

We use the same notation for assignments, clauses and etc, as were introduced in Section 8.2.
Let X be a set of Boolean variables. PB-constraint Q on X is specified as:

a1l1 + · · ·+ anln {<,≤,=,≥, >} b,

where ai is the integer coefficient of li, b is an integer, called the bound, and li is a literal, such that,
var(li)∈ X .

Total assignment τ toX satisfies a PB-constraintQ onX , written as τ |= Q , if the value of left-
hand side of Q under τ , i.e.,

∑
i:τ |=li ai, and that of the right-hand side of Q satisfy the comparison

operator.

10.2.2 Translation

Note that a PB-constraint onX can be seen as a formula which evaluates to true on assignments that
satisfy the constraint, and false otherwise. Therefore we can use Definition 30 to define a translation
for PB-constraints (To make this chapter self-contained, we repeat that Definition).

Definition 32 Given constraint φ(X), where X = {x1, · · · , xn} is a set variables, we call the pair
〈v, C〉, where v is a Boolean variable, C = {C1, · · · , Cm} is a set of clauses on X ∪ Y ∪ {v} and
Y is a set of (auxiliary) propositional variables, disjoint from X , such that v 6∈ Y , such that

• For every total assignment τ to X , there is at least one assignment τ ′ such that τ ⊆ τ ′ and
τ ′ |= C;

• Set of clauses C is such that C |= φ(X)↔ v.

Example 33 Let Q be the following unsatisfiable PB-constraint. The pair 〈v, {C1}〉 where C1 =
{¬v} is a translation for Q.

2x1 + 4¬x2 = 3.

As in the previous chapter, if the set of clauses is clear from the context, we represent a transla-
tion using just v, instead of 〈v, C〉.
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10.2.3 Canonical Form

Let us consider the following PB-constraint:

a1l1 + · · ·+ anln = b, (10.1)

where b and all coefficients are positive. We show that every PB-constraint can be rewritten as a
PB-constraint in form of 10.1.

Definition 33 Constraints Q1 on X and Q2 on Y ⊇ X are equivalent iff, for every satisfying
assignment τ for Q1, there exists at least one expansion of τ to Y satisfying Q2, and for every total
assignment τ to X which does not satisfy Q1, every expansion of τ to Y falsifies Q2.

Observation 5 Let n ≥ 1. The following PB-constraints are equivalent.
1.
∑n

i=1 aili >= b,
2.
∑n

i=1 aili > b− 1,
3.
∑n

i=1−aili <= −b,
4.
∑n

i=1−aili < 1− b.

Observation 6 Let m and n be such that 1 ≤ m ≤ n. Then (1) and (2) are equivalent.
1.
∑m−1

i=1 aili + amlm +
∑n

i=m+1 aili < b,

2.
∑m−1

i=1 aili − am¬lm +
∑n

i=m+1 aili < b− am.

Observation 5 and Observation 6 imply that every PB-constraint whose comparison operator
is in {≤, <,>,≥} can be rewritten as an equivalent PB-constraint with positive coefficients in the
following form:

n∑
i=1

aili < b. (10.2)

If the right-hand side of PB-constraint 10.2, b, is less than or equal to zero, no assignment
satisfies the constraint, i.e., the pair 〈v, {{¬v}}〉 can be used as a translation for this constraint.
If we have a PB-constraint of from (10.2) with b = 1, pair 〈v, C〉, where C is any set of clauses
equivalent to v ↔ ¬l1 ∧ · · · ∧ ¬ln, is a translation for that constraint.

Proposition 25 Let n ≥ 1, each ai ≥ 0, b > 1 and B = blog2 bc. Also, assume the variables yi are
fresh Boolean variables. The following PB-constraints are equivalent.

1.
∑n

i=1 aili < b,
2.
∑n

i=1 aili +
∑B

i=0 2iyi = b− 1.

Proof: Let Q1 denote
∑n

i=1 aili < b, and Q2 denote
∑n

i=1 aili +
∑B

i=0 2iyi = b − 1. Assume Q1

is a PB-constraint on X .

1. Let τ be a total assignment toX satisfyingQ1, and c denote the value of
∑

i:τ |=li ai. Therefore
c ≤ b− 1. We construct assignment τ ′ such that τ ′ |= Q2:

τ ′ |= yi iff the i-th bit of (b− 1)− c, in the binary representation, is one.
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2. Let total assignment τ falsify Q1, and b′ be the value of
∑

i:τ |=li ai. Since τ falsifies Q1, we
have b′ ≥ b. Let τ ′ be a total assignment to X ∪ Y which expands τ . The value of the left-
hand side of Q2, under τ ′, is greater than or equal to

∑
i:τ ′|=li ai =

∑
i : τ |= liai = b′. So,

no matter what τ ′ assigns to variables in Y , the left-hand side of Q2 evaluates to an integer
greater than or equal to b, and hence, τ ′ does not satisfy Q2.

We showed that given a satisfying assignment for Q1, there is an expansion of that assignment
which satisfies Q2. We also proved that given an assignment which does not satisfy Q1, any of its
expansions falsifies Q2. So, by Definition 33, Q1 and Q2 are equivalent.

In conclusion, every PB-constraint can be rewritten as an equivalent PB-constraint in the form
of Equation 10.1. So, if we are able to translate the PB-constraints in this form, we can translate
every PB-constraint as well.

10.2.4 Unit Propagation

In this chapter, we follow the notation introduced in Subsections 8.2.1 and 9.2.3.
Generalized arc consistency (GAC) is one of the desired properties for an encoding which is re-

lated to the performance of unit propagation. Bailluex et al., in [13], defined UP-detect inconsistency
and UP-maintain GAC for PB-constraint’s encodings. Although, that definition of a translation is
slightly different from ours, these two concepts can still be discussed in our context.

Let E be an encoding for PB-constraints, Q be a PB-constraint on X and 〈v, C〉 the translation
for Q obtained from encoding E. Then,

1. UP-detect inconsistency: Encoding E for constraint Q supports UP-detect inconsistency if
for every (partial) assignment τ , such that τ [X] 6|= Q, UP (τ, C) |= ¬v.

2. UP-maintain GAC: Encoding E for constraint Q supports UP-maintain GAC if for every
(partial) assignment τ and variable x ∈ X , such that x has the same value in all assignments
extending τ and satisfying Q, UP (τ, C ∪ {v}) |= x (or UP (τ, C ∪ {v}) |= ¬x, depending
on the truth value of x).

An encoding for PB-constraints is generalized arc consistent, or simply, arc consistent, if it
supports both UP-detect inconsistency and UP-maintain GAC for all possible constraints.

The procedure of converting a SUM place holder to a PB-constraint is similar to what is pre-
sented in Section 8.5.1 and we do not describe the procedure here.

10.3 Proposed Method

In this section, we explain how our proposed approach works for PB-constraints in form (10.1).
Let a normal PBMod-constraint be an expression of the following form:

n∑
i=1

aili ≡ b (mod M), (10.3)
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where 0 ≤ ai < M for all 1 ≤ i ≤ n and 0 ≤ b < M . Total assignment τ is a solution to a PBMod-
constraint iff the value of left-hand side summation under τ minus the value of the right-hand side
of the equation, b, is a multiple of M .

Definition 34 Let Q be the PB-constraint
∑
aili = b and M an integer greater than 1. We use

Q[M ] to denote the PBMod-constraint
∑
a′ili ≡ b′(mod M) where:

1. a′i = ai mod M,
2. b′ = b mod M.

Example 34 Let Q be 6x1 + 5x2 + 7x3 = 12. By Definition 34, we have:
1. Q[3] is 0x1 + 2x2 + 1x3 ≡ 0(mod 3).
2. Q[5] is 1x1 + 0x2 + 2x3 = 2(mod 5).

Every satisfying assignment for Q also satisfies each Q[M ], for M ≥ 2. Also, for large enough
value of M , when M is greater than

∑
ai, every solution for Q[M ] is also a solution for Q. So,

for the appropriate values of M , two constraints Q and Q[M ] have the same set of solutions. We
propose two ways to select the value ofM such that translating the corresponding PBMod-constraint
is easier than translating the original PB-constraint.

Lemma 2 For any PB-constraint Q in form
∑
aili = b, if M >

∑
ai, PBMod-constraint Q[M ]

and PB-constraint Q have exactly the same set of satisfying assignments, i.e., any assignment either
satisfies both constraints or neither of them.

Proof: If τ is a solution (a satisfying assignment) for Q, τ satisfies Q[M ], too. Now, let τ satisfy
Q[M ]. The value of the left-hand side of Q[M ] under τ is an integer in the form b+k ∗M for some
k ≥ 0. As we have 0 ≤ b+ k ∗M ≤

∑
ai < M , we can infer that k must be zero and so the sum

of left-hand side of Q[M ] under τ is exactly equal to b.

Lemma 3 Let Q denote PB-constraint
∑
aili = b . Also, let M1 and M2 be two integers and

M3 = lcm (M1,M2). Assume Sj is the set of assignments satisfying Q[M ] when M = Mj , for
j = 1, 2 and 3. Therefore:

S3 = S1 ∩ S2.

Proof: Let τ ∈ S3. By definition, τ satisfies both Q[M1 and Q[M2]. Let Sum denote the value
of
∑
aili, under assignment τ . Since τ |= Q[M1] (τ |= Q[M2]), Sum ≡ b (mod M1) (Sum ≡

b (mod M2)).
Since, Sum ≡ b (mod M1) and Sum ≡ b (mod M2), Sum ≡ b (mod M3). So, the left-hand

side of Q evaluates to b, modulo M3, under assignment τ .
Lemma 3 tells us that in order to find the set of solutions to a PBMod-constraint modulo M3 =

lcm(M1,M2), one can find the set of solutions to two PBMod-constraints (moduloM1 andM2) and
return their intersection.

Proposition 26 LetQ be PB-constraint
∑
aili = b, and M = {M1, · · · ,Mm} be a set ofm positive

integers. The set of assignments satisfying Q is exactly the same as the set of assignments satisfying
all the m PBMod-constraints, Q[M1], Q[M2], · · · , Q[Mm] if lcm(M1, · · · ,Mm) >

∑
ai.
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Proof: This proposition can be proven by applying Lemmas 2 and 3.

Theorem 3 LetQ denote the PB-constraint
∑
aili = b and M = {M1, · · · ,Mm} be a set of positive

integers such that, lcm(M1, · · · ,Mm) ≥
∑
ai. Let the pair 〈vk, Ck〉 be a translation for Q[Mk].

Then pair 〈v, C〉, whereC = ∪kCk∪C ′ andC ′ is a set of clauses equivalent to v ↔ (v1∧· · ·∧vm),
is a translation for Q.

Proof: To prove this theorem, we must show that the set of clauses C is satisfiable and that, for
every satisfying assignment τ for C, τ |= v iff τ |= Q.

• In the next section, we describe how our translations for PBMod-constraints work, and prove
that our proposed translations are such that set of clause C is always satisfiable.

• Let τ be a satisfying assignment for C such that τ |= v. Based on the construction, τ |= v iff
τ |= vi, for 1 ≤ i ≤ m. Since 〈vk, Ck〉 is a translation for Q[Mk], we infer that τ |= Q[Mi],
for all i = 1, · · · ,m. Proposition 26 shows that τ |= Q.

Let Q be PB-constraint
∑
aili = b and MN = {2, · · · , dlog

∑
aie+ 1}. Since lcm(2, · · · , k) ≥

2k−1, [37], set MN can be used as the set of modulos for encoding Q.
Another candidate for set M is a subset of prime numbers. One can enumerate the prime numbers

and add them to the set of modulos, MP, until their multiplication exceeds S =
∑
ai, i.e., to select

MP to be {2, 3, ..., Pm}. The next proposition provides an estimation of the size of set MP as well as
the maximum value in MP.

Proposition 27 Let MP be the set of primes less than or equal to Pm, where Pm is a prime number,
such that

∏
p∈MP p ≥ S.

1. m = |MP| = θ( lnS
ln lnS ).

2. Pm < lnS.

Proof:Let MP be the set of m first prime numbers, MP = {2, 3, · · · , Pm} and S be an integer.
Let π(x) denote the number of primes less than or equal to x. We can bound the value of Πp∈MPp,

by:

(
Pm
e

)π(Pm)−π(Pm/e)

≤
∏
p∈Mp

p ≤ (Pm)π(Pm) (10.4)

Prime number theorem, [45], states that the number of primes less than or equal to an integer x,
π(x), satisfies the following:

lim
x 7→∞

π(x)

x/ln(x)
= 1. (10.5)
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Using the above formula, for large enough x, we rewrite (10.4), by replacing π(x) with x/ lnx,
as:

(
Pm
e

)Pm/ ln(Pm)−Pm/(e∗ln(Pm/e))

≤
∏
p∈Mp

p ≤ (Pm)Pm/ ln(Pm) ≤ ePm . (10.6)

The lower bound for Πp∈MP , for large enough Pm, is equal to:

(
Pm
e

)Pm/ ln(Pm)−Pm/(e∗ln(Pm/e))

= (e)
Pm∗(lnPm−1)

lnPm
−Pm

e ≥ (e)
Pm
2
−Pm

e . (10.7)

From (10.6) and (10.7), we have

(e)
Pm
2
−Pm

e ≤
∏
p∈MP

p ≤ ePm (10.8)

∏
p∈MP

p ∈ eθ(Pm). (10.9)

The last equation, (10.9), states that the maximum value in MP is θ(lnS).
Now, by applying the prime number theorem once more, we see that:

m = |MP| ≈ Pm
lnPm

= θ(
lnS

ln lnS
)

We can also use the following set of numbers as our set of modulos:

MPP = {Pini : Pi is i-th prime number and Pini−1 ≤ lgS ≤ Pini}.

It is straightforward to see that |MPP| ≤ lgS
lg lgS and maxM∈MPPM ≤ lgS.

It is worth mentioning that PB-constraint Q, in form (10.1), can be represented using θ(n
log aMax) bits where n is the number of literals (coefficients) in the constraint and aMax is the
maximum value of the coefficients. PBMod-constraint Q[M ] can be represented in θ(n logM) bits
where n is the number of literals in the constraint. So, if we determine a translation for Q[M ] which
produces a CNF with O(nk1Mk2), for some constants k1 and k2, clauses/variables, which is expo-
nential in the size of representation of Q[M ], we can translate the PB-constraints into CNF using
a polynomial number of variables (clauses, literals) with respect to the size of representation of the
original PB-constraint. In the next section, we propose two such translations.



CHAPTER 10. ENCODING FOR PSEUDO-BOOLEAN CONSTRAINTS 140

10.4 Encoding For Modular Pseudo-Boolean Constraints

Theorem 3, in the previous section, demonstrate an approach for constructing a translation for PB-
constraints, using translations for PBMod-constraints. In this section, we describe how a translation
for PBMod-constraints in the form (10.3) can be constructed. Remember that our ultimate goal is
not to translate PBMod-constraints but to translate PB-constraints. For the sake of explanation, we
assume all coefficients in the PBMod-constraint (ai) are non-zero.

In this section, we present two encodings for PBMod-constraints and discuss how unit propaga-
tion performs on the CNF generated by each of them.

10.4.1 Dynamic Programming Based Translation (DP)

The translation presented here encodes PBMod-constraints of the form 10.3 using a Dynamic Pro-
gramming approach. Using an appropriate set of clauses,C, we define the truth value of the auxiliary
variables in D = {Dj

m : 0 ≤ j ≤ n, 0 ≤ m ≤ M} such that in every total assignment τ satisfy-
ing C, τ maps variable Dj

m to true iff τ satisfies subproblem
∑j

i=1 aili ≡ m(mod M). The set of
clauses C must be such that it guarantees the following assertions:

1. If both Dj−1
m−aj and lj are true, Dj

m must be true.

2. If Dj−1
m is true and lj is false, Dj

m must be true.
3. If Dj

m is false and lj is true, Dj−1
m−aj must be false.

4. If both Dj
m and lj are false, Dj−1

m must be false.
5. If both Dj−1

m and Dj−1
m−aj are false, Dj

m must be false;

6. If Dj
m is true, exactly one of Dj−1

m−aj and Dj−1
m must be true;

We must also add the following unary clauses to C:
1. The PBMod-constraint with no term in the left-hand side and zero in the right-hand size is

always satisfiable: D0
0

2. If m 6= 0, Dm
0 is false.

Proposition 28 Let D = {Dj
m : 0 ≤ j ≤ n, 0 ≤ m ≤ M}. For every j > 0 and 0 ≤ m ≤

M , we define Cjm = {{¬Dj−1
m−aj ,¬lj , D

j
m}, {¬Dj−1

m , lj , D
j
m}, {¬Dj

m, D
j−1
m , Dj−1

m−aj}, {¬D
j
m,

¬Dj−1
m ,¬Dj−1

m−aj} {¬D
j
m,¬lj ,¬Dj−1

m }, {¬Dj
m,¬lj , Dj−1

m−aj}, {¬D
m
j , lj ,¬D

j−1
m−aj}, {¬D

m
j , lj ,

Dj−1
m }}. Then pair 〈Dn

b , C〉, where C = ∪m,jCjm ∪ {{¬D0
m} : m 6= 0} ∪ {{D0

0}} is a translation
for (10.3).

Proof: To prove that the pair 〈Dn
b , C〉 is a translation for

∑n
i=1 aili = b, we first show that for every

satisfying assignment τ for C, τ |=
∑n

i=1 aili = b iff τ |= Dn
b . We also show that C is satisfiable.

By induction on n, we prove that the pair 〈Dn
b , C〉, for all 0 ≤ b < M , is a translation for

PBMod-constraint
∑
aili = b (mod M):

The base cases are when n = 0:

• If b = 0, D0
0 is always true, and the corresponding PBMod-constraint is always true.

• If b 6= 0, the PBMod-constraint
∑0

i=1 aili = b is always unsatisfiable and so, the pair 〈D0
b , C〉,

where D0
b is always false, is a translation for this constraint.
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Inductive Step: We want to show that the pair 〈Dn
b , C〉, as described above, is a translation

for
∑n

i=1 aili = b. By the induction hypothesis, 〈Db
n−1, C〉 is a translation for

∑n−1
i=1 aili = b

and 〈Db−an
n−1 , C〉 is a translation for

∑n−1
i=1 aili = b − an, and by our construction, we have that C

contains all the clauses in Cb
′
m, 0 ≤ m ≤ n, 0 ≤ b′ < M .

Let τ be a satisfying assignment for C such that τ [X] |=
∑n

i=1 aili = b. We need to show that
τ |= Db

n.
Since τ [X] |=

∑n
i=1 aili = b, we have either τ [X] |=

∑n−1
i=1 aili = b and τ |= ¬ln or τ [X] |=∑n−1

i=1 aili = b − an and τ |= ln. By the induction hypothesis, we know that in every satisfying
assignment τ for C, the truth value ofDb

n−1 (Db−an
n−1 ) is the same as the truth value of

∑n−1
i=1 aili = b

(
∑n−1

i=1 aili = b− an, respectively).
We have either τ |= Db−an

n−1 or τ |= Db
n−1. Assume that τ |= Db−an

n−1 , so from the induction
hypothesis, we know that

∑n−1
i=1 aili = b−an and also from the fact that τ |=

∑
aili = b, we know

that τ |= ln. Since τ |= C and C contains the clause {¬Db−an
n−1 ,¬ln, Db

n}, we have τ |= Dn
b . The

proof for the other case, when τ |= Dn−1
b , is similar.

To complete the proof, we still need to show that if τ is a satisfying assignment for C such that
τ |= Dn

b , then τ [X] |=
∑n

i=1 aili = b.
From τ |= Dn

b , {¬Dn
b , D

n−1
b , Dn−1

b−an} ∈ C and τ |= C, we infer either τ |= Db
n−1 or Db−an

n−1

but not both. We assume τ |= Db
n−1, and so, by the induction hypothesis, τ [X] |=

∑n−1
i=1 aili = b.

UP infers τ |= ¬Db−an
n−1 , and using the clause {¬Dn

b ,¬ln,¬D
n−1
b } ∈ C, UP infers that τ |= ¬ln.

Since τ |=
∑n−1

i=1 aili = b and τ |= ¬ln, we have τ |=
∑n

i=1 aili = b. The proof for the other case,
where τ |= Dn−1

b−an , is similar.
Instead of proving C is satisfiable, we prove the following which is a stronger assertion:

Given total assignment τ ′n to set of variables Xn = {var(li) | 1 ≤ i ≤ n}, there is a unique
total assignment τn to Yn = Xn ∪ {Di

b | 0 ≤ b < M, 0 ≤ i ≤ n} which satisfies C.
We use induction to prove this assertion:
Base case, when n = 0, is trivial, since the truth values of D0

b , 0 ≤ b < M , are forced using
unary clauses in C.

Inductive step: Let τ ′n be a total assignment to Xn and τ ′n−1 be a restriction of τ ′n to Xn−1 =
{var(li) | 1 ≤ i < n}. By the induction hypothesis, there is a unique total assignment τn−1 to
Yn−1 = Xn−1 ∪ {Di

b | 0 ≤ b < M, 0 ≤ i < n} which satisfies C.
Since τ ′n |= ln, we have τn |= ln. Also, since τ ′n and τ ′n−1 agree on their assignments to variables

in Xn−1, τn−1 and τn also agree on their assignments to variables in Yn−1.
Let’s assume that

∑n−1
i=1 aili evaluates, under τ ′n−1, to b, and τ ′n |= ¬ln. Using the proof of the

first part of the proposition, we have τn−1 |= Dn−1
b and τn−1 |= ¬Dn−1

b′ , where b′ 6= b. Since we
assumed τ ′n |= ¬ln, we need to show that the only expansion of τn−1 to τn which satisfies all the
clauses in C must satisfy τn |= b and τn |= ¬b′, where b′ 6= b.

1. τn |= Dn
b : There is a clause in C asserting ¬Dn−1

b ∧ ¬ln → Dn
b−1 and since τn |= ¬Dn−1

b ∧
¬ln, τn |= Dn

b .
2. τn |= ¬Dn

b′ : There is a clause in C asserting Dn
b ∧ ¬ln → Dn−1

b and since τn |= ¬Dn−1
b and

τ |= ¬ln, τ cannot map Dn
b to true. So, τ must map Dn

b to false.
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Proposition 29 DP encoding produces a CNF with |D| = O(nM) auxiliary variables, andO(nM)
clauses.

Proof: DP encoding introduces an auxiliary variable for every 0 ≤ i ≤ n and 0 ≤ b ≤ M . So,
overall there are O(nM) auxiliary variables. From Proposition 28, we know that the construction
for DP encoding uses a constant number of clauses, for each 0 ≤ i ≤ n and 0 ≤ b ≤ M , and
therefore, overall we have O(nM) clauses.

By applying standard dynamic programming techniques, we can avoid describing unnecessary
Dj
m, and obtain a smaller CNF.

Binary Decision Diagrams (BDD) are standard tools for translating constraints to SAT. One can
construct a BDD encoding for PBMod-constraints similar to the BDD encoding for PB-constraints
described in [34]. Similar to what has been discussed in the previous Chapter, BDD introduces
more auxiliary variables than DP encoding and unit propagation can infer more facts on the CNF
generated by DP encoding.

To boost the performance of unit propagation on the CNF generated by DP encoding, we add
the following set of clauses to C, defined in Proposition 28.

1. If Dj
m1 is true, Dj

m2 must be false m1 6= m2, 1 ≤ j ≤ n, i.e., {¬Dj
m1 ,¬D

j
m2}.

2. There is at least one m such that Dj
m is true 1 ≤ j ≤ n, i.e., {Dj

m|m = 0, · · · ,M − 1}.

Proposition 30 DP encoding for PBMod-constraints is generalized arc consistent.

Proof: To prove that a given encoding is generalized arc consistent, we must show that it supports
both UP-detect inconsistent and UP-maintain GAC. Here, we only show the proof for DP encoding
supports UP-detect inconsistency. The proof for the other part is similar. To simplify the proof, we
assume PBMod-constraint is in the form

∑
aixi ≡ b mod M, instead of

∑
aili ≡ b mod M.

Recall that encoding E supports UP-detect inconsistency if, for given PB-constraint Q on X in
form

∑n
i=1 aixi ≡ b mod M, the pair 〈v, C〉, produced by encoding E has the following property:

For every (partial) assignment τ to variables in X , where all assignments expanding τ falsify Q,
we have UP (τ, C) |= ¬v.

We prove this assertion by induction on the number of literals in Q:

• The base cases are the constraints with no literal (coefficient): If the right-hand side of
PBMod-constraint is 0, the constraint is a trivial (always true) otherwise, it is always false.
The set of clauses generated for this kind of constraint contains M unary clauses, where M is
the modulo in Q. Also, variable v is D0

b , where b is the constant on the right-hand side of Q.
So, UP can successfully infer the value of v.

• Inductive step: Let Q be in the form
∑n+1

i=1 aixi ≡ b mod M and also let τ be an assignment
which cannot be expanded to a satisfying assignment for Q. There are three cases:

1. τ does not set xn+1: Knowing τ cannot be expanded to a satisfying assignment for Q
means that τ cannot be expanded to a satisfying assignment for either

∑n
i=1 aixi = b or∑n

i=1 aixi = b − an+1. So, by the induction hypothesis, we have UP (τ, C) |= ¬Dn
b

and UP (τ, C) |= ¬Dn
b−an+1

. From the construction, we know that C contains clause
{Dn

b , D
n
b−an+1

,¬Dn+1
b } and so, UP infers ¬Dn+1

b .
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2. τ maps xn+1 to true: Since τ cannot be expanded to a satisfying assignment for Q and
τ |= xn+1 mean that τ [{x1, · · · , xn}] cannot be expanded to a satisfying assignment
for
∑n

i=1 aixi = b − an+1. So, by the induction hypothesis, we have UP (τ, C) |=
¬Dn

b−an+1
. From the construction, we know that C contains clause {Dn

b−an+1
,¬xn+1,

¬Dn+1
b } and so, UP infers ¬Dn+1

b .

3. τ maps xn+1 to false: The proof for this case is similar to that of the previous case.

10.4.2 Divide and Conquer Based Translation (DC)

The translation presented here resembles a Divide and Conquer approach. Using appropriate set of
clauses C, we define the truth values of the auxiliary variables in D = {Da

s,l : 0 ≤ a ≤M, 0 ≤ s ≤
n, 0 ≤ l ≤ n} such that in every total assignment τ satisfying C, τ maps Da

s,l to true iff τ satisfies
subproblem

∑s+l−1
i=s aili ≡ a (mod M).

Let Ds,l = {Da
s,l : 0 ≤ a < M}. The set of clauses C must be such that it guarantees the

following assertions among the truth values of variables in sets Ds,l, Ds, l
2

and Ds+ l
2
, l
2
:

• If both Dm1

s, l
2

and Dm−m1

s+ l
2
, l
2

are true, then Dm
s,l must be true, where 0 ≤ m,m1 < M , i.e.,

(Dm1

s, l
2

∧Dm−m1

s+ l
2
, l
2

)→ Dm
s,l.

• If Dm1
s,l is true, Dm2

s,l must be false, where 0 ≤ m1 < m2 < M , i.e., Dm1
s,l → ¬D

m2
s,l .

• There is at least one m, 0 ≤ m < M , such that Dm
s,l is true, i.e.,

⋃
mD

m
s,l.

For the base cases, when l = 1, we use the followings assertions.
1. Das

s,1 is equivalent to xs.
2. D0

s,1 is equivalent to ¬xs.
3. Dm

s,1, m 6= as, is false.

Proposition 31 Let D = {Dm
s,l | 0 ≤ m ≤ M, 0 ≤ s, l ≤ n} and C =

⋃
m,s,l C

m
s,l ∪

⋃
m1,m2,s,l

Cm1,m2

s,l ∪
⋃
s,l Cs,l , where

1. Cms,l (l > 1) is {{¬Dm1

s, l
2

,¬Dm−m1

s+ l
2
, l
2

, Dm
s,l} | 0 ≤ m1 < M}, which expresses (Dm1

s, l
2

∧

Dm−m1

s+ l
2
, l
2

)→ Dm
s,l;

2. Cms,l (l = 1) is {{¬xs, Das
s,1}, {xs,¬D

as
s,1} | 1 ≤ s ≤ n} ∪ {{¬Dm

s,1 | 1 ≤ s ≤ n,m 6= as},
which expresses Das

s,1 is equivalent to xs and Dm
s,1 is false;

3. Cm1,m2

s,l is {{¬Dm1
s,l ,¬D

m2
s,l }}, which expresses Dm1

s,l → ¬D
m2
s,l ;

4. Cs,l is {{Dm
s,l | 0 ≤ m < M}}, which expresses

⋃
mD

m
s,l.

Then pair 〈Db
1,n, C〉 is a translation for (10.3).

Proof:The proof for this proposition is similar to that of Proposition 28.
Similar to DP encoding, DC encoding is also an arc consistent encoding for PBMod-constraints.

Proposition 32 DC encoding for PBMod-constraints is generalized arc consistent.
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Proof: The proof for this proposition is similar to that of Proposition 30.
The way we define the set of auxiliary variables D requires |D| to be n2M . Using the stan-

dard top-down implementation technique for divide and conquer algorithms reduces the number of
variables in D to O(nM). This implementation can be seen in the following construction:

1. Start by producing set of clauses C1,n,
2. To produce Cs,l, we need to generate M auxiliary variables, D0

s,l, · · · , D
M−1
s,l , and produce

sets of clauses Cs, l
2

and Cs+ l
2
, l
2
.

Proposition 33 The above top-down implementation for DC encoding, produces a CNF with |D| =
O(nM) auxiliary variables, and O(nM2) clauses.

Proof: Let Ts,l be the number of auxiliary variables generated to describe Cs,l. The number of
auxiliary variables generated by the top-down implementation of DC encoding can be described
using the following recurrence formula:

Ts,l =

 M if l = 1;

M + Ts, l
2

+ Ts+ l
2
, l
2

otherwise.

By solving the recurrence formula, we get:

T1,n = θ(nM).

In the CNF generated by DC encoding, each propositional variable Dm
s,l ∈ D occurs in at most

θ(M) clauses. Therefore the number of clauses is θ(nM2).

Table 10.1 summarizes the number of auxiliary variables, the number of clauses and the depth
of corresponding circuit in the CNF obtained from the DP and DC encodings described above for
translating PBMod-constraint

∑
aili ≡ b (mod M).

Encoder # of Aux. Vars. # of Clauses

DP O(nM) O(nM)

DC O(nM) O(nM2)

Table 10.1: Summary of the size of different encodings for
∑
aili ≡ b (mod M).

In the previous section we described two candidates for modulo sets, MP and MPP. In this section,
we explained two encodings for translating PBMod constraints to SAT, DP and DC encodings. So,
we can construct four different encodings for translating PB constraints to SAT:
• Prime.DP: Translation constructed using MP as the set of modulo and DP encoding as the

PBMod encoder;
• Prime.DC: Translation constructed using MP as the set of modulo and DC encoding as the

PBMod encoder;
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• PPower.DP: Translation constructed using MPP as the set of modulo and DP encoding as the
PBMod encoder;
• PPower.DC: Translation constructed using MPP as the set of modulo and DC encoding as the

PBMod encoder.
The following proposition bounds the number of auxiliary variables and number of clauses in

the CNF generated by each of these four encodings.

Proposition 34 Let Q be a PB-constraint in from
∑
aili = b, and S =

∑
ai. The following Table

summarizes the number of auxiliary variables/clauses and the depth of the corresponding circuit in
the CNF generated by each of the Prime.DP/Prime.DC/PPower.DP/PPower.DC encodings for Q.

Encoding # of Vars. # of Clauses

Prime.DP O(n ln2(S)
ln lnS ) O(n ln2(S)

ln ln(S) )

Prime.DC O(n ln2(S)
ln ln(S) ) O(n ln3(S)

ln ln(S) )

PPower.DP O(n log2(S)
log log S ) O( n log2(S)

log log(S) )

PPower.DC O(n log2(S)
log log(S) ) O(n

(
log(S)

log log(S)

)2
)

Proof: The number of variables/clauses in the CNF generated by each of these four encodings
is equal to the summation of the number of variables/clauses generated by PBMod encoder, for
different modulos. Here we only present the proof for the number of variables in Prime.DP encoding.

From Proposition 29, we know the number of variables in the CNF generated by DP encoding
for PBMod constraint Q[M ] is θ(nM). We know that the set of modulos, MP , contains the first
|MP | prime numbers. So, the number of variables in the CNF generated by Prime.DP is:

|MP |∑
i=1

nPi = n

|MP |∑
i=1

Pi, (10.10)

where Pi is the i-th prime number. Let Pm be the maximum integer in MP .
For k ≥ 1, we have the following relation for the sum of prime powers, [60]:

∑
p≤x

pk =
(1 + o(1))xk+1

(1 + k) log x
. (10.11)

Using Proposition 27 and the above equation, by replacing with x with Pm, we rewrite (10.10) as

n

|MP |∑
i=1

Pi =
(1 + o(1))P 2

m

2 logPm
. (10.12)
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By replacing Pm with the upperbound for Pm, we get

n

|MP |∑
i=1

Pi =
(n+ o(n))(lnS)2

2 log lnS
, (10.13)

where S =
∑
ai.

10.5 Previous Work

The existence of a polynomial size arc consistent encoding for PB-consistent in the form
∑
aixi < b

was an open question until very recently. Bailleux et al. developed an arc consistent polynomial size
translation for these constraints [13]. Although all kinds of PB-constraints can be written as the
conjunction of at most two constraints in the form

∑
aili < b, the arc consistency is not preserved

for PB-constraints in the form
∑
aili = b. Moreover, in Section 10.6, we prove there cannot be a

polynomial size arc consistent encoding for all possible PB-constraints in form
∑
aili = b unless

P=co-NP.
There is an arc consistent encoding based on Binary Decision Diagrams. This encoding creates

exponential size CNF and is not practical when the integers in the PB-constraints are large. Here we
briefly review this encoding.

Translation through BDD

This approach is similar to the dynamic programming solution for solving the Subset Sum problem.
For every possible pair i and j where 0 ≤ i ≤ n, 0 ≤ j ≤ b, a fresh Tseitin variable is introduced,
Di
j , and using appropriate clauses the relation among the truth values of Di

j , xi, D
i−1
j and Di−1

j−ai is
described.

Dj
i =


> if i and j are both zero;

⊥ i = 0 and j > 0;

(Di−1
j−ai ∧ xi) ∨ (Di−1

j ∧ ¬xi) Otherwise.

Describing the truth value of variables in a top-down manner, as proposed by [12], usually gen-
erate fewer number of Tseitin variables and smaller CNF than the bottom-up procedure. Translation
through BDD is arc consistent but may produce an exponential size CNF with respect to the input
size.

There are other encodings which produce polynomial size CNFs. In the rest of this section, we
review some of these encodings.

Binary Encoding (Bin)

Every circuit can be translated into CNF, and so the binary adders can be described using a series of
clauses. The main idea in this approach is to use binary encoding of integers and the fact that setting
xi to false is the same as setting ai to zero. Every coefficient in a PB-constraint, ai, is represented
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as a tuple of bits 〈c1
i ∧ xi, · · · , cki ∧ xi〉 and each of these tuples is fed into an adder-network. The

output of the adder-network is compared with the binary representation of b.
The size of CNF generated using this encoding is polynomial with respect to the size of input,

but unit propagation performs poorly on the produced CNF.

Translation Through Totalizer

In [13], Bailleux et al. described an encoding for PB-constraints in the form Q :
∑
aixi < b

which fully supports arc consistency and produces a polynomial size CNF. In their context, setting a
variable from X to false never makes the constraint inconsistent, i.e., the formula ¬Q is a monotone
formula [9].

Bailleux et al. used a construction, called polynomial watchdog. A polynomial watchdog asso-
ciated with the constraint Q on variables X is a CNF formula, PW (Q), such that for every partial
assignment to the input variables, X , that violates the constraint Q, the unit propagation applied to
PW (Q) infers the value true for the output variable of PW (Q).

If constraint Q :
∑
aixi < b is not satisfiable under a partial assignment, the sum of the

coefficients of variables which are set to true under the current partial assignment must be greater
than or equal to b. The variable xk is forced to be false under the current assignment iff Qk :∑

i 6=k aixi < b − ai, is not consistent. Global polynomial watchdog (GPW) and Local polynomial
watchdogs (LPW) are used to enable UP to carry out these kinds of inferences. The following can
be used as an encoding for PB-constraint Q.

F = ¬GPW (Q) ∧
∧
LPW (Qk)⇒ (¬xk).

With access to an encoding for PB-constraints in the form Q :
∑
a′ili = b′, one can build an

encoding for constraint Q′ :
∑
aili < b using Observation 7.

Observation 7 The set of solutions to PB-constraint (1) is the same as the intersection of the sets
of solutions to PB-constraints (2) and (3).

1.
∑
aili = b;

2.
∑
aili < b+ 1;

3.
∑
ai¬li <

∑
ai + 1− b.

There are normalized PB-constraints for which totalizer based translation is not arc consistent but
our encoding is. We characterized these instances in Section 10.6.

Translation Through Network of Sorters (SN)

A sorting network is a circuit with n input wires and n output wires consisting of a set of comparators
with two input wires and two output wires. Each output of a comparator is used as an input to another
comparator, except those used as the output wires of the sorting network.

In this translation, a mixed-base, B = 〈B1, · · · , Bk〉, was selected. Each coefficient, ai, is
represented using a vector of size k, 〈c1

i , · · · , cki 〉 such that 0 ≤ cji < Bj and

ai =

k∑
j=1

cji

j−1∏
k=1

Bk.
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Table 10.2: Size of Translations (aMax = Max{ai})

# of Auxiliary Vars. # of Clauses

BDD O(n2aMax) O(n2aMax)

Totalizer O(n2 log n log aMax) O(n3 log n log aMax)

Bin O(n log aMax) O(n log aMax)

SN O(n log aMax log2 log aMax) O(n log aMax log2 log aMax)

Prime.DP O(n(log n+ log aMax)2) O(n(log n+ log aMax)2)

Then each digit, cji , is represented using Bj bits (in unary encoding), and k sorting networks are
used to implement an adder-circuit which computes the summation of (ai ∧ xi) for 1 ≤ i ≤ n. One
can find more details about the translation using a network of sorters in [34].

The size of the CNF generated using this encoding is polynomial with respect to the size of
the input. This encoding is arc consistent if all the coefficients are one. This special class of PB-
constraints is called Cardinality Constraint in the SAT community. There are some well-known
encodings for cardinality constraints which are arc consistent and produce smaller CNFs [6].

10.5.1 Summary

Table 10.2 summarizes the number of auxiliary variables, clauses, and literals produced by each
approach in the translation of a1l1 + · · ·+ anln = b.

BDD encoding is the only encoding which is arc consistent for the PB-constraint with compari-
son operator “=”. This encoding may produce exponential size CNF.

We show in Section 10.6 that Totalizer encoding is not arc consistent for all constraints whose
comparison operator is “=”. The translation using sorting networks has a reasonable size but it is
arc consistent if all the coefficients are equal to one (The authors in [34] demonstrated a necessary
condition for arc consistency). As proved in Proposition 34, all of the four encodings, obtained using
either MP or MPP as the set of modulos and DP or DC encodings for PBMod-constraints, produce a
polynomial size CNF. In the next section, we show that the number of instances for which the CNF
obtained by Prime.DP encoding is arc consistent is much greater than that of sorting networks. there
are many instances for which our encoding is arc consistent while totalizer-based encoding is not.

In summary, Totalizer-based encoding, Sorting Network encoding and our encoding produce
polynomial size translations for PB-constraint in the form

∑
aili = b, each of which is arc consistent

for a certain subset of all possible PB-constraints.

10.6 Performance of Unit Propagation

The encodings have been completely described and now, we are ready to study the properties of the
proposed encodings. In this section, we show that there cannot be an encoding for PB-constraints
in form

∑
aili = b which always produces a polynomial size arc consistent CNF unless P=co-NP.
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We also study the arc consistency of our encoding and discuss why one can expect the proposed
encodings to perform well.

In this section, we follow the notation introduced in Subsections 8.2.1 and 9.2.3. We also use
the concepts of UP-detect inconsistency and UP-maintains GAC, described in Section 10.2.

10.6.1 Hardness Result

Here, we show that it is not very likely to have an arc consistent encoding which always produces a
polynomial size CNF. We show this by proving if there is such an encoding, we can solve an instance
of a hard problem in polynomial time.

Theorem 4 There does not exist a UP-detectable encoding which always produces a polynomial
size CNF unless P= co-NP. There does not exist a UP-maintainable encoding which always produces
a polynomial size CNF unless P= co-NP.

Proof: Given a set of integers A = {a1, · · · , an} and an integer b, the Subset Sum problem asks
if there exists non-empty subset of A whose sum of elements is equal to b. This problem is a well-
known NP-complete problem, and we do not expect this problem to be solvable in polytime. We use
the Subset Sum problem to prove this theorem.

Unit propagation completes its execution on a set of clauses either by reporting inconsistency or
eliminating some variables from the input CNF. The worst-case running time of unit propagation is
polynomial with respect to the number of literals in the input CNF.

An instance of the Subset Sum problem, defined by set A = {a1, · · · , an} and integer b, can be
represented as the following PB-constraint Q:

a1x1 + · · ·+ anxn = b.

Now, assume there exists an encoding whose resulting CNF is UP-detectable for all PB-constraints
in the form

∑
aili = b. Let’s call this encoding E. Based on the definition of UP-detectability, E

translates Q to 〈v, C〉 such that Q is unsatisfiable iff UP detects inconsistency when it runs on
{v} ∪ C.

The fact that UP can infer inconsistency on {v} ∪ {C} in polynomial time with respect to the
number of literals in {v} ∪ C implies that if C has a polynomial size with respect to the size of the
representation of Q, deciding whether the answer to a Subset Sum instance is “No” would be easy.
Therefore, either there are PB-constraints whose corresponding CNFs are not of polynomial size or
co-NP=P.

Assume we have a UP-maintainable encoding for PB-constraints. If PB-constraint Q on X has
a unique solution, UP, given the CNF produced by UP-maintainable encoding, can infer the values
of all Boolean variables in X . Also if UP fails to infer the values of all variables in X , know Q does
not have a unique answer (it may be unsatisfiable or has more than one satisfying assignments).
Now, we prove the second part of the theorem.

The Unique SAT problem (USAT) is a variant of the Satisfiability problem. USAT asks whether
a given set of clauses has exactly one solution [18]. It is already known that USAT belongs to the
complexity class DP and it is co-NP-hard [57]. In the rest of our proof, we reduce an instance of
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USAT problem, C, to an instance PB-constraint problem, Q, such that C has a unique satisfying
assignment iff Q has a unique satisfying assignment.

Let C = {C1, · · · , Cm} be a set of clauses on X = {x1, · · · , xn}. For the sake of explanation,
we assume every clause in C has exactly three literals. Let Ci be {l1i , l2i , l3i }. Then, we define
PB-constraint Q as follows:

m∑
i=1

7il1i + 7il2i + 7il3i + 7iyi + 2× 7izi =
m∑
i=1

4× 7i, (10.14)

where yi and zi are fresh Boolean variables, for 1 ≤ i ≤ m.
It is straightforward to see that the number of satisfying assignment for C is the same as the

number of satisfying assignment for Q. Therefore C has a unique solution iff Q has a unique
solution.

PB-constraint Q is not in the canonical form, defined in Section 10.2, but it can be converted to
a canonical PB-constraint using the procedure described in this chapter.

Let E be a UP-maintainable encoding for PB-constraints. Given a USAT instance C, we can
construct PB-constraint Q in polynomial time. Let pair 〈v, C ′〉 be the translation obtained by apply-
ing encoding E on constraint Q. UP on the set of clauses C ′ ∪ {v} infers the values of all variables
x ∈ X iff C has a unique solution.

Therefore either there are PB-constraints whose corresponding CNFs do not have polynomial
size or we have a polynomial time algorithm which is able to solve co-NP-hard problem.

Throughout the rest of this section, we assume we are given a PB-constraint, Q,
∑
aili = b,

and a translation for it, 〈v, C〉. Also, let Q1, · · · , Qm be the PBMod-constraints generated during
the translation process and 〈vi, Ci〉 be a translation for Qi. Also, let Ans = {τ1, · · · , τr} be the set
of all satisfying assignments to Q.

10.6.2 UP for Proposed Encodings

Although there is no arc consistent encoding for PB-constraints with “=”, both DP-based and DC-
based encodings for PBMod-constraints are arc consistent encodings.

In the rest of this section we study the cases for which we expect SAT solvers to perform well on
the output of our encoding. Let Q be a PB-constraint on X , τ be a partial assignment and Ans(τ)
be the set of total assignments, to X , satisfying Q and extending τ [X]. There are two situations in
which UP is able to infer the values of the input variables.

1. Unit Propagation Detects Inconsistency: One can infer that the current partial assignment,
τ , cannot satisfy Q by knowing Ans(τ) = ∅. If at least one of the m PBMod-constraints
is inconsistent with the current partial assignment, UP can infer inconsistency on the CNF
generated by our proposed encodings for PBMod-constraints.
Recall that there are partial assignments and PB-constraints such that although Ans(τ) = ∅,
each of the m PBMod-constraints has a non-empty set of satisfying assignments (but the
intersection of these sets is empty).

2. Unit Propagation Infers the value for an Input Variable: One can infer that the value of input
variable xk is true/false if xk takes the same value in all the satisfying assignments of Q. For
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this class of constraints, UP is able to infer the value of xk, too.
If there exists a PBMod-constraint for which all its satisfying assignments, which extend τ ,
have mapped xk to the same value, UP can infer the value of xk.

These two cases are illustrated in the following example.

Example 35 Let Q(X) be x1 + 2x2 + 3x3 + 4x4 + 5x5 = 12.
1. Let τ , the current partial assignment, be {¬x2,¬x4} andM = 5. There is no total assignment

satisfying 1x1 + 3x3 + 0x5 ≡ 2 (mod 5).
2. Let τ , the current partial assignment, be {¬x3,¬x5} and M = 2. There are four total

assignments extending τ and satisfying PBMod-constraint 1x1 + 0x2 + 0x4 ≡ 0 (mod 2). In
all of them, x1 is mapped to false.

A special case of the second situation is when UP detects the values of all x ∈ X , given the current
partial assignment. In the rest of this section we estimate the number of PB-constraints for which
UP can solve the problem. More precisely, we give a lower bound on the number of PB-constraints
for which UP detects inconsistency or UP expands an empty assignment to a total assignment.

Proposition 35 LetR(n) be a polynomial in n such thatR(n) > 2n andQ the set of all constraints
in form

∑
a1l1 + · · · + anln = b, where 1 ≤ ai ≤ U = 2R(n) and 1 ≤ b ≤ n ∗ U . There are

2Ω(nR(n)) many constraints in Q, such that UP can solve the generated CNF using our proposed
method in polynomial time.

Proof: To simplify the analysis, we use the same set of prime modulos MP = {P1 = 2, · · · , Pm =
θ(R(n)) > 2n} for all constraints.

Consider the following PBMod-constraints:

1x1 + · · ·+ 1xn−1 + 1xn = n+ 1( mod Pm) (10.15)
1x1 + · · ·+ 1xn−1 + 1xn = n( mod Pm) (10.16)

PBMod-constraint (10.15) does not have any solution and PBMod-constraint (10.16) has exactly
one solution (in which all xi are true). Proposition 30 tells us that UP can infer inconsistency given
a translation obtained by DP-based encoding for (10.15), even if the current assignment is empty.
Also, using Proposition 30, we know UP expands the empty assignment to an assignment mapping
all xi to true on a translation for (10.16) obtained by DP-based encoding.

The Chinese Remainder Theorem [32] implies that there are (U/Pm)n+1 = 2(n+1)R(n)/R(n)n+1

different PB-constraints in the form
∑
a1li = b such that their corresponding PBMod-constraints,

where the modulo is Pm, are the same as (10.15). The same argument can be applied on PBMod-
constraints in form (10.16).

Since UP can solve a PB-constraint in the form of Equations 10.15 or 10.16, and knowing
that UP runs in linear time with respect to the number of clauses/variables in the CNF, there are at
least 2(n+1)R(n)/R(n)n+1 PB-constraints which can be solved, using the proposed translation, in
polynomial time with respect to the size of the representation of the input PB-constraints.



CHAPTER 10. ENCODING FOR PSEUDO-BOOLEAN CONSTRAINTS 152

10.6.3 UP for Sorting Network-based Encoding

Here, we show that there are more instances for which our encoding maintains arc consistency than
Sorting Network encoding.

It is stated in [34]: “Unfortunately, arc consistency is broken by the duplication of inputs, both
to the same sorter and between sorters.”

As described in Section 10.5, in Sorting Network encoding, a multi-base B = 〈B1, · · · , Bm〉
is fixed. To avoid duplication between sorters, each coefficient, ai, should have a single non-zero
digit in their multi-base B-representation. To avoid duplication in the same sorter, the non-zero
digit should be exactly 1. So each coefficient can take m different values, based on the position of
its non-zero digit. There are n coefficients, so there are at most nUmn different instances which
are arc consistent, among all nUn+1 possible PB-constraints, where U is the maximum value each
coefficient can have. Having Bi ≥ 2 implies that m ≤ logU .

10.6.4 UP for Totalizer-based Encoding

In [13], the authors claimed that the totalizer-based encoding is a polynomial size CNF encoding
such that arc consistency is maintained through unit propagation for all PB-constraints in the fol-
lowing form: ∑

aili{=, >,≥, <,≤}b.

Although the totalizer-based encoding is arc consistent for the PB-constraints in the forms
∑
aili{>

,≥, <,≤}, it does not produce an arc consistent translation for some PB-constraints in the form∑
aili = b.
In the totalizer-based encoding, PB-constraint

∑
aili = b is converted to the following two

constraints: ∑
aili < b+ 1;∑

ai¬li <
∑

ai + 1− b.

Proposition 36 There are PB-constraints for which the totalizer-based encoding is not arc consis-
tent.

Proof: We have constructed an explicit counter example. Consider the following PB-constraint Q:

3x1 + 3x2 + 4x3 = 7.

In all solutions forQ, x3 should be mapped to true, and hence an arc consistent encoding must be
able to infer the value of x3 from an empty assignment. Now consider the following two constraints:

Q1 : 3x1 + 3x2 + 4x3 < 8,

Q2 : 3¬x1 + 3¬x2 + 4¬x3 < 10− 6 = 4.

Let 〈v1, C1〉 and 〈v2, C2〉 be translations obtained from the totalizer-based encoding for Q1 and
Q2, respectively. UP does not infer the value of any xi from {v1} ∪ C1 ∪ {c2} ∪ C2.
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In fact, the translation produced by the totalizer-based encoding is not arc consistent for almost
all PB-constraints which have a PBMod-constraint in the form 10.15 or 10.16.

We summarize the discussion above in the following two observations.

Observation 8 Let R(n) be a polynomial in n such that R(n) > 2n and Q the set of constraints
in the form

∑
a1l1 + · · · + anln = b, where 1 ≤ ai ≤ U = 2R(n) and 1 ≤ b ≤ n ∗ U . There are

at most (logU)n instances where the CNF produced by Sorting Network encoding maintains arc
consistency, while this number for our encoding is at least (U/ log(U)))n. We almost always have
2R(n)/R(n)� R(n).

Observation 9 There is a family of PB-constraints whose translation through the totalizer-based
encoding is not arc consistent but the translation obtained by our encoding is arc consistent.

10.7 Experimental Evaluation

In this section, we compare the performance of our proposed encodings and two of the encodings
described in the previous section. Remember that our encoders have two separate parts; a modulo se-
lection part and a PBMod-constraint encoder part. In this section, we selected the following config-
urations: Prime as the set of modulos and DP encoding as PBMod-constraints encoders (Prime.DP),
Prime as the set of modulos with DC encoding as PBMod-constraint encoder (Prime.DC). We used
CryptoMiniSAT as the SAT solver for our encodings, as it performed better than MiniSAT, in our
initial benchmarking experiments.

To evaluate the performance of these configurations, we used the Number Partitioning Problem
(NPP). Given a set of integers S = {a1, · · · , an}, NPP asks whether there is a subset of S such
that the summation of its members is exactly

∑
ai/2. Following [43], we generated 100 random

instances for NPP, for a given n and L as follows:
Create set S = {a1, · · · , an} such that each of ai is selected independently at random from

[0, · · · , 2L − 1].
We selected the NPP problem as our benchmark since this problem allows us to change both the

number of variables and the size of integers (coefficients) in the problem. Intuitively speaking, by
changing the number of variables we change the size of the search space, and by changing the size
of coefficients we change the size of the problem description.

We ran each instance on our two configurations and also on the three other encodings; Sort-
ing Network-based encoding (SN), Binary Adder Encoding (BADD) [34] (both provided by Min-
iSAT+ [68]) and also another SAT-based PB-solver called npSolver [53]. Both MiniSAT+ and np-
Solver showed good performances in one or more categories of PB-competitions.

All running times reported here are the average total running times (the average over the result
of summation of times spent to generate CNF formulas and time spent to solve the CNF formulas).
We also tried to run the experiments with a BDD encoder, but as the CNF produced by BDD encoder
is exponentially large, SAT solvers failed to solve medium and large size instances.

Before we describe the result of experiments, we discuss some properties of the Number Parti-
tioning problem.
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10.7.1 Number Partitioning Problem

The Number Partitioning problem is an NP-Complete problem which can also be seen as a special
case of Subset Sum problem. In the SAT context, an instance of the NPP can be rewritten as a
PB-constraint whose comparison operator is “=”. Neither this problem nor the Subset Sum problem
has received much attention from the SAT community.

The size of an instance of NPP, where set S has n elements and aMax is the maximum absolute
value in S, is θ(n ∗ log(aMax)) + n). It is known that if the value of aMax is polynomial with
respect to n, the standard dynamic programming approach can solve this problem in time O(naax),
which is polynomial time with respect to the instance size. If aMax is too large, 2Omega(2θ(n)), the
naive algorithm, which generates all the 2n subsets of S, works in polynomial time with respect to
the instance size. The hard instances for this problem are those in which aMax is neither too small
nor too large with respect to n.

In [19], Borgs et al. defined k = L/n and showed that NPP has a phase transition at k = 1: for
k < 1, there are many perfect partitions with probability tending to 1 as n 7→ ∞, while for k > 1,
there are no perfect partitions with probability tending to 1 as n 7→ ∞.

10.7.2 Experiments

All the experiments were performed on a Linux cluster (Intel(R) Xeon(R) 2.66GHz). We set the
time limit to be 10 minutes. During our experiments, we noticed that the sorting network encoding
in MiniSAT+ incorrectly announces some unsatisfiable instances to be satisfiable, an example of
which is the following constraint.

5x1 + 7x2 + 1x3 + 5x4 = 9.

We did not investigate the reason for this issue in the source code of MiniSAT+, and all the re-
ported timings are calculated using the broken code. We checked the solution generated by sorting
network-based encoding of MiniSAT+ on the satisfiable instances, and they were indeed a correct so-
lution. Also, for many of unsatisfiable instances, the sorting network-based encoding in MiniSAT+
reported unsatisfiability. Based on our observations, we believe that there are some rare corner
cases which are missed in the implementation of sorting network-based encoding, in MiniSAT+.
We should mention that, based on our experiments, the binary adder-based encoding implemented
by MiniSAT+ is sound.

The results of experiments in this section suggest that Sorting Network-based encoding performs
much worse than the other encodings. The relative performance of the encodings, we studied in this
section, would not change unless the bug in MiniSAT+, for Sorting Network-based encoding, causes
a huge slow-down (which is very unlikely).

In our experiments, we generated 100 instances for 3 ≤ n ≤ 30 and L ∈ {3, · · · , 2∗n}. We say
a solver wins on a set of instances if it solves more instances than the others and in the case of a tie,
we decide the winner by looking at the average running time. The instances on which each solver
performed the best are plotted on Figure 10.1. As the Sorting Network-based solver was never a
winner in any of the sets, it did not appear in the graph.

One can observe the following patterns from the data presented in Figure 10.1:
1. For n < 15, all solvers successfully solve all instances.
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Figure 10.1: The left hand figure plots the best solver for pairs n and L (n ∈ {3, · · · , 30}, L ∈
{3, · · · , 2n}). The right hand figure shows the average solving time, in seconds, of the engines
which solved all the 100 instances in 10 minutes timeout, for n = L ∈ {3, · · · , n}.

2. Sorting network fails to solve all the instances where n ≥ 20.
3. npSolver also fails to solve all the instances where n ≥ 21. Moreover, npSolver was not the

winner (the best performing solver) in any of the experiments.
4. BADD solves all the instances when n = L = 24 in a reasonable time, but it suddenly fails

when the values of n and L go above 24.
5. For large enough n (n > 15) BADD is the winner only when L is small.
6. For large enough n (n > 15) either PDC or PDP is the best performing solver.
The above observations suggest that there are many hard instances for which our encoding out-

performs both SN and BADD encodings. As we discussed in the beginning of this section, if L is
small there is a polynomial time algorithm for the Number Partitioning problem. Item 5 of the list
above suggests that BADD encoding is suitable for small L, which are easy to solve instances. On
the other hand, the last observation suggests that our proposed encoding is suitable to attack the hard
instances.

We compared our proposed encodings with two of the best available open source PB-solvers.
The results of the experiments suggest that both MiniSAT+ and npSolver fail to solve many instances
of NPP, while both performed well on the instances from PB-competitions. We should mention that
there is a huge difference between the instances used in PB-competition and here. In most cases, an
instance used in PB-competition is made of many PB-constraints where each PB-constraint is easy
to solve individually, and finding a solution to all the PB-constraints is the main challenge. In our
experiments, there is a single hard-to-solve PB-constraint.



Chapter 11

Conclusion and Future Work

In this thesis, we introduced our grounding-based solver, Enfragmo. Enfragmo receives a problem
specification and a problem instance as its input and returns a solution for the problem, if any ex-
ists. The problem specifications are described in a high-level input language (Chapter 3) which is
a fragment of guarded first-order logic expanded with inductive definitions, functions, aggregates
and arithmetical operators. In Chapter 3, we also proposed some advice which can be used to de-
velop better performing specifications. The high-level language accepted by Enfragmo can express
problems in the complexity class NP, and any problem expressible in this language belongs to the
complexity class NP, Chapter 4.

Since every problem expressible in the input language of Enfragmo is an NP-problem, any
instance of such problems can be reduced to an instance of an NP-complete problem such as satis-
fiability. Enfragmo, during its grounding process, generates an equivalent variable-free first-order
formula for any given problem specification and problem instance. The details of the grounding
process were discussed in Chapters 5 and 6. To handle the grounding, Enfragmo has been equipped
with several new data structures for representing the tables, and we also introduced new notions of
answers to terms. Using the techniques explained in Chapters 5 and 6, Enfragmo generates a ground
formula in polynomial time.

After the grounding phase, Enfragmo enters the MakeCNF phase in which an equivalent CNF
formula is created for the ground formula. We describe a novel approach for generating an equivalent
CNF formula from the ground formula resulting from the grounding phase. In this thesis, we also
explained two new approaches to translating a cardinality constraints to CNF and proposed a family
of translations for transforming PB-constraints into CNF.

11.1 Future Work

In Section 4.3, we described the syntax and semantics of a logic and mentioned that although the
syntax of that logic and the input language of Enfragmo are the same, their semantics are slightly
different. To extend the work described in Chapter 4, one could find a logic which has exactly the
same semantics as the input language of Enfragmo.

We proposed several approaches to represent extended relations in Chapter 5, and we showed
that they perform differently on different specifications. In the current implementation of Enfragmo,
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users can choose the kind of tables to be used by grounder. To extend the work described in this
chapter, one could develop methods/heuristics which automatically select the best representation for
the tables, given a problem specification and problem instance.

Chapter 6 describes how Enfragmo handles the grounding of the specifications involving com-
plex terms. The author proposed the binary answer to terms to provide a polynomial time grounding.
As mentioned in the chapter, the author proposed another notion of answer to terms, which was not
discussed in this thesis. The main idea in the other approach is to look at the value of the terms
modulo prime numbers. One natural way to extend the work described in this chapter is to imple-
ment this representation for answer to term, and compare the performance of these two notions of
answers to terms.

Chapter 8 describes how Enfragmo deals with generating CNF from a variable-free first-order
formula. We observed that enabling the memorization feature accelerates the CNF generation
method for certain problems, and we proposed a heuristic which can be used to automate the deci-
sion of enabling this option. To extend the work described in this chapter, one could implement and
tune that heuristic.

Chapter 9 proposes two new encodings for translating cardinality constraints to CNF. We showed
that our DP-based encoding almost always outperforms BDD-based encoding and our DC-based
encodings almost always outperforms Sorting Network-based encoding. We showed that there are
problems for which DP-based encoding performs better than DC-based encoding and vice versa.
One could develop heuristics to select the best encoding to translate cardinality constraints to CNF.

Chapter 10 proposed a family of translations for transforming PB-Encodings to CNF. As we
expressed in the chapter, the bounds in Proposition 27 are not tight and could be improved. The
other option to extend the work described in this chapter is to develop methods to select the best
PBMod-encoding automatically.
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[74] J. Wittocx, M. Mariën, and M. Denecker. Grounding FO and FO(ID) with bounds. J. Artif. Int.
Res., 38(1):223–269, May 2010. 18

http://minisat.se/


BIBLIOGRAPHY 163

[75] N. Wu and L. Swanson. The Enfragmo System, 2011. http://www.cs.sfu.ca/˜ter/
eternovska/Software_files/Enfragmo-man.pdf. 14

[76] L. Xu, F. Hutter, H. Hoos, and K. Leyton-Brown. SATzilla: Portfolio-based algorithm selection
for SAT. Journal of Artificial Intelligence Research, 32(1):565–606, 2008. 103

http://www.cs.sfu.ca/~ter/eternovska/Software_files/Enfragmo-man.pdf
http://www.cs.sfu.ca/~ter/eternovska/Software_files/Enfragmo-man.pdf


Appendix A

The Input Language of Kodkod

Figure A.1: Kodkod Input Language
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Appendix B

Translation Rules for Kodkod
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Appendix C

Computing Bounds in IDP

Algorithm 11 The following program is used by IDP to compute ctb(ψ) and cfb(ψ) of all sub-
formulas ψ.
Input: A theory T over Σ, a symbolic Σ−structure Φ and a constant C ∈ N .

Q:= 0
for P ∈ Σtf

pred do
if PΦtf is not of the form {x̄|⊥} then

for all (∀x̄(ψ ⇒ L[x̄])) ∈ INF (T ) such that P occurs in ψct do
Q.push(∀x̄(ψ ⇒ L[x̄]))

n:= 0
while Q 6= ∅ and n < C do
∀x̄ (ψ ⇒ L[x̄] := Q.pop())
if L[x̄] is a positive literal P (x̄) then

q := PΦct ∪ {x̄|Φct(ψct)}
q := simplify (q)
if (not equivalent (q, PΦct)) and acceptable (q, PΦct) then

n := n+ 1
PΦct := q
for all (∀ȳ(χ⇒ L′[ȳ])) ∈ (INF (T )\Q) such that P occurs positively in χct do

Q.push(∀ȳ(χ⇒ L′[ȳ]))

elseSimilar code when L[x̄] is a negative literal.
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Grounding Using Bounds in IDP

Algorithm 12 Grounding with bounds
Input: T, σ, Iσ, C
Output: A grounding Tg for T with respect to Iσ

if Ccfb(φ) = > for some axiom φ of T then return ⊥
Tg := ∅
Ground all sentences of T
for every sentence φ of T do

if Cctb(φ) 6= > then
Add GroundConj (φ) to Tg

Add the grounding of CA
for every atomic subformula φ[x̄] of T do

for every d̄ such that Iσ[x̄/d̄] |= Cctb(φ) do
Add φ[x̄/d̄] to Tg

for every d̄ such that Iσ[x̄/d̄] |= Ccfb(φ) do
Add ¬φ[x̄/d̄] to Tg
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function G(r)oundConj (φ[x̄])
C := ∅
Switchφ[x̄]
Caseφ = ∀yΨ[x̄, y] return GroundConj (Ψ[x̄, y])
Caseφ =

∧
i Ψi

C :=
∨
iGroundConj(Ψi)

Other
for all d̄ such that Iσ 6|= Cctb(φ)[x̄/d̄] do

if Iσ |= Ccfb(φ)[x̄/d̄] then return ⊥
else

if φ is a literal then
Add φ(x̄/d̄) to C

else
if φ is a disjunctive formula then

Add GroundDisj φ(x̄/d̄) to C
else

if φ is an aggregate expression then Add GroundAgg φ(x̄/d̄) to C
return

∧
C

function G(r)oundDisj (φ[x̄])
D := ∅
Switchφ[x̄]
Caseφ = ∃yΨ[x̄, y] return GroundDisj (Ψ[x̄, y])
Caseφ =

∨
i Ψi

C :=
∨
iGroundDisj(Ψi)

Other
for all d̄ such that Iσ 6|= Ccfb(φ)[x̄/d̄] do

if Iσ |= Cctb(φ)[x̄/d̄] then return >
else

if φ is a literal then
Add φ(x̄/d̄) to D

if φ is a conjunctive formula then
Add GroundDisj φ(x̄/d̄) to D

if φ is an aggregate expression then
Add GroundAgg φ(x̄/d̄) to D

return
∨
D



Appendix E

The Input Language of Enfragmo

E.1 Problem Specification Grammar

<theory_file> ::= <given_part> <find_part>
<phase_part> <print_part>

<given_part> ::= GIVEN : <types_decl> ; <funcs_decl> ;
| GIVEN : <types_decl> ; <preds_decl> ;
| GIVEN : <types_decl> ; <preds_decl> ;

<funcs_decl> ;

<types_decl> ::= TYPES : <identifier_list> ;
INTTYPES : <identifier_list>

| TYPES : <identifier_list>
| INTTYPES : <identifier_list>

<identifier_list> ::= | <identifier_list> <identifier>

<preds_decl> ::= PREDICATES : <preds_list>

<a_pred_DCL> ::= <identifier> (<IdentifierListSeparatedByComma>)

<preds_list> ::= | <a_pred_DCL> <preds_list>

<IdentifierListSeparatedByComma> ::= | <identifier>
| <IdentifierListSeparatedByComma> , <identifier>

<funcs_decl> ::= FUNCTIONS : <funcs_list>

<funcs_list> ::= | <func_DCL> <funcs_list>

<func_DCL> ::= <identifier> ( ) : <identifier>
| <identifier> (<IdentifierListSeparatedByComma>): <identifier>
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<find_part> ::= FIND : <identifier_list> ;

<phase_part> ::= <a_phase> | <a_phase> <phase_part>

<a_phase> ::= PHASE : <fixpoint_part> <satisfying_part>

<fixpoint_part> ::= | FIXPOINT ( <identifier_list> ) :
<induction_part> ;

<induction_part> ::= <an_induction>
| <induction_part> <an_induction>

<an_induction> ::= <an_inflation> | <a_definition>

<an_inflation> ::= INFLATE <inflate_description>

<an_inflate_description> ::= { <var_DCL> : <identifier>
( <IdentifierListSeparatedByComma> ) <=> <FO_formula> }

<inflate_description> ::= <an_inflate_description>
| <inflate_description> <an_inflate_description>

<a_definition> ::= DEFINE { <induction_description> }

<induction_description> ::= <an_induction_description>
| <induction_description> <an_induction_description>

<an_induction_description> ::= <var_DCL> : <identifier>
( <IdentifierListSeparatedByComma> ) <- <FO_formula>

<satisfying_part> ::= | SATISFYING : <satisfying_rules>

<satisfying_rules> ::= <FO_formula> ;
| <satisfying_rules> <FO_formula> ;

<FO_formula> ::= ( <FO_formula> ) | <unitary_formula>
| <FO_formula> <connective> <unitary_formula>

<unitary_formula> ::= ( <FO_formula> )
| <quantifier> <var_DCL> : <FO_formula>
| <quantifier> <a_var_DCL> <ord_operator>

<term_nodes>: <unitary_formula>
| <unitary_formula> <binary_operator> <unitary_formula>
| ˜ <unitary_formula>
| <atomic_formula>

<atomic_formula> ::= <relation_formula>
| SUCC [ <identifier> ] ( <term_nodes> , <term_nodes> )
| <ord_relation> | TRUE | FALSE
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<relation_formula> ::= <identifier> ( <args> )

<ord_relation> ::= <term_nodes> <ord_operator> <term_nodes>

<min_func> ::= MIN [ <identifier> ]

<max_func> ::= MAX [ <identifier> ]

<size_func> ::= SIZE [ <identifier> ]

<abs_func> ::= ABS ( <term_nodes> )

<func_ref> ::= <identifier> ( <args> ) | <identifier> ( )

<var_DCL> ::= | <a_var_DCL> | <var_DCL> <a_var_DCL>

<a_var_DCL> ::= <identifier> : <identifier>

<args> ::= | <term_nodes> | <args> , <term_nodes>

<term_nodes> ::= <a_term_node> | ( <term_nodes> )
| <term_nodes> + <term_nodes>
| <term_nodes> * <term_nodes>
| <term_nodes> - <term_nodes>

<a_term_node> ::= <var_ref> | <min_func> | <max_func>
| <abs_func> | <func_ref> | <size_func>
| <aggregate> | <int_term_node>

<aggregate> ::= COUNT { <var_DCL> ; <FO_formula> }
| MIN { <var_DCL> ; <term_nodes> ; <FO_formula> ; <term_nodes> }
| MAX { <var_DCL> ; <term_nodes> ; <FO_formula> ; <term_nodes> }
| SUM { <var_DCL> ; <term_nodes> ; <FO_formula> }

<var_ref> ::= <identifier>

<int_term_node> ::= <int_number> | INTEGER { <term_nodes> }

<arit_operator> ::= + | * | -

<quant_part> ::= <quantifier> <var_DCL>;

<quantifier> ::= ? | !

<binary_operator> ::= & | ’|’ (or)

<ord_operator> ::= < | <= | > | >= | =
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<connective> ::= & | ’|’ (or) | => | <=>

<print_part> ::= | PRINT : <predicates>

<predicates> ::= | <predicates> <identifier>

<identifier> ::= [a-zA-Z][0-9a-zA-Z_]+

E.2 Instance Specification Grammar

<instance_file> ::= <type_parts> <pred_parts> <func_parts>

<type_parts> ::= <a_type_part> | <type_parts> <a_type_part>

<a_type_part> ::= TYPE <identifier> <range>

<range> ::= [ continous_values ]

<continous_values> ::= <integer>..<integer>

<discrete_values> ::= <a_discrete_value>
| <discrete_values>, <a_discrete_value>

<a_discrete_value> ::= <integer> | <string>

<pred_parts> ::= | <pred_parts> <a_predicate_part>

<a_predicate_part> ::= PREDICATE <identifier> <predicate_values>

<predicate_values> ::= | <a_predicate_value>
| <predicate_values> <a_predicate_value>

<a_predicate_value> ::= (<discrete_values>)

<func_parts> ::= | <func_parts> <a_function_part>

<a_function_part> ::= FUNCTION <identifier> <function_values>

<function_values> ::= <a_function_value>
| <function_values> <a_function_value>

<a_function_value> ::= (<func_args>:<func_return_value>)

<func_args> ::= | <discrete_values>

<func_return_value> ::= <integer> | <string>
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<identifier> ::= [a-zA-Z][0-9a-zA-Z_]+

<string> ::= ’[0-9a-zA-Z_]+’

<integer> ::= [0-9]+



Appendix F

Linear Sorting Algorithm for Tables

Input: Set of variables X , Table T representing an X-extended relation, Variable ordering O
Output: The set of rows in TargetTable is the same as the set of rows in T , sorted based on

variable ordering O
W := |X|
H := |S|
SourceTable= T
TargetTable= T
for c←W − 1, 0 do

Min= The minimum value in column c of SourceTable;
Max= The maximum value in column c of SourceTable;
Let Count be an array with Max+ 1 elements.
for r ← 0, H − 1 do

Set v to be the element in row r column c of table SourceTable.
Increase Count[v] by one.

Let Head be an array with Max+ 1 elements.
Head[0] = 0
for i← 0,Max− 1 do

Head[i+ 1] = Head[i] + Count[i]

for r ← 0, H − 1 do
Index = SourceTable[r][c]
TargetTable[Head[Index]] = SourceTable[r]
Increase Head[Index] by one

Swap SourceTable and TargetTable
return TargetTable
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