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Abstract 

Long Term Evolution (LTE) is becoming the mainstream of the fourth generation 

standard for high-speed wireless communications for mobile devices.  Its radio access 

for downlink involves allocation of Physical Resource Blocks (PRB).  In order to achieve 

optimal download performance for different applications to satisfy different QoS 

requirements, the downlink scheduling algorithm in use plays an important role in 

determining which PRBs and how are they allocated to each flow of bits.  Several 

researches have exploited different scheduling strategies for flows; however, both the 

frequency and time domain allocations for PRBs should be taken into account.  In this 

project, we implement and evaluate a QoS-aware downlink packet scheduling algorithm 

for LTE networks known as the Packet Prediction Mechanism (PPM) using the LTE 

Simulator (LTE-Sim).  The PPM consists of three phases.  It first utilizes the PRBs 

effectively in the frequency domain.  It then manages queues and predicts the behaviour 

of future incoming packets based on the current ones in the queue by the concept of 

virtual queuing.  Finally, it incorporates a cut-in process to rearrange the transmission 

order and discard overdue packets based on the predicted information from the previous 

phase.  The simulation results demonstrate the effectiveness of the PPM scheme in 

achieving better downlink transmission performance in terms of Throughput, Delay, 

Fairness Index, Packet Loss Ratio (PLR), and Spectral Efficiency than other downlink 

schedulers such as Priority First (PF), Modified Largest Weighted Delay First (MLWDF), 

and Exponential Proportional Fair (EXPPF). 

Keywords:  Downlink, LTE, LTE-Sim, PPM, QoS, Scheduling 
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Chapter 1.  
 
Introduction 

1.1. Overview of LTE 

Long Term Evolution (LTE) is the latest mainstream technology of the fourth 

generation (4G) standard for high-speed wireless communications for mobile devices 

and data terminals.  It is an evolution of the existing 2G mobile network technologies 

such as Global System for Mobile Communications (GSM) and Enhanced Data rates for 

GSM Evolution (EDGE), and 3G cellular systems such as Universal Mobile 

Telecommunications System (UMTS) and High Speed Packet Access (HSPA).  LTE 

increases the capacity and speed of wireless data networks using a different radio 

interface based on newly developed digital signal processing techniques and 

modulations along with improved and simplified core network infrastructure.  The 

infrastructure is simpler because the number of the inter-connected nodes involved in 

LTE is less than that of the 2G and 3G architectures. 

1.1.1. SAE Architecture 

The diagram in Figure 1 illustrates a typical System Architecture Evolution (SAE) 

architecture of the LTE wireless communication standard.  The main component in the 

SAE architecture is the Evolved Packet Core (EPC), which comprises the Serving 

Gateway (S-GW), Packet Data Network Gateway (PDN GW), and Mobility Management 

Entity (MME) sub-components to be described in later paragraphs. 
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Figure 1: A Typical SAE Architecture of LTE 

Two key user-side nodes are the base station, known as the evolved Node B 

(eNB), and the S-GW.  eNBs are connected to the core network over a new air interface 

called Evolved UMTS Terrestrial Radio Access (E-UTRAN).  The S-GW, acting as a 

local mobility anchor when terminals move across eNBs, is the termination point of the 

packet data interface towards E-UTRAN [2].  Packets are routed through the S-GW for 

intra E-UTRAN mobility and mobility with the 2G and 3G technologies. 

Next, the User Equipment (UE) is an end-user device such as a mobile phone 

and a laptop computer with a LTE network adapter, which directly accesses the LTE 

network via the eNB.  The PDN GW that performs policy enforcement, packet filtering, 

charging support, lawful interception and packet screening, provides connectivity from 

the UE to external packet data networks by being the UE’s point of exit and entry of 

traffic [2]. 

The MME is in charge of all the control plane and the capacity signalling 

functions related to subscriber and session management, including security procedures, 

terminal-to-network session handling, and idle terminal location management [2].  The 
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MME authenticates users by interacting with the Home Subscriber Server (HSS) that 

connects to the packet core network over the IP Multimedia Subsystem (IMS). 

The HSS is a central database containing user-related and subscription-related 

information, with functionalities like mobility management, call and session 

establishment support, user authentication and access authorization.  The IMS is an 

architectural framework for delivering multimedia services over Internet Protocol (IP) 

interfaces.  A class-based Quality of Services (QoS) concept is incorporated by LTE, 

allowing service providers to effectively deploy different packet media services [1]. 

1.2. Downlink Resource Allocation 

1.2.1. EPS and Radio Bearers 

In LTE, QoS differentiation is provided by an Evolved Packet System (EPS) 

bearer, which is a virtual connection in the connection-oriented transmission network 

from the UE to the PDN GW.  Before any traffic can be sent between the two endpoints, 

the EPS bearer must establish a logical channel to provide a data link layer or layer-2 

(L2) transport service with specific QoS attributes such as traffic class, bit rate, delivery 

order, reliability, delay characteristics, priority, etc [3].  The EPS bearer then maps a flow, 

also known as a bit-stream, into this logical channel.  Radio access of the LTE service 

uses Orthogonal Frequency Division Multiplexing (OFDM) for the downlink, which is the 

path between the eNB and the UE.  LTE supports both Frequency Division Duplex (FDD) 

and Time Division Duplex (TDD) multiple access techniques.  The downlink portion of 

the logical channel is the radio bearer associated with the EPS bearer.  A radio bearer 

describes the L2 processes that “include such things as prioritization, sequencing, error 

correction etc. and impact the QoS that is provided for that bit-stream” [3].  The use of 

the radio bearer allows differentiation of flows with dissimilar QoS requirements to be 

handled by assigning separate radio bearers to flows with different QoS characteristics 

[3].  For example, if there are two flows, flow A needs low latency but can tolerate bigger 

packet losses, whereas flow B does not attach importance to low latency but has a much 

smaller packet tolerance, they must be achieved by two radio bearers, each of which is 

configured with the relevant latency and packet loss requirements [3]. 
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1.2.2. Resource Management 

The eNB distributes radio resources among downlink flows.  Flows are allocated 

into Physical Resource Blocks (PRBs), which consist of 7 OFDM symbols and 12 sub-

carriers in the time-frequency grid as shown in Figure 2.  In the frequency domain, the 

spacing between the sub-carriers is 15 kHz; thus, one PRB spans a total of 180 kHz.  In 

the time domain, one slot is 0.5 ms.  There are 84 resource elements (REs) in one PRB.  

The more PRBs a flow is allocated, the higher the modulation bits will be used in the 

REs, the higher the code rate. 

 

Figure 2: Downlink Physical Resource Block 

During the resource allocation process in LTE, three different modulation 

schemes are provided for a RE to use at run-time by considering the Channel Quality 

Indication (CQI) feedback that a UE currently experiences and reports to the eNB.  One 

RE can carry either the Quadrature Phase Shift Keying (QPSK), the 16-bit Quadrature 

Amplitude Modulation (16QAM), or the 64-bit QAM (64QAM) modulated bits.  Based on 

the channel condition of each scheduled flow, the eNB selects the most suitable 

Modulation Code Scheme (MCS).  The CQI reporting mechanism is important since it 

aims to reduce the packet losses due to channel errors and to improve the transmission 

efficiency.  Table 1 summaries the relationship between the CQI index, which is a 4-bit 
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value ranged from 00002 (010) to 11112 (1510), and the corresponding modulation and 

maximum number of bits that a RE can transmit in the LTE standard. 

CQI Index Modulation 
Code Rate 
(x 1024) 

Maximum 
Number of Bits 

Efficiency 

0 N/A N/A N/A N/A 

1 QPSK 78 2 0.1523 

2 QPSK 120 2 0.2344 

3 QPSK 193 2 0.3770 

4 QPSK 308 2 0.6016 

5 QPSK 449 2 0.8770 

6 QPSK 602 2 1.1758 

7 16QAM 378 4 1.4766 

8 16QAM 490 4 1.9141 

9 16QAM 616 4 2.4063 

10 64QAM 466 6 2.7305 

11 64QAM 567 6 3.3223 

12 64QAM 666 6 3.9023 

13 64QAM 772 6 4.5234 

14 64QAM 873 6 5.1152 

15 64QAM 948 6 5.5547 

Table 1: Channel Quality Indication Index versus Modulation 

1.3. Downlink Scheduling 

LTE supports scalable channel bandwidths 1.4, 3, 5, 10, 15, and 20 MHz, which 

represent 6, 15, 25, 50, 75, and 100 PRBs available for allocation, respectively.  As can 

be deduced from Table 1, each of the 84 REs can transmit at most 6 bits within a 0.5 ms 

symbol time; therefore, each PRB has a transmission bandwidth of 6 x 84 / 0.5 = 1008 

kbps.  Which PRBs and how are they allocated to each flow at a given point of time 

depends on the downlink scheduling algorithm in use.  The objective is to achieve 

optimal download transmission performance for different applications, such as video and 

voice, in order to satisfy different QoS requirements.  Reaching an optimal trade-off 

between utilization and fairness simultaneously is very challenging, especially in the 

presence of real-time multimedia applications that are characterized by stringent 
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constraints on packet latency and jitter [5].  Therefore, downlink scheduling for resource 

allocation has been a popular research area.  Many scheduling schemes have been 

studied in recent years, as more and more cellular operators worldwide have started to 

commercially launch their LTE networks. 

In this project, we concentrate on the Packet Prediction Mechanism (PPM) 

proposed by Wei-Kuang Lai and Chang-Lung Tang in the paper, “QoS-aware Downlink 

Packet Scheduling for LTE Networks” [4].  It states that, “although many scheduling 

schemes for flows have been proposed before, simply applying those schemes directly 

for LTE networks may not achieve good performance.”  The PPM is suitable for real-time 

application services; it formulates both the frequency-domain and time-domain 

allocations for PRBs into three phases.  Phase I is in the frequency domain, which 

utilizes the PRBs effectively by considering the CQI feedback.  Phase II is in the time 

domain, where PPM first manages queues for different applications and then predicts 

the packet delays.  Finally, phase III involves the use of a cut-in process that rearranges 

the transmission order and discards those packets that are unable to meet their delay 

requirements based on the calculated results from phase II.  Details of the PPM will be 

described in later sections. 
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Chapter 2. Use of LTE-Sim for Implementation 

To evaluate the effectiveness of the PPM proposed by [4], we implement this 

downlink packet scheduling algorithm in LTE-Sim, which is an open-source framework 

for simulating LTE networks developed by Giuseppe Piro, Luigi Alfredo Grieco, Gennaro 

Boggia, Francesco Capozzi, and Pietro Camarda.  LTE-Sim supports several aspects of 

LTE networks from the application layer down to the physical layer, such as single-cell 

and multi-cell environments, QoS management, multi-users environment, user mobility, 

CQI feedback, handover procedures, and frequency reuse techniques [5].  Fundamental 

network nodes like UE, eNB, MME and S-GW are modeled in LTE-Sim, with the 

supports of the trace-based, Voice over IP (VoIP), Constant Bit Rate (CBR), and infinite-

buffer traffic generators at the application layer and the management of data radio 

bearers [5].  Moreover, LTE-Sim comes with the following downlink packet schedulers by 

default: 

� Proportional Fair (PF) 

� Modified Largest Weighted Delay First (MLWDF) 

� Exponential Proportional Fair (EXPPF) 

For the purpose of this project, we compare the simulation results of sending a 

real-time video stream from the eNB to several UEs using the newly added PPM 

algorithm with the ones produced by the built-in PF, MLWDF, and EXPPF packet 

schedulers in LTE-Sim.  The trace-based traffic generator that sends video application 

packets based on a video trace file is used for the simulations with the four downlink 

scheduling schemes.  In addition, the implementation of the PPM requires the 

understanding of the Radio Bearer, QoS, Media Access Control (MAC) Queue, and 

Packet components in LTE-Sim. 
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2.1. LTE-Sim’s Packet Flow 

In LTE-Sim, the RadioBearer class models the radio bearer and activates one 

when a downlink flow from the FlowsToSchedule list starts from the eNB to the UE.  

For each RadioBearer instance, the QoSParameters class defines the QoS 

requirements for the flow.  The trace-based traffic generator at the application layer 

transmits packets (modeled by the Packet class) based on a realistic video trace file, 

which will be transported by a radio bearer.  When a video packet is delivered from the 

trace-based application on the eNB, the packet first goes through the user-plane 

protocol stack in order to add the User Datagram Protocol (UDP) and (IP) headers, and 

then gets associated to a particular radio bearer and enqueued at the MAC layer.  The 

resultant IP datagrams are mapped to radio bearers by an IP-based packet classifier.  

Each radio bearer maintains a First In, First Out (FIFO) queue, modeled by the 

MacQueue class.  Figure 3 depicts the relationship of these entities.  Eventually, the 

packet can be sent to the network through the physical layer of the eNB on the logical 

channel.  The UE can then receive the packet from the channel and deliver it to the 

application layer through the user-plane protocol stack on the UE. 

 

Figure 3: Relationship between Flows, Radio Bearer, QoS, MAC Queue in LTE-Sim 

FlowsToSchedule (Lists of Flow) 
PacketScheduler::GetFlowsToSchedule() 

FlowToSchedule (i-th Flow) 

QoSParameters 
RadioBearerInstance::GetQoSParameters() 

MacQueue 
RadioBearer::GetMacQueue() 

RadioBearer 
PacketScheduler::FlowToSchedule::GetBearer() 

1..n 

1 

1 1 
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2.2. LTE-Sim’s Default Downlink Schedulers 

The way that LTE-Sim’s downlink schedulers work is that they select all flows 

that can be scheduled first, and then assign each PRB to the flow with the highest metric.  

“A flow can be scheduled if an only if it has data packets to transmit at the MAC layer 

and the receiver UE is not in the idle state.  Every TTI, the scheduler computes a given 

metric for each flow which can be scheduled” [5].  A Transmission Time Interval (TTI) is 

the duration required for the transmission of data block from higher layers into frames on 

the radio link.  For the sake of combating errors due to fading and interference, data is 

divided at the transmitter into blocks and the bits within a block are encoded. 

Let jim ,  or the 2-demonsional array, metrics[j][i], in the LTE-Sim code, be the 

metric assigned to the i-th flow for the j-th PRB, the scheduling procedures are as 

follows [5]: 

1. The eNB creates a list of flows that have packets to transmit 

(FlowsToSchedule).  The MAC queue length and CQI feedbacks are stored 

for each flow in this list. 

2. According to the downlink scheduler in use, the chosen metric is computed for 

each flow in the FlowsToSchedule list by calling the function, <Class name 

of the specific downlink scheduler in use>::ComputeSchedulingMetric(). 

3. The eNB assigns each PRB to the flow that has the highest metric.  As soon 

as a flow sends all the enqueued packets, it is deleted from the 

FlowsToSchedule list. 

4. For each scheduled flow, the eNB computes the size of the quota of data that 

will be transmitted at the MAC layer during the current TTI.  In the end, the 

eNB invokes dequeueing of packets at the MAC layer for all scheduled flows. 

The following sub-sections describe how the built-in LTE-Sim downlink 

schedulers PF, MLWDF, and EXPPF compute the metric.  To calculate for the metric, 

these schedulers all depend on the average transmission data rate of the i-th flow, iR , 

or the value returned by the RadioBearer::GetAverageTransmissionRate() function 
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call.  This value is updated every TTI based on the following weighted moving average 

formula: 

)(2.0)1(8.0)( kRkRkR iii +−= , 

where )(kRi  is the data rate achieved by the i-th flow during the k-th TTI and )1( −kRi  

is the data rate in the previous TTI.  Next, the schedulers need to know the 

instantaneous available data rate of the receiver UE for the j-th PRB, jir , , or the value 

returned by PacketScheduler::FlowToSchedule::GetSpectralEfficiency() multiplied 

by 180 kHz, which is the bandwidth of a PRB in the frequency domain.  The spectral 

efficiency here is the information rate in bits/seconds that can be transmitted over the 

given bandwidth; that is, 180000 Hz in the LTE communication system.  It measures 

how efficient a limited frequency spectrum is utilized, by considering the CQI feedback 

that the i-th flow hosted by the UE has sent for the j-th PRB. 

2.2.1. Priority First Downlink Scheduler 

The PF scheduler is defined in the DL_PF_PacketScheduler class in LTE-Sim.  

Its goal is “to maximize the total network throughput and to guarantee fairness among 

flows,” [5] making it a good choice for non-real-time traffic [4].  The scheduler assigns 

radio resources taking into account of both the experienced channel quality and the past 

user throughput [6].  The metric is defined as: 

i

ji

ji
R

r
m

,

, = , 

or, 

)(

180000),(

iatensmissionRaverageTra

jificiencyspectralEf ×
, 

in the function DL_PF_PacketScheduler::ComputeSchedulingMetric(). 
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2.2.2. Modified Largest Weighted Delay First Downlink Scheduler 

The MLWDF scheduler is defined in the DL_MLWDF_PacketScheduler class in 

LTE-Sim.  It is the channel-aware extension of the LWDF policy, which aims at avoiding 

deadline expiration for real-time operating system and wired networks [7].  MLWDF 

provides bounded packet delivering delay and prioritizes real-time flows with the highest 

delay for their head of line (HOL) packets (the first packet to be transmitted in the queue) 

and the best channel condition by the following metric [5]: 

i

ji

iHOL

i

i

ji
R

r
Dm

,

,,

log

τ
δ

−= , 

or, 

)(

180000),(
)(

)(max

))(Prlog(

iatensmissionRaverageTra

jificiencyspectralEf
ielayHOLPacketD

iDelay

iobabilitydrop ×
−  

in the function DL_MLWDF_PacketScheduler::ComputeSchedulingMetric(). iδ  is the 

maximum probability that the HOL packet delay, iHOLD , , exceeds the delay threshold, iτ ,  

for the i-th real-time flow.  In the LTE-Sim code, the values of these three parameters 

can be obtained by QoSParameters::GetDropProbability(), 

RadioBearer::GetHeadOfLinePacketDelay(), and QoSParameters::GetMaxDelay(), 

respectively.  To avoid bandwidth wasting, packets belonging to a real-time flow are 

discarded from the MAC queue if they are not transmitted before the expiration of their 

deadline [5].  For non-real-time flows, the metric reduces to that of the PF scheduler. 

2.2.3. Exponential Proportional Fair Downlink Scheduler 

The EXPPF scheduler is defined in the DL_EXP_PacketScheduler class in 

LTE-Sim.  It is designed to favour real-time traffic flows over non-real-time ones.  For 

real-time flows, the considered metric is computed by: 
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i
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


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, 

where iδ  is the maximum probability that the HOL packet delay, iHOLD , , exceeds the 

delay threshold, iτ , for the i-th real-time flow, and: 

∑
=

−=
rtN

i

iHOL

i

i

rt

D
N 1

,

log1

τ
δ

χ  

with rtN  denoting the number of active downlink real-time flows.  Similar to the MLWDF 

case, the metric is reduced to that of the PF scheduler for non-real-time flows, and real-

time packets are erased from the MAC queue if they are overdue.  In LTE-Sim, the 

metric is jointly computed in the functions DL_EXP_PacketScheduler::ComputeAW() 

and DL_EXP_PacketScheduler::ComputeSchedulingMetric() as follows: 

)(

180000),(
)(

)(max

))(Prlog(
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iatensmissionRaverageTra
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∑
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−
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where the values of )(Pr iobabilitydrop , )(ielayHOLPacketD , and )(max iDelay  for the 

i-th flow can be obtained by calling the functions, 

QoSParameters::GetDropProbability(), RadioBearer::GetHeadOfLinePacketDelay(), 

and QoSParameters::GetMaxDelay(), respectively. 
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2.3. PPM Downlink Scheduler in LTE-Sim 

The PPM downlink scheduling algorithm proposed in [4] focuses on real-time 

applications and encompasses the following three phases as illustrated in Figure 4: 

I. Initial scheduling for PRBs 

II. Queue management and prediction of delays for packets 

III. Cut-in process 

 

Figure 4: Three Phases of the PPM Downlink Scheduling Algorithm [4] 

2.3.1. PPM Parameters 

Please note that the term “user” is used throughout the PPM paper; this is really 

the “flow” in LTE-Sim.  Therefore, for the list of parameters to be introduced below, we 

treat each instance of “user” as “flow” when implementing the PPM algorithm in LTE-Sim.  

For the convenience of cross-referencing with the variable names that we will use in the 

LTE-Sim code, the actual variable names are provided in the following table.  Their 

descriptions are directly taken from [4]. 

Parameter Variable Name to be 

used in LTE-Sim 

Description 

yxCQI ,  CQI_usr_x_PRB_y CQI value if PRB y is allocated to user x 

yxM ,  M_usr_x_PRB_y Maximum CQI_usr_x_PRB_y for PRB y 
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xEU  E_Q_k_usr_x Average throughput for packets of user x in queue 

k, which can be obtained by calling 

RadioBearer::GetAverageTransmissionRate() 

IT  T_I 1 TTI = 10 ms 

ikDB ,  Db_Q_k_pkt_i Delay bound for packet i in queue k, which can be 

obtained by calling 

QoSParameters::GetMaxDelay() 

kn  num_pkts_Q_k Number of packets in queue k, which can be 

obtained by calling 

MacQueue::GetNbDataPackets() 

ikt ,  ta_Q_k_pkt_i Arrival time for the i-th packet in queue k; LTE-Sim 

does not support it, we add the new method, 

Packet::SetTimeArrival(), for setting the value to 

the time that the packet is enqueued in 

MacQueue::Enqueue(), and we also add the new 

method, Packet::GetTimeArrival(), for getting the 

packet arrival time. 

iskt ,  ts_Q_k_pkt_i Stamp time for the i-th packet in queue k, which 

can be obtained by calling 

Packet::GetTimeStamp() 

pit  tp_pkt_i Propagation delay in physical layer for packet i, 

which can obtained by the packet size in bits 

divided by physical channel bandwidth 

okt  to_Q_k Observation time to see which packets in queue k 

may not arrive at destinations before delay 

budgets; LTE-Sim does not support it, the new 

method,  

GetTimeObservationForMayNotArrivePackets() 

is added in the MacQueue class to the retrieve 

the time when 

MacQueue::CheckForDropPackets() is called to 

delete the packets from the queue 



 

15 

ikR ,  R_Q_k_pkt_i Interval that the i-th packet in queue k will be 

scheduled to transmit at; that is, 










×
+

=
Ix

ik
TEU

i
R

1
,  

kl  l_Q_k First identified packet number in queue k whose 

scheduled transmission time may be late and in 

consequence the packet does not arrive at the 

destination in time 

kh  h_Q_k Last identified packet number in queue k (if it 

exists) whose scheduled transmission time may 

be late and in consequence the packet does not 

arrive at the destination in time 

kL  L_Q_k Estimated loss rate for queue k 

kN  N_Q_k Number of continuously successful transmission 

packets in queue k before the current observation 

time and after the last dropped packet; LTE-Sim 

does not support it, we add the new method, 

GetNbOfTxPacketsBeforeTimeObservation(), in 

the MacQueue class for getting the number of the 

transmitted packets when 

MacQueue::CheckForDropPackets() is called to 

delete the packets from the queue 

kT  T_Q_k Threshold for the lost rate of packets in queue k, 

set to 0.5 s for video applications 

kT∆  delta_Ta_Q_k Average inter-arrival time for packets in queue k 

skT∆  delta_Ts_Q_k Average inter-stamp time for packets in queue k 

kel  el_VQ_k First estimated packet number in the virtual queue 

of queue k whose scheduled transmission time 

may be late and in consequence the packet does 

not arrive at the destination in time 

keh  eh_VQ_k Last estimated packet number in the virtual queue 
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of queue k (if it exists) whose scheduled 

transmission time may be late and cause the 

packet not to arrive at the destination in time 

nkER ,  ER_VQ_k_pkt_n Estimated interval that the n-th packet in the 

virtual queue of queue k will be scheduled to 

transmit at 

nket ,  eta_VQ_k_pkt_n Estimated arrival time for the n-th packet in the 

virtual queue of queue k 

nsket ,  ets_VQ_k_pkt_n Estimated stamp time for the n-th packet in the 

virtual queue of queue k 

nn
eq  eq_n_VQ_k Estimated number of new arrival packets in to the 

virtual queue of queue k during the time interval 

that all kn  packets currently in queue k are 

transmitted 

kn
T  T_num_pkts_Q_k Time needed to transmit all the kn  packets in 

queue k 

keL  eL_Q_k Estimated loss rate for incoming packets in queue 

k and its virtual queue 

yxET ,  ET_usr_x_PRB_y Expected throughput if PRB y is located to user x 

Table 2: Parameters and Their Accessor Methods in LTE-Sim for the PPM 

2.3.2. PPM Class and Methods 

For implementing the PPM algorithm in LTE-Sim, a new downlink packet 

scheduler class called DL_PPM_PacketScheduler is created in the new source and 

header files called: 

� /lte-sim/src/protocolStack/mac/packet-scheduler/dl-ppm-packet-scheduler.cpp 

� /lte-sim/src/protocolStack/mac/packet-scheduler/dl-ppm-packet-scheduler.h 

In addition to the following constructors and methods that inherit from their parent 

class called DownlinkPacketScheduler: 

� DL_PPM_PacketScheduler::~DL_PPM_PacketScheduler() 
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� DL_PPM_PacketScheduler::DL_PPM_PacketScheduler() 

� DL_PPM_PacketScheduler::DoSchedule() 

the following new methods are defined for the implementation of PPM’s three 

phases: 

� Phase I: Initial Scheduling for PRBs 

� DL_PPM_PacketScheduler::AllocUserXWithMaxCqiToPrbY(int PRB_y) 

� Allocates user x having the best CQI among others to PRB y. 

� Phase II: Queue Management and Packet Delay Prediction 

� DL_PPM_PacketScheduler::ManageQueuesAndPredictPktDelays() 

� DL_PPM_PacketScheduler::HandleScenarioA() 

� Manages queues and predicts packet delays when there are packets 

in queues that may not be transmitted in time, and the last packet of 

them is within the queue. 

� DL_PPM_PacketScheduler::HandleScenarioB() 

� Manages queues and predicts packet delays when there are packets 

in queues that may not be transmitted in time, but the last packet of 

them is not within the queue. 

� Phase III: Cut-in Process 

� DL_PPM_PacketScheduler::AllocCutInUserZForPrbY() 

� Allocates a cut-in user z from all candidate users who will make the 

least decrease in throughputs among all others to use PRB y. 

Lastly, the PRB allocation function is modified to handle the aforementioned 

functions for the PPM in each phase: 

� DL_PPM_PacketScheduler::RBsAllocation() 

The next three sub-sections will describe the three phases of the PPM downlink 

scheduling algorithm from [4] in detail and outline the implementation of the PPM.  

However, for the actual realization of the PPM downlink packet scheduler, please refer 

to the source code in the Appendix section. 



 

18 

2.3.3. PPM Phase I – Initial Scheduling for PRBs 

This phase operates in the frequency domain.  In order to achieve good 

throughputs, PRB y is allocated to user x with the best CQI among all other users by the 

following formula: 

( )
yx

x
yx CQIM ,, maxarg= , 

This is implemented in DL_PPM_PacketScheduler::AllocUserXWithMaxCqiToPrbY(). 

For the CQI value of user x in PRB y, it can be obtained by calling 

PacketScheduler::FlowToSchedule::GetCqiFeedbacks().  Additionally, we add a new 

method, PacketScheduler::FlowToSchedule::SetHasBestCqi(), to mark the user that 

has yxM ,  as the one with the best CQI.  We also add the corresponding accessor 

method, PacketScheduler::FlowToSchedule::GetHasBestCqi(), to allow Phase II to 

query whether users have good CQIs. 

2.3.4. PPM Phase II – Queue Management and Packet Delay 
Prediction 

Contrary to the previous phase, Phase II deals with users whose CQI values are 

not as good because they are possibly located at cell edges relative to eNBs.  Their 

packets may not be transmitted to their destinations in time.  If only considering 

throughputs, there will likely be many out-of-date packets that get discarded at 

destinations.  Instead, packet types, delays and timestamps should be considered to 

satisfy the QoS requirements.  Timestamps refer to instants that packets are generated 

at the application layer.  Continuous packets within the same MAC queue may belong to 

the same type and have similar delay bounds and timestamps.  Packet i in queue k for 

user x will not be transmitted in time if: 

( ) piIikikokik tTRttDb +<−− ,,, . 

When there are continuous packets that are not expected to be transmitted in time in the 

queue, there are two possible situations, as illustrated in the figure below.  The queue 
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spaces coloured in blue contain packets that are expected to be transmitted in time.  

Those coloured in red are out-of-date packets that are overdue.  The white spaces are 

not occupied with any packets. 

 

Figure 5: Scenario A – two situations for continuous out-of-date packets in the queue [4] 

In situation 1, there are continuous out-of-date packets in the queue, but the last 

packet in the queue can be sent out in time.  In situation 2, the difference is that the last 

packet in the queue is part of the continuous out-of-date packets and thus cannot be 

sent out in time.  Both situations can be generalized as Scenario A and are to be 

handled in the function DL_PPM_PacketScheduler::HandleScenarioA() for user x: 

Scenario A: Queue k contains packets that may not be transmitted in time, and 

the last packet of these overdue packets is within the queue. 

The first and last overdue packets in queue k can be identified as follows: 

( )( )
piIikikokik

i
k tTRttDbl +<−−= ,,,minarg , 

( )( )
piIikikokik

i
k tTRttDbh +<−−= ,,,maxarg . 

The estimated packet loss rate is calculated by: 

kk

kk

k
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lh
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+−
=

1
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The QoS requirements for the packets in queue k cannot be met if kL is greater than or 

equal to the pre-defined threshold, kT , then the cut-in process in Phase III will be 

entered.  Otherwise, those overdue packets in queue k will be discarded, as 

having kL smaller than kT  means that the queue can tolerate a larger loss rate.  Instead, 

the channel bandwidth can be allocated to other packets that can be transmitted in time.  

In this case, the cut-in process will not be called.  To support erasing a range of packets 

from kl  to kh  in the queue, we add a new method called MacQueue::DiscardPackets() 

in LTE-Sim. 

Now, based on the two situations mentioned earlier, if the last packet that cannot 

be transmitted in time is not in queue k, then another scenario as shown in Figure 6 

arises, which is to be handled in the function 

DL_PPM_PacketScheduler::HandleScenarioB(): 

Scenario B: Queue k contains packets that may not be transmitted in time, and 

the last packet of these overdue packets is not within the queue. 

 

Figure 6: Scenario B – two situations for continuous out-of-date packets in the queue [4] 

 

1 
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Queue k 
 

Queue k 
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For packets that are not in queue k, a virtual queue will be used to store them.  

The goal is to predict the arrival and stamp times of future incoming packets in physical 

queue k and/or the virtual queue of it based on the inter-arrival and inter-stamp times of 

current packets.  The predictions can determine whether new incoming packets can be 

transmitted in time.  To find the positions of the first and last overdue packets in the 

virtual queue, the average inter-arrival and stamp times for the current packets in queue 

k needs to be calculated first: 

( )
n

tt
tt

n
T

knk
n

i

ikik

k

k
k

k
0,,

1
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where kn  is the number of packets in queue k.  The ( kn -1)-th packet, which is the last 

packet, will be transmitted in the following cycle: 






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
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TEU

n
R

k 1, . 

Thus, the amount of time needed to transmit kn  packets in queue k is: 

Inkn TRT
kk 1, −= . 

This time and the average inter-arrival time calculated earlier allow us to estimate the 

number of new arrival packets into queue k during the 
kn

eq  interval that all current kn  

packets in the queue are transmitted: 


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The estimated arrival and stamp times for packet n in the virtual queue for queue k are 

then: 

( ) knknk Tntet
k

∆++= − 11,, , 

( ) sknsknsk Tntet
k

∆++= − 11,, . 

Please note that the counter ‘n’ is used to denote the packet number in the virtual queue 

to differentiate it from the counter ‘i’ used for the physical queue.  Next, the interval for 

the n-th packet in virtual queue k to be transmitted can be estimated by: 



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nk
TEU

nn
ER

1
, . 

On the other hand, packet n will not be transmitted in time if: 

( ) pnInknkoknk tTERettDb +<−− ,,, . 

In the end, the positions of the first and last packets that may become overdue in the 

virtual queue of queue k can be found by: 

( )( )
pnInknkoknk

n
k tTERettDbel +<−−= ,,,minarg , 

( )( )
pnInknkoknk

n
k tTERettDbeh +<−−= ,,,maxarg . 

The estimated packet loss rate is then calculated by the following formulas: 
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where kth  is a threshold whose value can be set to be larger than the size of queue k, 

enabling us to evaluate if the packet arrival rate is greater than the departure rate, and ε  

is a small number that ensures the cut-in process can be entered to handle burst of 

packet losses in queue k.  For simplicity, we set kth  to be 1 packet larger than the size 

of queue k for user x and ε  to be 0.1.  For the case that keL  cannot be found, it is when 

the packet in the last space of queue k is also the last overdue packet, the formula is the 

same as that of kL , meaning that the out-of-date packets beyond the physical queue 

can be omitted. 

If the calculated keL  is greater than or equal to the threshold, kT , the QoS 

requirements for the packets in physical/virtual queue k cannot be met, the cut-in 

process in Phase III will be invoked.  Otherwise, the overdue packets are discarded by 

calling the newly added method, MacQueue::DiscardPackets(), since the current 

queue is able to accept a larger packet loss rate.  This allows other in-time packets to 

use the channel bandwidth; the cut-in process will not be called in this case. 

Finally, if all packets in queue k can be transmitted in time, the cut-in process in 

Phase III will not be entered.  This scenario is known as: 

Scenario C: All the packets contained in queue k will be transmitted in time. 

Scenario C does not involve any queue management and delay prediction for 

packets; thus, we do not need to define a function in the DL_PPM_PacketScheduler 

class to handle this scenario.  Finally, we wrap up 

DL_PPM_PacketScheduler::HandleScenarioA() and 

DL_PPM_PacketScheduler::HandleScenarioB() from Scenarios A and B by the single 

function, DL_PPM_PacketScheduler::ManageQueuesAndPredictPktDelays(). 
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2.3.5. PPM Phase III – Cut-in Process 

Phase III is implemented in the function AllocCutInUserZForPrbY().  It will try to 

find a cut-in user z from all candidate users based on the following formula: 

( )
yzyxyz ETETC ,,, min −= , 

It iteratively searches for user z has the least decrease in throughputs until all 

cut-in users are processed or all PRBs are allocated.  If all cut-in users have been 

handled, the remaining PRBs are simply allocated to users with maximum throughputs.  

If all PRBs have been allocated, those cut-in users need more PRBs than the PRBs 

available.  If the cut-in process is not called, PRB y is allocated to user x having the 

maximum throughput.  In general, cut-in users with the highest throughputs are selected 

to utilize PRBs. 
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Chapter 3. Simulation 

In order to evaluate the effectiveness of the PPM algorithm implemented, we use 

LTE-Sim and compare the PPM results with the ones produced by the PF, MLWDF, and 

EXPPF downlink scheduling schemes by simulating transmission of a real-time video 

stream from the eNB in the central cell to several UEs within the same cell.  The 

scenario, as illustrated in Figure 7, is known as “single-cell multi-user with interference” 

in LTE-Sim, which is defined in /lte-sim/src/scenarios/single-cell-with-interference.h.  It 

considers the possible influence of nearby eNBs that can generate radio interference by 

creating other eNBs in the surrounding neighbouring cells in addition to the eNB in the 

central cell.  This scenario is more realistic to the nature of a real-life LTE 

communication environment and yet not so complicated.  The aforementioned header 

file has cases to select the PF, MLWDF, and EXPPF downlink schedulers; we need to 

modify it to be able to support the use of the PPM. 

 

Figure 7: LTE-Sim Single Cell with Interference Scenario 
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3.1. Simulation Parameters 

The following table presents the various parameters we use for our simulations.  

They are mostly chosen to be identical to the ones used by the PPM paper in [4] so we 

are able to demonstrate that our implemented PPM downlink scheduler in LTE-Sim 

works consistently.  For other parameters not explicitly mentioned, they are the default 

values in the simulator. 

Number of cells 10 

Minimum number of UEs 10 

Interval between UEs 10 

Maximum number of UEs 40 

Number of eNBs 1 in each cell 

Transmission radius of 

eNBs  

3 km 

Downlink Bandwidth 20 MHz 

Number of PRBs 100 (12 sub-carriers per PRB) 

Modulation and coding 

schemes 

QPSK, 16 QAM, 64, QAM 

Number of video flows 1 real-time H.264 encoded video from 

/lte-sim/src/flows/application/Trace/foreman_H264_128k.dat 

Video bit rate 128 kbps 

Traffic generator Trace-based 

Downlink schedulers PF, MLWDF, EXP, and PPM (simulated in this order) 

Frame structure FDD 

Speed of UEs 30 km/h 

Mobility model of UEs Random direction 

Delay bound 0.5 s 

Simulation duration 180 s 

Flow duration 120 s 

Table 3: LTE-Sim Simulation Parameters 
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3.2. Simulation Results 

We simulate transmitting the 128 kbps real-time video stream from the eNB to all 

the UEs, using LTE-Sim.  Each UE moves at 30 km/h within the central cell, which 

resembles the average speed between the pedestrian and vehicular scenarios.  With the 

mobility model of random direction in use, the UEs will not move out of the simulation 

boundary of the eNB but will randomly choose their direction.  Once they reach the 

boundary, they move towards another random direction.  The next five sub-sections will 

compare the following perspectives between the PF, MLWDF, EXPPF, and PPM 

downlink schedulers: 

� Throughput (in Megabits per second, Mbps) 

� This is the total application-level throughput for all UEs, which is the 

number of useful information bits delivered from the eNB to all UEs within 

the central cell.  It only focuses on the successful receipt of packets at the 

destination.  Those packets that have errors or fail to arrive in time do not 

meet their QoS requirements and thus are not counted. 

� Delay (in seconds, s) 

� This measures the amount of time it takes for the packets travel across 

the LTE network from the eNB to all UEs.  Only those packets that 

successfully reach the destination are counted. 

� Fairness Index 

� This determines whether the UEs are receiving a fair share of resources 

to meet the QoS requirements.  If a downlink scheduler does not consider 

the fairness aspect, UEs are generally allocated with more resources 

when they are close to the eNB, and edge UEs usually suffer from 

resource starvation.  The fairness measure used in LTE-Sim is Jain's 

fairness index, which is calculated by the following equation: 
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where ix  is the application-level throughput for the i-th connection, and n 

is the number of UEs.  Γ  ranges from the worst case, 1/n, to the best 

case, 1, which are achieved when only one and all UEs receive(s) the 

allocation, respectively.  In other words, the index value is k/n when k 

UEs share the resources equally, whereas the other (n - k) UEs receive 

nothing. 

� Packet Loss Ratio (PLR) 

� This measures the ratio of the amount of packet losses at the receiving 

end, which is calculated by:  

sent packets ofNumber 

received packets ofNumber -sent packets ofNumber 
=PLR . 

 A good downlink scheduling scheme should yield a low PLR. 

� Spectral Efficiency 

� This refers to the application-level information rate in bits per second that 

can be transmitted over the specified downlink bandwidth, which is:  

Bandwidth

 UEsallby  achieved Throughput
Efficiency Spectral = . 

The higher the spectral efficiency, the more efficient that a frequency 

spectrum can be utilized by UEs’ channel access. 

3.2.1. Throughput 

The following graph shows the application-level throughputs versus the number 

of UEs.  As can be seen, due to taking account of both throughputs, managing possible 

overdue packets in the queues, and predicting delays for future incoming packets, the 

PPM achieves the best results among all other downlink schedulers, especially when the 

number of UEs increases.  For other scheduling schemes, MLWDF and EXPPF have 

the similar results since they both consider the HOL delays.  PF yields the worst 

throughputs because it allocates flows to use PRBs solely based on weights. 
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Figure 8: Throughput Comparison between PF, MLWDF, EXPPF, and PPM 

Comparing our simulation results for PF, MLWDF, EXPPF, and PPM in Figure 8 

with the results from the PPM paper in [4] shown in the following figure, their throughput 

values for the cases of 30 and 40 UEs (circled in red) are very similar.  Hence, we can 

say that our implemented PPM downlink scheduler functions well as expected. 

 

Figure 9: Average Cell Goodput (UE speed = 30 km/h) from the PPM paper [4] 
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3.2.2. Delay 

Figure 10 shows the delay time versus the number of UEs.  The PPM has the 

lowest delay among all other downlink schedulers.  By the similar reasoning as the 

throughput perspective, MLWDF and EXPPF have the similar second best results since 

they both consider the HOL delays.  PF yields the highest delay because it uses weights 

to determine which of the packet flows to transmit.  Since all MLWDF, EXPPF, and PPM 

discard out-of-date packets as part of their scheduling algorithms, their delays are all 

pretty low. 
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Figure 10: Delay Comparison between PF, MLWDF, EXPPF, and PPM 
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Next, comparing our results for PF, MLWDF, EXPPF, and PPM in Figure 10 with 

the ones from the PPM paper in [4] shown below, their delay values for the cases of 30 

and 40 UEs (circled in red) are similar.  Thus, our implemented PPM in LTE-Sim works 

as expected. 

 

Figure 11: Average delay time (UE speed = 30 km/h) [4] 
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3.2.3. Fairness Index 

The following curves present the fairness index versus the number of UEs.  The 

PPM has the highest values among all other downlink schedulers, meaning that this 

algorithm provides a better level of fairness than other schemes.  The results for 

MLWDF and EXPPF are again similar, and PF has the worst performance.  The trend 

shows that the fairness index value starts to decline when the number of UEs increases.  

This phenomenon is expected since more UEs are competing for the limited resources. 

Fairness Index

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

10 20 30 40

Number of UEs

F
a
ir
n
e
s
s
 I
n
d
e
x

PF

MLWDF

EXPPF

PPM

 

Figure 12: Fairness Index Comparison between PF, MLWDF, EXPPF, and PPM 
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3.2.4. Packet Loss Ratio 

The following figure shows the PLR experienced by the video flows.  The PLR 

increases with the number of UEs because the number of concurrent real-time flows will 

be larger, implying that the tendency for the downlink scheduler to discard overdue 

packets will be higher.  Nevertheless, the PPM still gives the lowest PLR among all other 

schemes.  MLWDF and EXPPF have the similar second best results again, and PF has 

the worst PLR.  The reason is that PPM, “MLWDF, and EXPPF initiate their prevention 

mechanisms when the number of users increases and drop packets which cannot reach 

their destinations in time” [4], where as PF never drops any packets.  Hence, PPM’s 

prediction of the behaviour of future incoming packets based on current packets in the 

queue is helpful. 
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Figure 13: Packet Loss Ratio Comparison between PF, MLWDF, EXPPF, and PPM 
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3.2.5. Spectral Efficiency 

Finally, Figure 14 shows the spectral efficiency curves versus the number of UEs.  

Again, the PPM has the highest values among all other downlink schedulers even when 

the number of UEs increases.  The second best one is PF; it performs better than that of 

MLWDF and EXPPF this time.  The reason is that “the QoS-aware schedulers like 

MLWDF and EXPPF still try to guarantee QoS constraints to a high number of flows, 

with a consequent negative impact on the system efficiency” [5]. 
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Figure 14: Spectral Efficiency Comparison between PF, MLWDF, EXPPF, and PPM 
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Chapter 4. Conclusion 

In this project, we have successfully implemented the Packet Prediction 

Mechanism (PPM) downlink scheduler in LTE-Sim, and evaluated its performance 

through various simulations.  This QoS-aware scheduling algorithm for real-time services 

in LTE networks consists of three phases.  Phase I operates in the frequency domain, 

allowing a good application-level throughput to be achieved by selecting flows that have 

best Channel Quality Indication (CQI) indices.  Phase II in the time domain predicts 

packet delays and loss rates for future incoming packets based on the behaviour of 

current packets in the physical queue with the use of a virtual queue when necessary.  

Using the predicted results from the previous phase, Phase III then employs a cut-in 

process for rearranging the transmission order and discarding packets that cannot meet 

their delay requirements.  Since the PPM scheduling scheme consider both throughputs 

in the frequency domain and delay times in the time domain, the LTE-Sim simulation 

results have demonstrated that the PPM out-performs the Priority First (PF), Modified 

Largest Weighted Delay First (MLWDF), and Exponential PF (EXPPF) downlink 

schedulers in terms of Throughput, Delay, Fairness Index, Packet Loss Ratio (PLR), and 

Spectral Efficiency. 
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Appendix A.  
 
LTE-Sim Source Code 

PPM Downlink Scheduling Algorithm Implemented 

dl-ppm-packet-scheduler.cpp 

 /* 
 *----------------------------------------------------------------------------- 
 * 
 * dl-ppm-packet-scheduler.cpp 
 * 
 * The LTE-Sim downlink packet scheduler that implements the Packet Prediction 
 * Mechanism (PPM) downlink scheduling algorithm proposed in this paper: 
 * 
 * "QoS-aware Downlink Packet Scheduling for LTE Networks," 
 * Computer Networks: The International Journal of Computer and 
 * Telecommunications Networking archive, Volume 57 Issue 7, May, 2013, 
 * Pages 1689-1698 
 * 
 * Howard Chang 
 * Simon Fraser University 
 * 20007-2192 
 * 
 *----------------------------------------------------------------------------- 
 */ 
 
 
#include "dl-ppm-packet-scheduler.h" 
#include "../mac-entity.h" 
#include "../../packet/Packet.h" 
#include "../../packet/packet-burst.h" 
#include "../../../core/spectrum/bandwidth-manager.h" 
#include "../../../device/ENodeB.h" 
#include "../../../device/NetworkNode.h" 
#include "../../../flows/MacQueue.h" 
#include "../../../flows/QoS/QoSForPPM.h" 
#include "../../../flows/application/Application.h" 
#include "../../../flows/radio-bearer.h" 
#include "../../../phy/lte-phy.h" 
#include "../../../protocolStack/mac/AMCModule.h" 
#include "../../../protocolStack/rrc/rrc-entity.h" 
#include "../../../utility/eesm-effective-sinr.h" 
 
 
//#define SCHEDULER_DEBUG_PPM 
#define SCHEDULER_CHECKPOINT() \ 
    do { \ 
        if (m_showCheckpoint) { \ 
            std::cout << "CHECKPOINT - " << \ 
                __FUNCTION__ << \ 
                " (" << __LINE__ << ")" << \ 
                std::endl; \ 
        } \ 
    } while (0); 
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/* Transmission Time Interval (TTI) */ 
#define TTI     (0.001)   /* 1ms */ 
#define T_I     (1 * TTI) 
 
/* Pre-defined threshold for the lost rate of packets in queue k */ 
#define T_Q_k   (0.5)       /* 0.5s for video application */ 
 
 
DL_PPM_PacketScheduler::DL_PPM_PacketScheduler () 
{ 
    m_showCheckpoint = false; 
    SetMacEntity(0); 
    CreateFlowsToSchedule(); 
} 
 
 
DL_PPM_PacketScheduler::~DL_PPM_PacketScheduler () 
{ 
    Destroy(); 
} 
 
 
void 
DL_PPM_PacketScheduler::DoSchedule () 
{ 
#ifdef SCHEDULER_DEBUG 
    std::cout << 
        "Start PPM DL packet scheduler for node " << 
        GetMacEntity()->GetDevice()->GetIDNetworkNode() << 
        std::endl; 
#endif 
 
    UpdateAverageTransmissionRate(); 
 
    /* 
     * Check and drop packets at the MAC layer (i.e. those packets whose delay 
     * exceed the maximum allowable value) 
     */ 
    CheckForDLDropPackets(); 
 
    /* Select all flows that can be scheduled */ 
    SelectFlowsToSchedule(); 
 
    ComputeAverageOfHOLDelays(); 
 
    if (GetFlowsToSchedule()->size() == 0) { 
        /* Do nothing */ 
    } else { 
        RBsAllocation(); 
    } 
 
    StopSchedule(); 
} 
 
 
void 
DL_PPM_PacketScheduler::RBsAllocation () 
{ 
#ifdef SCHEDULER_DEBUG_PPM 
    std::cout << " ---- RBs Allocation (PPM): " << std::endl; 
#endif 
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    /* 
     * Get the list of downlink flows that have packets to transmit and can be 
     * scheduled in the current sub-frame. These flows were created by the eNB. 
     * The MAC queue length and CQI feedbacks are stored for each flow. 
     */ 
    FlowsToSchedule *flows = GetFlowsToSchedule(); 
    int nbOfRBs = GetMacEntity()->GetDevice()->GetPhy()->GetBandwidthManager()-
>GetDlSubChannels().size(); 
 
    /* RBs allocation */ 
    for (int PRB_y = 0; PRB_y < nbOfRBs; PRB_y++) { 
        AllocUserXWithMaxCqiToPrbY(PRB_y); 
    } 
    for (int PRB_y = 0; PRB_y < nbOfRBs; PRB_y++) { 
        ManageQueuesAndPredictPktDelays(PRB_y); 
    } 
 
    /* Finalize the allocation */ 
    AMCModule *amc = GetMacEntity()->GetAmcModule(); 
    PdcchMapIdealControlMessage *pdcchMsg = new PdcchMapIdealControlMessage(); 
 
    for (FlowsToSchedule::iterator it = flows->begin(); it != flows->end(); 
it++) { 
        FlowToSchedule *flow = (*it); 
        if (flow->GetListOfAllocatedRBs()->size () > 0) { 
            /* This flow has been scheduled */ 
            std::vector<double> estimatedSinrValues; 
            for (unsigned int rb = 0; rb < flow->GetListOfAllocatedRBs()-
>size(); rb++) { 
                double sinr = 
                    amc->GetSinrFromCQI( 
                        flow->GetCqiFeedbacks().at(flow-
>GetListOfAllocatedRBs()->at(rb))); 
 
                estimatedSinrValues.push_back(sinr); 
            } 
 
            /* Compute the effective SINR */ 
            double effectiveSinr = GetEesmEffectiveSinr(estimatedSinrValues); 
 
            /* Get the MCS for transmission */ 
            int mcs = amc->GetMCSFromCQI(amc->GetCQIFromSinr(effectiveSinr)); 
 
            /* Define the amount of bytes to transmit */ 
            int transportBlockSize = amc->GetTBSizeFromMCS(mcs); 
            double bitsToTransmit = 
                transportBlockSize * flow->GetListOfAllocatedRBs()->size(); 
            flow->UpdateAllocatedBits(bitsToTransmit); 
 
#ifdef SCHEDULER_DEBUG 
            std::cout << 
                "\t\t --> flow " << 
                flow->GetBearer()->GetApplication()->GetApplicationID() << 
                " has been scheduled: " << 
                "\n\t\t\t nb of RBs " << 
                flow->GetListOfAllocatedRBs()->size() << 
                "\n\t\t\t effectiveSinr " << 
                effectiveSinr << 
                "\n\t\t\t tbs " << 
                transportBlockSize << 
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                "\n\t\t\t bitsToTransmit " << 
                bitsToTransmit << 
                std::endl; 
#endif 
 
            /* Create PDCCH messages */ 
            for (unsigned int rb = 0; rb < flow->GetListOfAllocatedRBs()-
>size(); rb++) { 
                pdcchMsg->AddNewRecord( 
                    PdcchMapIdealControlMessage::DOWNLINK, 
                    flow->GetListOfAllocatedRBs()->at(rb), 
                    flow->GetBearer()->GetDestination(), 
                    mcs); 
            } 
        } 
    } 
 
    if (pdcchMsg->GetMessage()->size() > 0) { 
        GetMacEntity()->GetDevice()->GetPhy()-
>SendIdealControlMessage(pdcchMsg); 
    } 
    delete pdcchMsg; 
} 
 
 
/* 
 ****************************************************************************** 
 * Phase 1: Initial scheduling for PRBs 
 ****************************************************************************** 
 */ 
void 
DL_PPM_PacketScheduler::AllocUserXWithMaxCqiToPrbY (int PRB_y) 
{ 
    FlowsToSchedule *flows = GetFlowsToSchedule(); 
    int num_usrs = flows->size(); 
 
    /* CQI value if PRB y is allocated to user x */ 
    int CQI_usr_x_PRB_y = 0; 
    int max_CQI_usr_x_PRB_y = 0; 
 
    /* Maximum CQI_user_x_PRB_y for PRB y */ 
    int M_usr_x_PRB_y = -1; 
 
    SCHEDULER_CHECKPOINT(); 
 
    for (int usr_x = 0; usr_x < num_usrs; usr_x++) { 
        CQI_usr_x_PRB_y = flows->at(usr_x)->GetCqiFeedbacks().at(PRB_y); 
 
        if (CQI_usr_x_PRB_y > max_CQI_usr_x_PRB_y) { 
            max_CQI_usr_x_PRB_y = CQI_usr_x_PRB_y; 
            M_usr_x_PRB_y = usr_x; 
        } 
    } 
 
#ifdef SCHEDULER_DEBUG_PPM 
    std::cout << 
        "\tPhase 1: PRB_y=" << 
        PRB_y << 
        ", num_usrs=" << 
        num_usrs << 
        ", M_usr_x_PRB_y=" << 
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        M_usr_x_PRB_y << 
        ", max_CQI_usr_x_PRB_y=" << 
        max_CQI_usr_x_PRB_y << 
        ", ApplicationID=" << 
        flows->at(M_usr_x_PRB_y)->GetBearer()->GetApplication()-
>GetApplicationID() << 
        std::endl; 
#endif 
 
    if (M_usr_x_PRB_y >= 0) { 
        /* The y-th RB has been allocated to this user x */ 
        flows->at(M_usr_x_PRB_y)->GetListOfAllocatedRBs()->push_back(PRB_y); 
 
        /* Mark the user as the one with the best CQI */ 
        flows->at(M_usr_x_PRB_y)->SetHasBestCqi(true); 
    } 
 
    SCHEDULER_CHECKPOINT(); 
} 
 
 
/* 
 ****************************************************************************** 
 * Phase 2: Managing queues and prediction 
 ****************************************************************************** 
 */ 
void 
DL_PPM_PacketScheduler::ManageQueuesAndPredictPktDelays (int PRB_y) 
{ 
    FlowsToSchedule *flows = GetFlowsToSchedule(); 
    int num_usrs = flows->size(); 
    double dl_bandwidth = 
        GetMacEntity()->GetDevice()->GetPhy()->GetBandwidthManager()-
>GetDlBandwidth(); 
 
    /* 
     * First identified packet number in queue k whose scheduled transmission 
     * time may be late and in consequence the packet does not arrive at the 
     * destination in time 
     */ 
    int l_Q_k = -1; 
 
    /* 
     * Last identified packet number in queue k (if it exists) whose scheduled 
     * transmission time may be late and in consequence the packet does not 
     * arrive at the destination in time 
     */ 
    int h_Q_k = -1; 
 
    for (int usr_x = 0; usr_x < num_usrs; usr_x++) { 
        FlowToSchedule *flow_usr_x = flows->at(usr_x); 
 
        /* Only for user x whose CQI value is not as good */ 
        if (flow_usr_x->GetHasBestCqi() == false) { 
            HandleScenarioA( 
                usr_x, 
                PRB_y, 
                dl_bandwidth, 
                l_Q_k, 
                h_Q_k); 
            SCHEDULER_CHECKPOINT(); 
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            HandleScenarioB( 
                usr_x, 
                PRB_y, 
                dl_bandwidth, 
                l_Q_k, 
                h_Q_k); 
        } 
    } 
} 
 
 
/* 
 * Scenario A: There are packets in the queue which may not be transmitted in 
 *             time, and the last packet which is not transmitted in time is 
 *             within queue k. 
 */ 
void 
DL_PPM_PacketScheduler::HandleScenarioA ( 
    int     usr_x, 
    int     PRB_y, 
    double  dl_bandwidth, 
    int    &l_Q_k, 
    int    &h_Q_k) 
{ 
    FlowsToSchedule    *flows = GetFlowsToSchedule(); 
    FlowToSchedule     *flow_usr_x = flows->at(usr_x); 
    RadioBearer        *bearer_usr_x = flow_usr_x->GetBearer(); 
    QoSForPPM          *qos_usr_x = (QoSForPPM *)bearer_usr_x-
>GetQoSParameters(); 
    MacQueue           *mac_Q_usr_x = bearer_usr_x->GetMacQueue(); 
    int                 num_usrs = flows->size(); 
 
    /* Number of packets in queue k */ 
    int                 num_pkts_Q_k = mac_Q_usr_x->GetNbDataPackets(); 
 
    SCHEDULER_CHECKPOINT(); 
 
#ifdef SCHEDULER_DEBUG_PPM 
    std::cout << 
        "\tPhase 2: usr_x=" << usr_x << 
        ", PRB_y=" << PRB_y << 
        ", num_pkts_Q_k=" << num_pkts_Q_k; 
#endif 
 
    if ((num_pkts_Q_k == 0) || 
        (mac_Q_usr_x->IsEmpty())) { 
#ifdef SCHEDULER_DEBUG_PPM 
    std::cout << " --> empty (Scenario A)" << std::endl; 
#endif 
        return; 
    } 
 
    l_Q_k = num_pkts_Q_k-1; 
    h_Q_k = 0; 
 
    for (int pkt_i = 0; pkt_i < num_pkts_Q_k; pkt_i++) { 
        if (mac_Q_usr_x->GetPacketQueue()->at(pkt_i).GetPacket() == NULL) { 
            continue; 
        } 
 
        /* Delay bound for packet i in queue k */ 
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        double Db_Q_k_pkt_i = qos_usr_x->GetMaxDelay(); 
        //std::cout << std::endl << "Db_Q_k_pkt_i=" << Db_Q_k_pkt_i << 
std::endl; 
 
        /* 
         * Observation time to calculate which packets in queue k may not 
         * arrive at destinations before delay budgets 
         */ 
        double to_Q_k = mac_Q_usr_x->GetTimeObservationForMayNotArrivePackets(); 
        //std::cout << "to_Q_k=" << to_Q_k << std::endl; 
 
        /* Arrival time for the i-th packet in queue k */ 
        double ta_Q_k_pkt_i = 
            mac_Q_usr_x->GetPacketQueue()->at(pkt_i).GetTimeArrival(); 
        //std::cout << "ta_Q_k_pkt_i=" << ta_Q_k_pkt_i << std::endl; 
 
        /* Propagation delay in physical layer for packet i */ 
        double tp_pkt_i = 
            mac_Q_usr_x->GetPacketQueue()->at(pkt_i).GetSize() * 8 / 
dl_bandwidth / 10e3; 
        //std::cout << "tp_pkt_i=" << tp_pkt_i << std::endl; 
 
        /* Average throughput for packets of user x in queue k */ 
        double E_Q_k_usr_x = bearer_usr_x->GetAverageTransmissionRate(); 
        //std::cout << "E_Q_k_usr_x=" << E_Q_k_usr_x << std::endl; 
 
        /* 
         * Interval that the i-th packet in queue k will be scheduled to 
         * transmit at 
         */ 
        double R_Q_k_pkt_i = ceil((pkt_i + 1) / (E_Q_k_usr_x * T_I)); 
        //std::cout << "R_Q_k_pkt_i=" << R_Q_k_pkt_i << std::endl; 
 
        if ((Db_Q_k_pkt_i - (to_Q_k - ta_Q_k_pkt_i)) < 
                (R_Q_k_pkt_i * T_I + tp_pkt_i)) { 
            /* Packet i will not be transmitted in time */ 
            if (pkt_i < l_Q_k) { 
                /* 
                 * Update the number for the first packet which may 
                 * become overdue in queue k 
                 */ 
                l_Q_k = pkt_i; 
            } 
            if (pkt_i > h_Q_k) { 
                /* 
                 * Update the number for the last packet which may 
                 * become overdue in queue k 
                 */ 
                h_Q_k = pkt_i; 
            } 
            //std::cout << "IN: l_Q_k=" << l_Q_k << ", h_Q_k=" << h_Q_k << 
std::endl; 
        } 
    } 
 
    //std::cout << "OUT: l_Q_k=" << l_Q_k << ", h_Q_k=" << h_Q_k << std::endl; 
 
    if (l_Q_k > h_Q_k) { 
#ifdef SCHEDULER_DEBUG_PPM 
    std::cout << " --> no overdue (Scenario A -> C)" << std::endl; 
#endif 
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        return; 
    } 
 
    /* 
     * Number of continuously successful transmission packets in queue k before 
     * the current observation time and after the last dropped packet 
     */ 
    int N_Q_k = mac_Q_usr_x->GetNbOfTxPacketsBeforeTimeObservation(); 
    //std::cout << "N_Q_k=" << N_Q_k << std::endl; 
 
    /* Estimated loss rate for queue k */ 
    double L_Q_k = (h_Q_k - l_Q_k + 1) / (N_Q_k + h_Q_k); 
    //std::cout << "L_Q_k=" << L_Q_k << std::endl; 
 
#ifdef SCHEDULER_DEBUG_PPM 
    std::cout << 
        ", l_Q_k=" << l_Q_k << 
        ", h_Q_k=" << h_Q_k << 
        ", L_Q_k=" << L_Q_k << 
        ", T_Q_k=" << T_Q_k; 
#endif 
 
    if (l_Q_k == h_Q_k) { 
#ifdef SCHEDULER_DEBUG_PPM 
        std::cout << " --> all in time (Scenario A -> C)" << std::endl; 
#endif 
    } else if (L_Q_k >= T_Q_k) { 
        /* 
         * QoS for packets in queue k cannot be met. 
         * Call the cut-in process. 
         */ 
#ifdef SCHEDULER_DEBUG_PPM 
        std::cout << " --> cut-in (Scenario A)" << std::endl; 
#endif 
        AllocCutInUserZForPrbY(usr_x, PRB_y); 
    } else { 
        /* 
         * Discard the overdue packets in queue k. 
         * Do not call the cut-in process. 
         */ 
#ifdef SCHEDULER_DEBUG_PPM 
        std::cout << " --> discard overdue (Scenario A)" << std::endl; 
#endif 
        mac_Q_usr_x->DiscardPackets(l_Q_k, h_Q_k); 
    } 
 
    SCHEDULER_CHECKPOINT(); 
} 
 
 
/* 
 * Scenario B: There are packets in the queue which may not be transmitted in 
 *             time, and the last packet which is not transmitted in time is 
 *             not within queue k. 
 */ 
void 
DL_PPM_PacketScheduler::HandleScenarioB ( 
    int     usr_x, 
    int     PRB_y, 
    double  dl_bandwidth, 
    int     l_Q_k, 
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    int     h_Q_k) 
{ 
    FlowsToSchedule    *flows = GetFlowsToSchedule(); 
    RadioBearer        *bearer_usr_x = flows->at(usr_x)->GetBearer(); 
    QoSForPPM          *qos_usr_x = (QoSForPPM *)bearer_usr_x-
>GetQoSParameters(); 
    MacQueue           *mac_Q_usr_x = bearer_usr_x->GetMacQueue(); 
    int                 num_pkts_Q_k = mac_Q_usr_x->GetNbDataPackets(); 
 
    /* Average inter-arrival time for packets in queue k */ 
    double              delta_Ta_Q_k = 0; 
    double              total_Ta_Q_k = 0; 
    double              ta_Q_k_pkt_next = 0; 
    double              ta_Q_k_pkt_last = 0; 
 
    /* Average inter-stamp time for packets in queue k */ 
    double              delta_Ts_Q_k = 0; 
    double              total_Ts_Q_k = 0; 
    double              ts_Q_k_pkt_next = 0; 
    double              ts_Q_k_pkt_last = 0; 
    double              E_Q_k_usr_x = bearer_usr_x-
>GetAverageTransmissionRate(); 
 
    SCHEDULER_CHECKPOINT(); 
 
#ifdef SCHEDULER_DEBUG_PPM 
    std::cout << 
        "\tPhase 2: usr_x=" << usr_x << 
        ", PRB_y=" << PRB_y << 
        ", num_pkts_Q_k=" << num_pkts_Q_k; 
#endif 
 
    if ((num_pkts_Q_k == 0) || 
        (mac_Q_usr_x->IsEmpty())) { 
#ifdef SCHEDULER_DEBUG_PPM 
    std::cout << " --> empty (Scenario B)" << std::endl; 
#endif 
        return; 
    } 
 
    if (l_Q_k > h_Q_k) { 
#ifdef SCHEDULER_DEBUG_PPM 
    std::cout << " --> no overdue (Scenario B -> C)" << std::endl; 
#endif 
        return; 
    } 
 
    /* For queue k */ 
    for (int pkt_i = 0; pkt_i < num_pkts_Q_k-1; pkt_i++) { 
        if ((mac_Q_usr_x->GetPacketQueue()->at(pkt_i).GetPacket() == NULL) || 
            (mac_Q_usr_x->GetPacketQueue()->at(pkt_i+1).GetPacket() == NULL)) { 
            continue; 
        } 
 
        /* Calculate the total inter-arrival time for current packets in queue 
k. */ 
        ta_Q_k_pkt_next = 
            mac_Q_usr_x->GetPacketQueue()->at(pkt_i+1).GetTimeArrival(); 
        double ta_Q_k_pkt_i = 
            mac_Q_usr_x->GetPacketQueue()->at(pkt_i).GetTimeArrival(); 
        total_Ta_Q_k += (ta_Q_k_pkt_next - ta_Q_k_pkt_i); 
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        /* Calculate the total inter-stamp time for current packets in queue k. 
*/ 
        ts_Q_k_pkt_next = 
            mac_Q_usr_x->GetPacketQueue()->at(pkt_i+1).GetTimeStamp(); 
        /* Stamp time for the i-th packet in queue k */ 
        double ts_Q_k_pkt_i = 
            mac_Q_usr_x->GetPacketQueue()->at(pkt_i).GetTimeStamp(); 
        total_Ts_Q_k += (ts_Q_k_pkt_next - ts_Q_k_pkt_i); 
 
        /* Get the last arrival and stamp times for current packets in queue k. 
*/ 
        if (pkt_i == num_pkts_Q_k-2) { 
            ta_Q_k_pkt_last = ta_Q_k_pkt_i; 
            ts_Q_k_pkt_last = ts_Q_k_pkt_i; 
        } 
    } 
 
    SCHEDULER_CHECKPOINT(); 
 
    /* 
     * Calculate the average inter-arrival and inter-stamp times for current 
     * packets in queue k. 
     */ 
    delta_Ta_Q_k = total_Ta_Q_k / num_pkts_Q_k; 
    delta_Ts_Q_k = total_Ts_Q_k / num_pkts_Q_k; 
 
    /* Transmit the (num_pkts_Q_k-1)-th (last) packet in the following cycle. 
*/ 
    double R_Q_k_pkt_last = ceil(num_pkts_Q_k / (E_Q_k_usr_x * T_I)); 
 
    /* Calculate the time needed to transmit num_pkts_Q_k packets in queue k. 
*/ 
    double T_num_pkts_Q_k = R_Q_k_pkt_last * T_I; 
 
    /* 
     * Calculate the estimated number of new arrival packets into virtual 
     * queue k during the time interval that all num_pkts_Q_k packets currently 
     * in queue k are transmitted. 
     */ 
    double eq_n_VQ_k = ceil(T_num_pkts_Q_k / delta_Ta_Q_k); 
 
    /*************************************************************************/ 
 
    /* 
     * First estimated packet number in the virtual queue k whose scheduled 
     * transmission time may be late and in consequence the packet does not 
     * arrive at the destination in time 
     */ 
    int el_VQ_k = num_pkts_Q_k-1; 
 
    /* 
     * Last estimated packet number in the virtual queue k (if it exists) whose 
     * scheduled transmission time may be late and cause the packet not to 
     * arrive at the destination in time 
     */ 
    int eh_VQ_k = 0; 
 
    SCHEDULER_CHECKPOINT(); 
 
    for (int pkt_n = 0; pkt_n < num_pkts_Q_k; pkt_n++) { 
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        if (mac_Q_usr_x->GetPacketQueue()->at(pkt_n).GetPacket() == NULL) { 
            continue; 
        } 
 
        /* Estimated arrival time for the n-th packet in virtual queue k */ 
        double eta_VQ_k_pkt_n = ta_Q_k_pkt_last + (pkt_n + 1) * delta_Ta_Q_k; 
 
        /* Estimated stamp time for the n-th packet in virtual queue k */ 
        double ets_VQ_k_pkt_n = ts_Q_k_pkt_last + (pkt_n + 1) * delta_Ts_Q_k; 
 
        /* 
         * Estimated ER_n interval that the n-th packet in virtual queue k will 
         * be scheduled to transmit at 
         */ 
        double ER_VQ_k_pkt_n = ceil((num_pkts_Q_k + pkt_n + 1) / (E_Q_k_usr_x * 
T_I)); 
 
        double Db_Q_k_pkt_n = qos_usr_x->GetMaxDelay(); 
        double to_Q_k = mac_Q_usr_x->GetTimeObservationForMayNotArrivePackets(); 
 
        /* Propagation delay in physical layer for packet n */ 
        double tp_pkt_n = 
            mac_Q_usr_x->GetPacketQueue()->at(pkt_n).GetSize() * 8 / 
dl_bandwidth / 10e3; 
 
        if ((Db_Q_k_pkt_n - (to_Q_k - eta_VQ_k_pkt_n)) < 
                (ER_VQ_k_pkt_n * T_I + tp_pkt_n)) { 
            /* Packet n will not be transmitted in time */ 
            if (pkt_n < el_VQ_k) { 
                /* 
                 * Update the number for the first packet which may become 
                 * overdue in virtual queue k 
                 */ 
                el_VQ_k = pkt_n; 
            } 
            if (pkt_n > eh_VQ_k) { 
                /* 
                 * Update the number for the last packet which may become 
                 * overdue in virtual queue k 
                 */ 
                eh_VQ_k = pkt_n; 
            } 
        } 
    } 
 
    SCHEDULER_CHECKPOINT(); 
 
    /* Calculate the estimated loss rate. */ 
    double  th_Q_k = bearer_usr_x->GetQueueSize() + 1; 
    double  epsilon = 0.1;  /* TODO */ 
    double  eOverdue_Q_k = eh_VQ_k - el_VQ_k; 
    double  overdue_Q_k = h_Q_k - l_Q_k; 
 
    /* 
     * Estimated loss rate for incoming packets in queue k and in its virtual 
     * queue 
     */ 
    int     eL_Q_k = 0; 
    int     N_Q_k = mac_Q_usr_x->GetNbOfTxPacketsBeforeTimeObservation(); 
 
    if ((eOverdue_Q_k >= 0) && (eOverdue_Q_k < th_Q_k)) { 
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        eL_Q_k = 
            ((overdue_Q_k + 1) + (eOverdue_Q_k + 1)) / 
                (N_Q_k + h_Q_k + el_VQ_k); 
    } else if (eOverdue_Q_k >= th_Q_k) { 
        eL_Q_k = T_Q_k + epsilon; 
    } else { 
        eL_Q_k = (overdue_Q_k + 1) / (N_Q_k + h_Q_k); 
    } 
 
#ifdef SCHEDULER_DEBUG_PPM 
    std::cout << 
        ", l_Q_k=" << l_Q_k << 
        ", h_Q_k=" << h_Q_k << 
        ", N_Q_k=" << N_Q_k << 
        ", eL_Q_k=" << eL_Q_k << 
        ", T_Q_k=" << T_Q_k; 
#endif 
 
    if (l_Q_k == h_Q_k) { 
#ifdef SCHEDULER_DEBUG_PPM 
        std::cout << " --> all in time (Scenario B -> C)" << std::endl; 
#endif 
    } else if (eL_Q_k >= T_Q_k) { 
        /* 
         * QoS for packets in queue k cannot be met. 
         * Call the cut-in process. 
         */ 
#ifdef SCHEDULER_DEBUG_PPM 
        std::cout << " --> cut-in (Scenario B)" << std::endl; 
#endif 
        AllocCutInUserZForPrbY(usr_x, PRB_y); 
    } else { 
        /* 
         * Discard the overdue packets in queue k. 
         * Do not call the cut-in process. 
         */ 
#ifdef SCHEDULER_DEBUG_PPM 
        std::cout << " --> discard overdue (Scenario B)" << std::endl; 
#endif 
        mac_Q_usr_x->DiscardPackets(l_Q_k, h_Q_k); 
    } 
 
    SCHEDULER_CHECKPOINT(); 
} 
 
 
/* 
 ****************************************************************************** 
 * Phase 3: Cut-in process 
 ****************************************************************************** 
 */ 
void 
DL_PPM_PacketScheduler::AllocCutInUserZForPrbY (int usr_x, int PRB_y) 
{ 
    FlowsToSchedule    *flows = GetFlowsToSchedule(); 
    int                 num_usrs = flows->size(); 
    FlowToSchedule     *flow_usr_x = flows->at(usr_x); 
    RadioBearer        *bearer_usr_x = flow_usr_x->GetBearer(); 
 
    /* 
     * Expected throughput if PRB y is located to user x, 0 <= x < n_u, where 
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     * n_u is the number of users available, 0 <= y <= n_b, where n_b is the 
     * number of resource blocks available 
     */ 
    double              ET_usr_x_PRB_y = bearer_usr_x-
>GetAverageTransmissionRate(); 
    double              ET_usr_z_PRB_y = 0; 
    double              decrease_ET_usr_z_PRB_y = 0; 
    double              min_decrease_ET_usr_z_PRB_y = 0; 
    int                 C_usr_z_PRB_y = -1; 
    bool                first_time = true; 
 
    for (int usr_z = 0; usr_z < num_usrs; usr_z++) { 
        /* User z must not be the same as user x */ 
        if (usr_z != usr_x) { 
            ET_usr_z_PRB_y = 
                flows->at(usr_z)->GetBearer()->GetAverageTransmissionRate(); 
 
            decrease_ET_usr_z_PRB_y = ET_usr_x_PRB_y - ET_usr_z_PRB_y; 
            if (first_time == true) { 
                min_decrease_ET_usr_z_PRB_y = decrease_ET_usr_z_PRB_y; 
                C_usr_z_PRB_y = usr_z; 
                first_time = false; 
            } 
            if (decrease_ET_usr_z_PRB_y < min_decrease_ET_usr_z_PRB_y) { 
                min_decrease_ET_usr_z_PRB_y = decrease_ET_usr_z_PRB_y; 
                C_usr_z_PRB_y = usr_z; 
            } 
        } 
    } 
 
#ifdef SCHEDULER_DEBUG_PPM 
    std::cout << 
        "\tPhase 3: usr_x=" << usr_x << 
        ", PRB_y=" << PRB_y << 
        ", num_usrs=" << num_usrs << 
        ", C_usr_z_PRB_y=" << C_usr_z_PRB_y << 
        ", min_decrease_ET_usr_z_PRB_y=" << min_decrease_ET_usr_z_PRB_y << 
        ", ApplicationID=" << 
        flows->at(C_usr_z_PRB_y)->GetBearer()->GetApplication()-
>GetApplicationID() << 
        std::endl; 
#endif 
 
    if (C_usr_z_PRB_y >= 0) { 
        /* The y-th RB has been allocated to this user z */ 
        flows->at(C_usr_z_PRB_y)->GetListOfAllocatedRBs()->push_back(PRB_y); 
    } 
 
    SCHEDULER_CHECKPOINT(); 
} 
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dl-ppm-packet-scheduler.h 

/* 
 *----------------------------------------------------------------------------- 
 * 
 * dl-ppm-packet-scheduler.h 
 * 
 * The LTE-Sim downlink packet scheduler that implements the Packet Prediction 
 * Mechanism (PPM) downlink scheduling algorithm proposed in this paper: 
 * 
 * "QoS-aware Downlink Packet Scheduling for LTE Networks," 
 * Computer Networks: The International Journal of Computer and 
 * Telecommunications Networking archive, Volume 57 Issue 7, May, 2013, 
 * Pages 1689-1698 
 * 
 * Howard Chang 
 * howardc@sfu.ca 
 * Simon Fraser University 
 * 20007-2192 
 * 
 *----------------------------------------------------------------------------- 
 */ 
 
 
#ifndef DL_PPM_PACKET_SCHEDULER_H_ 
#define DL_PPM_PACKET_SCHEDULER_H_ 
 
#include "downlink-packet-scheduler.h" 
 
 
class DL_PPM_PacketScheduler : public DownlinkPacketScheduler { 
public: 
    DL_PPM_PacketScheduler(); 
    virtual ~DL_PPM_PacketScheduler(); 
 
    virtual void DoSchedule(void); 
 
    void ComputeAverageOfHOLDelays(void); 
 
    virtual double 
    ComputeSchedulingMetric( 
        RadioBearer    *bearer, 
        double          spectralEfficiency, 
        int             subChannel); 
 
 void RBsAllocation(); 
 
    /* Phase 1 */ 
    void AllocUserXWithMaxCqiToPrbY(int PRB_y); 
 
    /* Phase 2 */ 
    void ManageQueuesAndPredictPktDelays(int PRB_y); 
    void 
    HandleScenarioA( 
        int     usr_x, 
        int     PRB_y, 
        double  dl_bandwidth, 
        int    &l_Q_k, 
        int    &h_Q_k); 
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    void 
    HandleScenarioB( 
        int     usr_x, 
        int     PRB_y, 
        double  dl_bandwidth, 
        int     l_Q_k, 
        int     h_Q_k); 
 
    /* Phase 3 */ 
    void AllocCutInUserZForPrbY(int usr_x, int PRB_y); 
}; 
 
#endif /* DL_PPM_PACKET_SCHEDULER_H_ */ 


