
Implementation and Evaluation of a QoS-aware

Downlink Scheduling Algorithm for LTE Networks

by

Chih-Hao Howard Chang

B.A.Sc. (Hons., Computer Engineering), Simon Fraser University, 2007

Research Project Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Engineering

in the

School of Engineering Science

Faculty of Applied Sciences

 Chih-Hao Howard Chang 2014

SIMON FRASER UNIVERSITY

Spring 2014

ii

Approval

Name: Chih-Hao Howard Chang

Degree: Master of Engineering

Title: Implementation and Evaluation of a QoS-aware
Downlink Scheduling Algorithm for LTE Networks

Examining Committee: Chair: Shahram Payandeh, P.Eng.
Professor

Jie Liang, P.Eng.
Senior Supervisor
Associate Professor

Shawn Stapleton
Supervisor
Professor

Date Defended/Approved: April 30, 2014

iii

Partial Copyright Licence

iv

Abstract

Long Term Evolution (LTE) is becoming the mainstream of the fourth generation

standard for high-speed wireless communications for mobile devices. Its radio access

for downlink involves allocation of Physical Resource Blocks (PRB). In order to achieve

optimal download performance for different applications to satisfy different QoS

requirements, the downlink scheduling algorithm in use plays an important role in

determining which PRBs and how are they allocated to each flow of bits. Several

researches have exploited different scheduling strategies for flows; however, both the

frequency and time domain allocations for PRBs should be taken into account. In this

project, we implement and evaluate a QoS-aware downlink packet scheduling algorithm

for LTE networks known as the Packet Prediction Mechanism (PPM) using the LTE

Simulator (LTE-Sim). The PPM consists of three phases. It first utilizes the PRBs

effectively in the frequency domain. It then manages queues and predicts the behaviour

of future incoming packets based on the current ones in the queue by the concept of

virtual queuing. Finally, it incorporates a cut-in process to rearrange the transmission

order and discard overdue packets based on the predicted information from the previous

phase. The simulation results demonstrate the effectiveness of the PPM scheme in

achieving better downlink transmission performance in terms of Throughput, Delay,

Fairness Index, Packet Loss Ratio (PLR), and Spectral Efficiency than other downlink

schedulers such as Priority First (PF), Modified Largest Weighted Delay First (MLWDF),

and Exponential Proportional Fair (EXPPF).

Keywords: Downlink, LTE, LTE-Sim, PPM, QoS, Scheduling

v

Acknowledgements

I would like to express sincere gratitude towards my senior supervisor, Dr. Jie Liang for

inspiring me to study LTE and taking time and assisting me on this project. Many thanks

to him for his generous guidance throughout the project. I would also like to thank the

Chair, Dr. Shahram Payandeh, and my supervisor, Dr. Shawn Stapleton for serving on

my committee and for their valuable advices. Finally, I would like to thank my mother,

Merry Lee, for her persistent support and encouragement.

vi

Table of Contents

Approval.. ii
Partial Copyright Licence ..iii
Abstract.. iv
Acknowledgements ... v
Table of Contents... vi
List of Tables...viii
List of Figures... ix
List of Acronyms.. x

Chapter 1. Introduction ...1
1.1. Overview of LTE...1

1.1.1. SAE Architecture ...1
1.2. Downlink Resource Allocation ..3

1.2.1. EPS and Radio Bearers...3
1.2.2. Resource Management ...4

1.3. Downlink Scheduling ..5

Chapter 2. Use of LTE-Sim for Implementation ...7
2.1. LTE-Sim’s Packet Flow...8
2.2. LTE-Sim’s Default Downlink Schedulers...9

2.2.1. Priority First Downlink Scheduler ...10
2.2.2. Modified Largest Weighted Delay First Downlink Scheduler11
2.2.3. Exponential Proportional Fair Downlink Scheduler11

2.3. PPM Downlink Scheduler in LTE-Sim...13
2.3.1. PPM Parameters ...13
2.3.2. PPM Class and Methods ...16
2.3.3. PPM Phase I – Initial Scheduling for PRBs..18
2.3.4. PPM Phase II – Queue Management and Packet Delay Prediction18
2.3.5. PPM Phase III – Cut-in Process ..24

Chapter 3. Simulation..25
3.1. Simulation Parameters ...26
3.2. Simulation Results..27

3.2.1. Throughput ..28
3.2.2. Delay ...30
3.2.3. Fairness Index...32
3.2.4. Packet Loss Ratio..33
3.2.5. Spectral Efficiency ...34

vii

Chapter 4. Conclusion...35

References ..36
Appendix A. LTE-Sim Source Code ...37

PPM Downlink Scheduling Algorithm Implemented ..37

viii

List of Tables

Table 1: Channel Quality Indication Index versus Modulation..5

Table 2: Parameters and Their Accessor Methods in LTE-Sim for the PPM..................16

Table 3: LTE-Sim Simulation Parameters..26

ix

List of Figures

Figure 1: A Typical SAE Architecture of LTE ... 2

Figure 2: Downlink Physical Resource Block... 4

Figure 3: Relationship between Flows, Radio Bearer, QoS, MAC Queue in LTE-Sim8

Figure 4: Three Phases of the PPM Downlink Scheduling Algorithm [4] 13

Figure 5: Scenario A – two situations for continuous out-of-date packets in the queue [4]... 19

Figure 6: Scenario B – two situations for continuous out-of-date packets in the queue [4]... 20

Figure 7: LTE-Sim Single Cell with Interference Scenario ... 25

Figure 8: Throughput Comparison between PF, MLWDF, EXPPF, and PPM 29

Figure 9: Average Cell Goodput (UE speed = 30 km/h) from the PPM paper [4] 29

Figure 10: Delay Comparison between PF, MLWDF, EXPPF, and PPM 30

Figure 11: Average delay time (UE speed = 30 km/h) [4] .. 31

Figure 12: Fairness Index Comparison between PF, MLWDF, EXPPF, and PPM............... 32

Figure 13: Packet Loss Ratio Comparison between PF, MLWDF, EXPPF, and PPM.......... 33

Figure 14: Spectral Efficiency Comparison between PF, MLWDF, EXPPF, and PPM 34

x

List of Acronyms

CBR Constant Bit Rate

CQI Channel Quality Indication

EDGE Enhanced Data rates for GSM Evolution

eNB evolved Node B

EPS Evolved Packet System

E-UTRAN Evolved UMTS Terrestrial Radio Access

EXPPF Exponential PF

FDD Frequency Division Duplex

FIFO First In, First Out

GSM Global System for Mobile Communications

HSPA High Speed Packet Access

HSS Home Subscriber Server

IMS IP Multimedia Subsystem

IP Internet Protocol

L2 Layer-2

LTE Long Term Evolution

LTE-Sim LTE Simulator

MAC Media Access Control

MCS Modulation Code Scheme

MLWDF Modified Largest Weighted Delay First

MME Mobility Management Entity

OFDM Orthogonal Frequency Division Multiplexing

PDN GW Packet Data Network Gateway

PF Proportional Fair

PLR Packet Loss Ratio

PPM Packet Prediction Mechanism

PRB Physical Resource Block

QAM Quadrature Amplitude Modulation

RE Resource Element

SAE System Architecture Evolution

S-GW Serving Gateway

xi

TDD Time Division Duplex

UDP User Datagram Protocol

UMTS Universal Mobile Telecommunications System

VoIP Voice over IP

1

Chapter 1.

Introduction

1.1. Overview of LTE

Long Term Evolution (LTE) is the latest mainstream technology of the fourth

generation (4G) standard for high-speed wireless communications for mobile devices

and data terminals. It is an evolution of the existing 2G mobile network technologies

such as Global System for Mobile Communications (GSM) and Enhanced Data rates for

GSM Evolution (EDGE), and 3G cellular systems such as Universal Mobile

Telecommunications System (UMTS) and High Speed Packet Access (HSPA). LTE

increases the capacity and speed of wireless data networks using a different radio

interface based on newly developed digital signal processing techniques and

modulations along with improved and simplified core network infrastructure. The

infrastructure is simpler because the number of the inter-connected nodes involved in

LTE is less than that of the 2G and 3G architectures.

1.1.1. SAE Architecture

The diagram in Figure 1 illustrates a typical System Architecture Evolution (SAE)

architecture of the LTE wireless communication standard. The main component in the

SAE architecture is the Evolved Packet Core (EPC), which comprises the Serving

Gateway (S-GW), Packet Data Network Gateway (PDN GW), and Mobility Management

Entity (MME) sub-components to be described in later paragraphs.

2

Figure 1: A Typical SAE Architecture of LTE

Two key user-side nodes are the base station, known as the evolved Node B

(eNB), and the S-GW. eNBs are connected to the core network over a new air interface

called Evolved UMTS Terrestrial Radio Access (E-UTRAN). The S-GW, acting as a

local mobility anchor when terminals move across eNBs, is the termination point of the

packet data interface towards E-UTRAN [2]. Packets are routed through the S-GW for

intra E-UTRAN mobility and mobility with the 2G and 3G technologies.

Next, the User Equipment (UE) is an end-user device such as a mobile phone

and a laptop computer with a LTE network adapter, which directly accesses the LTE

network via the eNB. The PDN GW that performs policy enforcement, packet filtering,

charging support, lawful interception and packet screening, provides connectivity from

the UE to external packet data networks by being the UE’s point of exit and entry of

traffic [2].

The MME is in charge of all the control plane and the capacity signalling

functions related to subscriber and session management, including security procedures,

terminal-to-network session handling, and idle terminal location management [2]. The

E-UTRAN

UE

eNB

EPC
PDN GW MME

S-GW

IMS

HSS

Media
Server

3

MME authenticates users by interacting with the Home Subscriber Server (HSS) that

connects to the packet core network over the IP Multimedia Subsystem (IMS).

The HSS is a central database containing user-related and subscription-related

information, with functionalities like mobility management, call and session

establishment support, user authentication and access authorization. The IMS is an

architectural framework for delivering multimedia services over Internet Protocol (IP)

interfaces. A class-based Quality of Services (QoS) concept is incorporated by LTE,

allowing service providers to effectively deploy different packet media services [1].

1.2. Downlink Resource Allocation

1.2.1. EPS and Radio Bearers

In LTE, QoS differentiation is provided by an Evolved Packet System (EPS)

bearer, which is a virtual connection in the connection-oriented transmission network

from the UE to the PDN GW. Before any traffic can be sent between the two endpoints,

the EPS bearer must establish a logical channel to provide a data link layer or layer-2

(L2) transport service with specific QoS attributes such as traffic class, bit rate, delivery

order, reliability, delay characteristics, priority, etc [3]. The EPS bearer then maps a flow,

also known as a bit-stream, into this logical channel. Radio access of the LTE service

uses Orthogonal Frequency Division Multiplexing (OFDM) for the downlink, which is the

path between the eNB and the UE. LTE supports both Frequency Division Duplex (FDD)

and Time Division Duplex (TDD) multiple access techniques. The downlink portion of

the logical channel is the radio bearer associated with the EPS bearer. A radio bearer

describes the L2 processes that “include such things as prioritization, sequencing, error

correction etc. and impact the QoS that is provided for that bit-stream” [3]. The use of

the radio bearer allows differentiation of flows with dissimilar QoS requirements to be

handled by assigning separate radio bearers to flows with different QoS characteristics

[3]. For example, if there are two flows, flow A needs low latency but can tolerate bigger

packet losses, whereas flow B does not attach importance to low latency but has a much

smaller packet tolerance, they must be achieved by two radio bearers, each of which is

configured with the relevant latency and packet loss requirements [3].

4

1.2.2. Resource Management

The eNB distributes radio resources among downlink flows. Flows are allocated

into Physical Resource Blocks (PRBs), which consist of 7 OFDM symbols and 12 sub-

carriers in the time-frequency grid as shown in Figure 2. In the frequency domain, the

spacing between the sub-carriers is 15 kHz; thus, one PRB spans a total of 180 kHz. In

the time domain, one slot is 0.5 ms. There are 84 resource elements (REs) in one PRB.

The more PRBs a flow is allocated, the higher the modulation bits will be used in the

REs, the higher the code rate.

Figure 2: Downlink Physical Resource Block

During the resource allocation process in LTE, three different modulation

schemes are provided for a RE to use at run-time by considering the Channel Quality

Indication (CQI) feedback that a UE currently experiences and reports to the eNB. One

RE can carry either the Quadrature Phase Shift Keying (QPSK), the 16-bit Quadrature

Amplitude Modulation (16QAM), or the 64-bit QAM (64QAM) modulated bits. Based on

the channel condition of each scheduled flow, the eNB selects the most suitable

Modulation Code Scheme (MCS). The CQI reporting mechanism is important since it

aims to reduce the packet losses due to channel errors and to improve the transmission

efficiency. Table 1 summaries the relationship between the CQI index, which is a 4-bit

5

value ranged from 00002 (010) to 11112 (1510), and the corresponding modulation and

maximum number of bits that a RE can transmit in the LTE standard.

CQI Index Modulation
Code Rate
(x 1024)

Maximum
Number of Bits

Efficiency

0 N/A N/A N/A N/A

1 QPSK 78 2 0.1523

2 QPSK 120 2 0.2344

3 QPSK 193 2 0.3770

4 QPSK 308 2 0.6016

5 QPSK 449 2 0.8770

6 QPSK 602 2 1.1758

7 16QAM 378 4 1.4766

8 16QAM 490 4 1.9141

9 16QAM 616 4 2.4063

10 64QAM 466 6 2.7305

11 64QAM 567 6 3.3223

12 64QAM 666 6 3.9023

13 64QAM 772 6 4.5234

14 64QAM 873 6 5.1152

15 64QAM 948 6 5.5547

Table 1: Channel Quality Indication Index versus Modulation

1.3. Downlink Scheduling

LTE supports scalable channel bandwidths 1.4, 3, 5, 10, 15, and 20 MHz, which

represent 6, 15, 25, 50, 75, and 100 PRBs available for allocation, respectively. As can

be deduced from Table 1, each of the 84 REs can transmit at most 6 bits within a 0.5 ms

symbol time; therefore, each PRB has a transmission bandwidth of 6 x 84 / 0.5 = 1008

kbps. Which PRBs and how are they allocated to each flow at a given point of time

depends on the downlink scheduling algorithm in use. The objective is to achieve

optimal download transmission performance for different applications, such as video and

voice, in order to satisfy different QoS requirements. Reaching an optimal trade-off

between utilization and fairness simultaneously is very challenging, especially in the

presence of real-time multimedia applications that are characterized by stringent

6

constraints on packet latency and jitter [5]. Therefore, downlink scheduling for resource

allocation has been a popular research area. Many scheduling schemes have been

studied in recent years, as more and more cellular operators worldwide have started to

commercially launch their LTE networks.

In this project, we concentrate on the Packet Prediction Mechanism (PPM)

proposed by Wei-Kuang Lai and Chang-Lung Tang in the paper, “QoS-aware Downlink

Packet Scheduling for LTE Networks” [4]. It states that, “although many scheduling

schemes for flows have been proposed before, simply applying those schemes directly

for LTE networks may not achieve good performance.” The PPM is suitable for real-time

application services; it formulates both the frequency-domain and time-domain

allocations for PRBs into three phases. Phase I is in the frequency domain, which

utilizes the PRBs effectively by considering the CQI feedback. Phase II is in the time

domain, where PPM first manages queues for different applications and then predicts

the packet delays. Finally, phase III involves the use of a cut-in process that rearranges

the transmission order and discards those packets that are unable to meet their delay

requirements based on the calculated results from phase II. Details of the PPM will be

described in later sections.

7

Chapter 2. Use of LTE-Sim for Implementation

To evaluate the effectiveness of the PPM proposed by [4], we implement this

downlink packet scheduling algorithm in LTE-Sim, which is an open-source framework

for simulating LTE networks developed by Giuseppe Piro, Luigi Alfredo Grieco, Gennaro

Boggia, Francesco Capozzi, and Pietro Camarda. LTE-Sim supports several aspects of

LTE networks from the application layer down to the physical layer, such as single-cell

and multi-cell environments, QoS management, multi-users environment, user mobility,

CQI feedback, handover procedures, and frequency reuse techniques [5]. Fundamental

network nodes like UE, eNB, MME and S-GW are modeled in LTE-Sim, with the

supports of the trace-based, Voice over IP (VoIP), Constant Bit Rate (CBR), and infinite-

buffer traffic generators at the application layer and the management of data radio

bearers [5]. Moreover, LTE-Sim comes with the following downlink packet schedulers by

default:

� Proportional Fair (PF)

� Modified Largest Weighted Delay First (MLWDF)

� Exponential Proportional Fair (EXPPF)

For the purpose of this project, we compare the simulation results of sending a

real-time video stream from the eNB to several UEs using the newly added PPM

algorithm with the ones produced by the built-in PF, MLWDF, and EXPPF packet

schedulers in LTE-Sim. The trace-based traffic generator that sends video application

packets based on a video trace file is used for the simulations with the four downlink

scheduling schemes. In addition, the implementation of the PPM requires the

understanding of the Radio Bearer, QoS, Media Access Control (MAC) Queue, and

Packet components in LTE-Sim.

8

2.1. LTE-Sim’s Packet Flow

In LTE-Sim, the RadioBearer class models the radio bearer and activates one

when a downlink flow from the FlowsToSchedule list starts from the eNB to the UE.

For each RadioBearer instance, the QoSParameters class defines the QoS

requirements for the flow. The trace-based traffic generator at the application layer

transmits packets (modeled by the Packet class) based on a realistic video trace file,

which will be transported by a radio bearer. When a video packet is delivered from the

trace-based application on the eNB, the packet first goes through the user-plane

protocol stack in order to add the User Datagram Protocol (UDP) and (IP) headers, and

then gets associated to a particular radio bearer and enqueued at the MAC layer. The

resultant IP datagrams are mapped to radio bearers by an IP-based packet classifier.

Each radio bearer maintains a First In, First Out (FIFO) queue, modeled by the

MacQueue class. Figure 3 depicts the relationship of these entities. Eventually, the

packet can be sent to the network through the physical layer of the eNB on the logical

channel. The UE can then receive the packet from the channel and deliver it to the

application layer through the user-plane protocol stack on the UE.

Figure 3: Relationship between Flows, Radio Bearer, QoS, MAC Queue in LTE-Sim

FlowsToSchedule (Lists of Flow)
PacketScheduler::GetFlowsToSchedule()

FlowToSchedule (i-th Flow)

QoSParameters
RadioBearerInstance::GetQoSParameters()

MacQueue
RadioBearer::GetMacQueue()

RadioBearer
PacketScheduler::FlowToSchedule::GetBearer()

1..n

1

1 1

9

2.2. LTE-Sim’s Default Downlink Schedulers

The way that LTE-Sim’s downlink schedulers work is that they select all flows

that can be scheduled first, and then assign each PRB to the flow with the highest metric.

“A flow can be scheduled if an only if it has data packets to transmit at the MAC layer

and the receiver UE is not in the idle state. Every TTI, the scheduler computes a given

metric for each flow which can be scheduled” [5]. A Transmission Time Interval (TTI) is

the duration required for the transmission of data block from higher layers into frames on

the radio link. For the sake of combating errors due to fading and interference, data is

divided at the transmitter into blocks and the bits within a block are encoded.

Let jim , or the 2-demonsional array, metrics[j][i], in the LTE-Sim code, be the

metric assigned to the i-th flow for the j-th PRB, the scheduling procedures are as

follows [5]:

1. The eNB creates a list of flows that have packets to transmit

(FlowsToSchedule). The MAC queue length and CQI feedbacks are stored

for each flow in this list.

2. According to the downlink scheduler in use, the chosen metric is computed for

each flow in the FlowsToSchedule list by calling the function, <Class name

of the specific downlink scheduler in use>::ComputeSchedulingMetric().

3. The eNB assigns each PRB to the flow that has the highest metric. As soon

as a flow sends all the enqueued packets, it is deleted from the

FlowsToSchedule list.

4. For each scheduled flow, the eNB computes the size of the quota of data that

will be transmitted at the MAC layer during the current TTI. In the end, the

eNB invokes dequeueing of packets at the MAC layer for all scheduled flows.

The following sub-sections describe how the built-in LTE-Sim downlink

schedulers PF, MLWDF, and EXPPF compute the metric. To calculate for the metric,

these schedulers all depend on the average transmission data rate of the i-th flow, iR ,

or the value returned by the RadioBearer::GetAverageTransmissionRate() function

10

call. This value is updated every TTI based on the following weighted moving average

formula:

)(2.0)1(8.0)(kRkRkR iii +−= ,

where)(kRi is the data rate achieved by the i-th flow during the k-th TTI and)1(−kRi

is the data rate in the previous TTI. Next, the schedulers need to know the

instantaneous available data rate of the receiver UE for the j-th PRB, jir , , or the value

returned by PacketScheduler::FlowToSchedule::GetSpectralEfficiency() multiplied

by 180 kHz, which is the bandwidth of a PRB in the frequency domain. The spectral

efficiency here is the information rate in bits/seconds that can be transmitted over the

given bandwidth; that is, 180000 Hz in the LTE communication system. It measures

how efficient a limited frequency spectrum is utilized, by considering the CQI feedback

that the i-th flow hosted by the UE has sent for the j-th PRB.

2.2.1. Priority First Downlink Scheduler

The PF scheduler is defined in the DL_PF_PacketScheduler class in LTE-Sim.

Its goal is “to maximize the total network throughput and to guarantee fairness among

flows,” [5] making it a good choice for non-real-time traffic [4]. The scheduler assigns

radio resources taking into account of both the experienced channel quality and the past

user throughput [6]. The metric is defined as:

i

ji

ji
R

r
m

,

, = ,

or,

)(

180000),(

iatensmissionRaverageTra

jificiencyspectralEf ×
,

in the function DL_PF_PacketScheduler::ComputeSchedulingMetric().

11

2.2.2. Modified Largest Weighted Delay First Downlink Scheduler

The MLWDF scheduler is defined in the DL_MLWDF_PacketScheduler class in

LTE-Sim. It is the channel-aware extension of the LWDF policy, which aims at avoiding

deadline expiration for real-time operating system and wired networks [7]. MLWDF

provides bounded packet delivering delay and prioritizes real-time flows with the highest

delay for their head of line (HOL) packets (the first packet to be transmitted in the queue)

and the best channel condition by the following metric [5]:

i

ji

iHOL

i

i

ji
R

r
Dm

,

,,

log

τ
δ

−= ,

or,

)(

180000),(
)(

)(max

))(Prlog(

iatensmissionRaverageTra

jificiencyspectralEf
ielayHOLPacketD

iDelay

iobabilitydrop ×
−

in the function DL_MLWDF_PacketScheduler::ComputeSchedulingMetric(). iδ is the

maximum probability that the HOL packet delay, iHOLD , , exceeds the delay threshold, iτ ,

for the i-th real-time flow. In the LTE-Sim code, the values of these three parameters

can be obtained by QoSParameters::GetDropProbability(),

RadioBearer::GetHeadOfLinePacketDelay(), and QoSParameters::GetMaxDelay(),

respectively. To avoid bandwidth wasting, packets belonging to a real-time flow are

discarded from the MAC queue if they are not transmitted before the expiration of their

deadline [5]. For non-real-time flows, the metric reduces to that of the PF scheduler.

2.2.3. Exponential Proportional Fair Downlink Scheduler

The EXPPF scheduler is defined in the DL_EXP_PacketScheduler class in

LTE-Sim. It is designed to favour real-time traffic flows over non-real-time ones. For

real-time flows, the considered metric is computed by:

12

i

ji
iHOL

i

i

ji
R

r
D

m
,

,

,
1

log

exp



















+

−−

=
χ

χ
τ
δ

,

where iδ is the maximum probability that the HOL packet delay, iHOLD , , exceeds the

delay threshold, iτ , for the i-th real-time flow, and:

∑
=

−=
rtN

i

iHOL

i

i

rt

D
N 1

,

log1

τ
δ

χ

with rtN denoting the number of active downlink real-time flows. Similar to the MLWDF

case, the metric is reduced to that of the PF scheduler for non-real-time flows, and real-

time packets are erased from the MAC queue if they are overdue. In LTE-Sim, the

metric is jointly computed in the functions DL_EXP_PacketScheduler::ComputeAW()

and DL_EXP_PacketScheduler::ComputeSchedulingMetric() as follows:

)(

180000),(
)(

)(max

))(Prlog(
)(

iatensmissionRaverageTra

jificiencyspectralEf
ielayHOLPacketD

iDelay

iobabilitydrop
iAW

×
−= ,

∑
=

=
nbFlows

i

iAW
nbFlows

averageAW
1

)(
1

,

)(

180000)(

)(1

)(
exp,

iatensmissionRaverageTra

ificiencyspectralEf

averageAWsqrt

averageAWiAW
m ji

×









+
−

= ,

where the values of)(Pr iobabilitydrop ,)(ielayHOLPacketD , and)(max iDelay for the

i-th flow can be obtained by calling the functions,

QoSParameters::GetDropProbability(), RadioBearer::GetHeadOfLinePacketDelay(),

and QoSParameters::GetMaxDelay(), respectively.

13

2.3. PPM Downlink Scheduler in LTE-Sim

The PPM downlink scheduling algorithm proposed in [4] focuses on real-time

applications and encompasses the following three phases as illustrated in Figure 4:

I. Initial scheduling for PRBs

II. Queue management and prediction of delays for packets

III. Cut-in process

Figure 4: Three Phases of the PPM Downlink Scheduling Algorithm [4]

2.3.1. PPM Parameters

Please note that the term “user” is used throughout the PPM paper; this is really

the “flow” in LTE-Sim. Therefore, for the list of parameters to be introduced below, we

treat each instance of “user” as “flow” when implementing the PPM algorithm in LTE-Sim.

For the convenience of cross-referencing with the variable names that we will use in the

LTE-Sim code, the actual variable names are provided in the following table. Their

descriptions are directly taken from [4].

Parameter Variable Name to be

used in LTE-Sim

Description

yxCQI , CQI_usr_x_PRB_y CQI value if PRB y is allocated to user x

yxM , M_usr_x_PRB_y Maximum CQI_usr_x_PRB_y for PRB y

14

xEU E_Q_k_usr_x Average throughput for packets of user x in queue

k, which can be obtained by calling

RadioBearer::GetAverageTransmissionRate()

IT T_I 1 TTI = 10 ms

ikDB , Db_Q_k_pkt_i Delay bound for packet i in queue k, which can be

obtained by calling

QoSParameters::GetMaxDelay()

kn num_pkts_Q_k Number of packets in queue k, which can be

obtained by calling

MacQueue::GetNbDataPackets()

ikt , ta_Q_k_pkt_i Arrival time for the i-th packet in queue k; LTE-Sim

does not support it, we add the new method,

Packet::SetTimeArrival(), for setting the value to

the time that the packet is enqueued in

MacQueue::Enqueue(), and we also add the new

method, Packet::GetTimeArrival(), for getting the

packet arrival time.

iskt , ts_Q_k_pkt_i Stamp time for the i-th packet in queue k, which

can be obtained by calling

Packet::GetTimeStamp()

pit tp_pkt_i Propagation delay in physical layer for packet i,

which can obtained by the packet size in bits

divided by physical channel bandwidth

okt to_Q_k Observation time to see which packets in queue k

may not arrive at destinations before delay

budgets; LTE-Sim does not support it, the new

method,

GetTimeObservationForMayNotArrivePackets()

is added in the MacQueue class to the retrieve

the time when

MacQueue::CheckForDropPackets() is called to

delete the packets from the queue

15

ikR , R_Q_k_pkt_i Interval that the i-th packet in queue k will be

scheduled to transmit at; that is,










×
+

=
Ix

ik
TEU

i
R

1
,

kl l_Q_k First identified packet number in queue k whose

scheduled transmission time may be late and in

consequence the packet does not arrive at the

destination in time

kh h_Q_k Last identified packet number in queue k (if it

exists) whose scheduled transmission time may

be late and in consequence the packet does not

arrive at the destination in time

kL L_Q_k Estimated loss rate for queue k

kN N_Q_k Number of continuously successful transmission

packets in queue k before the current observation

time and after the last dropped packet; LTE-Sim

does not support it, we add the new method,

GetNbOfTxPacketsBeforeTimeObservation(), in

the MacQueue class for getting the number of the

transmitted packets when

MacQueue::CheckForDropPackets() is called to

delete the packets from the queue

kT T_Q_k Threshold for the lost rate of packets in queue k,

set to 0.5 s for video applications

kT∆ delta_Ta_Q_k Average inter-arrival time for packets in queue k

skT∆ delta_Ts_Q_k Average inter-stamp time for packets in queue k

kel el_VQ_k First estimated packet number in the virtual queue

of queue k whose scheduled transmission time

may be late and in consequence the packet does

not arrive at the destination in time

keh eh_VQ_k Last estimated packet number in the virtual queue

16

of queue k (if it exists) whose scheduled

transmission time may be late and cause the

packet not to arrive at the destination in time

nkER , ER_VQ_k_pkt_n Estimated interval that the n-th packet in the

virtual queue of queue k will be scheduled to

transmit at

nket , eta_VQ_k_pkt_n Estimated arrival time for the n-th packet in the

virtual queue of queue k

nsket , ets_VQ_k_pkt_n Estimated stamp time for the n-th packet in the

virtual queue of queue k

nn
eq eq_n_VQ_k Estimated number of new arrival packets in to the

virtual queue of queue k during the time interval

that all kn packets currently in queue k are

transmitted

kn
T T_num_pkts_Q_k Time needed to transmit all the kn packets in

queue k

keL eL_Q_k Estimated loss rate for incoming packets in queue

k and its virtual queue

yxET , ET_usr_x_PRB_y Expected throughput if PRB y is located to user x

Table 2: Parameters and Their Accessor Methods in LTE-Sim for the PPM

2.3.2. PPM Class and Methods

For implementing the PPM algorithm in LTE-Sim, a new downlink packet

scheduler class called DL_PPM_PacketScheduler is created in the new source and

header files called:

� /lte-sim/src/protocolStack/mac/packet-scheduler/dl-ppm-packet-scheduler.cpp

� /lte-sim/src/protocolStack/mac/packet-scheduler/dl-ppm-packet-scheduler.h

In addition to the following constructors and methods that inherit from their parent

class called DownlinkPacketScheduler:

� DL_PPM_PacketScheduler::~DL_PPM_PacketScheduler()

17

� DL_PPM_PacketScheduler::DL_PPM_PacketScheduler()

� DL_PPM_PacketScheduler::DoSchedule()

the following new methods are defined for the implementation of PPM’s three

phases:

� Phase I: Initial Scheduling for PRBs

� DL_PPM_PacketScheduler::AllocUserXWithMaxCqiToPrbY(int PRB_y)

� Allocates user x having the best CQI among others to PRB y.

� Phase II: Queue Management and Packet Delay Prediction

� DL_PPM_PacketScheduler::ManageQueuesAndPredictPktDelays()

� DL_PPM_PacketScheduler::HandleScenarioA()

� Manages queues and predicts packet delays when there are packets

in queues that may not be transmitted in time, and the last packet of

them is within the queue.

� DL_PPM_PacketScheduler::HandleScenarioB()

� Manages queues and predicts packet delays when there are packets

in queues that may not be transmitted in time, but the last packet of

them is not within the queue.

� Phase III: Cut-in Process

� DL_PPM_PacketScheduler::AllocCutInUserZForPrbY()

� Allocates a cut-in user z from all candidate users who will make the

least decrease in throughputs among all others to use PRB y.

Lastly, the PRB allocation function is modified to handle the aforementioned

functions for the PPM in each phase:

� DL_PPM_PacketScheduler::RBsAllocation()

The next three sub-sections will describe the three phases of the PPM downlink

scheduling algorithm from [4] in detail and outline the implementation of the PPM.

However, for the actual realization of the PPM downlink packet scheduler, please refer

to the source code in the Appendix section.

18

2.3.3. PPM Phase I – Initial Scheduling for PRBs

This phase operates in the frequency domain. In order to achieve good

throughputs, PRB y is allocated to user x with the best CQI among all other users by the

following formula:

()
yx

x
yx CQIM ,, maxarg= ,

This is implemented in DL_PPM_PacketScheduler::AllocUserXWithMaxCqiToPrbY().

For the CQI value of user x in PRB y, it can be obtained by calling

PacketScheduler::FlowToSchedule::GetCqiFeedbacks(). Additionally, we add a new

method, PacketScheduler::FlowToSchedule::SetHasBestCqi(), to mark the user that

has yxM , as the one with the best CQI. We also add the corresponding accessor

method, PacketScheduler::FlowToSchedule::GetHasBestCqi(), to allow Phase II to

query whether users have good CQIs.

2.3.4. PPM Phase II – Queue Management and Packet Delay
Prediction

Contrary to the previous phase, Phase II deals with users whose CQI values are

not as good because they are possibly located at cell edges relative to eNBs. Their

packets may not be transmitted to their destinations in time. If only considering

throughputs, there will likely be many out-of-date packets that get discarded at

destinations. Instead, packet types, delays and timestamps should be considered to

satisfy the QoS requirements. Timestamps refer to instants that packets are generated

at the application layer. Continuous packets within the same MAC queue may belong to

the same type and have similar delay bounds and timestamps. Packet i in queue k for

user x will not be transmitted in time if:

() piIikikokik tTRttDb +<−− ,,, .

When there are continuous packets that are not expected to be transmitted in time in the

queue, there are two possible situations, as illustrated in the figure below. The queue

19

spaces coloured in blue contain packets that are expected to be transmitted in time.

Those coloured in red are out-of-date packets that are overdue. The white spaces are

not occupied with any packets.

Figure 5: Scenario A – two situations for continuous out-of-date packets in the queue [4]

In situation 1, there are continuous out-of-date packets in the queue, but the last

packet in the queue can be sent out in time. In situation 2, the difference is that the last

packet in the queue is part of the continuous out-of-date packets and thus cannot be

sent out in time. Both situations can be generalized as Scenario A and are to be

handled in the function DL_PPM_PacketScheduler::HandleScenarioA() for user x:

Scenario A: Queue k contains packets that may not be transmitted in time, and

the last packet of these overdue packets is within the queue.

The first and last overdue packets in queue k can be identified as follows:

()()
piIikikokik

i
k tTRttDbl +<−−= ,,,minarg ,

()()
piIikikokik

i
k tTRttDbh +<−−= ,,,maxarg .

The estimated packet loss rate is calculated by:

kk

kk

k
hN

lh
L

+

+−
=

1
.

1 2 Queue k Queue k

20

The QoS requirements for the packets in queue k cannot be met if kL is greater than or

equal to the pre-defined threshold, kT , then the cut-in process in Phase III will be

entered. Otherwise, those overdue packets in queue k will be discarded, as

having kL smaller than kT means that the queue can tolerate a larger loss rate. Instead,

the channel bandwidth can be allocated to other packets that can be transmitted in time.

In this case, the cut-in process will not be called. To support erasing a range of packets

from kl to kh in the queue, we add a new method called MacQueue::DiscardPackets()

in LTE-Sim.

Now, based on the two situations mentioned earlier, if the last packet that cannot

be transmitted in time is not in queue k, then another scenario as shown in Figure 6

arises, which is to be handled in the function

DL_PPM_PacketScheduler::HandleScenarioB():

Scenario B: Queue k contains packets that may not be transmitted in time, and

the last packet of these overdue packets is not within the queue.

Figure 6: Scenario B – two situations for continuous out-of-date packets in the queue [4]

1

2

Queue k

Queue k

21

For packets that are not in queue k, a virtual queue will be used to store them.

The goal is to predict the arrival and stamp times of future incoming packets in physical

queue k and/or the virtual queue of it based on the inter-arrival and inter-stamp times of

current packets. The predictions can determine whether new incoming packets can be

transmitted in time. To find the positions of the first and last overdue packets in the

virtual queue, the average inter-arrival and stamp times for the current packets in queue

k needs to be calculated first:

()
n

tt
tt

n
T

knk
n

i

ikik

k

k
k

k
0,,

1

0

,1,

1 −
=−=∆ ∑

−

=
+ ,

()
n

tt
tt

n
T

sknsk
n

i

iskisk

k

sk
k

k
0,,

1

0

,1,

1 −
=−=∆ ∑

−

=
+

where kn is the number of packets in queue k. The (kn -1)-th packet, which is the last

packet, will be transmitted in the following cycle:









=−

Ix

k

nk
TEU

n
R

k 1, .

Thus, the amount of time needed to transmit kn packets in queue k is:

Inkn TRT
kk 1, −= .

This time and the average inter-arrival time calculated earlier allow us to estimate the

number of new arrival packets into queue k during the
kn

eq interval that all current kn

packets in the queue are transmitted:










∆
=

k

n

n T

T
eq k

k

.

22

The estimated arrival and stamp times for packet n in the virtual queue for queue k are

then:

() knknk Tntet
k

∆++= − 11,, ,

() sknsknsk Tntet
k

∆++= − 11,, .

Please note that the counter ‘n’ is used to denote the packet number in the virtual queue

to differentiate it from the counter ‘i’ used for the physical queue. Next, the interval for

the n-th packet in virtual queue k to be transmitted can be estimated by:








 ++
=

Ix

k

nk
TEU

nn
ER

1
, .

On the other hand, packet n will not be transmitted in time if:

() pnInknkoknk tTERettDb +<−− ,,, .

In the end, the positions of the first and last packets that may become overdue in the

virtual queue of queue k can be found by:

()()
pnInknkoknk

n
k tTERettDbel +<−−= ,,,minarg ,

()()
pnInknkoknk

n
k tTERettDbeh +<−−= ,,,maxarg .

The estimated packet loss rate is then calculated by the following formulas:

()()

()

()

()

found becannot if

 if

0 if

1

11

k

kkk

kkk

kk

kk

k

kkk

kkkk

k

el

theleh

theleh

hN

lh

T

ehhN

elehlh

eL ≥−

<−≤















+

+−

+

++

+−+−

= ε ,

23

where kth is a threshold whose value can be set to be larger than the size of queue k,

enabling us to evaluate if the packet arrival rate is greater than the departure rate, and ε

is a small number that ensures the cut-in process can be entered to handle burst of

packet losses in queue k. For simplicity, we set kth to be 1 packet larger than the size

of queue k for user x and ε to be 0.1. For the case that keL cannot be found, it is when

the packet in the last space of queue k is also the last overdue packet, the formula is the

same as that of kL , meaning that the out-of-date packets beyond the physical queue

can be omitted.

If the calculated keL is greater than or equal to the threshold, kT , the QoS

requirements for the packets in physical/virtual queue k cannot be met, the cut-in

process in Phase III will be invoked. Otherwise, the overdue packets are discarded by

calling the newly added method, MacQueue::DiscardPackets(), since the current

queue is able to accept a larger packet loss rate. This allows other in-time packets to

use the channel bandwidth; the cut-in process will not be called in this case.

Finally, if all packets in queue k can be transmitted in time, the cut-in process in

Phase III will not be entered. This scenario is known as:

Scenario C: All the packets contained in queue k will be transmitted in time.

Scenario C does not involve any queue management and delay prediction for

packets; thus, we do not need to define a function in the DL_PPM_PacketScheduler

class to handle this scenario. Finally, we wrap up

DL_PPM_PacketScheduler::HandleScenarioA() and

DL_PPM_PacketScheduler::HandleScenarioB() from Scenarios A and B by the single

function, DL_PPM_PacketScheduler::ManageQueuesAndPredictPktDelays().

24

2.3.5. PPM Phase III – Cut-in Process

Phase III is implemented in the function AllocCutInUserZForPrbY(). It will try to

find a cut-in user z from all candidate users based on the following formula:

()
yzyxyz ETETC ,,, min −= ,

It iteratively searches for user z has the least decrease in throughputs until all

cut-in users are processed or all PRBs are allocated. If all cut-in users have been

handled, the remaining PRBs are simply allocated to users with maximum throughputs.

If all PRBs have been allocated, those cut-in users need more PRBs than the PRBs

available. If the cut-in process is not called, PRB y is allocated to user x having the

maximum throughput. In general, cut-in users with the highest throughputs are selected

to utilize PRBs.

25

Chapter 3. Simulation

In order to evaluate the effectiveness of the PPM algorithm implemented, we use

LTE-Sim and compare the PPM results with the ones produced by the PF, MLWDF, and

EXPPF downlink scheduling schemes by simulating transmission of a real-time video

stream from the eNB in the central cell to several UEs within the same cell. The

scenario, as illustrated in Figure 7, is known as “single-cell multi-user with interference”

in LTE-Sim, which is defined in /lte-sim/src/scenarios/single-cell-with-interference.h. It

considers the possible influence of nearby eNBs that can generate radio interference by

creating other eNBs in the surrounding neighbouring cells in addition to the eNB in the

central cell. This scenario is more realistic to the nature of a real-life LTE

communication environment and yet not so complicated. The aforementioned header

file has cases to select the PF, MLWDF, and EXPPF downlink schedulers; we need to

modify it to be able to support the use of the PPM.

Figure 7: LTE-Sim Single Cell with Interference Scenario

26

3.1. Simulation Parameters

The following table presents the various parameters we use for our simulations.

They are mostly chosen to be identical to the ones used by the PPM paper in [4] so we

are able to demonstrate that our implemented PPM downlink scheduler in LTE-Sim

works consistently. For other parameters not explicitly mentioned, they are the default

values in the simulator.

Number of cells 10

Minimum number of UEs 10

Interval between UEs 10

Maximum number of UEs 40

Number of eNBs 1 in each cell

Transmission radius of

eNBs

3 km

Downlink Bandwidth 20 MHz

Number of PRBs 100 (12 sub-carriers per PRB)

Modulation and coding

schemes

QPSK, 16 QAM, 64, QAM

Number of video flows 1 real-time H.264 encoded video from

/lte-sim/src/flows/application/Trace/foreman_H264_128k.dat

Video bit rate 128 kbps

Traffic generator Trace-based

Downlink schedulers PF, MLWDF, EXP, and PPM (simulated in this order)

Frame structure FDD

Speed of UEs 30 km/h

Mobility model of UEs Random direction

Delay bound 0.5 s

Simulation duration 180 s

Flow duration 120 s

Table 3: LTE-Sim Simulation Parameters

27

3.2. Simulation Results

We simulate transmitting the 128 kbps real-time video stream from the eNB to all

the UEs, using LTE-Sim. Each UE moves at 30 km/h within the central cell, which

resembles the average speed between the pedestrian and vehicular scenarios. With the

mobility model of random direction in use, the UEs will not move out of the simulation

boundary of the eNB but will randomly choose their direction. Once they reach the

boundary, they move towards another random direction. The next five sub-sections will

compare the following perspectives between the PF, MLWDF, EXPPF, and PPM

downlink schedulers:

� Throughput (in Megabits per second, Mbps)

� This is the total application-level throughput for all UEs, which is the

number of useful information bits delivered from the eNB to all UEs within

the central cell. It only focuses on the successful receipt of packets at the

destination. Those packets that have errors or fail to arrive in time do not

meet their QoS requirements and thus are not counted.

� Delay (in seconds, s)

� This measures the amount of time it takes for the packets travel across

the LTE network from the eNB to all UEs. Only those packets that

successfully reach the destination are counted.

� Fairness Index

� This determines whether the UEs are receiving a fair share of resources

to meet the QoS requirements. If a downlink scheduler does not consider

the fairness aspect, UEs are generally allocated with more resources

when they are close to the eNB, and edge UEs usually suffer from

resource starvation. The fairness measure used in LTE-Sim is Jain's

fairness index, which is calculated by the following equation:

()
()

2

1

2

1
1 ,...,,

∑
∑

=

==Γ
n

i i

n

i i

nx

xn

x
xxx ,

28

where ix is the application-level throughput for the i-th connection, and n

is the number of UEs. Γ ranges from the worst case, 1/n, to the best

case, 1, which are achieved when only one and all UEs receive(s) the

allocation, respectively. In other words, the index value is k/n when k

UEs share the resources equally, whereas the other (n - k) UEs receive

nothing.

� Packet Loss Ratio (PLR)

� This measures the ratio of the amount of packet losses at the receiving

end, which is calculated by:

sent packets ofNumber

received packets ofNumber -sent packets ofNumber
=PLR .

 A good downlink scheduling scheme should yield a low PLR.

� Spectral Efficiency

� This refers to the application-level information rate in bits per second that

can be transmitted over the specified downlink bandwidth, which is:

Bandwidth

 UEsallby achieved Throughput
Efficiency Spectral = .

The higher the spectral efficiency, the more efficient that a frequency

spectrum can be utilized by UEs’ channel access.

3.2.1. Throughput

The following graph shows the application-level throughputs versus the number

of UEs. As can be seen, due to taking account of both throughputs, managing possible

overdue packets in the queues, and predicting delays for future incoming packets, the

PPM achieves the best results among all other downlink schedulers, especially when the

number of UEs increases. For other scheduling schemes, MLWDF and EXPPF have

the similar results since they both consider the HOL delays. PF yields the worst

throughputs because it allocates flows to use PRBs solely based on weights.

29

Throughput

0

2

4

6

8

10

12

14

16

10 20 30 40

Number of UEs

T
h
ro
u
g
h
p
u
t
(M
b
p
s
)

PF

MLWDF

EXPPF

PPM

Figure 8: Throughput Comparison between PF, MLWDF, EXPPF, and PPM

Comparing our simulation results for PF, MLWDF, EXPPF, and PPM in Figure 8

with the results from the PPM paper in [4] shown in the following figure, their throughput

values for the cases of 30 and 40 UEs (circled in red) are very similar. Hence, we can

say that our implemented PPM downlink scheduler functions well as expected.

Figure 9: Average Cell Goodput (UE speed = 30 km/h) from the PPM paper [4]

30

3.2.2. Delay

Figure 10 shows the delay time versus the number of UEs. The PPM has the

lowest delay among all other downlink schedulers. By the similar reasoning as the

throughput perspective, MLWDF and EXPPF have the similar second best results since

they both consider the HOL delays. PF yields the highest delay because it uses weights

to determine which of the packet flows to transmit. Since all MLWDF, EXPPF, and PPM

discard out-of-date packets as part of their scheduling algorithms, their delays are all

pretty low.

Delay

0

1

2

3

4

5

6

7

10 20 30 40

Number of UEs

D
e
la
y
 (
s
) PF

MLWDF

EXPPF

PPM

Figure 10: Delay Comparison between PF, MLWDF, EXPPF, and PPM

31

Next, comparing our results for PF, MLWDF, EXPPF, and PPM in Figure 10 with

the ones from the PPM paper in [4] shown below, their delay values for the cases of 30

and 40 UEs (circled in red) are similar. Thus, our implemented PPM in LTE-Sim works

as expected.

Figure 11: Average delay time (UE speed = 30 km/h) [4]

32

3.2.3. Fairness Index

The following curves present the fairness index versus the number of UEs. The

PPM has the highest values among all other downlink schedulers, meaning that this

algorithm provides a better level of fairness than other schemes. The results for

MLWDF and EXPPF are again similar, and PF has the worst performance. The trend

shows that the fairness index value starts to decline when the number of UEs increases.

This phenomenon is expected since more UEs are competing for the limited resources.

Fairness Index

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

10 20 30 40

Number of UEs

F
a
ir
n
e
s
s
 I
n
d
e
x

PF

MLWDF

EXPPF

PPM

Figure 12: Fairness Index Comparison between PF, MLWDF, EXPPF, and PPM

33

3.2.4. Packet Loss Ratio

The following figure shows the PLR experienced by the video flows. The PLR

increases with the number of UEs because the number of concurrent real-time flows will

be larger, implying that the tendency for the downlink scheduler to discard overdue

packets will be higher. Nevertheless, the PPM still gives the lowest PLR among all other

schemes. MLWDF and EXPPF have the similar second best results again, and PF has

the worst PLR. The reason is that PPM, “MLWDF, and EXPPF initiate their prevention

mechanisms when the number of users increases and drop packets which cannot reach

their destinations in time” [4], where as PF never drops any packets. Hence, PPM’s

prediction of the behaviour of future incoming packets based on current packets in the

queue is helpful.

Packet Loss Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40

Number of UEs

P
a
c
k
e
t
L
o
s
s
 R
a
ti
o

PF

MLWDF

EXPPF

PPM

Figure 13: Packet Loss Ratio Comparison between PF, MLWDF, EXPPF, and PPM

34

3.2.5. Spectral Efficiency

Finally, Figure 14 shows the spectral efficiency curves versus the number of UEs.

Again, the PPM has the highest values among all other downlink schedulers even when

the number of UEs increases. The second best one is PF; it performs better than that of

MLWDF and EXPPF this time. The reason is that “the QoS-aware schedulers like

MLWDF and EXPPF still try to guarantee QoS constraints to a high number of flows,

with a consequent negative impact on the system efficiency” [5].

Spectral Efficiency

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

10 20 30 40

Number of UEs

S
p
e
c
tr
a
l
E
ff
ic
ie
n
c
y

PF

MLWDF

EXPPF

PPM

Figure 14: Spectral Efficiency Comparison between PF, MLWDF, EXPPF, and PPM

35

Chapter 4. Conclusion

In this project, we have successfully implemented the Packet Prediction

Mechanism (PPM) downlink scheduler in LTE-Sim, and evaluated its performance

through various simulations. This QoS-aware scheduling algorithm for real-time services

in LTE networks consists of three phases. Phase I operates in the frequency domain,

allowing a good application-level throughput to be achieved by selecting flows that have

best Channel Quality Indication (CQI) indices. Phase II in the time domain predicts

packet delays and loss rates for future incoming packets based on the behaviour of

current packets in the physical queue with the use of a virtual queue when necessary.

Using the predicted results from the previous phase, Phase III then employs a cut-in

process for rearranging the transmission order and discarding packets that cannot meet

their delay requirements. Since the PPM scheduling scheme consider both throughputs

in the frequency domain and delay times in the time domain, the LTE-Sim simulation

results have demonstrated that the PPM out-performs the Priority First (PF), Modified

Largest Weighted Delay First (MLWDF), and Exponential PF (EXPPF) downlink

schedulers in terms of Throughput, Delay, Fairness Index, Packet Loss Ratio (PLR), and

Spectral Efficiency.

36

References

[1] White Paper “LTE: An Introduction,” Ericsson AB, 2011.
<http://www.ericsson.com/res/docs/2011/lte_an_introduction.pdf>.

[2] A. Khan, “LTE Network Infrastructure and Elements,” LTE Encyclopedia, Oct.
2011, <https://sites.google.com/site/lteencyclopedia>.

[3] N. Wiffen, “Understanding 3GPP Bearer,” LTE/HSPA/EPC Knowledge Explained,
Red Banana Wireless Ltd., 2013, <http://www.red-banana.org>.

[4] W. Lai, C. Tang, “QoS-aware Downlink Packet Scheduling for LTE Networks,”
Computer Networks: The International Journal of Computer and
Telecommunications Networking, vol. 57 issue 7, pp. 1689-1698, May 2013.

[5] G. Piro, L. A. Grieco, G. Boggia, F. Capozzi, and P. Camarda, “Simulating LTE
Cellular Systems: an Open Source Framework,” IEEE Trans. Veh. Technol., vol.
60, no. 2, Feb. 2011, <http://telematics.poliba.it/index.php/en/lte-sim>.

[6] J.-G. Choi and S. Bahk, “Cell-throughput analysis of the proportional fair
scheduler in the single-cell environment,” IEEE Trans. Veh. Technol., vol. 56, no.
2, pp. 766-778, Mar. 2007.

[7] F. Capozzi, G. Piro, L. A. Grieco, G. Boggia, and P. Camarda, “Downlink Packet
Scheduling in LTE Cellular Networks: Key Design Issues and a Survey,” IEEE
Commun. Surveys and Tutorials, vol. 15, no. 2, pp. 678-700, Apr. 2013.

37

Appendix A.

LTE-Sim Source Code

PPM Downlink Scheduling Algorithm Implemented

dl-ppm-packet-scheduler.cpp

 /*
 *---
 *
 * dl-ppm-packet-scheduler.cpp
 *
 * The LTE-Sim downlink packet scheduler that implements the Packet Prediction
 * Mechanism (PPM) downlink scheduling algorithm proposed in this paper:
 *
 * "QoS-aware Downlink Packet Scheduling for LTE Networks,"
 * Computer Networks: The International Journal of Computer and
 * Telecommunications Networking archive, Volume 57 Issue 7, May, 2013,
 * Pages 1689-1698
 *
 * Howard Chang
 * Simon Fraser University
 * 20007-2192
 *
 *---
 */

#include "dl-ppm-packet-scheduler.h"
#include "../mac-entity.h"
#include "../../packet/Packet.h"
#include "../../packet/packet-burst.h"
#include "../../../core/spectrum/bandwidth-manager.h"
#include "../../../device/ENodeB.h"
#include "../../../device/NetworkNode.h"
#include "../../../flows/MacQueue.h"
#include "../../../flows/QoS/QoSForPPM.h"
#include "../../../flows/application/Application.h"
#include "../../../flows/radio-bearer.h"
#include "../../../phy/lte-phy.h"
#include "../../../protocolStack/mac/AMCModule.h"
#include "../../../protocolStack/rrc/rrc-entity.h"
#include "../../../utility/eesm-effective-sinr.h"

//#define SCHEDULER_DEBUG_PPM
#define SCHEDULER_CHECKPOINT() \
 do { \
 if (m_showCheckpoint) { \
 std::cout << "CHECKPOINT - " << \
 __FUNCTION__ << \
 " (" << __LINE__ << ")" << \
 std::endl; \
 } \
 } while (0);

38

/* Transmission Time Interval (TTI) */
#define TTI (0.001) /* 1ms */
#define T_I (1 * TTI)

/* Pre-defined threshold for the lost rate of packets in queue k */
#define T_Q_k (0.5) /* 0.5s for video application */

DL_PPM_PacketScheduler::DL_PPM_PacketScheduler ()
{
 m_showCheckpoint = false;
 SetMacEntity(0);
 CreateFlowsToSchedule();
}

DL_PPM_PacketScheduler::~DL_PPM_PacketScheduler ()
{
 Destroy();
}

void
DL_PPM_PacketScheduler::DoSchedule ()
{
#ifdef SCHEDULER_DEBUG
 std::cout <<
 "Start PPM DL packet scheduler for node " <<
 GetMacEntity()->GetDevice()->GetIDNetworkNode() <<
 std::endl;
#endif

 UpdateAverageTransmissionRate();

 /*
 * Check and drop packets at the MAC layer (i.e. those packets whose delay
 * exceed the maximum allowable value)
 */
 CheckForDLDropPackets();

 /* Select all flows that can be scheduled */
 SelectFlowsToSchedule();

 ComputeAverageOfHOLDelays();

 if (GetFlowsToSchedule()->size() == 0) {
 /* Do nothing */
 } else {
 RBsAllocation();
 }

 StopSchedule();
}

void
DL_PPM_PacketScheduler::RBsAllocation ()
{
#ifdef SCHEDULER_DEBUG_PPM
 std::cout << " ---- RBs Allocation (PPM): " << std::endl;
#endif

39

 /*
 * Get the list of downlink flows that have packets to transmit and can be
 * scheduled in the current sub-frame. These flows were created by the eNB.
 * The MAC queue length and CQI feedbacks are stored for each flow.
 */
 FlowsToSchedule *flows = GetFlowsToSchedule();
 int nbOfRBs = GetMacEntity()->GetDevice()->GetPhy()->GetBandwidthManager()-
>GetDlSubChannels().size();

 /* RBs allocation */
 for (int PRB_y = 0; PRB_y < nbOfRBs; PRB_y++) {
 AllocUserXWithMaxCqiToPrbY(PRB_y);
 }
 for (int PRB_y = 0; PRB_y < nbOfRBs; PRB_y++) {
 ManageQueuesAndPredictPktDelays(PRB_y);
 }

 /* Finalize the allocation */
 AMCModule *amc = GetMacEntity()->GetAmcModule();
 PdcchMapIdealControlMessage *pdcchMsg = new PdcchMapIdealControlMessage();

 for (FlowsToSchedule::iterator it = flows->begin(); it != flows->end();
it++) {
 FlowToSchedule *flow = (*it);
 if (flow->GetListOfAllocatedRBs()->size () > 0) {
 /* This flow has been scheduled */
 std::vector<double> estimatedSinrValues;
 for (unsigned int rb = 0; rb < flow->GetListOfAllocatedRBs()-
>size(); rb++) {
 double sinr =
 amc->GetSinrFromCQI(
 flow->GetCqiFeedbacks().at(flow-
>GetListOfAllocatedRBs()->at(rb)));

 estimatedSinrValues.push_back(sinr);
 }

 /* Compute the effective SINR */
 double effectiveSinr = GetEesmEffectiveSinr(estimatedSinrValues);

 /* Get the MCS for transmission */
 int mcs = amc->GetMCSFromCQI(amc->GetCQIFromSinr(effectiveSinr));

 /* Define the amount of bytes to transmit */
 int transportBlockSize = amc->GetTBSizeFromMCS(mcs);
 double bitsToTransmit =
 transportBlockSize * flow->GetListOfAllocatedRBs()->size();
 flow->UpdateAllocatedBits(bitsToTransmit);

#ifdef SCHEDULER_DEBUG
 std::cout <<
 "\t\t --> flow " <<
 flow->GetBearer()->GetApplication()->GetApplicationID() <<
 " has been scheduled: " <<
 "\n\t\t\t nb of RBs " <<
 flow->GetListOfAllocatedRBs()->size() <<
 "\n\t\t\t effectiveSinr " <<
 effectiveSinr <<
 "\n\t\t\t tbs " <<
 transportBlockSize <<

40

 "\n\t\t\t bitsToTransmit " <<
 bitsToTransmit <<
 std::endl;
#endif

 /* Create PDCCH messages */
 for (unsigned int rb = 0; rb < flow->GetListOfAllocatedRBs()-
>size(); rb++) {
 pdcchMsg->AddNewRecord(
 PdcchMapIdealControlMessage::DOWNLINK,
 flow->GetListOfAllocatedRBs()->at(rb),
 flow->GetBearer()->GetDestination(),
 mcs);
 }
 }
 }

 if (pdcchMsg->GetMessage()->size() > 0) {
 GetMacEntity()->GetDevice()->GetPhy()-
>SendIdealControlMessage(pdcchMsg);
 }
 delete pdcchMsg;
}

/*
 **
 * Phase 1: Initial scheduling for PRBs
 **
 */
void
DL_PPM_PacketScheduler::AllocUserXWithMaxCqiToPrbY (int PRB_y)
{
 FlowsToSchedule *flows = GetFlowsToSchedule();
 int num_usrs = flows->size();

 /* CQI value if PRB y is allocated to user x */
 int CQI_usr_x_PRB_y = 0;
 int max_CQI_usr_x_PRB_y = 0;

 /* Maximum CQI_user_x_PRB_y for PRB y */
 int M_usr_x_PRB_y = -1;

 SCHEDULER_CHECKPOINT();

 for (int usr_x = 0; usr_x < num_usrs; usr_x++) {
 CQI_usr_x_PRB_y = flows->at(usr_x)->GetCqiFeedbacks().at(PRB_y);

 if (CQI_usr_x_PRB_y > max_CQI_usr_x_PRB_y) {
 max_CQI_usr_x_PRB_y = CQI_usr_x_PRB_y;
 M_usr_x_PRB_y = usr_x;
 }
 }

#ifdef SCHEDULER_DEBUG_PPM
 std::cout <<
 "\tPhase 1: PRB_y=" <<
 PRB_y <<
 ", num_usrs=" <<
 num_usrs <<
 ", M_usr_x_PRB_y=" <<

41

 M_usr_x_PRB_y <<
 ", max_CQI_usr_x_PRB_y=" <<
 max_CQI_usr_x_PRB_y <<
 ", ApplicationID=" <<
 flows->at(M_usr_x_PRB_y)->GetBearer()->GetApplication()-
>GetApplicationID() <<
 std::endl;
#endif

 if (M_usr_x_PRB_y >= 0) {
 /* The y-th RB has been allocated to this user x */
 flows->at(M_usr_x_PRB_y)->GetListOfAllocatedRBs()->push_back(PRB_y);

 /* Mark the user as the one with the best CQI */
 flows->at(M_usr_x_PRB_y)->SetHasBestCqi(true);
 }

 SCHEDULER_CHECKPOINT();
}

/*
 **
 * Phase 2: Managing queues and prediction
 **
 */
void
DL_PPM_PacketScheduler::ManageQueuesAndPredictPktDelays (int PRB_y)
{
 FlowsToSchedule *flows = GetFlowsToSchedule();
 int num_usrs = flows->size();
 double dl_bandwidth =
 GetMacEntity()->GetDevice()->GetPhy()->GetBandwidthManager()-
>GetDlBandwidth();

 /*
 * First identified packet number in queue k whose scheduled transmission
 * time may be late and in consequence the packet does not arrive at the
 * destination in time
 */
 int l_Q_k = -1;

 /*
 * Last identified packet number in queue k (if it exists) whose scheduled
 * transmission time may be late and in consequence the packet does not
 * arrive at the destination in time
 */
 int h_Q_k = -1;

 for (int usr_x = 0; usr_x < num_usrs; usr_x++) {
 FlowToSchedule *flow_usr_x = flows->at(usr_x);

 /* Only for user x whose CQI value is not as good */
 if (flow_usr_x->GetHasBestCqi() == false) {
 HandleScenarioA(
 usr_x,
 PRB_y,
 dl_bandwidth,
 l_Q_k,
 h_Q_k);
 SCHEDULER_CHECKPOINT();

42

 HandleScenarioB(
 usr_x,
 PRB_y,
 dl_bandwidth,
 l_Q_k,
 h_Q_k);
 }
 }
}

/*
 * Scenario A: There are packets in the queue which may not be transmitted in
 * time, and the last packet which is not transmitted in time is
 * within queue k.
 */
void
DL_PPM_PacketScheduler::HandleScenarioA (
 int usr_x,
 int PRB_y,
 double dl_bandwidth,
 int &l_Q_k,
 int &h_Q_k)
{
 FlowsToSchedule *flows = GetFlowsToSchedule();
 FlowToSchedule *flow_usr_x = flows->at(usr_x);
 RadioBearer *bearer_usr_x = flow_usr_x->GetBearer();
 QoSForPPM *qos_usr_x = (QoSForPPM *)bearer_usr_x-
>GetQoSParameters();
 MacQueue *mac_Q_usr_x = bearer_usr_x->GetMacQueue();
 int num_usrs = flows->size();

 /* Number of packets in queue k */
 int num_pkts_Q_k = mac_Q_usr_x->GetNbDataPackets();

 SCHEDULER_CHECKPOINT();

#ifdef SCHEDULER_DEBUG_PPM
 std::cout <<
 "\tPhase 2: usr_x=" << usr_x <<
 ", PRB_y=" << PRB_y <<
 ", num_pkts_Q_k=" << num_pkts_Q_k;
#endif

 if ((num_pkts_Q_k == 0) ||
 (mac_Q_usr_x->IsEmpty())) {
#ifdef SCHEDULER_DEBUG_PPM
 std::cout << " --> empty (Scenario A)" << std::endl;
#endif
 return;
 }

 l_Q_k = num_pkts_Q_k-1;
 h_Q_k = 0;

 for (int pkt_i = 0; pkt_i < num_pkts_Q_k; pkt_i++) {
 if (mac_Q_usr_x->GetPacketQueue()->at(pkt_i).GetPacket() == NULL) {
 continue;
 }

 /* Delay bound for packet i in queue k */

43

 double Db_Q_k_pkt_i = qos_usr_x->GetMaxDelay();
 //std::cout << std::endl << "Db_Q_k_pkt_i=" << Db_Q_k_pkt_i <<
std::endl;

 /*
 * Observation time to calculate which packets in queue k may not
 * arrive at destinations before delay budgets
 */
 double to_Q_k = mac_Q_usr_x->GetTimeObservationForMayNotArrivePackets();
 //std::cout << "to_Q_k=" << to_Q_k << std::endl;

 /* Arrival time for the i-th packet in queue k */
 double ta_Q_k_pkt_i =
 mac_Q_usr_x->GetPacketQueue()->at(pkt_i).GetTimeArrival();
 //std::cout << "ta_Q_k_pkt_i=" << ta_Q_k_pkt_i << std::endl;

 /* Propagation delay in physical layer for packet i */
 double tp_pkt_i =
 mac_Q_usr_x->GetPacketQueue()->at(pkt_i).GetSize() * 8 /
dl_bandwidth / 10e3;
 //std::cout << "tp_pkt_i=" << tp_pkt_i << std::endl;

 /* Average throughput for packets of user x in queue k */
 double E_Q_k_usr_x = bearer_usr_x->GetAverageTransmissionRate();
 //std::cout << "E_Q_k_usr_x=" << E_Q_k_usr_x << std::endl;

 /*
 * Interval that the i-th packet in queue k will be scheduled to
 * transmit at
 */
 double R_Q_k_pkt_i = ceil((pkt_i + 1) / (E_Q_k_usr_x * T_I));
 //std::cout << "R_Q_k_pkt_i=" << R_Q_k_pkt_i << std::endl;

 if ((Db_Q_k_pkt_i - (to_Q_k - ta_Q_k_pkt_i)) <
 (R_Q_k_pkt_i * T_I + tp_pkt_i)) {
 /* Packet i will not be transmitted in time */
 if (pkt_i < l_Q_k) {
 /*
 * Update the number for the first packet which may
 * become overdue in queue k
 */
 l_Q_k = pkt_i;
 }
 if (pkt_i > h_Q_k) {
 /*
 * Update the number for the last packet which may
 * become overdue in queue k
 */
 h_Q_k = pkt_i;
 }
 //std::cout << "IN: l_Q_k=" << l_Q_k << ", h_Q_k=" << h_Q_k <<
std::endl;
 }
 }

 //std::cout << "OUT: l_Q_k=" << l_Q_k << ", h_Q_k=" << h_Q_k << std::endl;

 if (l_Q_k > h_Q_k) {
#ifdef SCHEDULER_DEBUG_PPM
 std::cout << " --> no overdue (Scenario A -> C)" << std::endl;
#endif

44

 return;
 }

 /*
 * Number of continuously successful transmission packets in queue k before
 * the current observation time and after the last dropped packet
 */
 int N_Q_k = mac_Q_usr_x->GetNbOfTxPacketsBeforeTimeObservation();
 //std::cout << "N_Q_k=" << N_Q_k << std::endl;

 /* Estimated loss rate for queue k */
 double L_Q_k = (h_Q_k - l_Q_k + 1) / (N_Q_k + h_Q_k);
 //std::cout << "L_Q_k=" << L_Q_k << std::endl;

#ifdef SCHEDULER_DEBUG_PPM
 std::cout <<
 ", l_Q_k=" << l_Q_k <<
 ", h_Q_k=" << h_Q_k <<
 ", L_Q_k=" << L_Q_k <<
 ", T_Q_k=" << T_Q_k;
#endif

 if (l_Q_k == h_Q_k) {
#ifdef SCHEDULER_DEBUG_PPM
 std::cout << " --> all in time (Scenario A -> C)" << std::endl;
#endif
 } else if (L_Q_k >= T_Q_k) {
 /*
 * QoS for packets in queue k cannot be met.
 * Call the cut-in process.
 */
#ifdef SCHEDULER_DEBUG_PPM
 std::cout << " --> cut-in (Scenario A)" << std::endl;
#endif
 AllocCutInUserZForPrbY(usr_x, PRB_y);
 } else {
 /*
 * Discard the overdue packets in queue k.
 * Do not call the cut-in process.
 */
#ifdef SCHEDULER_DEBUG_PPM
 std::cout << " --> discard overdue (Scenario A)" << std::endl;
#endif
 mac_Q_usr_x->DiscardPackets(l_Q_k, h_Q_k);
 }

 SCHEDULER_CHECKPOINT();
}

/*
 * Scenario B: There are packets in the queue which may not be transmitted in
 * time, and the last packet which is not transmitted in time is
 * not within queue k.
 */
void
DL_PPM_PacketScheduler::HandleScenarioB (
 int usr_x,
 int PRB_y,
 double dl_bandwidth,
 int l_Q_k,

45

 int h_Q_k)
{
 FlowsToSchedule *flows = GetFlowsToSchedule();
 RadioBearer *bearer_usr_x = flows->at(usr_x)->GetBearer();
 QoSForPPM *qos_usr_x = (QoSForPPM *)bearer_usr_x-
>GetQoSParameters();
 MacQueue *mac_Q_usr_x = bearer_usr_x->GetMacQueue();
 int num_pkts_Q_k = mac_Q_usr_x->GetNbDataPackets();

 /* Average inter-arrival time for packets in queue k */
 double delta_Ta_Q_k = 0;
 double total_Ta_Q_k = 0;
 double ta_Q_k_pkt_next = 0;
 double ta_Q_k_pkt_last = 0;

 /* Average inter-stamp time for packets in queue k */
 double delta_Ts_Q_k = 0;
 double total_Ts_Q_k = 0;
 double ts_Q_k_pkt_next = 0;
 double ts_Q_k_pkt_last = 0;
 double E_Q_k_usr_x = bearer_usr_x-
>GetAverageTransmissionRate();

 SCHEDULER_CHECKPOINT();

#ifdef SCHEDULER_DEBUG_PPM
 std::cout <<
 "\tPhase 2: usr_x=" << usr_x <<
 ", PRB_y=" << PRB_y <<
 ", num_pkts_Q_k=" << num_pkts_Q_k;
#endif

 if ((num_pkts_Q_k == 0) ||
 (mac_Q_usr_x->IsEmpty())) {
#ifdef SCHEDULER_DEBUG_PPM
 std::cout << " --> empty (Scenario B)" << std::endl;
#endif
 return;
 }

 if (l_Q_k > h_Q_k) {
#ifdef SCHEDULER_DEBUG_PPM
 std::cout << " --> no overdue (Scenario B -> C)" << std::endl;
#endif
 return;
 }

 /* For queue k */
 for (int pkt_i = 0; pkt_i < num_pkts_Q_k-1; pkt_i++) {
 if ((mac_Q_usr_x->GetPacketQueue()->at(pkt_i).GetPacket() == NULL) ||
 (mac_Q_usr_x->GetPacketQueue()->at(pkt_i+1).GetPacket() == NULL)) {
 continue;
 }

 /* Calculate the total inter-arrival time for current packets in queue
k. */
 ta_Q_k_pkt_next =
 mac_Q_usr_x->GetPacketQueue()->at(pkt_i+1).GetTimeArrival();
 double ta_Q_k_pkt_i =
 mac_Q_usr_x->GetPacketQueue()->at(pkt_i).GetTimeArrival();
 total_Ta_Q_k += (ta_Q_k_pkt_next - ta_Q_k_pkt_i);

46

 /* Calculate the total inter-stamp time for current packets in queue k.
*/
 ts_Q_k_pkt_next =
 mac_Q_usr_x->GetPacketQueue()->at(pkt_i+1).GetTimeStamp();
 /* Stamp time for the i-th packet in queue k */
 double ts_Q_k_pkt_i =
 mac_Q_usr_x->GetPacketQueue()->at(pkt_i).GetTimeStamp();
 total_Ts_Q_k += (ts_Q_k_pkt_next - ts_Q_k_pkt_i);

 /* Get the last arrival and stamp times for current packets in queue k.
*/
 if (pkt_i == num_pkts_Q_k-2) {
 ta_Q_k_pkt_last = ta_Q_k_pkt_i;
 ts_Q_k_pkt_last = ts_Q_k_pkt_i;
 }
 }

 SCHEDULER_CHECKPOINT();

 /*
 * Calculate the average inter-arrival and inter-stamp times for current
 * packets in queue k.
 */
 delta_Ta_Q_k = total_Ta_Q_k / num_pkts_Q_k;
 delta_Ts_Q_k = total_Ts_Q_k / num_pkts_Q_k;

 /* Transmit the (num_pkts_Q_k-1)-th (last) packet in the following cycle.
*/
 double R_Q_k_pkt_last = ceil(num_pkts_Q_k / (E_Q_k_usr_x * T_I));

 /* Calculate the time needed to transmit num_pkts_Q_k packets in queue k.
*/
 double T_num_pkts_Q_k = R_Q_k_pkt_last * T_I;

 /*
 * Calculate the estimated number of new arrival packets into virtual
 * queue k during the time interval that all num_pkts_Q_k packets currently
 * in queue k are transmitted.
 */
 double eq_n_VQ_k = ceil(T_num_pkts_Q_k / delta_Ta_Q_k);

 /***/

 /*
 * First estimated packet number in the virtual queue k whose scheduled
 * transmission time may be late and in consequence the packet does not
 * arrive at the destination in time
 */
 int el_VQ_k = num_pkts_Q_k-1;

 /*
 * Last estimated packet number in the virtual queue k (if it exists) whose
 * scheduled transmission time may be late and cause the packet not to
 * arrive at the destination in time
 */
 int eh_VQ_k = 0;

 SCHEDULER_CHECKPOINT();

 for (int pkt_n = 0; pkt_n < num_pkts_Q_k; pkt_n++) {

47

 if (mac_Q_usr_x->GetPacketQueue()->at(pkt_n).GetPacket() == NULL) {
 continue;
 }

 /* Estimated arrival time for the n-th packet in virtual queue k */
 double eta_VQ_k_pkt_n = ta_Q_k_pkt_last + (pkt_n + 1) * delta_Ta_Q_k;

 /* Estimated stamp time for the n-th packet in virtual queue k */
 double ets_VQ_k_pkt_n = ts_Q_k_pkt_last + (pkt_n + 1) * delta_Ts_Q_k;

 /*
 * Estimated ER_n interval that the n-th packet in virtual queue k will
 * be scheduled to transmit at
 */
 double ER_VQ_k_pkt_n = ceil((num_pkts_Q_k + pkt_n + 1) / (E_Q_k_usr_x *
T_I));

 double Db_Q_k_pkt_n = qos_usr_x->GetMaxDelay();
 double to_Q_k = mac_Q_usr_x->GetTimeObservationForMayNotArrivePackets();

 /* Propagation delay in physical layer for packet n */
 double tp_pkt_n =
 mac_Q_usr_x->GetPacketQueue()->at(pkt_n).GetSize() * 8 /
dl_bandwidth / 10e3;

 if ((Db_Q_k_pkt_n - (to_Q_k - eta_VQ_k_pkt_n)) <
 (ER_VQ_k_pkt_n * T_I + tp_pkt_n)) {
 /* Packet n will not be transmitted in time */
 if (pkt_n < el_VQ_k) {
 /*
 * Update the number for the first packet which may become
 * overdue in virtual queue k
 */
 el_VQ_k = pkt_n;
 }
 if (pkt_n > eh_VQ_k) {
 /*
 * Update the number for the last packet which may become
 * overdue in virtual queue k
 */
 eh_VQ_k = pkt_n;
 }
 }
 }

 SCHEDULER_CHECKPOINT();

 /* Calculate the estimated loss rate. */
 double th_Q_k = bearer_usr_x->GetQueueSize() + 1;
 double epsilon = 0.1; /* TODO */
 double eOverdue_Q_k = eh_VQ_k - el_VQ_k;
 double overdue_Q_k = h_Q_k - l_Q_k;

 /*
 * Estimated loss rate for incoming packets in queue k and in its virtual
 * queue
 */
 int eL_Q_k = 0;
 int N_Q_k = mac_Q_usr_x->GetNbOfTxPacketsBeforeTimeObservation();

 if ((eOverdue_Q_k >= 0) && (eOverdue_Q_k < th_Q_k)) {

48

 eL_Q_k =
 ((overdue_Q_k + 1) + (eOverdue_Q_k + 1)) /
 (N_Q_k + h_Q_k + el_VQ_k);
 } else if (eOverdue_Q_k >= th_Q_k) {
 eL_Q_k = T_Q_k + epsilon;
 } else {
 eL_Q_k = (overdue_Q_k + 1) / (N_Q_k + h_Q_k);
 }

#ifdef SCHEDULER_DEBUG_PPM
 std::cout <<
 ", l_Q_k=" << l_Q_k <<
 ", h_Q_k=" << h_Q_k <<
 ", N_Q_k=" << N_Q_k <<
 ", eL_Q_k=" << eL_Q_k <<
 ", T_Q_k=" << T_Q_k;
#endif

 if (l_Q_k == h_Q_k) {
#ifdef SCHEDULER_DEBUG_PPM
 std::cout << " --> all in time (Scenario B -> C)" << std::endl;
#endif
 } else if (eL_Q_k >= T_Q_k) {
 /*
 * QoS for packets in queue k cannot be met.
 * Call the cut-in process.
 */
#ifdef SCHEDULER_DEBUG_PPM
 std::cout << " --> cut-in (Scenario B)" << std::endl;
#endif
 AllocCutInUserZForPrbY(usr_x, PRB_y);
 } else {
 /*
 * Discard the overdue packets in queue k.
 * Do not call the cut-in process.
 */
#ifdef SCHEDULER_DEBUG_PPM
 std::cout << " --> discard overdue (Scenario B)" << std::endl;
#endif
 mac_Q_usr_x->DiscardPackets(l_Q_k, h_Q_k);
 }

 SCHEDULER_CHECKPOINT();
}

/*
 **
 * Phase 3: Cut-in process
 **
 */
void
DL_PPM_PacketScheduler::AllocCutInUserZForPrbY (int usr_x, int PRB_y)
{
 FlowsToSchedule *flows = GetFlowsToSchedule();
 int num_usrs = flows->size();
 FlowToSchedule *flow_usr_x = flows->at(usr_x);
 RadioBearer *bearer_usr_x = flow_usr_x->GetBearer();

 /*
 * Expected throughput if PRB y is located to user x, 0 <= x < n_u, where

49

 * n_u is the number of users available, 0 <= y <= n_b, where n_b is the
 * number of resource blocks available
 */
 double ET_usr_x_PRB_y = bearer_usr_x-
>GetAverageTransmissionRate();
 double ET_usr_z_PRB_y = 0;
 double decrease_ET_usr_z_PRB_y = 0;
 double min_decrease_ET_usr_z_PRB_y = 0;
 int C_usr_z_PRB_y = -1;
 bool first_time = true;

 for (int usr_z = 0; usr_z < num_usrs; usr_z++) {
 /* User z must not be the same as user x */
 if (usr_z != usr_x) {
 ET_usr_z_PRB_y =
 flows->at(usr_z)->GetBearer()->GetAverageTransmissionRate();

 decrease_ET_usr_z_PRB_y = ET_usr_x_PRB_y - ET_usr_z_PRB_y;
 if (first_time == true) {
 min_decrease_ET_usr_z_PRB_y = decrease_ET_usr_z_PRB_y;
 C_usr_z_PRB_y = usr_z;
 first_time = false;
 }
 if (decrease_ET_usr_z_PRB_y < min_decrease_ET_usr_z_PRB_y) {
 min_decrease_ET_usr_z_PRB_y = decrease_ET_usr_z_PRB_y;
 C_usr_z_PRB_y = usr_z;
 }
 }
 }

#ifdef SCHEDULER_DEBUG_PPM
 std::cout <<
 "\tPhase 3: usr_x=" << usr_x <<
 ", PRB_y=" << PRB_y <<
 ", num_usrs=" << num_usrs <<
 ", C_usr_z_PRB_y=" << C_usr_z_PRB_y <<
 ", min_decrease_ET_usr_z_PRB_y=" << min_decrease_ET_usr_z_PRB_y <<
 ", ApplicationID=" <<
 flows->at(C_usr_z_PRB_y)->GetBearer()->GetApplication()-
>GetApplicationID() <<
 std::endl;
#endif

 if (C_usr_z_PRB_y >= 0) {
 /* The y-th RB has been allocated to this user z */
 flows->at(C_usr_z_PRB_y)->GetListOfAllocatedRBs()->push_back(PRB_y);
 }

 SCHEDULER_CHECKPOINT();
}

50

dl-ppm-packet-scheduler.h

/*
 *---
 *
 * dl-ppm-packet-scheduler.h
 *
 * The LTE-Sim downlink packet scheduler that implements the Packet Prediction
 * Mechanism (PPM) downlink scheduling algorithm proposed in this paper:
 *
 * "QoS-aware Downlink Packet Scheduling for LTE Networks,"
 * Computer Networks: The International Journal of Computer and
 * Telecommunications Networking archive, Volume 57 Issue 7, May, 2013,
 * Pages 1689-1698
 *
 * Howard Chang
 * howardc@sfu.ca
 * Simon Fraser University
 * 20007-2192
 *
 *---
 */

#ifndef DL_PPM_PACKET_SCHEDULER_H_
#define DL_PPM_PACKET_SCHEDULER_H_

#include "downlink-packet-scheduler.h"

class DL_PPM_PacketScheduler : public DownlinkPacketScheduler {
public:
 DL_PPM_PacketScheduler();
 virtual ~DL_PPM_PacketScheduler();

 virtual void DoSchedule(void);

 void ComputeAverageOfHOLDelays(void);

 virtual double
 ComputeSchedulingMetric(
 RadioBearer *bearer,
 double spectralEfficiency,
 int subChannel);

 void RBsAllocation();

 /* Phase 1 */
 void AllocUserXWithMaxCqiToPrbY(int PRB_y);

 /* Phase 2 */
 void ManageQueuesAndPredictPktDelays(int PRB_y);
 void
 HandleScenarioA(
 int usr_x,
 int PRB_y,
 double dl_bandwidth,
 int &l_Q_k,
 int &h_Q_k);

51

 void
 HandleScenarioB(
 int usr_x,
 int PRB_y,
 double dl_bandwidth,
 int l_Q_k,
 int h_Q_k);

 /* Phase 3 */
 void AllocCutInUserZForPrbY(int usr_x, int PRB_y);
};

#endif /* DL_PPM_PACKET_SCHEDULER_H_ */

