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Abstract

Triangulation refers to the use of a pivot language when translating from a source language

to a target language. Previous research in triangulation has only focused on large corpora in

the same domain. This thesis conducts the first in-depth study on the use of triangulation for

four real-world low-resource languages with realistic data settings, Mawukakan, Maninkakan,

Haitian Kreyol and Malagasy, where fluent translations using statistical machine translation

are di�cult to obtain due to limited amounts of training data in the source-target language

pair. We compare and contrast several design choices one needs to consider when using

triangulation. We observe that triangulation via French improves translations significantly

for Mawukakan and Maninkakan, two languages spoken in West Africa. We also improve

translations for real-world short messages sent in the aftermath of the Haiti earthquake in

2010 and news articles in Malagasy.

As part of the dissertation, we build the first e↵ective translation system for the first

two of these languages and outperform the state-of-the-art for Haitian Kreyol. We improve

translation quality by injecting more data via pivot languages and show that in realistic data

settings carefully considering triangulation design options is important. Furthermore, in all

four languages since the low-resource language pair and pivot language pair data typically

come from very di↵erent domains, we propose a novel iterative method to fine-tune the

weighted mixture of direct and pivot based phrase pairs to significantly improve translation

quality.
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Chapter 1

Introduction

1.1 Why study Low-Resource languages?

Statistical Machine Translation (SMT) has enabled translation between several languages

such as French, Spanish, Finnish. Translation systems are now available on the web. Google

Translate now supports translation between 81 languages. The success of Google Translate

in covering many di↵erent languages and producing translations of high quality for at least

some language pairs is largely due to the fact that statistical machine translation uses

machine learning methods over large amounts of previously translated material (which can

be obtained online) in order to build fluent, accurate and fast translation systems.

However, more than 90% of the world languages do not have a publicly available SMT

system. Most of the world’s languages (over 7000 languages are currently spoken around

the world) have not been studied in the context of SMT research. In Table 1.1, we show

that the major languages typically the topic of SMT research and development have many

more speakers than the languages we study in this dissertation.

Language #speakers

French 120M
Spanish 466M
Mandarin Chinese 1026M

Haitian Kreyol 12M
Malagasy 18M
Mawukakan 2M
Maninkakan 2M

Table 1.1: Number of speakers for major and low-resource languages

1
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Studying languages with insu�cient resources leads to interesting and unique linguistic

challenges. Providing a solution for these challenges take us a little closer towards the goal

of a universal translator. While there are many languages spoken around the world, each

language does not sit in isolation. Languages are often connected with other languages,

either in a synchronic or diachronic way. For instance, Malagasy has influence from French

and Arabic. While there are some loan words from French, the numbers are written right-

to-left like Arabic, while also having some vocabulary overlap with Bantu. Diacritics are

used but only in certain circumstances. Haitian Kreyol is a French-based Creole but does

not share any vocabulary with Parisian French. The influence is from 18th century French

when Haiti was ruled by France. Haitian Kreyol became an o�cial language of Haiti only

in 1961. Kreyol does not have a very complex morphology, a fact that is typical of creoles.

Furthermore, in informal contexts such as short text messages, the spelling is often not used

in any standard way. In our training data, there are a few English words that can be spelt

in Kreyol six di↵erent ways.

1.2 Phrase-based SMT Pipeline

We use a fairly standard SMT toolkit in this thesis. To the interested reader, we refer to

the comprehensive and readable SMT survey by Adam Lopez [Lopez, 2007]. In this section,

we discuss the framework for phrase-based SMT [Koehn et al., 2003] which has been used

for all the experiments in the dissertation, and discuss how a low-resource language pair can

create a stumbling block in each stage.

SMT uses data-driven models to translate sentences in a source language to a given

target language. Given a parallel corpus between s and t, a phrase-based SMT system has

a generic pipeline that looks as described in Algorithm 1.

Algorithm 1: Building a phrase-based system

Input: Parallel corpus between s and t : sentence-by-sentence translations of language s into lan-
guage t
Output: A translation model “tm”

Alignments: Learn bi-directional alignments from the parallel corpus
Extraction: Extract phrase pairs from the alignments and compute probability-based feature
values for each translation pair. This is called the translation model.
Tuning: Learn the weights for the features by maximizing BLEU score on a development set
using discriminative Minimum Error Rate Training (MERT)
Decoding: Using a language model and translation model, translate test sentences

The reason this is called phrase-based SMT is because the base unit of translation are
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Figure 1.1: Model 3: Fertility [Knight and Koehn, 2003]

phrases. The phrases do not have to be linguistically motivated. Phrases in this context

means a continuous group of words. In this dissertation, we only use phrase-based SMT

for all the experiments but there are other types of SMT models proposed in the litera-

ture. [Chiang, 2007,Galley et al., 2004]

Each step of Algorithm 1 outlined above raises questions when faced with a low-resource

language pair. Low-resource languages are those with insu�cient resources to use for Ma-

chine Translation into and/or from the language. To provide perspective, French has a

corpus with 109 parallel sentences with English. On the other hand, the language with the

highest amount of data in this dissertation is Haitian Kreyol, with 121K sentences. Out

of those 121K, only 16% are from the target domain, the sentences are noisy and with

punctuation and spelling mistakes. What do we mean by noisy here? Noisy corpus here

refers to parallel data with misalignments (sentence 1 in Haitian Kreyol aligned to sentence

3 in English), spelling mistakes (cafe -> caf*) and one sentence split into multiple without

proper delimiters (often the case in Malagasy). Note that no preprocessing was done on any

of the languages to resolve the noisy nature.

Let us consider each step and discuss the problems that come up. Given parallel data,

the goal of the alignment models [Brown et al., 1993,Vogel et al., 1996] is to learn which

word in source language s translates to target language t and assign a likelihood to the

pair of words. The advanced alignment models use initial alignments from IBM Model 1

(Model 1, henceforth). To take into account the fact that one source word can align to

multiple target words, we use IBM Model 3 which uses the concept of “fertility” to model

source words that align to multiple target words (shown in Figures 1.1 and 1.2). Model 1 is

typically initialized uniformly and uses Expectation Maximization [Dempster et al., 1977]
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Figure 1.2: Model 3: Fertility [Knight and Koehn, 2003]

direction tgt src & alignment

forward enpe tout kote NULL ( ) a ( ) bit ( 1 ) everywhere ( 2 3 )
backward a bit everywhere NULL ( ) enpe ( 1 2 ) tout ( ) kote ( 3 )

Table 1.2: Example of a forward and backward alignment

to learn the parameter values. Facing a corpus of a small size, the alignment models will

end up making inferences that are not always true. They will place higher likelihood on

pairs seen fewer number of times due to lack of data. At the end of the alignment process,

we will have two alignment files. The forward alignment file will say which words in the

target language align to which words in the source language. The backward alignment file

will say vice-versa. An entry from the backward and forward alignment files would look as

shown in Table 1.2. The forward line says that the target word “a” is aligned to nothing

on the source side, while bit is aligned to enpe and everywhere is aligned to both tout and

kote. The backward line says the same thing but the target side is Haitian Kreyol.

The phrase extraction step (Line 2) looks at alignments learnt from Line 1 in both

directions and determines which phrases can translate from one language to another using

the intersection of the alignments. There are several ways of computing the intersection

in the literature, but we consider the approach outlined in [Koehn et al., 2003]. After the

intersection, points are added if they are in the union of the bi-directional alignments and

connects a previously unaligned word. This heuristic is known as grow-diag-final-and. This

heuristic produces phrase pairs with more accurate alignments. At the end of this step, we

have a phrase table which has rules shown in Table 1.3:

The Table 1.3 says that the source phrase ! la situacion de haiti , translate to the

target phrase concerned about the situation in haiti , with the feature values shown

on the right.
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src tgt features

! la situacion de haiti concerned about the
situation in haiti

0.5 8.16237e-09 1 0.000483004 2.718

Table 1.3: Example of a phrase pair in the Haitian Kreyol to English table

Feature Explanation

p

w

(f | e) probability of seeing phrase “f” given phrase “e”
p

lex

(f | e) lexical probability of seeing phrase “f” given phrase “e”
p

w

(e | f) probability of seeing phrase “e” given phrase “f”
p

lex

(e | f) lexical probability of seeing phrase “e” given phrase “f”
phrase penalty a constant value penalizing distortion (2.718)

Table 1.4: Features of the phrase pairs, where “f” is Foreign/source & “e” is target/English

Log-linear models can define a relationship between K features of data with a function

of our interest, which in this case is p(e | f). Equation (1.1) shows the equation for a

log-linear model. The denominator is a normalizer that makes the quantity a probability.

The equation says that to find the best translation e for a given source sentence f, we

will multiply the weight of the features with the values and then normalize that over the

complete n-best list (represented by Y()). n-best list is the top-n translations of a given

source sentence.

P (e | f) =
exp

KX

k=1

�

k

h

k

(e, f)

X

e

0:Y (e0)

exp
KX

k=1

�

k

h

k

(e0, f)

(1.1)

When using log-linear models to find the best output translation for a given sentence,

we use :

p(e | f) =
Y

i

h

i

(e, f)�i (1.2)

where f is the input sentence, e is the output translation, h
i

are the feature functions

and �

i

are the weights. Typically, the log values are used by the decoder, resulting in the

equation (1.3)
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log p(e | f) =
X

i

log(h
i

(e, f))�
i

(1.3)

Typically, the log-linear model shown in equation (1.1) has 13 parameters, �1 to �13.

The components typically used are :

• phrase translation model (4 features)

• phrase penalty (2.718)

• language model (1 feature)

• distance-based reordering (1 feature)

• lexicalized reordering model (6 features)

The language model score is the score of the given target translation given by the lan-

guage model. The phrase penalty is fixed at 2.718 (value of Euler’s number e). Lexicalized

reordering models are learnt using the alignments obtained above. Five features are men-

tioned in Table 1.4. The two p

w

are the phrasal features, features that determine the

likelihood of the source phrase translating to target and vice-versa. The phrasal translation

likelihood is computed by using relative frequencies, as shown in equation (1.4).

p

w

(f | e) = c(f, e)X

f

0

c(f 0
, e)

(1.4)

The counts referred to in equation (1.4) are obtained from the alignments. Note that

the alignment models that were learnt on a small-sized corpus will cause some propagation

of errors in the phrasal probabilities.

The lexical features [Koehn et al., 2003] are computed as shown in equation (1.5) :

p

lex

(f | e, a) =
nY

i=1

1

{j|(i, j) 2 a}

X

8(i,j)2a

w(f
i

| e
j

) (1.5)

The intuition behind having a pair of lexical features is to reward phrases that contain

high probability alignments while penalizing phrases with poor alignments, which are likely

to be spurious and lead to worse translations. As shown in equation (1.5), the lexical
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probability is the product of the lexical alignment probabilities of the constituent words in

the phrase table.

Having learnt translation pairs with their respective features, we now want to know which

features are better indicators of good translations and vice-versa. For weight learning, we

use Minimum Error Rate Training. Before discussing MERT, its important to know about

BLEU [Papineni et al., 2002], Bilingual Evaluation Understudy. BLEU is the error metric

used most often when comparing output translations with reference translations. BLEU

compares an output translation with a reference translation according to equation (1.6)

BLEU

score

= BP ·
nX

i=1

w

i

p

i

(1.6)

where w
i

is the weight to the n-gram while p
i

is the modified n-gram precision and BP is the

Brevity Penalty. Brevity Penalty is used to penalize phrases that are much shorter compared

to the reference translations. It’s a way of guarding against relatively short translations with

common words. Modified n-gram precision is a corpus-based count of the n-gram, which

is modified to not count the co-occurences which are repeated in the same sentence. For

instance, for an output translation,

the the the the the the the

with a reference translation

the cat on a mat

The co-occurence of “the” is only counted once and not 7 times.

The modified precision explained above is defined as in equation (1.7)

p

n

=

X

c2{Candidates}

X

n�gram2c
Count

clip

(n� gram)

X

ć2{Candidates}

X

n�graḿ2ć
Count(n� graḿ)

(1.7)

where Candidates refers to the target set of sentences.

Minimum Error Rate Training, abbreviated as MERT from here onwards, chooses weights

for features that minimize BLEU score loss given a “tuning” set. A “tuning” set is a set

of parallel sentences between source and target that is in the same domain as the test and

of the same type. For instance, when trying to improve translations for Haitian Kreyol
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short messages, we have tuning and test in the same domain, SMS, although our training is

85:15 mix of out of domain data versus in-domain SMS data. MERT takes translation pairs

generated from a mixture of domains corpus and tunes the weights such that the transla-

tions are more like that target domain. In Haitian Kreyol, as our training rules have been

extracted from a smaller corpora that has not been manually sentence-aligned, MERT is

learning weights for features that have values which are not always true. This is why we

re-tune our weights for the interpolated model after obtaining a translated table with scaled

values from the much larger French-English table.

Now, we come back to the problem of learning weights for our log-linear model in

equation (1.1). The goal of MERT is to find the best model, with the best model producing

the smallest error with respect to a given error function. Hence, assuming we have an

error function that quantifies how erroneous is an output translation when compared to the

reference translation, MERT can provide us the best model [Lopez, 2007].

Formally, as discussed in [Lopez, 2007], if we have an error function E(ê, e) defining the

amount of error in a translation ê w.r.t reference translation e, the objective function is :

�

K

1 = argmin
�

K
1

X

(e,f)2C

E(argmax
ê

P

�̂

K
1
((ê | f), e) (1.8)

The key to MERT is doing a line search along one feature while keeping the others

constant. Lets assume a corpus of one line. In the first iteration of MERT, a n-best list

will be generated. These are the top-n translations by the decoder by using the default

weights for all the features. For a given sentence, the n-best list might look as shown in

Table 1.5. After this n-best list is generated, the task is to find the best translation for the

given source sentence. Remember that each sentence has several features and MERT has to

learn weights for each. The overall likelihood for the sentence is defined by equation (1.9).

The best is defined by the sentence which minimizes the error (equation (1.10)).

p(x) = exp

nX

i=1

�

i

h

i

(x) (1.9)

x

best

(�1, ...,�n

) = argmax

x

exp
nX

i=1

�

i

h

i

(x) (1.10)

At this point, MERT decides to do a line search. We can learn the best weight for

one feature, say at index c, by keeping all the other features constant. This is shown in
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Source n-best list

ki kote y ap bay manje ?

how can i find help for my province of aquin .
how can i find help for my in aquin .
how can i find help for my part of aquin .
how can i find help for my province of aquin ?
how can i find help for in my province of aquin .
how can i find aid for in my province of aquin .
how can i find help for my part aquin .
how can i find help for my in aquin ?
how can i find help for my country aquin .
how can i find help for my in aquin .

Table 1.5: Example of a n-best list, where n  100

equation (1.11)

u(x) =
X

i 6=c

�

i

h

i

(x) (1.11)

Now, the equation (1.10) will look like equation (1.12).

x

best

(�
c

) = argmax

x

�

c

h

c

(x) + u(x) (1.12)

Now, each translation in the n-best list is the line of an equation and the points at which

the best � for this line will change is at the points where the line intersects. The best �

can be found in the same way for all the lines in the tuning set and the one that minimizes

BLEU loss over the whole corpus becomes the weight for this feature.

The process outlined above explains both the good and bad about MERT. The good

being that MERT works e↵ectively around the fact that we have a scenario of minimizing

BLEU loss, which is not smoothed and which is a corpus level error metric, inside an

argmax as in equation (1.8). The bad is that MERT does not scale to many features. At

each iteration, weights have to be learnt for all the features. After the iteration, the n-best

list is regenerated to have the maximum number of entries, done to cover the hypothesis

space as much as possible. To avoid local minima, in practice, MERT is started from not

one but a few random points.

Having obtained the weights and a language model on the target side, decoding refers to

the process of finding the best translation for the source sentence as shown in equation (1.13).
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e

best

= argmax
e

p(e | f)

= argmax
e

p(f | e)p
LM

(e)

= argmax
e

IY

i=1

p(f̂
i

| ê
i

)d(start
i

� end

i�1 � 1)p
LM

(ê)

To find the e

best

, we want to go over all possible translations of the foreign sentence f.

Using Bayes Rule, we flip the search to now have a translation model p(f | e) and a language

model p
LM

(e). The foreign sentence f is segmented into a sequence of phrases f1 to fI. d

is defined as the distortion penalty. Some languages show long distance reorderings (e.g In

Japanese, the verb comes at the end of the sentence) but most languages do not. In those

cases, allowing long distance reordering leads to poorer translations. Hence, in the decoding

model, we add a parameter for the distortion, which is defined as the distance between the

next word we are choosing and the current word.

Phrase-based SMT has been used with great success before in the literature. But, as

described above, the approach is quite data-driven and it is not clear how to achieve fluent

translations with only a little parallel data.

1.3 Examples using triangulation

The easiest way to get better translations is to have more data between the source and target

languages. As the amount of data increases, the models will learn the correct alignments

which leads to more meaningful translation rules with accurate feature values and thus,

more fluent translations. The second easiest way is to improve tokenization for the source

and/or target language. Better tokenization goes a long way in pre-processing the text

correctly. But, what do we do when these two options are not available?

In the Table 1.6, we mention a sentence in Mawukakan from the heldout data. The direct

translation is the output translation we obtain by only using the 3K training sentences we

have. The interpolated output shown is the output after interpolating a triangulated model

with the direct translation model. The reference translation is the best translation for that

sentence. The word yàngáláà and lákwé are out-of-vocabulary words for the direct system.

Words that have no translations in the phrase table are out-of-vocabulary words. By using

an English translation via the Europarl corpus, we translate all the source words in the

interpolated table. In the second example, all the source words are known. But, we get a
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Language Category Example translation

Mawukakan
Before her father yángàlóò has lákwè everything

After the disease her father is not in a position to everything
Reference the illness has rendered her father invalid

Mawukakan
Before the entrance of the child behind her back and let us go home

After the child behind her back and let us go home
Reference take the baby in your back and let ’s go home

Haitian Kreyol
Before do we still have earth-shock for haiti ?

After are there always earthquake in haiti ?
Reference are there any more earthquakes in haiti ?

Table 1.6: Examples of improvements in translations. These examples show how the pivot
language can provide new useful candidate translations missing from the direct system.

Figure 1.3: Example of triangulation from [Clifton, 2012]

weird “the entrance” phrase in the beginning. What went wrong? When we look deeper, we

see that “the entrance” is one of the top translations for the word là, out of 23 translations

in the direct table. After triangulation and interpolating with the direct system, it has

1615 translations and “the entrance” is nowhere to be seen. This is because some of the

translations of là have common pivot phrases which end up making the translation model

give lower value to the existing ones. Another example of triangulation is shown in Figure 1.3

from [Clifton, 2012].

The approach of triangulation [Cohn and Lapata, 2007,Utiyama and Isahara, 2007,Wu

and Wang, 2007] aims to add translations for new source phrases while also improving

translations for existing source phrases. Both the aims are contingent on the common pivot

phrases between the source pivot and pivot target tables. New source phrase translations

(like shown in Table 1.6) can be added if one has the source phrase in a source pivot corpora

that leads to a new target phrase in the pivot target corpus. In a low resource scenario, its
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important to achieve both aims with triangulation. Owing to less training data, the direct

system has several out-of-vocabulary (OOV) words. We aim to reduce the number by using

triangulation. At the same time, it is reasonable to assume that the source phrases we do

have translations for are not always right, as seen in the second example on Table 1.6. We

put our trust in triangulation to improve existing translations.

1.4 Contributions of this dissertation

We conduct the first in-depth study of the design choices in triangulation, the first using four

real low-resource languages with realistic data settings. As part of the dissertation, we also

build the first translation systems for two of the four languages. Our Haitian Kreyol system

outperforms the best system from the Sixth Workshop on Machine Translation, 2011. Our

Haitian Kreyol system gets 34.00% accuracy while a leading online translation system gets

16.72% on the same heldout set. As part of our study, we compare and contrast the models

for computing phrase scores, lexical scores and also propose a novel iterative method for

doing linear interpolation.

1.5 Experimental Setup

Moses [Koehn et al., 2007] was used for all the experiments. Moses is a leading publicly-

available, open source SMT system with a rich documentation and active contributors.

To build our baseline systems, we followed the standard set of steps: generated bi-

directional alignments using GIZA++ [Och and Ney, 2003], followed by phrase extraction

using the –grow-diag-final-and heuristic. The heuristic intersects the alignments in both

directions and takes the longest alignment that is common. The decoder parameters were

optimized using Minimum Error Rate Training [Och, 2003] by minimizing BLEU [Papineni

et al., 2002] loss on a development set. All scores reported are case-insensitive BLEU. All

language models were generated using SRILM [Stolcke, 2002].

KenLM [Heafield, 2011] was used for language model scoring when decoding. SRILM

is a language modeling toolkit for generating language models covering several smoothing

and interpolation models. KenLM enables fast lookups in large language models by using

e�cient data structures.

1.6 Remarks

In this chapter, we described a generic phrase-based SMT pipeline and discussed the chal-

lenges that come up when facing a low-resource language pair. We also mentioned examples
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of how triangulation improves translations. In the next chapter, we will discuss triangula-

tion in more detail and also describe the various design choices involved in e↵ective usage

of triangulation.



Chapter 2

Triangulation

2.1 What is Triangulation?

To explain triangulation, let’s use an example from the previous chapter. We saw in the

previous chapter that the sentence yàngáláà w"́"́ à à lákwé kóó b"́ mà . had two OOVs

resolved after interpolating with a triangulated table. In other words, the direct system did

not have any knowledge about two phrases, yàngáláà and lákwé. We observe that in the

source pivot table, we have 1 rule for the word yàngáláà.

yàngáláà ||| la maladie ||| 0.285714 0.0926127 1 0.16 2.718

The French phrase “la maladie” has 215 translations in the Europarl table. We use all

215 options to compute feature values for new (yàngáláà, tgt) translation pairs and select

the top-n and add it to the table. These steps are explained in a formal manner below.

Consider a source language, s, a target language, t, and a pivot language i. You have a

little parallel data between s and t and believe that triangulation will increase the quality

of translations between s and t. What steps one would follow to get the desired result?

The algorithm for triangulation is described in Algorithm 2. Having obtained new source

target pairs by using the common pivot phrases in Line 1, we proceed to compute the feature

values for the new phrase pairs (Line 4). To minimize the noise, we only select the top-n

translations for any given source phrase (Line 6). Line 1 reiterates the importance of having a

source pivot corpus of reasonable size. The triangulated translation model is contingent upon

common pivot phrases and without a reasonably-sized source pivot corpus, we cannot fully

utilize the large pivot target corpus (2M Europarl sentences in this dissertation). Having

generated a triangulated translation model, one can combine it with the existing baseline

14
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Algorithm 2: Vanilla Triangulation

Input: phrase table between s and i, p
s�i

,
phrase table between p and t, p

i�t

,
n for selecting top-n phrase pairs
Output: p

trian

, initially empty

1: for all (src, pivot) in top-n p
s�i

do
2: if pivot phrase in p

i�t

then
3: for all (pivot, tgt) pairs in p

i�t

do
4: compute feature values for (src, tgt)
5: end for
6: select top-n src-tgt pair, add to p

trian

7: end if
8: end for

model in several ways [Bertoldi et al., 2008,Nakov and Ng, 2012,Cohn and Lapata, 2007].

Having obtained a new source target pair, how best to compute the feature values? For

source phrase src, target phrase tgt and pivot phrase pvt, we can compute the feature values

like in [Utiyama and Isahara, 2007] using the following equations :

p

lex

(tgt | src) =
X

pvt

p

lex

(tgt | pvt)p
lex

(pvt | src) (2.1)

p

lex

(src | tgt) =
X

pvt

p

lex

(src | pvt)p
lex

(pvt | tgt) (2.2)

p

w

(tgt | src) =
X

pvt

p

w

(tgt | pvt)p
w

(pvt | src) (2.3)

p

w

(src | tgt) =
X

pvt

p

w

(src | pvt)p
w

(pvt | tgt) (2.4)

For all the feature values, we multiply the corresponding values for source pivot and

pivot target entries and marginalize over the pivot phrase. Note that we are making an

independence assumption shown in equation below.
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Source phrase translations

à lá báárá ñúmá kóśn for the good job he has accomplished

à lá báárá ñúmá kóśn

her good work
the good work
the good work carried out
the good work done
the good work done by
the good work he has done
the good work that
the sound work

Table 2.1: 1 translation before and 8 after triangulation for a source phrase in Maninkakan

p(tgt | src) =
X

pvt

p(tgt, pvt | src)

=
X

pvt

p(tgt | pvt, src) p(pvt | src)

⇡
X

pvt

p(tgt | pvt) p(pvt | src)

We are assuming that the pivot phrase fully represents the information and thus, neglect

the tgt phrase in the equation (2.5). We call this approach the Product approach.

Multiplying all the features on the source pivot and pivot target is an obvious first way

to obtain feature values for the triangulated table. Most previous papers follow the same

route for initial scores. As we will see later, using the joint probability and changing the

lexical scores leads to small but consistent improvements.

In Table 2.1, we see that the source phrase à lá báárá ñúmá kóśnas only 1 translation

before using triangulation. Note that the training corpus has the word “accomplished” only

once. After using the target phrases in Europarl, we get 8 translations for the same phrase.

We also see that “work” has changed to “job” and the possible target phrases are shorter.

2.2 Models

2.2.1 Top-n filtering

The size of the triangulated phrase table is controlled by the number of translations n

considered for a given source phrase. Consider a source phrase p
s

that translates to p
p

in the

pivot language. The phrase p
p

has 1293 translations in the pivot target table. Considering all
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Setting Utiyama:07 Cohn:07

Phrase Scores Product approach Joint Model
Lexical Scores Product approach IBM Model 1
Interpolation n/a Uniform
Corpus Europarl Europarl

Table 2.2: Comparison of [Utiyama and Isahara, 2007] and [Cohn and Lapata, 2007]

the 1293 translations will result in 1293 translations for the phrase p
s

via one pivot phrase. It

is reasonable to expect the phrase p
s

to have multiple pivot translations, all having a higher

number of translations in pivot target. Considering all translations is not recommended for

several reasons. Firstly, this will lead to a very large phrase table. Table 2.3 shows the

number of rules we can end up with if we consider all possible paths to a target phrase.

To put it in perspective, the direct table for Mawukakan and Maninkakan have 51K and

60K phrase pairs respectively. Secondly, along with valid translations, triangulation also

adds some noise to the translations by considering several translations of the common pivot

phrase. Considering all translations would add even more noise to our triangulated phrase

table. Having said that, when one has only 5000 parallel sentences for the direct system,

how large a value of n is enough? We found that using n = 100 was the same as using n =

1000 in terms of the BLEU scores. We also observed that using a value of more than 100

added noise for Haitian Kreyol and Malagasy. Thus, it is important to pay attention to the

fan-out limit in triangulation.

Language Direct Table Triangulated Table

Maninkakan 51K 106.7M
Mawukakan 60K 151.6M

Table 2.3: Number of rules if all possible paths are considered

2.2.2 Connectivity features

The phrase pairs in the triangulated phrase table are contingent upon the common pivot

phrases. As a result, we can have phrase pairs that map “!” to a target phrase “and making

the soup thick !” in Haitian Kreyol to English triangulated phrase table. Computing feature

values using equations from section 2.2.1, it is reasonable to assume that spurious phrase

pairs like above can get a high enough feature value to end up as a translation during

decoding. To reward phrase pairs that have more alignment links between and to penalize
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pairs that don’t, we add two connectivity features to the phrase table, as used in [Kholy

and Habash, 2013].

For a source phrase p
s

, target phrase p
t

, and with the number of alignment links between

them N, the strength will be calculated as follows :

source

strength

=
N

S

target

strength

=
N

T

where S is the length of the source phrase p
s

and T is the length of the target phrase

p
t

. To compute the connectivity strength feature, the alignments in the source pivot phrase

pair are intersected with the pivot target phrase pair. If the resulting alignment has a

higher strength, it implies that a majority of the source words do have an alignment with

the target.

2.2.3 IBM Model 1 Alignment

In section 2.2.1, we computed the lexical scores by multiplying the component scores and

marginalizing over the pivot phrase. The component lexical scores are a measure of the

word-to-word alignment [Koehn et al., 2003] and by multiplying them, the final lexical

scores are implying some strength-of-tie for each pair in the source target translation. But,

as was discussed in 2.2.1, using triangulation adds some noise to the translation model by

proposing spurious translations.

An alternative way to compute the lexical score is to use a Model 1 [Brown et al.,

1993] score between the phrase pairs in the triangulated table. Treating the triangulated

phrase table as a parallel corpus, we learn the model 1 alignment scores in both directions

using 5 iterations of the EM algorithm [Dempster et al., 1977]. Given a Foreign sentence

f = f1 . . . fm, English sentence e = e1 . . . e
l

, the model 1 score between the sentences is

calculated as follows:

p(f, a | e) = ✏

(l + 1)m

mY

j=1

t(f
j

|e
a(j)) (2.5)

The strength features in section 2.2.2 assign a phrase-level score to a given translation

pair. The score does not reflect the actual many-to-one alignments between the phrases.

A Model 1 score learns the likelihood of the alignment of the individual words, while also
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considering the fact that a triangulated table will have less number of source phrases trans-

lating into good and some noisy translations. Noisy translations will automatically get a

lower Model 1 score, something less likely to happen when using the simpler approach of

multiplying the lexical scores. This e↵ect of noisy translations ending up as a viable trans-

lation during decoding is also because of the limited source pivot training corpora available.

Several translations have been only seen once and the phrase lengths are not very long either

(85% of Mawukakan and Maninkakan phrase table has entries less than or equal to 3 words).

A modified IBM Model 1 score is also used in [Cohn and Lapata, 2007] in the absence of

word alignments. They report a BLEU score improvement of 2 points over the standard

feature set when using the Model 1 score, but we observe a di↵erent pattern altogether

across all the four resource-poor languages which is explained in more detail in Section 3.4.

2.2.4 Joint and Conditional Distributions

Another way of calculating the triangulated phrase scores p
tr

(e | f) and p

tr

(f | e) would be

to take the joint probability p

tr

(s, t) and decompose it to get the conditional distributions.

But, we do not have the counts in the triangulated phrase table. The pairs that end up

in the triangulated table are contingent on the common pivot phrases that connected the

source target pair, thus, counting the pairs after triangulation will not be a true reflection

of the joint probability. For a triangulated table between src and tgt, using source pivot

table sp and pivot target table pt, we can compute the joint probability of a phrase pair (s,

t) as follows:

p

tr

(s, t) =
X

i

p

sp

(s, i)p
pt

(i, t)

=
X

i

p

sp

(s | i)p
sp

(i)p
pt

(i | t)p
pt

(t)

This is a more accurate description of the joint probability of the (s, t) phrase pair in

the triangulated table because we are using source pivot and pivot target counts, both of

which have been extracted from the alignments.

We compute p

sp

(s, i) using equation (2.6)

p

sp

(s, i) = p

sp

(s | i)p
sp

(i) (2.6)

As we have the counts for the direct system, computing the joint and the conditional
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distributions is relatively straight-forward. When interpolating the triangulated and direct

translation models (2.7), the three new features are added to the log-linear pipeline. Owing

to the smaller size of the source pivot corpora, we observed it was better to add the three

new features to the log-linear pipeline and let MERT decide which features lead to a better

BLEU score. This is in contrast to [Cohn and Lapata, 2007] where they combine the joint

probability of the phrase pair from direct and triangulated uniformly, and use the resulting

conditionals as part of the log-linear pipeline.

2.3 Translation Model Combination

Combining translation models, trained on corpora from di↵erent domains, is an inherently

di�cult task. We want to make our translations better on the domain of the test set, while

also correcting errors in our baseline translation model. In case of low-resource languages,

the baseline translation model has been trained on completely out-of-domain corpora or

some in-domain and a lot of out-of-domain corpora. This results in translation pairs that

are missing altogether or translation pairs with so low probability that decoding misses them

altogether. The aim of Interpolation is to add translation pairs that are missing and give

more weight to translations that are more valid in the given domain.

Consider the translations from Haitian Kreyol to English. We have a baseline model

trained on a little in-domain parallel data (less than 17K sentences). We aim to make our

translations better on the same domain using a lot of out-of-domain data, which in our

case is parliamentary proceedings. It’s important that we do not make the baseline model

translations end up at the bottom of the stack because they are in-domain. At the same

time, we do not want to miss out on the valid translations introduced by the larger, clean

parliamentary proceedings based translation model.

2.3.1 Example

Consider a phrase pair, (jan nou, that you). Each phrase pair has a set of scores associated

with it in the phrase table. They are the forward and backward lexical probabilities, and

the forward and backward phrase probabilities.

From the direct phrase table, we have the following scores for the phrase pair mentioned

above. The last score, 2.718, is a constant which is the phrase penalty.

jan nou ||| that you ||| 0.000786782 2.11603e-05 0.125 0.00906772 2.718

The triangulated table also happens to have the same phrase pair with di↵erent scores.
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These scores have been obtained by using the equations shown above.

jan nou ||| that you ||| 0.00318015 7.75194e-05 0.0715829 0.00214831 2.718

We know that our direct system has been trained on in-domain data, hence, it should

get more weight intuitively. A heuristic approach to this problem would choose a pair of

values and see which one does best. For instance, if you choose 0.85 for the direct table

and 0.15 for the triangulated table, the end result for the phrase pair would look like the

following :

jan nou ||| that you ||| 0.0011 2.961416503e-05 0.116 0.0080 2.718

There are several flaws with the approach outlined above. Firstly, an intuitive idea about

the importance of the in-domain or out-of-domain phrase table is not enough. The direct

Haitian Kreyol to English phrase table has been trained on only 120K parallel sentences

and cannot always be right. Hence, starting with 0.9 for the direct table and 0.1 for the

triangulated table is an extreme step. So is 0.5 and 0.5 because we want translations with

more influence from the cleaner, larger Europarl data. Moreover, as we will discuss in the

other chapters, we report results on several combinations of triangulation, based on changes

in phrase scores, lexical scores and adding connectivity features. With every improvement,

the importance of the triangulated table might increase or decrease. The heuristic approach

will not be able to take that into account.

We use CONDOR [Thain et al., 2005] to perform an e�cient grid search over the pairs

of co-e�cients based on the BLEU score of the interpolated system on the heldout set. Our

interpolation method would have the steps outlined in Algorithm 3

For instance, consider the word “tranblemanntè”. It gets translated to shaking by our

best baseline system. After interpolating our top-20 triangulated translation model, it

gets translated to earthquake. Note that the word earthquake is present in the baseline

translation model but does not end up as a translation for the source word “tranblemanntè”.

p

interp

(s | t) = �

d

p

d

(s | t) + (1� �

d

)p
t

(s | t) (2.7)

Given a source target phrase pair (s, t), we use uniform linear interpolation as shown in

equation (2.7)to scale all the feature values.

Algorithm 3 explains the process of using CONDOR [Thain et al., 2005] to find the

best interpolation co-e�cient for a given direct and triangulated model. Note that the
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Algorithm 3: Grid Search for Interpolation

Input: triangulated phrase table p
t

,
direct phrase table p

d

,
�

d

, �
t

= 1� �

d

, prev
bleu

= 0,
minimum = e

�2

Output: best
�d

1: while �

bleu

> minimum do
2: interpolate p

d

, p
t

to give p
interp

3: Run MERT using p
interp

as translation model
4: find bleu

heldout

5: �

bleu

= bleu
heldout

- prev
bleu

6: prev
bleu

= bleu
heldout

7: Based on �

bleu

, find new�
d

8: end while

approach can be easily extended to multiple triangulated models. Line 2 interpolates the two

translation models using equation (2.7). We re-tune the log-linear weights using MERT for

the interpolated feature values and use the tuned model to find BLEU score on the heldout

set. Based on the di↵erence between the BLEU score obtained and the previous BLEU

(line 7), CONDOR searches for the new co-e�cient in the corresponding direction. The

search will culminate when consecutive BLEU scores show a marginal di↵erence (Line 1).

For instance, we start with a value of 0.85 for the direct system from Mawukakan to English

we obtain a BLEU score of 9.10. If we use uniform weights for both the tables, we get

BLEU scores on heldout as shown in Table 3.7. In three of four cases, we would not have

out-performed our baseline. We can try 0.50, 0.60, 0.70 and 0.80 [Nakov and Ng, 2012] and

run MERT for each choice. Although 0.70 would have given us our best BLEU for this pair,

we observed that di↵erent languages led to di↵erent interpolation weights (Table 2.4), and

this was di↵erent for di↵erent design choices for each language pair (Haitian Kreyol and

Malagasy have disjoint systems). Our method automates grid search for the mixture weight

and combines it with minimum error rate training of the log linear models for both direct

and triangulated systems.

2.4 Summary

In this chapter, we discuss the approach of triangulation and how it helps in introducing new

phrase pairs. We also discuss various models that a↵ect the performance of the triangulated

system, top-n filtering, adding connectivity features, using IBM Model 1 alignments and
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Language Best �d

Mawukakan 0.84
Maninkakan 0.75
Haitian Kreyol 0.95
Malagasy 0.82

Table 2.4: Di↵erent languages have di↵erent interpolation co-e�cients that lead to the best
system. Although we always start with 0.85, we iterate systematically over di↵erent values
to obtain the best co-e�cient.

computing the joint distribution for phrase pairs. Finally, we discuss the importance of

using insights from Domain Adaptation to learn the relevant weights for the direct and

translation models with the goal of maximizing BLEU score on a given heldout set.



Chapter 3

Triangulation for Very Low-Resource Languages

3.1 Four Very Low-Resource Languages

Faced with a low-resource language pair, several questions arise when combining a direct

translation model with a triangulation model:

• In [Utiyama and Isahara, 2007] all possible triangulated phrases are used, even very

unlikely ones. We show that it is better to eliminate unlikely triangulated phrases.

• In [Utiyama and Isahara, 2007, Cohn and Lapata, 2007,Wang et al., 2012,Wu and

Wang, 2007] many di↵erent feature functions are provided for the log-linear model over

triangulated phrase pairs. We conduct extensive experiments to show which features

should be used for real world low-resource languages based on the data settings for

each language pair.

• In [Cohn and Lapata, 2007] a mixture of the direct system and the triangulated system

is shown to work better. However, they used uniform weights. In [Wang et al., 2012]

a few di↵erent weights were selected heuristically while in [Wu and Wang, 2007],

0.9 is assumed for the baseline. We provide an algorithm that combines grid search

for learning the mixture weights and minimum error rate training of the direct and

triangulated log-linear models.

24
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de en

560K560K

560K

(a) Setting for [Utiyama and Isahara, 2007]

fr

de en

10K10K

10K

(b) Low-Resource Setting for [Cohn and
Lapata, 2007]

fr

mw en

2M5K

3K

(a) Setting for Mawukakan

fr

mn en

2M4K

4K

(b) Setting for Maninkakan

Figure 3.2: Comparison of our low-resource scenario with triangulation for Europarl. In our setting,
the source pivot corpus is quite constrained, thus, limiting the fan-out for triangulation

To answer some of the above questions, we study the e↵ectiveness of pivot-based tri-

angulation for languages with insu�cient resources, Mawukakan, Maninkakan, Malagasy

and Haitian Kreyol. Figure 3.2 compares our data settings with previous research into

triangulation. Mawukakan and Maninkakan are two languages from the Mandekan family,

spoken by almost 3.5 million people in West Africa. The Mandekan languages are a part

of the Niger-Congo language family. Maninkakan and Mawukakan have little writing tra-

dition, are written using multiple alphabets 1 and have very little resources for Machine

Translation. Malagasy is the national language of Madagascar, spoken by 18 million peo-

ple worldwide. Haitian Kreyol is the national language of the Republic of Haiti and data

used is from the Sixth Workshop on Machine translation, 2011 [Callison-Burch et al., 2011].

It comprises short messages sent to the number 4636 after the devastating earthquake in

January, 2010. Although nine systems participated in the workshop on Haitian Kreyol, the

approach of triangulation was not used. To our best knowledge, this is the first in-depth

study of triangulation in a real-world low-resource setting and also the first for the four

languages mentioned above. Mawukakan, Maninkakan and Malagasy do not have publicly

available SMT systems.

1data we have used has Latin script, obtained via LDC



CHAPTER 3. TRIANGULATION FOR VERY LOW-RESOURCE LANGUAGES 26

In the aftermath of the earthquake in Haiti in January, 2010, Mission 4636 set up a

service where anyone in Haiti could send a message for free to a phone number 46362. A

group of volunteers translated the messages into English and helped the relief organizations

provide swift help to the a↵ected masses. Microsoft Research released a translation system

to the public, for Haitian Creole, 5 days after the devastating earthquake [Lewis and Munro,

2011]. The fast turnaround time3 and the usefulness of Machine Translation in the time of

crisis inspired the featured task in the 6th Workshop on Statistical Machine Translation.

Although Haitian Kreyol is a French-based Creole, the approach of inducing a Haitian Kreyol

to English phrase table by pivoting via French was not used.

Malagasy is an Austronesian language and the national language of Madagascar, spoken

by 18 million around the world. Although it shares several words with Ma’anyan, it has

influences from Arabic, French, Swahili and Bantu. Characters can have diacritics but not

always. Numbers are written right-to-left like Arabic, while some words are in common with

French. It follows the Latin alphabet but with 21 characters. Finally, the dataset we have

is real-world news articles translated by volunteers across the world4 and aligned using a

sentence aligner, thus, introducing some inconsistencies.

Mawukakan5 and Maninkakan6 are two of the four languages of the Mandekan family.

They have no writing tradition, are spoken by a few million people around the world and

are unique in several ways. Several characters have diacritics but they can have di↵erent

stress depending on the nearby words. The lengths of sentences are relatively longer when

compared to English. By using triangulation and significantly improving the output trans-

lations, we hope to preserve the existing data and encourage more monolingual and parallel

data production.

3.2 Datasets

All the source sentences in Mawukakan have both French and English translations. Not all

sentences in Maninkakan have both translations. The numbers for each of the datasets are

mentioned in Table 3.2. The training data for Haitian Kreyol is the same as released in the

Workshop. Malagasy training data also has not been changed in any manner. Both Haitian

2
http://www.mission4636.org

3
To know the exact timeline, refer to http://languagelog.ldc.upenn.edu/nll/?p=2068

4http://www.ark.cs.cmu.edu/global-voices/
5http://catalog.ldc.upenn.edu/LDC2005L01
6http://catalog.ldc.upenn.edu/LDC2013L01
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language src/tgt

mawu à à f́ á nè kò búlàmá mùsò kwáò à yá w"́"́ó lé é à mátá à

people say that she performs magic

manin àlù bárá álámánd́i bèn à kàn , kà à más̀r̀ s"́b"́ t"́ à lá mòr̀ifà lá
they fined him because his gun is not legally registered

ht j’ aimerais avoir quelques informations svp , concernant ce numero 4636 en
quoi je peux l’ utiliser
i would like to have information regarding the number 4636. how do i use it

mlg takelaa facebook ho an ‘ i laura sy euna efa manana mpikambana maherin ‘
ny dumy arivo sahady
a facebook page for laura and euna already has more than five thousand mem-
bers

Table 3.1: An example for each language: mawu = Mawukakan, manin= Maninkakan, ht
= Haitian Kreyol, mlg = Malagasy

Kreyol and Malagasy have no parallel data with other languages except English. To use

triangulation, we needed parallel data with one more language to use as a pivot.

To enable us to reach French phrases, we have used the Bible as our source pivot text

for Haitian Kreyol and Malagasy. The Bible gives us 30K sentences of text that is relatively

clean. To align the Bible in source languages and French, we used hunalign [Varga et al.,

2005], a sentence aligner. No manual alignment was done. As a result of using Bible, our

source pivot, pivot target and source target models are all trained on disjoint and unrelated

domains for Haitian Kreyol and Malagasy. For Haitian Kreyol, we aim to improve transla-

tions for short messages using the Bible to reach French phrases present in parliamentary

proceedings. For Malagasy, we aim to improve poorly aligned news articles using the Bible

to reach the same French phrases. As shown in our results, we improve the translations for

both over the target system.

3.2.1 Pre-processing

The English and French side of Mawukakan and Maninkakan parallel data sometimes have

forward slashes separating equivalent English and French translations. For both, the femi-

nine form was chosen. For instance, a sentence

he/she/it goes to school
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was replaced by the English sentence

she goes to school

Text between square brackets was removed. As development, heldout and test sets are

not separately released, the last 2000 sentences was used for development, heldout and

test together, for both Mawukakan and Maninkakan. The top 1000 was kept aside for

development, while 500 each was kept aside for heldout and test. The last 2000 sentences

make up 40% of the total data for Mawukakan and 33% of the total data for Maninkakan.

We kept aside a large percentage for development and testing to get a better idea about the

di↵erence between the various models.

Both Haitian Kreyol and Malagasy are tokenized using the French tokenizer that is part

of the Moses toolkit while Mawukakan and Maninkakan are tokenized using the English

tokenizer.

3.2.2 Development and evaluation data

For Haitian Kreyol, the same development, heldout and test data has been used as the

Workshop on Machine Translation. For Malagasy, the development data has been used

as-is. As there is no separate heldout set, we have used the top 500 sentences of the test

data as heldout, keeping aside the rest as unseen test data.

We used 40% and 33% of total data for Mawukakan and Maninkakan respectively for

development, heldout and test data. A larger proportion was kept aside to make sure

evaluation can be done over a range of sentences. The distribution of the evaluation data

is shown in Table 3.5. The development, heldout and test sets for Haitian Kreyol have

raw and clean versions. The raw versions are the short messages sent as-is, while the clean

versions are the same messages with some words corrected or removed, e.g caf* in raw is

cafe in clean version.

In Table 3.4, we observe that even with a constrained source pivot in Europarl, where

we only use the top 50K sentences as source pivot, the triangulated table still finds 1.3M

rules common, which is much larger than we observe for the four languages shown. Having

perfectly sentence aligned data which is also multi-parallel goes a long way in expanding

the triangulated phrase table.
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setting src tgt src pivot pivot tgt domains

[Utiyama and Isahara, 2007] 560K 560K 560K multi-parallel
[Cohn and Lapata, 2007] 700K 700K 700K multi-parallel
[Cohn and Lapata, 2007] 10K 10K 10K multi-parallel

Mawukakan 3K 5K 2M di↵erent
Maninkakan 4K 4K 2M di↵erent
Haitian-Creole 120K 30K 2M di↵erent
Malagasy 88K 30K 2M di↵erent

Table 3.2: Comparison of the low-resource scenario with Europarl

Language #baseline-rules #triangulated-rules

Mawukakan 51066 1.3M
Maninkakan 60097 0.8M
Haitian Kreyol 4.8M 13.6M
Malagasy 5.5M 7.1M

Table 3.3: Number of phrase pairs before and after triangulation

System #rules

mawu-fr-en 1.3M
manin-fr-en 0.8M
ht-fr-en 13.6M
mlg-fr-en 7.1M

de-fr-en 28.7M
fr-es-en 13.7M
es-fr-en 12.95M

Table 3.4: Comparison of triangulated phrase table sizes for Europarl(50K src pivot and
2M pivot tgt) and four languages we study

Language dev heldout test

Mawukakan 1000 500 500
Maninkakan 1000 500 500
Haitian Kreyol 900 900 1274
Malagasy 1133 500 633

Table 3.5: Training, development, heldout and test sets for all 4 languages
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System d(cl) d(r) t(cl) t(r)

just-ood 27.56 20.77 26.72 20.14
just-sms 32.85 29.15 32.09 27.56
full 33.52 29.76 33.1 28.19
full-bigLM 33.6 29.83 33.07 28.91

Table 3.6: Di↵erent baselines for Haitian Kreyol

3.3 Baselines

Broadly, the training data for Haitian Kreyol can be divided into 3 parts, SMS, Out-of-

domain and Wikipedia with 16k, 88k and 17k parallel sentences respectively. We observe,

as shown in Table 3.6 that only using the OOD data does not take us very far. Just using

the 16.6K in-domain short messages leads to a better BLEU score than not using it. Using

all of the data leads to the best baseline. The bigLM refers to an interpolated language

model comprising the English side of Haitian Kreyol workshop data and the English side

of Europarl. For all the other experiments, baseline-bigLM is the baseline and the same

language model has been used throughout, for Haitian Kreyol.

The baseline BLEU score for all the four languages are reported on Table 3.7. Note that

the baseline for Haitian Kreyol outperforms the best system from the Workshop.

3.4 Results

Despite using a disjoint and out-of-domain Bible as source pivot and Europarl as pivot

target, both Haitian-Creole and Malagasy lead to a better BLEU score on using an inter-

polated model comprising the direct and triangulated model. As indicated in the example

in section 2.3, words that were mistranslated earlier get the right translations after pivoting

via a large and clean fr-en phrase table.

For both Mawukakan and Maninkakan, the BLEU scores show a more significant increase

of 2.2 and 1.5 BLEU points respectively for the top-n interpolation model. As the training

and source pivot corpora for both comprises commonly spoken sentences that are not very

long, the English side of Europarl e↵ectively augments the limited target side of the training

corpus, thus, leading to better translations after interpolation.

Intuitively, the two connectivity features should penalize the spurious and less aligned

phrases, thus, reducing the noise and rewarding the just translations. But, the e↵ect is not

observed in the BLEU scores. Except in the case of Haitian Kreyol where it improves by a
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small margin, adding the two connectivity features reduces the BLEU score. This could be

owing to the fact that the source pivot data is tiny and the intersection of the alignments with

the clean Europarl alignments is leading to feature values that do not e↵ectively discriminate

between the good and bad. For instance, in Mawukakan and Maninkakan, 60% and 66%

phrase pairs have a source connectivity strength of more than 0.5 while 67% and 69% have

more than 0.5 in the backward direction. With feature values that show a more skewed

distribution, the connectivity features are not helping distinguish good from bad.

Setting Mawu Manin Haitian-Creole Malagasy

Baseline 7.08 9.41 33.6 18.8

Uniform 9.35 10.50 33.44 18.51

top-n 9.29 10.91 33.84 19.17
top-n + Strength 9.17 10.80 33.92 19.03
Model 1 9.02 10.69 34.00 19.20
Joint 9.62 11.06 33.85 19.10

Table 3.7: Results for all languages: Uniform is interpolated model with uniform weights

Figure 3.3: Grid search over interpolation co-e↵s leading to a best BLEU of 10.91 using �
d

= 0.612962

Although Model 1 helps in the case of Malagasy and Haitian Kreyol, they do not help

in the other two languages.

Adding the joint and decomposed conditional distributions as features does well for

Mawukakan and Maninkakan, leading to the best system for both. For Haitian Kreyol, we

replicated [Cohn and Lapata, 2007] setting of using uniform weights for the joint probability

and decomposing to find the conditional distributions, but adding the values to the log-linear
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pipeline outperforms uniform interpolation of joint probabilities.

The advantages of using Grid Search over interpolation co-e�cients is denoted by the

BLEU scores on the row Uniform. Uniform is the interpolated model that uses uniform

weights for both the direct and the top-n triangulated phrase tables. We observe that

our best system outperforms the uniform system in all the four languages, although the

improvements are slightly lower in the cases of Mawukakan and Maninkakan. Previously, the

weights for the interpolation were not learnt systematically. They were assumed heuristically

and the process was not iterative.

Language baseline v/s best uniform v/s best

Mawukakan 0.00 0.4
Maninkakan 0.00 0.4
Haitian Kreyol 0.07 0.02
Malagasy 0.08 0.01

Table 3.8: baseline v/s best indicates the p-value when the baseline system is compared
to our best system;uniform v/s best indicates the p-value when an interpolated model
with uniform weights is compared to our best system

3.4.1 Significance Testing

The final translations for a sentence are an output of a hypothesis. A hypothesis that, given

the previous words translated with a score, assigns the highest likelihood to the output we

see. But, this hypothesis is a result of an optimization algorithm (MERT) that uses a non-

smoothed error count (BLEU) on a corpus level. To how the statistical significance of our

results, we use multeval [Clark et al., 2011] to perform bootstrap resampling on our BLEU

score hypotheses. We compare our baseline score in Table 3.7 to our best system for all four

languages. In Table 3.8, we observe that our best systems for Mawukakan and Maninkakan

are better than the baseline, while the other two systems have a p-value of more than 0.05,

thus, indicating some instability in the best system. We find that our best systems for

Mawukakan and Maninkakan are not significantly better than using uniform weights. This

is not very surprising because our target domain is not di↵erent like short messages or news

articles, they are simple sentences spoken in the real world about everyday happenings (i

go to school, she married him). The source pivot and direct source target system is also

extremely small. These factors enable the uniform model to have a comparable performance

to our best system. For Haitian Kreyol and Malagasy, where our target domain is di↵erent
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from Europarl and also our source pivot system, we find that our best system is significantly

better than a uniform interpolated model.

3.5 Summary

In this chapter, we report our observations on using triangulation for four real-world low-

resource languages with data settings that are significantly di↵erent and more constrained

when compared to previous research into triangulation. We find that using triangulation

helps but it is more helpful to make careful design choices, all of which provide small but

consistent gains. We observe that a tiny source pivot corpus can still help in improving

translations by using alternative target phrases from the English side of Europarl.



Chapter 4

Related Work

4.1 Triangulation

Consider a source language s, pivot language p and target language t. When using the

cascading approach, we build two systems, between s and p and between p and t. Given a

test set in s, it is first translated to p and those output translations are then translated into

the target language t, making decoding twice as expensive as well. We do not report our

results on using cascading for various reasons. Firstly, translating the output of a source

pivot system trained and tuned on little data will lead to propogation of errors. Secondly, we

will need three development sets, one for each system. Finding standard development sets

for low-resource languages is unlikely. Finally, it has been shown before that cascading does

not give the most fluent translations. [Utiyama and Isahara, 2007] compared pivot-based

triangulation with cascading using all of multi-parallel Europarl, observing that pivot-based

methods outperformed cascading.

The second approach is the pivot-based approach where a triangulated phrase table

is generated between the source and target, by using the common pivot phrases between

the source pivot and pivot target tables [Utiyama and Isahara, 2007, Cohn and Lapata,

2007,Wu and Wang, 2007]. [Utiyama and Isahara, 2007] observed that the triangulated

table was able to achieve comparable BLEU scores to the direct system for French, Ger-

man and Spanish. This could be owing to the fact that the data comprised multi-parallel

560K sentences. [Cohn and Lapata, 2007] observe that multiple pivot languages lead to

more fluent translations compared to one pivot language. Multiple pivot language lead to

multiple alternative translations, thus, increasing phrase coverage and rewarding the more

appropriate translations and reducing out-of-vocabulary words further. They also propose a

systematic way of combining the triangulated translation model with the direct model using

34
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linear interpolation and log-linear interpolation, although they assume a uniform weight for

both the models. To “simulate” a low-resource scenario, the top 10K multi-parallel sen-

tences are considered for source pivot, pivot target and source target systems. As we will

observe later, real low-resource scenarios are significantly di↵erent from how it was simu-

lated in [Cohn and Lapata, 2007]. [Nakov and Ng, 2012] propose a language-independent

approach to improving translation for low-resource languages, but the approach assumes the

presence of a resource-rich language that bears similarity to the low-resource language, the

similarities helping in creating a large triangulated phrase table. In [Wang et al., 2012], the

resource-rich language is adapted to be more like the resource-poor one. Notice that this

also assumes both are very similar. Results are reported using both Malay-Indonesian and

Bulgarian-Macedonian, the third language being English in both cases. [Gispert and Mario,

2006] translate Catalan to Spanish via English by using news corpora on both source pivot

and pivot target side. [Huck and Ney, 2012] report on BLEU score improvements by using

109 parallel sentence between German and French.

[Paul et al., 2009] evaluate the performance of Cascading and pivot-based approach

over a range of di↵erent pivot languages. But, the languages used are not low-resource, and

some European languages have also been used. [Costa-jussa et al., 2011] compare Cascading

with a pseudo-corpus approach. In a pseudo-corpus approach, the pivot language is used to

generate a noisy source target corpus. But, the dataset for evaluation is a Chinese-Spanish

corpus with 3 languages as pivot. [Kholy et al., 2013] observe that using categories for source

target pairs when combining the direct and triangulated models helped in improving the

BLEU score. In other words, a source target pair can be in both the direct and triangu-

lated phrase tables, or only one of them could be in both. They enumerate the di↵erent

possibilities and use them as separate decoding paths. [Wu and Wang, 2007] also approach

triangulation in a similar way to [Cohn and Lapata, 2007] but use di↵erent methods to

compute lexical weights. They find improvements using linear interpolation and “simulate”

low-resource by using small subsets of Europarl. [Zhu et al., 2013] try to address the problem

of missing translations in triangulation (as pivot phrases are not always in both tables) by

using a random walk approach. The initial triangulated phrase table is extended by treating

the table as a graph and using a random walk to obtain more translations. [Crego et al.,

2010] focus on improving one system (German-English) in their case by using a dynamically

build model from auxiliary sources. In other words, they translate the source sentence using

various models and then use a framework to combine the di↵erent outputs.
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A common thread that binds the previous work using the approach of Triangulation is

the usage of resource-rich languages. The fundamental reason behind the e↵ectiveness of tri-

angulation is the reduction in the number of OOVs when using the pivot language(s). This

can be observed in various forms. If the source and pivot language have a healthy vocabulary

overlap, the SMT system between source-pivot is large, thus, improving translations. This

factor also helps when the amount of parallel text between source-pivot is relatively low,

e.g, Indonesian-English. All the Europarl languages are based on parlimentary proceedings

and have minimal noise. Hence, the improvements using triangulation over the direct sys-

tems cannot be generalized for systems for low-resource languages. All the papers that use

triangulation in machine translation cite either [Utiyama and Isahara, 2007] or [Cohn and

Lapata, 2007], both published in 2007 (and sometimes cite both of them but use either one

model or the other). However, these two papers introduce triangulation for phrase-based

SMT in very di↵erent ways and their models are di↵erent from each other. “Simulating”

low-resource scenarios is ine↵ective in various ways. Firstly, real low-resource languages are

noisy, not perfectly sentence aligned, and do not have a lot of data in the target domain.

Secondly, triangulation is highly dependent on how good is the source pivot bitext. If the

size of source pivot bitext is comparable to the source target, and/or is in the same domain,

this increases bias in triangulation by introducing several common phrases, and, this is also

not seen in a real low-resource setting. [Cettolo et al., 2011] build an Arabic-Italian system

by using comparable documents and cascading via English as the pivot language to improve

the translations.

[Hal Daumè, 2007] proposed domain adaptation by straight-forward duplication of

features. [Bertoldi et al., 2008] suggested using alternative decoding paths when having

di↵erent translation models. In our experiments, we found that alternative decoding paths

did not work so well. This could be partly be because there are not that many alternatives

when having two translation models of very di↵erent sizes and from di↵erent domains.

When we do have alternative paths, they may not always be useful. Making trade-o↵s is a

constant theme especially when facing low-resource languages. We want to maximize the

good influence from the out-of-domain parlimentary proceedings but we do not want to

undervalue translations that we get right already. [Cohn and Lapata, 2007] propose uniform

linear interpolation and log-linear interpolation. Before interpolating, they compute the

joint probability of phrase pairs and use the resulting conditionals in place of the scores

computed in equations (2.1) to (2.4).
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When working with low-resource languages, we realized that insights from domain adap-

tation help us in getting to the best possible translations. [Foster et al., 2007] do instance

reweighting for out-of-domain phrase pairs and use it for linear interpolation of di↵erent

translation models. The work has not yet been studied in the case of triangulation and it

will be an interesting experiment to find out how the reweighting would fit and in which

step. Out-of-domain phrase pairs in triangulation far outnumber the in-domain phrase pairs

and we have also observed that doing a grid search over interpolation co-e�cients works the

best.

To our knowledge, before this dissertation, there has been no in-depth study of the

di↵erent choices in building an SMT system using triangulation. Cascading and pivot-

based triangulation have been compared [Utiyama and Isahara, 2007,Gispert and Mario,

2006], and a hybrid method has also been proposed [Wu and Wang, 2009] but results on

using just pivot-based triangulation with real low-resource languages and comparing the

di↵erent choices one needs to make has not been studied before.

4.1.1 Europarl

Europarl is short for European Parliament and refers to the multi-parallel corpora generated

by translating the proceedings of European parliament into several languages. Version 7 of

Europarl now has 20 languages, from French to Estonian and Finnish. Release of the

Europarl corpus led to a surge in research into more and more data-driven methods to

enable Statistical Machine Translation. The results were easily reproducible and the data

is very clean and sentence-aligned. Each language has development and test sets which are

used to report and reproduce results.

What does multi-parallel imply? Consider English as the common target language. A

multi-parallel corpus between 20 European languages and English comprises sentences in

20 European languages which translate to the same English sentence. In Table 4.1, an

English sentence and it’s corresponding translations in French, Spanish and German are

shown. These are the 10th sentence in each of the files. The German, French and Spanish

sentences are the same English sentence. When using triangulation for a multi-parallel

corpora like Europarl, one is e↵ectively tracing di↵erent steps to the same target. This

helps in expanding the resulting phrase table due to many common phrases.

To give some perspective, we will discuss some results using triangulation for Europarl

in this section. [Utiyama and Isahara, 2007] used 560K multi-parallel sentences for their
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Language sentence

en i would like to ask what ideas have been developed in this report .
de ich mchte fragen , welche vorstellungen man in diesem bereich entwickelt hat .
es quiero preguntar qu ideas se han desarrollado en este contexto .
fr je voudrais demander quelles proposition on a mis au point dans ce domaine .

Table 4.1: Multi-parallel example: en = English, de = German, fr = French, es = Spanish

System #sentences

direct 100K
src pivot 50K
pivot target 2M

Table 4.2: Our own data setting for Europarl triangulation

source pivot, pivot target and source target systems. [Cohn and Lapata, 2007] reported

results using all 700K sentences and using 10K sentences each. It is but obvious that using

all the available multi-parallel sentences for triangulation leads to results that cannot be

generalized to a low-resource scenario. But, consider the setting of 10K each. Considering

the top 10k sentences would mean that we have a low-resource source language with which

we are using a low-resource pivot language too. Even though it’s likely to deal with a

low-resource language pair, it’s ine↵ective to use triangulation by also assuming that the

pivot language itself is low-resource. Moreover, we are not e↵ectively using the knowledge

we have on using large-resource languages like French and Spanish. Using a manually set

poor Europarl language also necessitates the usage of multiple pivot languages to resolve

OOVs, something that [Cohn and Lapata, 2007] found e↵ective when using triangulation.

We believe that considering the top 10K sentences does not fully mimic a low-resource

scenario.

In the experiments below, we consider a constrained data setting similar to what we

faced with Haitian Kreyol and Malagasy. The distribution of data is shown in Table 4.2

We consider top 100K sentences for our direct system while considering only top 50K of

those for our source pivot system. This gives us some common words to use for triangulation

but not all of 100K, which would have brought us on or above par with our direct system. On

the other hand, we use all available data on our pivot target system, which is approximately

2 million lines of parliamentary proceedings of Europarl version 7. We report results on

3 languages, French (fr), Spanish (es) and German (de), all translating into English. All
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System BLEU

es-en 23.32
fr-en 19.53
de-en 15.60

Table 4.3: Baselines for our setting for all three languages

src-tgt pivot baseline top20 top40 top60 top80 top100

de-en fr 15.60 13.32 13.33 13.35 13.42 13.03
de-en es 15.60 13.37 13.17 13.49 13.34 13.36
fr-en de 19.53 16.21 15.82 15.89 16.08 15.95
fr-en es 19.53 17.77 18.15 17.99 18.01 18.27
es-en fr 23.32 21.35 21.18 20.83 21.01 21.45
es-en de 23.32 18.36 19.19 19.35 19.23 18.97

Table 4.4: BLEU scores using just the triangulated phrase table, for n = 20 to n = 100

the results are using one pivot language. The language model used is a 5-gram Kneser-Ney

interpolated language model using the English side of Europarl.

4.1.2 Results

The baseline models are trained on the top 100K sentences of fr-en, es-en and de-en. The

baseline results are as shown in Table 4.3

Before we report our results on interpolation, let’s find how far we can reach in terms

of BLEU scores when only using the triangulated table. As the triangulated table uses

multi-parallel corpora, intuitively, we should perform as well as the baseline at the least.

Observe the results in Table 4.4

But, we observe a consistent drop in BLEU scores compared to the baseline. Our

constrained source pivot means that the number of OOVs for the triangulated table are

more than the OOVs for the direct system. With more OOVs, the BLEU score reduces due

to the reduction in the modified unigram precision as discussed in the Introduction chapter.

The results using the top-20 interpolation method, top20 + strength model, Model

1 substitution and the Joint model are reported in Table 4.5. We observe that vanilla

interpolation brings the BLEU score close or a little more than the baseline for all the

language pairs. Adding the connectivity features, Model 1 scores or the Joint feature does
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src-tgt pivot baseline top20 strength M1 joint

de-en fr 15.60 15.45 15.62 15.24 15.52
de-en es 15.60 15.55 15.55 15.49 15.61
fr-en de 19.53 19.85 19.85 19.92 19.76
fr-en es 19.53 19.86 19.90 20.03 19.66
es-en fr 23.32 23.66 23.66 23.85 23.70
es-en de 23.32 23.68 23.55 23.84 23.65

Table 4.5: BLEU scores using di↵erent interpolated models for Europarl

not make a discernible di↵erence to the BLEU scores.

4.2 Summary

In this chapter, we compare our models with most of the previous work done into using

the approach of triangulation. We also discuss some insights from Domain Adaptation that

prove to be useful when combining translation models in triangulation. For the sake of

comparison, we report results using previously discussed triangulation models by applying

them on a simulated low-resource setting. We find that having a constrained source pivot

in multi-parallel Europarl makes it more challenging to have the BLEU score improvements

that have been reported in the literature before.



Chapter 5

Conclusion & Future Work

5.1 Conclusion

We started the dissertation by discussing the questions that come up when using the ap-

proach of triangulation in a low-resource language pair. In this dissertation, we have an-

swered those questions.

We showed that it is better to eliminate unlikely triangulated phrases by limiting our

fan-out limit.

Which model out of the product approach and joint model works better for phrase

scores? We found that in a multi-parallel scenario, the joint model works better while in a

disjoint scenario (like Haitian Kreyol), the product approach gave better BLEU scores.

Which model out of the product approach and IBM Model 1 works better for lexical

scores? We found that IBM Model 1 works better each time. Having said that, we believe

that the IBM Model 1 can be improved by changing the initialization from uniform to

something that takes into consideration the actual number of alignment links between the

phrase pair. We plan to address this in future work.

How best to interpolate the direct and triangulated models? We found that using the

approach of grid search over model weights worked out the best. Besides comparing the

interpolated model with our best baseline system, we also compared how we would have done

had we taken uniform weights for both our models. And we found that we are significantly

better (p<0.05) for Haitian Kreyol and Malagasy. This implies that when faced with a

disjoint scenario, it helps to do grid search over the weights significantly. When faced with

a data scenario that has some/all multi-parallel data with the source pivot, using uniform

weights performs comparably (although worse in terms of absolute BLEU scores). Note that

significance testing using p-values was computed by using approximate randomization [Clark

41
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et al., 2011]. To get the complete picture, we would need to do human evaluation. Human

evaluation is an expensive process although Mechanical Turk has been used before for other

Natural Language Processing tasks.

To summarize, we observe that the approach of triangulation helps when used with low-

resource languages. For two languages, we conduct the first study in SMT literature and

report significant improvements by using triangulation. We also find that paying attention

to design choices leads to small but consistent improvements. Finally, insights from domain

adaptation help in learning the best ways of combining models from di↵erent corpora when

using triangulation in low-resource scenarios.

5.2 Future Work

5.2.1 More Sophisticated Lexical Models

We used IBM Model 1 in place of lexical scores that were summed up over all pivot phrases.

In future work, we would like to explore more sophisticated lexical models. For instance, we

use –grow-diag-final-and as our alignment heuristic, which actually is quite conservative as

it considers intersection of alignments in both directions and only adds unaligned phrases

if they are part of the union of the alignments. We could only use the forward alignments

of source pivot and intersect with the forward of pivot target, bypassing the backward

alignments, and use the counts obtained from the forward ones to initialize Model 1. This

will nullify some of the aggressiveness of –grow-diag-final-and

As the connectivity features and the Model 1 features are complementary, we can also

change the initialization of Model 1 to reflect the word alignment score and the phrase-level

connectivity. Using IBM Model 3 is trickier as its not very clear what fertility is optimum

for the given low-resource languages.

5.2.2 Using Hierarchical phrase-based SMT

In all the experiments, we used phrase-based SMT systems. In hierarchical phrase-based

systems [Chiang, 2007], we can translate phrases with gaps. This generates a lot more phrase

rules while also being able to translate phrases with longer reorderings. Hiero systems have

not been used before for low-resource triangulation and it will be interesting to see if more

possible rules with gaps lead to better translations.
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5.2.3 Considering Sub-phrases

A restriction of pivot-based triangulation is the dependence upon exact matches of pivot

phrases. A French translation “le pivot el muli” has to be the exact same phrase on the

French-English table to be used for the triangulated table. An alternative would be to

consider sub-phrases.

Consider a source pivot pair,

h1 h2 h3 ||| a1 a2 a3

Now say that a1 a2 a3 does not exist in the pivot target table. The source phrase will

not end up with any target phrases from triangulation. But, assume that a2 a3 exists in

the pivot target table having 55 translations. If we could align h1 h2 h3 to all those target

phrases with corresponding scores computed as before, we have new rules that would not

have been if we had not taken sub-phrases.

It’s ambiguous to consider any source phrase. Instead of considering any sub-phrase,

we might perform better by considering only consecutive words that make up sub-phrases.

Also, on the source side, instead of considering the whole sub-phrase, it will be more realistic

to only consider words on the source side that are actually aligned to the sub-phrase we are

triangulating with.

Considering sub-phrases is an even more interesting challenge when using hierarchical

phrase-based systems, which have synchronous context-free grammars as rules, like below:

IX1X2|||toX1X2 (5.1)

X1 and X2 are known as “gaps”, essentially they are gaps that can be filled by other

phrases. But, there are constraints on how the non-terminals can be positioned. Firstly,

there can only be 2 on the source side. As the pivot of source pivot is the source of pivot

target, we can essentially only triangulate with rules having 2 non-terminals. When trying

to consider sub-phrases, we will have to consider how to deal with non-terminals. For “to

X1 X2”, do we consider “to X2” as a pivot? Or “to X1”?

If we assume either of them as pivots, what about the non-terminals on the source

and target side? We will also need a new feature function which models the sub-phrases

themselves and their connectivity, something like the connectivity features used above but

with non-terminals.
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5.2.4 Faster Parameter Learning

In all the interpolation experiments, we are learning one parameter (best weight for the

direct system). When using more translation models, the approach of using CONDOR is

not scalable. We run an iteration of MERT to completion for each co-e�cient and it will

be ideal to have faster ways of achieving the best parameters. An approach like [Foster

et al., 2007] of instance re-weighting for linear interpolation would be a good first attempt.

The model has not been used for triangulation before and it will be interesting to see if

we can use a similar approach to re-weight the phrase pairs from baseline while also giving

importance to the right phrase pairs from triangulated table. There is a ratio mismatch in

triangulation for low-resource languages because of the tiny size of the direct phrase tables.

Hence, when doing instance re-weighting, more than 95% of the instances will actually be

from the triangulated phrase table. Thus, some changes will be needed to adapt to the

skewed setting of the translation models.
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