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Abstract 

The integration of Augmented Reality (AR) with Extended Kalman Filter based 

Simultaneously Localization and Mapping (EKF-SLAM) is proposed and implemented on 

a humanoid robot in this thesis. The goal has been to improve the performance of EKF-

SLAM in terms of reducing the computational effort, to simplify the data association 

problem and to improve the trajectory control of the algorithm. Two applications of 

Augmented Reality are developed. In the first application, during a standard  EKF-SLAM 

process, the humanoid robot  recognizes specific and predefined graphical markers 

through  its camera and obtains landmark information and navigation instruction using 

Augmented Reality. In the second stage, iPhone on-board gyroscope sensor is applied to 

achieve an enhanced positioning system, which is then used in conjunction of a PI motion 

controller for trajectory control. The proposed applications are implemented and verified 

in real-time on the humanoid robot NAO.  
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Chapter 1.  
 
Introduction 

At this particular time of human’s history, it is envisaged that the current 

technology allows us to design “human-like” machines. Humanoid robots are the first 

generation of such systems and have attracted significant research and public interest 

over the last two decades. The emergence of cost effective robots such as NAO [1] in 

recent years have facilitated research in many areas from sensing and perception, 

obstacle detection, dynamic stability, gait generation ,real-time control, navigation and 

path planning to social robotics [2]. In particular, many studies have addressed the 

problem of humanoid robot navigation through an unknown environment using on-board 

sensors such as laser and vision [3-6].  In order to provide a robot with navigation 

capabilities, it should be able to obtain a working map of the environment as well as its 

own position within the map. However, this information is not generally available when 

the environment is not known a priori (i.e. indoor) and the robot cannot position itself in 

that environment. Considering the example of indoor spaces (I-space): different from 

outdoor spaces (O-space), I-space is generally in a smaller scale than O-space, and O-

space positioning technologies are not applicable to I-space such as GPS and other 

technologies are used such as Wi-Fi and RFID [7]. Whereas, typical indoor 

environments are generally partially known (i.e. recognizable landmarks) and one can 

use the known information to improve the navigation process. Research in the last two 

decades has studied the above problems either in isolation or together towards the 

realization of autonomous robots.  Such robots have the capability to solve the problem 

of Simultaneous Localization and mapping (SLAM). While the SLAM problem has been 

intensively researched, many challenges still remain, such as map representation, data 

association, localization, and computational complexity [8]; the problem is still open for 

further research and is studied in this thesis. To provide contributions to the SLAM 

problem, this thesis proposes a novel approach that integrates probabilistic based 
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landmark SLAM algorithm with a popular vision based technology Augmented Reality 

(AR). 

Augmented Reality is a technology that brings an enhancement to a human or a 

machine perception of an environment by combining computer-generated sensory input 

to the view of physical environment. Specifically, it has been recently broadly used for 

indoor and outdoor navigation in multiple platforms such as mobile phone and head-

mounted display (HMD) for the convenience of human, but very few implementations are 

found in robotics. The primary objective of this thesis is to implement AR technology on 

a humanoid robot NAO in order to enhance and complement Extended Kalman Filter 

(EKF) based probabilistic SLAM algorithm in an indoor environment, which has 

previously been employed onto the NAO robot in thesis [9]. Augmented Reality is 

applied in this thesis intending to provide original EKF-SLAM algorithm with 

improvement on computational demand, simplification on the data association process, 

and enhancement on the trajectory path of the robot. Research proposed in this thesis is 

a continued work in the Autonomous and Intelligent Systems Laboratory (AISL) based 

on [10-13].  

1.1. Objectives 

The rationale for this project is to address supplementary solutions to standard 

SLAM (Simultaneous Localization and mapping) problem. We argue that indoor 

environments are partially known and other technologies could enhance the 

performance of standard SLAM algorithm. In particular, we employ augmented reality as 

an additional feature that could improve the SLAM solution. Most current research on 

augmented reality addresses its application for overlaying virtual information on real 

information for human use. In contrast, we argue that a robot could also benefit from 

augmented reality by using additional instruments to “augmented its understanding of 

the environment”.  

 

In this context, the preliminary objectives in this project are summarized as 

follow: 
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• Encoding AR-EKF-SLAM algorithm in Python programming language (Chapter 

4,5) 

• Implementing full AR-EKF-SLAM on humanoid robot NAO (Chapter 5) 

• Experimentation and validation on AR-EKF-SLAM and result analysis and 

discussion (Chapter 5,6) 

1.2. Thesis outline 

This thesis presents the implementation of Augmented Reality onto the SLAM 

problem of a humanoid robot NAO. The presentation is organized in several chapters 

that discuss the theoretical and experimental approaches of the proposed 

implementation. 

Chapter 2 provides a selected and directed literature review on three topics 

related to this study. A survey on different types of mobile robots with a focus on biped 

robots is presented first. Then the technology of Augmented Reality and its applications 

are reviewed. Solving robot localization and mapping problem by using probabilistic 

approach in SLAM is introduced at last. 

Chapter 3 presents a comprehensive overview of the robot platform NAO 

humanoid robot used in this thesis. NAO’s specification, software framework, and 

implementation methods are included. 

In chapter 4, EKF-SLAM is demonstrated including a comprehensive description 

of the algorithm and its simulation and real-time implementation. EKF-SLAM is 

interpreted with the description of SLAM components and SLAM process, and in the 

implementation section, simulated and real experimental results with different number of 

landmarks are also demonstrated. 

Extensive studies based on EKF-SLAM and Augmented Reality integration are 

discussed in Chapter 5. This chapter includes two distinctive applications of Augmented 

Reality integrated with the original EKF-SLAM program, which is considered as the main 

contribution of this thesis. 
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In Chapter 6, the results from the original EKF-SLAM experiment and from the 

two applications of Augmented Reality are presented and compared in order to clarify 

the improvement of AR-EKF-SLAM algorithm. 

In Chapter 7, conclusions, contributions and future works are discussed. 
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Robot Platforms 

 

Chapter 2.  
 
Literature review 

Conducing a thorough literature review prior to starting my research project was 

instrumental in my understanding of the background theory and  provided me  with 

valuable information regarding the state-of-the-art of the technology and  related 

methodologies adapted by other researchers around the world . This chapter mainly 

consists of three parts: a summary of literature survey on different types of mobile robots 

with a focus on land-based robots, continued with solving the robot localization and 

mapping problem using probabilistic approach in SLAM, and followed by an overview of 

Augmented Reality with its applications in robotics. Figure 2.1 demonstrates the related 

areas and the scope of the thesis. Those shown in highlighted squares designate the 

areas that are directly addressed in the thesis.  Bold entries are covered in this thesis. 

 

 

 

 

 

 

 

   Figure 2.1.  Scope of the thesis 
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2.1. Mobile robots 

A Mobile Robot is common platform for robotic navigation studies and is capable 

of navigating through an environment with limitless operational area. It has many 

different applications stretching from home entertainment for children, through rescue 

and secure missions as well as military assistance, to universe exploration [14]. In order 

to complete the task, various types of robots has been designed, which are mainly 

classified by the environment they operate within. These include 

Land-based robots, usually called Unmanned Ground Vehicles (UGVs) [15].This 

type of robot travels on the surface of ground either with no human presence or carry 

passengers onboard. A variety of applications can be found for this type in the field of 

civil transportation, material handling, military assistance, healthcare for elderly and the 

disabled, security and entertainment.  

Air-based robots, often named Unmanned Aerial Vehicles (UAVs) [16]. This type 

of robot operates in the air and has no human pilot on board. Applications usually found 

in autonomous planes, helicopters, and Blimps. 

Water-based robots also referred to as autonomous underwater vehicles (AUVs) 

[17]. The robot is able to travel underwater without the manipulation from human. In 

operation, AUVs is remotely controlled by an operator from the surface and the most 

common application areas for AUVs are military operation and undersea scientific 

research. 

The SLAM problem is common among all the above categories of autonomous 

robots. Among the three general types of robot above, land-based robots are the most 

popular in either universities academic research or real applications. However, the 

applications of a land robot can be distinguished by  the fundamental designs within this 

type are limited to three: tracked, wheeled and legged (or bi-biped).   Following sections 

introduce two of the most common approaches of locomotion for land-based robots: 

using wheels and legs. The respective advantages and disadvantages along with the 

suitable situations for selected types are discussed. 
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2.1.1. Wheeled Mobile Robot 

Wheeled robots are robots that travel on the ground via several motorized 

wheels. For navigation on the most common type of ground surfaces such as flat and 

less rough terrain, the design of a mobile robot using wheels is relatively simpler than 

the tread or legged robot. Therefore, the wheeled robot is the most popular solution 

among other types of robot locomotion and has been used to propel robots and robotic 

platforms of different sizes. There is a wealth of different technical designs for wheeled 

robots, which can be generally differentiated by the number of wheels equipped. 

• Two-wheeled robots 

A two wheeled robot is also referred to dicycles, mounted with two motorized 

wheels at left and right side of robot. For this type of robot, it is easy to imagine that 

the main issue is to keep upper body upright at movement. In order to do this, the 

two wheels must keep moving in the direction that the robot is failing. Thus, a 

common design of two wheel robot with good balance usually has its batteries 

underneath the body to ensure a low center of gravity of the robot [18]. For example, 

Nbot (figure 2.2) uses inertial sensor and position information from encoder to 

balance [19].  

 

 
Figure 2.2. Two-wheeled balancing robot Nbot [19] 
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• Three-wheeled robots 

A three-wheeled robot usually propels by two powered wheels plus a free 

turning wheel. In figure 2.3 we can see that three wheels on the robot are installed in 

a triangle to balance. The center of balance of the robot is recommended to be 

designed as close to the center of the triangle as possible to keep stable while 

driving. To change directions, the relative rotation of each powered wheel is 

commanded at different rate based on the amount of turning required. For example, 

the robot will go along a straight line if both wheels rotate at a same speed. This type 

of driving system is commonly called differential steering system [20]. Two pioneer 

three wheeled-robots with differential steering wheels are used as project platforms 

in my AISL research lab (Figure2.4). 

 
Figure 2.3. Three-wheeled robot using differentially steered system [14] 
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Figure 2.4. Three-wheeled pioneer robot in AISL lab 

2.1.2. Legged Robot 

Legged robots achieve mobility using several mechanical legs. Legged 

locomotion robot if designed properly have  better mobility than wheel locomotion on 

very uneven, rough terrain due to the irregularity of ground condition. Alike wheeled 

robots, the number of legs for a legged robot can be different, whereas each leg must 

have at least two degrees of freedom (DOF) to make it mobile. For each DOF one joint 

is a required, which is commonly powered by one servo [21].In the following, select most 

popular leg configurations are shown and discussed.  

• Two-legged robots/Humanoid Robots 

Two legged or bi-pedal robots move in the same way that human does. The 

studies on biped robots have become one of the most popular topics in the last 

decade for the obvious reason of similarity of locomotion between the biped robot 

and humans. Due to the nature of biped robots, most of the research has been 
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focused on humanoid robots, an autonomous robot with human form and human-like 

abilities [22]. A well-known application of bi-pedal humanoid robot is NAO robot 

(Figure2.5), developed by Aldebaran Robotics in France. The robot is able to do 

various tasks that a human does, such as walk, stand, pick and place, and even 

dance. NAO is also selected to be my research platform and will be introduced in 

details in next chapter.  

 
Figure 2.5. Humanoid Robot NAO in AISL lab 

• Four-legged robots 

A four-leg or tetrapod scheme is another walking system that is often found in 

nature. Comparing to a biped robot, a four-legged robot have the advantage of being 

more statically stable while standing. The walking pattern for a four-legged robot is 

designed in different ways including opposite pairs and alternating pairs [23].   
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• Six-Legged robots 

Many of the walking robots have more than four legs for greater stability.  Six 

legged (Hexapod) robot locomotion is the most popular leg locomotion because that 

it provides the static stability rather than a dynamic stability while moving and 

standing. Most of the six legged walking techniques are biologically inspired from 

insects such as six legs spiders. Wave gait and tripod gait are commonly used gait 

models for hexapods and robots with more legs [23]. 

• Waive gait [24] 

As demonstrates in Figure2.6, waive gait has 5 steps: 

1.  All six legs in neutral position 

2.  Front pair of legs step forward 

3.  Second pair of legs step forward 

4.  Third pair of legs step forward 

5.  Robot body move forward following legs 

 

 
Figure 2.6. 5 steps wave gait [23] 

• Tripod Gait [24] 

Figure2.7indicates a 4 steps movement for tripod gait: 

1.  All six legs in neutral position 

2.  Alternating legs step forward on either side (3 legs) 

3.  The other 3 legs step forward 

4.  Robot body move forward following legs 
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Figure 2.7. Tripod gait [23] 

2.1.3.  Comparison 

Wheeled and legged locomotion have their advantages and disadvantages 

respectively. The preference of choice usually based on the purpose of use for the robot. 

Table 2.1. Wheeled robot and Legged robot comparison 

 Advantages Disadvantages 

Wheeled Robot   

• Simple design, easy to program and 
maneuver [14] 

• Generally low-cost 
• Variety and customization for specific needs 

• May lose traction 
• Limited contact area in 

common designs 

Legged Robot 

• Complicated design 
• High cost 
• Heavy and weak especially for many legs 

• Complicated design 
• High cost 
• Heavy and weak especially 

for many legs 

2.2. Mobile Robot Navigation Problem 

The ability of achieving navigation is the fundamental requirement of autonomous 

mobile robots. Montello defines navigation as a “coordinated and goal-directed 

movement of one’s self (one’s body) through the environment” [25]. In other words, the 

task of mobile robot navigation is to guide the robot through the environment based on 

sensory information [26]. Mobile robot in a navigation task must be able to ask and 

answer three questions: 

• Where am I?  

• What does the world look like? 
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• How should I get there from my current location? 

The first question is generally known as the robot self-localization, the second as 

map-building and map interpretation and the third question usually comes under the 

domain of path planning. The first two questions are principally concerned in this thesis 

and are considered as essential precursor to solving the remaining question of path 

planning.  

2.2.1. Localization 

In a robot navigation task, self-localization, also referred to as pose estimation, 

answers the question of where the robot is. The goal of localization is to keep track of 

the robot’s current position and orientation with respect to a reference frame. The 

reference frame is usually defined by the initial position of the robot. A common solution 

to the mobile robot localization is providing with a priori map of the environment. The 

navigation task therefore becomes matching perceived environment features with 

elements of this map in order to estimate the location of the robot [27]. However, for 

navigation in an unknown environment, the a priori map is generally not provided. In this 

case, localization can be conducted in two methods: dead reckoning and external 

referencing [26]. In dead reckoning, the robot current position is measured using an 

internal sensor named odometry and the obtained robot pose is as relative to the 

previous pose. In external referencing, robot current position is determined based on 

sensing external landmarks. In addition, an effective approach of localization has been 

studied to fuse dead reckoning with external referencing based on metric reference 

model [28]. 

2.2.2. Map Building 

Robotics map building enables a mobile robot to construct and maintain a model 

of its environment based on spatial information gathered incrementally [29]. Generally, 

the spatial information receives from the perceiving of the environment through external 

sensors and the internal sensors such as odometry provides the robot location 

information within the environment. Robot map building can be generally seen as a two-

step process during navigation: first, the corresponding features from a new perception 
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of environment are identified and the robot’s position is updated based on the found 

correspondences. Second, the corresponding features are updated to the spatial 

information of the environment to complete the map merging and updating. Methods for 

map building such as Geometric Approaches and Occupancy Grids are mentioned in 

[30]. 

2.2.3. SLAM  

SLAM is an acronym for Simultaneous Localization and Mapping, which was 

originally invented by Durrant-Whyte and John J. Leonard [31] based on earlier work by 

Smith, Self and Cheeseman [32]. SLAM is a technique mostly used by mobile robots to 

build up a map within an unknown environment and while at the same time navigate 

through the environment using the map. SLAM is implemented onto NAO robot in my 

research project while the robot is placed in a provided environment with no a priori 

knowledge given.  

In this section, we firstly address the problem of SLAM, explaining SLAM model, 

and then discuss the approaches used for solving SLAM. Attention is paid to 

probabilistic approach as this is the select method to complete SLAM task in my project.  

SLAM Problem & Model 

SLAM problem can be defined as follows: A mobile robot navigates through an 

unknown environment, beginning at a given location with known coordinates. As the 

robot roams around the environment, the uncertainty of the motion accumulates, making 

it increasingly more difficult to find its actual global coordinates. At the same time, the 

robot is able to sense its environments by recognizing certain particular features, i.e. 

Landmarks, through on-board sensors as it moves around. What makes SLAM a 

complex problem is that both the localization and mapping issues exist and they should 

be resolved simultaneously. Figure 2.8 illustrates the complete SLAM model in terms of 

its components and functionality.  
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Figure 2.8. The essential SLAM problem [8] 

Suppose a mobile robot navigates in an environment taking observations of a 

number of given landmarks using sensors mounted on the robot such as laser. The 

elements and terms of SLAM process, at an instant of time k, are described as follows. 

Note that the parameters used in the following explanations are shared with Figure 2.8. 

• Robot position R 

This is also referred to as the system state vector. The sequence of robot 
locations is stored in this vector. For mobile robots on a 2D flat ground case, 
the matrix usually contains 3D matrix, including its 2D coordinate (𝑥𝑟 ,𝑦𝑟) in the 
space along with a sole rotational value  𝜃𝑟 for orientation. It can be given as: 

{ }0 1, ,...,k kR R R R=  

• Robot control motion U 

This refers to the control vector that is given to propel the robot in the 
prescribed directions. It is applied at time k-1 to drive the robot to the location

kx at time k. The control motion can be define as: 
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{ }0 1, ,...,k kU u u u=  

• Map M 

In the case of landmark SLAM, the map vector stores all observed landmark 
2D coordinate. Landmarks are captured by robot’s external sensors as the 
robot moves around. For the case of environment with n landmarks, the Map 
vector M is described as: 

{ }1 2, ,..., nM m m m=  

• Observation 

An observation is taken from the robot regarding the robot and landmark 
positions. The observation at time k is represented as zk. Note that the robot 
may detect multiple landmarks at same time. It can be denoted by:   

{ }1 2, ,...,k kZ z z z=  

• Posterior 

A posterior refers to a set of vectors that contain the robot pose and all 
landmarks position, which can be written as: 

𝑋𝑘 = [𝑅𝑘 ,𝑀𝑘] = [𝑅𝑘 , 𝐿1𝑘 , 𝐿2𝑘 … 𝐿𝑛𝑘] 

Solutions to the SLAM Problem 

Since 1990s probabilistic approaches such as Kalman Filters, Particle Filter and 

Expectation Maximization have become dominant in solving SLAM problem and are 

discussed in the next sections. The main reason for using probabilistic technique is that 

robot localization and mapping is characterized by uncertainty and sensor noise. The 

probabilistic approaches manage the problem by modeling different sources of noise 

and their effects on the measurements [33].  

 In probabilistic SLAM, the uncertainty in motion and observation model from the 

robot is well represented in a probability distribution. A probability law rules the two main 

models in SLAM,  the motion model and the observation model. The essential problem 

in SLAM is the calculation of posterior [34], and is commonly solved by two main 

methods in probabilistic SLAM, online SLAM and offline SLAM. At a time instant k, the 

online SLAM estimates the posterior probability of the current robot pose 𝑥𝑘  with the 

map m based on observation and control motion data, 𝑍𝑘 & 𝑈𝑘 respectively. It can be 

described by: 

𝑝(𝑥𝑘 ,𝑚|𝑍𝑘 ,𝑈𝑘) 
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An offline SLAM, also referred to full SLAM, estimates the posterior probability of 

the overall previous path of the robot position, denoted as 𝑥𝑘, along with the map m, 

based the data from observation 𝑍𝑘 and control motion 𝑈𝑘  similar to online SLAM: 

𝑝(𝑥𝑘 ,𝑚|𝑍𝑘 ,𝑈𝑘) 

Extended Kalman Filter based SLAM (EKF-SLAM) 

Extended Kalman Filter based SLAM stems from Kalman Filter and is the most 

influential SLAM solutions among others. EKF–SLAM utilizes the extended Kalman filter 

(EKF), which is developed from Kalman filter (KF). The basic difference between KF and 

EKF is that the KF is only able to handle linear model, whereas the EKF is developed to 

handle nonlinear models and is more suitable to solve SLAM problem [8]. The EKF 

based SLAM method was introduced through a number of seminal papers [32, 35], and 

[31, 36, 37] includes the report regarding early implementation results. 

In EKF-SLAM, the map M, usually called stochastic map, is a large vector 

containing sensors and landmarks states, and is modeled by a Gaussian variable [38]. 

As the robot moves, this map keeps updating by the EKF through two critical steps, 

prediction (robot motion model) and correction (the robot sensor detects the landmarks 

that had been mapped before). Additionally, in order to obtain a true exploration, the 

EKF-SLAM requires an additional step of landmark initialization, where the new 

landmarks are added into the map.  

EKF-SLAM has a large range of applications in navigation problems such as 

airborne, underwater, indoor and other various types of robots [39]. Figure 2.9(a) 

demonstrates an underwater map, made by the state-of-the-art EKF-SLAM, obtained 

with the underwater robot named Oberon, from the University of Sydney, Australia, 

shown in Figure 2.9(b). The map in Figure 2.9(a) represents the robot trajectory, 

designated by the yellow triangles connected by a line. The ellipse near each triangle 

corresponds to the covariance of Kalman filter estimate relative to the robot pose. The 

size of ellipse is proportional to the uncertainty of robot current location.  Red dots in this 

figure depict landmark detections, received by filtering the sonar scan for small and 

reflective objects. It is worth mentioning that the pattern of this EKF-SLAM plotting, in 

terms of how it represents each EKF-SLAM component and its characteristics, is 
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classically used for the demonstration of various types of robot explorations. Thus, most 

of the plotting results from my research project share the similar representation. 

Particle Filter based SLAM (Fast-SLAM) 

Particle Filter, also called the sequential Monte-Carlo (SMC) method, is a 

recursive Bayesian filter implemented in Monte Carlo simulations. This method executes 

SMC by random point clusters or also called “particles” to represent the Bayesian 

posterior [40]. Different from Extended Kalman Filter, Particle Filter (KF) draws a set of 

samples to represent the distribution. Such ability makes KF capable of handling highly 

nonlinear information and non-Gaussian noise. Nevertheless, this ability results in 

increase of computational demand on new landmark detection, what has limited it for 

real-time applications [41]. Fast-SLAM is one of the few works that combine PF with 

other techniques to solve SLAM problem. Such algorithm relies on the assumption of 

known data association and takes advantages of the idea that landmark estimations are 

conditionally independent given the robot’s path [42]. Each particle in Fast-SLAM makes 

its own local data association. In addition, less demand of computational expense than 

EKF and KF has been made on Fast-SLAM as it uses a particle filter to sample robot 

paths. 

Expectation Maximization based SLAM  

As an ideal option for map building rather than localization, Expectation 

Maximization is a statistical algorithm based on maximum likelihood (ML) estimation [40]. 

When the robot position is known, the EM algorithm is able to build the map by means of 

expectation [43]. The EM can be seen as a two-step iterated process: expectation step 

(E-step) and maximization step (M-step). In E-step, the posterior of robot positions is 

computed for a given map, while in M-step the most likely map is calculated according to 

given position expectations. As a result, the accuracy of map building increases. The 

advantage of EM over EKF is the great performance of dealing with data association 

problem [33]. In order to achieve that, the algorithm has to repeatedly localize the robot 

in the E-step to generate different possible correspondences. On the other hand, the fact 

that the repeat of processing same data for building the most likely map makes this 

algorithm inefficient and not suitable for real-time applications [44]. 
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Figure 2.9. (a) Sample of KF estimation of the map and robot position. (b) 
Underwater vehicle Oberon, developed at the University of Sydney 
[39] 
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2.3. Augmented Reality 

Augmented Reality has attracted research interests in many areas including 

medical, military, entertainment and etc. However, only a few applications are found in 

robotics research, especially in enhancing robotic navigation. This thesis proposes an 

approach of improving EKF-SLAM algorithm by integrating the technology of Augmented 

Reality. Prior to the mythology, a review of AR is useful to understand the knowledge. 

2.3.1. Introduction of Augmented Reality 

The fundamental idea of Augmented Reality (AR) is to mix the view of real 

environment with virtual or additional computer-generated graphic content in order to 

improve our perception of the surroundings. An example of AR application for mobile 

devices to obtain information in the environment is shown in Figure 2.10. 

 
Figure 2.10. The user uses mobile devices to find “AR markers” in surrounding 

and obtain location information 

Augment Reality is one part of more general area of mixed reality (MR) [45], 

which refers to a multi-axis spectrum of areas that cover Virtual Reality (VR), 

telepresence, Augmented Reality (AR) and other related technologies [46]. 
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The term Virtual Reality is used for computer-generated 3D environments that 

allow the user to interact with synthetic environments [47-49]. VR users are able to enter 

a computers artificial world that can be a simulation of some form of reality or the 

simulation of a complex phenomenon [47, 50]. 

In telepresence, the goal is to extend user’s problem solving abilities and 

sensory-motor facilities to a remote environment [46]. A good definition for telepresence 

is a human/machine system in which the human operator obtains sufficient information 

about the teleoperator and the task environment, displayed in a sufficiently natural way, 

that operator is provided the feeling of being in a remote location [51].  

Augmented Reality can be seen as a technology between telepresence and 

Virtual Reality. The environment in telepresence is fully real and in VR is completely 

synthetic, in contrast, the user in AR is presented a real environment superimpose or 

“augmented” with virtual objects.  

For a better understanding, AR systems can be defined by three classical and 

widely recognized criteria [52, 53]: 

• Combines virtual and real 

AR requires display technology that allows the user to simultaneously see 

virtual and real information in a combined view. A see-through head-mounted display 

(HMD) is one of commonly used devices to combine real and virtual. The device lets 

the user see the real world, with virtual objects superimposed by optical or video 

technologies. Samples of HMD are shown in Figure 2.11. 

 
Figure 2.11. Head-mounted Displays [11] 
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• Registered in 3-D 

AR relies on an intimate coupling between the real and virtual that is based 

on their geometrical relationship. This makes it possible to render the virtual content 

with the right placement and 3D with respect to the real. For example, in the field of 

medicine, AR could guide precision tasks like where to perform a needle biopsy of a 

tiny tumor. Figure 2.12 shows a mock-up of a breast biopsy operation, where the 3D 

computer-generated graphics help to identify the location of the tumor and lead the 

needle to the target. 

 
Figure 2.12. Mockup of breast tumor biopsy. 3-D graphics guide needle insertion 

[53] 

• Interactive in real time 

The AR system must run at interactive frame rates, such that it can 

superimpose the computer-generated information in real-time and allow user 

interaction. One example would be the implementation of AR on touch-screen 

human-computer interaction. Figure 2.13 shows a public space touch-screen 

interaction by sensing the position of knocking actions on glass surfaces from using 

acoustic tracker. 
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Figure 2.13. Touch-screen interaction in public spaces [52] 

Further to above  definitions, there are two other aspects that are necessary to 

mention. The definition does not limit to the sense of sight. AR is also able to apply to 

other senses of human being, including touch, hearing and smell. On the other hand, 

removing real objects by overlaying virtual ones, approaches known as mediated or 

diminished reality, is also considered AR [54]. 

2.3.2. Augmented Reality components 

• Scene Generator 

The scene generator is the software or device that renders the scene. In 

current stage of AR technology, a few virtual objects need to be generated and they 

do not always have to be perfectly rendered to satisfy the purposes of the application 

[53], rendering is not one of the main problems.  

• Tracking System 

The tracking system is one of the most difficult problems in AR systems 

because of the problem of registration [54]. In order to provide user a seamless 

combined view of virtual imagery and real objects, both worlds of real and virtual 

must be properly aligned with respect to each other. For example, many applications 

in the field of industry require precise registration, like medical systems [53, 55]. 

• Display 
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AR is still regarded as a developing technology and the solutions depend on 

different design purposes. Generally, AR display devices can be head-worn (retinal 

displays, miniature displays, and projectors), handheld (displays and projectors) or 

spatial (displays or projectors in the environment) [56].  

There are two technologies available to combine the real and virtual world: 

optical and video technology. Each of them has certain advantages and 

disadvantages depending on factors like resolution, flexibility, field-of-view, 

registration and etc. [53]. 

Display technology is a factor that limits the development of AR systems. It is 

very difficult to find a see-through display that satisfies the requirements of 

resolution, brightness, field of view, and contrast [46] to present a seamlessly 

combined AR world. Furthermore, technologies that try to approach to these goals 

are still having the problem of size, weight and cost. Three classical AR display 

technologies are discussed in the next section. 

2.3.3. AR Display Technologies 

This section discusses three most classical AR display technologies, where 

optical see-through, video see-through and direct projection display systems are aim to 

overlay virtual objects to real world. The advantages and disadvantages are listed to 

provide a complete overview of these technologies. A table of summary is attached at 

the end of the section for comparison. For more about these technologies, please refer 

to [52, 57]. 
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Figure 2.14. The optical path in an optical see through display system [52] 

• Optical see-through displays 

Optical see-through devices work by using an optical combiner, for example, 

a holographic material or a half-slivered mirror [46]. The combiner is able to transmit 

the light from the real world environment and also reflecting the light from a computer 

display. Then, the optical combined light can be received by the user’s eyes (Figure 

2.14).  

• Video see-through displays 

Video see-through displays technique is based on a camera that captures the 

view of the environment, a computer that generates virtual content, and a display 

that provides the combines view to user (Figure 2.15). 

 
Figure 2.15. The optical path in a video see-through display system [52] 
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Head-worn displays can use video see-through techniques by placing 

cameras close to the eye positions. Ideally, two cameras should be used to acquire a 

stereo view, with one perspective for each eye, but monoscopic single-camera 

systems are common and easier to design and implement [58]. 

 
Figure 2.16. The video see-through display in NaviCam project [52] 

Some video see-through displays use a camera to capture the scene, but 

present the combined view on a regular, typically handheld, computer display. A 

window-like effect, often referred to as a “magic lens,” is achieved if the camera is 

attached on the back of the display, creating the illusion of see-through [59, 60]. 

Figure 2.16 illustrates how the camera on a handheld display can be used to 

recognize features in the environment, such that annotations can be overlaid onto 

the video feed. 

 
Figure 2.17. Commercial camera phone achieving Video see-through AR [52] 

Recently, the implementation of video see-through on mobile devices with 

built-in cameras has become more and more popular, In Figure 2.17, the camera 

located on the back of the device captures video of the real environment, which is 
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used by software on the device to recover the phone’s pose related to tracked 

feature. 

 

(a)                                      (b) 

Figure 2.18. Two examples of direct projection [52] 

• Direct projection 

Augmented Reality can also be achieved by directly projecting graphics onto 

the real environment. Figure 2.18 and 2.19 give examples of how the real world can 

be modified through controlled light that alters its appearance. Figure 2.18 (a) shows 

a child uses a tracked brush to apply virtual paint, which is projected onto physical 

objects and figure 2.18 (b) shows a handheld projector is combined with a camera 

that identifies elements of interest in the environment and augments them with 

projected light. In this example, a network socket is augmented with visualizations of 

network status and traffic. The Everywhere Displays project, as shown in figure 2.19, 

uses “steerable displays”, where the system’s projector can create augmentations on 

different surfaces in the environment, while the camera senses the user’s interaction.   

 
Figure 2.19. The Everywhere Displays project using “steerable displays [52] 
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2.3.4. Applications 

Table 2.2. Summary of the advantages and disadvantages of display 
technologies 

 Advantages Disadvantages 

3.1 Optical see-through • Direct view of the real        
environment 

• Lack of occlusion  
• Requiring advanced calibration and 

tracking 
• Reduced brightness 

3.2 Video see-through • Controlled combination of 
real and virtual 

• Reduced quality and fidelity of the real 
environment 

• Potential perspective problems due to 
camera offset 

• Sensitivity to system delay 
• Dependency on camera operation 

3.3 Direct projection • Direct integration of the 
virtual with the real 

• Dependence on environmental conditions 
• Dependence on projector properties 

The technology of Augmented Reality has many possible applications in a wide 

range of areas. In this section, some of the fields are discussed, particularly emphasising 

AR for robotics, which is my research topic in the current stage. 

Entertainment 

AR not only can be applied in entertainment to build AR games, but also has 

improved the techniques of sports broadcasting and advertising. 

• AR for Games 

Real world and computer games both have their own strengths. AR can be 

used to improve existing game styles and create new ones by combining the real 

and virtual contents to game world. 
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Figure 2.20. Player kicking the virtual football in AR Soccer 

There are plenty of AR games running on smart phone platform, where 

iPhone has become one of the most popular one. The iPhone game “AR Soccer” 

creates a virtual football for player to kick through the camera Figure 2.20. Nintendo 

3DS, a new generation of handheld game device, pre-installs one AR game named 

“Face Raiders”. The game will “capture” the player’s face and the goal is to shoot 

down all the enemies that have the player’s face on it (Figure 2.21). 
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Figure 2.21. 3DS game Face Raiders capturing faces 

• AR for Sport Broadcasting 

Swimming pools, football fields, race tracks and other sports environments 

are well-known and easily prepared, in which video see-through augmentation 

through tracked camera feeds easy [57]. One example is the Fox-Trax system [61], 

used to highlight the location of a hard-to-see hockey puck as it moves rapidly across 

the ice, but AR is also applied to annotate racing cars (Figure 2.22a), snooker ball 

trajectories, life swimmer performances, etc. Thanks to predictable environments 

(uniformed players on a green and brown field) and chroma-keying techniques, the 

annotations are shown on the field and not on the players (Figure 2.22b). 
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(a)     (b) 

Figure 2.22. AR in life sports broadcasting: racing and football [54] 

Maintenance 

Complex machinery requires high level skill from maintenance personnel and AR 

has been found the potential in this area. For example, AR is able to automatically scan 

the surrounding environment with extra sensors to show the users the problem sites 

[57]. Friedrich [62] shows the intention to support electrical troubleshooting of vehicles at 

Ford and according to a Micro-Vision employee, Honda and Volvo ordered Nomad 

Expert Vision Technician systems to assist their technicians with vehicle history and 

repair information [63]. 

Medical Applications 

Similar to maintenance personnel, doctors and nurses will obtain the benefits 

from critical information being delivered directly to their glasses [64]. Surgeons wearing 

AR devices can detect some features with naked eyes that they cannot see in MRI or CT 

scans [53].  An optical see-through augmentation is presented by Fuchs et al. [65] for 

laparoscopic surgery where the overlaid view of the laparoscopes inserted through small 

incisions is simulated (Figure 2.23). 
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Figure 2.23. Simulated visualisation in laparoscopi [54] 

Many AR techniques are developing for medicine use with live overlays of MR 

scans, CT, and ultrasound [57]. Navab et al. [66] already took advantage of the physical 

constraints of a C-arm x-ray machine to automatically calibrate the cameras with the 

machine and register the x-ray imagery with the real objects. Vogt et al. [61] uses video 

see-through HMD to overlay MR scans on heads and provide views of tool manipulation 

hidden beneath tissue and surfaces, while Merten [45] gives an impression of MR scans 

overlaid on feet (Figure 2.24). 

 
Figure 2.24. AR overlay of a medical scan [54] 

Military Training 

For long time, the military has been using displays in cockpits that present 

information to the pilot on the windshield of the cockpit or the visor of the flight helmet 

[RW.ERROR - Unable to find reference:19] (Figure 2.25). For example, military aircraft 
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and helicopters have used Head-Up Displays (HUDs) and Helmet-Mounted Sights 

(HMS) to superimpose vector graphics upon the pilot's view of the real world. Besides 

providing basic navigation and flight information, these graphics are sometimes 

registered with targets in the environment, providing a way to aim the aircraft's weapons 

[53]. 

 
Figure 2.25. Military Training [54] 

2.4. Augmented Reality in Robotics 

Augmented Reality has been discovered for many years to improve the 

development of robot, such as robot navigation and Human and Robot Interaction (HRI). 

There are more and more studies have found on AR for humanoid robot.  In following 

section, some of the applications of AR to humanoid robot are discussed. 

2.4.1. Path Guiding 

In the paper [67], AR is used for drawing guide paths to provide a simple and 

intuitive method for interactively directing the navigation of a humanoid robot through 

complex terrain. The AR user view of this method is as shown in Figure 2.26. 
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Figure 2.26. The augmented reality user view of the scene displaying the guide 

path and the robot’s computed future footstep locations [67]. 

The user suggests an overall navigation route by drawing a path onto the 

environment while the robot is moving.  The path is used by a footstep planner that 

searches for the suitable footstep locations which follow the assigned path as close as 

possible while respecting the robot dynamics and overall navigation safety. It has proven 

that the guidance provided by the human operator can assist the planner to find safe 

paths more quickly. 

2.4.2. U-Tsu-Shi-O-Mi  

U-Tsu-Shi-O-Mi shown in Figure 2.27 is an Augmented Reality system which 

consists of a synchronized pair of a humanoid robot and virtual avatars, and an HMD 

that overlay the avatars onto the robot. In this system, U-Tsu-Shi-O-Mi is an interactive 

AR humanoid robot that appears as a computer-generated character when viewed 

through special designed HMD. A virtual 3D avatar that moves in sync with the robot's 

actions is mapped onto the machine's green cloth skin (the skin functions as a green 

screen), and the sensor-equipped HMD tracks the angle and position of the viewer’s 

head and constantly adjusted the angle that the avatar is displayed [68]. The result is an 

interactive virtual 3D character with a physical body that the viewer can literally reach out 

and touch. 
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Figure 2.27. U-Tsu-Shi-O-Mi system [68] 

2.4.3. Navigation in Unknown Environments 

In this section, we introduce an application for vision-based localization system 

based on mobile augmented reality (MAR) and mobile audio augmented reality (MAAR) 

for both human and humanoid robot navigation in indoor environments. 

 
Figure 2.28. AR markers to be placed in the environment 



 

36 

This application proceeds in two stages [10]: in the first stage, the designed 

system recognizes the location of a user from the image sequence taken from the 

environment using the system’s camera and adds the location information to the user’s 

view in the form of 3D objects and audio sounds with location information and navigation 

instruction content using Augmented Reality (AR). The information about the layout of 

environment and the location of AR markers are preloaded in the AR device such that 

the location can be recognized. Figure 2.28 gives the samples of AR markers. 

A smart phone’s camera and the marker detection make it possible to obtain the 

audio augmentation and 3D object placement can be achieved by the smart phone’s 

operating processor and build-in graphical/audio modules. The task for the smart phone 

to detect AR marker is performed by using The ARToolKit, one of the pioneer software 

for making AR applications, which will be introduced in the next section.   

Since the use of smart phone with camera in this navigation system replaces the 

components including mobile PC, wireless camera, head mounted displays (HMD) and a 

remote PC, the complexity of such system can be significantly reduced. This system is 

proving to have a wide range of applications and is capable of different purposes like 

museum tour guidance system and shopping assistance system. 

 
Figure 2.29. Humanoid Robot NAO 
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In the next stage, the same AR module is transplanted onto a vision-based 

autonomous humanoid robot to determine the position with respect to its environment. 

The proposed technique is implemented on a humanoid robot NAO (Figure.2.29). 

The navigation and localization performance is improved by presenting location-

based information to the robot through different AR markers placed in the robot 

environment. Figure 2.30 demonstrates the outline of navigation strategy. The same AR 

navigation module will be used as a part of a visual simultaneous localization and 

mapping (Visual-SLAM) system, which is developing for the same humanoid robot 

platform [10]. 
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Figure 2.30. The outline of the navigation strategy using the data-base of AR-

Markers 

The fundamental idea of using camera to capture AR markers as landmark for 

SLAM navigation is adopted in my research project. As extension, an additional sensor, 

laser, is implemented to improve the performance and simplify the computational cost of 

SLAM algorithm, which is explained in the next section. 
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2.5. Summary 

This chapter includes literature review on the topics of mobile robot, Augmented 

Reality and probabilistic approach in robot navigation. Discussing the three different 

topics in this chapter is to provide reader with comprehensive knowledge involved in my 

research project. 

 In the section of mobile robot, different types of mobile robot classified by the 

environment that the robot works are introduced. Among all types, attention is paid to 

ground based mobile robot as this is the most highly common type in the development of 

mobile robot. Wheeled and legged robots with multiple wheels/legs are then explained 

specifically in the subsection. It has been pointed out in this subsection that two-legged 

mobile robots have huge potential towards mimic human behaviors due to the similarity 

with human body structure. My research platform two-legged robot NAO is briefly 

introduced in this portion of review.  

As the core technique implemented in my research project, an overview of 

Augmented Reality is included in the second section. Augmented Reality is a recent 

technology which enables user to obtain additional preloaded information from the 

observation of a particular object. This idea is implemented on my research project to 

improve the robot navigation based on EKF-SLAM algorithm. This section firstly 

demonstrates each component and display technologies that an Augmented Reality 

featured device commonly involves. Following portion of this section introduces AR 

applications in various fields. Three implementations of Augmented Reality in robotics 

are provided.  

Simultaneous Localization and Mapping problem discussed in the last section 

provides a general presentation in terms of the formulation of and common solution of 

this problem. Main components in a SLAM problem are defined both in words and 

formulations. Two main methods in the probabilistic SLAM approaches, online SLAM 

and offline SLAM, are explained. This chapter has been concluded with a review of the 

most influential EKF-SLAM algorithm, which is the foundation of my research topic.  
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Implementation of Augmented Reality and EKF-SLAM has to be employed on a 

proper robot platform. In the next section, the chosen experimental platform humanoid 

robot NAO is introduced. 
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Chapter 3.  
 
Robotic Platform NAO 

The platform selected for my research project is humanoid robot NAO, a 

commonly used humanoid platform for education environment, produced by the French 

company Aldebaran Robotics [69]. NAO is a medium-sized humanoid robot developed 

mainly for universities and laboratories for research and education purposes. It replaced 

the Sony AIBO dogs in the RoboCup Standard Platform League (SPL) in 2008 [70]. As 

an autonomous humanoid robot, NAO is capable to move in a biped way, sense its close 

environment, communicate with human and think by on-board processor [71]. Figure 3.1 

provides a summary of NAO robot and its main features including move, sense, 

communicate and think. In this chapter, an overview of NAO is presented, including 

NAO’s hardware, mechanical and software architecture. Detailed interpretation based on 

my experimental implementation is provided. Programming in NAO is also included, 

which is then discussed in detailed in later chapter.  

 
Figure 3.1. Humanoid Robot NAO and its main features 
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3.1. Hardware and Mechanical Architecture 

3.1.1. Hardware 

According to the Aldebaran’s technical specification, NAO is 58 cm height and 

4.3 kg weight, which is rather portable and light weight comparing to many other robot 

platforms. NAO is available in two versions: the standard version (Figure 3.1), and the 

laser head version (Figure 3.2). NAO with laser head is equipped in my research lab 

AISL as the laser sensor is essential for advance research such as SLAM.  NAO’s body 

is constructed from white technical plastic with some grey parts. NAO is powered by 

Lithium Polymer batteries offering between 45mn and 4 hours autonomy according to its 

activity. During my experiments, the battery was able to last for around 50mins when the 

robot performed regular load of activities involving a combination of sitting down 

standing up and walking work. Several sensor devices are equipped to obtain the 

information of its close environment. 

 
Figure 3.2. NAO with laser head in AISL 

3.1.2. NAO sensors 

Sensors are essential for autonomous mobile robots to obtain information of 

surrounding environment in order to make decisions to complete the tasks. Table 3.1 

provides the general classifications and types of sensors that are frequently used for 
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autonomous mobile robots. NAO robot has equipped with most of the popular sensors 

for either entry or advanced research requirements. NAO on-board sensors are bold 

marked in Table 3.1. 

Table 3.1. General Classification of Robot sensors with NAO on-board sensor 
in bold 

General classification Sensor 
Tactile sensors • Contact switches, bumpers 

• Noncontact proximity sensors 

 
Active ranging 

• Reflectivity sensors 
• Ultrasound sensor 
• Laser 

 
Localization in fix reference frame 

 

• GPS 
• Active optical or RF beacons 
• Active ultrasonic beacons 

 
Wheel/motor sensors 

• Optical encoders 
• Magnetic encoders 
• Capacitive encoders 
• Inductive encoders 

Heading sensors • Compass 
• Gyroscopes (IMU) 

Vision-based sensors (Cameras) • CCD/CMOS cameras 
• Object tracking packages 

• Ultrasound  

NAO Robot has 2 sets of ultrasound devices(transmitter & receiver) situated 

in chest (Figure 3.3) that provide space information in 1 meter range distance if an 

object is situated at 30 degrees from the robot chest (60 degrees all cone combining 

both devices). The sonar sensor was utilized for the obstacle detection module on 

NAO. The sensor detects coming objects within the sonar range and then stops the 

robot.   
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Figure 3.3. Ultrasound Sensors on NAO [70] 

• Cameras  

Two identical CMOS video cameras are located in the forehead as indicated 

in Figure 3.4. They provide a 640x480 resolution at 30 frames per second. They can 

be used to identify objects in the visual field such as goals and balls, and bottom 

camera can ease NAO’s dribbles. The use of top camera is critical to my project as it 

is programmed to be able to detect specific NAO marks. It is found through the 

experiments that the camera running under 640x480 high resolution will result in 

great time-delay when the robot connected wirelessly with the computer. The 

resolution used in the experimented was therefore adjusted to 160x120. 

 
Figure 3.4. NAO Cameras [70] 
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• Microphone  

The NAO comes with 4 microphones at different parts on NAO’s head. 

Microphones are very important sensors because we consider that voice should be 

the most natural interface between NAO and its users. NAO is capable of 

recognizing predefined voice command to carry out different tasks. It is noticed that 

the background noise severely impacts the quality of voice recognition. The 

experiment is recommended to conduct in a quite area for best accuracy.  

• Bumper  

Bumper is a contact sensor that helps us know if robot is touching something, 

in this case the bumpers are situated in front of each NAO’s foot and they can be 

used, for example, to know if the robot is kicking the ball or if there are some 

obstacles touching the feet. In my experiment, the bumper was used as a trigger to 

initialize the experiment. 

• Force Sensors  

NAO has 8 Force Sensing Resistors (FSR) situated at sole of feet with 4 

FSRs in each foot (Figure3.5). The value returned from each FSR is a time needed 

by a capacitor to charge depending on the FSR resistor value. It is not linear (1/X) 

and need to be calibrated. The sensors are useful when we are generating 

movement sequences to know if one position is a zero moment point (ZMP) and can 

be complements with inertial sensors. During the experiments, this sensor was found 

to be useful when NAO was taken off ground as robot walking. The FSRs detects the 

drop of force on the feet and pauses the action for hardware protection.  
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Figure 3.5. NAO FSR Sensors [70] 

• Inertial measurement unit (IMU) 

NAO has 2 gyrometers in 1 axis and 1 accelerometer in 3 axes. These 

sensors are critical devices when we are working on precise motion Kinematics and 

Dynamics. They also help us to know if the robot is in a stable position while walking. 

Odometry of the robot can also be obtained from these sensors. In the preliminary 

stage of experiment, the gyrometers were intended to use for enhancing the build-in 

odometry of the robot. However, the gyrometer returns values in x, y axes and the z 

axis value, which is critical for representing robot orientation, is not accessible. 

• Laser 

NAO in our lab is equipped with optional device laser head in order to feed 

our purpose in advanced research. This device is mounted on the center top of 

NAO’s head as shown in Figure 3.6. Some specifications include detection range of 

0.2m to 5.6m, angular range 240° started from -120° to +120°, laser wavelength 

785nm, 0.36° resolution, and refresh rate 100ms. 683 points can be detected within 

the coverage range by one scan from the laser sensor [70]. Besides the camera, the 
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laser sensor is another essential device for my research. The SLAM algorithm 

requires the laser to obtain landmark location information in terms of bearing and 

distance to perform a full SLAM process. 

`  

Figure 3.6. NAO Laser Head 

3.1.3. Mechanical Architecture  

Robot NAO has a total of 25 degrees of freedom (DOF), 11 degrees of freedom 

for the lower part of body including legs and pelvis, and other degrees of freedom for the 

upper part that includes trunk, arms and head. Following table gives the assignment of 

DOF for NAO [72]. 

Table 3.2. DOF on NAO 

Total degrees of freedom (DOF): 25 
Head 2 DOF 

Arms 5 DOF X 2 

Pelvis 1 DOF 

Leg 5 DOF X 2 

Hands 1 DOF X 2 

According to the Aldebaran NAO technical specification, each leg of NAO has 2 

DOF at the ankle, 1 DOF at the knee and 2 DOF at the hip. The rotation axis of these 

two joints is 450 towards the body. Only one motor is needed to drive the pelvis 

−120° 120° 
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mechanism of NAO, which allows saving one motor at hip level without reducing the total 

mobility.  In addition, each arm has two DOF at the shoulder, two DOF at the elbow, one 

DOF at the wrist and one DOF for the hand’s grasping. The head is able to rotate about 

yaw and pitch axes. With the 25 DOF, the robot NAO is capable of performing various 

human-like behaviors.  

3.2. Software Architecture  

After introducing NAO hardware, the architecture of NAO software is discussed 

for a complete understanding of its software characteristics. Figure 3.7 provides a 

summary of NAO’s software and their relations. The shade blocks indicate software 

used in this project. Figure 3.7 shows that Monitor, NAO SDK and Choregraphe as the 

software brought by Aldebaran, communicate with the NAOqi framework to obtain the 

access of various functions on NAO robot. NAO SDKs are programming packages in 

several computer languages used to meet the requirement of advanced research; this 

project was built based on NAO SDK for Python programming language. In next 

subsections, we present descriptions on NAO’s software on each of them. 

 
Figure 3.7. NAO Software Architecture 
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3.2.1. NAOqi 

The main NAO software architecture is referred to as NAOqi by Aldebaran 

Robotics. NAOqi is designed as a distributed system where each component can be 

executed locally in robot’s on-board system or be called remotely from another 

distributed system while NAOqi Daemon is running is the main system [73]. NAOqi is 

composed of three components: NAOqi OS, NAOqi Library and Device control Manager 

(DCM) shown in Figure 3.8  

 
Figure 3.8.  NAOqi components 

The NAO OS also called OpenNao is an Open Embedded Linux Distribution 

modified to fit with NAO onboard system. Once the OpenNao is running in NAO’s on-

board system and the operation system initialization process is completed, NaoQi 

Daemon is triggered. NAOqi Library is divided in Python objects, also referred to 

modules. Each module has included some specific behavior that robot provides, i.e. 

walking, speaking. Modules that are required can be summoned through the main-

broker [73]. The DCM, as in Device Control Manager, is similar to NaoQi library that is 

composed of several libraries for controlling the robot. As a difference, DCM controls the 

robot directly by sending calls to NAO’s ARM controller, where ARM is the hardware 

architecture of NAO that monitors most of on-board motors. In addition, DCM is the 

essential part for the user to obtain the access to real-time image, or create a behavior 

of walking and reach a position.  

The operating system that runs on NAO robot is embedded with Linux. 

Programming languages available for communication with NaoQi are C, C++, Python, 

Urbi and .Net. There are three NAO dedicated programs brought by Aldebaran 

NaoQi Daemon 
NaoQi library 

DCM 
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Company which are very useful for NAO developers. They will be discussed in the next 

subsection. 

3.2.2. Choregraphe 

Choregraphe is a user interface designed in an intuitive graphical environment 

that allows simple programming of NAO. It uses Python as the internal programming 

language. By dragging and dropping and connecting behaviors that are “packed” in 

boxes in the flow diagram style interface, NAO motions and sensor actions like walking, 

wave hands, text to speech, retrieve laser data, are easily performed. Choregraphe was 

implemented in the experiment for generating the pose for sit-down to walk initial, and 

the proposed SLAM algorithm took over.  Figure3.98 shows the Choregraphe interface.  

 
Figure 3.9. Building up NAO project by connecting “behaviour boxes” 

3.2.3. Monitor 

Monitor program in Figure 3.10 is composed of camera viewer, used for camera 

(stream a video, taking a picture, work with some embedded computer vision 

algorithms), Memory Viewer (view memory variables) and Laser Monitor (only work with 

NAO laser head). This software was useful for monitoring data in my experiment. For 

instance, the initial robot position or laser scanning range can be adjusted according to 
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the indication on laser monitor. On camera viewer, the program provides graphic 

indication superimposed on the live video based on the vision recognition function used. 

 
Figure 3.10. Monitor components 

3.2.4. NAO Simulators 

Simulation in robotics is critical as developers should test their program in a safe, 

virtual environment before any real time experiments. Simulation of NAO robot can be 

carried out through many simulators including one of the most well-known robot 

simulation software called Webots, brought by Cyberbotics Company. It recently 

released Webots for NAO, a dedicated version for the simulation of NAO robot, and the 

running window of the program is shown in Figure 3.11. Testing Most of the major 

behaviors from either Chorgraphe or Python script are supported. Although this 

simulator is very useful and can meet most of requirement for testing a NAO program, 

simulating laser function is yet to be supported. 
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Figure 3.11. Webots for NAO Simulator 

3.2.5. NAO Programming  

Aldebaran provides several methods for develops to access NAOqi. 

Choregraphe permits an easy interface to use predefined NAO behaviors or design new 

behavior. As another approach for advanced developers, it is also possible to write the 

project in multiple supporting programming languages that include Python, C++, .NET 

etc. In my project, Python language is chosen to program NAO because it is highly 

compatible to NAO and Choregraphe, real-time supported and is also simpler to read 

and write than other programming methods. The characteristic for each selected 

methods is shown in the table below.  
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Table 3.3. Platforms to command NAO 

Platform or languages Running on Tools Remarks 
Choregraphe NAO Local  Choregraphe Python code running locally 

on the robot 
Python NAO local & Remote 

control through Computer 
Eclipse-Pythondev, Scite Communications with the 

robot may be slow, Real-time 
is possible 

C++ NAO local & Remote 
control through Computer 

Visual Studio,Xcode.GCC 
Eclipse (Linux) 

Cross compilation available 
on Linux (or Linux virtual 
machine), Real-time is 
possible 

.NET Remote control through 
Computer 

Visual Studio  

3.2.6. Implementation method in the thesis 

In this thesis, the implementation was achieved via the use of Choregraphe 

software and code in Python programming language. Choregraphe enabled NAO to be 

the suitable pose for the experiment, standing up, adjusting head level, etc. The SLAM 

algorithm written in Python and specifically modified for NAO robot was then executed to 

begin the experiment. Using Choregraphe in the experiment provides the secondary 

access to the robot in case of an experiment failure.  

3.3. Summary 

This chapter provides an overview about the NAO humanoid robot aiming to help 

understand this platform and my project. NAO robot is demonstrated generally by its 

hardware, mechanical architecture and software. The hardware section mainly includes 

several sensors as they are critical for the robot to explore the surrounding environment. 

The DOF distribution on NAO robot is listed and discussed in the mechanical 

architecture section. In the software, the structure of NAOqi is explained by the three 

components: NAOqi OS, NAOqi Library and Device control Manager. In addition, the 

dedicated NAO software, Choregraphe, Monitor and Webots, are demonstrated. The 

supported NAO programming languages for developing a NAO project are discussed. 
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Chapter 4.  
 
EKF-SLAM Implementation 

This chapter mainly discusses EKF-SLAM including a comprehensive description 

of the algorithm, as well as its simulation and real-time implementation. EKF-SLAM is 

interpreted with the description of SLAM components and SLAM process, and in the 

implementation section, simulated and real experiment results under the condition of 

different number of landmarks are demonstrated.  

4.1. EKF-SLAM Algorithm 

This section aims to provide readers a comprehensive description of landmark 

based EKF-SLAM algorithm that has been realized in my research project. We firstly 

introduce the frame transformation prior to the explanation of motion and observation 

model in a SLAM problem. Then the EKF-SLAM process is divided into three steps and 

discussed one by one. 

4.1.1. Motion and Observation Models 

In this subsection we present an explanation of the motion and observation 

models that are critical to solving the problem of SLAM and are also applicable to most 

of robot navigation problems. In addition, a brief recap of frame transformation is also 

included as this knowledge is frequently used in the algorithm.  

Frame Transformation 

There are two important frames that involve in a robot navigation problem, global 

frame, also referred to world frame, and robot frame, or named as local frame. The world 

frame is a fixed frame that keeps its origin at G = [0, 0, 0°]′, while the robot frame is 
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attached to the moveable robot at origin R = [0, 0, 0°]′. Global and robot frame can be 

transformed to each other by applying the translation Rtrans = [xr, yr]′, and rotation R. 

Note that we focus on the frame transformation in the 2D plane due to the nature of the 

experimental environment.  

 

Figure 4.1. Transformation between global and local frame. Landmark is 
marked as red star. 

Figure 4.1 above demonstrates the relationship of global and robot frame with a 

given landmark position. The Reference frame R is firstly rotate by θr  and then 

translated by 𝜃𝑟, from the global frame. What we need to derive is the transformation of 

the landmark position between global and local frame.  

The transformation from global to local coordinate can be described as following 

equation:  

𝑳𝑳𝒐𝒄𝒂𝒍 =  𝑹𝒐𝒕𝑻 ∗ (𝑳𝑮𝒍𝒐𝒃𝒂𝒍 − 𝑹𝒕𝒓𝒂𝒏𝒔)   Equation 4.1 

Similarly, for the case of transformation from local to global frame: 

G 

R 

L 

𝑅𝑡𝑡𝑡𝑡𝑡 

𝐿𝐺𝐺𝐺𝐺𝐺𝐺 

𝐿𝐿𝐿𝐿𝐿𝐿 

𝜃𝑟 

 

(Global 
Frame) 

 

(Reference 
Frame) 

 

(Landmark) 
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𝑳𝑮𝒍𝒐𝒃𝒂𝒍 =  𝑹𝒐𝒕 ∗ 𝑳𝑳𝒐𝒄𝒂𝒍 +  𝑹𝒕𝒓𝒂𝒏𝒔         Equation 4.2 

Where 𝑹𝒐𝒕 = �𝑐𝐺𝑡𝜃𝑟 −𝑡𝑖𝑡𝜃𝑟
𝑡𝑖𝑡𝜃𝑟 𝑐𝐺𝑡𝜃𝑟

�  & 𝑹𝒐𝒕𝑇 = � 𝑐𝐺𝑡𝜃𝑟 𝑡𝑖𝑡𝜃𝑟
−𝑡𝑖𝑡𝜃𝑟 𝑐𝐺𝑡𝜃𝑟

�  is the rotation matrix used 

when the robot frame only rotates around z-axis of the global frame by 𝜃𝑟. Moreover,  

𝐿𝐿𝐿𝐿𝐿𝐿 = �𝑥𝐿𝑦𝐿�𝐿𝐿𝐿𝐿𝐿
 is the landmark position with respect to local frame, and  𝑅𝑡𝑟𝐿𝑛𝑠 =  �𝑥𝑟𝑦𝑟� 

is the translation of local frame from global frame. 

Motion Model 

In the motion model, the current robot position at time 𝑡  can be calculated 

according to a control motion 𝑢, a perturbation 𝑡 ,and the last robot state 𝑹 at time 𝑡 − 1. 

Thus, the motion model 𝑓 () is denoted as: 

𝑹𝒕 = 𝒇 (𝑹𝒕−𝟏,𝒖𝒕,𝒏𝒕)     Equation 4.3 

The last robot state 𝑅𝑡−1 is described by the translation and rotation with respect to the 

global frame as follow: 

𝑹𝒕−𝟏 = �𝑹𝒕𝒓𝒂𝒏𝒔𝜽𝒓
�
𝒕−𝟏

= �
𝒙𝒓
𝒚𝒓
𝜽𝒓
�
𝒕−𝟏

    Equation 4.4 

The control motion 𝑢𝑡 is represented as: 

𝒖𝒕 = �𝒖𝒕𝒓𝒂𝒏𝒔∆𝜽 �
𝒕

= �
∆𝒙
∆𝒚
∆𝜽
�
𝒕

    Equation 4.5 

The perturbation or noise 𝑡  is also needed as the motion control in reality is never 

precise. Therefore, we added the noise characterized by Gaussian probability with 𝑞 

variance value and zero mean: 

𝑡 = 𝒩 (0, 𝑞) 

Direct & Inverse Observation Model  

 The observation model provides information regarding the relation between the 

robot and the landmark position. It is used when the robot observes a landmark that has 
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already been mapped by its on-board sensors. Direct observation ℎ () can be written as 

follow: 

𝒛 = 𝒉(𝑹,𝑳𝑳𝒐𝒄𝒂𝒍) = �𝒅∅� = �
��𝒙𝑳_𝑳𝒐𝒄 − 𝒙𝒓�

𝟐 + �𝒚𝑳_𝑳𝒐𝒄 − 𝒚𝒓�
𝟐

𝐭𝐚𝐧−𝟏 �𝒚𝑳_𝑳𝒐𝒄−𝒚𝒓
𝒙𝑳_𝑳𝒐𝒄−𝒙𝒓

�
� + 𝒗  Equation 4.6 

where 𝑑 & ∅  are the distance and bearing between the robot and the landmark 

respectively. 𝑣 represents a Gaussian noise vector with zero mean and 𝑡  variance. 

Observation 𝑧 is also referred to as measurement. 

 The inverse observation model 𝑔() is called when there is a newly discovered 

landmark. Assume that the landmark measurement 𝑧  is known, using inverse 

observation results the landmark state 𝐿 with respect to the global frame. In most of 

cases, the function 𝑔() is the inverse of observation function ℎ (): 

𝐿 = 𝑔(𝑅, z) 

4.1.2. EKF-SLAM Process  

In general, the main essential process can be derived as three iterated steps [38, 

74]: 

1. Update the current state estimate using the odometry data (prediction step) 

2. Update the estimated state from re-observing landmarks (correction step) 

3. Add new landmarks to the current state (landmark initialization) 

Prior to giving each step a detailed description in the following subsections, we 

will introduce the map state vector that is considered as the foundation of a SLAM 

algorithm.  

The Map state  

The map in a SLAM problem is a large estimated state vector storing robot and 

landmark states, which can be denoted as: 
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𝑿 = �𝑹𝑴� =

⎣
⎢
⎢
⎢
⎡
𝑹
𝒍𝟏
𝒍𝟐
⋮
𝒍𝑵⎦
⎥
⎥
⎥
⎤
    Equation 4.7 

Where 𝑅 is the robot state containing position (𝑥,𝑦) and orientation 𝜃, and 𝑀 is the set 

of landmark positions (𝐺1,𝐺2 … 𝐺𝑁), with 𝑁 the number of current observed landmarks. 

In EKF-SLAM, this map is modeled by a Gaussian variable obtaining from the 

mean and covariance 𝑷 of the map state. The covariance matrix 𝑷 is of importance to a 

SLAM problem as it describes the mean deviation and system uncertainty. The matrix 

contains the covariance on the robot position𝑷𝑅𝑅 , the landmarks, the covariance 

between robot position and landmark 𝑷𝑅𝑀  and its transpose 𝑷𝑀𝑅 , as well as the 

covariance between the landmarks 𝑷𝑀𝑀, denoted as: 

 𝑷 = �
[𝑷𝑅𝑅]3×3 [𝑷𝑅𝑀]3×2𝑁

[𝑷𝑀𝑅]2𝑁×3 [𝑷𝑀𝑀]2𝑁×2𝑁
� = 

                          

                                  Equation 4.8 

 

 

 

Map Initialization 

The mapping initializes with the initial position of the robot and no landmarks. 

Then we have the initial robot position as origin of the global frame, and the number of 

landmark n as zero. Consequently, the initial map state and covariance matrix can be 

considered as: 

𝑿 = 𝑹 = �
𝒙𝒓
𝒚𝒓
𝜽
� = �

𝟎
𝟎
𝟎
�   &    𝑷 = �

𝟎
𝟎
𝟎

  𝟎 
   𝟎  
  𝟎 

𝟎
𝟎
 𝟎
�  Equation 4.9 

In SLAM, this map is continually being updated as the robot navigates through 

the environment. The dimension of the map state vector and covariance matrix will 

increase as new features recognized by the robot. i.e. Observing new landmark.  
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Robot Motion (Prediction step) 

The EKF-SLAM algorithm in this first step calculates the position of the robot 

after the movement given by a control motion 𝑢. Due to the fact that only the robot 

position is changed in this step, the affected elements in the map state are those related 

to robot pose 𝑅, and the landmark part 𝑀 remains invariant. Notice that the new robot 

pose here is derived through motion model function 𝑓 () that has been discussed earlier. 

Therefore, the new map state can be written as: 

𝑿 = �𝑹𝑴� = �𝒇 (𝑹,𝒖,𝒏)
𝑴

�   Equation 4.10 

Where the new robot state 𝑅 is based on the last robot position, control motion 𝑢 and 

noise 𝑡, which can be expended as: 

𝑹 = 𝒇 (𝑹,𝒖,𝒏) = �
𝒙𝒓 + ∆𝒙𝒄𝜽𝒓 − ∆𝒚𝒔𝜽𝒓
𝒚𝒓 + ∆𝒙𝒔𝜽𝒓 + ∆𝒚𝒄𝜽𝒓

𝜽𝒓 + ∆𝜽
� + 𝒏  Equation 4.11 

The computation of covariance is completed, according to following equation: 

𝑷 = 𝑭𝑷𝑭𝑻 + 𝑭𝒏𝑸𝑭𝒏𝑻    Equation 4.12 

With 𝑸 the covariance matrix of the noise 𝑡, and where 𝑭 and 𝑭𝑛 are Jacobian matrices 

of motion function 𝑓 (). 

𝑭 = �
𝝏𝒇
𝝏𝑹
� 𝟎
𝟎 𝑰

�    &   𝑭𝒏 = �
𝝏𝒇
𝝏𝒖
�
𝟎
�   Equation 4.13 

 Note that most of the parts in the above matrices are zero and identity as the 

large part of the map is invariant upon robot motion. As a consequence, minor parts are 

updated including𝑷𝑅𝑀 , 𝑷𝑀𝑅  and 𝑷𝑅𝑅  in the covariance square matrix 𝑷, and the robot 

state 𝑹 in the map state 𝑋. Updated parts are marked in gray. 

 

                                𝑋 =

⎣
⎢
⎢
⎢
⎡
𝑅
𝐺1
𝐺2
⋮
𝐺𝑁⎦
⎥
⎥
⎥
⎤

  &   𝑃 =    
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The psesudo code for pridiction step in the EKF-SLAM experiment is shown as 
follow: 

• Robot move 

• 𝑹 = get measurement from robot odometry 

• Compute covariance 𝑷 

• Update map state 𝑿 and covarance matrix 𝑷 

Observation of mapped landmarks (Correction step) 

The observation step occurs when a previously mapped landmark is measured 

by the embarked sensor on the robot. Once the data is collected from the sensor, the 

observation model ℎ ()  is used to calculate the innovation, which is basically the 

difference between the predicted and actual observation, used to reduce the uncertainty 

of the map state from the prediction step.  

The innovation is also critical to the so-called data association problem in SLAM. 

The problem arises when the robot has to determine whether a detected landmark 

corresponds to a previously observed landmark or to a new one [75]. The description of 

the method used to solve the data association problem is included in this subsection.    

Accordingly, the innovation vector 𝑧𝑖𝑡𝑡𝐺𝑣 is calculated from the following equation: 

𝒛𝒊𝒏𝒏𝒐𝒗 = 𝒛𝒂𝒄𝒕𝒖𝒂𝒍 − 𝒛𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅   Equation 4.14 

The innovation covariance 𝑍𝑖𝑡𝑡𝐺𝑣  is then computed to measure the uncertainty of 

predicted observation, 

𝒁𝒊𝒏𝒏𝒐𝒗 = 𝑯𝑿𝑷𝑯𝑿
𝑻 + 𝑺    Equation 4.15 

Where 𝑯𝑋 is the jacobian of the predicted observation model 𝑧𝑝𝑡𝑒𝑑𝑖𝑐𝑡𝑒𝑑. The structure of 

𝑯𝑋 is presented as: 

𝑯𝑿 = �[𝑯𝑹]   𝟎  …    𝟎   �𝑯𝑳𝒊_𝑮𝒍𝒐𝒃𝒂𝒍�   𝟎  …    𝟎�
𝟐×(𝟑+𝟐𝑵)

  Equation 4.16 

Where 
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𝑯𝑹 = 𝝏𝒉
𝝏𝑹

  & 𝑯𝑳𝒊_𝑮𝒍𝒐𝒃𝒂𝒍 = 𝝏𝒉
𝝏𝑳𝒊_𝑮𝒍𝒐𝒃𝒂𝒍

  Equation 4.17 

With ℎ  the direct observation, 𝑹  the robot state, and 𝐿𝑖_𝐺𝐺𝐺𝐺𝑡𝐺  the predicted landmark 

state. 

 Since the computation of the innovation Jacobian matrix 𝑯𝑿 is sparse, it only 

involves the robot state 𝑹, the concerned landmark state 𝑳𝒊 and their covariance 𝑷𝑅𝑅 

𝑷𝐿𝑖𝐿𝑖 along with their cross-variances 𝑷𝐿𝑖𝑅 and 𝑷𝑅𝐿𝑖.The representation of involved parts 

(marked as grey) in the covariance matrix 𝑷 is: 

 

                                𝑿 =

⎣
⎢
⎢
⎡
𝑅
⋮
⋮
𝐿𝑖
⋮ ⎦
⎥
⎥
⎤
  &  𝑷 =   

 

The map state 𝑋 and the covariance 𝑃 then need to be updated to complete the 

correction step. In order to do this, a Kalman gain 𝐾 from the EKF algorithm has to be 

computed using the following formula: 

𝑲 = 𝑷𝑯𝑿
𝑻𝒁𝒊𝒏𝒏𝒐𝒗−𝟏    Equation 4.18 

Notice that the Kalman gain matrix 𝐾 contains a set of numbers about how much each of 

the robot state and landmark state should be updated. 

Consequently, the full map state is updated because that Kalman gain affects the full 

state: 

𝑿 = 𝑿 + 𝑲𝒛𝒊𝒏𝒏𝒐𝒗   Equation 4.19 

Similar to the covariance matrix:  

    𝑷 = 𝑷 − 𝑲𝒁𝒊𝒏𝒏𝒐𝒗𝑲𝑻   Equation 4.20 

The psesudo-code for correction step in the EKF-SLAM process is shown as below: 
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• Get measurement from laser sensor 

• If this is observed landmark: 

 Compute expected lanmark position using ℎ () 

 Compute innovation 𝒛𝒊𝒏𝒏𝒐𝒗 and its convariance 𝒁𝒊𝒏𝒏𝒐𝒗 

 Computer Kalman Gain 𝐾 

 Update map state 𝑿 and covarance matrix 𝑷 

 

Data Association 

 Data association is one of the main challenges in the SLAM problem. In this 

thesis, it is handled by adopting Mahalanobis distance (𝑀𝐷) gating approach [76], where 

𝑀𝐷 represents the probabilistic distance between the actual and estimated observations 

in EKF-SLAM: 

𝑴𝑫𝟐 = 𝒛𝒊𝒏𝒏𝒐𝒗𝑻 𝒁𝒊𝒏𝒏𝒐𝒗−𝟏 𝒛𝒊𝒏𝒏𝒐𝒗  Equation 4.21 

Where 𝑧𝑖𝑛𝑛𝐿𝑣 is the innovation vector and 𝑍𝑖𝑛𝑛𝐿𝑣 the covariance matrix of innovation. 

𝑀𝐷2 is then used to compare with the gate validation scalar threshold 𝜎2. If the 

value of  𝑀𝐷2  is less than the validation gate 𝜎2 , the detected landmark will be 

determined as the re-observed one and the correction step will begin. For the case that 

the 𝑀𝐷2 is greater than the  𝜎2, the landmark will be considered as new and initiate the 

landmark initialization step that is clarified in the next section. 

The process of data association is descripted as pseudo-code: 

• Compute 𝑴𝑫𝟐 according to innovation 𝒛𝒊𝒏𝒏𝒐𝒗 and covariance 𝒁𝒊𝒏𝒏𝒐𝒗 

• If 𝑀𝐷2 < 𝝈𝟐 : 

 Observed landmark, go to correction step 

• Else: 

 New landmark, go to landmark initialization step 
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 Landmark Initialization Step 

The step of landmark initialization only happens when the robot detects a 

landmark that is not yet observed and decides to add it in the map. As a result, the size 

of map state 𝑋  and covariance matrix 𝑃  is increased. This step is considered to be 

relatively straightforward as we only need to use the inverse observation function 𝑔 () to 

compute the new landmark state 𝐿𝑁+1 and add it into the map state 𝑋 and covariance 

matrix 𝑃. 

Assume that 𝑁 indicates the number of mapped landmark and the observation 

for the new landmark at a time instant t is 𝑧𝑁+1, by using the inverse observation function 

𝑔 () , we obtain the new landmark coordinated 𝐿𝑁+1 with respect to the global frame 𝐺: 

𝑳𝑵+𝟏 = 𝒈(𝑹𝒕, 𝒛𝒏𝒆𝒘)   Equation 4.22 

Next, this additional landmark 𝐿𝑁+1 is added to the map state 𝑋: 

𝑋 = �
𝑅
𝑀
𝐿𝑁+1

� 

Also the covariance matrix 𝑃 is augmented: 

𝑃 = � 𝑃 [𝑃𝑋𝐿]3×2
[𝑃𝐿𝑋]2×3 [𝑃𝐿𝐿]2×2

� 

Which includes landmark’s co-variance 𝑃𝐿𝐿 and cross-variance 𝑃𝐿𝑋: 

𝑃𝐿𝐿 = 𝐺𝑅𝑃𝑅𝑅𝐺𝑅𝑇 + 𝐺𝑧𝑆𝐺𝑧𝑇 

𝑃𝐿𝑋 = 𝐺𝑅𝑃𝑅𝑋 

With 𝑆  the covariance matrix of the observation noise 𝑣 , and where 𝐺𝑅  and 𝐺𝑧  are 

Jacobian matrices of inverse observation 𝑔(): 

𝐺𝑅 =
𝜕𝑔
𝜕𝑅
�
𝑋𝑡,𝑧𝑁+1

&    𝐺𝑧 =
𝜕𝑔
𝜕𝑧
�
𝑋𝑡,𝑧𝑁+1

 



 

64 

Following representation shows the appended parts to the map state 𝑋 and covariance 

matrix 𝑃 in the landmark initialization step. The appended parts (marked in grey) contain 

the new landmark’s state in the full map state and its covariance and cross-variance in 

the covariance matrix 𝑃: 

       𝑋 =

⎣
⎢
⎢
⎢
⎡
𝑅
𝐺1
𝐺2
⋮

𝐺𝑁+1⎦
⎥
⎥
⎥
⎤
      &     𝑃 =  

 

 Following list presents the pseudo-code for the landmark initialization step. 

• Get measurement from laser sensor 

• If this is new landmark 

 Compute lanmark position in global frame using 𝑔 () 

 Compute covariance 𝑷 

 Augmented map state 𝑿 and covarance matrix 𝑷 with new landmark 

Once the landmark Initialization step is completed, the SLAM algorithm is ready 

for the next iteration. The robot will move again, observe landmarks, go through the step 

of correction or landmark initialization based on the decision of data association. The 

flow chart illustrating the full EKF-SLAM process is shown in Figure 4.2. 
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Figure 4.2. The flow chart of EKF-SLAM algorithm 

4.2. EKF-SLAM Algorithm Implementation 

The implementation of EKF-SLAM algorithm has been realized in both simulation 

and real-time environments. Considering that the simulated experiment results are 

obtained through a relatively ideal experimental environment, real-time implementation 
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on a robot platform is therefore performed to verify the simulated results. The 

experiments were conducted on the NAO humanoid robot that has been introduced in 

chapter 3, and the complete EKF-SLAM algorithm was coded and tested in Python 

programming language compiled by Pydev, a Python IDE (Integrated Development 

Environment), under Windows environment. 

4.2.1. Simulation Experiments & Results  

We conducted extensive simulations prior to the real time implementation in 

order to test the performance of our algorithm in a number of iterations. By running the 

simulation code, we collected the results on different number of landmarks cases to 

demonstrate the effect from landmark observation. Additionally, we have calculated the 

run time for each of the three experiments aiming to show the time complexity. 

Case one – No landmark 

 In the first experiment, our purposed EKF-SLAM code is given zero landmark 

and the control motion of 𝑈 = [0.12  0  0], that is robot walking straight with 0.12. The 

Gaussian noise is given by 𝑆𝐷 = [0.02𝑚 0.02𝑚 0.02𝑟]′. After running for 45 iterations, 

the results are illustrated in Figure 4.3(a). We can see that as the robot travels, the 

estimated position marked with green dots gradually deviate from the reference path in 

red dot, which is shown as the robot position error in Figure 4.3(b).  Similarly, the robot 

covariance represented in ellipse also diverges and is shown in Figure 4.3(c). Reason 

for this can be explained by the lack of external data to correct the robot position through 

the EKF-SLAM algorithm. The output data from the 45th iteration is listed in Table 4.1.  

Table 4.1. Experiment result on no landmark case at 45th iteration 

Reference Estimated Covariance matrix Error Runtime 

�
5.4
0

 0𝑡
� �

5.2423
−0.2165
−0.0595

� �
0.0178 0.0055 0.0018
0.0055 0.1574 0.0453
0.0018 0.0453 0.0176

� 0.1244m  0.188s 
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(a) 

 

(b) 
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(c) 

Figure 4.3. EKF-SLAM simulation result: a) Plot of estimated robot position 
denoted in green dots and reference position in red dots. b) the error 
between estimated and reference robot position. c) the motion 
uncertainty represented by the area of covariance ellipses grows. 

Case two – One landmark 

The second simulation experiment demonstrates the landmark observation effect 

and the result can be compared to the first experiment. The robot used the on-board 

laser sensor to detect the landmark and to obtain the observation information for the 

EKF-SLAM algorithm to improve the robot estimate position. Therefore, we added one 

landmark to the environment at 𝐿 = (3.5 1.5) in the global frame. The laser that robot 

used is set to the range of 2𝑚 in distance and �–𝜋/2𝑟 ,𝜋/2𝑟� in bearing. We remain other 

conditions the same: Gaussian noise for motion and observation are 𝑆𝐷𝑚𝐿𝑡𝑖𝐿𝑛 =

[0.02𝑚 0.02𝑚 0.02𝑟]′  and 𝑆𝐷𝐿𝑏𝑣 = [0.1𝑚 𝜋/180]′ , control motion 𝑈 = [0.12  0  0] 

and running for 45 iterations. The simulation experiment results are depicted in Figure 

4.4(a) the red star is the real position of landmark and green dots surrounded with 

ellipses represent the estimated landmark position and covariance. From the plot, the 

moment that landmark observation starts to be in effect is easy to identify: nearly after 

robot passes 2m distance, the estimated robot position approaches to the reference 
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position (Figure 4.4 (b)) and meanwhile the motion uncertainty represented by 

covariance ellipse drops Figure4.4 (c). Concurrently, the landmark position is being 

estimated and the data is plotted. Figure 4.5(a) shows that the landmark position error 

remains certain value after a number of observations. While Figure4.5 (b) points out the 

decreasing of landmark covariance ellipse begins from the first observation and ends at 

the last observation in approximately the 33th iteration. In addition, numerical results are 

provided in the table 4.2. Notice that the runtime in this simulation has increased due to 

the computation expense of landmark observation process.  

Table 4.2. Experiment result on one landmark case at 45th iteration 

 Ref. Est. Covariance matrix Error Runtime 

Robot �
5.4
0

 0𝑡
� �

5.3488
0.1399
−0.0937𝑡

� �
0.0031 0.0017  0.0011
0.0017 0.0032 0.0018
0.0011 0.0018 0.0020

� 0.0624m 
0.231s 

LM �3.5
1.5
� �3.5215

1.3793
� �0.0037 0.0051

0.0051 0.0019
� 0.0872m 

 

 
(a) 
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(b) 

 

 

 

 

 

 

 

(c) 

Figure 4.4. a) Plot of estimated robot position denoted in green dots and 
reference position in red dots, with landmark marked in star. b) the 
drop of error between estimated and reference robot position during 
observation. c) The motion uncertainty represented by the area of 
covariance ellipses decreases during landmark observation. 

 

Observation effect 

Observation effect 
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(a) 

 
(b) 

Figure 4.5. Landmark uncertainty: a) landmark position error changes during 
observation. b) Landmark uncertainty reduces as landmark 
observation in progress. 
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Case three – two landmarks 

In landmark based EKF-SLAM, one landmark is usually not sufficient to achieve 

more accurate robot and landmark estimated position. Accordingly, under the same 

experimental conditions, we introduced a new landmark to the simulation experiment 

where 𝐿1 = (4 1.5), 𝐿2 = (4 −1.5)  and obtained a comparative result in Figure 

4.6(a). By comparing the two landmarks experiment plot with one landmark plot, one can 

observe that the uncertainty of the robot motion represented by the ellipse has dropped 

more significantly while the robot detects multi-landmarks at once Figure 4.6(c). 

Furthermore, the robot position error decreases during robot observation process, 

shown in Figure 4.6(b). For other numerical results, see Table 4.3. Note that a longer 

runtime is required to complete two landmark’s simulation.  

 

 
       (a) 

 

 

Significant uncertainty drop 
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(b) 

 
(c) 

Figure 4.6. a) Plot of estimated robot position denoted in green dots and 
reference position in red dots, with landmark marked in star. b) The 
drop of error between estimated and reference robot position during 
observation. c) The motion uncertainty represented by the area of 
covariance ellipses decreases during landmark observation. 

 

Observation effect 

Observation effect 
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Table 4.3. Experiment result on two landmark case at 45th iteration 

 Ref. Est. Covariance Matrix Error Runtime 

Robot �
5.4
0

 0𝑡
� �

5.2384
0.1493
−0.1293𝑡

� �
0.0035 −0.0016 −0.0007
−0.0016 0.0061 0.0033
−0.0007 0.0033 0.0030

� 0.1231m 

0.498s LM1 � 4
1.5� �4.0999

1.3672� � 0.0082 −0.0061
−0.0061 0.0118 � 0.0836m 

LM2 � 4
−1.5� � 4.0547

−1.3986
� �0.0053 0.0012

0.0012 0.0048
� 0.0542m 

 

4.2.2. Implementation of EKF-SLAM algorithm on NAO robot 

To verify the simulation results we implemented the EKF-SLAM algorithm onto 

the humanoid robot NAO and then collected the result from the real time experiment. 

Models in the EKF-SLAM algorithm are realized using proper NAOqi API models that 

provided in the Python language version of SDK in NAO software package.  Accordingly, 

previous to the experiments demonstration, we include a brief introduction of NAOqi 

APIs and discuss their applications in the EKF-SLAM program.  

 

NAOqi APIs introduction and applications in the experiment 

Aldebaran has provided a variety of modules for developers to program with 

NAO and develop advanced applications. These modules also called APIs and can be 

categorized according to the main function, listed in the table below: 

  



 

75 

Table 4.4. List of all available NAO APIs 

 Description Modules 

Core Includes modules that are always available in NAOqi. 

ALBehaviorManager 
ALBonjour 
ALMemory 
ALModule 
ALPrerences 
ALProxy 
ALResourceManager 

Motion Provides methods which facilitate making NAO move. For 
example, sending command to walk to specific location. 

ALMotion 
ALMotionRecorder 

Audio 
Manages all functions of NAO audio devices. Commonly 
used for speaking and voice recognition.  
 

ALAudioDevice 
ALAudioPlayer 
ALAudioRecoder 
ALAudioSourceLocalisation 
ALSoundDetection 
ALSpeechRecognition 
ALTextToSpeech 

Vision Compose of all NAO vision modules. Landmark detection 
was used for my application 

ALFaceDetection 
ALLandmarkDetection 
ALRedBallDetection 
ALVideoDevice 
ALVisionRecognition 
ALVisionToolBox 

Sensors Deals with NAO sensors that includes infrared, laser sonar 
and etc. 

ALFsr 
ALInfrared 
ALLaser 
ALRobotPose 
ALSensors 
ALSonar 
ALLeds 

Trackers 
This module allows user to make NAO track targets  
(a red ball or a defined face) 

ALFaceTracker 
ALRedBallTracker 

DCM 
Stands for Device Communication Manager. In charge of 
the communication with all electronic devices in the robot 
except the sound and the camera. 

 
DCM 
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According to the EKF-SLAM algorithm explained in the previous section, there 

are two main tasks for NAO robot in the EKF-SLAM process: motion and observation. 

Each task is completed through related NAOqi API included in the above table.  

The motion model in the EKF-SLAM involves the walking motion and positing of 

the robot, which are achieved from specific method within ALMotion module. The 

application of ALMotion model firstly takes the control input in (x, y, theta), where x and y 

are the Cartesian coordinates with respect to the robot frame that the robot should 

approach, with theta the final orientation. Furthermore, the end robot position can be 

then obtained through the odometry data with respect to global frame, used for EKF-

SLAM to compute the estimated position.  

On the other hand, the observation model in the EKF-SLAM algorithm requires 

the data from laser sensor on NAO robot.  Firstly, ALLaser module permits an access to 

the configuration of laser such that the laser range in terms of distance and bearing can 

be customized according to the experiment environment. Then, ALMemory module is 

called to retrieve the raw data of laser that contains 683 points of data within the 

coverage of current detection, and each data is composed of 4 parameters describing 

this point, where first two are the Cartesian coordinates (x, y) in the robot frame, and the 

other two are polar coordinates (d, ∅), where d the distance and ∅ the bearing toward 

the detected point.  

Linear motion 

This experiment is to realize the EKF-SLAM simulation of the two landmark case 

on the robot platform. The robot was given a control motion of 𝑈 = [0.1  0  0], meaning 

that robot walks straight with 0.1𝑚 at each iteration. Similar to the simulation experiment, 

two landmarks were placed in the environment at 𝐿1 = (0.8 1.5), 𝐿2 = (0.8 −0.5) in 

the global frame. The laser range settings were (20,700mm) for the distance and 

( −3𝜋/4, 3𝜋/4 ) for the bearing. The laser sensor was activated throughout the 

experiment. Once the landmark enters the laser range, the landmark location in the form 

of polar coordinate was received and used for the observation step in SLAM. The 

experiment scenario is shown in Figure 4.7. 
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Figure 4.7. EKF-SLAM real-time implementation scenario with two landmarks. 

The complete experiment is then plotted in the Figure 4.8. The robot initializes its 

first step at the initial robot position marked in star, moves straight for 0.1m according to 

the control motion, obtains the robot odometry data to get the measured position of robot 

which corresponding to the prediction step in a EKF-SLAM process, and then retrieves 

laser sensor data regarding the detected landmarks (blue dots surrounding by 

connivance ellipses) to feed in the EKF-SLAM algorithm in order to minimize the 

uncertainty of prediction step.  

In addition, the existence of deviation is observed during the experiment and is 

depicted in the plot as well (reference in red and estimated robot position in green 

separated out after iterations). This deviation is not unexpected as the mechanism of the 

robot cannot be ensured a perfect symmetry and the ground condition affects the motion 

deviation. Furthermore, due to the fact that the estimated position in the plot mainly 

based on solely the odometry data from the robot, which has proven to be not precise, 

greater amount of deviation between the “real” robot path and reference path is 
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expected. A technique specifically developed for reducing this deviation will be 

introduced in the next chapter.   

 
Figure 4.8. Result of real-time EKF-SLAM implementation on two landmark case 

Rectangular motion avoiding obstacle  

The second experiment is performed in a slightly complicated scenario intending 

to simulate a practical SLAM exploration mission for a robot. In the experiment, a 

rectangular shape obstacle was placed in the environment and the robot should be able 

to avoid the collision while performing the navigation. There are several obstacle 

avoidance methods available including potential fields, generalized potential fields and 

vector field histograms [77, 78], while in this experiment a basic avoidance technique 

based on path planning was implemented. Accordingly, the robot should move along a 

rectangular path in order to avoid the obstacle, and then retreat to the original location 

after the observations of totally three landmarks on the path to accomplish the 

exploration task. The experiment parameters are similar to the linear motion experiment: 

control motion given by 𝑈 = [0.1𝑚  0  0] at observation, 𝑈 = [0  0 − 𝜋] for turning and 

𝑈 = [0.5𝑚  0  0] for the last step back to origin location, along with laser range settings 

(20,700mm) for the distance and (−3𝜋/4, 3𝜋/4) for the bearing.  
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We obtained the result illustrated in Figure 4.9 once experiment is completed. 

The full experiment is succeeded in 16 iterations of EKF-SLAM algorithm. The runtime is 

1m:46.297s.  According to the plot, the estimated position of the robot has reached the 

reference position that is fairly close to where the robot initializes the exploration. 

However, given that the deviation is currently inevitable without the guidance of external 

sensor and the robot odometry is not capable of capturing it precisely, a greater 

deviation is experienced. 

 
Figure 4.9. Real-time EKF-SLAM implementation result. Robot following a 

rectangular path to avoid obstacle and retreating to origin. 

4.2.3. Summary 

In this chapter, a detailed interpretation of EKF-SLAM algorithm is firstly 

presented aiming to provide readers a comprehensive knowledge of EKF-SLAM 

algorithm, which is considered as the foundation technique of my thesis project. The 

next portion of this chapter discusses the EKF-SLAM on simulation and experimental 

implementation on humanoid robot NAO. The simulation results have validated the effect 

of observation model where the uncertainty of robot motion minimized during the 

landmark observation process, and also have verified that the time complexity of the 
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algorithm is increased with the number of landmark to be detected by the robot. On the 

other hand, the full real-time implementation of EKF-SLAM on robot NAO succeeded in 

two scenarios. The first scenario is the realization of two landmark simulation, and the 

second experiment is design particularly to simulated a practical exploration task in an 

unknown environment to a robot platform, where the NAO robot traveled along a 

assigned rectangular shape path in order to accomplish the EKF-SLAM process and 

meanwhile avoiding an obstacle and returning to where it starts. The results for both 

experiments have proven the effectiveness of the implementation of EKF-SLAM, while 

one experimental issue, the motion deviation is observed and will be studied in the next 

chapter. 
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Chapter 5.  
 
Augmented Reality Implementation for Robot 
Navigation 

The objective of Augmented Reality technology, as stated in the literature review 

chapter, is to enhance the information acquisition of practical world by augmenting with 

computer-generated sensory input. In this chapter, we demonstrate extended studies on 

the previous research of landmark based EKF-SLAM by implementation Augmented 

Reality. Two distinctive applications of Augmented Reality have been integrated with the 

original EKF-SLAM program for performance improvement. The first application involves 

the vision recognition of specific landmarks for obtaining predefined landmark 

information, such that the robot obtains the capability of navigating in a dense 

environment with multiple landmarks and obstacle. The landmark information can also 

be used for the simplification of data association problem in EKF-SLAM. The second 

application is aiming to enhance the precision of existing robot odometry and therefore 

reduce the deviation from robot walking by taking advantage of the external  data from 

iPhone gyrometer to update the odometry and a implementing a PI motion controller for 

position correction. 

5.1. Vision recognition augmented EKF-SLAM 
implementation on NAO robot 

In the first phase of Augmented Reality improved EKF-SLAM experiment, we 

applied the landmark recognition function from NAO robot API package in order for  the 

robot to recognize landmarks that are attached with NAOmarks and obtain pre-loaded 

information useful for navigation. The Module of landmark recognition is therefore 

reviewed in the following subsections. 
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5.1.1. Landmark Recognition on NAO 

Object recognition problem has been broadly studied in the areas of computer 

vision and image processing, which dealing with finding and identifying objects in an 

image or video sequence [79]. One can sense the significance of this problem to an 

Augmented Reality application that before augmenting with additional information, the 

particular object in the physical world has to be recognized by the system at the first 

place. In order to achieve the object recognition task on NAO robot, the landmark 

detection module provided in NAOqi APIs is used.  

The Landmark detection module enables NAO to recognize special landmarks 

with specific patterns called NAOmarks. NAOmarks are logos consist of black circles 

with white triangle fans centered at the circle’s center. The landmark recognition module 

can identify the particular location of the different triangle fans and return their NAOmark 

ID which is two to three digital numbers [80]. Figure 5.1 shows the sample NAOmarks 

that used in the experiment. 

 
Figure 5.1. NAOmarks with mark ID in the center [80] 

 

NAOmark detection is achieved by applying ALLandmarkDetection module in 

NAOqi APIs. Main steps regarding the application of this module presented in the form 

of Python programming language is listed in the following table.  
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Table 5.1. NAOmark detection steps 

 Python code Description 
1 markProxy = ALproxy("ALLandMarkDetection", IP, PORT) 

memProxy = ALproxy("ALMemory", IP, PORT) 
Creating proxy to NAOmark detection 
module 
and NAO’s memory module 

2 period = 500 How often to detect NAOmark and 
output results (in milliseconds) 

3 markProxy.subscribe("Test_Mark", period, 0.0 ) Subscribing to NAOmark detection 
extractor 

4 Result = memProxy.getData("LandmarkDetected") Get result from NAOmark detection 

The obtained results mainly consist of shape information and extra information of 

detected NAOmarks: 

• ShapeInfo = [ 0, alpha, beta, sizeX, sizeY, heading] . alpha and beta represent 
the Naomark’s location in terms of camera angles ; sizeX and sizeY are the 
mark’s size in camera angles ; the heading angle describes how the 
NAOmark is oriented about the vertical axis with regards to NAO’s head. 

• ExtraInfo = [ MarkID ] . Mark ID is the number written on the NAOmark and 
which corresponds to its pattern. This Mark ID is used in the project to assist 
robot distinguish different landmarks. 

5.1.2. Experimental implementation and results 

The integration of Augmented Reality with the EKF-SLAM algorithm is 

succeeded on NAO robot based on the use of NAOmark recognition function. Generally, 

the fundamental structure of EKF-SLAM remains while the Augmented Reality 

processes take place when NAOmark is detected, where additional information is 

retrieved regarding to the detected NAOmark and next NAOmark to go. The main 

contribution of integrating Augmented Reality into EKF-SLAM is the use of this additional 

information to assist robot in navigation task within a practical environment.   
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Figure 5.2. NAO detecting NAOmark and output the Mark ID  

Augmented Reality implementation 

Initially, the EKF-SLAM algorithm performs regular map initialization process and 

then starts its regular motion function. Differently, before the EKF-SLAM conducts the 

observation function using laser sensor, NAO calls the landmark detection module 

aiming to find if there are NAOmarks in the current camera field of view. This process is 

shown in Figure 5.2, NAO stops in front of landmark attached with NAOmark, landmark 

detection module should report the detected NAOmark by circling them and MarkID 

displayed next to it. Once the right NAOmark is detected and Mark ID is retrieved, extra 

information can be achieved corresponding to the Mark ID number, which is inspired by 

Augmented Reality. Two pieces of predefined information are received from NAOmark 

detection, which includes: 

• The control motion U to the next landmark: 

Given by U = [x  y  θ]. The control motion should lead the robot to the next 
landmark to be detected. Accordingly, x in the control motion is assigned by 
an adjusted walk distance for the robot to reach the detection of next 
landmark. By adjusted, it means that the robot should be able to be in the 
range of detecting next NAOmark according to the walk distance. This 
distance is derived from distance formula: 
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𝐝 = �(𝒙𝒆𝒔𝒕 −  𝒙𝒍𝒎)𝟐 + (𝒚𝒆𝒔𝒕 −  𝒚𝒍𝒎)𝟐   Equation 5.1 

Where 𝑥𝑒𝑠𝑡  𝑡𝑡𝑑 𝑦𝑒𝑠𝑡   the current estimated robot position, 𝑥𝐿𝑚 𝑡𝑡𝑑 𝑦𝐿𝑚  next 
landmark position according to information from NAOmark. Based on several 
experiments, we use x = 3d/4 to obtain a proper distance between NAO robot 
and NAOmark as illustrated in Figure 5.2 

On the other hand, the turning angle θ toward next landmark is calculated 
from: 

𝛉 = 𝐭𝐚𝐧−𝟏 (𝒚𝒍𝒎−𝒚𝒆𝒔𝒕) 
(𝒙𝒍𝒎−𝒙𝒆𝒔𝒕)

   Equation 5.2 

• The Mark ID: 

Once the Mark ID is extracted, we append the map state with one dimension 
to store the Mark ID number as identifier: 

1

1 1

1 1

2 2

2 2
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 

  Equation 5.3 

This process simplifies the data association problem because that the 
corresponding landmark can be easily matched once the Mark ID is re-
observed, without having to compute Mahalanobis distance frequently. 

In summary, the procedure of the Augmented Reality part is described in steps 

as follow: 

1. Robot motion according to NAOmark indication 

2. Calling landmark detection module to identify NAOmark 

3. Retrieve pre-loaded landmark information corresponding to which NAOmark 
is detected 

4. Continue regular EKF-SLAM  
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Figure 5.3.  AR-EKF-SLAM experiment scenario. NAO walks to and observes 

landmark one by one and return to original location 

Full Experiment Demonstration 

The experiment scenario has taken the idea of rectangle motion avoiding 

obstacle experiment in EKF-SLAM. Three landmarks located at corners of rectangle with 

an obstacle placed in the center. Differently, three landmarks all attached with 

NAOmarks that printed on pieces of papers. The control motion is variant according to 

the next landmark location, along with laser range settings (20,700mm) for the distance 

and (−3𝜋/4, 3𝜋/4) for the bearing. NAO robot should finish the task of exploring the 

experiment environment in Figure 5.3 using EKF-SLAM algorithm following the path 

directed by NAOmarks. The full experiment is depicted in Figure 5.5.  
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Figure 5.4. Result of AR-EKF-SLAM experiment. Slight deviation can be 

observed 

We then plotted the result in Figure 5.4, where the tasks of observations to three 

landmarks and the robot motion to origin are succeeded in 11 loops with the spend of 

1m:18.899s in time. Nevertheless, based on the experiment observation, NAO robot 

motion contained greater deviation than it appeared in the plot, due to the limited 

accuracy of robot odometry. In summation, Figure 5.6 presents a flow chart of the 

overview of AR-EKF-SLAM algorithm introduced in this section. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.5. AR-EKF-SLAM experiment: a) NAO stops in front of first NAOmark 
with a proper distance start NAOmark recognition and landmark 
detection. b) NAO makes its move and reaches the second 
landmark. c) NAO arrives at the last landmark, EKF-SLAM 
completed. d) NAO retreats at original location.  

 



 

89 

 

Figure 5.6. Overview of AR-EKF-SLAM algorithm 
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5.2. Reduce NAO robot position error using iPhone 
gyrometer with closed-loop controller 

In this section, we study on a solution to the deviation problem of NAO robot. 

Firstly, we managed to replace the use of robot odometry and augmented the odometry 

with iPhone gyrometer sensor data to obtain a more accurate robot position. Then, this 

improved robot position is used for a simple closed-loop PI controller to reduce the error 

between reference position and estimated position. The performance of this method is 

tested with EKF-SLAM two landmarks linear motion experiment then extended to the full 

AR-EKF-SLAM method.  

5.2.1. Problem description 

During the experiments, it was observed that the trajectory of the robot deviates 

from the planned trajectory all the time. The cause for two legged robot motion deviation 

can be varied. For example, each leg may step differently while walking due to the 

control complexity of leg mechanism. The ground condition may also reflect the robot 

motion. Interestingly, not only this problem exists in robotics, it happens to human as 

well: suppose that one asked to walk strictly straight with eyes covered, after certain 

distance, the tester will always deviates from the straight path, and this error between 

actual and planned position accumulates as movement continues. Therefore, in order to 

reduce this position error, the tester needs to use one or some of his senses, vision for 

instance, to make observation and correction according to the amount of derivation.  

Similarly, this idea can be adopted into robotics. The data from robot odometry 

should indicate the position error, and then a proper motion controller is integrated to 

guide the robot back to the reference path.  Whereas, when it comes to our NAO 

platform, it has already been mentioned previously that the actual deviation observed 

from experiment is usually greater than what it appears from the plot of odometry data.  

We then found that the odometry that NAO robot relies on is based on dead reckoning in 

which error accumulates as robot moves. Therefore, we need a replacement of more 

accurate positioning system using external devices such that the motion controller is 

able to make correction based on the actual deviation.  
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5.2.2. Odometry Improvement 

In order to obtain a precise odometry data, the NAO robot platform was 

augmented with an external gyroscope sensor equipped on the most popular 

smartphone iPhone. The gyroscope detects any change in an object’s axis rotation, 

including pitch, yaw and roll with a desired precision. Assume that iPhone is lying down 

on a plane, the distribution of pitch yaw and roll are shown in Figure 5.7. Accordingly, if 

placing the iPhone on NAO robot with same pose, the yaw data should represent the 

orientation of NAO. The placement of iPhone with NAO robot is depicted in Figure 5.8. 

 
Figure 5.7. Pitch, roll and yaw on an iPhone 

 
Figure 5.8. NAO robot mounted with iPhone to receive gyrometer data 

Yaw 

Roll 

Pitch 
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There are a number of applications available for iOS devices to gain access to 

on-board sensor data. After testing and comparing these applications, SensorLog 

Version1.4 has won the competition from its convenience and precision. This application 

sends online stream sensors data which is of great importance to the need of our 

proposed implementation. Figure 5.9 shows the interface of SensorLog application 

outputting gyrometer data. To receive the data, a paragraph of Python code that 

provides the access a tcp/ip connection on a dedicated socket port was prepared. The 

IP address and socket port used in the experiment are 192.168.1.66 and 64646, 

respectively, and the data streaming rate was set to 500ms according to several tests.  

 
Figure 5.9. Interface of SensorLog iPhone application 

(https://itunes.apple.com/ca/app/sensorlog/id388014573?mt=8) 

Once the yaw data which also representing the robot orientation is filtered from 

other unused data, we store it as the actual orientation of end robot position, denoted as 

𝜃𝑦𝐿𝑤. The motion model 𝑓 () is used to calculate the x and y of end robot position. Thus, 

the new enhanced robot positioning system can be derived by: 

𝑹𝒕 = 𝒇 (𝑹𝒕−𝟏,𝒖𝒕,𝒏𝒕) = �
𝒙𝒓
𝒚𝒓
𝜽𝒓
�   Equation 5.4 

Where 𝑅𝑡 and 𝑅𝑡−1 the post and last robot positon, 𝑢𝑡 the control motion, 𝑡𝑡  noise vector. 

https://itunes.apple.com/ca/app/sensorlog/id388014573?mt=8
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𝑹𝒕 = �
𝒙𝒓
𝒚𝒓
𝜽𝒓
�   →    �

𝒙𝒓
𝒚𝒓
𝜽𝒚𝒂𝒘

�   Equation 5.5 

In this step, the estimated robot orientation 𝜃𝑟 is replaced by 𝜃𝑦𝐿𝑤 the actual orientation 

obtained from iPhone gyrometer.  

5.2.3. PI Motion Controller 

An enhanced positioning system proposed in the last subsection outputs 

estimated position data that closer to the actual robot position than using NAO’s 

odometry data. Subsequently, the error between estimated and reference robot position 

can be calculated, which is in significant amount during the experiment. Accordingly, a 

closed-loop PI controller is implemented to minimize this error, such that the deviation 

that robot travels can be reduced. This PI controller is mainly based on the return error 

of estimated and reference position error and is outlined in Figure 5.10. 

 
Figure 5.10. The closed-loop motion controller used in the project [11] 

Where 𝑥𝑅 is the reference position, 𝑥𝑒𝑠 is the estimated position. 

The Closed-loop controller steps are: 

1. Initialize controller value as a constant: U = Constant(i. e. U = 0.1) 

2. if  the error e = xR − xes >Ɛ (Ɛ is the threshold defined by user), then U = kp(e +
T/Ti ∑ e), (kp the proportional value)  

else  U = Constant (i. e. U = 0.1) 
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5.2.4. Experimental implementation and results 

The enhanced robot positioning system and motion controller was integrated with 

the EKF-SLAM and AR-EKF-SLAM in order to enhance the performance of these 

algorithms. In the first group of experiment, the robot was asked to perform an AR-EKF-

SLAM navigation following a straight line path, with a distance of 0.1m for every 

calculation iteration and with two landmarks. Figure 5.11(a) presents the experiment 

result of using new enhanced odometry on EKF-SLAM. We can observe that the 

estimated robot position marked in green dot deviates from the reference path in red 

dash line at each iteration, which clarifies the accumulated position error as robot moves 

forward. With adding the motion PI controller, the result is depicted in Figure 5.11(b). 

From the figure we can see that the estimated position has remained close to reference 

path, which verifies the effectiveness of motion controller  

Furthermore, this method has been test in a more complicated experiment 

environment based on AR-EKF-SLAM algorithm testing scenario. Results are recoded 

and plotted. Figure 5.12(a) presents the result using the proposed positioning system. In 

the estimation, deviation has been captured by the odometry at each observation 

iteration. According to the plot, larger amount of deviation occurred at turning points on 

the robot path, and this corresponds to the past experience with the robot, that the 

amount of turning angle cannot ensure to be very precise due to the mechanical 

structure of robot leg. As a result, the robot completed the navigation at somewhere 

away from the prescribed location. In contrast, the implementation of motion controller 

has proven its ability of correction according to the result plotted in Figure 5.12(b), where 

the robot has shown to follow the reference path nicely and nearly return to the initial 

location.  

In addition, to verify the correctness of the enhanced robot odometry and the 

performance of motion controller, each result has been verified with observation during 

the experiment. It has shown that the new odometry is capable of representing the 

actual position of robot, and the motion controller has succeeded in keeping NAO robot 

with small position error.  
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(a) 

 
(b) 

Figure 5.11. EKF-SLAM experiment two landmark results: a) with improved 
odometry b) with both improved odometry and controller 
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(a) 

 
(b) 

Figure 5.12. AR-EKF-SLAM full experiment: a) with improved odometry b) with 
both improved odometry and controller 
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5.3. Summary 

This chapter provides a comprehensive presentation of the integration of 

Augmented Reality with EKF-SLAM algorithm. We managed to develop two applications 

of AR and use it to improve the performance of EKF-SLAM. In the first application, 

NAOmarks that can be recognized by NAO's camera were pre-loaded with augmented 

information such that NAO robot was able to accomplish the navigation task in a dense 

environment with multiple landmarks and obstacle. This information was also used in 

data association to provide a clear identifier of which landmark it is. The second 

application, iPhone on-board gyrometer data was extracted and received by a dedicated 

program and then used in EKF-SLAM's motion module to obtain a more precise 

estimation of robot position. This estimated position is then used to calculate the position 

error and is fed into a closed-loop motion controller. Experiments have verified the 

correctness of enhanced robot positioning system. In the next chapter, we aim to 

demonstrate the contribution of implementing Augmented Reality by comparing and 

analysing the experimental results of EKF-SLAM and AR-EKF-SLAM. 
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Chapter 6.  
 
A Comparison of EKF-SLAM and AR-EKF-SLAM  

In this chapter, the results from the original EKF-SLAM experiment and from the 

two applications of Augmented Reality are presented and compared. Explanations are 

provided on the difference of these results, which indicate the improvement that has 

been accomplished based on the original EKF-SLAM algorithm. We collected three sets 

of results: the average error, which is the average position error between the estimated 

and reference robot position throughout the experiment; the iterations, indicating the 

total iterations of EKF-SLAM spend to complete the experiment; and the runtimes, the 

overall time spend to finish the experiment. 

6.1. Result comparison and study of linear motion 
experiment 

We applied the iPhone gyrometer enhanced NAO odometry system onto the 

EKF-SLAM experiment with two landmarks and linear motion scenario.  The results 

plotted in the Figure 6.1(b) where the reference path and measured position of robot are 

indicated as dash line connected red dots and green dots, respectively. The blue dots 

represent the observed estimated landmark location and the ellipses surrounding 

measured position and estimated landmark position descript the uncertainty. From the 

plot one can observe that the estimated robot path in green dots deviates from the 

reference path very small at the beginning and increases as robot moves forward, 

considering as a curved line. This can be explained by the fact the deviation should exist 

at each robot motion iteration, resulting in the accumulated deviation. In contrast, Figure 

6.1(a) shows a different result from the same experiment while using the NAO on-board 

odometry. The robot estimated path in green dot follows a straight line, which indicates 

that the robot deviation is doubtfully only existed at the origin and then travels in a 
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straight line. By comparing the result with the actual observation during the experiment, 

it is concluded that the result from the iPhone sensor enhanced odometry in Figure 

6.1(b) represents the true robot motion path more precisely than the robot on-board 

odometry. Furthermore, with the implementation of PI motion controller, the robot has 

also been observed to walk nearly along a straight line that close to the reference path, 

resulted displayed in Figure 6.1(c). In summary, selected results are list in Table 6.1, in 

which the average error with enhance odometry and controller largely reduced.   

 
(a) 

 
(b) 

 
(c) 

Figure 6.1. Comparison of results in linear motion experiment 
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Table 6.1. Experiment results on linear motion experiment of EKF-SLAM and 
AR-EKF-SLAM 

Landmark number: 2 Figure6.1(a) 
EKF-SLAM 

Figure6.1(b) 
EKF-SLAM & Odometry 

Figure6.1(c) 
EKF-SLAM & Odometry& Controller 

Average Error (m) 0.0652 0.0812 0.0083 
Iterations to Complete 10 10 10 
Runtime(s) 52.735 51.405 54.683 

6.2. Result comparison and analysis of rectangular motion 
avoiding obstacle experiment  

The second comparison is provided based on the experiment result under the 

condition of three landmarks, rectangular motion path with obstacle avoidance. Figure 

6.2(a) to Figure 6.2(d) demonstrate the step by step improvement of original EKF-SLAM 

algorthm from intergrating Augmented Reality, numariacal results on each of the plot are 

collected in Table 6.2. As a comparsion, Figure 6.2 (a) is the result from executing 

original EKF-SLAM algorithm. The full experiment is completed in 16 EKF-SLAM 

iterations or 1m 46.297s, which is yet to be improved. By adding NAOmark recognition 

function, the control motion U is variant and related to the next landmark location, result 

depicted in Figure 6.2 (b), where the number of iterations required to finish the 

navigation task has been reduced from 16 to 11, along with a reduced runtime 1m 

18.899s. Notice that the robot estimated position data is mainly based on the on-board 

robot odometry and is believed not reliable. That is to say, even though the robot 

estimated position appears to return at somewhere fairly closed to the reference location 

according to the plots, the actual robot position may be largely different. Accordingly, a 

more précised robot odometry can greatly improve the algorithm. In the next step, the 

robot odometry is replaced and updated using a new calculation method based on 

iPhone gyrometer data. The result of this experiment is shown in Figure 6.2 (c) 

characterizing and the randomness direction of robot trajectory and Table 6.2 presents 

the increase of measured robot position error according to the enhanced odometry. 

Technically, the increased position error should be more closed to the actual error than 

measuring from robot on-board odometry data, since the reliability of this update 

odometry has been verified through the experiment observation. Lastly, great robot 
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position improvement has been observed from Figure 6.2 (d) by integrating PI motion 

controller, with the reduction of error down to 0.0423m. As a result, the robot was able to 

return to the assigned location much closed than without using the enhanced odometry 

and PI motion controller. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6.2. Comparison of results in Rectangular motion avoiding obstacle 
experiment 
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Table 6.2. Comparison of experiment results on EKF-SLAM and AR-EKF-
SLAM 

Landmark number: 
3 

Figure6.2(a) 
EKF-SLAM 

Figure6.2(b) 
AR-EKF-SLAM: 

NAOmark 

Figure6.2(c) 
AR-EKF-SLAM: 

NAOmark + Odometry 

Figure6.2(d) 
AR-EKF-SLAM: NAOmark + 

Odometry+ Controller 

Average Error (m) 0.07724 0.0808 0.1542 0.0423 
Iterations to 
Complete 

16 11 11 11 

Runtime(s) 1.46.297 1.18.899 1.20.544 1.15.275 

6.3. Summary 

This chapter summaries the experimental results of EKF-SLAM and Augmented 

Reality integrated EKF-SLAM and then provides a comparison study in order to 

demonstrate the improvement. The comparison is made based on two experiment 

scenarios with their result plots and corresponding numerical results of average error, 

number of iterations and runtime. The first scenario, executing EKF-SLAM with two 

landmark and linear path motion, tested and verified the reliability of the enhanced 

odometry system based on iPhone gyroscope sensor data, as well as the performance 

of motion controller. The second comparison, under the scenario with full feature of 

Augmented Reality experiment, presents the improvement from each applications and 

the demonstration toward the final outcome of this thesis project, a full AR-EKF-SLAM.  
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Chapter 7.  
 
Conclusions and Future Work 

This thesis presented a real-time EKF-SLAM implementation on a humanoid 

robot NAO and an extended study of integrating Augmented Reality applications with 

EKF-SLAM. Improvements in terms of reducing EKF-SLAM computation expense and 

robot positioning are achieved.  

In the first stage, EKF-SLAM algorithm was realized in Python code and studied 

in simulation and experimental implementation. The simulation result validated the effort 

of EKF-SLAM landmark observation in terms of reducing the uncertainty of robot motion. 

Two sets of full real-time EKF-SLAM implementation experiments were succeeded. The 

experiment one is the realization of simulation in two landmarks case, and the NAO 

robot in the experiment successfully accomplished EKF-SLAM in a realistic exploration 

task with three landmarks and fixed obstacle. The results for both experiment has 

verified the effectiveness of EKF-SLAM algorithm.  

The next stage is considered as the essential contributions of this thesis. Two 

applications inspired by the fundamental concept of Augmented Reality are developed 

and integrated with EKF-SLAM. Application one utilizes pre-loaded information received 

from NAOmarks vision recognition function to improve the robot navigation and reduce 

EKF-SLAM computation cost.  The second application was achieved in developing an 

enhanced robot odometry by applying external sensor data from iPhone gyrometer to 

EKF-SLAM's motion module. Additionally, the odometry data was used to calculate the 

robot position error and input into a closed-loop motion controller. As applications tested 

in experiments, the robot was able to complete the EKF-SLAM task in a realistic 

environment with reduced runtime and improved trajectory control. 
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7.1. Contributions 

This thesis has presented a novel implementation of Augmented Reality 

technology onto humanoid robot NAO aiming to improve the performance of Extended 

Kalman Filter based Simultaneous Localization and Mapping algorithm. The work in this 

thesis has led to following contributions:   

• A completed AR-EKF-SLAM code in Python programming language that is 

fully comparable to NAO humanoid robot  

• Full experimental implementations of AR-EKF-SLAM algorithm on NAO robot 

was achieved in a realistic environment. The advantages of using Augmented 

Reality in EKF-SLAM is the reduction of computation expense and 

improvement of robot positioning, which have been claimed in the 

comparison chapter. 

• A comprehensive overview of NAO humanoid robot in its specification, 

software framework and implementation methods 

7.2. Recommendations for Future Work 

Based on the achievements presented in this thesis, suggested future works are:  

• Extend the use of NAO’s camera by fusing vision based data with laser data to 

improve the EKF-SLAM observation function.   

• Enrich the pre-loaded information from NAOmark recognition to enable the 

robot to do a multitude of navigation tasks. 

• Conduct further experiments in more complex environments. i.e increasing the 

number of NAOmarks and obstacles to avoid. 

• Improve the existed robot odometry by fusing data of gyroscope with 

accelerometers. i.e. equipping the robot with dedicated inertial units to obtain 

more precise location information.  

• Implement a more reliable PI motion controller such as Fractional Order PI 

controller proposed in paper [11]. 
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