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Abstract

The past decade has witnessed the development of many important declarative languages for knowl-

edge representation and reasoning such as answer set programming (ASP) languages and languages

that extend first-order logic. Also, since these languages depend on background solvers, the recent

advancements in the efficiency of solvers has positively affected the usability of such languages.

This thesis studies extensions of knowledge representation (KR) languages with arithmetical opera-

tors and methods to combine different KR languages.

With respect to arithmetic in declarative KR languages, we show that existing KR languages

suffer from a huge disparity between their expressiveness and their computational power. Therefore,

we develop an ideal KR language that captures the complexity class NP for arithmetical search

problems and guarantees universality and efficiency for solving such problems.

Moreover, we introduce a framework to language-independently combine modules from differ-

ent KR languages. We study complexity and expressiveness of our framework and develop algo-

rithms to solve modular systems. We define two semantics for modular systems based on (1) a

model-theoretical view and (2) an operational view on modular systems. We prove that our two

semantics coincide and also develop mechanisms to approximate answers to modular systems using

the operational view. We augment our algorithm these approximation mechanisms to speed up the

process of solving modular system.

We further generalize our modular framework with supported model semantics that disallows

self-justifying models. We show that supported model semantics generalizes our two previous

model-theoretical and operational semantics. We compare and contrast the expressiveness of our

framework under supported model semantics with another framework for interlinking knowledge

bases, i.e., multi-context systems, and prove that supported model semantics generalizes and unifies

different semantics of multi-context systems. Motivated by the wide expressiveness of supported

models, we also define a new supported equilibrium semantics for multi-context systems and show

iv



that supported equilibrium semantics generalizes previous semantics for multi-context systems. Fur-

thermore, we also define supported semantics for propositional programs and show that supported

model semnatics generalizes the acclaimed stable model semantics and extends the two celebrated

properties of rationality and minimality of intended models beyond the scope of logic programs.

Keywords: Knowledge Representation and Reasoning, Declarative Problem Solving, Built-in Arith-

metic, Modularity, Language-independence, Supported Semantics, Stable Model Semantics, Multi-

context Systems
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“Pure mathematics consists entirely of assertions to the effect that, if such and such a proposition is

true of anything, then such and such another proposition is true of that thing. It is essential not to

discuss whether the first proposition is really true, and not to mention what the anything is, of

which it is supposed to be true ... If our hypothesis is about anything, and not about some one or

more particular things, then our deductions constitute mathematics. Thus mathematics may be

defined as the subject in which we never know what we are talking about, nor whether what we are

saying is true. People who have been puzzled by the beginnings of mathematics will, I hope, find

comfort in this definition, and will probably agree that it is accurate.”

— Principles of Mathematics, International Monthly, vol. 4, BERTRAND RUSSELL, 1901
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Chapter 1

Introduction

Declarative programming is a branch of programming that is built on the idea of describing what we

need to do instead of how we need to do it. Traditionally, declarative programming has been con-

sidered as an alternative to imperative or functional programming and it has mainly been used in the

form of query languages for databases. However, the close relation between declarative program-

ming paradigms, fragments of logic, and, the ability to interpret logical statements as specification

of computation, has resulted in its wide adoption by many sub-communities of computing science as

their paradigm of choice for the free of side-effect manipulation of knowledge. One of the main such

communities that has adopted declarative programming is the community of artificial intelligence

(AI) researchers.

The fundamental goal of Artificial Intelligence is to simulate human behavior. There are many

questions that need to be answered with respect to this broad and general goal such as how to receive

audio, video, textual, or other form of input from the environment, how to understand the contexts of

such inputs, how to effectively reason about those inputs, and, how to manipulate the environment

in response to those inputs.

Since the main goal of logic is to study reasoning procedures, it is no surprise that computational

logic has long been the chosen method to study and implement the (explicit) reasoning procedures

that are needed in AI. That is, once the input is received from the environment and it is known what

goals are being pursued by an agent, (explicit) reasoning usually happens in the form of mathemat-

ical manipulations of an agent’s knowledge of its environment in a language that is also motivated

by the environment of the agent.

Knowledge representation and reasoning (KRR) is a branch of AI that is concerned with in-

venting the appropriate syntax and semantics for succinctly representing an agent’s knowledge of its
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CHAPTER 1. INTRODUCTION 2

environment and to effectively reason about how to achieve the agent’s goals. Note that, as long as

AI community is concerned, the representation of knowledge and reasoning about it are not required

to be in any specific form. Indeed, there is no requirement on this knowledge being represented in

a human-readable format. For instance, a neural network represents knowledge about its environ-

ment in a completely illegible form but still has wide applications. However, the readability and

the changeability of knowledge in a logical form and the guarantees logic provides (such as com-

pleteness of reasoning procedures with respect to a domain of knowledge) has made formal logic

the main approach taken by the KRR community. Thus, declarative programming in general and

logic programming in particular are both the main tool and the main subject of research in the KRR

community. Among such declarative languages, Prolog [39] is the most well-known language that

has cultivated many new research directions in KRR as well as benefited from the results of such

research.

During the past decade, KRR community has invented many new declarative programming

frameworks that are of limited expressiveness (i.e., some problems cannot be expressed in these lan-

guages) but of better computational performance. Among such languages, one can mention many

variants of Answer Set Programming (ASP) [32] (such as the system languages of Gringo [80] and

DLV [49]), several variants of first-order logic (e.g., FO(ID) [55] and the system languages of IDP

[212] and Enfragmo [1]), as well as many constraint programming languages (such as Essence [76]

and Zinc [48]). All these languages have enjoyed wide acceptance due to the existence of efficient

solvers for them. For example, the system language of Gringo depends on a fast ASP solver known

as Clasp [82]. Another example is the Enfragmo system that is designed to be able to use all efficient

satisfiability (SAT) solvers in the background.

Therefore, the recent advancements in the scale of the problems that such propositional solvers

(i.e., propositional ASP, SAT, etc. solvers) deal with and the huge improvements in the efficiency of

these propositional solvers has had an immensely positive effect on the usability of the declarative

programs that depend on them. These advancements and improvements are showcased regularly

during SAT and ASP competitions.

The declarative languages above have their own similarities and differences. The similarity be-

tween these languages is that they are all solving instances of search problems. For example, SAT

solvers look for an assignment that satisfies all their clauses in Conjunctive Normal Form (CNF).

Usually, such CNF clauses encode a problem’s specification plus its instance and, a satisfying assign-

ment for that CNF is directly convertible to a solution to a specific instance of a problem. Similarly,

a propositional answer set program is usually the result of grounding an answer set program with
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7 9 6 3
8 5 6 7 4 2
6 1 3 5

8 1 2
9 2 3 6 1 7 4

9 2 3
2 1 9 4
9 4 3 6 2 7
4 7 5 9

Figure 1.1: An instance of a Sudoku puzzle with n = 3.

variables with respect to a given instance.

The idea of “model expansion” generalizes the task of searching for a solution to an instance of a

problem. The model expansion task for a formula φ in a logic L takes a structureA over vocabulary

σ and expands A into a structure B over vocabulary (σ ∪ ε) (with σ ∩ ε = ∅) such that B agrees

with A on its domain and interpretation of vocabulary symbols in σ (i.e., dom(A) = dom(B) and

RA = RB for all R ∈ σ), and, B is a model of formula φ in logic L.

To make things clearer, in the context of model expansion, the formula φ represents the problem

that needs to be solved. The structure A represents a specific instance of that problem and the

interpretations provided by structure B for symbols in ε are known as solutions to the instance

represented by A. The task of model expansion, itself, represents the procedure of searching for the

right solution B for instance A of problem φ. This essential similarity is emphasized by Mitchell

and Ternovska in [149]. Following them, we also use model expansion in this thesis as the task that

underlies search problems.

Example 1.1 (Sudoku Puzzle: Model Expansion) In the general version of Sudoku puzzle, you

are given a number n and an n2 × n2 grid with some of its cells filled with numbers 1, . . . , n2.

You are asked to fill the rest of grid with, again, numbers 1, . . . , n2 so that all numbers in a row,

in a column, and in smaller n × n sub-grids are different. Each such sub-grid starts at position

(k1×n+1, k2×n+1) and ends at position (k1×n+n, k2×n+n) for some k1, k2 ∈ {0, . . . , n−1}.
Figure 1.1 shows an instance of the Sudoku puzzle for n = 3.

Here, the instance vocabulary is σ = {n, f} with f showing the partial filling of the Sudoku
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grid. For example, structure A depicted in Figure 1.1 interprets n by 3 and f by

{(1, 2, 8), (1, 3, 6), (1, 7, 2), (1, 8, 9), (1, 9, 4), (2, 1, 7), (2, 2, 5),

(2, 4, 8), (2, 5, 9), (3, 4, 1), (3, 5, 2), (3, 9, 7), (4, 2, 6), (4, 5, 3),

(4, 6, 9), (4, 7, 1), (4, 8, 4), (4, 9, 5), (5, 2, 7), (5, 3, 1), (5, 5, 6),

(5, 7, 9), (5, 8, 3), (6, 1, 9), (6, 2, 4), (6, 3, 3), (6, 4, 2), (6, 5, 1),

(6, 8, 6), (7, 1, 6), (7, 5, 7), (7, 6, 2), (8, 5, 4), (8, 6, 3), (8, 8, 2),

(8, 9, 9), (9, 1, 3), (9, 2, 2), (9, 3, 5), (9, 7, 4), (9, 8, 7)}.

Here, the expansion vocabulary ε has function v : [1 · · · 9] × [1 · · · 9] 7→ [1 · · · 9] such that v

agrees with pre-fillings given by f and also assigns each of the values 1 to 9 exactly once to each

row, each column and each smaller grid. Also, L and φ are, respectively, a logic and a formula in

that logic so that φ is satisfied by an expansion B of A if and only if B interprets v according to the

definition of the Sudoku puzzle. Later on, we will give two choices for such φ and L.

In our description of the task of model expansion, the role of logic L and formula φ is inter-

twined, i.e., one of them is meaningless without the other one. Moreover, the role of formula φ and

logic L can be replaced by the set of possible models of φ in L. Using this replacement, the task

of model expansion can be defined independently of the syntax and/or semantics of a logic: Given

a class K of (σ ∪ ε)-structures (with σ ∩ ε = ∅) and a σ-structure A, find a structure B ∈ K that

expands A, i.e., has the same domain as A and agrees with A on the interpretations of vocabulary

symbols in σ. This definition uses K to represent problems (instead of φ in the previous definition).

Thus, it completely adheres to how problems are normally defined in logic, i.e, as a set of structures.

Although all the declarative languages that we mentioned are similar with respect to the task they

focus on, i.e., model expansion, they are different on many other aspects, e.g., the basic constructs

of their languages as well as the methods that they use for finding solutions. Each of the declarative

languages that we mentioned above and their corresponding propositional solvers have their own set

of basic constructs, e.g., clauses in SAT and normal/disjunctive rules in ASP. Such restricted core

languages facilitated the development of efficient solvers for these declarative languages in their

early stages of development. However, under such restrictions, solving a problem with complex

constraints using a particular solver requires an encoding of those complex constraints using the

basic constructs provided by the language. Such an encoding is problematic on two fronts:

(†1) They hinder users from appreciating declarative languages because encoding (and, more im-

portantly, efficient encodings) are non-trivial and tiresome tasks.
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(†2) During the process of encoding, a problem’s structure is usually lost. It means that while the

solutions to a problem’s encoding can be translated back into solutions to the main problems,

the methods to obtain a solution and the methods to trim the search space for a solution are

not necessarily preserved during the encoding process. Therefore, solvers may have to spend

a huge computational overhead to discover facts about a problem’s encoding that would have

been immediate if the structure of the problem was not lost (e.g., if encoding was not neces-

sary).

As an example of how encoding a problem can be cumbersome and uneffective, consider the

Sudoku puzzle from Example 1.1:

Example 1.2 (Sudoku Puzzle: Natural Specification) Consider the Sudoku puzzle from Example

1.1. The following axioms naturally specify the constraints on a solution of a Sudoku puzzle. So, we

are looking for a function v : [1, . . . , n2]× [1, . . . , n2] 7→ [1, . . . , n2] so that:

∀x, y, k ∈ [1, . . . , n2] : (f(x, y, k) ⊃ v(x, y) = k),

∀x ∈ [1, . . . , n2] : perm([v(x, y) | y ∈ [1, . . . , n2]], [1, . . . , n2]),

∀y ∈ [1, . . . , n2] : perm([v(x, y) | x ∈ [1, . . . , n2]], [1, . . . , n2]),

∀x, y ∈ [0, . . . , n− 1] : perm([v(x× n+ x′, y × n+ y′) | x′, y′ ∈ [1, . . . , n]], [1, . . . , n2]).

where perm(L1, L2) is true if list L1 is a permutation of list L2. Note that the formulas above use a

very extensive set of constructs that are not available in most existing declarative languages. Among

such constructs, one could mention arithmetical constructs, (finite) list generators, and (finite) list

permutations.

Example 1.2 shows an intuitive specification of the Sudoku problem. We know that this problem

is NP-complete [216] (if the size of input is guaranteed to be a polynomial on n, e.g., if n itself is

encoded in unary). Thus, by Fagin’s theorem [68], we know that this problem can be encoded in

existential second order logic and, thus, also as a model expansion task for first-order (FO) logic

[126]. However, the natural encoding we gave in Example 1.2 uses constructs (such as arithmetical

constructs, lists and permutations of lists) that are not supported in first-order logic. In fact, the

Fagin’s theorem and its equivalent for FO-MX (model expansion in FO) only guarantee that at

least one of the encodings of the Sudoku problem are expressible as FO-MX but not necessarily its

intuitive encoding (that uses numbers).

Example 1.3 (Sudoku Puzzle: Encoding as a FO-MX Task) One of the possible encodings of the

Sudoku problem is to use a domain of size n and encode numbers 1 · · ·n2 as pairs of elements on
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that domain, i.e., base-n encoding of numbers. For example, the following formulas axiomatize a

base-n encoding of the Sudoku problem:

∀x1, x2, y1, y2, k1, k2 : (f(x1, x2, y1, y2, k1, k2) ⊃ v1(x1, x2, y1, y2) = k1),

∀x1, x2, y1, y2, k1, k2 : (f(x1, x2, y1, y2, k1, k2) ⊃ v2(x1, x2, y1, y2) = k2),

∀x1, x2, y1, y2, y
′
1, y
′
2 :

((v1(x1, x2, y1, y2) = v1(x1, x2, y
′
1, y
′
2) ∧ v2(x1, x2, y1, y2) = v2(x1, x2, y

′
1, y
′
2)) ⊃

(y1 = y′1 ∧ y2 = y′2)),

∀y1, y2, x1, x2, x
′
1, x
′
2 :

((v1(x1, x2, y1, y2) = v1(x′1, x
′
2, y1, y2) ∧ v2(x1, x2, y1, y2) = v2(x′1, x

′
2, y1, y2)) ⊃

(x1 = x′1 ∧ x2 = x′2)),

∀x1, x2, y1, y2, x
′
2, y
′
2 :

((v1(x1, x2, y1, y2) = v1(x1, x
′
2, y1, y

′
2) ∧ v2(x1, x2, y1, y2) = v2(x1, x

′
2, y1, y

′
2)) ⊃

(x2 = x′2 ∧ y2 = y′2)),

where v1 and v2, together, encode v in Example 1.2. It can be easily observed that the encoding

above is much less legible, and far harder to axiomatize. This is despite the fact that, here, Sudoku

was chosen because we can use base-n encoding to avoid encoding arithmetical operators such as

addition and multiplication. If we had to also encode arithmetical operators, the encoding above

would have been far less readable than it is.

Although legibility is itself a very important hindrance for not-so-experienced users of declara-

tive languages, it is, by no means, the only problem with the second axiomatization of the Sudoku

puzzle as given in Example 1.3. That is, even if we could expect users of declarative program-

ming languages to describe their problems (such as the Sudoku problem) in the limited language of

first-order logic (as in Example 1.3), there would still exist a very important and inherent problem

with such encodings: the loss of a problem’s structure. In the following example, we continue on

Example 1.3 and show that how the second axiomatization of Sudoku puzzle loses the structure of

Sudoku puzzle and how this loss of structure affects the solving process for Sudoku.

Example 1.4 (Sudoku Puzzle: Loss of Structure in FO-MX Encoding) In the axiomatization of

the Sudoku puzzle as in Example 1.3, instead of saying that v should take all values of 1 to n2 in

every column, we say that, for each column, v should take different values at different rows (also,

similar translation was used for rows and smaller grids). Since the size of all rows, columns and

smaller grids are n2 and since v could take only n2 different values, the two axiomatizations are
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equivalent. However, the first axiomatization has a very intuitive reading that could have been used

to speed up the solving process, i.e., there exists a bijection g : [1 · · ·n2] 7→ [1 · · ·n2] such that

v(c, g(k)) = k for all k ∈ [1 · · ·n2].

This intuitive reading is an essential property of the permutation construct used in the natural

axiomatization of the Sudoku puzzle. That is, in general, list A is a permutation of list B if and only

if (1) they have the same length, i.e., |A| = |B|, and, (2) there exists a bijection g : {1, · · · , |A|} 7→
{1, · · · , |A|} such that A[p(i)] = B[i] for all i ∈ {1, · · · , |A|}.

Therefore, one can use a matching algorithm (and Hall’s theorem) on the bipartite graph G :=

({1, · · · , n2}, {1, · · · , n2}; {(i, j) | v(c, i) = j is possible}) to reduce the set of possible assign-

ments to v. For example, if sets I, J ⊆ {1, · · · , n2} exist such that |I| ≤ |J | and, for all i ∈ I ,

{j | v(c, i) = j is possible} ⊆ J then v(c, i′) = j becomes impossible for all j ∈ J and i′ 6∈ I .

This method can thus be used to reduce the search space for a solution to an instance of the Sudoku

puzzle.

Of course, one should note that a similar reduction on the set of possible assignments is also

possible in the FO-MX axiomatization of the Sudoku puzzle as well. This is because there is an easy

bijection between the solutions of the intuitive axiomatization (as in Example 1.2) and the solutions

of the FO-MX axiomatization (as in Example 1.3). The difference, however, is that the applicability

of matching process above for reducing the set of possible assignments is easily deducible for our

natural axiomatization (because it uses permutations that can always benefit from this process) but

hard to deduce for the FO-MX axiomatization (because it encodes permutation constructs). Hence,

the second axiomatization is said to have lost the structure of the problem in the encoding process.

Broadly speaking, issues (†1) and (†2) can be addressed in two ways: (1) by extending the

language of a solver, and, (2) by combining languages of different solvers. We discuss these two

directions and our contributions of each of these direction in Sections 1.1 and 1.2.

1.1 Extending the language of a solver

One way to address issues (†1) and (†2) is to extend the language of a solver with new constructs.

Such extensions, firstly, relieve users from having to encode their problem using basic constructs

and, secondly, better preserve the structure of a problem. Thus, for example, the SAT community

has (not surprisingly) massively invested in both devising structure-preserving encodings of complex

constraints as well as solver extensions such as native handling of cardinality and pseudo-boolean

constraints.
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Some of the most important constructs that are missing as a basic construct in many declarative

KR languages are the arithmetical operators such as + and × and arithmetical aggregates such

as summation (Σ), product (Π), min and max. Such arithmetical constructs are so important in

the process of axiomatization that they have traditionally been among the first extensions to all

KR languages. This is because many important KR applications heavily depend on numbers. For

example, the general notion of a plan (that underlies many important AI problems) depends on the

existence of successive steps of the plan that are usually represented by natural numbers, e.g., the

first step, the second step, etc. Another example is the common notion of a solution’s cost that

defines a whole area of AI problems known as optimization problems.

Admittedly, both categories of problems above can be defined in terms of objects other than

numbers. For example, plans can use all successor relations (whether numerical or not) and cost is

definable in terms of general measures (that can be non-numerical). However, certainly, the most

intuitive way to define such problems is to use numbers (and, most importantly, natural numbers).

It is thus inevitable for a declarative KR language to support arithmetical constructs. This claim can

indeed be confirmed by observing that some degree of arithmetical constructs are supported in all

KR languages. For example, all the system languages of Enfragmo [1], IDP [212], Gringo [80] and

Lparse [182] (the former two extend first-order logic and the latter two extend answer set programs)

support basic arithmetical operators for addition, multiplication and subtraction. Moreover, the first

three also support arithmetical aggregates to compute cardinality of a set and/or sum, minimum and

maximum of a elements in a set.

However, the success of declarative KR languages (in comparison with declarative languages

in general) is mostly due to the existence of effective reasoning procedures for declarative KR lan-

guages. These efficient reasoning procedures are non-existent for general declarative languages

because of the computational complexity associated with the problems expressible in a general lan-

guage. That is, declarative KR languages have traditionally favored effective computation over

expressiveness. This is in contrast to the fact that, by Goëdel’s first incompleteness theorem, the un-

bounded presence of even very basic arithmetical constructs makes a language undecidable. Thus,

each KR language has invented its own form of syntactical limitations to guarantee the decidability

of its language in the presence of arithmetic. For example, Enfragmo and IDP system languages

require numerical quantifiers to use finite guards. Also, ASP languages have, over the years, devel-

oped different notions of safety [80], level-restrictedness [86] and ω-restrictedness [79] to guarantee

decidability of ASP programs in the presence of unbounded domains (including the domain of inte-

gral numbers).
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In spite of the wide consensus on the importance of arithmetical constructs in KR languages, its

early adoption by those languages, and the effort to keep the complexity of those languages man-

ageable even in the presence of arithmetical constructs, the expressiveness of KR languages in the

presence of arithmetical constructs have not yet been studied. Chapter 3 of this thesis addresses this

concern. We study the language of several successful KR frameworks with respect to the expres-

siveness of their arithmetical constructs. All the languages we study, when limited only to the class

of finite structures, are known to either express the search problems that are recognizable in the first

level of polynomial hierarchy (NP) or express the search problems that are recognizable in the sec-

ond level of polynomial hierarchy (ΣP
2 ). However, once we allow the unbounded domain of natural

numbers (or integers), the known expressiveness results for these languages do not apply anymore.

We show the non-applicability of previous expressiveness results using two kinds of arguments:

(1) We show that some NP-recognizable and natural arithmetical search problems cannot be ex-

pressed in the system language of any of the fore-mentioned declarative KR languages.

(2) We also show that there exist arithmetical search problems that are NEXP-complete and that

can be expressed in the language of many declarative KR paradigms including the ones above.

Hence, the addition of arithmetical constructs to these KR languages has hugely increased the diffi-

culty of solving problems in those languages. That is, their complexity has gone from NP to NEXP-

complete and, so, their reasoning mechanisms should also become more complex. However, despite

the complexity that adding arithmetic has incurred on these languages, they cannot yet express some

NP-recognizable arithmetical problems. Such a huge disparity between how computationally com-

plex and how expressive a language becomes in the presence of arithmetical constructs motivated

us to design an ideal declarative language whose expressiveness in the presence of arithmetic is

controlled.

Thus, we also introduce a guarded logic, known as PBINT, that provably captures the set of

arithmetical NP search problems. It means that, we are able to prove that every arithmetical search

problem that is recognizable in NP is axiomatizable in PBINT and that every problem that is axiom-

atizable in PBINT is also recognizable in NP. Hence, PBINT is an example of how a careful design

of a declarative languages can, simultaneously, guarantee both efficiency and expressiveness.

Furthermore, we extend PBINT with constructs to handle abstract domain elements. This way,

we introduce a multi-sorted logic that is able to capture exactly the set of NP search problems

over both the class of arithmetical structures and the class of finite structures. We believe that this

multi-sorted logic can be used as a guideline to equip existing declarative languages (such as the

system languages of IDP, Enfragmo, Gringo and Lparse) with arithmetical constructs so that the
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expressiveness of these languages in the presence of arithmetic is still under control.

1.2 Combining languages and solvers

A more recent approach to address issues (†1) and (†2) is to combine solvers from different com-

munities along with their respective languages. Using such combinations of languages, the non-

specialist user can describe each of the constraints of a problem using the language that is most

suited for modeling that constraint. Moreover, since there is no need to encode a construct using

other constructs, a problem’s structure will not be lost. Furthermore, since a problem’s structure is

not lost, the propagation/solving techniques that are developed to speed up the solving of specific

constraints can still be used. One example in this direction is the effort of ASP community to devise

efficient ways of embedding CP solvers into ASP solvers. Multi-context systems (MCS) are another

example of an effort to combine knowledge bases under different semantics.

Such language combinations have traditionally been motivated in two ways: (a) To take advan-

tage of different expressive capabilities provided by different constructs of the involved languages,

and, (b) to reduce the conceptual complexity of a problem by breaking it into many (easier and less

complex) sub-problems. Recently, the advent of online services and the growth of local knowledge

bases to the global scale, has added a new reason to pursue the goal of a more seamless interaction

of knowledge bases with different semantics.

The combination of all the above motivating factors has made a strong case for the development

of a modular declarative framework that can work with modules in different languages. Thus, one

of the most important requirements on such a framework should is its language-independence. This

way, owners of all knowledge bases (declarative or non-declarative) can participate in the process

of solving problems that would have been impossible to solve independently. Another important

requirement on such a modular framework is to guarantee efficiency without requiring involved

modules to expose all their information. Such a guarantee is specially important when knowledge

bases contain data that are subject to privacy or confidentiality issues (e.g., when a knowledge base

contains personal or business intelligence data).

The task of model expansion (that we introduced before) perfectly satisfies the requirements we

need for designing our modular system framework: (1) It is language-independent because it views

problems as sets of structure. (2) Also, model expansion only considers the input-output behavior

of modules and not how a module is specified.

Therefore, in Chapter 4 of this thesis, we define a declarative modular framework that views
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modules as model expansion tasks. We define the set of well-formed modular systems through

several operations: (a) we compose modules together in both a serial and a parallel fashion, (b) we

make new modules by hiding the auxiliary vocabulary of other modules, and, (c) we introduce new

modules through a feedback from some outputs of a module to some of its inputs. We also define two

complementary semantics for our well-formed modular systems: the model-theoretic semantics and

the operational semantics. Both of these semantics respect our intuition that each module represents

a model expansion task. However, the model-theoretical semantics views modules as classes of

structures but the operational semantics views them as operators on structures. We show that these

two complementary semantics are indeed equivalent, i.e., the operator associated with each modular

system (under operational semantics) closely corresponds to the class of structures that is associated

with that modular system (under model-theoretic semantics).

Moreover, we study the complexity and expressiveness of our modular system framework. We

show several results that characterize the complexity and expressiveness of different operations on

modular systems under different conditions. We also develop two algorithms to find solutions to

modular systems. These algorithms both build on the ideas of lazy DPLL(T) model finding. We

expand these ideas to the case of model expansion and show that the resulting algorithm works

in accordance with the modern solvers in the fields of Integer Linear Programming, Satisfiability

Modulo Theories, and combinations of Answer Set Programming and Constraint Programming. The

difference between these two Algorithms is that the first one uses only our model-theoretic semantics

for modular systems in order to find solutions while the second one uses both semantics and, thus,

refines and speeds up the process of looking for solutions. As we will see, our second algorithm uses

the operational view on modular systems to develop mechanisms that find approximate solutions to

modular systems. This type of approximate solving is specific to our system and is not present in

other general paradigms for combined solving.

Support for Modular Systems: One of the pitfalls of black-box modeling of problems in traditional

declarative problem solving is the reduction in our ability of tracing back the undesired behavior of

a system. Since our modular framework conforms to the black-box modeling principles, it is also

prone to such a pitfall. Therefore, we need to develop a method that allows us to look deep into an

unpredictable behavior when such a behavior happens. In practice, all such undesirable behaviors

can be characterized by some property that should be satisfied by all models but that is not, i.e., the

modular system has a model that falsifies our desired property.

In such cases, in order to debug a system, one needs to know why the desired property is not

satisfied. To this end, in Chapter 5 of this thesis, we equip our modular framework with a new tool:
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the support functions. Support functions are abstract functions that provide us with reasons about

why certain beliefs are asserted by a modular system. They allow us to inspect the models of a

modular system and choose only the “reasonable” models. Moreover, other “unreasonable” models

of a modular system can now be traced back to their basic signs of unreasonableness.

Using support functions, we introduce a new semantics for modular systems that we call sup-

ported semantics. Similar to what was done for the previous semantics of modular systems, we

study the complexity and expressiveness of modular systems under the new semantics. We show

that the new extended modular system is indeed a proper extension of the previous semantics, i.e.,

it is more expressive than modular systems without support functions.

There are other important advantages to adding support functions to modular systems. For

example, we show that, in the presence of support functions, modular systems naturally generalize

both the equilibrium semantics and the grounded equilibrium semantics of multi-context systems

[25]. Therefore, by means of support functions, one can make modular systems provably more

expressive than multi-context systems under either of its semantics.

Supported Semantics for Multi-context Systems: Motivated by the far-reaching and positive con-

sequences of equipping modular systems with support functions, and due to the close correspon-

dence of modular systems to multi-context systems, in Chapter ??, we also introduce the notion of

support functions in multi-context systems and define a new semantics for multi-context systems

that we call supported equilibrium semantics. We prove that the positive consequences of supported

semantics in modular systems indeed carry over to multi-context systems as well. That is, we show

that previously different semantics of normal and grounded equilibria can both be viewed as special-

izations of supported equilibrium semantics with different support function. In this sense, our new

supported equilibrium semantics for multi-context systems can be viewed as a unifying semantics.

That is, the more information the support functions provide about the inner workings of a context,

the more refined the set of “chosen” models would be.

Moreover, we show that supported equilibrium semantics enables us to deeply inspect a contexts

to see why particular belief states are or are not supported. This extended ability paves our way for

providing a more insightful set of inconsistency explanations and/or diagnoses for faulty multi-

context systems. Thus, under our new supported equilibrium semantics, a diagnosis can also reflect

the possible changes to the knowledge base of different contexts that can restore the correctness of

a faulty multi-context system.

Supported Semantics as a Rational Extension of Stable Model Semantics: One of the most

important properties of supported semantics for modular systems is that it does not allow chains of
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self-justification, i.e., beliefs in a supported model of a modular system are well-justified. Having

well-justified beliefs is desired by many semantics and is also a basis for rationality of models.

Among the semantics that only allow well-justified models, stable model semantics is perhaps the

most famous one. However, surprisingly, this useful property is lost in both main-stream extensions

of stable model semantics beyond the syntax of logic programs, i.e., equilibrium semantics and FLP

semantics.

In order to restore the useful property of allowing only well-justified models, in Chapter 6, we

extend the concept of support for beliefs to stable model semantics and define supported semantics

for propositional logic. We show that, if restricted to logic programs, supported semantics coincides

with stable model semantics. Moreover, we show that supported semantics share many properties

such as minimality and well-justifiedness of beliefs with stable model semantics (unlike previous

extensions of stable model semantics). Chapter 6 connects supported semantics to many other se-

mantics for non-monotonic reasoning. We show that, although supported semantics is defined in

terms of intuitionistic reasoning, for reasoning about supported semantics, full Kripke models are

not required. In fact, we show that HT-models (the simplest form of non-classical Kripke models)

are enough to fully characterize supported semantics. This fact leads us to several interesting results

including that, despite guaranteeing the rationality of supported models, the complexity of reasoning

about supported models does not increase, i.e., rationality guarantee comes for free.

Also, by defining stable models in terms of supported semantics, we are able to show (for the

first time) an intrinsic connection between HT-models and stable model semantics. Previous con-

nections between these two concepts have always been possibilistic in the sense that they show that

a connection may exist but fail to show this connection is necessary. Our result, however, shows that

stable model semantics is necessarily connected to HT-models because of the way stable models are

defined.



Chapter 2

Background

2.1 Model Expansion

For each logical language, several tasks can be studied – satisfiability and model checking are among

them. In this thesis, we are interested in search problems and, thus, we follow the authors of [149]

who formalize combinatorial search problems as the task of model expansion (MX), the logical task

of expanding a given (mathematical) structure with new relations. Formally, the user axiomatizes the

problem in some logic L. This axiomatization relates an instance of the problem (a finite structure,

i.e., a universe together with some relations and functions), and its solutions (certain expansions of

that structure with new relations or functions). Logic L corresponds to a specification/modelling

language. It could be an extension of first-order logic such as FO(ID) [55], or an ASP language, or

a modelling language from the CP community such as ESSENCE [76].

Recall that a vocabulary is a set of non-logical (predicate and function) symbols. An interpre-

tation for a vocabulary is provided by a structure, which consists of a set, called the domain or

universe and denoted by dom(.), together with a collection of relations and (total) functions over

the universe. A structure can be viewed as an assignment to the elements of the vocabulary. The

restriction of a σ-structure A to vocabulary τ (τ ⊆ σ), denoted by A|τ , is the τ -structure A′ with

the same universe and the same interpretations asA (for vocabulary symbols in τ ). An expansion of

a structure A is a structure B with the same universe, and which has all the relations and functions

ofA, plus some additional relations or functions. The task of model expansion for an arbitrary logic

L (abbreviated L-MX), is:

Model Expansion for logic L

14
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Given: 1. An L-formula φ with vocabulary σ ∪ ε,
2. A structure A for σ,

Find: an expansion of A, to σ ∪ ε, that satisfies φ.

Thus, we expand the structureA with relations and functions to interpret ε, obtaining a model B
of φ. We call σ, the vocabulary of A, the instance vocabulary, and ε := vocab(φ) \ σ the expansion

vocabulary1.

The complexity of model expansion task can be studied in two settings: the combined complexity

where both both the formula and the instance structure are given and data complexity where the

formula is fixed and the instance structure is given. In this thesis, since we are interested in search

problems, we focus on data complexity of model expansion tasks.

Example 2.1 The following formula φ of first order logic constitutes an MX specification for Graph

3-coloring:

∀x [(R(x) ∨B(x) ∨G(x))

∧¬((R(x) ∧B(x)) ∨ (R(x) ∧G(x)) ∨ (B(x) ∧G(x)))]

∧ ∀x∀y [E(x, y) ⊃ (¬(R(x) ∧R(y))

∧¬(B(x) ∧B(y)) ∧ ¬(G(x) ∧G(y)))].

An instance is a structure for vocabulary σ = {E}, i.e., a graph A = G = (V ;E). The task is

to find an interpretation for the symbols of the expansion vocabulary ε = {R,B,G} such that the

expansion of A with these is a model of φ:

A︷ ︸︸ ︷
(V ;EA, RB, BB, GB)︸ ︷︷ ︸

B

|= φ.

The structures B which satisfy φ are exactly the proper 3-colourings of G.

Given a specification, we can talk about a set of σ ∪ ε-structures which satisfy the specifica-

tion. Alternatively, we can also talk about a given set of σ ∪ ε-structures as an MX-task, without

mentioning a particular specification the structures satisfy.

1By “:=” we mean “is by definition” or “denotes”.
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2.2 Multi-contex Systems

This section briefly reviews multi-context systems. We use the exposition of [71] and [25] to de-

scribe multi-context systems. We use the two following notations in our exposition in this section

and in other places throughout this thesis:

Notation 2.1 (Negating a Set) Throughout this thesis, for a set of belief literalsX , we use “not X”

to denote the set of negated literals for literals in X , i.e., not X := {not b | b ∈ X}.

Notation 2.2 (Un-pairing) For a pair P := (X,Y ), we use fst(P ) to denote X and snd(P ) to

denote Y .

In multi-context systems (MCS: [25]), a logic L is defined by triple L := (KBL, BSL, ACCL),

with KBL being a set of knowledge bases (the syntactical fragment of logic L), BSL being a set of

belief sets (the semantical objects of logic L), and ACCL : KBL 7→ 2BSL being a mapping from

knowledge bases to their acceptable belief sets (the semantics of logic L). A multi-context system

MCS := (C1, · · · , Cn) is a collection of contexts Ci := (Li, kbi, bri) with logic Li, knowledge base

kbi ∈ KBLi and bridge rules bri. In MCSs, bridge rule r ∈ bri has the following form:

(i : s)← (c1 : p1), · · · , (cj : pj),not cj+1 : pj+1, · · · ,not cm : pm. (2.1)

where hd(r) := s; body+(r) := {(ck : pk) | 1 ≤ k ≤ j}; body−(r) := {(ck : pk) | j+1 ≤ k ≤ m};
and, body(r) := body+(r) ∪ (not body−(r)).

A belief state S := (S1, ..., Sn) is a collection of belief sets, i.e., Si ∈ BSLi . A bridge rule

r of form (2.1) is applicable wrt. S, denoted by S |= body(r), iff pl ∈ Scl for 1 ≤ l ≤ j and

pl 6∈ Scl for j < l ≤ m. We define appi(S) := {hd(r) | r ∈ bri ∧ S |= body(r)} to obtain heads

of all applicable bridge rules of context Ci. Belief state S is an equilibrium of MCS if, for all i,

Si ∈ ACCLi(kbi ∪ appi(S)).

A logic L is monotone if (1) all kb ∈ KBL have a unique acceptable belief set S, i.e.,

ACCL(kb) = {S}, and, (2) S1 ⊆ S2 whenever kb1 ⊆ kb2 (for ACCL(kb1) = {S1} and

ACCL(kb2) = {S2}). Also, a logic L is reducible if (1) subset KB∗L ⊆ KBL exists s.t.

L∗ := 〈KB∗L, BSL, ACCL〉 is monotone, and, (2) reduction function redL : KBL×BSL 7→ KB∗L

exists s.t. a. redL(kb, S) = kb if kb ∈ KB∗L, b. redL(kb, S2) ⊆ redL(kb, S1) whenever S1 ⊆ S2,

and, c. S ∈ ACCL(k) iff ACCL(redL(k, S)) = {S}.A context C := (L, kb, br) is reducible if its

logic L is reducible and for allH ⊆ {hd(r) | r ∈ br} we have redL(kb∪H,S) = redL(kb, S)∪H .

MCS M is reducible if all of its contexts are reducible.
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A reducible MCS M := (C1, . . . , Cn) is definite if all bridge rules r of M are positive, i.e.,

body−(r) = ∅, and, for all i, kbi ∈ KB∗Li . Definite MCSs guarantee monotonic inference and, thus,

always have a unique minimal equilibrium [25]. Moreover, for reducible MCS M := (C1, · · · , Cn)

and belief state S, reduction ofM under S, denoted byMS , is a definite MCSM ′ := (CS1 , · · · , CSn )

whereCSi := (Li, redi(kbi, Si), br
S
i ) and brSi := {hd(r)← body+(r) | r ∈ bri and S |= body(r)}.

Using these notations, a belief state S is the grounded equilibrium of reducible MCS M if S is the

unique minimal equilibrium of the reduction of M under S, i.e., MS . For non-reducible MCSs,

grounded equilibria are not defined.

Note that there exists another equilibrium semantics for an extension of MCSs (known as man-

aged MCSs [26]) that we do not consider here because they are meant to model change of knowledge

in contexts.



Chapter 3

Built-in Arithmetic in Model Expansion

3.1 Introduction

Search Problems: Many computationally complex problems can be easily defined as problems

in which we are given an input and we are interested in one of the outputs that satisfies all the

constraints of the problem. Such problems are known as search problems. An example of a search

problem is an airline’s flight scheduling problem in which we are given a list of tickets an airline has

issued, and a list of airplanes the airline has, and we are interested in an schedule for airplanes that

takes all the passengers to their destinations with a minimal cost.

Declarative Search Languages: In the past decade, the knowledge representation (KR) community

has developed many declarative modeling systems for solving exactly such hard search problems.

These systems provide a convenient high-level language and an efficient solving mechanism (thanks

to their fast underlying solvers). Examples of such declarative modeling systems include the Gringo

system [79] for Answer Set Programming [32], ESSENCE framework [76] for constraint program-

ming, and IDP system [212] for programming in an extension of first-order logic with inductive

definitions (under well-founded semantics). These systems have been effectively applied to com-

plex real-world problems. For example, BioASP [83] is a library of answer set programs for solving

complex biological problems.

Expressiveness and Naturalness of Declarative Languages: Two principles govern the usability

of a declarative language: (1) its expressiveness, and, (2) its naturalness. The expressiveness of a

language talks about the language’s ability to axiomatize a class of problems and the naturalness of

a language talks about the simplicity of specifying a class of problems in a language. Characterizing

18
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expressiveness of a language addresses two questions simultaneously: (a) lower bounding a lan-

guage’s expressiveness give us universality results, and (b) upper bounding its expressiveness give

us complexity results about the language. For a language L and a class C of problems, a universality

result says that L can express all problems in C and a complexity result says that the computational

power needed to solve problems in L is less than the computational power needed for solving prob-

lems in C (because all problems in L are also in C). Therefore, to a programmer, universality results

guarantee that L is useful (because it can be used to solve problems in C) and complexity results

guarantee that L is feasible (because they upper bound the computational resources needed to solve

problems in L).

Complexity versus Expressiveness: The computational complexity of a language is the lowest

complexity class that contains all the problems expressible in that language. Therefore, the higher a

language’s expressiveness, the higher its computational complexity. However, vice versa is most of

the time not true, i.e., for a language L and its complexity class C, problem P ∈ C exists such that

P is not expressible in L. When this is not the case, i.e., when C is exactly the set of problems ex-

pressible in L, we say that L captures complexity class C. Capturing is an important computational

property because it happens when L’s computational power coincides with L’s expressive power.

Arithmetic in Declarative Languages: Arithmetic, due to its importance in KR, is among the few

features that are present in the syntax of all practical declarative modeling systems. However, since

unlimited arithmetical syntax makes a language undecidable, each declarative language limits the

syntax of its arithmetic in its own way. As we will show in this chapter, such arbitrary syntactical

limitations has led to a huge disparity between the expressiveness and the complexity of existing

declarative languages. The main motivation and goal of this chapter is to show that the regularity

between the computational power and the expressive power of declarative KR languages can be

restored even in the presence of arithmetic.

3.1.1 Our Goals

Our long-term research goal is to develop mathematical foundations of adding external functions to

declarative languages for representing and solving search problems. We aim at developing a frame-

work which (a) represents knowledge in its most natural form; and, (b) provides easy and sufficient

means for controlling the expressiveness of a language. Naturalness is important for usability of

a framework and controlled expressiveness is important for its feasibility (by upper bounding the

language’s complexity).



CHAPTER 3. BUILT-IN ARITHMETIC IN MODEL EXPANSION 20

Remark 3.1 We hope that our research on controlled expressiveness leads to developing complexity-

aware declarative languages, i.e., practical declarative languages whose different fragments capture

different complexity classes. This way, novice users who do not understand complexity classes can

also be advised to use the more restrictive fragments of a language for writing their programs.

Hence, users can achieve better solving performance without having to understand computational

complexity classes.

In this chapter, our goal is to apply the concept controlled expressiveness to arithmetical search

problems. Towards this goal, we follow two sub-goals:

1. We want to analyze the expressiveness of arithmetical in existing declarative languages for

knowledge presentation and discover both their comparative strengths and their comparative

shortcomings.

2. We want to design a logic that (a) has built-in arithmetic, (b) has controlled expressiveness,

and, (c) is natural. For example, this language should enable its users to quantify over the

infinite domain of integers without being undecidable.

3.1.2 Previous Closely Related Work

As stated previously, this chapter aims to develop a formalism (with controlled expressiveness) for

specifying arithmetical search problems. A partial solution, inspired by a previous proposal [100],

was given in [189]. There, embedded model expansion was introduced to formalize arithmetical

search problems. There, arithmetical structures included both built-in operations ×, +, <, etc,

and built-in aggregate functions (e.g., min and sum). The authors needed a method for handling

operations with outputs outside of the input domain, as is common in practical languages. They also

desired universal quantification over integers since it is convenient and is used in practice. Access

to the arithmetical structure through weight terms as in [100] was not sufficient. Thus, they defined

two new logics, GGFk and DGGFk. The former is an extension of the k-guarded fragment of FO

(or FO(ID)), in which instance predicates are used as guards of quantifiers and expansion predicates

(here, GG stands for double-guarded, not for [100]). DGGFk, is an extension of GGFk in which

definable guards are allowed, provided they are polysize in the domain size. The extension allows

for quantifying over variables whose values fall outside of the input domain. It was proven that,

under a small-cost condition1, NP is captured for both fragments. That is, (a) for every small-cost

1Small-cost condition says that numerical input values should be bounded by a function that grows at most exponen-
tially in domain size.
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problem in NP (represented by a class of logical structures) there is a specification in these logics

such that an instance (a structure) is in the class if and only if there is an expansion of that structure

that satisfies the specification; and (b) for every specification in these logics, the task of model

expansion is in NP.

Although these two fragments provide natural axiomatizations that do not involve binary encod-

ings for some problems, they are limited in two important ways:

1. Poly-size guards are too limiting. Suppose we want to output the total weight of all items in

a Knapsack (an expansion predicate). A natural axiom would be:

∃x (G(x) ∧Output(x) ∧ x = Σy( Weight(y) : Knapsack(y)).

We cannot use a polysize guard G: there are up to 2n distinct sums, where n is the size of the

domain.

2. Small cost condition cannot be satisfied in natural axiomatizations of some common prob-

lems in NP such as integer factorization or a quadratic programming problem:

given m, a, c find x such that x2 = a (modm) ∧ x > c.

The values of the given integers, m and a, are, in general, unlimited in the size of the input

domain, which is 3.

3.1.3 Contributions

In this chapter, we both study the expressiveness of practical KR languages and propose a new ideal

language (w.r.t. arithmetic). The three existing KR languages that we study are the Gringo system

and the Lparse system (for answer set programming), and the IDP system (for programming in first-

order logic extended with inductive definitions). However, the expressiveness and inexpressiveness

results we obtain in this chapter are applicable to many other existing KR systems, e.g., the NP-

SPEC [28] modeling system.

Studying Expressiveness of Built-in Arithmetic in Existing KR Languages

To the best of our knowledge, we are the first to formally study the expressiveness of KR languages

in the presence of arithmetic2. We prove lower and upper bounds on the expressiveness of built-in

2A possible exception that worth noting is [151] in which the authors study the expressiveness of ESSENCE, a con-
straint programming language.
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arithmetic in declarative KR languages. We also prove inexpressiveness results that hold regardless

of the presence of fixpoint constructions in these languages (all these languages include some sort

of construction). The following summarizes our contributions in this regard.

1. Lower Bounding the Expressiveness of Existing KR Languages: We show that the built-

in arithmetic of the three languages we study, i.e., Gringo, Lparse and IDP is powerful enough

to express all the small-cost arithmetical structures that can be recognized in NP. We obtain this

result by showing all specifications in logic GGFk can be easily translated to specifications in these

languages.

2. Upper Bounding the Expressiveness of Existing KR Languages: We introduce three categories

of logic: domain-restricted logics, polytime domain-restricted logics and loosely domain-restricted

logics. We show that each of the three languages of Gringo, Lparse and IDP falls into one of these

categories.

3. Concrete Inexpressiveness Results for the Existing KR Languages: We use the upper bounds

we obtained on languages of Gringo, Lparse and IDP to show that, under complexity-theoretical

conditions, none of these languages can express some common computational problems such as

integer factorization.

4. Non-conditional Limit on the Size of Numbers in ASP Languages: We show that, for the

languages of Gringo and Lparse, the number of bits needed to represent any output number grows

linearly in the number of bits used by the maximum input value. We use this fact to ptove non-

conditional inexpressibility results for these languages.

Logic PBINT

We introduce new logic PBINT that captures exactly the arithmetical problems that are NP-recognizable.

Our contributions in this regard are as follows:

1. Eliminating Small-cost Condition: Our new logic PBINT eliminates the small cost condition

GGFk(ε) had imposed on the capturing result of [189] and unconditionally captures NP for all prob-

lems involving arithmetic. Thus, PBINT is an ideal specification/modelling language with respect

to arithmetic.

2. Different Background Structure: To obtain our unconditional capturing result, PBINT uses a

new background structure than that of [189], namely the structure containing at least (N; 0, 1,+,×, <
, || ||), among other polytime relations. The key difference between the new background structure

and the previous one is the operator || || that calculates the binary encoding size of a number.
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3. Natural Representation of Arithmetical Problems: PBINT guarantees that all arithmetical

problems in NP have a natural axiomatization, i.e., an axiomatization that uses numbers and numer-

ical operations without having to encode numbers and numerical operations using abstract domain

elements.

4. New Types of Guards: Unlike in [189], PBINT allows exponential size guards while carefully

restricting their use. Moreover, PBINT also allows guards with size polynomial in the size of binary

encoding of the structure. These two new types of guards contribute to our final unconditional

capturing result for PBINT.

5. Polytime Grounding: Using the new types of guards in a careful way, PBINT guarantees that all

its specifications are recognizable in NP and, thus, have polytime grounding (in the size of binary

encoding of the structure).

6. Capturing NP for Arithmetical Problems: Finally, PBINT captures NP for arithmetical prob-

lems, i.e., (1) nothing outside NP is expressible in PBINT and (2) for every problem in NP involving

arithmetic (and numbers), there is an PBINT specification φ of that problem which works with

numbers as numbers (instead of encoding them using abstract domain elements).

Note that a common misconception is that proving hardness of a language L for a complexity

classC is assumed to be equivalent to proving thatL can express all problems inC. This assumption

is false and its falsity, for example, is shown in Section 3.4 where we show that some languages

can express many NP-hard problems but not the integer factorization problem (which is in NP).

Of course, since integer factorization is in NP and since these languages can express some NP-

complete problems, the integer factorization problems can be reduced to a problem expressible in

these languages but one should note the difference between reducibility and expressibility. Hardness

properties are about computational power and not expressive power.

PBINT-Spec

Based on PBINT, we introduce an idealized declarative language that we call PBINT-Spec. PBINT-

Spec has all the properties of PBINT as listed above plus many of the common features of existing

declarative languages (such as being multi-sorted). In Section 3.6, we show how some of our moti-

vating examples from Section 3.2 are specified in PBINT-Spec.

The rest of this chapter is organized as follows. Section 3.2 provides some motivation and

guidelines for the rest of this chapter. It introduces many examples of different arithmetical search

problems and gives at least one ideal axiomatization for each of these problems. Section 3.2 can

be safely skipped to study the main content and results of this chapter. Section 6.2 provides the
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background needed in this chapter. Section 3.4 gives the first part of this chapter’s contribution by

formally investigating the expressive power of some of existing knowledge representation languages

in the presence of their arithmetical constructs. We show both positive and negative expressiveness

results in this regard. In Section 3.5, we introduce a novel logical fragment, called PBINT, which

captures exactly those search problems involving arithmetic that are decidable in NP. Section 3.6

gives some sample PBINT specifications of problems involving arithmetic to further demonstrate

the naturalness of PBINT specifications in practice. In the end, Section 3.7 reviews the literature

surrounding the concept of arithmetic in natural modeling languages and contrasts this work against

the previous works in this domain.

3.2 Motivating Examples

Throughout this chapter, we make abundant reference to “naturalness” of specifications. However,

naturalness is a vague qualitative property that cannot be formally investigated. Although we for-

malize our understanding of naturalness later on, this section motivates our notion of naturalness by

means of several examples of search problems that deeply rely on arithmetic. For each such exam-

ple, we provide at least one “ideal” specification to help the reader have an intuition of how natural

specifications look like and how they differ from unnatural specifications. Note that our ideal speci-

fications may use features that are currently non-existent in KR languages (i.e., ideal specifications

are written in idealized versions of KR languages). We have also chosen our examples such that

each of them represent a category of arithmetical search problems. Thus, expressiveness of one of

our examples in a KR language indicates the capability of that language to also express all other

problems in the category that our example belongs to. Thus, expressiveness of different KR lan-

guages can be informally compared with respect to what subset of our examples they can naturally

express.

Example 3.1 (Blocked N -Queens) In the blocked N -queens problem you are given two unary re-

lations Row and Column and a binary relation Blocked. The two unary relations of Row and

Column each contain all the numbers 1 to N (for some N ) and, together, they define an N by N

chess board. The relation Blocked contains a subset of positions on the board where queens are

forbidden to be placed. You are asked to find (if possible) a placement for N queens on the non-

blocked squares such that no two of them can capture each other. A solution to this problem puts

the queens on distinct rows, distinct columns and distinct diagonals of the board. While asserting
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that queens should be placed on distinct rows and distinct columns can be easily described using

non-arithmetical constructs, the assertion that diagonals should also be distinct is best described in

the presence of arithmetic. For example, an ideal ASP specification for this problem looks as below:

1{Queen(X,Y ) : Row(X)}1← Column(Y ).

1{Queen(X,Y ) : Column(Y )}1← Row(X).

⊥ ← Queen(X,Y ), Blocked(X,Y ).

⊥ ← Queen(X1, Y1), Queen(X2, Y2), |X1 −X2| = |Y1 − Y2|.

where “−” and “|.|”, as is common, denote the subtraction (binary) operation and the absolute

value (unary) operation. Also, a{.}b is an aggregate formula that restricts the number of true atoms

in the specified set to a number between a and b. A first order axiomatization of the blocked N -

Queens problem ideally looks like as the following:

∀r (∃c (Queen(r, c))),

∀c (∃r (Queen(r, c))),

∀r∀c (Blocked(r, c) ⊃ ¬Queen(r, c)),

∀r∀c1∀c2 (Queen(r, c1) ∧Queen(r, c2) ⊃ c1 = c2),

∀c∀r1∀r2 (Queen(r1, c) ∧Queen(r2, c) ⊃ r1 = r2),

∀r1∀c1∀r2∀c2 (Queen(r!, c1) ∧Queen(r2, c2) ∧ r1 > r2 ⊃ |r1 − r2| 6= |c1 − c2|).

The blocked N-Queens problem is an NP-complete problem that showcases one of the many

interesting puzzles that, although easy to define, are computationally intractable. For a specification

language, being able to axiomatize the blockedN -Queens problem shows that the language supports

basic arithmetical constructs.

Example 3.2 (Knapsack) In the Knapsack problem, you are given a set I of items and their asso-

ciated weights W : I 7→ N and values V : I 7→ N. You have a knapsack of a given limited weight

capacity Wk and you are asked to find a subset C of items which can be packed into your knapsack

and whose value is more than a given number Vk. An ideal first-order specification of the knapsack

problem uses sum aggregates as follows:

∀x(C(x) ⊃ Item(x)),

Σx(W (x) : C(x)) ≤Wk,

Σx(V (x) : C(x)) ≥ Vk.



CHAPTER 3. BUILT-IN ARITHMETIC IN MODEL EXPANSION 26

The knapsack problem is an NP-complete problem that can be solved using dynamic program-

ming and with a runtime linear in the maximum value of the input (which is exponential in the size

of input as the input is represented in binary). The knapsack problem showcases a range of problems

that are called pseudo-polynomial, i.e., polynomially solvable in the value of the input (not the size).

For a specification language to be able to axiomatize the Knapsack problem naturally, it should (1)

support aggregate constructs, and, (2) be able to deal with pseudo-polynomial problems.

Example 3.3 (Traveling Salesman Problem) In the Travelling Salesman Problem (TSP), you are

given a weighted graph G with vertices V and edges E. The weight of each edge e ∈ E is given

by W (e) (where W : E 7→ N). You are also given a maximum distance d ∈ N and asked to find a

simple cycle C in G whose weight does not exceed d. Anser set programs can conveniently express

all the non-arithmetic constraints (i.e., all constraints except the weight constrant). Extensions of

the answer set programming languages (e.g., [32]) can represent the summation construct as well.

Therefore, an ideal ASP specification for this problem looks like below:

1{C(X,Y ) : E(X,Y )}1← V (X).

R(X,Y )← C(X,Y ).

R(X,Z)← R(X,Y ), R(Y, Z).

⊥ ← V (X), V (Y ),not R(X,Y ).

⊥ ← d < SUM{W (X,Y ) : C(X,Y )}.

In the above axiomatization, the first line says that each vertex should have exactly one outgoing

edge in the cycle. The next two lines define a reachability relation using the edges included in the

cycle and the line after that asserts that every two vertex should be reachable in this way. The

last line restricts the set of accepted cycles to those whose total cost does not exceed d. A natural

axiomatization of this problem in ID-logic [55] would also be similar:

∀x∀y (E(x, y) ⊃ C(x, y)).

∀x∀y1∀y2 (C(x, y1) ∧ C(x, y2) ⊃ y1 = y2).

{∀x∀y (R(x, y)← C(x, y) ∨ ∃z (R(x, z) ∧R(z, y))).} .
∀x∀y (R(x, y)).

d ≥ Σx,y(W (x, y) : C(x, y)).

TSP is also an NP-complete problem. However, this problem is harder than the two previous

ones as it is also inapproximable up to any polynomial factor (unless P=NP). More importantly,

TSP is the basis for a wide spectrum of industrial problems known as vehicle scheduling. There has
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been numerous efforts to solve big instances of the TSP problem [12]. Usually, any method applied

for solving this problem can be extended to solve industrial vehicle scheduling problems. Therefore,

for a specification language which aims at solving hard industrial problems such as different vehicle

routing problems, it should first be able to naturally represent the TSP problem.

Example 3.4 (Integer Factorization) Here, you are given two numbers n and c and you are asked

to find a non-trivial positive divisor k of n which is smaller than c. The ideal first-order specification

of this problem is as follows:

∃k′ (k × k′ = n) ∧ k ≤ c ∧ k > 1 ∧ k < n.

The integer factorization problem is believed neither to be NP-complete nor to be polynomial-

time solvable. This problem is the cornerstone of many cryptographic systems. Thus, there has been

wide interest in studying methods of solving integer factorization. One of the interesting differences

between this example and the previous motivating examples is that each instance of the problem is

described with only a few numbers. This is unlike previous examples where, if the number of given

items, cities, etc. were limited, the instance became trivial. So, this example shows that even a few

numbers (two in this example) can define a complex mathematical problem.

Example 3.5 (Quadratic Residues) In the quadratic residues problem, you are given three num-

bers n, a and c and you are asked to find the modulo-n square root of a which is smaller than c, i.e.,

a number s such that s2 ≡ a (mod n) and s < c. An ideal first-order specification for this problem

is:

0 ≤ s ∧ s ≤ c ∧ s < n ∧ ∃k (0 ≤ k ∧ k < n ∧ s× s = k × n+ a).

The quadratic residue problem is an important example of an arithmetical problem that, despite

the fact that it uses only a few numbers, is still NP-complete. Together with the problem of integer

factorization, these examples demonstrate that in order for a fragment of a specification language to

capture all arithmetical NP search problems, it should be able to represent a wide variety of complex

problems such as those with only a few numbers involved.

Example 3.6 (Prime Factor Permutation) Another interesting problem is the prime factor permu-

tation problem. It is not defined in the literature elsewhere (as far as the authors know). Here, you

are given a number n and asked if there exists a different number m which is obtained from n by
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permuting the prime bases in its prime factorization. For example, when n is 20, its prime factoriza-

tion is 22 × 51, and by permuting its prime bases, we can get 52 × 21 = 50. However, for n = 100,

its prime factorization is 22 × 52 and permuting the prime bases does not yield a new number.

This problem is easier than factorization (hence, it is in NP) but it is interesting because the

answer to this problem may need quadratic as many bits to represent as does the input. For instance,

consider a number n of the form 2k × p where p is a prime number that needs k bits to represent.

Thus, we need 2k bits to represent n, i.e., k bits for each one of the two numbers 2k and p. However,

the only solution m for such n is m = 2 × pk which needs about k2 + 1 bits to represent. As we

will see later in this chapter, many systems cannot represent such a problem for exactly this reason

of needing more than a linear number of bits.

An ideal specification to this problem looks as follows. Given number n, find m such that:

∃p, q, k, k′
 k′ 6= k ∧A(n, p, k) ∧A(n, q, k′) ∧A(m, p, k′)

∧A(m, q, k) ∧ n
pk×qk′ = m

pk′×qk

 ,

where A(n, p, k) denotes that prime number p appears with exponent k in the prime factorization of

n. Also, P (p) indicates that p is a prime number. These two are defined as follows:

A(n, p, k) := P (p) ∧ k > 0 ∧ pk | n ∧ pk+1 6 | n,
P (p) := ¬∃m(p > m ∧m > 1 ∧m|p).

Here, m|p means that p divides m and m 6 | p is the negation of that property.

As we see from these example, a natural way to deal with arithmetic in specifications languages

of search problems as the ones above would:

• be able to use an infinite structure of arithmetic,

• not be required to axiomatize the built-in operations,

• not be forced to use modulo n operations, where n is the size of a finite domain,

• be able to quantify over numbers in the infinite domain.

We want to develop a formalism where there are as few syntactic limitations as possible and all of

the requirements above are satisfied. At the same time, we want to be able to develop it so that we

are able to control its expressive power. We undertake this task for an extension of first-order logic.

We expect the same ideas to be applicable for Answer Set Programming, but we leave this extension

to a later work.
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3.3 Background

Throughout this chapter, we use ∃x̄ to denote ∃x1 . . . ∃xn and ∀x̄ to denote ∀x1 . . . ∀xn.

Embedded MX

Embedded finite model theory (see [132, 133]), the study of finite structures with domain drawn

from some infinite structure, was introduced to study databases containing numbers and numerical

constraints. Rather than a database being a finite structure, we take it to be a set of finite relations

over an infinite domain.

Definition 3.1 A structureA is embedded in an infinite background (or secondary) structureM =

(U ; M̄) if it is a structure A = (U ; R̄) with a finite set R̄ of finite relations and functions, where

M̄ ∩ R̄ = ∅. The set of elements of U that occur in some relation of A is the active domain of A,

denoted adomA.

In database research, embedded structures are used with logics for expressing queries. Here,

we use them similarly, with logics for MX specifications. Throughout, we use the following con-

ventions: σ denotes the vocabulary of the embedded structure A = (U ; R̄), which is the instance

structure; ν denotes the vocabulary of an infinite background structureM = (U ; M̄); ε is an expan-

sion vocabulary; A formula φ over σ∪ ν ∪ ε constitutes an MX specification. The model expansion

task remains the same: expand a (now embedded) σ-structure to satisfy φ.

GGFk Logical Fragment

The authors of [189] use a guarded logic in an embedded setting, which allows them to quantify

over elements of the background structure (unlike, e.g. [100]). To do so, they use an adaptation of

the guarded fragment GFk of FO [92]. In formulas of GFk, a conjunction of up to k atoms acts as a

guard for each quantified variable.

Definition 3.2 The k-guarded fragment GFk of FO (with respect to σ) is the smallest set of formulas

that:

1. contains all atomic formulas;

2. is closed under Boolean operations;

3. contains ∃x̄ (G1∧ . . .∧Gm∧φ), provided theGi are atomic formulas of σ,m ≤ k, φ ∈ GFk,

and each free variable of φ appears in some Gi.
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4. contains ∀x̄ (G1∧. . .∧Gm ⊃ φ) provided theGi are atomic formulas of σ,m ≤ k, φ ∈ GFk,

and each free variable of φ appears in some Gi.

For a formula ψ := ∃x̄ (G1∧. . .∧Gm∧φ), conjunctionG1∧. . .∧Gm is called the existential

guard of the tuple of quantifiers ∃x̄; universal guard is defined similarly.

Example 3.7 Let ε be {E1, E2}. The following formula is not guarded: ∀x∀y (E1(x, y) ⊃ E2(x, y)).

It is guarded when E1 is replaced by P which is not in ε. The following formula is the standard

encoding of the temporal formula Until(P1, P2): ∃v2 (R(v1, v2) ∧ P2(v2) ∧ ∀v3 (R(v1, v3) ∧
R(v3, v2) ⊃ P1(v3))). The formula is 2-guarded, i.e., is in GF2, but it is not 1-guarded.

The guards of GFk are used to restrict the range of quantifiers. They also use “upper guard”

axioms, which restrict the elements in expansion relations to those occurring in the interpretation of

guard atoms. To formalize this, they introduce the following restriction of FO, denoted GGFk(ε).

Definition 3.3 The double-guarded fragment GGFk(ε) of FO, for a given vocabulary ε, is the set

of formulas of the form φ ∧ ψ, with ε ⊂ vocab(φ ∧ ψ), where φ is a formula of GFk, and ψ

is a conjunction of upper guard axioms, one for each symbol of ε occurring in ψ, of the form

∀x̄ (E(x̄) ⊃ G1(x̄1) ∧ · · · ∧ Gm(x̄m)), where m ≤ k, and the union of free variables in the Gi is

precisely x̄.

Guards of GFk, that restrict quantifier ranges, are lower guards, and guards of Def. 3.3 are upper

guards. In GGFk, all upper and lower guards are from the instance vocabulary σ, so ranges of

quantifiers and expansion predicates are explicitly limited to adomA.

To finish definition of the logic, they define well-formed terms which depends on the vocabu-

lary of the background structure. The authors of [189] use arithmetical structures, same as [100].

They also introduce a fragment of arithmetical structures known as small cost arithmetical struc-

tures. They prove that the model expansion task for GGFk captures NP for small cost arithmetical

structures3. This chapter continues on their path and proves that the property of capturing NP over

small cost arithmetical structures can be extended to several practical KR languages.

3We use the definition of arithmetical structures and small cost arithmetical structures in this chapter. So, for presen-
tation reasons, these definitions are moved from background section to where they are used in Section 3.4.1.
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3.4 Capturing and Non-Expressibility Results for Practical KR Lan-
guages

This section studies the expressiveness of built-in arithmetic in existing KR languages. But, in order

to formally investigate the expressibility of KR languages, we first need to define what we mean

by a specific language. We have based our investigations on system manuals published for these

languages. However, since such manuals often neglect the details, we have also had to do several

experiments in order to understand if particular types of specifications are allowed or not. In the

end, we believe that our results are true of the specific languages that we will talk about.

As the case with all practical languages, they evolve over time and their syntax changes from one

version to another. So, what is not allowed in current version, may be allowed in the next version or

vice versa. Therefore, we specify the exact manual and version of these languages as below:

1. IDP version 1.4.4 and the accompanying manual published in August 2009 [210].

2. Gringo version 2.0.5 and the accompanying manual published in November 2008 [79].

3. Lparse version 1.1.2 and the accompanying Lparse 1.0 user’s manual [182].

In this section, we will frequently refer to a common concept in many practical declarative

languages that we call compact domain representation. While there is no universally accepted def-

inition for this concept that is shared between all practical declarative languages, the concept still

shows itself in similar forms and with similar intended meaning in different languages. In general,

by compact domain representation, we refer to the operator that says something is true about a range

of (integral) numbers by just giving the lower bound and the upper bound of the range. For example,

in the system language of IDP [210], one can define a type using the expression [1..n] with n being

a number that would be later interpreted in the input. Similarly, in the system language of Gringo

[79], one can have a rule of form “R(1..X) ← I(X)” that, informally, says R(Y ) is true if Y is

an integer less than some integer in I . Since, in both these languages and in many other languages,

such definitions work as a compact way to represent a huge active domain, we have given them the

name of compact domain representations. We also want to mention that these types of definitions

in practical languages are usually considered just a shorthand for the whole set and are treated ex-

actly so, i.e., in the very beginning of the solving process, formulas/types with ranges are replaced

by formulas/types about explicitly the elements in that range. Nevertheless, since we are treating

expressiveness of languages in this chapter and since compact domain representations are able to

increase expressiveness, we will also consider compact domain representations here.
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3.4.1 Capturing Results

Definition 3.4 An Arithmetical structure is a structure N containing at least

(N; 0, 1, χ,<,+, .,min,max,Σ,Π)

with domain N, the natural numbers, and where min, max, Σ and Π are multi-set operations4 and

χ[φ](x̄) is the characteristic function. Other functions, predicates, and multi-set operations may be

included, provided every function and relation of N is polytime computable.

Definition 3.5 For an embedded arithmetical structure D, define cost(D), the cost of D, to be

dlog2(l + 1)e, where l is the largest number in adomA.

Definition 3.6 (Small cost structures) A class K of embedded arithmetical structures has small

cost if there is some k ∈ N such that cost(D) ≤ |adomD|k, for every D ∈ K.

Next, we are going to give a theorem that relates the expressive power of ASP over arithmeti-

cal structures to the expressive power of GGFk fragment of logic. However, ASP programs are

traditionally defined over relational structures and, thus, we have to extend this notion to arbitrary

structures. In order to do this, we define λ-restricted ASP Programs.

Definition 3.7 (λ-restricted ASP Programs) Let B(v, r) denote the set of predicate symbols that

appear in the body of rule r with variable v as a term in it, i.e., the term consists of only variable

v. Also, let V (r) denote all the free variables in r and RΠ(p) denote all rules in ASP program Π

with predicate symbol p in their head. Also, let M(r) denote all multi-set terms t of r and Vm(m)

denote all variables that are quantified by multiset operation m and Bm(v,m) denote all predicate

symbols that appear as a positive atom in multi-set operation m and with variable v as one of their

arguments. We say that an ASP program Π is λ-restricted if there is a function λ from predicate

symbols of Π to natural numbers such that for all predicate symbols S in vocaulary of Π:

max{min{λ(T ) | T ∈ B(v, r)} | v ∈ V (r), r ∈ RΠ(S)} < λ(S), and,

max{min{λ(T ) | T ∈ Bm(v,m)} | v ∈ Vm(m), m ∈M(r), r ∈ RΠ(S)} < λ(S)

Note that, although the motivation for Definition 3.7 comes from Gringo, it is in fact different

from both λ-restrictedness in [86] and level-restrictedness in [79]. To see why Definition 3.7 is

4Multi-sets are generalizations of sets that allow multiple occurrence of elements.
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different from λ-restrictedness defined in [86], look at the following example which is not accepted

by Definition 3.7 but is λ-restricted due to [86]:

q(0).

p(x)← q(0× x).

Also, to see why Definition 3.7 is different from level-restrictedness defined in [79], observe that

assignment operator is not present in Definition 3.7. In fact, Definition 3.7 accepts a subclass of

ASP programs that are characterized by level-restrictedness property which is, in turn, generalized

to safety property in newer versions of Gringo software [80]. The reason we use this limited class

of ASP programs is to define a subclass of ASP programs that remains inside NP in the presence of

arithmetic constructs. This work, for example, could be used in practical ASP solvers as a switch to

either limit users to NP and give them a performance guarantee in return or to give them access to

full ASP language but without such performance guarantees.

Now, we can use the notion of λ-restricted ASP programs and define admissible ASP programs

over arithmetical structures to be those ASP programs over such background structures that are also

λ-restricted.

Theorem 3.1 Let K be a class of small-cost embedded arithmetical structures over vocabulary

σ ∪ ε ∪ ν. Then the following are equivalent:

1. K ∈ NP;

2. There is a first order formula φ of GGFk(ε) such that D ∈ K if and only if there is an

expansion D′ of D to ε so that D′ |= φ;

3. There is a safe ASP program P with instance vocabulary σ such that D ∈ K iff there is an

expansion D′ of D so that D′ is a stable model for P .

Proof: (1)⇒ (2) is shown in [189].

(2) ⇒ (3) is shown by Lloyd-Topor transformation. We first push all negations inside and then

introduce new relation symbols for negated expansion predicates. For example, for expansion pred-

icate E(x̄), new relation symbol E′(x̄) is introduced and two following sentences are added to the

ASP program:
E(x̄)← not E′(x̄).

E′(x̄)← not E(x̄).

Also, new relation symbols are introduced for each subformula and Lloyd-Topor transformation

is used to relate these subformulas together in an appropriate way. However, the resulting ASP

program is not still safe.
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In order to convert this ASP program into a safe ASP program, we have to incorporate information

from lower and upper guards in the GGFk specification. Such guards define a permissible domain

for each subformula. Therefore, we introduce new domain predicates based on this information.

These predicates can be defined using a completely positive and non-recursive ASP program. So,

all rules generated above can be modified so as their variables are bounded by these new domain

predicates.

Note that, here, we do not claim that a first order formula φ can be translated into a safe ASP

program via Lloyd-Topor transformation. What we claim (and what is needed here for the proof) is

that, informally, for a specification φ in GGFk(ε), there is a safe ASP program P such that for all

instance structures D, there is a certificate for D in the GGFk(ε) sense iff there is a certificate for D
in the ASP sense.

The key here is that the transformation does not have to preserve the entire models of the GGFk
formula. What is needed to be presereved is the existence of an expansion (and not the equivalence

of the set of expansions) for a given instance structure.

Also, the expansion vocabulary of the ASP program does not have to be the same as ε.

(3) ⇒ (1) is shown by giving a machine in NP that first guesses a stable model and then checks

its stability in polytime. The existence of such a guessing procedure is guaranteed by the safety

property of the ASP program.

Corollary 3.1 ASP language of Lparse and Gringo captures small cost arithmetical NP problems.

Corollary 3.2 The IDP language captures the small cost arithmetical NP problems.

Proof: By Theorem 3.1, GGFk covers all small cost NP structures. However, we know that except

for characteristic function χ, IDP supports all the rest of GGFk. So, we only need to show that χ

can be written in terms of other arithmetical functions. This is easy to show: χ[φ] ≡ Σ{1 : φ}.

3.4.2 Non-expressibility Results under Complexity Assumptions

This part considers some natural arithmetical problems and shows that they cannot be encoded

using only built-in arithmetic of ASP languages or the input language of the IDP system. Two such

problems are considered: the Integer Factorization problem (which was defined in Example 3.4) and

the Quadratic Residue Problem (which was defined in Example 3.5).
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Various domain-restricted logical fragments

In this section, we first define several logical fragments by restricting their MX tasks. We also

show that some practical KR system languages such as ASP and IDP fall into these fragments.

Then, by showing some non-expressibility results for these logical fragments, we effectively prove

that system languages of ASP and IDP cannot express integer factorization and quadratic residue

problems naturally.

The first and most basic category of logics that we consider contains only those logics in which

the MX task cannot increase the active domain:

Definition 3.8 (Active-domain-restricted logical fragment) Let L be a logical fragment so that

for all specifications φ in L, and for all arithmetical structures A over σ (instance vocabulary) and

all expansions of A such as B satisfying φ, we have that adomB = adomA. We call this logical

fragment an active-domain-restricted logical fragment.

The system language of IDP is an example of one of the logical specification languages that

(under a natural condition) is active-domain restricted.

Proposition 3.1 IDP system language without compact domain representation is an active-domain-

restricted logical fragment.

Proof: All predicates and functions in IDP system language should have proper type names. Also,

all types are given as part of the input and the exclusion of compact domain representation ensures

that types cannot be formed through compact representations of ranges that depend on values in

the instance structure. Thus, the active domain of all structures satisfying a specification in IDP is

exactly the active domain of the instance structure.

Our second category is a more inclusive category that allows active domain to be expanded in the

expanded model of a formula but limits this expansion in active domain to the value of a polynomial

time computable function applied on the active domain of the instance structure.

Definition 3.9 (Polytime domain-restricted logical fragment) Let L be a logical fragment so that

for any specification φ in L, there is a monotone polytime computable mapping P : 2N → 2N with

the following property: For all arithmetical structures A over σ (instance vocabulary) and for all

structures B expanding A and satisfying φ, we have adomB ⊆ P (adomA). We call such logical

fragments a polytime domain-restricted logical fragment.
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The two propositions that follow give some examples of polytime domain-restricted logical

fragments. Firstly, we know that every active-domain-restricted logic is also polytime domain-

restricted (thus, e.g., the language of IDP is polytime domain-restricted as well). Secondly, we give

the example of ASP language of Gringo and Lparse (under some restrictions) as a crisp example of

a polytime domain-restricted logic.

Proposition 3.2 All active-domain-restricted logics are also polytime domain-restricted.

Proof: Just take the polytime function P to be identity function.

Proposition 3.3 If we restrict the language of ASP accepted by Gringo and Lparse to programs

that do not use summation aggregate Σ and compact domain representations, then the resulting

language is a polytime domain-restricted logical fragment.

Proof: Since, the programs are guaranteed not to use compact domain representations or sum-

mations, the size of ground versions of logic programs can only depend on the size of instance

structure’s active domain and not on the value of elements in the active domain.

For Gringo, we know that a correctly constructed ASP program should be level-restricted. So, we

use induction on the levels of an ASP program and show that, for each level l, there is a monotone

polytime program Pl : 2N → 2N that, given an upper bound on the active domain of a structure

that contains all predicates up to level l − 1, Pl generates an upper bound on the active domain

of a structure that contains all predicates up to level l. So, as any fixed ASP specification has

only constantly many different levels, we can combine all Pl’s to obtain a new monotone polytime

program P that satisfies the polytime domain-restrictedness condition.

For Lparse, we just use the fact that all Lparse programs are also Gringo programs [79].

The condition on not including the summation operator Σ in the statement of Proposition 3.3

is essential because, if we allow summation, we will be able to describe predicates that consist of

exponentially many values. The following ASP program shows one such scenario:

V (2i), for i ∈ {0, 1, 2, · · · , n− 1}.
A(X)← not A′(X), V (X).

A′(X)← not A(X), V (X).

E(X)← X = Σ(Y ;A(Y ), V (Y )).

(3.1)

This program has domain size n, but predicate E has domain 0 to 2n − 1.
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The last and most inclusive category of logics that we discuss here is called loosely domain-

restricted logics. In this category as well, active domain cannot be expanded arbitrarily, however,

this category allows exponential size increase in some cases.

Definition 3.10 (Loosely domain-restricted logical fragment) Let L be a logical fragment so that

for any specification φ in L, there is a function f : N → N and a monotone polytime mapping P :

2N× 2N → 2N such that: For all arithmetical structures A over σ (instance vocabulary) and for all

structuresB expandingA and satisfying φ, we have adomB ⊆ P (adomA, {1, 2, 3, · · · , f(|adomA|)}).
We call such logical fragments a loosely domain-restricted logical fragment.

As before, every polytime domain-restricted logical fragment is also a loosely domain-restricted

logical fragment with f being a constant function and P being the same as before except it takes

two arguments and neglects the second one.

Proposition 3.4 All polytime domain-restricted logics are also loosely domain-restricted.

Proof: Let P be the function that witnesses polytime domain-restrictedness of a logic L. Define

f ′(n) := 1 and P ′(S, T ) := P (S). Together, f ′ and P ′ witness that L is also loosely domain-

restricted.

Note that, while all polytime domain-restricted logics are also loosely domain-restricted, there

is an important distinction between them. Namely, when we fix the specification, polytime domain-

restricted logical fragments are guaranteed to have polytime grounding (in the size of instance struc-

ture). However, for loosely domain-restricted logical fragments, such grounding cannot be guaran-

teed.

As a crisp example of some languages that are loosely domain-restricted but not polytime

domain-restricted, we present the language of ASP with summation (but without compact domain

representation).

Proposition 3.5 If we restrict the ASP language of Gringo and Lparse so that programs cannot

use compact domain representations, the resulting language is a loosely domain-restricted logical

fragment.

Proof: Again, since compact domain representation is not allowed, the size of active domain of

expanded models can only depend on the size of active domain of the instance structure and not on

the values in the instance structure. Note that, unlike in the case of Proposition 3.3, here, the size

of new active domain can be exponentially big. Equation (3.1) shows one such case that summation
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introduces exponentially many possible values. The important point here is that the size of this set

can be bound by a function that only depends on the size of input structure and is independent of

values in the input structure, i.e., a function f : N 7→ N exists such that if the size of instance

structure’s active domain is n, the size of expansion structure’s active domain would always be less

than f(n) no matter how big or small the numbers in instance structure are.

For Gringo, again, we use the level-restrictedness property. Assume that your specification φ has l

levels. As discussed above, each summation can (potentially) exponentiate the size of the domain.

But, by level-restrictedness property, summations seperate levels. Thus, at most l different exponen-

tiations can occur. Now, if we take f as follows, it gives an upper bound on the number of elements

at level l:

f(n) = 22. . .
2n

︸ ︷︷ ︸
l times

Then, we use the same monotone polytime program P as in Proposition 3.3 with the difference that

it takes two arguments and neglects the second one. This program runs in polytime because the size

of its input is so large that all of its computation time is bounded by a polynomial in that (large)

number. Please note that the function f given above is a very rough upper bound and we believe

that upper bounds of form f(n) = 2poly(n) work too (although with a more detailed proof).

For Lparse, again, we only use the fact that all Lparse programs are also Gringo programs [79].

Non-expressibility for domain-restricted logical fragments

We now prove that integer factorization and quadratic residue problem cannot be naturally axiom-

atized in the logical fragments we defined. For active-domain-restricted logical fragments, this is

obvious. We need new numbers except those in the domain. Below, we prove the same property

for the two other domain-restricted fragments, i.e., polytime and loosely domain-restricted logical

fragments.

Theorem 3.2 If L is a polytime or loosely domain-restricted logical fragment, then

1. L cannot express integer factorization using built-in arithmetic unless factorization is in poly-

time.

2. L cannot express quadratic residue problem using its built-in arithmetic unless P=NP.

Proof:(for polytime domain-restricted logical fragments) Let L be a polytime domain-restricted

logical fragment and φ be a specification in such a fragment. Then, by definition, there is a monotone
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polytime programP that gives an upper bound on the active domain of all valid expansions of a given

instance structure.

Now, if φ axiomatizes integer factorization with its built-in arithmetic, at least one factor of number

n should appear in the output of P . So, checking all numbers that P outputs gives us one such

factor. Also, as P is polytime, the whole checking procedure would also be polytime and we would

solve integer factorization in polytime.

Similarly, if φ axiomatizes quadratic residue problem using its built-in arithmetic, then x appears in

the output produced by P . So, checking all outputs of P gives us such x if it exists. Again, P being

polytime implies that the whole procedure is also polytime and P=NP (because quadratic residue

problem is NP-complete).

Proof:(for loosely domain-restricted logical fragments) Let L be a loosely domain-restricted log-

ical fragment and φ be a specification in such a fragment. Then, by definition, there is a function f

and monotone polytime program P such that the active domain of all valid expansions B of an input

structure A are upper-bounded by P (adomA, {1, 2, 3, · · · , f(|adomA|)}).

However, in the case of the two problems above (factorization and quadratic residues), we know that

the number of elements in the input structure is always constant (one element in factorization and

3 elements in quadratic residue). Therefore, f(|adomA|) is always a constant (depending on f but

not A). Thus, the set {1, 2, 3, · · · , f(|adomA|)} does not depend on structure A. So, program P

takes the active domain of A and returns a set S which upper-bounds the active domain of all valid

expansions of A. The rest of the proof can be carried out in the same way as the previous case.

Corollary 3.3 Using only built-in arithmetic of ASP language of Gringo and Lparse (with or with-

out Σ) and without using compact domain representations,

(1) Unless P=NP, the quadratic residue problem cannot be axiomatized naturally, and

(2) Unless integer factorization is in P , it cannot be naturally axiomatized.

So, we proved that the two problems of factorization and quadratic residue cannot be axiom-

atized in either ASP or IDP system languages without compact domain representations. Indeed,

compact domain representation can be used to naturally axiomatize both problems above. However,

there are two drawbacks associated with using compact domain representations to axiomatize such

problems:

1. Once we include compact domain representation as an operator, it is impossible to limit the

expressiveness of a language to any reasonably feasible complexity class (such as P, NP, ΣP
k

for some k or even PSPACE). In fact, in the presence of compact domain representation,
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one can easily describe, for example, the NEXP-complete problem of tiling. Therefore, not

only would any hope for polynomial time grounding be lost, but one cannot even hope for

semi-efficient solving.

2. Moreover, compact domain representation is not really an option for any reasonable size do-

main. For example, in the case of factorization, the currently interesting numbers to factor in

practice use more than 200 digits. So, using compact domain representation, one is left with a

domain of size about 10200 that cannot be stored in any physically available memory (because

the domain size is more than the number of atoms in the observable universe).

3.4.3 Uncoditional Inexpressibility Results

Previously, our inexpressibility results were conditional on not using compact domain representation

and also on complexity results. In this section, we lift these conditions and show that there exist

arithmetical problems in NP (and even in P) that Gringo and Lparse cannot express over arithmetical

structures without product aggregate even if P=NP and compact domain representation is allowed.

So, since product aggregate is in fact not included in the language of Gringo and Lparse, it follows

that they cannot express (under any conditions) such problems.

What we prove in this section is that all numerical terms in an ASP program expressed in the

system language of Gringo or Lparse can be represented by a linear number of bits in the binary

representation size of the maximum number in the active domain of the instance structure.

Theorem 3.3 (Number Limit Theorem) The binary representation size of any evaluations of a

term in ASP or Gringo has at most linear size in the size of binary representation of the maximum

number in the active domain of instance structure, i.e. for each ASP program P there exists a

function f : N 7→ N such that for all terms t(x̄) used in P , all instance structures A, all satisfying

expansions B of A, and all assignments from x̄ to active domain of B, we have that: ||t(ā)|| ≤
f(|adom(A)|).||max{adom(A)}||.

Proof: We use an induction on first the levels of an ASP program and then the structure of well-

formed terms. In this proof, we useM for the maximum number in the active domain of the instance

structure and m for the binary encoding size of M . We also use n to denote the size of the domain.

• By level-restrictedness property, all variables x are guarded by one of the following: (1) an

assignment x = t′(ȳ) where t′(ȳ) does not depend on x directly or indirectly, (2) a positive

literal in the body with a level less than the level of the predicate symbol in the head, or (3) a
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compact domain guard. Thus, the value of a variable is bound by that of another term or the

values in the active domain.

• All constants c satisfy this property because m ≥ 1⇒ c ≤ c×m.

• For a term t(x̄) of form t1(x̄) + t2(x̄), we have:

||t(x̄|| ≤ ||t1(x̄||+ ||t2(x̄|| ≤ f1(n).m+ f2(n).m ≤ (f1(n) + f2(n)).m

• For a term t(x̄) of form t1(x̄)× t2(x̄), we have:

||t(x̄)|| ≤ ||t1(x̄)||+ ||t2(x̄)||+ 2 ≤ (f1(n) + f2(n) + 2).m

• For the aggregates min and max, we know that the resulting term is bounded by the same

inequality that bounds the inner term.

• The count aggregate is a special case of a sum aggregate. So, we only consider the case of a

summation aggregate t(x̄) := Σȳ(t
′(x̄, ȳ) : φ(x̄, ȳ)). For such a t(x̄), we have: t(x̄) ≤ k×M ′

where k upper bounds the number of tuples satisfying φ(x̄, ȳ) and M ′ upper bounds the value

of t′(x̄, ȳ) under condition φ(x̄, ȳ).

Moreover, by induction hypothesis, we know that ||t′(x̄, ȳ)|| ≤ f ′(n)×m. So,M ′ := Mf ′(n)

is a good upper bound on t′(x̄, ȳ) because: t′(x̄, ȳ) ≤ 2m.f
′(n) = Mf ′(n) = M ′. Also, as all

variables x̄ and ȳ are guarded, we know that for each variable z ∈ x̄ ∪ ȳ, it is bound by either

the values in the domain or the values of some other term, i.e., we have fz(n) such that all

possible values a of z satisfy ||a|| ≤ fz(n) ×m. Therefore, a ≤ 2m.fz(n) = Mfz(n) for all

possible values a of z. Thus, z can only get Mfz(n) different values.

Now, let f ′′(n) := Σz∈x̄∪ȳfz(n). Now, we can set k to be Mf ′′(n). This is clearly an upper

bound on the number of different possible assignments to x̄ ∪ ȳ because:

|{(x̄, ȳ) | φ(x̄, ȳ)}| ≤ Πz∈x̄∪ȳ|{a : a sat. assignment τ of φ assigns a to z}|
≤ Πz∈x̄∪ȳM

fz(n)

= MΣz∈x̄∪ȳfz(n)

= Mf ′′(n) = k

Thus, we have t(x̄) ≤ k×M ′ = Mf ′(n) ×Mf ′′(n) = Mf ′(n)+f ′′(n). So, ||t(x̄)|| ≤ (f ′(n) +

f ′′(n))×m.
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Theorem 3.3 suggests that, even in the presence of compact domain representations and even if

P=NP, there are still arithmetical problems in NP that cannot be represented in the ASP language

of Gringo and Lparse. One such problem is the prime factor permutation problem from Section 3.1.

Recall that the expansion structure in this problem sometimes needs to represent integers whose

binary encoding size is quaratic in the binary encoding size of the only number in the active domain

(which is also the maximum number in the active domain). The following corollary gives us to

concrete examples:

Corollary 3.4 ASP language of Gringo and Lparse cannot describe the problems below:

(1) The problem of finding k such that k = ndlogne (for number n given in the input).

(2) The prime factor permutation problem of Example 3.6.

Proof: Both of these problems have the property that the number of bits needed to represent the

output value is not bound by any function that is linear in the number of bits needed to represent the

maximum number in the input.

Note that both inexpressible problem of Corollary 3.4 are arithmetical NP search problems. In

fact, the first problem is solvable in P. These examples show a deep incompatibility between the

complexity of solving problems that are described in ASP and the expressiveness of the language.

That is, although we know that some NEXP-complete problems are axiomatizable in the language of

ASP and in the presence of compact domain representation, this knowledge does not tell us anything

about how expressive our language is, i.e., there might exist problems such as those in Corollary 3.4

(especially the first one that is even polytime computable) that are of far far less complexity and yet

not axiomatizable. Thus, we here want to further express our concern about properly studying how

expressive our specification languages are.

3.4.4 Safety in ASP

In Subsection 3.4.1, we defined the notion of λ-restricted ASP programs and focused on only this

fragment of ASP. However, the syntax of ASP solvers such as gringo has expanded and now allows

specifications beyond λ-restricted programs. In [80], the authors have defined this more extended

syntax which is known as safe programs. Under the safe program syntax for ASP being λ-restricted

is no longer needed. In fact, this fragment of ASP programs allows specifications with infinite

groundings for which the grounder cannot be guaranteed to stop. For example, the authors of [80]

axiomatize the behaviour of a universal Turing machine as a safe Gringo specification.
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Similar to the authors of [80], we also believe that, for a specification language, being expressive

is a virtue in its own right and that having a Turing-complete solver language can prove itself useful

in cases where a computationally very complex problem needs to be axiomatized. But, in here,

we want to briefly discuss two important issues that have not yet been addressed for this extended

language of gringo:

1. Complexity of Fragments of the Language: As we discussed before, through studying the

expressiveness of a language and its fragments, one can identify syntactic conditions which

guarantee that if the description of a problem falls within those conditions, then some known

bounds on the resources needed for solving that problem can be inferred automatically. This

way, even the naive users without any knowledge of complexity theory can try to specify their

intended problem using the most limited syntactical fragment possible and thus avoid high-

complexity solving mechanisms. While such studies are abundant for the core language of

ASP, i.e., rules of different forms, they are still missing with respect to the language of practi-

cal solvers such as Gringo and also with respect to the inclusion of arithmetical statements in

ASP in general.

2. Completeness vs. Capturing: As discussed in Section 3.1, studying the completeness (or

hardness) of a language with respect to a complexity class is not equivalent to studying the

capturing property. For example, for the extended language of Gringo according to [80],

we know that this language is Turing-complete. However, such a knowledge does not im-

ply the expressibility of all Turing-computable problems within this language. For the sake

of comparison, consider the example of λ-restricted ASP programs which could define NP-

complete arithmetical problems but which could not specify the integer factorization problem

(i.e., completeness did not imply capturing). In the same manner, being Turing-complete does

not imply that every Turing-computable arithmetical problem is expressible as safe Gringo

program. We still need to study which problems are expressible in Gringo.

We hope that this chapter will be useful in addressing these issues for the language of ASP

and for the complexity class NP. Although the capturing results of this chapter are for first-order

specifications, we believe that, with minor efforts, these results can be extended to ASP as well.

Therefore, we hope that one can identify a fragment of ASP language that captures the class of

arithmetical NP search problems, i.e., arithmetical problems described within this fragment only

need the computational power of NP and that this fragment is universal for arithmetical NP search

problems.
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3.5 Logic PBINT

In this section, we describe a logic that can unconditionally characterizes NP problems involving

arithmetic. The first step towards this goal is to use a different background structure:

Definition 3.11 A Compact Arithmetical structure is a structureN c having at least (N; 0, 1,+,×, <
, || ||) with domain N, the natural numbers, where 0, 1, +, × and < have their usual meaning and

||x|| returns the size of binary encoding of number x, i.e., ||x|| = 1+blog2(x+1)c. Other functions,

predicates, and multi-set operations (min, max etc.) may be included, provided every function and

relation of N c is polytime computable.

Requirements on σ

As before, we consider embedded MX, but the embedding is into the compact arithmetical structure.

We make some assumptions about the instance vocabulary σ. It contains predicate adomA and a

constant SIZE. The constant SIZE is equal to |adomA| × S where |adomA| is the number of

elements in the active domain and S is the size of binary encoding of the maximum element of the

active domain. In other words, SIZE upper-bounds the number of bits needed to encode (in binary)

the input structureA embedded inN c. We also need a constant default denoting a particular default

value needed in upper guards on functions. Its meaning is specified by the user.

Logic PBINT

We introduce a new logic, PBINT, standing for Polynomially Bounded Integers. This logic is a

variant of the double-guarded logic except we use compact arithmetical structures and allow function

symbols in both σ and ε, or new kinds of guards, with more freedom in existential and upper guards

on the outputs of expansion functions. The three forms of guards in PBINT are as follows:

1. Instance Guards are instance relations (including adomA) interpreted by the instance struc-

ture A. Note that, although not required to be so, all specifications can be rewritten so as they

only use adomA as an instance guard.

2. Polynomial Range Guards are relations of the form poly1(SIZE) ≤ x ≤ poly2(SIZE)

with poly1 and poly2 two polynomials.

3. PBINT Guards are relations of form ||x|| ≤ poly(SIZE) where poly(SIZE) is a polyno-

mial depending only on the constant SIZE.
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Instance guards and polynomial range guards define ranges of size at most polynomial in the

binary encoding size of structure. However, PBINT guards can define ranges with exponentially

many different integers. For example, condition ||x|| ≤ SIZE is equivalent to x < 2SIZE−1

which is exponential in the value of SIZE. Also, note that guards definable by stratifiable inductive

definitions with (1), (2) as the base cases can be added without changing our results.

Definition 3.12 (logic PBINT) We define our logic as follows.

Background Structure: the compact arithmetical structure.

Terms are constructed as usual over ν ∪ σ ∪ ε with ν being the background vocabulary, σ the

instance vocabulary, and, ε the expansion vocabulary.

Formulas:
(a) Upper Guards

i. Expansion relations are upper-guarded by instance or polynomial range guards.

ii. An expansion function f has an upper guard of form ∀x̄∀y (f(x̄) = y ⇒ (G(x̄, y)∨y =

default)) whereG(x̄, y) is a conjunction of guards jointly guarding variables x̄ and y so

that x̄ is upper-guarded by instance or polynomial range guards and y is upper-guarded

by any of the three types of guards.

(b) Lower Guards
i. Existential guards: any of the three types of guards.

ii.Universal guards: instance or polynomial. range guards.

The constant “default” can be interpreted by any number at the user’s choice. The part y = default

in (a(ii)) above is needed because all functions in FO logic are total, thus defined on all natural

numbers. Without that part, the upper guard axioms on expansion functions would always be false

making all specifications with such functions useless.

Functions have meaningful (non-default) outputs on a finite number of inputs. Thus, we can

obtain a finite representation (encoding) of instance and expansion structures.

Having functions in the instance vocabulary imposes a small inconvenience with the definition of

the active domain. In a formalism based on classical logic, all terms are total, and therefore defined

on all integers. Thus, if we add functions, the notion of an active domain becomes meaningless.

On the other hand, the user might (quite reasonably) assume that the inputs and the outputs of the

instance functions are from a finite domain, which makes these functions to be non-total. A safe

solution would be to advise the user to use graphs of functions (i.e., the corresponding predicates)

instead of instance functions. It would solve the problem with the definition of an active domain,
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but this solution seems too limiting for a nice logic. Instead, we choose to allow instance functions,

but to require all instance functions to have upper guards and the “default” value for inputs outside

of the intended range, just as we have for expansion functions. Active domain now contains all

elements of the universe contained in all instance relations, together with all elements in the ranges

of the instance functions.

Capturing NP with PBINT-MX

Theorem 3.4 Let K be an isomorphism-closed class of compact arithmetical embedded structures

over vocabulary σ. Then the following are equivalent:

1. K ∈ NP ,

2. there is a PBINT sentence φ of a vocabulary τ = σ ∪ ν ∪ ε, such that A ∈ K iff there exists

an expansion B of A with B |= φ.

The importance of this theorem is in its ability to capture all NP with arithmetic. As shown

previously, most of previous frameworks for arithmetic in KR suffer from the fact that they can only

axiomatize certain arithmetical problems in NP. For example, we showed that ASP languages and the

language of the IDP system cannot axiomatize integer factorization using their built-in arithmetic.

On the other hand, Theorem 3.4 shows that PBINT can axiomatize exactly those problems involving

arithmetic which are in NP.

Moreover, the background structure of PBINT is much simpler than many background structures

in practical KR languages. In particular, there is no built-in aggregate in compact arithmetical

structures. Together with Theorem 3.4, it shows that PBINT can define aggregates in terms of more

primary operations (those given in compact arithmetical structures). Therefore, adding aggregates

to your language would not increase the expressibility of your language.

Thus, PBINT gives you a very concrete basis to build your language upon. It tells you that

if your language somehow supports all PBINT constructs, you can (1) be sure that your language

captures all of NP and (2) unless your other constructs are very powerful (outside NP ∩ co-NP), you

can safely add them to your language without worrying about its complexity implications.

The proof for the two different directions of this theorem are given in separate subsections. But,

first, we introduce a characterization for PTIME due to Bellantoni and Cook [22] which is needed

for our proof of (1)⇒ (2).
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3.5.1 Bellantoni-Cook Characterization of PTIME

We briefly describe a functional language introduced by Bellantoni and Cook [22] which captures

polytime functions. It has originally been defined to work on strings in {0, 1}∗. But, as such strings

encode numbers, we have reformulated the operations in numerical terms.

Functions in Bellantoni-Cook form have two sets of parameters separated by a semicolon. Pa-

rameters to the left of semicolon are called “normal” inputs and those to its right are “safe” inputs.

This separation disables the possibility of introducing recursions whose depth depend on the result

of other recursions. This property is essential to prove that such functions are poly-time computable.

Here are the constructs:

1. Zero: Z(; ) = 0.

2. Projections πn,mj (x1, · · · , xn;xn+1, · · · , xn+m) = xj .

3. Successors S0(; a) = 2× a, S1(; a) = 2× a+ 1.

4. Modulo 2: M(; a) = amod 2.

5. Predecessor: P (; a) = ba2c.
6. Conditional: C(; a, b, c) = if 2|a then b else c.
7. Safe recursion that defines n+ 1-ary function f based on n-ary function g and the n+ 2-ary

functions h0 and h1:

f(0, x; y) = g(x; y),

f(2a, x; y) = h0(a, x; y, f(a, x; y)),

f(2a+ 1, x; y) = h1(a, x; y, f(a, x; y)).

8. Safe composition that defines function f based on functions r0, · · · , rk+k′ :

f(x̄; ȳ) =

r0(r1(x̄; ), ..., rk(x̄; ); rk+1(x̄; ȳ), ..., rk+k′(x̄; ȳ)).

This language interests us as it is a purely syntactic characterization of PTIME which is based

on numbers. Furthermore, the language is free of any unnatural functions for bounding growth of

numbers.

Bellantoni-Cook’s theorem says that any function defined in this form is PTIME and that for any

PTIME computable function f(a), there is a function f ′(w; a) such that f(a) = f ′(w; a) for all a’s

and for all w’s satisfying ||w|| ≥ pf (||a||) (where ||x|| is the binary encoding size of x and pf is a

polynomial depending on f and constructible based on Bellantoni-Cook’s proof).
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3.5.2 NP ⊆ PBINT MX

Proof: Let us first review our proof structure for (1)⇒ (2).

1. We know NP problems have PTIME verifiers.

2. By Bellantoni and Cook’s theorem, every such polytime verifier can be given in their syntax.

3. So, it remains to show that, verifier V in Bellantoni-Cook form, can be turned into axiomati-

zation φ in PBINT so that for σ-structure A, φ is satisfiable by an expansion of A iff there is

a polysize certificate for A accepted by V .

As this proof is so detailed, we only include the proof idea here. The full proof is in the Appendix.

The proof constructs PBINT specification φ based on verifier V . In φ, expansion vocabulary ε

consists of:

1. B : N×N to map start times to functions, e.g., B(5, cf ) means that, at time 5, function f has

started running (cf is a constant used to refer to function f ).

2. E : N×N which, similarly, maps start times to end times, e.g., E(5, 10) means that the func-

tion that had started running at time 5 ended running at time 10, and together with B(5, cf ),

it means that function f started at time 5 and ended at time 10.

3. r : N→ N is used to store result of function executions. It is needed only when execution of

a function terminates. For instance, continuing example above, having r(10) = 2 means that

result of computing function f is 2 (because it was f that ended at time 10).

4. arg : N×N→ N is used for storing function arguments. Semantically, arg(n,m) = k means

that the mth argument of function starting at time n is k. For example, having arg(5, 1) = 7

together with examples listed in items (1) to (3), means that function f started running and at

time 5 on argument 7, and it finished at time 10 and gave result 2, so f(7) = 2.

This expansion vocabulary enables us to simulate the behavior of a program in Bellantoni-Cook

form. We will have axioms saying what each function does. For example, for base function Z we

have that it finishes immediately and gives zero as result. This is axiomatized as below:

∀n (T (n) ∧B(n, cZ)⇒ E(n, n+ 1)),

∀n (T (n) ∧B(n, cZ)⇒ r(n+ 1) = 0).

where T (n) is a lower guard which bounds the time needed for simulating verifier V (a polynomial

in the size of binary encoding of structure).

All other base functions have similarly simple axiomatizations. Functions defined in terms of other

functions (using safe recursion or safe composition) need more complex (but still straightforward)

axiomatizations. All these details can be found in the full proof.
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There are some more subtle issues that have to be addressed in order to give a correct proof, e.g.

encoding structures as numbers. All these subtleties are dealt with in the full proof given in the

Appendix (which did not fit here, please see the online version).

3.5.3 PBINT MX⊆ NP

Proof: Here, the proof goes as follows:

1. We first show that, given an MX specification φ in PBINT, you can find equivalent ψ in ∃SO

by using binary encodings of numbers.

2. Next, we show that structure A for φ is convertible to structure A′ for ψ (in polytime) so that

satisfying expansion B of A exists iff satisfying expansion B′ of A′ exists.

3. Then, by Fagin’s theorem, PBINT MX⊆NP.

To obtain ψ, we first create a specification in which all existentially quantified variables with PBINT

guard G are replaced by skolemized PBINT functions upper-guarded by G. Then, this specification

is converted to ψ by replacing PBINT functions with relations that encode value of the function in

binary. For example, for PBINT function f(x1, · · · , xn), relation Qf (x1, x2, · · · , xn, k) is intro-

duced with k being guarded by new relation R. The idea is that Qf (x1, · · · , xn, k) holds iff the k-th

bit of binary encoding of f(x1, · · · , xn) is one.

We know that all numbers in a PBINT specification are guarded. Hence, there is a polynomial p(n)

such that 2p(SIZE) is greater than all numbers generated in φ. So, assuming that we have a relation

R containing all numbers 0, · · · , p(SIZE), describing operations of background structure is easy.

For example, assuming that x, y and z are encoded by unary predicates Qx, Qy and Qz , the relation

x = y + z can be axiomatized as follows:

∀k (R(k)⇒
(Carry(k)⇔ (Qx(k)⇔ (Qy(k)⇔ ¬Qz(k))))),

Carry(k) :=

∃k′ (R(k′) ∧ k′ < k ∧Qy(k′) ∧Qz(k′) ∧ CF (k, k′)),

CF (k, k′) :=

∀k′′ (R(k′′) ∧ k′ < k′′ < k ⇒ Qy(k
′′) ∨Qz(k′′)).

Although cumbersome, all other background operations can be similarly axiomatized.

Now, structure A′ is obtained from A by adding unary relation R to A and converting all numbers

in A to their binary representation. These tasks can be done in polytime and so obtaining A′ from

A is polytime achievable.



CHAPTER 3. BUILT-IN ARITHMETIC IN MODEL EXPANSION 50

So, as ψ is in ∃SO, the task of model expansion for ψ is in NP. Also, asA is polytime convertible to

A′ and existence of a satisfying expansion for A is equivalent to existence of a satisfying expansion

for A′, model expansion for φ will also be in NP.

3.6 PBINT as the Basis for a Modeling Language

In Section 3.5, we introduced the logic PBINT. In this section, we informally introduce a modelling

language (called PBINT-Spec) which is based on the logic PBINT and has the beautiful syntactical

constructs of a practical modelling language. For example, PBINT-Spec supports finite types as well

as integers. Moreover, as we will see through the examples, explicit upper guard and lower guard

axioms of PBINT logic are no longer needed in PBINT-Spec as they will be replaced by types.

This way, a specification in the PBINT-Spec becomes more readable than its counterpart in logic

PBINT (without affecting the expressiveness of the language). The main objective of this section

is to demonstrate that arithmetical NP search problems can be naturally represented in a language

based on PBINT. The two examples of integer factorization and quadratic residue are also included

in this section so as the reader could contrast them against the results of Section 3.4.

The first example in this section gives both the axiomatization in PBINT logic and the axioma-

tization in the PBINT-Spec. This way, the reader can compare the two axiomatizations. The rest of

the examples in this section will only give the specification in PBINT-Spec. Therefore, the first ex-

ample also serves as a reference point for translating other specifications in our modeling language

to axiomatizations in PBINT logic (if the need arises).

Example 3.8 (Disjoint Scheduling) Given a set of Tasks, t1, · · · , tn and a set of constraints, find

a scheduling that satisfies all the constraints. Each task ti has an earliest starting time EST (ti), a

latest ending time LET (ti) and a length L(ti). There is also two predicates P (ti, tj), that says task

ti should end before task tj starts, and D(ti, tj), which means that the two tasks ti and tj cannot

overlap. We are asked to find two functions start(ti) and end(ti) satisfying the given conditions.

In PBINT logic, we axiomatize this problem as follows: Instance vocabulary σ consists of sym-

bols EST , LET , L, Task, P and D. Expansion vocabulary consists of two functions start and

end. The axiomatization below first gives the upper guards on these functions and then the axioms:
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∀t∀s (start(t) = s⇒ (Task(t) ∧ ||s|| ≤ SIZE) ∨ s = default),

∀t∀e (end(t) = e⇒ (Task(t) ∧ ||e|| ≤ SIZE) ∨ e = default),

∀ti (Task(ti)⇒ start(ti) ≥ EST (ti)),

∀ti (Task(ti)⇒ end(ti) ≤ LET (ti)),

∀ti (Task(ti)⇒ start(ti) + L(ti) = end(ti)),

∀ti∀tj (P (ti, tj)⇒ end(ti) ≤ start(tj)),
∀ti∀tj (D(ti, tj)⇒ end(ti) ≤ start(tj) ∨ end(tj) ≤ start(ti)).

(3.2)

In PBINT-Spec, upper and lower guards are defined by types and need not be given explicitly.

Here, the predicate Task is a type and functions start and end are functions from type Task to

integer type. So, predicate Task can disappear from the above sentences. The result is as follows:

Given

Types {
Task : F i n i t e enumerab le ,

Time : PBINT ( S i z e ) }
R e l a t i o n s {

P : Task × Task ,

D : Task × Task }
F u n c t i o n s {

EST : Task 7→ I n t e g e r ,

LET : Task 7→ I n t e g e r ,

L : Task 7→ I n t e g e r }
Find

R e l a t i o n s {
S t a r t : Task 7→ Time

End : Task 7→ Time }
Such t h a t

∀ t : Task ( S t a r t ( t ) ≥ EST ( t ) ) .

∀ t : Task ( End ( t ) ≤ LET ( t ) ) .

∀ t : Task ( S t a r t ( t ) + L ( t ) = End ( t ) ) .

∀ t 1 , t 2 : Task ( P ( t 1 , t 2 ) → End ( t 1 ) ≤ S t a r t ( t 2 ) ) .

∀ t 1 , t 2 : Task (D( t 1 , t 2 ) → ( End ( t 1 ) ≤ S t a r t ( t 2 ) ∨ End ( t 2 ) ≤ S t a r t ( t 1 ) ) ) .

One can easily see that the upper guard axioms in the PBINT Specification 3.2 are replaced by

type “Time” which is a PBINT type and works as the output type of functions “Start” and “End”.

Therefore, here, one does not need to give upper guards explicitly. They can be implicitly derived by
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the language. The same goes to lower guards: they are also replaced by types.

Example 3.9 (Integer Factorization) Continuing Example 3.4, the integer factorization problem

can be specified in PBINT-Spec as follows:

Given

Types {
Fa c t or : PBINT ( S i z e ) }

C o n s t a n t s {
n : I n t e g e r ,

c : I n t e g e r }
Find

C o n s t a n t s {
k : F ac to r }

Such t h a t

p > 1 ∧ p < n ∧ p ≤ c .

∃k ’ : F ac to r ( k × k ’ = n ) .

Example 3.10 (Quadratic Residues) Continuing Example 3.5, the quadratic residue problem can

be specified in PBINT-Spec as follows:

Given

Types {
Num : PBINT ( S i z e ) }

C o n s t a n t s {
n : I n t e g e r ,

c : I n t e g e r ,

r : I n t e g e r }
Find

C o n s t a n t s {
s : Num }

Such t h a t

s ≥ 0 ∧ s ≤ c ∧ s < n .

∃k :Num ( s × s = k × n + r ) .
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3.7 Related Work

Research in databases over infinite structures can be traced back to the seminal paper by Chandra

and Harel [35]. There are several follow-up papers with developments in several directions includ-

ing [193, 179, 100], and more recent [99]. Topor [193] studies the relative expressive power of

several query languages in the presence of arithmetical operations. He also investigates domain

independence and genericity in such frameworks.

Another line of database-motivated work over infinite background structures is embedded model

theory (See [132, 133]). Work in this area generally reduces questions on embedded finite models

to questions on normal finite models. An important result in this area is the natural-domain-active-

domain collapse for ∃SO for embedded finite models, as well as other deep expressiveness results.

The work also describes a notion of safety (through e.g. range-restriction) to achieve safety with

many background structures, and connections between safety and decidability. The active domain

quantifiers are similar to our proposal of lower guards, however our goal was to reflect what is

used in practical languages, namely the so-called domain predicates of Answer Set Programming

and type information from other languages. We have done it through the use of upper and lower

guards. In general, research in database theory is mostly focused around computability and the

expressive power of query languages, while our interest, following [99] is in capturing complexity

classes, but in connection with specification/modelling languages. We plan, however, to investigate

the applicability of domain-independence, range-restrictedness and other notions from embedded

model theory to practical modelling languages.

Grädel and Gurevich [100] studied logics over infinite background structures in a more gen-

eral computer science context. They characterized NP for arithmetical structures under some small

weight property, generalized to the small cost condition in [189] (see [189] for a more detailed dis-

cussion). While this condition corresponds to existing languages (as shown in Section 3.4.1), our

work here gives an unconditional result for capturing NP in the presence of arithmetical structures,

and thus is a step forward in the development of such languages. Instead of controlling access to the

background structure through the use of weight terms [100] , we rely on guarded fragments, which

is much closer to practical specification languages.

The work we mentioned so far is the closest to our proposal, and was the most inspirational.

The research on descriptive complexity in the embedded setting also includes the work of Grädel

and Meer [104], as well as Grädel and Kreutzer [103]. These works prove interesting results for real

number arithmetic. So, they were not applicable to our current work on integer arithmetic. However,
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they will be of immense importance for our future work on real number arithmetic. Another line

(Cook, Kolokolova and others [43]) establishes connections between bounded arithmetic and finite

model theory, in particular by relying on Grädel’s characterization of PTIME. Since we needed a

functional characterization of PTIME, this work was not suitable to use for our purposes.

Another direction on capturing complexity classes is bounded arithmetic, including

[27, 176, 22]. However, the characterization of complexity classes there is in terms of provability in

systems with a limited collection of non-logical symbols, and is not applicable here.

There are many different characterizations of PTIME such as Leivant’s [128], Immerman’s

[115], Cobham’s [38] and Bellantoni-Cook characterization [22]. Leivant’s characterization says

that PTIME functions are exactly those that are provable in a logic called L2(QF+). Immerman’s

logic is a fixpoint logic with least fixpoint operator and ≤ which works on structures with abstract

domain elements. The two other characterizations of Cobham’s and Bellantoni-Cook have the prop-

erty of characterizing PTIME as a set of functions working on numbers and so better suited for

our purpose of characterizing search problems over arithmetical structures. Also, the safe recursion

and safe composition operators in the Cook-Bellantoni characterization give us a more natural way

of guaranteeing that the result of the simulation we need in our proof falls within some bounds.

Therefore, we choose the Bellantoni-Cook characterization [22] over Cobham’s as the basis of our

proof.

Built-in arithmetic is implemented in many modelling languages, e.g. the MX-based IDP system

[209] and LPARSE [182]. However, as we showed, such languages have limited expressiveness in

the presence of arithmetic constraints. For example, we showed that the two problems of integer

factorization and quadratic residues are not expressible in ASP and IDP systems using their built-in

arithmetic. Also, in many cases, allowing arithmetic constraints without careful restrictions provides

the language with very high expressiveness, as is shown for ESSENCE [151].

3.8 Conclusion

In modelling languages, one is frequently faced with the problem of having a framework to support

both natural specifications of problems, and reasoning about those problems. In this chapter, we

took our measure of naturality to be being able to use “built-in” arithmetic, and our measure of

reasoning to be being in NP. We showed some examples of problems of practical importance and

proved that several existing modelling languages cannot express these problems naturally (using

their built-in arithmetic and not by encoding numbers using abstract domain elements). We also
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presented a solution to this problem and we proved that embedded (inN c) MX for PBINT captures

exactly NP. A consequence of this result is that our fragment of logic can represent all arithmetical

problems in NP naturally. We supported our claim by giving natural axiomatizations for problems in

NP that could not be naturally axiomatized in existing modelling languages. This result guarantees

universality of our logic for this complexity class and also settles our reasoning abilities by showing

that all PBINT axiomatizations can be efficiently (in polytime) grounded to any state of the art

solver of NP problems. Our work is a significant step forward from the previous proposal since it

overcomes a number of limitations.

As we showed in PBINT-Spec, logic PBINT is natural because it is essentially FO logic, where

guards can be made “invisible” through “hiding” them in a type system. Solving for PBINT (also

PBINT-Spec) can be achieved through grounding to SAT, a work which is being performed in our

group, but falls outside of the topic of this chapter.

In summary, our work has pointed out some of the limitations of existing modelling languages

and provided a solution to these limitations. Our work has shown a new application of descriptive

complexity and metafinite model theory, and contributed to those areas by improving a previous

result of capturing NP for arithmetical structures.

Future possible research directions include (a) to analyze other existing languages (such as DLV

[49]) in connection with the logical fragments we defined; (b) to design other logics with useful

background structures, and, (c) to analyze existing modelling languages with respect to new useful

background structures.



Chapter 4

Modular Model Expansion

4.1 Motivation

Declarative programming is a branch of programming that is built on the idea of describing what we

need to do instead of how we need to do it. Traditionally, declarative programming has been con-

sidered as an alternative to imperative or functional programming and it has mainly been used in the

form of query languages for databases. However, the close relation between declarative program-

ming paradigms, fragments of logic, and, the ability to interpret logical statements as specification

of computation, has resulted in its wide adoption by many sub-communities of computing science as

their paradigm of choice for (free of side-effect) manipulation of knowledge. One of the main such

communities that has adopted declarative programming is the community of artificial intelligence

(AI) researchers.

There are many different declarative languages that are used in AI applications. Examples of

such languages include (but are not limited to): Integer Linear Programs (ILP) or Mixed Linear

Programs (MLP), Answer Set Programs (ASP), Satisfiability (SAT), Satisfiability Modulo Theories

(SMT), Constraint Programming (CP), etc. All of these languages have proved to be extremely

successful in their domains of applications. For example, ILP has been extensively used to solve

instances of vehicle routing problems. Also, CP has proved to be very efficient when dealing with

scheduling problems while ASP is extremely good at solving different types of planning problems

and reasoning with exceptions. Similarly, SAT is used widely for planning and solving other com-

binatorial problems such as automatic hardware design and verification. However, up until now, all

these languages have been mostly focused on their own local knowledge: a trend that is changing

slowly but that is also gaining pace due to recent advancements in the development of cloud-based

56
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applications.

With the development of the cloud and various mobile applications, a possibly large number

of autonomous, heterogeneous systems can collaborate to solve certain tasks. These agents may

be communicating individuals, large businesses or corporations, or software systems. The tasks

they may need to solve collaboratively can be computationally complex tasks such as optimizing

the schedule of flights in a united group of airlines or computationally feasible but conceptually

complex tasks such as planning an entertaining trip to India. While these two problems are of

different complexities, they share many similarities on the representational fronts: in order to solve

them, one may need to access several databases with (perhaps) disjoint vocabularies and there may

need to be an interaction between agents that represent entities with differing interests.

Therefore, if tasks such as those above are to be represented in a declarative fashion, there should

be a way to deal with their three most important properties: (1) their interactive nature (agents),

(2) their computational complexity, and, (3) their conceptual complexity. In the past, the declara-

tive programming community has intensively focused on handling the computational complexity of

problems that occur in the real world. As a result, we believe that handling computational complex-

ity is a less of a concern these days. One evidence to justify this claim is the existence of many

different efficient solvers (such as ILP solvers, SAT solvers and ASP solvers) that easily deal with

huge instances of computationally hard problems. While continuing the research on these solvers

are necessary and fruitful to the whole community, we believe that, nowadays, the main challenge

in declarative representation of hard problems is their conceptual complexity, i.e., there exist many

common problems that are out of reach not because of their computational complexity but due to

the complexity of representing them.

In this chapter, we try to tackle this new challenge of conceptual complexity using the principles

of modular design. Modular design has been the de facto practice in engineering for many years.

Software engineering has not been an exception to this rule either. Ever since the introduction of

commercial software, modularity has been among the most agreed-upon guidelines in programming.

However, in declarative programming, modularity is a relatively recent concern because, up until

very recently, declarative programming was able to rely on a consistent and homogeneous setting of

localized knowledge bases. However, knowledge bases are becoming global at a phenomenal pace

and, thus, there is an ever-growing need to represent and reason about problems that need access to

multiple, interacting and distributed knowledge bases which can also have heterogeneous semantics.

In this chapter, we first proposes the foundations of declarative representation of modular systems.

Then, we show how collaborative solving among autonomous systems and users can happen in a
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modular fashion. Our eventual goal is to support distributed declarative programming that allows

each peer/user to maintain better control of their data, and leverages the available computational

resources.

Before continuing to the main content of this chapter, we want to briefly look at some different

kinds of problems that need to be expressed in a modular way.

Example 4.1 (Modeling in Engineering) For an engineer, a system is a collection of interacting

modules. Thus, a model of a system is an interconnected set of modules. Such models help engineers

to study various properties of systems such as their steady and/or transient states. While different

fields in engineering use completely different models, they share an important property: while using

not very complex components, they are able to represent highly complex systems. Therefore, the

hard task is not to specify the behavior of components but to specify the behavior of the system. The

focus of our work in this chapter is to build a framework that allows to combine primitive modules

(that represent individual components) in complicated ways (to represent the whole system). This

method allows an engineer to harness the power of engineering models in studying the properties of

the final product while, simultaneously, restraining the conceptual complexity of the system.

Example 4.2 (Rapid Software Prototyping) In the previous example, we discussed how modular

systems can be used to study engineering design models. Software engineering is no exception to

this rule. Moreover, software engineering has the added benefit that, unlike other engineering fields,

the product is a software. Therefore, the process of modeling software can be tightly coupled with the

process of producing the final product. Rapid software prototyping uses such a philosophy to develop

prototypes using abstract components that will be later refined to the actual software. Many software

development methodologies (e.g., “Evolutionary Rapid Prototyping” [40, 47], “Executable UML”

[144] and “Shlaer-Mellor method” [175, 144]) develop software in this way. They (1) use high-level

and abstract modular representations of a system rather than detailed low-level and system-specific

descriptions, and, (2) try to model final product’s behaviour in the most accurate way possible.

Thus, we believe that our work in this chapter can have immediate effect on the practice of rapid

software prototyping through enabling the use of declarative programming languages in the process

of industrial software production.

Example 4.3 (Business Process Planning) Another immediate application of current work is in

business process planning. In general, such planning consists of finding ways to use contractors to

perform a set S of services under some restrictions R. Here, S is the set of services offered by the
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Planner
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Figure 4.1: Business Process Planner.

main business and might be different from all the services provided by the contractors of the main

business. For example, the service that a wedding planner provides is different from all the services

provided by its many contractors such as florists, caterers and venue providers. Figure 4.1 shows

an example of a business process planner that takes services S and restrictions R and splits them

between service providers. In response, the planner generates plan P by combining partial plans Pi
generated by providers. This example is also important because it justifies one of our main objectives

in the current work, i.e., language-independence. In this example, language-independence is needed

so that reasoning is still possible in the presence of modules that are not programmed declaratively,

for example those modules that use legacy software, or, even those that represent a human agent.

Hence, as we deem it essential to include all such cases, we believe that our modular system should

take a completely language-independent approach towards solving.

The examples above demonstrate why it is a necessity for declarative programming community

to enable the user to combine different systems and logics. Motivated by such a need, our goal in this

chapter is to introduce and investigate a modular approach towards specifying and solving complex

tasks so that different and possibly heterogeneous parts can work together. We are interested in

finding a method that obtains solutions through orchestrating a collaborative effort between primitive

modules.

Our first challenge is to develop an abstract formalism to represent modular declarative pro-

grams. This formalism should allow building systems from separate blocks on abstract model-

theoretic level. Moreover, our modular framework should allow independent agents/systems to col-

laborate with each other and to have control over the maintenance of their own data (thus, allowing
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both security and privacy from the point of view of the collaborating agents).

Such a method should treat each primitive module as a black box (i.e., should not assume access

to a complete axiomatization of the module). Not assuming complete knowledge is essential in solv-

ing problems like business process planning. This is because each of the solid boxes in Figure 4.1

represents a business entity which often, while interested in participating in the process, is not nec-

essarily willing to share the information that has affected their decisions. Therefore, any approach

to representing and solving such systems that assumes unlimited access to complete axiomatizations

of these entities is impractical.

This chapter continues the research program started by Mitchell and Ternovska [149] to de-

velop the foundations of solving computationally hard search problems in declarative programming

languages. They formalized search problems as the logical task of model expansion (MX), i.e., to ex-

pand a structure with interpretations for new predicate/function symbols. This chapter extends and

elaborates Tasharrofi and Ternovska [187] that was presented at the 2011 symposium on Frontiers

of Combining Systems (FroCoS’11). In this chapter, we take model expansion beyond a particular

language and introduce modular systems. Our modules can be viewed both model-theoretically and

operationally. The model-theoretic view sees modules as sets (or classes) of structures, while the

operational view sees them as operators on the underlying structure. There, modules are combined

in an abstract algebraic form that provides for language-independence. Moreover, the loop (or feed-

back) operation of the algebra allows modelling of cyclically dependent modules and boosts the

expressive power of the framework.

In addition to introducing modular system framework, we also describe a method to find solu-

tions to modular systems. Here, a solution is a structure that is accepted by the modular system (as

a function of individual modules). Thus, the goal here is to devise a way to find structures in a given

modular system. Since we aim at developing the foundations of language-independent problem

solving, we tackle the problem model-theoretically.

We take our inspiration in how “combined” solvers are constructed in the general field of declar-

ative problem solving. The field consists of many areas such as Integer Linear Programming (ILP),

Answer Set Programming (ASP), Satisfiability Modulo Theories (SMT), Satisfiability (SAT), and

Constraint Programming (CP), and each of these areas has developed multitudes of solvers, includ-

ing powerful “combined” solvers such as SMT solvers. Moreover, SMT-like techniques are needed

in the ASP community [156].

Our second challenge in this work is to devise appropriate mathematical abstractions for the task

of “combined” solving. Note that existing “combined” solvers are very powerful, but in some sense
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are not general enough to solve arbitrary modular systems. They are designed to solve problems

axiomatized in their designated languages, e.g., SMT solvers solve an extension of SAT with a

theory, Constraint Answer Set solvers solve combinations of ASP and CP language, etc. In this

chapter, we design an algorithmic schema that, when initialized with a modular system M , takes

a structure A and searches for expansions of A in M . Note that we neither hope to compete with

existing systems, nor hope to replace them, but to shed light on the general principles of solving

complex tasks that are specified in a modular way. The result of our work is a general system that

is not restricted to a particular language or a particular combination of languages. Our approach

towards solving modular systems is to orchestrate a co-operative efforts between native solvers of

all modules involved.

Contributions

Modular System Framework.

We introduce a framework to combine modules in a language-independent manner. Our frame-

work allows for a range of operations including (serial/parallel) composition of modules, non-

deterministic choice between modules, feedback, etc. that are common in system analyses. We

define an algebraic language for describing modular systems and provide two natural semantics for

this language: (a) a model-theoretic semantics that views modules as sets of structures, and, (b) an

operational semantics that views modules as mappings between structures and computes fixpoints of

those operators. We prove that these two semantics coincide and, thus, give complementary views

on modular systems.

Complexity and Expressiveness.

We study the complexity and expressiveness of our modular system framework and some of its

fragments (i.e., when certain operations are allowed/disallowed). We show that both our feedback

operator and our non-deterministic choice operator hugely increase the expressiveness of our mod-

ular system framework.

Solving Modular Systems.

We introduce an algorithmic schema that, when initialized with a modular system, works as a model

expansion solver for that modular system, i.e, given an input to that modular system, we can find one
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of the outputs that correspond to the given input (if such an output exists) or report unsatisfiability (if

such an output does not exist). We prove the correctness of our algorithm and study its computational

complexity. Moreover, in order to design such an algorithm, we define several abstract concepts

that, if satisfied by modules of a modular system, can tremendously speed up the process of solving

instances of that modular system. Moreover, these concepts provide guidelines on how to augment

a module in a modular system so that collaborative solving is achieved.

Case Study of Three (Mixed) Solvers.

We investigate three state-of-the-art types of solvers that use a mixed solving approach (i.e., mix

two or more methods to achieve better solving performance): (a) DPLL(T) solvers that combines

DPLL1 algorithm with the solver for theory T, (b) mixed integer program solvers that combine

branching algorithms and cut generation algorithms with algorithms for solving linear programs

(such as the Simplex algorithm [44]) to obtain efficient algorithms for solving mixed linear pro-

grams, and, (c) recent efforts to combine Answer Set Programming with Constraint Programming.

For each of the three types of solvers, we give a modular system with the “right” modules so that

when our algorithmic schema is initialized with that “right” modular system, it acts similar to the

native solver of that system. That is, if our algorithmic schema is initialized with the modular system

that represents mixed linear solvers, it acts similar to mixed linear solvers and, when initialized with

modular system that represents a combination of ASP and CP, it acts similar to the native ASP+CP

solvers. We use these observations to argue for the efficiency of our algorithm in solving modular

systems in general (even when modules are specified in a not so well-studied language).

Approximation of Solutions to Modular Systems.

We introduce two classes of modular systems based on simple properties that modules of a modular

system may provide. For the first class of modular systems, we introduce a new procedure to obtain

(in polynomial time) at least one of the solutions of modular systems in that class. Moreover,

the solution we obtain for those modules approximates (in a sense that will be defined later) all

other solutions of that modular system as well. For the second class of modular systems, we give

another polynomial time procedure that obtains a non-trivial lower bound and upper bound (thus, an

approximation) for all solutions of a modular system. We further modify both of these procedures

so that they can be used for obtaining stronger bounds within our algorithmic schema for solving

1Davis–Putnam–Logemann–Loveland [157].
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modular systems. We then incorporate these approximation procedures in our algorithmic schema

and obtain a more intelligent way of combining solving mechanisms.

4.2 Background

4.2.1 Model Expansion

Recall that the authors of [149] formalized combinatorial search problems as the task of model ex-

pansion (MX), i.e., the logical task of expanding a given (mathematical) structure with new relations.

In the model expansion task, we expand a σ-structureAwith relations and functions to interpret new

vocabulary ε, obtaining a structure B that satisfies our axiomatization φ in a logic L. Also, recall that

σ, the vocabulary of A, is called the instance vocabulary, and ε is called the expansion vocabulary.

Example 4.4 (Business Process Planner as Model Expansion) In Figure 4.1, both the planner box

and the provider boxes can be viewed as model expansion tasks. For example, the box labeled with

“Provider1” can be abstractly viewed as an MX task with instance vocabulary σ = {S1, R1} and

expansion vocabulary ε = {P1}. The task is: given some services S1 and some restrictions R1, find

a plan P1 to deliver services in S1 such that all restrictions in R1 are satisfied.

Moreover, in Figure 4.1, the bigger box with dashed borders can also be viewed as an MX

task with instance vocabulary σ′ = {S,R} and expansion vocabulary ε′ = {P}. This task is a

compound MX task whose result depends on the internal work of all the providers and the planner.

Given a specification, we can talk about a set of σ ∪ ε-structures which satisfy the specification.

Alternatively, recall that we can also talk about a given set of σ∪ε-structures as an MX-task, without

mentioning a particular specification the structures satisfy. This abstract view makes our study of

modularity language-independent.

4.2.2 Partial Structures and Extensions

Recall that a structure is a domain together with an interpretation of the associated vocabulary that

consists of a finite set of predicate and function symbols (including null-ary functions or constants).

A partial structure extends the concept of a structure by allowing some interpretations (e.g., the

interpretation RB of n-ary predicate symbol R in a partial structure B) may be partially specified

(e.g., for some tuple ā ∈ [dom(B)]n, we may not know whether ā ∈ RB or ā 6∈ RB). Partial

structures generalize structures in the sense that a structure is a particular partial structure with fully
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understood interpretations. Partial structures usually encode our partial knowledge about a subject

and arise naturally in computational problems. We will see several natural uses for partial structures

in this chapter (e.g., in Section 4.5).

Definition 4.1 (Partial Structure) B is a τp-partial structure over vocabulary τ if:

1. τp ⊆ τ ,

2. B gives a total interpretation to symbols in τ\τp and,

3. for each n-ary symbolR in τp, B interpretsR using two setsR+ andR− such thatR+∩R− =

∅, and R+ ∪R− ( [dom(B)]n.

We say that τp is the partial vocabulary of B. We say B is total if τp = ∅.

Note that, as expected, a total structure is just a τp-partial structure according to definition 4.1

with an empty vocabulary τp.

Example 4.5 Consider a structure B over domain {0, 1, 2} for vocabulary {I,R}, where I and R

are unary relations, and IB = {〈0〉, 〈1〉}, 〈0〉 ∈ RB, and 〈1〉 6∈ RB, but it is unknown whether 〈2〉 ∈
RB or 〈2〉 6∈ RB. Then B is a {R}-partial structure over vocabulary {I,R} where R+B = {〈0〉}
and R−B = {〈1〉}.

Partial structures can encode the presence or lack of information about the truth of a propo-

sition at certain points. Therefore, it is natural to compare two partial structures with respect to

their amount of information (or lack thereof). In the following, we introduce extensions, positive

extensions and negative extensions that define natural partial orderings on partial structures.

Definition 4.2 (Positive/Negative Information) Let B be a τp-partial structure over vocabulary τ .

Then, by B+, we denote the positive information in B, i.e., information about the presence of tuples

in interpretations given by B:

B+ := {R(ā) | either [R ∈ (τ \ τp) and ā ∈ RB] or [R ∈ τp and ā ∈ R+B ]}.

Similarly, B− denotes the negative information in B, i.e., the information about the absence of tuples

in interpretations:

B− := {R(ā) | either [R ∈ (τ \ τp) and ā 6∈ RB] or [R ∈ τp and ā ∈ R−B ]}.
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Definition 4.3 (Extension, Positive Extension, Negative Extension) Let B and B′ be two partial

structures over the same vocabulary and the same domain. We say that B′ positively extends B,

denoted by B vP B′, if B+ ⊆ B′+, i.e., B′ has at least as much positive information as does B.

Similarly, we say that B′ negatively extends B, denoted by B vN B′ if B− ⊆ B′−. We also say that

B′ extends B, denoted by B v B′ if both B vP B′ and B vN B′.

Note that, according to Definition 4.3, if B and B′ are total structures, i.e., all predicate symbols

are fully interpreted, then B extends B′ if and only if B = B′. This is due to the fact that extension

respects both the positive information and the negative information that is contained in a partial

structure. Thus, as two different total structures should necessarily contradict each other on some

piece of information, neither of them can carry “more information” than the other one and, hence,

neither of them extends the other one. On the other hand, positive and negative extensions define

a more relaxed notion of extension that will be useful when we want to talk about monotonicity or

anti-monotonicity of operators on structures.

We sometimes abuse the notation and, for (possibly partial) interpretations S1 and S2 of a single

vocabulary symbol S in two structures over the same domain, write S1 v S2 (resp. S1 vP S2 or

S1 vN S2 to say that S2 extends (resp. positively extends or negatively extends) S1. We may also

write S1uS2 (resp. S1uP S2 or S1uN S2) to denote the information that is shared in interpretations

S1 and S2 (resp. the positive or negative shared information) for predicate symbol S. We may use

t, tP and tN similarly. We also use < and = (resp. <P , <N , =P and =N ) to denote proper

extension, i.e., similar to v and w but without equality.

Finally, also let us define concatenation of two structures as follows.

Definition 4.4 (Concatenation of Structures (B1||B2)) Let B1 and B2 be two structures over dis-

tinct vocabularies such that dom(B1) = dom(B2). Then, by B1||B2, we denote a structure B
with the same domain as B1 and B2 but over the vocabulary of both B1 and B2, i.e., vocab(B) =

vocab(B1) ∪ vocab(B2). Moreover, B is defined so that it takes the interpretation of its vocabu-

lary symbols from the corresponding structure, i.e., for all symbols R ∈ vocab(B), we have that

RB = RB1 if R ∈ vocab(B1) and RB = RB2 if R ∈ vocab(B2).
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4.3 Modular Systems

In this section, we present the concept of a modular system, which we introduced in our earlier con-

ference paper [187]. We also extend and refine our previous notion of a modular system as an oper-

ator. The initial development was motivated by [120], however our framework offers two equivalent

semantics based on model-theoretic and operational views (none of them present in [120]). Also, as

we explain in this section, our framework extends that earlier work in several significant ways and,

in particular, by adding an expressive feedback operator. In the following, we first formally define

an algebraic language for modular systems and then two (equivalent) semantics for this language.

The first semantics is model-theoretical and recursively defines the set of structures that a modular

system abstractly represents. The second semantics is called the fixpoint semantics and associates

a non-deterministic operator to each modular system. We prove that these two semantics coincide

(i.e., the second semantics associates an operator to a modular system whose fixpoints are closely

tied to the structures that are associated to the modular system by the first semantics). This way,

we have two distinct methods to study the properties of modular systems, and, as we shall see, both

these methods are advantageous in certain situations.

4.3.1 The Algebra of Modular Systems

As in [187], each modular system abstractly represents an MX task, i.e., a set (or class) of struc-

tures over some instance (input) and expansion (output) vocabulary. A modular system is formally

described as a set of primitive modules (individual MX tasks) combined using the operations of:

(1) Projection(πτ (M)) which restricts the vocabulary of a module. Intuitively, the projection op-

erator on M defines a modular system that acts as M internally but is viewed differently from

outside by hiding some vocabulary symbols that are meaningful only internally.

(2) Composition(M1 �M2) which connects outputs of M1 to inputs of M2. As its name suggests,

the composition operator is intended to take two modular systems and defines a multi-step op-

eration by serially composing M1 and M2.

(3) Union(M1 ∪M2) which, intuitively, models the case when we have two alternatives to do a task

(that we can choose from).

(4) Feedback(M [R = S]) which connects output S of M to its inputs R. As the name suggests, the

feedback operator models systems with feedback.

The algebra of modular systems is defined recursively starting from primitive modules:
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Definition 4.5 (Primitive Module [187]) A primitive module M is a model expansion task (or,

equivalently, a search problem) with instance vocabulary σ and expansion vocabulary ε (again,

equivalently, with input vocabulary σ and output vocabulary ε). Associated with each primitive

module M , there is a decision procedure DM such that, given a (σM ∪ εM )-structure B, DM ac-

cepts B if and only if M describes a task of model expansion that accepts B as a valid expansion of

B|σ.

Remark 4.1 (Representation of Primitive Modules) A primitive module as described in Defini-

tion 4.5 does not have to conform to a specific representation. For example, formula φ of Example

2.1 describes the model expansion task for the problem of Graph 3-coloring. Thus, φ can be the rep-

resentation of a module MC with instance vocabulary {E} and expansion vocabulary {R,G,B}.
However, since each primitive module M according to Definition 4.5 is associated with a decision

procedureDM , there exists a set-theoretical and canonical representation for all primitive modules:

a set (class) of (σM ∪εM )-structures, i.e., Rep(M) := {B | B is a (σ ∪ ε)-structure and DM (B) =

1}. As a result, we sometimes use M as a set to denote Rep(M). Note that this canonical rep-

resentation of M is just one of its representation and does not determine how M is represented in

reality. In fact, in most cases, M is not represented in this way and has a finite representation like

in Example 2.1.

Before recursively defining our algebraic language, we have to define composable and indepen-

dent modules:

Definition 4.6 (Composable, Independent [120]) Modules M1 and M2 are composable if εM1 ∩
εM2 = ∅ (no output interference). Module M2 is independent from M1 if σM2 ∩ εM1 = ∅ (no cyclic

module dependencies).

Definition 4.7 (Well-Formed Modular Systems (MS(σ, ε))) The set of all well-formed modular

systems MS(σ, ε) for a given input, σ, and output, ε, vocabularies is defined as follows.

Base Case, Primitive Modules: IfM is a primitive module with instance (input) vocabulary σ and

expansion (output) vocabulary ε, then M ∈ MS(σ, ε).

Projection If M ∈ MS(σ, ε) and τ ⊆ σ ∪ ε, then πτ (M) ∈ MS(σ ∩ τ, ε ∩ τ).

Sequential Composition: If M ∈ MS(σ, ε), M ′ ∈ MS(σ′, ε′), M is composable (no output inter-

ference) with M ′, and M is independent from M ′ (no cyclic dependencies) then (M �M ′) ∈
MS(σ ∪ (σ′ \ ε), ε ∪ ε′).
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Union: If M ∈ MS(σ, ε), M ′ ∈ MS(σ′, ε′), M is independent from M ′, and M ′ is also indepen-

dent from M then (M ∪M ′) ∈ MS(σ ∪ σ′, ε ∪ ε′).

Feedback: If M ∈ MS(σ, ε), R ∈ σ, S ∈ ε, and R and S are symbols of the same type and arity,

then M [R = S] ∈ MS(σ \ {R}, ε ∪ {R}).

Nothing else is in the set MS(σ, ε).

Further operators for combining modules can be defined as combinations of basic operators

above. For instance, [120] introduced M1 I M2 operator (composition operator combined with

projection) as πσM1
∪εM2

(M1 �M2), i.e., serial composition of M1 and M2 with the intermediate

results (generated by M1) forgotten. Also, for M1 ∈ MS(σ1, ε1) and M2 ∈ MS(σ2, ε2), M1 ∩M2

is defined to be equivalent to M1 �M2 (or M2 �M1) when σ1 ∩ ε2 = σ2 ∩ ε1 = ε1 ∩ ε2 = ∅, i.e.,

M1 ∩M2 denotes the composition of two mutually independent components in a system.

Example 4.6 (BPP as a Modular System) Let us illustrate the operations of modular systems by

giving an algebraic specification of the modular system in Example 4.3.

BPP := π{R,S,P}(Planner � (Provider1 ∩ Provider2 ∩ Provider3))

[P1 = P1
′][P2 = P2

′][P3 = P3
′].

(4.1)

Considering Figure 4.1, symbol BPP refers to the whole modular system denoted by the box with

dotted borders. Also, as R, S and P are the only vocabulary symbols important outside BPP ,

all other symbols in Formula (4.1) are projected out. Moreover, primitive modules Provider1,

Provider2 and Provider3 represent three independent providers. Thus, they are connected using

operator ∩ (composition of independent modular systems). Furthermore, there are three feedbacks

from Pi (i ∈ {1, 2, 3}) to P ′i that return the partial plans generated by providers to the primitive

module Planner.

The description of a modular system (as in Definition 4.7) gives a formula representing a system.

Thus, it is convenient to define subsystems of a modular system M as sub-formulas of the formula

that represents M . Clearly, each subsystem of a modular system is a modular system itself.

4.3.2 Model-theoretic Semantics for Modular Systems

In Section 4.3.1, we introduced the syntax of our algebraic language. The basic elements in Defini-

tion 4.7 are primitive modules that are sets of structures (based on Definition 4.5). Our first semantics
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for modular systems extends this approach by defining the set of structures that are represented by a

complex modular system. Each such structure is called a model of that modular system:

Definition 4.8 (Models of a Modular System) Let M ∈ MS(σ, ε) be a modular system and B be

a (σ ∪ ε)-structure. The following gives a recursive definition of B being a model of M :

Base Case, Primitive Modules: B is a model of M if and only if B ∈M .

Projection: B is a model of M := π(σ∪ε)(M
′) (with M ′ ∈ MS(σ′, ε′)) if an only if a (σ′ ∪ ε′)-

structure B′ exists such that B′ is a model of M ′ and B′ expands B.

Composition. B is a model of M := M1 �M2 (with M1 ∈ MS(σ1, ε1) and M2 ∈ MS(σ2, ε2)) if

and only if B|(σ1∪ε1) is a model of M1 and B|(σ2∪ε2) is a model of M2.

Union. B is a model of M := M1∪M2 (with M1 ∈ MS(σ1, ε1) and M2 ∈ MS(σ2, ε2)) if and only

if either B|(σ1∪ε1) is a model of M1, or B|(σ2∪ε2) is a model of M2.

Feedback. B is a model of M := M ′[R = S] (with M ′ ∈ MS(σ′, ε′)) if and only if RB = SB and

B is model of M ′.

In this chapter, we are mainly interested in the task of model expansion for modular systems that

is defined as below:

Definition 4.9 (Model Expansion for Modular Systems) Let M ∈ MS(σ, ε) be a modular sys-

tem. The task of model expansion forM takes a σ-structureA and finds (or reports that none exists)

a (σ ∪ ε)-structure B that expands A and is a model of M . Such a structure B is a solution of M

for input A.

Comparison with [120] The framework [120] is based on a set of variables X with each x ∈ X
having a domain D(x). An assignment over a subset of variables X ⊆ X is a function σ : X →
∪x∈XD(x), which maps variables in X to values in their domains, i.e., σ(x) ∈ D(x) for all x ∈ X .

A constraint C over a set of variables X is characterized by a set C of assignments over X , called

the satisfying assignments. A primitive module in terms of [120] is a constraint plus a signature

for its input and outputs, i.e., two disjoint sets I,O ⊆ X of variables. Modular systems in [120]

are combined using operators of composition and projection, i.e., there is no union or feedback

operators. In this chapter, the variables of [120] are represented by the vocabulary symbols in σ ∪ ε.
Moreover, instead of assigning values, we use structures that assign interpretations to vocabulary

symbols. Therefore, unlike [120] that is concerned with the task of satisfiability checking (i.e., it

tries to find an assignment that satisfies all the constraint), we are concerned with the task of model

expansion that is suitable for modeling the whole system in a modular fashion (and not just one

input of the system).
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4.3.3 Fixpoint Semantics for Modular Systems

In Section 6.1, we mentioned that one of the motivating factors behind the development of modular

systems was their broad applicability to model the steady state analysis and the transient state anal-

ysis of complex systems. In Section 4.3.2, we defined the intended models of a modular system.

However, in order to analyze steady and/or transient states of a system in terms of its modular rep-

resentation, we should first have a natural definition of the state of a modular system as well as the

necessary means to view a modular system as an operator on this state. In this section, we introduce

a new semantics for modular systems called fixpoint semantics. As we see in this section, while

our fixpoint semantics is very closely related to our model-theoretical semantics, it views modular

systems in an intrinsically different way as operators on some states.

The the operational view that we introduce in this section enables us to obtain interesting results

about our modular systems such as approximability of a sub-class of modular systems. Moreover,

the concept of time naturally arises from our operational view towards modular systems. We will

briefly review this concept in the end of this section and discuss the close relation between our

concept of time in modular systems and the transient state analysis in an engineering system. The

full treatment of this concept would be the subject of a future research.

Before defining the fixpoint semantics of modular systems, we first define the concept of a state

of a modular system. Then, to each modular system, we associate an operator that operators on a

state of a modular system. Next, as we will see later on, our fixpoint semantics would be simply

defined as the fixpoints of that operator.

Definition 4.10 (State of a Modular Systems) Let M ∈ MS(σ, ε) be a modular system. Then a

state of the modular system M is simply a τ -structure such that (σ ∪ ε) ⊆ τ .

Now, let us associate with a modular system an operator on states of that modular system as

follows:

Definition 4.11 (Operational View on Modular Systems) Let M ∈ MS(σ, ε) be a modular sys-

tem and let τ -structure B1 be a state of M . Now, we say that a τ -structure B2 is a result of applying

(non-deterministic) operator M on B1, denoted as either B1JMKB2 or B2 ∈ JMK(B1) and defined

as follows:

Base Case, Primitive Modules: B1JMKB2 if and only if B2|σ∪ε ∈M , and, B2|(τ\ε) = B1|(τ\ε)2,

2In particular, it means that B1 and B2 should have the same domain.
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Projection: If M := π(σ∪ε)(M
′) (with M ′ ∈ MS(σ′, ε′)) then B1JMKB2 if and only if (σ′ ∪ ε′)-

structures B′1 and B′2 exist such that

1. B′1|(σ∪ε) = B1|(σ∪ε) (expanding B1 with interpretations of projected-out symbols ob-

tains B′1),

2. B′1JM ′KB′2 (applying M ′ on B′1 obtains B′2),

3. B′2|(σ∪ε) = B2|(σ∪ε) (projecting B′2 on σ ∪ ε obtains B2), and,

4. B1|τ\(σ∪ε) = B2|τ\(σ∪ε) (M can only affect its vocabulary).

Composition: If M := M1 �M2 (with M1 ∈ MS(σ1, ε1) and M2 ∈ MS(σ2, ε2)) then B1JMKB2

if and only if τ -structure B′ exists such that B1JM1KB′ and B′JM2KB2,

Union. If M := M1 ∪M2 (with M1 ∈ MS(σ1, ε1) and M2 ∈ MS(σ2, ε2)) then B1JMKB2 if and

only if either B1JM1KB2 or B1JM2KB2,

Feedback: If M := M ′[R = S] (with M ′ ∈ MS(σ′, ε′)) then B1JMKB2 if and only if natural

number n ≥ 1 and τ -structures B0
1, · · · ,Bn1 and B0

2, · · · ,B
n−1
2 exist such that:

B0
1 = B1,Bn1 = B2,

Bi1JM ′KBi2 for all i such that 0 ≤ i < n,

Bi+1
1 |(τ\{R}) = Bi2|(τ\{R}) for all i such that 0 ≤ i < n,

RB
i+1
1 = SB

i
2 for all i such that 0 ≤ i < n,

RB
n
1 = SB

n
1 .

Intuitively, the operator associated with a modular system M takes a structure B and generates

B′ by changing interpretations of the expansion vocabulary such that the result is a structure in M .

This goal is attained through an operational means with a very natural meaning for each connective

in our modular framework. For example, the meaning of connective � is a sequential composition

of the two modular systems. Also, connective ∪ gives a non-deterministic choice on which modular

system to execute and the feedback operator defines a loop. Among different cases of Definition

4.11, the two cases of projection and feedback are the most complex ones. Figures 4.2 and 4.3

illustrate the internal operations of these two operators.

Definition 4.11 gives an alternative semantics to a combined modular system. Unlike Definition

4.7 that treated modular systems as sets of structures, in Definition 4.11, modular systems are viewed

as non-deterministic operators mapping structures to structures. Now that we have this operational

view on modular systems, we can define the fixpoint semantics of a modular system simply as the

fixpoint of their corresponding operator.
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B1 B′1 B′2 B3

expand apply M ′ project

Figure 4.2: Module M := πτ (M ′) operates by (a) expanding vocabulary of input B1, (b) applying
M ′ to expanded input, and, (c) projecting the result of application of M ′.
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Figure 4.3: Module M := M ′[R = S] operates by repeatedly applying M ′ on the given structure
and copying interpretation of S into interpretation of R until it reaches a fixpoint of M ′.

Definition 4.12 (Fixpoint Semantics of Modular Systems) Let M ∈ MS(σ, ε) be a modular sys-

tem and B be a τ -structure (with τ ⊇ (σ ∪ ε)). We say that B is a fixpoint of M if and only if

B ∈ JMK(B) (or, equivalently but with a different notation: BJMKB).

The following theorem shows that fixpoint semantics of modular systems coincides with the

model-theoretic definition of a modular system:

Theorem 4.1 (Fixpoint Semantics = Model-theoretical Semantics) Let M be a modular system.

Then, for every τ -structure B:

B ∈ JMK(B)⇐⇒ B|vocab(M) ∈M.

The most important consequence of Theorem 4.1 is that all the results obtained when modules are

viewed as operators, remain valid when modules are viewed as sets of structures (and vice versa).

Thus, in this chapter, we may use either of these semantics.

Remark 4.2 Notice that both our model-theoretic semantics for modular system and our fixpoint

semantics for modular systems are defined so that they do not put any finiteness restriction on the

domains of structures. Thus, our modular system framework readily supports working on modules

with infinite structures.
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M
σ

ε
τ τ

B1 B2

Figure 4.4: Module M ∈ MS(σ, ε) maps a τ -structure B1 (with τ ⊇ (σ ∪ ε)) to a τ -structure B2 by
changing the interpretation of vocabulary symbols in ε according to the models of M (so that the σ
part and the new ε part, together, form a model of M ). Interpretation of all other symbols, including
those in σ, stays the same.

The theorem that follows shows another important correspondence between our fixpoint seman-

tics and our model-theoretical semantics.

Theorem 4.2 (Dual View on Modular Systems) LetM ∈ MS(σ, ε) and also let B1 and B2 be two

τ -structures such that B1JMKB2. Now, define B to be a (σ ∪ ε)-structure such that: (1) dom(B) =

dom(B1) = dom(B2), (2) B|σ = B1|σ, and, (3) B|ε = B2|ε. Then, B ∈M .

The importance of Theorem 4.2 is to show how a modular system changes its state. This is also

illustrated by Fiqure 4.4. Figure 4.4 shows that a modular system M ∈ MS(σ, ε) changes only the

ε interpretations of the state and everything else (including σ) remains unchanged. This is similar to

how frame axioms keep fluents that are not affected by actions unchanged in sequent calculus.

Structural Operational Semantics.

We have just introduced operational view on modular systems and the corresponding fixpoint se-

mantics of modular systems. Now, we want to define the operational semantics of modular systems

that is closely related to the operational view we developed above.

In this part, as in the operational view on modular systems, the vocabulary of structures include

both the input and output vocabularies of M , i.e., σ∪ ε ⊆ τ . Below, we give a structural operational

semantics for the algebra of modular systems. The semantics is structural because, for example,

the meaning of the sequential composition, M1 �M2, is defined through the meaning of M1 and

the meaning of M2. We start by defining the rules of structural operational semantics for modular

systems.
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Primitive modules.: If M ∈ MS(σ, ε) is a primitive module, then the only possible structural

operational rule for M is as follows:

(M,B1) −→ B2

true
if B2|(σ∪ε) ∈M and B2|(τ\ε) = B1|(τ\ε).

Projection.: The only possible structural operational rule for modular system πν(M) is as follows:

(πν(M),B1) −→ B2

(M,B′1) −→ B′2
if B′1|ν = B1|ν and B′2|ν = B2|ν .

Composition.: The only possible structural operational rule for modular system M1 � M2 is as

follows:
(M1 �M2,B1) −→ B2

(M1,B1) −→ B′ and (M2,B′) −→ B2
.

Union.: For modular system M1 ∪M2, there exist two possible structural operational rules:

(M1 ∪M2,B1) −→ B2

(M1,B1) −→ B2
,

(M1 ∪M2,B1) −→ B2

(M2,B1) −→ B2
.

Feedback.: For modular system M [R = S], there are also two structural operational rules that

follow:

(M [R = S],B) −→ B
(M,B) −→ B

,
(M [R = S],B1) −→ B2

(M,B1) −→ B′ and (M [R = S],B′[R := S]) −→ B2
,

where B′[R := S] is a τ -structure B′′ that agrees with B′ on both its domain and the interpretations

of all symbols in τ except R. Also, the interpretation of R in B′′ is a copy of the interpretation of S

in B′.

Definition 4.13 (Derivability) For a well-defined modular system M , we say that (M,B1) −→ B2

is derivable if we can apply the rules of the structural operational semantics starting from this

expression and arriving to true.

Theorem 4.3 (Structural Operational Semantics = Operational View) Let M ∈ MS(σ, ε) be a

well-formed modular system. Then, for all τ -structures B1 and B2 (with τ ⊇ (σ ∪ ε)):

B2 ∈ JMK(B1) if and only if (M,B1) −→ B2 is derivable.

Theorem 4.3 shows that, indeed, the operator we define for each modular system M (through

our operational view on modular systems) precisely corresponds to the meaning of modular system

M according to structural operational semantics. Note that both structural operational semantics
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and our operational view on modular systems give a closer correspondence to the inner working

of a modular system than the model-theoretical semantics. This is because, our model-theoretical

semantics considers only the fixpoints of the operator associated to a modular system while our

operational view (and our operational semantics) define the operator itself and can thus be used

to talk about both the transient states of a modular system as well as its steady states (fixpoints).

Further study of the transient states of modular systems is the subject of future research.

4.4 Expressive Power

The authors of [149] emphasized the importance of capturing NP and other complexity classes. The

capturing property, say for NP, is of fundamental importance as it shows that, for a given language:

(a) we can express all of NP – which gives the user an assurance of universality of the language for

the given complexity class,

(b) no more than NP can be expressed – thus solving can be achieved by means of constructing a

universal polytime reduction (called grounding) to an NP-complete problem such as SAT or CSP.

In the context of modular systems, we also want to investigate the expressive power of the defined

language. This section studies the complexity of modular systems in terms of a combination of both

the model-theoretic view and the operational view towards modular systems.

In what follows, we first introduce several properties that a modular system may have as an oper-

ator. Examples of such properties are totality, determinacy, monotonicity and anti-monotonicity. We

also prove several small results about these properties that will be useful in this chapter. Afterwards,

we extend the complexity-theoretical concepts of polytime solvability, polytime checkability, etc. in

a natural way to modular systems. Finally, we show our capturing result for modular systems.

Since we can view modular systems as operators, we can also classify them according to the

properties (such as totality, determinacy, monotonicity, anti-monotonicity, etc.) of the operator as-

sociated with them.

Definition 4.14 (Total Modular Systems) Let M ∈ MS(σ, ε) be a modular system and let τ be a

set of vocabulary symbols such that τ ⊇ (σ ∪ ε). Also, let C be a class of τ -structures. We say that

M is total if the operator JMK is defined on all τ -structures B in C, i.e.,

B ∈ C ⇒ JMKτ (B) 6= ∅.

Our definition of totality is conceptually similar to [120]. We might omit mentioning the class of

structures C either if it is obvious from the context or if the discussion holds for all classes of
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structures.

Definition 4.15 (Deterministic Modular Systems) For modular system M and sets of symbols τ

and τ ′, we say M is τ -τ ′-deterministic if for all structures B1 and B2, we have:

if B′1 ∈ JMK(B1),B′2 ∈ JMK(B2) and B1|τ = B2|τ then B′1|τ ′ = B′2|τ ′ .

The following few basic propositions show how more properties about determinacy of a modular

system can be obtained from other such properties.

Proposition 4.1 For τ -τ ′-deterministic modular system M :

1. If τ ′′ ⊇ τ , then M is also τ ′′-τ ′-deterministic.

2. If τ ′′ ⊆ τ ′, then M is also τ -τ ′′-deterministic.

Proposition 4.2 If M is both τ1-τ2-deterministic and τ ′1-τ ′2-deterministic, M is also (τ1 ∪ τ ′1)-(τ2 ∪
τ ′2)-deterministic.

Definition 4.16 (Monotonicity and Anti-Monotonicity) For modular system M and sets of sym-

bols τ1, τ2 and τ3, we say M is τ1-τ2-τ3-monotone (resp. τ1-τ2-τ3-anti-monotone) if for all struc-

tures B1 and B2, we have:

if B1|τ1 vP B2|τ1 and B1|τ2 = B2|τ2 then B′1|τ3 vP B′2|τ3(resp. B′2|τ3 vP B′1|τ3).

where B′1 ∈ JMK(B1),B′2 ∈ JMK(B1).

Proposition 4.3 Let M be a τ1-τ2-τ3-monotone or a τ1-τ2-τ3-anti-monotone module. Then M is

(τ1 ∪ τ2)-τ3-deterministic.

Proof: We prove this for the monotone case. The other case is similar. Let B1,B2 ∈M be such that

B1|τ1∪τ2 = B2|τ1∪τ2 . Then, (1) B1|τ2 = B2|τ2 , (2) B1|τ1 vP B2|τ1 , and, (3) B2|τ! vP B1|τ1 . Also,

let B′1 ∈ JMK(B1) and B′2 ∈ JMK(B2). Thus, by (1) and (2), we know B′1|τ3 vP B′2|τ3 and, by (1)

and (3), we have B′2|τ3 vP B′1|τ3 . Thus, B|τ3 = B′|τ3 .

After defining total, deterministic, monotone and anti-monotone modular systems, we now de-

fine the complexity of a modular system as follows.

Recall that, in complexity theory, polynomial hierarchy is defined as follows: (i) ΣP
0 = ΠP

0 =

∆P
0 := P , and, (ii) ∆P

k+1 := PΣPk , ΣP
k+1 := NPΣPk , and, ΠP

k+1 := coNPΣPk . Here, P, NP and coNP

respectively refer to the set of polynomial time acceptable problems, non-deterministic polynomial

time acceptable problems, and, non-deterministic polynomial time refutable problems.



CHAPTER 4. MODULAR MODEL EXPANSION 77

Definition 4.17 (ΣP
k -checkability, ∆P

k -solvability) Let M ∈ MS(σ, ε) be a modular system. We

say that M is ΣP
k checkable if the set M of structures is ∆P

k decidable. Also, M is ∆P
k solvable if

there is a partial function F computable in ∆P
k such that for all finite σ-structures A: (1) F (A) is

defined if and only if there is (σ ∪ ε)-structure B ∈M expandingA, and (2) if F (A) is defined then

F (A) ∈M and F (A) is the only structure in M that expands A.

Note that ∆P
k solvability implies determinism. In what follows, we investigate the expressiveness

of a modular system relative to the expressiveness of its primitive modules in two cases: (1) when

both feedback and union operators are absent, and, (2) when at least one of feedback operator or

union operator are present.

Theorem 4.4 that follows shows that when a modular system is formed by combining ∆P
k solv-

able primitive modules using the projection and composition operators, i.e., feedback and union

operators are not used, the modular system itself would also be ∆P
k solvable. Theorem 4.5 shows

that using the operators of union and feedback (either alone or together) to combine ∆P
k solvable

primitive modules enables us to express all ΣP
k problems. Moreover, Theorem 4.5 also shows that

our expressive power does not change even if we allow ∆P
k checkable primitive modules. Thus,

Theorem 4.5 characterizes the complexity and expressive power of union and feedback operators.

In the following, we view a problem as a class of structures rather than a set of binary strings (as

is common in computational complexity). Viewing problems as classes of structures is very common

in descriptive complexity and is also intuitively tied to the default definition through binary strings

(as demonstrated by many standard results in descriptive complexity).

Theorem 4.4 (Expressiveness in the Absence of Feedback and Union Operators) LetK be a prob-

lem over the class of finite structures closed under isomorphism. Then, the following are equivalent:

1. K is in ∆P
k ,

2. K is the models of a modular system where all primitive modules of M are ∆P
k solvable and

M does not use either the feedback operator or the union operator (i.e.,M uses only primitive

modules, composition operator and projection operator).

Note that, in the following proof, we use operation B1||B2 to concatenate two structures B1 and B2

together. Be reminded that this operation is defined in Section 6.2.

Proof: (1)⇒ (2) is trivial. Just take M to be a primitive module accepting exactly K.

(2)⇒ (1). Since M does not use the feedback operator, it is directional, i.e., there is a well-founded

strict partial ordering < on vocabulary symbols of M such that, the set of possible interpretations of



CHAPTER 4. MODULAR MODEL EXPANSION 78

any given vocabulary symbol S depends only on the interpretation of vocabulary symbols S′ with

S′ < S. This ordering is simply the ordering that is imposed by the input-output signature of all

modules: S1 < S2 if and only if subsystem M ′ of M exists such that S1 ∈ σM ′ and S2 ∈ εM ′ .

Therefore, one can start with instance interpretations and compute (unique) interpretations of ex-

pansion predicates one by one (through application of primitive modules). One stops and rejects the

input whenever any of the primitive modules does not accept the current computed interpretations.

To formalize this argument, a simple induction on the structure of M suffices. The base case is

when M is a primitive module. In this case, by assumption, M is ∆P
k -solvable. There are also two

inductive cases of M := πτ (M ′) and M := M1 �M2. In the former case, by induction hypothesis,

M ′ is ∆P
k solvable. Let F ′ be the partial function that witnesses ∆P

k solvability of M ′. Define

F (A) := F ′(A)|τ . Function F can obviously be computed in ∆P
k . Also, F is a partial function

that witnesses ∆P
k solvability of M . In the latter case, by induction hypothesis, M1 and M2 are

∆P
k solvable. So, let F1 and F2 be the partial functions that witness this ∆P

k solvability. Define

A′ := A||(F1(A)|εM1
) and F (A) := A′||(F2(A′|σM2

)|εM2
). Obviously, F can be computed in ∆P

k

(because both F1 and F2 are computable in ∆P
k ). Moreover, F is not defined exactly when either

F1 is not defined or F2 is not defined on the result of F1. So, F is a partial function that witnesses

the ∆P
k solvability of M .

Theorem 4.5 below shows that, in the presence of either the feedback operator or the union

operator, our modular framework becomes much more expressive, i.e., it can express all of ΣP
k+1

despite its modules being all ∆P
k -solvable. This is in contrast to Theorem 4.4 that discusses the case

of loops and unions not being used. In fact, Theorem 4.5 shows much more by stating that, in the

presence of these operators, regardless of whether you are limited to using only ”easy” primitive

modules or you are allowed to use complex primitive modules, one can always describe very com-

plex problems. That is, we show that adding the feedback operator and our union operator cause a

jump from one level of the polynomial hierarchy to the next, i.e., using only primitive modules of

complexity ∆P
k (level k of the polynomial hiearchy), our modular framework can express all search

problems in ΣP
k+1 (the search problems in level k + 1 of polynomial hierarchy).

Theorem 4.5 (ΣP
k+1-Capturing over Finite Structures) LetK be a problem over the class of finite

structures closed under isomorphism. Then, the following are equivalent:

1. K is in ΣP
k ,

2. K is the models of a modular system M so that M only uses the feedback and projection

operators and all primitive modules M ′ of M are σM ′-εM ′-deterministic, σM ′-total, and ∆P
k
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solvable,

3. K is the models of a modular system M so that M does not use the feedback operator and all

primitive modules M ′ of M are σM ′-εM ′-deterministic and ∆P
k solvable.

4. K is the models of a modular system with ∆P
k checkable primitive modules.

As a consequence of Theorem 4.5 when k = 0, we know that using only primitive modules that are

solvable in polynomial time, our modular framework is expressive enough to capture NP. In the proof

below, we use HEX programs [64] that are similar to ASP programs extended with external atoms of

form #g[I1, · · · , Ik](x1, · · · , xn) that can be used in the body of the rules of a HEX program. Here,

I1, · · · , Ik are predicate symbols and x1, · · · , xn are variables that range over domain elements.

Intuitively, an external atom #g[A1, · · · , Ak](a1, · · · , an) evaluates to true if external function g

accepts the tuple (a1, · · · , an) when I1, · · · , Ik are respectively interpreted by A1, · · · , Ak. The

reader is referred to [64] for more details on HEX programs.

Proof: (1) ⇒ (2): To prove this direction, we give a modular system M that contains only one

primitive module M ′. Primitive module M ′ given in the proof satisfies all conditions of totality,

determinacy and ∆P
k solvability as required by the theorem statement. ModuleM feedsM ′’s output

to part of its input and projects out some auxiliary vocabulary required by M ′.

The proof in this direction follows the fact that, when allowing auxiliary vocabulary, ASP programs

can express first order sentences (via Lloyd-Topor transformation). Thus, as FO MX captures NP

over the class of finite structures, so do ASP programs (modulo the auxiliary vocabulary).

Now, consider a problem K in ΣP
k with vocabulary σ, i.e., an isomorphism-closed set of finite

σ-structures. Since K ∈ ΣP
k , K has a second order specification Φ so that Φ all the outermost

second order quantifiers of Φ are existential and that Φ uses at most k − 1 second-order quan-

tifier alternations3. Now, let ψ1, · · · , ψm be all the maximal subformulas of Φ that start with a

second-order universal quantifier. Obviously, each ψi is decidable in ΠP
k−1 and, so, also in ∆P

k .

Now, we obtain Φ′ from Φ by replacing each subformula ψi of Φ with a higher-order atomic for-

mula Ai(I1, · · · , Il, x1, · · · , xn) where I1, · · · , Il are all the open (i.e., used but not quantified)

relational symbols of ψi and x1, · · · , xn are all the open variables of ψi. Moreover, we define

Ai(I1, · · · , Il, x1, · · · , xn) := ψi(I1, · · · , Il, x1, · · · , xn). Obviously, Φ and Φ′ are equivalent and

all Ai’s are decidable in ∆P
k . Moreover, Φ′, by construction, only uses existential second order

3It means that when formula Φ is represented as a labeled tree, every path from the root of this tree to one of its leaves
has at most k − 1 alternations between being a universally quantified node and being an existentially quantified node.
Note that universal second-order quantifiers in negative positions are counted as existential quantifiers and vice versa.
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quantifiers. Therefore, Φ′ can be viewed as a model expansion task for first-order logic extended

with atomic formulas A1, · · · , Am.

By the above argument, there is also a HEX program P with instance vocabulary σ that accepts

exactly those structures B with B|σ ∈ K. In P , external function #Ai[I1, · · · , Il](x1, · · · , xn) is

used instead of atom Ai(I1, · · · , Il, x1, · · · , xn). As discussed, all such external functions can be

computed in ∆P
k . Moreover, since P is obtained through Lloyd-Topor transformation, we know

that there is at most one atom in the head of all rules in P , i.e., P is a normal program and not a

disjunctive one. Now, let M ′ ∈ MS(σ ∪ εP , ε′P ) (with ε′P being a set of new predicate symbols R′

for each symbol R ∈ εP ) be defined as follows. Given an instance structure A, M ′ first computes

the FLP reduct of P under A, denoted as PA and then, since P is normal, computes (in polynomial

time and with access to external functions) and outputs the unique minimal model of PA. Since all

operations of M ′ are polynomial time and external computation is in ∆P
k , the whole procedure is in

∆P
k complexity class.

Furthermore, M ′ is deterministic and total as required. Now, we define M := πσ(M ′[εP = ε′P ]).

Observe that models of M are exactly those in K.

(1)⇒ (3): SinceK ∈ ΣP
k+1, there exists a set of new symbols ε and a verification procedure V ∈ ∆P

k

from (σ∪ε)-structures to {0, 1} such thatA ∈ K if and only if there exists a (σ∪ε)-structure B that

expands A and V (B) = 1. Firstly, define σ′ to be a set of new symbols R′ for each symbol R ∈ σ
and define V ′ to be the same as V except that it takes (σ′∪ε)-structures instead of (σ∪ε)-structures.

Now, define module M ′ such that σM ′ := σ′ ∪ ε and εM ′ := ∅, i.e., M ′ has no output and thus its

only role is to either accept or reject its input structure. M ′ accepts a (σ′∪ ε)-structure B in its input

if (1) there exists R ∈ ε such that RB 6= ∅, and, (2) either V (B) = 1 or V (B′) = 1 where B′ is the

empty expansion of A := B|σ′ , i.e., B′ is a (σ′ ∪ ε)-structure with B′|σ′ := A and RB
′

:= ∅ for all

R ∈ ε.
Moreover, we define modules E and I such that σE := ∅, εE := ε, σI := σ, and, εI := σ. Module

E always outputs a unique structure A such that RA := ∅ for all R ∈ ε and module I just copies

its input to its output, i.e., (σ ∪ σ′)-structure B belongs to I if and only if, for all R ∈ σ and the

corresponding R′ ∈ σ′, we have RA = R′A. Finally, we define M := πσ((I ∪ E) �M ′).

Note that all primitive modules I , E and M ′ of M are deterministic and ∆P
k solvable. Hence, we

just need to show that, for all σ-structures A, we have A ∈ M if and only if A ∈ K. This is

not hard to prove because if A ∈ K then there exists (σ ∪ ε)-structure B with V (B) = 1. Now,

define (σ ∪ σ′ ∪ ε)-structure B′ such that (1) B′|σ := B|σ, (2) for all R′ ∈ σ′ and the corresponding

R ∈ σ, R′B
′

:= RB, and, (3) B′|ε := B|ε if and only if there exists R ∈ ε with RB 6= ∅. Note that
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B′|σ∪σ′ ∈ I and so B′ ∈ (I ∪ E). Also, since B′|σ′∪ε ∈ M ′, B′ ∈ ((I ∪ E) �M ′). Therefore,

A ∈M . On the other hand, ifA ∈M then there exists a (σ∪σ′∪ε)-structure B′ ∈ ((I∪E)�M ′).

Thus, B′|σ′∪ε ∈M ′ and B′|σ∪σ′ ∈ (I ∪E). Using the first part, we know RB
′ 6= ∅ for some R ∈ ε.

Hence, B′|ε 6∈ E and, so, B′|σ∪σ′ ∈ I , i.e., interpretation of σ′ is copied from the interpretation of σ.

Thus, by B|σ∪ε ∈ M ′, we know that there exists an expansion of A that is accepted by verification

procedure V . Thus, A ∈ K.

(2)⇒ (4), and, (3)⇒ (4): This direction is trivial because, in both cases (2) and (3), M uses only

∆P
k solvable primitive modules and, thus, only ∆P

k checkable primitive modules.

(4)⇒ (1): Let M be a modular system whose models coincide with K and whose primitive mod-

ules are ∆P
k checkable. Then, K is in ΣP

k+1 because one can nondeterministically guess all the

interpretations of expansion symbols of M (the set of these symbols is equal to the disjoint union

of the expansion vocabularies of all M ’s primitive modules) and then use ∆P
k checkability of M ’s

primitive modules to check if this is a good guess (according to the modules, and thus according to

the system itself).

Theorem 4.5 demonstrates the additional power that the feedback operator has brought to us. Its

proof assumes that modules are described in languages with the ability to manipulate input programs

and sets of atoms, and to compute fixpoints. Examples of such languages are those that capture P

in the presence of ordering relation over domain elements, or the like. However, note that, in our

model-theoretic view, the language that modules are described in is not important at all.

Note that Theorem 4.5 (with k = 0) shows that when basic modules are restricted to polytime

checkable modules, the modular system’s expressive power is limited to NP. Of course, if we do

not restrict the computational power of primitive module, the modular framework can represent

problems that are not even Turing computable. As an example, one can encode Turing machines

as finite structures and have modules that accept a finite structure if and only if it corresponds to a

halting Turing machine.

Theorem 4.5 shows that the feedback operator causes a jump in expressive power from ∆P
k to

ΣP
k+1. The proof uses a translation from HEX programs to modular systems. The following running

example elaborates more in this direction for the case of k = 0 (in this specific case, HEX programs

can be simply replaced by ASP programs which are more limited).

Example 4.7 (Stable Model Semantics) Let P be a normal logic program. We know S is a stable

model for P iff S = Dcl(PS) where PS is the reduct of P under set S of atoms (a positive program)
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and Dcl computes the deductive closure of a positive program, i.e., the smallest set of atoms satisfy-

ing it. Now, letM1(S, P,Q) be the module that given a set of atoms S and ASP program P computes

the reduct Q of P under S. Observe that M1 is {S}-total and {S}-{P}-{Q}-anti-monotone, and

polytime solvable. Also, let M2(Q,S′) be a module that, given a positive logic program Q, returns

the smallest set of atoms S′ satisfying Q. Again, M2 is {Q}-total, {Q}-{}-{S′}-monotone and

polytime solvable. However, M := π{P,S}((M1 �M2)[S = S′]) is a module which, given ground

ASP program P , returns all and only the stable models of P . Therefore, the NP-complete problem

of finding a stable model for a normal logic program is defined by combining total, deterministic,

polytime solvable, and monotone or anti-monotone modules.

Example 4.7 shows that stable models can be naturally modeled in the context of modular sys-

tems. As we will see later in this chapter, this phenomenon is not accidental but a consequence of

anti-monotone loops (feedbacks). Moreover, we already know that the modular framework does not

impose minimality constraint on the solution to its modules (while stable model semantics does).

Thus, in the presence of only polytime solvable modules, our framework can define sets of structures

that cannot be defined in ASP.

Moreover, the modular framework introduces a new way of combining ASP programs. Each

ASP program can be represented as a module and these modules can be combined through the

algebraic expressions we introduced. This is a new way of combining ASP programs since neither

circular (through feedback) nor disjunctive (through union) combinations of ASP programs have not

been used before. Theorem 4.5 characterizes the expressive power of the resulting formalism.

4.5 Computing Models of Modular Systems

In this section, we introduce an algorithm which takes a modular system M and a structure A and

finds an expansion B ofA inM . Our algorithm uses a tool external to the modular system (a solver).

We start by a very simple but inefficient algorithm in Section 4.5.1 and then revise this algorithm

and propose a more efficient algorithm in Section 4.5.5.

4.5.1 Naive Modular Model Expansion Algorithm

The first algorithm that we propose in this section is a naive algorithm that, given an instance σ-

structure A with finite domain, guesses a (σ ∪ ε)-structure B non-deterministically so that B is

an expansion of A and B ∈ M . The simple and naive algorithm that we propose here has two
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purposes. First, it gives a concrete algorithm that partly witnesses what we proved in Theorem

4.5, i.e., a modular system with all its primitive modules decidable in ∆P
k , can be solved in ΣP

k+1.

Second, the naive algorithm proposed in this section paves the way for the more complex and more

efficient algorithm that will be given in Section 4.5.5.

Algorithm 1 is specialized for a modular systemM that has the primitive modulesM1, · · · ,Mk.

Each primitive module Mi is assumed to have an instance vocabulary σi and an expansion vocabu-

lary εi. Moreover, each primitive module is associated with a decision procedure Di.

Data: Finite σ-structure A
Result: Structure B that expands A and is in M
begin

Let B be a (σ ∪ ε)-structure s.t. RB = RA for all R ∈ σ and RB = ∅ otherwise;
foreach n-ary predicate symbol R ∈ ε do

foreach n-tuple 〈τ1, · · · , τn〉 ∈ [dom(A)]n do
Non-determinstically choose b ∈ {0, 1};
if b = 1 then Add 〈τ1, · · · , τn〉 to RB;
else Do nothing ;

if all decision procedures Di accept B|(σi∪εi) then Accept and return B ;
else Reject ;

end
Algorithm 1: Guess and Check Algorithm for Modular Model Expansion

Algorithm 1 takes a finite instance structure A (i.e., the domain of A is finite) and uses non-

determinism to guess all different expansions B of A. Then, each such B is checked against all

primitive modules and if all of them are satisfied with the current guess, B is accepted and other-

wise rejected. However, as one can never reasonably expect a solve a simple guess-and-check

procedure to become an efficient propositional satisfiability solver, one can not expect Algorithm 1

to be practical either. Therefore, in the next sections, we develop a more efficient Algorithm that

uses the decision procedures of primitive modules for more than just checking the final answer. As

we will see in the next sections, each decision procedure (that will be called an oracle later on) is

expected to provide more than a yes/no answer. This way the oracles (decision procedures) “assist”

an external solver in finding a model (if one exists). There, we start from an empty expansion of A
(i.e., a partial structure which contains no information about the expansion predicates), and then we

gradually extend the current partial structure with new information (through an interaction with the

oracles of the given modular system) until we either find a model that satisfies the modular system

or we conclude that none exists. To model this procedure, we first define the notion of a partial
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structure.

4.5.2 Partial Structures

Recall that a structure is a domain together with an interpretation of the associated vocabulary that

here consists of a finite set of predicate and function symbols (including null-ary functions or con-

stants). An interpretation of an n-ary relational symbol R in a structureA is a subset of [dom(A)]n.

However, sometime, we want to express the lack of knowledge about membership of a particular ā

in RA, i.e., instead of definitely answering whether ā ∈ RA or not, we sometimes want to express

our lack of knowledge about this relationship. In order to do so, we use partial structures. This way,

we can gradually accumulate knowledge about structures. This is in contrast with how Algorithm 1

worked, i.e., to generate the structure as a whole and check it once everything is known about the

structure.

Definition 4.18 (Partial Structure) B is a τp-partial structure over vocabulary τ if:

1. τp ⊆ τ ,

2. B gives a total interpretation to symbols in τ\τp and,

3. for each n-ary symbolR ∈ τp, B interpretsR using two setsR+ andR− such thatR+∩R− =

∅, and R+ ∪R− 6= (dom(B))n.

In such cases, we call τp the partial vocabulary of B. Also, we say that B is total if τp = ∅.

Definition 4.19 (Extension for Partial Structures) For two partial structures B and B′ over the

same vocabulary and domain, we say that B′ extends B if B′ has at least as much information as B
does (and possibly more), i.e., for τ ′p-partial structure B′ and τp-partial structure B over the same

vocabulary and domain, B′ extends B if:

τ ′p ⊆ τp,
for all R ∈ τ\τp, we have: RB

′
= RB,

for all R ∈ τp\τ ′p, we have: R+B ⊆ RB′ and R−
B ∩RB′ = ∅, and,

for all R ∈ τp ∩ τ ′p, we have: R+B ⊆ R+B
′

and R−
B ⊆ R−B

′
.

Example 4.8 Consider a structure B with domain {0, 1, 2} for vocabulary {I,R}, where I and R

are unary relations, and IB = {〈0〉, 〈1〉}, 〈0〉 ∈ RB, and 〈1〉 6∈ RB, but it is unknown whether 〈2〉 ∈
RB or 〈2〉 6∈ RB. Then B is a {R}-partial structure over vocabulary {I,R} where R+B = {〈0〉}
and R−B = {〈1〉}.
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If a partial structure B has enough information to satisfy or falsify a formula φ, then we say

B |= φ, or B |= ¬φ, respectively. Note that for partial structures, B |= ¬φ and B 6|= φ may be

different, i.e., there exist cases where B 6|= φ and B 6|= ¬φ. We call a ε-partial structure B over σ∪ ε
the empty expansion of σ-structure A, if B agrees with A over σ but R+ = R− = ∅ for all R ∈ ε.

In the following, by structure we always mean a total structure, unless otherwise specified. We

may talk about “bad” partial structures which, informally, are the ones that cannot be extended to a

structure in M . Also, when we talk about a τp-partial structure, in the MX context, τp is always a

subset of ε.

Total structures are partial structures with no unknown values. Thus, in the algorithmic sense,

total structures need no further guessing and should only be checked against the modular system.

A good algorithm rejects “bad” partial structures sooner, i.e., the sooner a “bad” partial structure is

detected, the faster the algorithm is.

Up to now, we defined partial and total structures and talked about modules rejecting “bad” par-

tial structures. However, modules are sets of structures (in contrast with sets of partial structures).

Thus, acceptance of a partial structure has to be defined properly. Towards this goal, we first formal-

ize the informal concept of “good” partial structures. The actual acceptance procedure for partial

structures is defined later in the section.

Definition 4.20 (Good Partial Structures) For a set of structures S and partial structure B, we

say B is a good partial structure wrt S if there is B′ ∈ S which extends B.

4.5.3 Requirements on the Modules

As expressed in the introduction, there is practical need to solve complex computational tasks in a

modular way so that full access to a complete axiomatization of some modules is not assumed, i.e.,

the module is treated as a black box and accessed via controlled methods. However, clearly, as the

solver does not have any information about the internals of the modules, it needs to be assisted by

the modules themselves. Therefore, the next question could be: “what assistance does the solver

need from modules so that its correctness is always guaranteed, i.e., the solver only returns correct

solutions (structures in the modular system)?” Intuitively, modules should be able to tell whether

the solver is on the “right” track or not, i.e., whether the current partial structure is bad, and if so,

tell the solver to stop developing this direction further. We accomplish this goal by letting a module

accept or reject a partial structure produced by the solver and, in the case of rejection, provide a

“reason” to prevent the solver from producing the same model later on. Furthermore, a module may
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“know” some extra information that a solver does not. Due to this fact, modules may give the solver

some hints to accelerate the computation in the current direction. Our algorithm models such hints

using “advice” to the solver.

Definition 4.21 (Advice) Let Pre and Post be formulas in a language L. Formula φ is by defini-

tion Pre ⊃ Post, which is advice wrt a partial structure B and a set of structures M if:

1. B |= Pre,

2. B 6|= Post and,

3. for every total structure B′ in M , we have B′ |= φ.

The role of advice is to prune the search and to accelerate extending a partial structure B by giving

a formula that is not yet satisfied by B, but is satisfied by any total extensions of B in M . Pre

corresponds to the part that is satisfied by B and Post corresponds to the unknown part that is not

yet satisfied by B.

Note that in order to pass advice to a solver, there should be a common language that the solver

and the modules understand (although it may be different from all internal languages of the mod-

ules). Such a language should satisfy the following properties:

Definition 4.22 (Solver Language) For a language L with structural models, we say L is a solver

language if:

• If φ is a ground atom (i.e., R(t1, · · · , tn) in language L whereR is an n-ary predicate symbol

and t1, · · · , tn are variable-free terms in language L), then φ ∈ L. Also, if φ1, φ2 ∈ L then

¬φ1 ∈ L and (φ1 ⊃ φ2) ∈ L.

• Satisfiability relation for L respects the standard extension of FO satisfiability relation to

partial structures.

• Satisfiability relation for L gives a classical semantics to connectives ¬ (negation) and ⊃
(implication).

• L is monotone, i.e., for sets of axioms Γ,Γ′: Γ ⊆ Γ′ ⇒ ConL(Γ) ⊆ ConL(Γ′).

Note that we are defining a family of languages. Except for the first item in the definition, the

other items are not part of the language itself. They are properties that the language should have.
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Also note that the third item in the definition of the solver language implies the resolution theorem,

i.e., Γ |=L A ⊃ B implies Γ∪ {A} |=L B, and the deduction theorem, i.e., Γ∪ {A} |=L B implies

Γ |=L A ⊃ B. Here, the resolution theorem guarantees that, once an advice of form Pre ⊃ Post

is added to the solver, and the solver has deduced Pre under some assumptions, it can also deduce

Post under the same assumptions; while the deduction theorem allows the modules to generate

the advice accordingly. From now on, we assume that our advice and reasons are expressed in a

language as above, i.e., a solver language.

We talked about modules assisting the solver, but a module is a set of structures and has no

computational power. Instead, we associate each module with an “oracle” to accept/reject a partial

structure and give “reasons” and “advice” accordingly. Note that assuming access to oracles which

accept a partial structure iff it is a good partial structure, one can always find a total model by

polynomially many queries to such oracles. While theoretically possible, in practice, access to

oracles with such a strong acceptance procedure is usually not provided, and most practical solvers

apply propagation through more efficient and simple local consistency checking methods. Thus, we

have to (carefully) relax our assumptions for a weaker procedure, which we call a Valid Acceptance

Procedure.

Definition 4.23 (Valid Acceptance Procedure) Let S be a set of τ -structures. We say that P is a

valid acceptance procedure for S if for all τp-partial structures B, we have:

• If B is total, then (1) P accepts B if B ∈ S, and (2) P rejects B if B 6∈ S.

• If B is not total but B is good wrt S, then P accepts B.

• If B is neither total nor good wrt B, then P is free to either accept or reject B.

The procedure above is called valid as it never rejects any good partial structures. However,

it could be a weak acceptance procedure because it may accept some bad partial structures. This

kind of weak acceptance procedure is abundant in practice, e.g., Unit Propagation in SAT, Arc-

Consistency Checks in CP, and computation of Founded and Unfounded Sets in ASP. As these

examples show, such weak notions of acceptance can usually be implemented efficiently as they

only look for local inconsistencies.

Informally, oracles accept/reject a partial structure through a valid acceptance procedure for a set

containing all possible instances of a problem and their solutions. We call this set a Certificate Set.

Here, as also described in Section 4.4, we adopt the definition of a problem as a set of structures,

similar to what is done in finite model theory and descriptive complexity.
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Definition 4.24 (Certificate Set) Let σ and ε be instance and expansion vocabularies, respectively.

Let P be a problem, i.e., a set of σ-structures, and C be a set of (σ ∪ ε)-structures. Then, C is a

(σ ∪ ε)-certificate set for P if for all σ-structures A: A ∈ P iff there is a structure B ∈ C that

expands A.

Example 4.9 (Graph 3-coloring: Certificates) Consider Example 2.1 of graph 3-coloring. There,

σ = {E} and ε = {R,G,B}. The problem P is the set of graphs G = (V G ;EG) which are 3-

colorable. A certificate set C for problem P of graph 3-coloring is, as one might expect, the same

as 3-coloring certificates in complexity theory, i.e., a partitioning of vertices into three sets R, G

andB such that no edge of the graph connects vertices of the same color together. The certificate set

C, as expected, should be such that A ∈ P (i.e., A is 3-colorable) iff C has at least one 3-coloring

for A (i.e., there is at least one expansion B of A in C which interprets R, G and B correctly).

Recall that each module is associated with an oracle to accept/reject a partial structure and give

reasons and advice accordingly. The role of the reasons is to prevent some bad structures and their

extensions from being proposed more than once, i.e., when a model is deduced to be bad by an

oracle, a new reason is provided by the oracle and added to the solver such that all models of the

system satisfy that reason but the “bad” structure does not. The role of advice is to provide useful

information to the solver (satisfied by all models) but not yet satisfied by the partial structure B.

Next, we present conditions that oracles should satisfy so that their corresponding modules can

contribute to our algorithm.

Definition 4.25 (Oracle Properties) Let L be a solver language. Let P be a problem, and let O be

an oracle. We say that O is:

• Complete and Constructive (CC) wrtL ifO returns a reason ψB inL for each partial structure

B that it rejects such that: (1) B |= ¬ψB and, (2) all total structures accepted by O satisfy

ψB.

• Advising (A) wrt L if O gives a (possibly empty) set of advices in L wrt B for all partial

structure B.

• Verifying (V) if O is a valid acceptance procedure for some certificate set C for P .

Oracle O differs from the usual oracles in the sense that it not only gives yes/no answers, but

also provides a reason for its “no” answers. It is complete wrt L because it ensures the existence
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of such a reason and constructive because it provides such a reason. Also, it is advising because

it provides some facts that were previously unknown to guide the search. Finally, it is verifying

because it guides the partial structure to a solution through a valid acceptance procedure. Although

the procedure can be weak as described above, good partial structures are never rejected and O

always accepts or rejects total structures correctly. This property guarantees the convergence to a

total model. In the following sections, we use the term CCAV oracle to denote an oracle which

is complete, constructive, advising, and verifying. Properties of CCAV oracles are later used in

Proposition 4.4 to prove the correctness of our algorithm.

Example 4.10 (Graph 3-coloring: Reasons and Advice) Consider the graph 3-coloring example

of Example 2.1. We want to describe some possible scenarios for an oracle O of graph 3-coloring.

Consider graph G = (V G ;EG) with V G = {a, b, c, d} and EG = {(a, b), (b, a), (a, c), (c, a), (a, d),

(d, a), (c, d), (d, c)}. Also consider partial structure B = (V G ;EG , RB, BB, GB) of G to {R,B,G}
which assigns color red to vertices a and b, color green to vertex c and (yet) no color to vertex d.

Obviously, B is a bad partial 3-coloring and no matter what color we assign to d, we will not obtain

a valid 3-coloring. Therefore, one scenario for oracle O is to reject this partial coloring and give a

reason like: ¬(R(a) ∧R(b)).

However, oracles do not always recognize a bad partial structure right away (recall that al-

though oracles are valid acceptance procedures, they can be weak). Therefore, another scenario for

O is to accept B but still help the solver by giving the advice ψ := (R(a)∧G(c)) ⊃ B(d). Formula

ψ helps the solver to infer that B cannot be extended to a valid 3-coloring by checking only one of

B’s three possible extensions. The worst scenario, however, is that O accepts B and does not give

any advice. In this case, the solver has to check all colors for d before inferring that B is a bad

partial structure.

Implementation of Oracles

When a module is described using some axioms in a well-studied logic with an efficient solver for

that logic, we can use these axioms together with the associated solver in order to obtain a low-cost

and relatively efficient oracle for the module. For example, we often have existing efficient Valid

Acceptance Procedures used in solver constructions of well-studied languages, e.g., Well-Founded

Model computation for the language of ASP, Arc-Consistency checking for the language of CP, The-

ory Propagation for various languages of SMT theories, a lifted version of Unit Propagation [200]
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for the language of FO, etc. In these cases, corresponding techniques can be used to implement or-

acles to accept/reject partial structures and to provide reasons and advice accordingly. For example,

we could obtain a module-specific oracle by running a CP solver on a partial model for that module

plus the CP axiomatization of that module. The module-specific oracle defined this way can use CP

propagation techniques implemented in the CP solver to obtain some advice that it can return.

Moreover, using these well-defined advice generation/verification techniques for such well-

studied languages (such as FO, ASP, CP, SMT, ILP, etc.), we can construct reasonably efficient

generic oracles for those languages, i.e., oracles that can work on all specifications in a language

rather than specific axiomatizations. However, one should always note that generic oracles are

not the strongest oracles possible. Application-specific oracles that use the intuition of a module de-

signer to derive intelligent advices about a partial model (or to intelligently verify a partial structure)

of the module are often stronger than their generic counterparts (i.e., the generic advice/verification

procedure). Similarly, the intuition of a module designer is also very important when deciding

between different possible reasons of rejection. Therefore, although generic oracles offer a low-

cost and reasonably efficient approach to obtain oracles, we believe that application-specific oracles

should be preferred.

4.5.4 Requirements on the Solver

The role of the solver is to provide a possibly good partial structure to the oracles, and if none of

the oracles reject the partial structure, keep extending it until we find a solution or conclude no

extension exists. If the partial structure is rejected by some oracle, the solver gets a reason from that

oracle for rejection and tries some other partial structure. The solver also gets advice from oracles

to accelerate the search. In this section, we discuss properties that a solver must satisfy in order

for it to participate in our iterative solving procedure. Although the solver can be realized by many

practical systems, for them to work in an orderly fashion and for algorithm to converge to a solution

fast, it has to satisfy certain properties. First, the solver has to be online since the oracles keep

adding reasons and advice to it. Furthermore, to guarantee termination, the solver has to guarantee

progress, which means it either produces a proper extension of the previous partial structure or, if

not, the solver is guaranteed to never return any extension of that previous partial structure later on.

Now, we give the requirements on the solver formally.

Definition 4.26 (Complete Online Solver) A solver S is complete and online if the following con-

ditions are satisfied by S:
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• S supports the actions of initialization, adding sentences (reasons and advices from oracles),

and reporting its state as either 〈UNSAT 〉 or 〈SAT,B〉.

• If S reports 〈UNSAT 〉 then the set of sentences added to S are unsatisfiable over the domain

A,

• If S reports 〈SAT,B〉 then B does not falsify any of the sentences added to S,

• If S has reported 〈SAT,B1〉, · · · , 〈SAT,Bn〉 and 1 ≤ i < j ≤ n, then either Bj is a proper

extension of Bi or, for all k ≥ j, Bk does not extend Bi.

For finite structures, a solver as above is (1) Sound: it returns partial structures that at least do

not falsify any of the axioms in solver language, and (2) Complete: it reports unsatisfiability only

when unsatisfiability is detected and not when, for example, some heuristic has failed to find an

answer or some time limit is reached. Proposition 4.4 gives the exact correspondence in this regard.

4.5.5 Lazy Modular Model Expansion Algorithm

In this section, we present a deterministic and iterative algorithm schema to solve model expansion

tasks for modular systems. This algorithm schema can be instantiated to work for a particular

modular system M by specifying all the necessary CCAV oracles for primitive modules and also

instantiating S with a complete online solver. Every such specialization of Algorithm 2 takes a

σ-structure A and returns an expansion B of A such that B ∈ M (if such B exists). Algorithm 2

works by accumulating reasons and advice from oracles and gradually converging to a solution to

the problem.

Algorithm 2 presents the lazy model expansion algorithm for solving general modular systems.

The word “lazy” comes from the SMT community which refers to the integration of the DPLL-style

reasoning and theory specific propagation techniques. The main idea is to incrementally build the

expansion structure to satisfy all the primitive modules in the compound modular system. Note

that this simple approach respects all the operators defined for the modular system except the union

operator.

Proposition 4.4 (Correctness) Algorithm 2 is sound and complete 4 for finite structures, i.e., given

a modular system M with CCAV oracles, a complete online solver S and a finite instance structure

A:

4It follows the idea of completeness for search algorithms.
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Data: Input structure A
Result: Structure B that expands A and is in M
begin

/* We assume that each primitive module Mi is associated with a CCAV oracle. */
/* We further assume that the solver S is a complete online solver */
Initialize the solver S using the empty expansion of A ;
while TRUE do

Let R be the state of S ;
if R = 〈UNSAT 〉 then return Unsatisfiable ;
else if R = 〈SAT,B〉 then

Add all the advice from oracles wrt B to S ;
if M does not accept B then

Find a module Mi in M such that Mi does not accept B|vocab(Mi) ;
Add the reason given by oracle Oi to S ;

else if B is total then return B ;

end
Algorithm 2: Lazy Modular Model Expansion Algorithm Schema

1. If Algorithm 2 returns B, then B ∈M ,

2. If Algorithm 2 returns ”Unsatisfiable” then none of structures B ∈M expands A.

3. Algorithm 2 always terminates.

Proof: (1) If structure B is returned, it is total and it is accepted by all oracles. So, as all oracles

are verifying, total structures are decided correctly. Therefore B|vocab(Mi) ∈ Mi for all primitive

modules Mi of M . Thus, B ∈M .

(2) If “Unsatisfiable” is returned, then the set of sentences added to the solver S are unsatisfiable

(by properties of S). Also, by monotonicity of language L of the solver, no superset of such set of

sentences is satisfiable. Also, as these sentences are only advice and reasons returned by oracles,

they are true in every B ∈ M which expands A (by properties of CCAV oracles). Therefore, there

is no B ∈M which expands A.

(3) By the property of complete online solvers, S can never report 〈SAT,B〉 (for some B) twice.

Therefore, as there are only finitely many different partial expansions of finite structure A, either

there should be a point where S reports 〈SAT,B〉 for some total structure B accepted by all modules

(which terminates the algorithm), or a time when S reports 〈UNSAT 〉 (which also terminates the

algorithm).
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Proposition 4.5 (Time Complexity) For all modular systems M , there is k ∈ N such that for each

finite structure A, Algorithm 2 terminates after at most 3O(|dom(A)|k) calls to the solver.

Proof: Let k be the maximum arity of the predicate symbols in the expansion vocabulary of M .

Then, the proof follows the proof for Proposition 4.4 plus the fact that 3O(|dom(A)|k) different partial

interpretations exist.

4.6 Case Studies: Existing Frameworks

This section is part of a joint work with Xiongnan (Newman) Wu that is also reported in his Master’s

Thesis [214]. In this section, we describe algorithms from three different areas and show that they

can be effectively modelled by our proposed algorithm in the context of model expansion. We show

that our algorithm acts similarly to the state-of-the-art algorithms used in the areas of SMT, ASP,

and ILP, when the right components are provided.

Notation 4.1 We sometimes use a τ -structure B (which gives an interpretation to vocabulary τ )

as the set of τ -atoms of B. For example, when τ = {R,S} and RB = {(1, 2)} and SB =

{(1, 1), (2, 2)}, then we may use B to represent the following set of atoms:

B = {R(1, 2), S(1, 1), S(2, 2)}.

We may also use a partial interpretation as a set of true atoms in a similar fashion. Sometimes, we

also use B to represent a formula, i.e., the conjunction of the atoms in the above set. The complement

of a set is defined as usual, e.g., RBc = dom(B)2 \RB. Negation of a set S of literals is also defined

such that l ∈ S if and only if ¬l ∈ ¬S.

4.6.1 Modelling DPLL(T )

The DPLL(T ) [158] system is an abstract framework to model the lazy SMT approach. It is based

on a general DPLL(X) engine, where X can be instantiated with a theory T solver. The DPLL(T )

engine extends the Decide, UnitPropagate, Backjump, Fail and Restart actions of the classic DPLL

framework with three new actions: (1) TheoryPropagate gives literals that are T -consequences of

the current partial assignment, (2) T -Learn learns T -consistent clauses, and (3) T -Forget forgets

some previous lemmas of theory solver.

To participate in the DPLL(T ) solving architecture, a theory solver provides three operations: (1)

taking literals that have been set true, (2) checking if setting these literals true is T -consistent and, if
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not, providing a subset of them that causes inconsistency, (3) identifying some currently undefined

literals that are T -consequences of the current partial assignment and providing a justification for

each. More details can be found in [158].

In this section, the the following MX task is used as a running example to show how Algorithm

2 models the DPLL(T ) system.

Example 4.11 (Disjoint Scheduling) Given a set of Tasks, {t1, · · · , tn} and a set of constraints,

the goal is to find a schedule that satisfies all the constraints. Each task ti has an earliest starting

time EST (ti), a latest ending time LET (ti) and a length L(ti). There are also two predicates

P (ti, tj) and D(ti, tj) which say, respectively, that task ti should end before task tj starts, and two

tasks ti and tj cannot overlap. We are asked to find the function S(ti) for the start time which

satisfies the conditions above. In this example, σ = {EST,LET,L, P,D} and ε = {S}.

We solve the disjoint scheduling problem in Example 4.11 using the DPLL(T ) system with the

theory T being the Theory of Difference Logic [158].

Example 4.12 (Disjoint Scheduling (Specification, Instance, Ground Program))
We use following specification to represent the disjoint scheduling problem.

∀t (EST (t) ≤ S(t)),

∀t (S(t) + L(t) ≤ LET (t)),

∀t1∀t2 (P (t1, t2) ⊃ S(t1) + L(t1) ≤ S(t2)),

∀t1∀t2 (D(t1, t2) ⊃ S(t1) + L(t1) ≤ S(t2) ∨ S(t2) + L(t2) ≤ S(t1)).

(4.2)

However, one can notice that the specification above is not separated into the theory part and

the propositional part (as required by DPLL(T )). This can be done as follows:

“Propositional” part φ is:


∀t (after(t)),

∀t (before(t)),

∀t1∀t2 (P (t1, t2) ⊃ prec(t1, t2)),

∀t1∀t2 (D(t1, t2) ⊃ prec(t1, t2) ∨ prec(t2, t1)).

Theory part ψ is:


after(t) ⇐⇒ S(t) ≥ EST (t),

before(t) ⇐⇒ S(t) + L(t) ≤ LET (t),

prec(t1, t2) ⇐⇒ S(t1) + L(t1) ≤ S(t2).

(4.3)
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In the real world, the DPLL(T ) system works on the propositional level and the axiomatiza-

tion above is first grounded before being fed to the DPLL(T ) system. The first part is called

“propositional” because the formulas will be turned into propositional ones. In this example we

assume that the instance structure A has domain A = {1, 2} and the following interpretations:

ESTA = {(1 : 2), (2 : 2)}, LETA = {(1 : 4), (2 : 4)}, LA = {(1 : 2), (2 : 1)}, PA = ∅, and

DA = {(1, 2)}. The ground DPLL(T ) program for instance structure A is the conjunction of φ and

ψ, where:

Propositional part φ is:



a1,

a2,

b1,

b2,

p12 ∨ p21.

Theory part ψ is:



a1 ⇐⇒ s1 ≥ 1,

a2 ⇐⇒ s2 ≥ 2,

b1 ⇐⇒ s1 ≤ 2,

b2 ⇐⇒ s2 ≤ 3,

p12 ⇐⇒ s1 + 2 ≤ s2,

p21 ⇐⇒ s2 + 1 ≤ s1.

(4.4)

The DPLL(T ) system solves ground program 4.4 as follows: Starting from the empty assignment,

the assignment is gradually extended for the set of boolean atoms and, meanwhile, queries to the

Theory Solver are made to check whether the current assignment is T -consistent. If not, the theory

solver returns a set of literals which are true in the current assignment, but cannot be true together

according to theory T and specification ψ. For example consider the partial assignment below:

a1 = a2 = b1 = b2 = p21 = >, p12 =? (unknown). (4.5)

When this set of assignments is passed to the theory solver for difference logic, it can detect that

if both a2 (s2 ≥ 2) and b1 (s1 ≤ 2) are true, then s2 ≥ s1. Thus, p21 (s2 + 1 ≤ s1) cannot be

true. So, the assignment (4.5) conflicts with the ψ part of ground program (4.4). The reason for this

conflict can be described using the set of literals {a2, b1, p21} saying that they cannot all be true at

the same time. Also, the theory solver may even assist the propositional solver by asserting ¬p21

before it is assigned true. For example, once the propositional solver has decided a2 and b1 to be

true and not yet made p21 true, the theory solver can use the fact a2 ∧ b1 ⊃ ¬p21 (which is a logical
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Figure 4.5: Modular System DPLL(T )φ∧ψ Representing the DPLL(T ) System on Input Formula
φ ∧ ψ.

T -consequence of ψ) to assert that p21 should be false. These two behaviors are modeled in our

system through reasons and advice, respectively.

Next, we show our modular representation of the general DPLL(T ) system, and show how the

Algorithm 2 on this representation models the solving procedure of the DPLL(T ) system. The

modular system representing the DPLL(T ) system on the input formula φ ∧ ψ is shown in figure

4.5, where σ = I , ε = E, and E+ ∪ E− ∪ E+
1 ∪ E

−
1 ∪ E

+
2 ∪ E

−
2 is the internal vocabulary of the

module. Also, there is feedback from E+
1 to E+

2 and from E−1 to E−2 . The set of symbols in E+

and E− (similarly for E+
1 and E−1 , E+

2 and E−2 ) semantically represents a partial interpretation of

the symbols in the expansion vocabulary, i.e., E+ (resp. E−) represents the positive (resp. negative)

part of the partial interpretation.

Example 4.13 (Disjoint Scheduling Continued) Continuing our running example, the assignment

(4.5) is equivalent to the following partial structure B:

after+B = {1, 2}, after−
B

= ∅,
before+B = {1, 2}, before−

B
= ∅,

prec+B = {(1, 2)}, prec−
B

= ∅.

This means that, in our representation of the DPLL(T ) modular system, we should have:

{after(1), after(2), before(1), before(2), prec(1, 2)} ⊆ E+B .
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There are three MX modules in DPLL(T )φ∧ψ. The modules MPφ and MTψ work on different

parts of the specification. The formula φ inMPφ is a CNF representation of the problem specification

with all non-propositional literals replaced by new propositional atoms, and the formula ψ in MTψ

is the formula
∧
i di ⇔ li where li and di are, respectively, an atomic formula in theory T and its

associated propositional literal used in MPφ . The module MPφ is the set of structures B such that:

(E+
1
B
, E−1

B
) =


(D,D) if R+ ∩R− 6= ∅,
(R+, R+c) if R+ ∩R− = ∅, IB ∪ ¬IBc ∪R+ ∪ ¬R− |= φ,

(R+, R−) if R+ ∩R− = ∅, IB ∪ ¬IBc ∪R+ ∪ ¬R− 6|= φ.

where D = Bn, n is the arity of E+, and (R+, R−) is the result of Unit Propagation on φ under

IB ∪ ¬IBc ∪ E+B ∪ ¬E−B.

Example 4.14 (Disjoint Scheduling Continued) Continuing our running example, assuming that

E+B = E−
B

= ∅, in order for the module MPφ to accept the structure B, we should have that

E+B

1 = {after(1), after(2), before(1), before(2)}. This is because R+ (the positive atoms de-

duced by unit propagation on φ) asserts that a1, a2, b1 and b2 should all be true (look at the propo-

sitional part of Equation (4.4)).

Similarly, the module MTψ is defined as the set of structures B such that:

(E+B, E−
B

) =


(D,D) if R+ ∩R− 6= ∅,
(D,D) if R+ ∩R− = ∅, IB ∪ ¬IBc ∪R+ ∪ ¬R−|=T¬ψ,
(R+, R+c) if R+ ∩R− = ∅, IB ∪ ¬IBc ∪R+ ∪ ¬R−|=Tψ,

(R+, R−) if R+ ∩R− = ∅,T-satisfiability unknown.

where D is as before and (R+, R−) is the result of Theory Propagation on ψ under IB ∪ ¬IBc ∪
E+

2
B ∪ ¬E−2

B, and R|=Tψ denotes that ψ is T -satisfiable under the set of facts R. Note that the

satisfiability test is not necessarily complete. It can be done in different degrees depending on

the complexity of different theories, e.g., exhaustive theory propagation could be applied for low

complexity theories like Theory of Difference Logic, and non-exhaustive theory propagation for

more complex theories like Theory of Equality with Uninterpreted Functions (EUF) [158].

Example 4.15 (Disjoint Scheduling Continued) Continuing our running example, consider the

case where E+B

2 = {after(1), after(2), before(1), before(2)} and E−
B

2 = ∅. In order for the

module MTψ to accept the structure B, we should have that E−
B

= {prec(1, 2)}. This is because
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R− (the negative facts deduced by T -propagation on ψ) tells us that if a2 and b1 are true (which

they are), then p12 should be false.

The module TOTAL is the set of structures B such that E+
1
B ∩ E−1

B
= ∅, E+

1
B ∪ E−1

B
= D,

and E+
1
B

= EB.

We define the modular system DPLL(T )φ∧ψ as:

DPLL(T )φ∧ψ := π{I,E}(((MTψ �MPφ)[E+
1 = E+

2 ][E−1 = E−2 ]) � TOTAL). (4.6)

To show that the combined module DPLL(T )φ∧ψ is correct, we prove that a structure is in

the modular system DPLL(T )φ∧ψ iff it satisfies both formulas, φ and ψ. Consider any model of

the modular system. Note that for both modules MPφ and MTψ , the outputs always contain all the

information that the inputs have, i.e., for any structure B in the module MPφ , we have E+
1
B ⊇ E+B

and E−1
B ⊇ E−

B, and for any structure B in MTψ , we have E+B ⊇ E+
2
B and E−B ⊇ E−2

B.

Furthermore, from the semantics of the feedback operator, we know that E+
1
B

= E+
2
B and E−1

B
=

E−2
B. Thus, we have E+B = E+

1
B

= E+
2
B and E−B = E−1

B
= E−2

B. Moreover, from the

definition of module TOTAL, we know that (E+
1
B, E−1

B) represents a total interpretation of the

symbols in E and EB = E+
1
B. Finally, from the definitions of MPφ and MTψ on encodings of total

interpretations, we can conclude that B |= φ and B|=Tψ. On the other hand, it is easy to see that for

any structure B such that B |= φ and B|=Tψ, B is in DPLL(T )φ∧ψ.

So, there is a one-to-one correspondence between models of DPLL(T )φ∧ψ and the proposi-

tional part of the solutions to the DPLL(T ) system on input formula φ ∧ ψ. To find a solution, one

can compute a model of this modular system.

To solve DPLL(T )φ∧ψ, we introduce a solver S to be any DPLL-based online SAT solver, so

that it performs the basic actions of Decide, UnitPropagate, Fail, Restart, and also Backjump when

the backjumping clause is added to the solver. The three modules TOTAL, MTψ and MPφ are

attached with oracles OTOTAL, OT and OP respectively. They accept a partial structure B iff their

respective module constraints are not falsified by B.

Example 4.16 (Disjoint Scheduling Continued (OP , OT and OTOTAL)) Let φ and ψ in Figure

4.5 be, respectively, the propositional part and theory part of the specification in Example 4.12.

Let the structure B contain the same set of partial assignments as the one in Example 4.12, i.e.,

after+
1
B

= before+
1
B

= {1, 2}, prec+
1
B

= {(2, 1)}, and after−1
B

= before−1
B

= prec−1 = ∅.
When OT is queried on B, it returns after+

1 (2) ∧ before+
1 (1) ⊃ prec−(2, 1) as the advice to the

solver S. Together with the advice prec−(2, 1) ⊃ prec−1 (2, 1) from the oracle OP , in the next
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round, S will conclude prec−1 (2, 1) to be true. This new structure from S will be rejected by the

oracle OTOTAL with the reason prec−1 (2, 1) ⊃ ¬prec+
1 (2, 1).

Detailed constructions for the solver S, oracle OTOTAL, oracle OT and OP follows:

Solver S is a DPLL-based SAT solver (clearly complete and online).

Oracle OTOTAL accepts a partial structure B iff E+
1
B ∩ E−1

B
= ∅, E+

1
B ∪ E−1

B
= D, and

EB = E+B. If B is rejected, OTOTAL returns
∧
ω∈Ω′ ω as the reason, where Ω′ is any non-empty

subset of the set Ω = {E+
1 (d) ⇔ ¬E−1 (d) | d ∈ D,B 6|= E+

1 (d) ⇔ ¬E−1 (d)} ∪ {E(d) ⇔
E+

1 (d) | d ∈ D,B 6|= E(d) ⇔ E+
1 (d)}. OTOTAL returns the set Ω as the set of advices when B is

the empty expansion of the instance structure, and the empty set otherwise.5 Clearly, OTOTAL is a

CCAV oracle.

Oracle OT accepts a partial structure B iff it does not falsify the constraints described above for

moduleMTψ on I ,E+,E−,E+
2 , andE−2 . Let (R+,R−) denote the result of the Theory Propagation

on ψ under IB ∪ ¬IBc ∪ E+
2
B ∪ ¬E−2

B. Then, if B is rejected,

1. If R+ ∩R− 6= ∅ or ψ is T -unsatisfiable under IB ∪ ¬IBc ∪R+ ∪ ¬R−, OT returns a reason

ω of the form
∧
d∈D1

E+
2 (d) ∧

∧
d∈D2

E−2 (d) ⊃
∧
d∈D3

(E+(d) ∧ E−(d)) with D1 ⊆ D,

D2 ⊆ D, ∅ ( D3 ⊆ D, T |=
∨
d∈D1

¬l(d) ∨
∨
d∈D2

l(d), and B |= ¬ω, where l(d) denotes

the atomic formula l in ψ whose associated propositional atom is d. Note that from the advices

and reasons from oracles, the solver can understand that right hand side of the implication is

inconsistent, and thus the reason corresponds to the set of T -inconsistent literals from the

theory solver in the DPLL(T ) system.

2. Else if ψ is T -satisfiable under IB ∪ ¬IBc ∪ R+ ∪ ¬R−, OT returns a reason ω of the form∧
d∈D1

E+
2 (d)∧

∧
d∈D2

E−2 (d) ⊃
∧
d∈R+ E+(d)∧

∧
d∈R+c E−(d), whereD1 ⊆ D,D2 ⊆ D,

and B |= ¬ω.

3. Else, OT returns a reason similar to the second case except that it uses R− instead of R+c.

By the definition of MTψ , we know that B falsifies the reason and all models of MTψ satisfy

the reason. Thus, OT is complete and constructive. OT may also return some advices in the same

form as any ω above such that B satisfies the left hand side of the implication, but not the right

hand side. Also, since the outputs of MTψ always subsume the inputs, OT may also return the set

{E+
2 (d) ⊃ E+(d) | d ∈ D, B |= E+

2 (d),B 6|= E+(d)} ∪ {E−2 (d) ⊃ E−(d) | d ∈ D,B |=

5This makes sure that Ω is returned only once at the beginning.
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E−2 (d),B 6|= E−(d)} as the set of advices.6 Clearly, all the structures in MTψ satisfy all sets of

advices. Hence, OT is an advising oracle. Finally, OT always makes the correct decision for a total

structure and rejects a partial structure only when it falsifies the constraints for MTψ . Oracle OT
never rejects any good partial structure B (although it may accept some bad non-total structures).

Therefore, OT is a verifying oracle.

Oracle OP accepts a partial structure B iff it does not falsify the constraints for module MPφ

on I , E+, E−, E+
1 , and E−1 . Let (R+, R−) denote the result of the Unit Propagation on φ under

IB ∪ ¬IBc ∪ E+B ∪ ¬E−B. Then, if B is rejected,

1. If R+ ∩ R− 6= ∅, OP returns a reason ω of the form
∧
d∈D1

E+(d) ∧
∧
d∈D2

E−(d) ⊃∧
d∈D3

(E+
1 (d) ∧ E−1 (d)) with D1 ⊆ D, D2 ⊆ D, ∅ ( D3 ⊆ D, φ |=

∨
d∈D1

¬d ∨
∨
d∈D2

d

and B |= ¬ω.

2. Else if IB ∪ ¬IBc ∪ R+ ∪ ¬R− |= φ, OP returns a reason ω of the form
∧
d∈D1

E+(d) ∧∧
d∈D2

E−(d) ⊃
∧
d∈R+ E

+
1 (d) ∧

∧
d∈R+c E

−
1 (d), where D1 ⊆ D, D2 ⊆ D, and B |= ¬ω.

3. Else, OP returns a reason similar to the second case except that it uses R− instead of R+c.

OP may return the set of advices in the same form as any ω above such that B satisfies the left

hand side of the implication, but not the right hand side. Also, since the outputs of MPφ always

subsume the inputs, OP may also return the set {E+(d) ⊃ E+
1 (d) | d ∈ D,B |= E+(d),B 6|=

E+
1 (d)} ∪ {E−(d) ⊃ E−1 (d) | d ∈ D,B |= E−(d),B 6|= E−1 (d)} as the set of advices.

Proposition 4.6 1. Modular system DPLL(T )φ∧ψ is the set of structures B such that B |= φ

and B|=Tψ.

2. Solver S is complete and online.

3. OP , OT , and OTOTAL are CCAV oracles.

4. Algorithm 2 on modular system DPLL(T )φ∧ψ associated with oracles OP , OT , OTOTAL,

and the solver S models the solving procedure of the DPLL(T ) system on input formula φ∧ψ.

The DPLL(T) architecture is known to be very efficient and many solvers use it, including most

SMT solvers [170]. The DPLL(Agg) module [33] is suitable for all DPLL-based SAT, SMT and

ASP solvers to check satisfiability of aggregate expressions in DPLL(T ) contexts. All these systems

are representable in our modular framework.

6Again OT only returns this set when B is the empty expansion of the instance structure.
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4.6.2 Modelling ILP Solvers

Integer Linear Programming solvers solve optimization problems. In this chapter, we model ILP

solvers which use general branch-and-cut method to solve search problems instead, i.e., when the

target function is a constant. Throughout the section, we use the following MX task as a running

example to show how Algorithm 2 models branch-and-cut based ILP solvers.

Example 4.17 (Facility Opening Problem) Given a set of facilities F = {1, 2, · · · , n}, a set of

clients C = {1, 2, · · · ,m}, a function E(f, c) denoting whether the facility f is available to the

client c, a function OC(f) indicating the cost of opening the facility f , a function UC(c, f) rep-

resenting the cost of the client c using the facility f , and a constant d, the task is to open a subset

of the facilities (O(f)) and assign open facilities to available clients (U(c, f)) such that each client

has at least one open facility assigned, and the total cost (both opening cost and using cost) does

not exceed d. Above, we have σ = {available, OC,UC, d}, and ε = {O,U}.

Example 4.17 describes a famous problem of facility opening where you want to minimize the

total cost of opening and using facilities so that all your clients are covered by at least one facility.

This problem showcases some of the strengths of ILP solvers. First, we describe how ILP solvers

utilize the general branch-and-cut algorithm [162] to tackle such problems. The general algorithm

is:

1. Initialization: S = {ILP0} with ILP0 the initial problem.

2. Termination: If S = ∅, return UNSAT.

3. Problem Select: Select and remove problem ILPi from S.

4. Relaxation: Solve LP relaxation of ILPi (as a search problem). If infeasible, go to step 2.

Otherwise, if solution XiR of LP relaxation is integral, return solution XiR.

5. Add Cutting Planes: Add a cutting plane violating XiR to relaxation and go to 4.

6. Partitioning: Find partition {Cij}j=kj=1 of constraint set Ci of problem ILPi. Create k sub-

problems ILPij for j = 1, · · · , k, by restricting the feasible region of subproblem ILP ij to

Cij . Add those k problems to S and go to step 2. Often, in practice, finding a partition is

simplified by picking a variable xi with non-integral value vi in XiR and returning partition

{Ci ∪ {xi ≤ bvic}, Ci ∪ {xi ≥ dvie}}.
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Figure 4.6: Facility Opening Problem Instance.

In order for the branch-and-cut algorithm above to solve the problem in Example 4.17, we must

describe the example using a set of linear inequalities as follows.

Example 4.18 (Facility Opening (Specification, Instance, Ground Program))
We use the following high level ILP specification to represent the facility opening problem in Exam-

ple 4.17. ∑
f OC(f) ∗O(f) +

∑
c,f UC(c, f) ∗ U(c, f) ≤ d

∀c∀f U(c, f) ≤ O(f)

∀c∀f U(c, f) ≤ E(f, c)

∀c
∑

f uses(c, f) ≥ 1

∀c∀f 0 ≤ U(c, f) ≤ 1

∀f 0 ≤ O(f) ≤ 1

(4.7)

However, the specification in Equation 4.7 contains a set of quantifiers which must first be ex-

panded before giving the program into an ILP solver. Next we show how such a task can be accom-

plished given a problem instance.

A problem instance is shown in Figure 4.18. In Figure 4.18, two facilities are shown on the top

and three clients are shown below. The availability of facilities to clients is represented as edges

between facilities and clients. The opening costs for facilities are shown on top of facilities, and the

costs of use are shown on the edges. The ground ILP program for this instance is as follows:



CHAPTER 4. MODULAR MODEL EXPANSION 103

LPφ

Cφ Pφ

SC2 B

SC3

SC1 F2F1

I

I I

F

Figure 4.7: Modular System Representing an ILP Solver.

U1,1 ≤ 0, U1,2 ≤ 1,

U2,1 ≤ 1, U2,2 ≤ 1,

U3,1 ≤ 1, U3,2 ≤ 0,

U1,1 + U1,2 ≥ 1, U2,1 + U2,2 ≥ 1, U3,1 + U3,2 ≥ 1,

U1,1 −O1 ≤ 0, U1,2 −O2 ≤ 0,

U2,1 −O1 ≤ 0, U2,2 −O2 ≤ 0,

U3,1 −O1 ≤ 0, U3,2 −O2 ≤ 0,

0.5 O1 + 1.5 O2 + U1,2 + 3 U2,1 + 2 U2,2 + 4 U3,1 ≤ 10,

0 ≤ U1,1, U1,2, U2,1, U2,2, U3,1, U3,2, O1, O2 ≤ 1.

Now, consider one of the non-integral solutions of this as follows:

U1,1 = 0, U1,2 = 1, U2,1 =
1

3
, U2,2 = 1, U3,1 = 1, U3,2 = 0, O1 = 1, O2 = 1.

From the description of a branch-and-cut ILP solver above, this solution can be discarded either by

performing partitioning or adding a cutting plane to the set of linear constraints.

Partitioning: U2,1 ≤ 0 ∨ U2,1 ≥ 1,

Cutting plane: U2,1 + U2,2 ≤ 1.

Note that the non-integral solution above does not satisfy any of the two conditions while all integral

solutions satisfy both of them.

Next, we describe how we construct the modular system representing the ILP solver, and show

how our algorithm on the modular system models the solving procedure of the ILP solver. We use
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the modular system shown in Figure 4.7 to represent the ILP solver solving the problem axiomatized

in the specification φ. The specification is shared among the modules and also among the oracles

associated to the modules. The module Cφ takes a set of variable assignments F1 and a set of cutting

planes SC1 as inputs and returns another set of cutting planes SC2. When all the assignments in F1

are integral, SC2 is equal to SC1, and if not, SC2 is the union of SC1 and a cutting plane violated by

F1 w.r.t. the set of linear constraints SC1∪φ. The module Pφ takes a set of assignments F2 as input

and outputs a set of range constraints B = {Bx | F2(x) 6∈ Z}, where Bx is non-deterministically

chosen from the set {x ≤ bF2(x)c, x ≥ dF2(x)e}. The module LP φ takes the set of cutting planes

SC2 and the set of range constraints B as inputs and outputs the set of cuttings planes SC3 and the

set of assignments F in a deterministic way such that SC3 is the union of SC2 and B, and F is a

total assignment satisfying SC2 ∪B ∪ φ. LP φ is undefined when SC2 ∪B ∪ φ is inconsistent. We

define the compound module ILP φ to be:

ILP φ := π{F}(((Cφ ∩ Pφ) � LP φ)[SC3 = SC1][F = F1][F = F2]).

To show that the combined module ILP φ is correct, consider any model of the modular system.

By the definition of LP φ, we know that F satisfies φ. Furthermore, the set B is empty in the model

because F satisfies all the linear constraints in B, but F2 (which is equal to F by the semantics of

feedback operator) falsifies those constraints. Thus by the definition of the module Pφ, we know

that F2 (also F ) is integral. Thus F is an integral solution to φ. On the other hand, for any integral

solution S to φ, consider a structure B such that FB = FB1 = FB2 = S, BB = ∅, and SCB1 =

SCB2 = SCB3 =
⋃
x{x ≤ F (x), x ≥ F (x)}. Then clearly, B is in the module ILP φ, i.e., B is the

model of the module ILP φ.

So there is one-to-one correspondence between the solutions of the ILP problem with input

φ, and the models of the modular system ILP φ. We compute a model of this modular system by

associating modules with oracles (Oc, Op and Olp) and introducing a solver S that interacts with

those oracles. Each oracle rejects a partial structure B if it contradicts the corresponding module

definition and in this case, the reason for the rejection is provided.

Example 4.19 (Facility Opening Problem Continued (Op and Oc))
Let φ in Figure 4.7 be the specification shown in Example 4.18. Let FB contain the same non-

integral solution as the one in Example 4.18, i.e., FB = FB1 = FB2 = {U(1, 1) = 0, U(1, 2) =

1, U(2, 1) = 1/3, U(2, 2) = 1, U(3, 1) = 0, U(3, 2) = 0, O(1) = 1, O(2) = 1}, and let BB =

SC1
B = SC2

B = SC3
B = ∅. As shown in Example 4.18, this non-integral solution can be
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eliminated by either partitioning or adding a cutting plane violating the set of assignments. The

partitioning is modelled by Op rejecting the structure B and returning the reason B(”U(2, 1) ≤
0”) ∨ B(”U(2, 1) ≥ 1”) 7 ; and the cutting plane method can be modelled by Oc rejecting B with

the reason SC2(”U(2, 1) + U(2, 2) ≤ 1”).

The LP solving in ILP solver is modelled by the oracle Olp for the module LP φ.

Example 4.20 (Facility Opening Problem Continued (Olp)) LetFB, FB1 , andFB2 contain the same

non-integral solution as in Example 4.19, but let BB = {”U(2, 1) ≤ 0”} and SC2 = {”U(2, 1) +

U(2, 2) ≤ 1”}. Note that the non-integral solution violates both constraints U(2, 1) ≤ 0 and

U(2, 1) + U(2, 2) ≤ 1. Then Olp rejects B with the reason either being B(”U(2, 1) ≤ 0”) ⊃
F (”U(2, 1)”) ≤ 0 (for violating the partitioning constraint), or being SC2(”U(2, 1) + U(2, 2) ≤
1”) ∧ F1(”U(2, 2)”) > 1 ⊃ F1(”U(2, 1)”) < 0 (for violating the cutting plane). This way, Olp
guides the assignments F to satisfy all the constraints in SC2

B and BB.

Next, we give the formal constructions of the solver and the oracles.

Solver S accepts the full propositional language with atomic formulas being either boolean

variables or range constraints. In addition, S can assign numerical values (for F ), according to the

set of derived range constraints.

Oracle Op accepts a partial structure B if it does not falsity the constraints described above for

module Pφ on F2 andB. If B is rejected and F2
B is non-integral,Op returns the reasonB(”F2(x) ≤

bvc”) ∨B(”F2(x) ≥ dve”), where v is equal to F2
B(x) and is non-integral.

Oracle Oc accepts a partial structure B if it does not falsify the constraints described above

on F1, SC1, and SC2 for the Cφ module. If B is rejected, Oc returns the reason
∧
i F1(xi) =

vi ⊃
∧
c∈SC1∆SC2

(SC1(c) ⇐⇒ SC2(c)) when FB1 is integral, and the reason (
∧
c∈I SC1(c)) ∧

(
∧
i F1(xi) = vi) ⊃ SC2(c′), where I ⊆ SC1 ∪ φ, F1 is the only intersection of the set of linear

constraints I , and c′ is the cutting plane on I that violates F1.

Oracle Olp accepts a partial structure B if it does not falsify the constraints of the module LP φ
on SC2,B, SC3, andF . IfB is rejected,Olp returns the reason of the formψ = (

∧
c∈SC2

B SC2(c))∧
(
∧
c∈BB B(c)) ⊃ (

∧
c∈SC′3

SC3(c)) ∧ (
∧
x F (x)), such that SC ′3 ⊆ SC2

B ∪ BB, the new assign-

ments to F satisfy SC2
B ∪BB ∪ φ, and B 6|= ψ.

No advices are needed from any oracles in order to model the branch-and-cut ILP solvers. Thus,

all oracles always return the empty set as the set of advices.

7As the specification φ is shared between the module and the oracle, Op can also return B(”U(2, 1) = 0”) ∨
B(”U(2, 1) = 1”) as the reason.
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Proposition 4.7 1. Modular system ILP φ is the set of structures representing the sets of integral

solutions of φ.

2. S is complete and online.

3. Oc, Op and Olp are CCAV oracles.

4. Algorithm 2 on modular system ILP φ, associated with oracles Oc, Op, Olp, and the solver S

models the branch-and-cut-based ILP solver on the input formula φ.

There are many other solvers in the ILP community that use some ILP or MILP solver as their

low-level solver. It is not hard to observe that most of them also have similar architectures that can

be closely mapped to our algorithm.

4.6.3 Modelling Constraint Answer Set Solvers

The Answer Set Programming (ASP) community puts a lot of effort into optimizing their solvers.

One such effort addresses ASP programs with variables ranging over huge domains (for which, ASP

solvers alone perform poorly due to the huge memory needed). However, embedding Constraint

Programming (CP) techniques into ASP solving is proved useful because complete grounding can

be avoided.

In [20], the authors extend the language of ASP and its reasoning method to avoid grounding

of variables with large domains by using constraint solving techniques. The algorithm uses ASP

and CP solvers as black boxes and non-deterministically extends a partial solution to the ASP part

and checks it with the CP solver. Also, in [143], the authors integrate answer set generation and

constraint solving using a traditional DPLL-like backtracking algorithm which embeds a CP solver

into an ASP solver.

Recently, the authors of [84] developed an improved hybrid Constraint Answer Set Program-

ming (CASP) solver which supports advanced backjumping and conflict-driven nogood learning

(CDNL) techniques. They show that their solver’s performance is comparable to state-of-the-art

SMT solvers. In [84], a partial grounding is applied before running the algorithm, thus, the algo-

rithm in [84] is on a propositional level. In addition, instead of directly computing the answer set of

the ASP program, the authors compute a boolean assignment satisfying a set of nogoods obtained

from the Clark completion of the ASP program and from the loop formulas [82]. This enables them

to be able to apply solving technology from the areas of CSP and SAT, e.g., conflict-driven learning,

backjumping, watched literals, etc. A brief description of this algorithm follows: Starting from an
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empty set of assignments and derived nogoods, the algorithm gradually extends the partial assign-

ments by both unit propagation in ASP [85] and constraint propagation in CP [168]. If a conflict

occurs (during either unit propagation or constraint propagation), a nogood containing the corre-

sponding unique implication point (UIP) [147, 142] is learned 8 and the algorithm backjumps to the

decision level of the UIP. Otherwise, the algorithm decides on the truth value of one of the currently

unassigned atoms and continues to apply the propagation. If the assignment becomes total, the CP

oracle queries to check whether this is indeed a solution for the corresponding constraint satisfaction

problem (CSP). This step is necessary because simply performing constraint propagation on the set

of constraints is not sufficient to decide the feasibility of constraints.

In this section, following MX task is used as a running example to illustrate how Algorithm 2 can

model above CASP solver. To improve the readability, all examples in this section is axiomatized in

ASP program, instead of its completion and loop formulas as in the CASP solver.

Example 4.21 (Planning with Cumulative Scheduling) Given a set of tasks, Task = {t1, · · · , tn},
a set of states, {s1, · · · , sm}, a predicate CS(t, s1, s2) saying that performing task t changes the

state from s1 to s2, a starting state S, and a goal state G, the goal is to perform a set of tasks to

get to the goal state from the starting state. In addition, each task ti has an earliest starting time

EST (ti), a latest ending time LET (ti), a duration D(ti), and the amount of resources it needs

(R(ti)). The tasks could be performed simultaneously, but the total amount of resources occupied

at any time should not exceed the total available resources TR. Let do(ti) denote that the task ti is

performed, then σ = {CS, S,G,EST,LET,D,R, TR} and ε = {do}.

We axiomatize the problem in Example 4.21 in ASP, together with the cumulative constraint in

Constraint Programming. The cumulative constraint may be written

cumulative(est, let, d, r, R).

where the arguments represent, respectively, the set of earliest starting time of the tasks, the set of

latest ending time of the task, the set of duration of the tasks, the set of resource consumption of the

tasks, and the amount of available resources. It returns true only when there is a feasible scheduling

that respects all the specified constraints.

8Practical CP solvers do not provide reasons for rejecting partial structures. This issue is dealt with in [84] by wrapping
CP solvers with a conflict analysis mechanism to compute nogoods based on the first UIP scheme.
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Figure 4.8: Facility Opening Problem Instance.

Figure 4.9: Planning with Cumulative Scheduling Problem Instance.

Example 4.22 (Planning Continued (Specification, Instance, Ground Program))
Following CASP specification is used to represent the planning with cumulative scheduling problem
9.

0{do(t)}1← Task(t).

reaches(s2)← do(t), CS(t, s1, s2), reaches(s1).

reaches(S).

← not reaches(G).

← not CP :: cumulative({EST (t) : do(t)},
{LET (t) : do(t)}, {D(t) : do(t)}, {R(t) : do(t)}, TR).

(4.8)

Consider the instance shown in figure 4.22 with the set of tasks {t1, t2, t3, t4} and the set of

states {S,U, V,G}. The CS relation is shown as the edges between two states, i.e., CSA =

{(t1, S, U), (t2, U, V ), (t3, S, V ), (t4, V,G)}. Moreover, let ESTA = {(t1 : 0), (t2 : 0), (t3 :

0), (t4 : 0)}, LETA = DA = {(t1 : 2), (t2 : 2), (t3 : 2), (t4 : 2)}, RA = {(t1 : 1), (t2 : 2), (t3 :

4), (t4 : 4)}, and TRA = 7. Then the ground program corresponding to this instance is as follows:

9This specification does not necessarily follow the syntax of any specific system.
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ASP part φ is:



0{do(t1)}1.
0{do(t2)}1.
0{do(t3)}1.
0{do(t4)}1.
reaches(U)← do(t1), reaches(S).

reaches(V )← do(t2), reaches(U).

reaches(V )← do(t3), reaches(S).

reaches(G)← do(t4), reaches(V ).

reaches(S).

← not reaches(G).

← not C.

CP part ψ is:


C ⇔ cumulative({0 : do(t1), 0 : do(t2), 0 : do(t3), 0 : do(t4)},

{2 : do(t1), 2 : do(t2), 2 : do(t3), 2 : do(t4)},
{2 : do(t1), 2 : do(t2), 2 : do(t3), 2 : do(t4)},
{1 : do(t1), 2 : do(t2), 4 : do(t3), 4 : do(t4)}, 7).

(4.9)

The CASP system solves the ground program 4.9 in a similar way to the DPLL(T ) system de-

scribed in Section 4.6.1: Stating from the empty assignment, the CASP solver gradually computes

the answer set and meanwhile, queries to the CP solver to check whether the set of constraint cor-

responding to the current assignment is consistent. If not, the CP solver returns a set of literals that

cannot be true together. For example, consider the partial assignment below:

do(t3) = do(t4) = reaches(S) = reaches(V ) = C = >, the others unknown.

When the CP solver gets this set of assignments, it can deduce that the cumulative constraint

(C) cannot be true based on the assignments, because all the tasks have the same earliest starting

time and the latest ending time with the intervals the same as the durations, which enforces all the

tasks being scheduled at the same time. However, t3 and t4 cannot be scheduled simultaneously as

they together require 8 resources while only 7 resources are available. The reason for this conflict

can be described using the set of literals {C, do(t3), do(t4)}. On the other hand, before the ASP

solver decides to schedule both t3 and t4, the CP solver may return the fact C ∧ do(t3) ⊃ ¬do(t4)
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to prevent the two tasks from both being performed. These two behaviors are modelled later in the

section through reasons and advices, respectively.

Next, we show our modular representation of the CASP solver and illustrate how the Algorithm

2 on this representation models the solving procedure of the CASP system. The modular system we

use to represent the CASP solver is very similar to the one in Figure 4.5 (for the DPLL(T ) system),

except that we have module ASP φ instead of MPφ and CPψ instead of MTψ .

Similar to the modules MPφ and MTψ in Figure 4.5, ASP φ and CPψ work on different parts of

the specification. The formula φ in ASP φ corresponds to the ASP program with all CP constraints

replaced by propositional literals, and the formula ψ in CPψ is the formula
∧
i di ⇔ li where li and

di are, respectively, an atomic CP constraint and its associated propositional atom used in ASP φ.

The module ASP φ is the set of structures B such that:

(E+
1
B
, E−1

B
) =


(D,D) if R+ ∩R− 6= ∅,
(R+, R+c) if R+ ∩R− = ∅, IB ∪ ¬IBc ∪R+ ∪ ¬R− |= φ,

(R+, R−) if R+ ∩R− = ∅, IB ∪ ¬IBc ∪R+ ∪ ¬R− 6|= φ.

where D = Bn, n is the arity of E+, and (R+, R−) is the result of unit propagation in ASP [85] on

φ under IB ∪ ¬IBc ∪ E+B ∪ ¬E−B.

Example 4.23 (Planning with Cumulative Scheduling Continued)
Continuing our running example, assume that E+B = E−

B
= ∅. An observant reader can notice

that in all models of ASPφ, we should have that do(t4) should be true. This is because if do(t4)

is false then G becomes not reachable. Our module ASPφ can also deduce this fact using its unit-

propagation. Therefore, do(t4) belongs to E+B

1 .

Similarly, the module CPψ is defined as the set of structures B such that:

(E+B, E−
B

) =


(D,D) if R+ ∩R− 6= ∅,
(D,D) if R+ ∩R− = ∅, F is inconsistent with ψ,

(R+, R−) if R+ ∩R− = ∅, F is consistent with ψ.

where D is as before and (R+, R−) is the result of constraint propagation on ψ under IB ∪ ¬IBc ∪
E+

2
B∪¬E−2

B, and F = IB∪¬IBc∪R+∪¬R−. In practical Constraint Programming solvers, vari-

ous constraint propagation techniques such as arc-consistency checking and k-consistency checking,

are applied and it can be shown that they are all Valid Acceptance Procedures. The reader is referred

to [168] for complete details on different propagation techniques.
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Example 4.24 (Planning with Cumulative Scheduling Continued)
Continuing our running example, now assume that E+B

2 contains do(t4) as discussed in Example

4.23. Then, for the CPψ to accept structure B, we should have that do(t3) should be false. This

is because by the constraint propagation for the cumulative constraint in our example, the CPψ
module understands that do(t3) and do(t4) cannot be true together. Therefore, do(t3) belongs to

E−
B

.

The compound module CASP φ∧ψ is defined as:

CASP φ∧ψ := π{I,E}(((CPψ �ASP φ)[E+
1 = E+

2 ][E−1 = E−2 ]) � TOTAL).

The correctness of the module CASP φ∧ψ can be proved using the same arguments as the one

in Section 4.6.1.

As a CDNL-like technique is also used in SMT solvers, the above algorithm is modelled simi-

larly to Section 4.6.1. The solver S is defined as a DPLL-based online SAT solver and the module

ASP φ (resp. CPψ) is associated with an oracle OASP (resp. OCP ). The constructions of these

oracles are very similar to the ones described in Section 4.6.1.

Example 4.25 (Planning with Cumulative Scheduling Continued (OASP and OCP )) Let φ and

ψ in CASP φ∧ψ be, respectively, the ASP part and the CP part of the specification in Equation

4.9. Let the structure B contain the same set of partial assignment as the one in Example 4.22,

i.e., do+
1
B

= {t3, t4}, reaches+
1
B

= {S, V }, and C+
1
B

= >. When OCP is queried on B, it

returns the advice C+
1 ∧ do

+
1 (t3) ⊃ do−(t4) to the solver S. Obtaining this advice and the advice

do−(t4) ⊃ do−1 (t4) fromOASP , in the next phase, the solver S will make do−1 (t4) true andOTOTAL
rejects the new structure from S with the reason do−1 (t4) ⊃ ¬do+

1 (t4).

Next, we give exact constructions for the solver S and oracle OCP :

Solver S is a DPLL-based SAT solver (clearly complete and online).

Oracle OCP accepts a partial structure B iff it does not falsify the constraints described above

for module CPψ on I , E+, E−, E+
2 , and E−2 . Let (R+, R−) denote the result of the constraint

propagation on ψ under IB ∪ ¬IBc ∪ E+
2
B ∪ ¬E−2

B. Then, if B is rejected,

1. If R+∩R− 6= ∅ or IB ∪¬IBc∪R+∪¬R− is inconsistent with ψ, OCP returns a reason ω of

the form
∧
d∈D1

E+
2 (d)∧

∧
d∈D2

E−2 (d) ⊃
∧
d∈D3

(E+(d)∧E−(d)) with D1 ⊆ D, D2 ⊆ D,

∅ ( D3 ⊆ D,
∨
d∈D1

¬l(d) ∨
∨
d∈D2

l(d) is always true in ψ, B |= ¬ω, where l(d) denotes
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the atomic formula l in ψ whose associated propositional atom is d. This corresponds to the

nogood (the set of literals on the left hand side of the implication of ω which cannot be true

together) returned by the conflict analysis mechanism of the CP solver.

2. Otherwise, OCP returns a reason ω of the form
∧
d∈D1

E+
2 (d) ∧

∧
d∈D2

E−2 (d) ⊃∧
d∈R+ E+(d) ∧

∧
d∈R− E

−(d), where D1 ⊆ D,D2 ⊆ D,B |= ¬ω.

By the definition of CPψ, we know that B falsifies the reason and all models of CPψ satisfy

the reason. Thus, OCP is complete and constructive. OCP may also return some advices in the

same form as any ω above such that B satisfies the left hand side of the implication, but not the right

hand side. Also, since the outputs of CPψ always subsume the inputs, OCP may also return the

set {E+
2 (d) ⊃ E+(d) | d ∈ D,B |= E+

2 (d),B 6|= E+(d)} ∪ {E−2 (d) ⊃ E−(d) | d ∈ D,B |=
E−2 (d),B 6|= E−(d)} as the set of advices. Clearly, all the structures in CPψ satisfy all sets of

advices. Hence, OCP is an advising oracle. Finally, OCP always makes the correct decision for a

total structure and rejects a partial structure only when it falsifies the constraints for CPψ. OCP
never rejects any good partial structure B (although it may accept some bad non-total structures).

Therefore, OCP is a verifying oracle.

Proposition 4.8 1. Modular system CASP φ∧ψ is the set of structures B such that B |= φ and

B is consistent with ψ according to corresponding theory of the constraints.

2. Solver S is complete and online.

3. OASP , OCP and OTOTAL are CCAV oracles.

4. Algorithm 2 on modular system CASP φ∧ψ associated with oracles OASP , OCP , OTOTAL,

and the solver S models the solving procedure of the CASP solver on input formula φ ∧ ψ.

4.7 Approximating Solutions to Modular Systems

So far, we introduced modular systems and talked about their expressive power. Also, we gave two

algorithms to solve modular systems: the naive guess and check algorithm and the lazy modular

solving algorithm. We also described how our lazy solving algorithm is related and, indeed, moti-

vated by works in the solvers that are a specific to a language or a combination of a few languages.

In this Section, we want to go beyond what we had before and improve our lazy solving algo-

rithm with the power to approximate the solutions to a modular system without excessive use of the
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underlying solver. This way, we will be able to hugely reduce the search space of the underlying

solver and find a solution to a modular system faster. To do so, we start with some simple properties

about extending monotonicity and anti-monotonicity to complex modules. We prove that, in the

presence of loops and monotone or anti-monotone primitive modules, the combined systems satisfy

many interesting properties such as existence of smallest solutions or minimality of solutions. We

then develop methods for intelligently reducing the candidate solution space.

4.7.1 Approximation Procedures for Modular Systems

Almost all practical solvers use some kind of propagation technique. However, in a modular system,

propagation is not possible in general because nothing is known in advance about a module. Here,

we define how and under what conditions can we approximate the solutions to a modular system. As

it turns out, it suffices to know only very general information about modules such as their totality and

monotonicity or anti-monotonicity. We first start by a few propositions on how totality, monotonicity

and anti-monotonicity extend from simpler modular systems to more complex modular systems.

Then, we state Theorems 4.6, 4.13 and 4.9 that constitute the main body of our approximation

procedures for modular systems. As we explain later on, our proposed approximation procedures

closely correspond to the modular equivalent of computing least/greatest fixpoints and well-founded

models in logic programs.

Proposition 4.9 Let M be a τ1-τ2-τ3-monotone (resp. anti-monotone) module. Then:

1. If τ ′ ⊆ τ1 then M is also a τ ′-(τ2 ∪ (τ1\τ ′))-τ3-monotone (resp. anti-monotone) module.

2. For a set ν of symbols such that τ3∩ν = ∅, we haveM is also (τ1∪ν)-τ2-τ3-monotone (resp.

anti-monotone).

3. For a set ν of symbols, we have thatM is also τ1-(τ2∪ν)-τ3-monotone (resp. anti-monotone).

4. If τ ′ ⊆ τ3 then M is also a τ1-τ2-τ ′-monotone (resp. anti-monotone) module.

Proposition 4.10 Let M be a module that is both τ1-τ2-τ3-monotone and τ ′1-τ ′2-τ ′3-monotone (resp.

τ1-τ2-τ3-anti-monotone and τ ′1-τ ′2-τ ′3-anti-monotone ) such that (τ1 ∪ τ ′1)∩ (τ3 ∪ τ ′3) = ∅. Then, M

is also (τ1 ∪ τ ′1)-(τ2 ∪ τ ′2)-(τ3 ∪ τ ′3)-monotone (resp. (τ1 ∩ τ ′1)-(τ2 ∪ τ ′2)-(τ3 ∪ τ ′3)-anti-monotone).

Proposition 4.11 ((Anti-)Monotonicity Preservation) For τ1-τ2-τ3-monotone (resp. anti-monotone)

modular system M and general modular system M ′, we have:

1. M �M ′ is τ1-τ2-τ3-monotone (resp. anti-monotone).

2. M ′ �M is τ1-τ2-τ3-monotone (resp. anti-monotone).
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3. If M ′ is ν-τ2-deterministic for some ν, then M ′ � M is τ1-ν-τ3-monotone (resp. anti-

monotone).

4. If τ1 ∪ τ2 ⊆ ν then ΠνM is τ1-τ2-(ν ∩ τ3)-monotone (resp. anti-monotone).

5. M [S1 = S2] is τ1-τ2-τ3-monotone (resp. anti-monotone)

Proposition 4.12 (Monotonicity under Composition) For modular systems M and M ′ and vo-

cabularies τ1, τ ′1, τ2, τ ′2, τ3 and τ ′3 such that τ ′1 ⊆ τ3:

1. IfM is τ1-τ2-τ3-monotone andM ′ is τ ′1-τ ′2-τ ′3-monotone,M�M ′ is τ1-(τ2∪τ ′2)-τ ′3-monotone.

2. If M is τ1-τ2-τ3-anti-monotone and M ′ is τ ′1-τ ′2-τ ′3-monotone, M �M ′ is τ1-(τ2 ∪ τ ′2)-τ ′3-

anti-monotone.

3. If M is τ1-τ2-τ3-monotone and M ′ is τ ′1-τ ′2-τ ′3-anti-monotone, M �M ′ is τ1-(τ2 ∪ τ ′2)-τ ′3-

anti-monotone.

4. If M is τ1-τ2-τ3-anti-monotone and M ′ is τ ′1-τ ′2-τ ′3-anti-monotone, M �M ′ is τ1-(τ2 ∪ τ ′2)-

τ ′3-monotone.

Proof: We prove the first case. The rest is similar. For P := M �M ′, consider structures B1, B2,

B′1 ∈ JM1K(B1) and B′2 ∈ JM2K(B2) such that B1|τ2∪τ ′2 = B′|τ2∪τ ′2 and B|τ1 v B′|τ1 . Since M

is monotone, we have B|τ3 v B′|τ3 . So, as τ ′1 ⊆ τ3, we also have B|τ ′1 v B
′|τ ′1 . Also, as M ′ is

monotone, we have B|τ ′3 v B
′|τ ′3 .

These properties give us ways of deriving that a complex modular system is monotone or anti-

monotone by looking at similar properties of basic constraint modules. For instance, for our previous

example on stable model semantics, we have:

Example 4.26 (Composition in ASP Programs) Modules M1 and M2 in Example 4.7 are respec-

tively {S}-{P}-{Q}-anti-monotone and {Q}-{}-{S′}-monotone. So, by Proposition 4.12, M ′ :=

M1 �M2 is {S}-{P}-{S′}-anti-monotone.

The rest of this section considers the important case of monotone or anti-monotone loops, i.e.,

monotone or anti-monotone modules under the feedback operator. Note that, although our theorems

concern modules feeding their outputs back to their inputs, these modules are usually not primi-

tive modules, but composite modules whose monotonicity or anti-monotonicity is derived by our

previous propositions.

Theorem 4.6 (Smallest/Greatest Solution) LetM be a (τ ∪{S})-total and {S}-τ -{R}-monotone

modular system and M ′ := M [S = R]. Then, for a fixed interpretation to τ , M ′ has exactly one

smallest solution and exactly one greatest solution with respect to predicate symbol R.
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Proof: Standard Tarski proof.

Theorem 4.6 relates smallest/greatest solutions of monotone loops in modular systems to least-

/greatest fixpoints of monotone operators. Therefore, many natural problems such as transitivity or

connectivity are smallest solutions of some monotone modules under feedbacks. However, Theorem

4.6 only states that such smallest/greatest solutions exist and is unique and it should be noted that

modular systems can have other models that are neither the smallest nor the greatest solution. The

special cases of smallest and greatest solutions are used to prune the candidate solution space, i.e.,

candidate solutions that either do not extend the smallest solution or that are not extended by the

greatest solution can be safely discarded. Theorem 4.6 can also be extended to a more general case

as follows.

Theorem 4.7 (Optimal Bounding to Solutions of Positive Feedbacks) LetM be a (τ∪{S})-total

and {S}-τ -{R}-monotone modular system and M ′ := M [S = R]. Also, let BL and BU be two

structures such that BL|vocab(BL)\{R,S} v BU |vocab(BU )\{R,S} and SBL = RBL v RBU = SBU .

Then, if M ′ has any solution B with B|τ = BL|τ and RBL ⊆ RB ⊆ RBU , then the structures B∗L
and B∗U defined as follows are the smallest and the greatest (with respect to R) solutions of M ′ that

satisfy those conditions.

〈B0
L,B0

U 〉 := 〈BL,BU 〉.
for all ordinal α:

Bα+1
L ∈M(BαL|vocab(BL)\{S} || L) where dom(L) = dom(BL) and SL = RB

α
L ,

Bα+1
U ∈M(BαU |vocab(BU )\{S} || U) where dom(U) = dom(BU ) and SU = RB

α
U .

for limit ordinal α:

〈BαL,BαU 〉 := 〈
⊔
β<α B

β
L,

d
β<α B

β
U 〉.

(4.10)

Proof: The proof is again a standard Tarski proof.

One of the consequences of Theorem 4.7 is that, now, under certain conditions, we can improve

and refine the complexity result of Theorem 4.5. Theorem 4.5 states that the set of problems that

can be described in terms of modular systems with feedback and with primitive modules that are

decidable in ∆P
k is exactly the set of problems that can be decided in ΣP

k+1. Here, we can refine this

theorem by saying that all the modular systems that use only feedback and composition operators

and whose primitive modules are ∆P
k solvable, total and monotone are ∆P

k solvable themselves.

Theorem 4.8 that follows states this fact:
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Theorem 4.8 (∆P
k Solvability for Monotone Modular Systems) Let M ∈ MS(σ, ε) be a modu-

lar system such that all primitive modules M ′ ∈ MS(σ′, ε′) of M are ∆P
k solvable, σ′-total and

σ′-τ -ε′-monotone where τ ⊆ σ. Then, M is also ∆P
k solvable.

Proof: We just iterate the application of all primitive modules on the empty expansion of instance

structure A to obtain the smallest solution to M . Since the interpretation to all vocabulary symbols

increases monotonically and because the union operator is not allowed, this process can continue

at most polynomially many times. Also, since all modules are ∆P
k solvable, our procedure is in

P∆P
k = ∆P

k .

Now, let us turn to anti-monotone (negative) loops and consider how they affect the set of pos-

sible solutions.

Proposition 4.13 (Anti-Monotonicity and Minimality) For {S}-τ -{R}-anti-monotone modular sys-

tem M and for modular system M ′ := M [S = R], we have that when interpretation to τ is fixed,

all models of M ′ are minimal with respect to the interpretations of R.

Proof: Let B1,B2 ∈ M ′ be such that B1|τ = B2|τ and RB1 v RB2 . So, because, in M ′, R

is fed back to S, we have SB1 v SB2 . Hence, by {S}-τ -{R}-anti-monotonicity of M , we have

that RB1 w RB2 . Thus, RB1 = RB2 and B1|τ∪{R} = B2|τ∪{R}, i.e., there does not exist any

two structures in M ′ which agree on the interpretation to τ but, in one of them, interpretation of R

properly extends R’s interpretation in the other one.

The minimality of solutions to anti-monotone loops means that these loops may not have a

smallest solution. Nevertheless, we are still able to prune the candidate solution space by finding

lower and upper bounds for all the solutions to such a loop. Consider the following process for a

(τ ∪ {S})-total and {S}-τ -{R}-anti-monotone modular system M where S and R are relational

symbols of arity n:
L0 = ∅, U0 = [dom(A)]n,

Li+1 = RM(A || Ui), Ui+1 = RM(A || Li),
(4.11)

where dom(Li) = dom(Ui) = dom(A), SLi = Li, SUi = Ui and, for two structures A1 and A2

over the same domain but distinct vocabularies, A1||A2 is defined to be the structure over the same

domain as A1 and A2 and with the same interpretation as them.

Theorem 4.9 (Bounds on Solutions to Anti-Monotone Loops) For (τ ∪ {S})-total and {S}-τ -

{R}-anti-monotone modular system M ∈ MS(σ, ε) (where S ∈ σ and R ∈ ε are symbols of arity
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n), and for modular system M ′ := M [S = R] and τ -structure A, the approximation process (4.11)

has a fixpoint (L∗A, U
∗
A) such that for all B ∈M ′ with B|τ = A, we have L∗A v RB and RB v U∗A.

Proof: We prove this for relational symbols. Extending it to function symbols is straightforward.

Given τ -structure A, consider the set S = {B ∈M ′ | B|τ = A}. We first prove (by induction on i)

that, for all i, we have: Li v Li+1, Ui w Ui+1, Li v
d
B∈S R

B, and Ui w
⊔
B∈S R

B.

The base case is easy because L0 is the empty set and U0 contains all possible tuples. For the

inductive case:

1. By induction hypothesis, Ui w Ui+1. So, by anti-monotonicity of M , we have: Li+1 =

LM(A || Ui) v LM(A || Ui+1) = Li+2. Similarly, Ui+1 w Ui+2.

2. Again, by induction hypothesis, Ui w
⊔
B∈S R

B. So, for all structures B ∈ S, we have:

Ui w RB. Therefore, Li+1 = LM(A || Ui) v RB. Thus, Li+1 v
d
B∈S R

B. Similarly, we also

have Ui+1 w
⊔
B∈S R

B.

So, as
d
B∈S R

B v
⊔
B∈S R

B, we have that, for all i, Li v Ui. Thus, there exists ordinal α where

(Lα, Uα) is the fixpoint of the sequence of pairs (Li, Ui). Denote this pair by (L∗A, U
∗
A). Observe

that, by above properties, L∗A v RB and RB v U∗A for all B ∈ S (as required).

Similar to Theorem 4.6, Theorem 4.9 also prunes the search space by limiting the candidate

solutions to only those that are both supersets of the lower bound obtained by the process and

subsets of the upper bound obtained by it.

Example 4.27 (Well-Founded Models) As discussed in Example 4.26, the moduleM ′ := M1�M2

is {S}-{P}-{S′}-anti-monotone. Thus, by Proposition 4.13, the module M defined in Example

4.7 can only have minimal solutions with respect to symbol S for a fixed input P . Moreover, by

Proposition 4.9, we can find lower and upper bounds to all the solutions of module M for a fixed P .

Unsurprisingly, these bounds coincide with the well-founded model of the logic program P .

Theorem 4.9 can also be extended to work with general lower and upper bounds as in the case

of Theorem 4.6.

Theorem 4.10 (Bounding Solutions to Negative Feedbacks) LetM be a (τ∪{S})-total and {S}-
τ -{R}-anti-monotone modular system and M ′ := M [S = R]. Also, let BL and BU be two struc-

tures such that BL|vocab(BL)\{R,S} v BU |vocab(BU )\{R,S} and SBL = RBL v RBU = SBU . Then, if

B is a solution of M ′ for which τ is interpreted as in BL and R is interpreted in the range defined

by RBL and RBU , then interpretation of R in B also falls within the range of R’s interpretation in the
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structures B∗L and B∗U that are defined as follows.

〈B0
L,B0

U 〉 := 〈BL,BU 〉.
for all ordinal α:

Bα+1
L ∈M(BαU |vocab(BU )\{S} || U) where dom(U) = dom(BU ) and SU = RB

α
U ,

Bα+1
U ∈M(BαL|vocab(BL)\{S} || L) where dom(L) = dom(BL) and SL = RB

α
L .

for limit ordinal α:

〈BαL,BαU 〉 := 〈
⊔
β<α B

β
L,

d
β<α B

β
U 〉.

(4.12)

Proof: Proof is similar to Theorem 4.9.

Note that Theorem 4.10 just gives some possible bounds on the set of possible structures and

that these bounds are not always the optimal bound. Example 4.27 that we discussed before gives an

example of when such bounds are not optimal, i.e., while founded atoms in well-founded models are

always a subset of all stable models (and thus a subset of the intersection of all stable models), there

exist logic programs such as P so that the intersection of all stable models of P properly contains

the set of founded atoms in the well-founded model of P . Thus, Example 4.27 concretely shows

that negative feedback approximations are not generally the best approximation possible. In fact,

in this case, if we are guaranteed to know that negative feedback approximations are optimal (i.e.,

they coincide with intersection of all solutions) then we can obtain a similar result to Theorem 4.8

to reduce the complexity of solving a modular system.

4.7.2 Extending Lazy Modular Solving Algorithm with Approximation Techniques

In this section, we extend Algorithm 2 using the approximation procedures that we introduced in

Section 4.7.1. The extended algorithm prunes the search space of a model by propagating informa-

tion obtained by these approximation procedures to the solver.

We use procedures (4.10) and (4.12) to obtain a set of increasing and decreasing sequences that

bound the set of possible solutions. Using these procedures, we extend Algorithm 2 to Algorithm

3. Equations (4.10) and (4.12) guide our solver towards the right direction and, thus, try to speed

up the search process. Algorithm 3, thus, depends on a solver that can deal with propagated literals.

Also, in Algorithm 3 we use notation ¬L (for a set L of literals) to denote {¬l | l ∈ L}.

Proposition 4.14 (Correctness of Extended Algorithm) Algorithm 3 is sound and complete for

finite structures, i.e., given a modular system M with CCAV oracles, a complete online solver S and

a finite instance structure A:
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Data: Similar to Algorithm 2, but with modules’ totality, monotonicity and
anti-monotonicity properties given

Result: Structure B expands A and is in M
begin

Initialize the solver S using the empty expansion of A ;
while true do

Let R be the state of S ;
if R = 〈UNSAT 〉 then return Unsatisfiable ;
else if R = 〈SAT,B〉 then

Add the set of advices from oracles wrt B to S ;
if M does not accept B then

Find a module Mi in M such that Mi does not accept B|vocab(Mi) ;
Add the reason given by oracle Oi to S ;

else if B is total then return B ;
else

foreach applicable pos. (resp. neg.) feedback M1 := M2[T = T ′] do
Let 〈L∗, U∗〉 be the limit of series 〈Li, Ui〉 in Eq. 4.10 (resp. Eq. 4.12);
Propagate (L∗\T+B) ∪ ¬([dom(A)]n\(U∗ ∪ T−B)) to S ;

end
Algorithm 3: Lazy Model Expansion with Approximation (Propagation)

1. If Algorithm 3 returns B, then B ∈M ,

2. If Algorithm 3 returns ”Unsatisfiable” then none of structures B ∈M expand A.

3. Algorithm 3 always terminates.

Proof: The proof is similar to the proof of Proposition 4.4, but it also depends on the correctness of

our approximation procedures from Section 4.7.1.

4.8 Related Work

Many works have been done on modularity in declarative programming, we only review the most

relevant ones. The authors of [120] proposed a multi-language framework for constraint modelling.

That work was the initial inspiration of our earlier work [187], but we extended the ideas signifi-

cantly by developing a model-theoretic framework and introducing a feedback operator that adds a

significant expressive power.
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An early work on adding modularity to logic programs is [63]. The authors derive a semantics

for modular logic programs by viewing a logic program as a generalized quantifier. The ideas are

further generalized in [160] by considering the concept of modules in declarative programming and

introducing modular equivalence in normal logic programs under the stable model semantics. This

line of work is continued in [119] to define modularity for disjunctive logic programs. There are also

other approaches to adding modularity to ASP languages [46, 109, 18, 15]. The related approach of

ID-Logic is described in [55].

The works mentioned earlier focus on the theory of modularity in declarative languages. There

also exist research directions that focus on the practice of modular declarative programming and, in

particular, solving. These generally fall into one of the following three categories:

The first category consists of practical modelling languages which incorporate other modelling

languages. For example, X-ASP [181] and ASP-PROLOG [66] extend Prolog with ASP, CP tech-

niques are incorporated into ASP solving in [20], [143], and [84]. Also, ESRA [72], ESSENCE [76]

and Zinc [48] are CP languages extended with features from other languages. These approaches

give priority to the host language while our modular setting gives equal weight to all modelling lan-

guages that are involved. It is important to note that, even in the presence of this distinction, such

works have been very important in the development of this chapter because they provide guidelines

on how a practical solver deals with efficiency issues.

The second category is concerned with automatic extraction of independent modules from logic

programs, i.e., to break a logic program into layers such that each layer depends only on the modules

below that layer. In order to achieve this, different splitting theorems for logic programs have been

devised. Lifschitz and Turner [135] showed some syntactic conditions to split a disjunctive logic

program Π into two disjunctive logic programs Π1 and Π2 such that S is an answer set of Π if and

only if S∩vocab(Π1) is an answer set of Π1 and S is an answer set of Π2∪(S∩vocab(Π1)). Apply-

ing this process repeatedly splits a logic program into several levels. Such a splitting process speeds

up the computation of answer sets for logic programs by finding a natural and linear representation

of the same problem. This process is generalized to other frameworks for non-monotonic reason-

ing such as default theories [199]. Also, Vennekens and others [207] give an algebraic account of

splitting that is applicable to a wide array of different semantics.

The third category is to design methods to solve specific problems that use modules from dif-

ferent communities. The field of “Integrated Methods” [113] is an active field that aims at solving

particular challenges by combining techniques from operations research (with techniques such as

relaxations and bounding), constraint programming (with techniques such as constraint propagation
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and arc-consistency) and artificial intelligence (with its heuristic techniques). Combination of all

these different techniques from different fields has led to great success stories of solving specific

problems [114, 112, 73]. Integrated methods are similar to our research because we both believe

in the importance of problem-specific solutions. This is emphasized in our work through oracles

that are specific to modules (in contrast to allowing only generic oracles). However, despite this

similarity, our research is fundamentally different from that of integrated methods because we are

primarily concerned with the development of a unifying model-theoretic approach towards modular

systems. In other words, combination of different solving techniques from different fields is just

a consequence of our model-theoretic development of modular systems and not the main driving

force behind it. Moreover, our way of developing modular systems allow us to study properties

about modular systems that would have been very hard to study otherwise. Such properties include

(but are not restricted to) studying the computational complexity of performing different logical

tasks (such as model checking, model expansion, satisfiability, brave/cautious reasoning) for modu-

lar systems, studying expressiveness of modular systems for different classes of structures (such as

finite structures, embedded structures, etc.), studying abstract approximation techniques, etc.

A different but related approach to modularity is that of multi-context systems (MCS). A multi-

context system is a collection of contexts that are connected together through bridge rule. Each

context represents a knowledge base as well as the semantics under which the knowledge base

is interpreted. Bridge rules act as carriers of information between contexts. They are similar to

logic programming rules and assert the truth of the belief in the head of a rule whenever the body

of that rule is satisfied. The semantics of a multi-context system is a collection of belief sets for

different context that form a fixpoint of the multi-cotext system. In [25], the authors introduce non-

monotonic bridge rules to the contextual reasoning and originated an interesting and active line of

research followed by many others for solving or explaining inconsistencies in non-monotonic multi-

context systems [14, 23, 61, 60]. The main difference between our approach and the approach of

multi-context systems is due to our different intended applications: while multi-context systems are

designed to specifically address integration of declarative knowledge bases, our approach aims at

addressing a broader set of applications with primitive modules coming from both declarative and

non-declarative settings. Such different intended use-cases also cause another apparent difference

between our approach and the MCS approach: in multi-context systems, because of the essential role

that knowledge bases play, there is an inherent tendency to model both the syntax and semantics of

knowledge bases. This is in contrast to our approach that abstracts away both the syntax and internal

semantics of a primitive module. Instead, we focus on what a primitive modules represents.
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Despite the above-mentioned differences between our approach and the MCS approach, we

believe that there are more similarities between these two approaches than there are differences. The

most important similarity is due to the similarity in the concepts that these two approaches address.

In this chapter, we focused on solving a modular system. Similarly, in [14], the authors address

the similar issue of finding equilibria for multi-context systems. Another example that has been

addressed in the area of multi-context systems but has yet to be addressed for our framework is the

concept of diagnosis. Similar to MCS’s, modular systems are also combinations of (usually) highly

complex primitive modules. Thus, the combined modular system represents an even more complex

entity. Therefore, to design a correct modular system, one needs some tools to help with checking

combined system’s correctness. This issue is addressed in [23, 61, 60]. Another issue that has been

partially developed for modular systems but has yet to be developed for MCS’s is the concept of

approximations. In modular system, approximations are used to rapidly approximate solutions of

some feedbacks in a modular system [187]. A similar concept can be developed for approximating

equilibria in multi-context systems. To summarize, we believe that the fields of modular systems

and multi-context systems share a great amount of mutual interest and that the connection between

these two directions should be studied formally.

4.9 Conclusion

In this chapter, we introduced a framework of modular systems and showed how it can be used for

modular declarative modelling. The framework allows primitive modules to be combined through

serial combination of modules (i.e, composition), parallel combination of modules (i.e., union),

abstraction operation (i.e., projection) and feedbacks. These operations may be viewed as a coun-

terpart of the well-known relational algebra operations, but on sets of structures rather than on rela-

tional tables. We defined two semantics for algebraic expressions representing modular systems – a

model-theoretic semantics and a semantics based on fixpoints of operators associated with modular

systems. We showed that these semantics are equivalent. Both of these semantics are defined so

that they are independent of how a module is specified, which can be done for example through a

decision procedure or through an axiomatization in some logic.

Moreover, we also introduced an operational view on (and structural operational semantics for)

modular systems and discussed the transient states of modular systems. Transient states can be used

to reason about modular systems even when the modular system does not have a fixpoint. A detailed

study of transient states of modular systems is a subject of future research.
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We also discussed the complexity and the expressiveness of modular systems framework in the

presence/absence of some of the operations used for combining modular systems. We showed that

both the operations of union and feedback are capable of creating a jump in the expressiveness of

modular system frameworks from ∆P
k to ΣP

k levels of the Polynomial time hierarchy.

An interesting application of the algebra of modular systems is that, for example, ASP programs,

viewed as individual modules, can be combined both disjunctively or using feedbacks. Although

useful from both the convenience of knowledge representation and extended formal expressiveness

point of view, these combinations were not possible in the context of ASP programs themselves.

The detailed study of how modular specification can affect answer set programming is a subject of

future research.

Our language-independent view on modular systems enabled us to develop an algorithmic schema

for solving modular systems abstractly (i.e., without concerning what language each module uses

internally). Our algorithm is designed to solve the model expansion task (i.e., to search for a solu-

tion) for modular systems that represent combinatorial search problems. We evaluated our algorithm

through abstractly modelling several existing systems, i.e., DPLL(T), ILP, and ASP+CP. We demon-

strated that, in the context of model expansion, our algorithm generalizes the work of these solvers.

We also showed that several different procedures that are used in different communities for informa-

tion propagation (such as unit propagation, well-founded model computation and arc-consistency

checks) can be unified as a single concept of an advice in our algorithm. Similarly, we argued that

our valid acceptance procedures also generalize similar concepts in different communities.

We extended our algorithmic schema for solving modular systems with an approximation mech-

anism that uses the operational view on modular systems. The algorithm extends a partial structure

with positive/negative facts about the possible solutions of the modular system. Our approxima-

tion mechanism is applicable for the case of positive/negative loops, i.e., modular systems that are

formed by creating a feedback from a symbol such as S to a symbol such as R and knowing that

S monotonically increases/decreases by increasing R. We also investigated some cases where such

monotonic properties guarantee the existence of a better (i.e., computationally less complex) pro-

cedure for solving modular systems. A more detailed analysis of other cases than can be used for

achieving solutions is an interesting future direction.



Chapter 5

Modular Systems with Supports

5.1 Motivation

In Chapter 4, we showed that the model-theoretical semantics of modular systems coincides with a

fixpoint semantics for the operational view on modular systems. The fixpoint semantics for modular

systems does not differentiate between different types of fixpoints. However, in practice, we are

usually interested only in “justifiable” fixpoints. The following example showcases our meaning of

a justifiable fixpoint:

Example 5.1 (Shopping) Consider John who needs to buy a set of matching clothes for a formal

event he would be attending. He has to choose his type of clothing (e.g. between a tie and a bowtie),

the color of the suit he is going to buy and the matching shirt. For example, if he buys a dark suit,

he will also have to buy a white shirt. An intended solution for this problem is a solution in which,

after shopping, John has a fully matching set of clothes.

In a fixpoint semantics such as the semantics of modular systems, one of the non-intended models

for this problem is that John would end up buying every possible set of matching clothes he can find

in a shopping mall. Although this solution satisfies his goal of having a set of matching clothes to

wear, it is an unreasonable solution because so much extravagance is unjustified: he would have

reached his goal with just one set of those clothes as well.

The problem in Example 5.1 is that fixpoint semantics does not provide any means for accom-

panying actions with their justifications. Under such a semantics, there is no easy way to guarantee

that John of Example 5.1 buys only one set of matching clothes. This type of problem happens in

124
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many other situations as well. One of the examples that is frequently referenced in the literature is

the connectivity example that follows.

Example 5.2 (Connectivity) You are given a set V of vertices and a set E of edges in a graph

and you are asked to find all pairs (u, v) of vertices such that u and v are connected through

edges in E. We know that this problem is polytime computable but if we try to formalize it as a

fixpoint compoutation, we would have something as follows: find the fixpoint of function CE(R) :=

E ∪ {(u, u) | u ∈ V } ∪ {(u, v) | ∃w ((u,w) ∈ E ∧ (w, v) ∈ R)}. However, we know that

the only interesting fixpoint for this function is its least fixpoint (which characterizes the solution

to our connectivity problem). Moreover, we also know that the connectivity problem cannot be

characterized as the fixpoint of any function that uses only first order sentences for constructing

sets.

Example 5.2 showcases a situation where not only is the notion of justification needed to obtain

a reasonable fixpoint semantics but also a situation where justifications can provide meaningful

information about connectivity of two nodes. The following example shows how justifications can

be used to identify paths between connected nodes.

Example 5.3 (Connectivity: Justifications as Paths) Consider the connectivity problem of Exam-

ple 5.2. Assume that, for each pair (u, v) ∈ R of connected nodes, we denote the justification for

connectivity of (u, v) using jR(u, v) which satisfies the following conditions:

if u = v then jR(u, v) = {},
if u 6= v and (u, v) ∈ E then jR(u, v) = {v}, and,

otherwise, jR(u, v) = {w} for some w such that (u,w) ∈ E and (w, v) ∈ R.

Note that, for all fixpoints R of CE (i.e., if R = CE(R)), at least one function jR(u, v) exists that

satisfies the required conditions because, if R is a fixpoint of CE and (u, v) ∈ R then at least one of

the conditions (1) u = v, (2) (u, v) ∈ E, or, (3) ∃w ((u,w) ∈ E ∧ (w, v) ∈ R) is true. Moreover, if

R is the least fixpoint of equation R = CE(R), we can define function jR(u, v) such that jR(u, v)

contains the last node visited in a path from u to v.

Such a justification function carries a very useful piece of information: the path that starts at u

and ends at v. This path can be computed as follows:

pathj(u, v) :=

{
[v] if u = v,

(u : pathj(w, v)) if u 6= v and j(u, v) = {w}.
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where [x] and (x : xs) respectively denote a list containing only one element x, and a list that starts

with element x and is followed by list xs (as is customary in functional programming languages).

Examples 5.1 and 5.2 define two cases when we are interested only in justifiable fixpoints and

not in all fixpoints. Moreover, Example 5.3 shows how certain justifications can contain useful infor-

mation about a model. It remains to see how exactly such useful justifications can be characterized.

Following example demonstrates the essential property that characterizes useful justifications in the

context of connectivity problem.

Example 5.4 (Connectivity: Non-circular Justifications) Again, consider the problem of connec-

tivity as in Example 5.2. Also, let R be a fixpoint of equation R = CE(R) and jR be a justification

function for R that satisfies the conditions of Example 5.3. Moreover, let us take our measure of

usefulness for a justification jR to be the finitude of lists created by function pathj . That is, for the

connectivity problem, we say that a justification function jR is useful if, for all (u, v) ∈ R, the list

created by pathj(u, v) is finite.

Note that, the finitude of a list created by pathj(u, v) is indeed an important property because

if pathj(u, v) is finite then it represents a path that starts at u and ends at v. This is because

the conditions on jR guarantees that, for all n < length(pathj(u, v)), the n-th element and the

(n+ 1)-th element of the list pathj(u, v) are connected to each other through an edge. Therefore, if

(u, v) ∈ R and pathj(u, v) is a finite list then pathj(u, v) witnesses the connectivity of u to v. Also,

since all fixpoints of equation R = CE(R) include all the connected pairs of vertices, the finitude

of pathj(u, v) for all (u, v) ∈ R witnesses the minimality of R, i.e., R includes all and only the

connected pairs of vertices.

So, our question now is how we can characterize the finitude of list pathj(u, v) for all (u, v) ∈
R. For finite graphs, this property can be easily guaranted: pathj(u, v) is finite if and only if

pathj(u, v) contains each vertex at most once. This is because (1) pathj(u, v) would be finite if it

contains each vertex at most once (there are only finitely many vertices in a finite graph), and, (2)

if pathj(u, v) contains a vertex w twice it means that pathj(w, v) depends on itself and, thus, the

construction of pathj(w, v) will not finish in a finite number of steps and, so, pathj(u, v) will be

infinite. Hence, in finite graphs, pathj(u, v) is finite for all (u, v) ∈ R if and only if the definition of

pathj(u, v) is non-circular for all (u, v) ∈ R.

Henceforth, justification function j is useful if and only if j(u, v) does not depend on u (either

directly or indirectly) for all (u, v) ∈ R.
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Example 5.4 shows how the non-circularity of justifications help us characterize useful justi-

fications for connectivity problem in finite graphs1. Interestingly, the condition of non-circularity

characterizes many other useful justification functions as well. For example, both the semantics of

Horn formulas and stable model semantics can be characterized as sets of “reasonable” fixpoints

with non-circular (and well-founded) justifications [134]. Example below demonstrates this corre-

spondence in the case of stable model semantics for normal propositional logic programs.

Example 5.5 (Stable Model Semantics: Well-justified) Consider a normal propositional logic pro-

gram P , i.e., P is a set of rules of form h ← b1, · · · , bk,not bk+1, · · · ,not bn where h and

b1, · · · , bn are propositional atoms. Then, by [134], we know that for all sets S of propositional

atoms, S is a stable model of P if and only if a well-founded ordering < on S exists so that, for all

a ∈ S, we have a rule a← b1, · · · , bk,not bk+1, · · · , bn in P such that:

for all 1 ≤ i ≤ k, we have bi ∈ S and bi < a, and,

for all k + 1 ≤ i ≤ n, we have bi 6∈ S.

Together, Examples 5.1 – 5.5 show the importance of non-circular and well-founded justifica-

tions in characterizing intended models of a system. In this chapter, we want to augment modular

systems with a similar notion of justifications. As we show in this chapter, adding justifications to

the semantics of modular system extends the expressiveness of our modular system framework.

Contributions

The following summarizes our contributions in this chapter.

Justification and Support for Models of Primitive Modules

We augment primitive models of a modular system with the notions of justification and support

functions for their models. In essence, each justification function justifies one of the models of a

primitive module. Also, support functions assign possible justification functions to a model, i.e., a

single model might be associated with several different justification functions.

1For infinite graphs, useful justifications can be characterized as those justifications that are both non-circular and
well-founded. However, since the proof is more involved and is not directly related to our discussion in this chapter, we
do not discuss this more general case in this chapter.
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Extending Support to Combined Modular Systems

We recursively define meaningful support (and justification) functions for combinations of modular

systems by combining the support functions of combined modules. We show the usefulness of our

definitions through several natural examples.

Defining Supported Model Semantics for Modular Systems

We define supported model semantics of modular systems to accept exactly those models of a mod-

ular system that are supported. We show that this definition captures the idea of non-circular and

well-founded justifications and that many non-trivial semantics can readily be defined in terms of

supported semantics for modular systems. We also show that supported model semantics generalizes

the previous model-theoretical semantics for modular systems.

Expressing Equilibria of Multi-context Systems using Supported Model Semantics

We show that, the class of multi-context systems with structural belief sets, can be naturally trans-

lated into a modular system under supported model semantics. We show that our translation is robust

enough to be extended to multi-context systems with variables in their bridge rules.

Expressing Grounded Equilibria of Multi-context Systems using Supported Model Semantics

Similar to the previous case, we also translate multi-context systems under grounded equilibrium

semantics to modular systems under supported model semantics. Interestingly, the translation we

use for both these multi-context systems is similar to each other and the only difference between

these two translations is the justification functions of the primitive modules in these two translations.

Therefore, supported model semantics effectively generalizes the two different semantics of normal

and grounded equilibria for multi-context systems.

5.2 Background

Atoms in Structures

Recall that a structure A is a domain (a set of abstract elements denoted by dom(A)) plus an in-

terpretation of its vocabulary symbols (denoted by vocab(A)). While this definition satisfactorily
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represents structures, in this chapter, we represent structures in a different form that is best suited to

the goals of this chapter.

Let A be a structure and let Sr and Sf be, respectively, the set of relational and functional

vocabulary symbols of A (constants are zero-ary functions). Then, we represent A by its domain

plus the set of its truth assignments as follows:

1. For each n-ary relational vocabulary symbol R ∈ Sr and for each n-ary tuple t ∈ RA, the

truth assignments of A include atoms of form Rt.

2. For each n-ary functional vocabulary symbol f ∈ Sf and for each n-ary tuple t ∈ [dom(A)]n,

the truth assignments of A include atoms of form ft7→a where a ∈ dom(A) is such that

fA(t) = a.

3. Truth of assignments of A does not contain anything else.

In other words, the set of A’s truth assignments is the following set:

{Rt | R ∈ vocab(A), R is a relational symbol, and t ∈ RA} ∪
{ft7→a | t ∈ [dom(A)]n, f ∈ vocab(A), f is a functional symbol, and fA(t) = a}.

Moreover, although tuples are normally encapsulated in angled brackets 〈.〉, for unary tuples,

we sometimes drop these brackets and write Ra and fa7→b instead of, respectively, R〈a〉 and f〈a〉7→b.

Also, for zero-ary vocabulary symbols, we may use R or fa to respectively denote R〈〉 or f〈〉7→a.

Furthermore, we use the term atom (or true atom) of a structure A to denote a member of A’s truth

assignments. Also, we denote truth assignments of A by at(A) (read atoms of A).

5.3 Modular Systems Extended

This section generalizes modular systems of Chapter 4 with supported supported semantics. Infor-

mally speaking, supported semantics augments each model with some possible justification func-

tions for that model. While the model itself carries the membership information for tuples, the

justification functions carry some information in addition to these membership information: they

partially reason about why each tuple is present in a model.

Recall that one of the great properties of modular systems is their language-independence that

was achieved through using a model-theoretic semantics. Therefore, in this section, we also define

supported semantics model-theoretically to preserve the language-independence property. We begin

our study by defining justifications of models in a modular system.
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Definition 5.1 (Justification for Models) Let M ∈ MS(σ, ε) be a modular system and let B ∈ M
be a model of M . Then, a function j : at(B|ε) 7→ P(at(B)) that maps each true atom of B’s

expansion vocabulary to a subset of B’s true atoms is called a justification function if and only if a

well-founded ordering < on at(B|ε) exists such that:

for all Rt ∈ at(B|ε) and for all St′ ∈ (j(Rt) ∩ at(B|ε)) we have St′ < Rt.

Note that Definition 5.1 disallows circular justifications as desired and in accordance with mo-

tivations in Section 5.1. This is because, if something depends on itself, by transitivity of ordering

relations, we should have Rt < Rt (for some Rt ∈ at(B|ε)) which is impossible in all orderings.

Now, let us apply this concept to our example of connectivity in graphs.

Example 5.6 (Connectivity Module) Consider modular system MC ∈ MS({E}, {R}) that com-

putes connected pairs R of vertices from the set E of a graph’s edges. Also, let B ∈MC be a model

of MC and define sets Sn (for n ∈ N) as follows:

S0 := {(u, u) | u is a vertex},
Sn+1 := Sn ∪ {(u, v) | vertex w exists s.t. (u,w) ∈ EB and (w, v) ∈ Sn}.

By definition of connectivity, we know that RB :=
⋃
n∈N S

n. Now, define rank(u, v) to be the

smallest n such that (u, v) ∈ Sn. Then, a function j is a justification function for B if it satisfies the

following:

j(R〈u,v〉) :=

{
{} if rank(u, v) = 0,

{E〈u,w〉, R〈w,v〉} if (u,w) ∈ EB and rank(u, v) > rank(w, v).

Note that, in Definition 5.1 and, thus, also in Example 5.6, a justification function is defined

only on true atoms of output vocabulary, i.e., true atoms of B|ε. This is because each module is

only responsible for what it generates (i.e., the outputs of the module) and not what it is given

(i.e., module’s inputs) and, thus, the only reasonable justification one can expect from a module is

justification of its outputs. For example, in the connectivity problem, it is reasonable to ask MC to

justify the truth of R(a, b) (because R(a, b) is generated by MC) but it is unreasonable to ask MC

to justify the existence of an edge between vertices a and b (because MC only receives edges in its

input). The justification for truth of E(a, b) should be requested from the module that has generated

interpretation of E or the user of a modular system that has given E as an input.

Informally speaking, justification functions justify true atoms of a structure based on its other

(better founded) true atoms. For example, if we have j(Ra) = {Sa, Sb}, it means that the presence
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of tuple 〈a〉 in interpretation of RB is justified by Sa and Sb. However, justifications usually refer

to incomplete conditionals and should not be misunderstood with logical implication. That is, the

fact that Ra in B is justified by Sa and Sb does not logically imply that whenever Sa and Sb are true

atoms of a model then Ra is also a true atom of that model. For example, M might have another

model B′ such that Sa, Sb ∈ at(B′) butRa 6∈ at(B′). So, a true atom being justified by a set of other

true atoms should not be mistaken with a true atom being implied by that other set of true atoms.

Let us now define support functions for modular systems.

Definition 5.2 (Support Functions for Modular Systems) Let M ∈ MS(σ, ε) be a modular sys-

tem. A support function for modular system M , denoted by SupM is a function that associates each

model B of M with a set of justification functions for B, i.e., we have:

if B ∈M and j ∈ SupM (B) then j is a justification function for B.

Based on Definition 5.2, SupM (B) is a collection of different possible justifications for structure

B. The following example shows how to define a support function for our connectivity module.

Example 5.7 (Connectivity Module’s Support Function) Consider moduleMC from Example 5.6.

For model B ∈MC , define SupMC
(B) to be the set of all justification functions for structure B that

satisfy the conditions of Example 5.6.

Note that, based on Definition 5.2, some model B of a modular system M might be unjustified,

i.e., SupM (B) := {}. Moreover, as we showed in Examples 5.1 – 5.3, using non-circular and well-

founded justifications, we can model many problems more naturally. Therefore, we define supported

model semantics as follows.

Definition 5.3 (Supported Model Semantics for Modular Systems) Let M ∈ MS(σ, ε be a mod-

ular system, SupM be a support function for M and B be a (σ ∪ ε)-structure. Then, B is a sup-

ported model of M if (1) B ∈ M , i.e., B is a model of M , and (2) SupM (B) 6= ∅, i.e., B is

supported. Also, supported semantics of modular systems is defined to be a semantics for modular

systems whose intended models are exactly the set of supported models of M . Moreover, we use

Sup[M ] := {B | B ∈M and SupM (B) 6= ∅} denotes the set of supported models of M .

Definition 6.1 distinguishes supported models simply as models with at least one possible jus-

tification. Next, we want to specify how support functions of complex modules can be obtained

using support functions of their constituents, e.g., how SupM1�M2 is defined in terms of SupM1

and SupM2 . Definitions 5.4–5.7 specify how support functions are combined together.
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Definition 5.4 (Support of Composition M1 �M2) Let M := M1 �M2 be a well-formed mod-

ular system and let Sup1 and Sup2 respectively denote support functions of modular systems

M1 and M2. Then, support function SupM for composition of M1 and M2 is defined as fol-

lows. For each model B ∈ M , we define SupM (B) to contain exactly those justification functions

j : at(B|εM ) 7→ 2at(B) that are obtained by combining some j1 ∈ Sup1(B|vocab(M1)) and some

j2 ∈ Sup2(B|vocab(M2)) as below:

j(Rt) :=

{
j1(Rt) if R ∈ εM1 ,

j2(Rt) if R ∈ εM2 .

More intuitively, every justification function j ∈ SupM1�M2(B) behaves as a justification function

ofM1 when applied on output vocabulary symbols ofM1 and as some other justification ofM2 when

applied on ourput vocabulary symbols of M2. Proposition below states that the function defined by

Definition 5.4 is indeed a support function according to Definition 5.2.

Proposition 5.1 Let M := M1 �M2 be a well-formed modular system. Then, SupM as in Defini-

tion 5.4 is well-defined.

Proof: First, since M is well-formed, outputs of M1 and M2 do not interfere, i.e., εM1 ∩ εM2 = ∅.
Therefore, the two cases in Definition 5.4 are mutually exclusive. Also, since εM = εM1 ∪ εM2 , the

two cases in Definition 5.4 cover all possible cases.

Second, every j ∈ SupM (B) defines a non-circular and well-justified justification function. To

prove this, let ji ∈ Supi(B|vocab(Mi) (for i ∈ {1, 2}) be the two justifications functions that are

combined to form function j. Also, let <1 and <2 be two well-founded orderings that witness non-

circularity of j1 and j2 respectively. Then, it is easy to check that well-founded ordering < defined

below witnesses the non-circularity of justification function j. For Rt, St′ ∈ at(B|εM ) we have:

Rt < St′ ⇔ one of


R,S ∈ εM1 and Rt <1 St′ ,

R, S ∈ εM2 and Rt <2 St′ , or,

R ∈ εM1 and S ∈ εM2

 holds.

Let us now define how support functions change under the projection operator in modular sys-

tems. This is much more involved than the previous case because projection hides some of the true

atoms that might have been used to justify other atoms. Therefore, in order to find a justification

function after a projection, we need a process of “unwinding” that we define below.
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Definition 5.5 (τ -Unwinding) Let M ∈ MS(σ, ε) be a modular system, B ∈ M be a model of M ,

j be a justification function for B, and let τ ⊆ ε be a subset of output vocabulary symbols. Then,

the result of unwinding j according to τ is the limit of function series fn (for n ∈ N) defined below.

All functions fn map at(B|ε) to 2at(B):

f0(Rt) = j(Rt),

fn+1(Rt) = {St′ | St′ ∈ fn(Rt) and S 6∈ τ} ∪
⋃
{fn(St′) | St′ ∈ fn(Rt) and S ∈ τ}.

Note that Definition 5.5 is well-defining because the function series fn always has a limit. This

is because, by definition, justification functions are well-founded and non-circular. Therefore, there

is no infinite descending chain of true atoms and, hence, for each atom Rt ∈ B|(ε\τ), there exists a

natural number n such that, for all n′ > n, fn
′
(Rt) = fn(Rt). Using the notion of unwinding, we

can define the support functions of the projection operator as follows.

Definition 5.6 (Support of Projection) Let M ′ := πτ (M) be a well-formed modular system, B′ ∈
M ′ be a model of M ′, and SupM be a support function for M . Then, SupM ′(B′) is the set of

functions j′ : at(B′|εM′ ) 7→ at(B′) for which structure B and function j exist such that (1) B ∈M ,

(2) B|τ = B′, (3) j ∈ SupM (B), and, (4) unwinding j according to vocabulary (vocab(M) \ τ)

produces a function f such that j′(Rt) = f(Rt) for all Rt ∈ at(B′|εM′ ).

Informally speaking, Definition 5.6 says that a model B′ of M ′ is justified if B′ can be expanded

to a model B of M (the underlying not-projected modular system) such that justifications of atoms

in at(B|ε) does not depend on the choice of atoms in at(B′) \ at(B).

The following definition shows how support functions are defined after applying feedback oper-

ations. Remember that each feedback operation changes one input vocabulary symbol to an output

vocabulary symbol. Therefore, the new justification function should also justify the atoms of the

new output vocabulary symbol.

Definition 5.7 (Support of Feedback M [P = Q]) Let M ′ := M [P = Q] be a well-formed modu-

lar system withP ∈ σM andQ ∈ εM . Then, SupM ′(B) is the set of all functions j′ : at(B|(εM∪{P})) 7→
2at(B) such that:

(1) j′(Pt) = {Qt},
(2) justification function j ∈ SupM (B) exists so that j′(Rt) = j(Rt) for all Rt ∈ at(B|εM ), and,

(3) j′ is well-founded and non-circular, i.e., well-founded ordering< on at(B|(εM∪{P})) exists such

that, for all Rt, St′ ∈ at(B|(εM∪{P})), if St′ ∈ j′(Rt) then St′ < Rt.
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Informally speaking, a feedback operator is saying that all atoms of B|εM are justified as before

and the atoms of the new output vocabulary symbol P are simply justified through the atoms of Q

(because P ’s interpretation is exactly Q’s interpretation). However, feedbacks can generate self-

justifying loops because atom Qt might have been justified (either directly or indirectly) by Pt in

M . In such a situation, adding feedback creates circular justifications because Qt is justified by

Pt as before, and Pt is now justified by Qt. In order to disallow such circular justifications, the

third condition of Definition 5.7 is added to guarantee that j′ is a well-founded and non-circular

justification function.

Definition 5.8 (Support of Union) Let M := M1 ∪M2 be a well-formed modular system, B ∈M
be a model ofM , and Sup1, Sup2 be support functions forM1 andM2 respectively. Then SupM (B)

is the set of justification functions j : at(B|εM ) 7→ 2at(B) such that the following conditions is true

for either i = 1 or i = 2: B|vocab(Mi) ∈ Mi and justification function j′ ∈ Supi(B|vocab(Mi))

exists such that (a) j(Rt) = j′(Rt) for all Rt ∈ at(B|εMi ), and, (b) j(Rt) = {} for all Rt ∈
(at(B|εM ) \ at(B|εMi )).

Now that we have defined all support functions for all operations of a modular system, we can

state some of the properties of supported model semantics for modular systems. The first property

that follows states that supported model semantics generalizes the model-theoretical semantics. We

obtain this result through using a naive justification function known as empty justification that is

defined below.

Definition 5.9 (Empty Justification) Let M ∈ MS(σ, ε) be a modular system and B ∈ M be a

model of M . Then, the justification function e : at(B|ε) 7→ 2at(B) where e(Rt) := {} for all

Rt ∈ at(B|ε) is called the empty justification for B. Also, the support function Sup∅ of M that

associates all B ∈M to singular set {e} is called the empty support function of M .

Theorem 5.1 Let M ∈ MS(σ, ε) be a well-formed modular system so that all primitive modules of

M are supported by the empty support function Sup∅. Then, for all (σ ∪ ε)-structures B, we have

that B ∈M if and only if B is a supported model of M .

Proof: (⇐) If B is a supported model of M , by definition, it should also be a model of M .

(⇒) A simple induction on the structure ofM shows that for all subsystemsM ′ ofM , SupM ′(B′) =

{e} (for all B′ ∈ M ′). Therefore, taking M ′ := M and B′ := B, we have empty justification
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function e ∈ SupM (B). Therefore, B is a supported model of M because it is a model of M by

assumption and it is justified.

Theorem 5.1 states that supported model semantics naturally generalizes the model-theoretic

semantics for modular systems. Moreover, it states that empty justification functions define the

essence of the model-theoretic semantics for modular systems. That is, when justification functions

do not provide any extra information about possible reasons for believing in something, every model

is as reasonable as every other model. Of course, when we use some non-trivial justification func-

tions except the empty justification function, some models (i.e., supported models) become more

reasonable than other models (i.e., non-supported models).

In the next section, we show that supported model semantics for modular systems is expres-

sive enough to include both the equilibrium semantics of multi-context systems and the grounded

equilibrium semantics of multi-context systems (when contexts use structural belief sets).

5.4 From Multi-Context to Modular Systems

This section establishes a formal connection between the expressiveness of multi-context systems

and that of modular systems. We show that, in the presence of some very basic modules, multi-

context systems can be encoded as modular systems. In order to do so, we give a natural translation

T from MCSs to modular systems such that changing the support functions of primitive modules of

the resulting modular system, we can characterize both the equilibrium semantics and the grounded

equilibrium semantics of MCSs in terms of supported models of the resulting modular system.

Therefore, we prove that supported model semantics of modular systems generalizes and inifies

both types of equilibrium semantics (grounded or not) of multi-context systems.

5.4.1 Encoding MCSs and Equilibria

We first translate multi-context systems to modular systems and then talk about two possible choices

as the support functions of the primitive modules used in our translation. As modular systems do

not support bridge rules, we encode bridge rules using modules that perform relational algebraic

operations. In our translation, we assume that each such operation is modeled by a primitive module.

We use M1 for performing relational algebraic join, M∪ for performing relational algebraic union,

MΠ for performing relational algebraic projection, and MCompl for performing relational algebraic

complementation. We put a lot of emphasize on the term “relational algebraic” to make sure that the

reader understands the difference between, e.g., primitive moduleM∪ and modular system operation
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∪: the former is a primitive module in modular system that performs the operation of union on its

input vocabulary and generates some output while the latter is not a primitive module but is an

operation that combines two modular systems.

Model-theoretic assumptions on MCS

For simplicity of the exposition, we focus on multi-context systems for which the belief sets BSLi
of the logic Li of each context Ci = (Li, kbi, bri) is a class of (relational) structures over some

fixed vocabulary τi, where each structure corresponds to a belief set2. The vocabulary τi contains,

in particular, all symbols that are associated with context Ci in some bridge rule of the multi-context

system. Without loss of generality, we assume that τi∩ τj = ∅ for i 6= j. For a multi-context system

MCS = (C1, . . . , Cn), its vocabulary is the union of the vocabularies of its contexts, τ :=
⋃n
i=1 τi.

Translation T (from MCS to modular systems)

Let MCS := (C1, . . . , Cn). For each vocabulary symbol P of MCS, introduce a new symbol P ′

of the same type and arity. We use these new symbols to create loops and simulate information

propagation through bridge rules. Also, let us denote pairwise equalities on primed and unprimed

symbols in Ci by P ′i = Pi. Then,

T [MCS] := (TC [C1] ∩ · · · ∩ TC [Cn])[P ′1 = P1] . . . [P ′n = Pn],

Translation TC of contexts

Translation of Ci := 〈Li, kbi, bri〉 passes information from the translation of bridge rules to the

translation of contexts:

TC [Ci] := T br[bri] � TL[kbi;Ci].

Translation TL of knowledge bases

Let Ci := 〈Li, kbi, bri〉 and let τi be the vocabulary of Ci. Also, let H1, · · · , Hm be new sym-

bols that represent heads of rules in bri. Now, TL[kbi;Ci] is a primitive module M with σM =

{H1, · · · , Hm}, εM = τi and:

B ∈M ⇐⇒ B|τi ∈ ACCL(kb ∪ {Hi(ā) | ā ∈ HBi }).

2Non-structural belief sets can be encoded as structures for the purpose of this translation but we are not concerned
with this encoding here.
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Translation T br of bridge rules

Bridge rules are translated to model their computation using relational algebra, i.e., (1) complement

the interpretation of negated literals usingMCompl, (2) join the interpretation of positive literals with

the complemented interpretation of negative literals using M./, (3) project the joint interpretation

according to variables present in the head using Mπ, and, (4) finally, use M∪ to compute the union

of all projected interpretations for rules with the same symbol in their head. This is done by first

partitioning br to subsets br1, . . . , brm based on the head of rules, i.e., r, r′ ∈ bri ⇔ hd(r) = hd(r′).

Then, we have:
T br[br] := T p[br1] ∩ · · · ∩ T p[brm],

T p[{r1, . . . , rk}] := (T r[r1] ∩ · · · ∩ T r[rk]) �Mp
∪,

where T r[r] translates one bridge rule and Mp
∪ performs the union operation3. The output vo-

cabulary of module Mp
∪ is the symbol H that appeared before. The input vocabulary of Mp

∪ is

{Pr1 , . . . , Prk} with each Pri denoting output of one rule construction.

Translation of rule r, T r[r], is obtained by composing T body[r] (translation of r’s body) and M r
π

as follows:
T r[r] := T body[r] �M r

π,

T body[r] := (
⋂
P∈body−(r)M

P
Compl) �M r

./,

Translation of r’s body, as before, is computed by joining either the predicates themselves or their

complement (through MP
Compl).

5.4.2 Support Functions of Primitive Modules in Translation T

Translation T that we gave in the previous section defined the structure of a modular system. How-

ever, in order to be able to use supported model semantics for this modular system, we should

define a support function for every primitive module used in this translation. The primitive modules

we used in translation T were divided into two categories: the primitive modules that performed

relational algebraic operations, and the primitive modules that represented a context.

Here, we specify the support functions of all relational algebraic primitive modules and leave

the specification of support functions for context modules to the next sections:

Complement: Sup¬(B) = {e} where e is the empty justification function as in Definition 5.9.

3Mp
∪ performs a standard relational algebraic operation and should not be confused with the operation that combines

modules.
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Join: Sup./(B) = {j} where j(Rt) is the set of atoms St′ with S ∈ σM./ , t′ ∈ SB, and S(t′) ∈
body+(r) where r is the bridge rule represented by M./.

Projection: Let σ = {S} and ε = {R} be the input and output vocabulary of the projection module.

Then, Supπ(B) is the set of all mappings that take Rt to a set {St′} where t′ ∈ SB and t′

matches t on all projected columns (according to Mπ).

Union: If σM∪ = {S1, · · · , Sn} and εM∪ = {R}, then Sup∪(B) is the set of all different mappings

that take Rt to the singleton set {Sit′} with 1 ≤ i ≤ n and t ∈ SiB .

Intuitively, each justification function for an algebraic relational operation says why each tuple

is present in the result of that operation according to the operator’s semantics. For example, the

semantics of algebraic operation π1 is to keep just the first element of each tuple and discard the

rest. Therefore, justification jπ1(Ra) can be either {S〈a,b〉} or {S〈a,b〉} but not {S〈b,a〉}.

5.4.3 Expressing Equilibrium Semantics of MCSs using Supported Model Semantics

In this part, we use the empty support function for supporting primitive modules that represented

contexts in the translation given by T before. Now, we want to prove that the supported models of

modular system obtained by T [MCS] correctly represents MCS (under equilibria semantics). We use

vocab(Si) to refer to the vocabulary of structure Si.

Definition 5.10 Consider belief state S := (S1, · · · , Sn) such that vocab(Si) ∩ vocab(Sj) = ∅
(for i 6= j). Also, let D1, · · · , Dn be n new unary predicate symbols. Structure B over vocabulary

{D1, · · · , Dn}∪
⋃
i∈{1,··· ,n} vocab(Si) represents belief state S if: (1) dom(B) = dom(S1)∪· · ·∪

dom(Sn), (2) DBi = dom(Si) for i ∈ {1, · · · , n}, and, (3) RB = RSi if R ∈ vocab(Si).

Definition 5.11 A modular systemM correctly represents multi-context system MCS = (C1, · · · , Cn)

under equilibria semantics if for all belief states S = (S1, . . . , Sn) and its corresponding structure

B, B ∈M iff S is an equilibrium of MCS.

Theorem 5.2 Let MCS be a multi-context system and M := T [MCS]. Also, let the relational

algebraic primitive modules of M use support functions as in Section 5.4.2 and contextual primitive

modules ofM use the empty support function. Then,M correctly represents MCS under equilibrium

semantics.

Proof: (⊆) Let S = (S1, · · · , Sn) be an equilibrium of multi-context system MCS. We prove that

the structure B which represents S is a supported model ofM . Firstly, a simple induction shows that
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M has the empty support function for all its model. So, we only have to show that B is a model of

M . By definition of representation, B|vocab(Si) = Si. Let B′ be a structure such that B′|vocab(B) = B
and B′ satisfies the join, union, projection and complement primitive modules in T [MCS]. Note

that such B′ always uniquely exists (because join, union, projection and complement modules are

total and deterministic). Now, note that the set of true atoms in B′|σMi is {head′(r) | r ∈ bri and

r applicable under S}. Therefore, as S is an equilibrium of MCS and vocab(Si) = σMi ∪ εMi , we

have that B′|εMi ∈ ACCi(kbi ∪ σ
B
Mi
}. So, B′|vocab(Mi) ∈Mi. Hence, B ∈M .

(⊇) Let B be a supported model of M . By definition, B is also a model of M . We prove that the

belief state S = (S1, . . . , Sn) which is represented by B is an equilibrium of MCS. Because of join,

union, projection and negation modules being total and deterministic, there exists unique B′ which

satisfies all the primitive modules of M and B′|vocab(B) = B. Also, by semantics of these relational

algebraic modules, we know that at(B′|σMi ) = {head′(r) | r ∈ bri and r is applicable under S}.
Also, as B′|vocab(Mi) ∈ Mi, we know that Si ∈ ACCi(kbi ∪ σBMi

). Therefore, S is an equilibrium

of MCS.

Generalizing to rules with variables

The original definition of multi-context systems disallows bridge rules with variables, but when

limited to contexts with structural belief sets (as in our case), the original definition can easily be

generalized to accommodate variables under the usual assumptions of multi-sorted logics (that are

needed because belief sets might have different domains). Such an extension of multi-context system

is proposed in [71]. Theorem 5.2 is still correct under such extensions (i.e., if variables are present

and usual assumptions on multi-sorted logics are guaranteed). This further proves the robustness of

supported model semantics for modular systems.

5.4.4 Translating Grounded Equilibria

Another semantics for multi-context systems is the grounded equilibrium semantics that is defined

for the reducible subset of multi-context systems. Here, we show that grounded equilibria can

also be represented in the extended modular system semantics. Moreover, we use exactly the same

translation T as in Section 5.4.1 except that, now, we use different support functions for the primitive

modules that represent contexts in the translation T . Note that, here, we also use the same support

functions for other relational algebraic primitive modules as given in Section 5.4.2.

So, it only remains to define support function of context modules. Since contexts are reducible



CHAPTER 5. MODULAR SYSTEMS WITH SUPPORTS 140

here, we use the reducibility condition to define the proper support function. By definition of TL,

σM := {H1, · · · , Hn} (symbols occurring in the head of rules in br) and εM := {R1, · · · , Rm}
(symbols from context C that occur in the body of some bridge rule in the multi-context system).

Now, define SupM (B) to be the set of all mappings from Riā to a minimal set H ′ satisfying the

following conditions:

H ′ ⊆ H1B ∪ · · · ∪HnB and,

{S} = ACC(redL(kb ∪H ′,B))⇒
∧
i∈{1,··· ,m}R

iB ⊆ S.

Now, we want to show that, using these support functions for primitive modules, supported

models of T [MCS] uniquely correspond to grounded equilibria of MCS. We first prove this property

for the case of MCS being a definite multi-context system and then extend it to the general case of

all reducible multi-context systems.

Proposition 5.2 Let MCS be a definite multi-context system andM := T [MCS]. Also, let relational

algebraic primitive modules ofM be supported by functions given in Section 5.4.2 and context mod-

ules of M be supported by the minimality-based function above. Then, M has a unique supported

model B that represents the unique minimal equilibrium of MCS.

Proof: By Theorem 5.2, we know that the all equilibria of MCS are models of M . So, we only

have to show that: (1) the unique minimal equilibrium of MCS is supported, and (2) M has only one

supported model.

To prove the former, by [25], we know that S := (S1, . . . , Sn) (where {Si} = ACCi(kb
∞
i )) is

the unique minimal equilibrium of MCS. Let B represent S, and let ordering <j be such that, for

Rt ∈ Sj and R′t′ ∈ Sk, we have Rt <j R′t′ if and only if ordinal α exists such that Rt ∈ Eαj } but

R′t′ 6∈ Eαk (where {Eαm} = ACC(kbrm) as in [25]). Applied to Definition 5.7, ordering<j witnesses

that SupM (B) 6= ∅ and, thus, B is supported.

To prove the latter, let B be a supported model of M . Since B is a supported model, it is justified by

a well-founded and non-circular justification function j. Let us define series Bα as follows:

B0 := {Rt | j(Rt) = ∅},
Bα+1 := Bα ∪ {Rt | j(Rt) ⊆ Bα},
(if α is a limit ordinal) Bα :=

⋃
β<α Bβ.

Since j is well-founded and non-circular, at(B) =
⋃
α Bα. Now, we use a straightforward induction

to show that, for all α, we have Bα represents belief state Eα := (Eα1 , · · · , Eαn ) with {Eαi } =
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ACC(kbαi ) as in [25]. Hence, B represents a minimal equilibrium of MCS and, since MCS has only

one minimal equilibrium, only one such B exists. That is, M has only one supported model.

Definition 5.12 A supported modular systemM correctly represents a multi-context system MCS =

(C1, C2, · · · , Cn) under grounded equilibrium semantics if for all belief states S = (S1, · · · , Sn)

and its corresponding structure B, we have B is a sup. model of M ⇔ S is a grounded equilibrium

of MCS.

Theorem 5.3 Let MCS be a reducible multi-context system and M := T [MCS] be such that re-

lational algebraic primitive modules of M are supported by functions given in Section 5.4.2 and

context modules of M are supported by minimality-based support functions defined in this section.

Then, M correctly represents MCS under grounded equilibrium semantics.

Proof: Let M ′ be the positive part of M , i.e., the part without primitive modules for negation.

Now, take grounded equilibrium S and its representation B. By Proposition 5.2, B is the unique

supported model of M ′. Therefore, B is a supported model of M because all the outputs of the

negation modules are always returns trivially supported (by definition of support function in negation

modules).

Also, if B is a supported model of M then B is also a supported model of M ′ (defined as above).

So, by Proposition 5.2, belief state S represented by B represents the unique minimal equilibrium

of MCSS and, therefore, a grounded equilibrium.

Together, Theorems 5.2 and 5.3 show that both MCSs under equilibrium semantics and MCSs

under grounded equilibrium semantics can be naturally translates into a modular system under sup-

ported model semantics. Thus, we showed that supported model semantics generalizes and unified

the two different semantics of multi-context systems: its equilibrium semantics and its grounded

equilibrium semantics.

5.5 Conclusion and Future Directions

In this chapter, we showed that the concept of support in modular systems is useful for naturally

representing many sets of intended models. We also showed that modular system operators that

combine more primitive modules can be easily and naturally extended to allow justification func-

tions and support functions. We also showed that our new supported model semantics for modular

systems generalizes our previous model-theoretical semantics for modular systems. In this chap-

ter, we defined supported model semantics using a model-theoretical viewpoint. However, similar
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to Chapter 4, we believe that a there exists a useful functional viewpoint that corresponds to out

model-theoretical treatment of supported model semantics. Studying this functional viewpoint is a

future direction to extend this research.

Moreover, in this chapter, we showed that supported model semantics for modular systems is

expressive enough to unify two different semantics that have previously been defined for multi-

context systems. Therefore, we now have a formal comparison between the expressive power of

these modular systems and the expressive power of multi-context systems. Secondly, we showed

that capturing the two different semantics of multi-context systems is doable by just changing the

support function for the modules that represent a context. In this chapter, we studied only two of

these support functions for context modules. It is left to study what other interesting and meaningful

support functions can be used for the underlying primitive modules to obtain other useful semantics

for multi-context systems.

More importantly, through relating modular systems to multi-context systems, we have provided

the necessary means to cross-fertilize these two different but related frameworks for interlinking

knowledge bases. For example, a consequence of Theorem 5.2 is that the search for equlibria in

multi-context systems can be performed using the algorithm we developed in chapter 4 for finding

solutions to modular systems. An interesting future research direction is to extend that algorithm to

handle modular systems with supported vocabularies, and to apply it for finding grounded equilibria

of multi-context systems.

Finally, another future direction that uses the results of this chapter is to develop diagnosis pro-

cedures similar to [23, 61] for modular systems under supported model semantics and thus helping

users of modular system framework to find and fix bugs in a complicated modular system.



Chapter 6

Supported Semantics for Propositional
Logic Programs

6.1 Introduction

Answer set programs constitute one of the most important declarative programming paradigms that

are readily available and actively being expanded. Stable model semantics is the semantics be-

hind the success of answer set programming. Stable model semantics is proven to be suitable for

declarative specification of many tasks, specifically those that require non-monotonic reasoning or

reasoning about beliefs of agents. Due to this success, there has been many efforts to extend this

semantics to a more general class of programs (i.e., to lift the restriction on answer set programs

to have the form of either a normal or a disjunctive logic program). Such efforts mainly fall into

two categories: (1) those with a practical goal to extend the language of answer set programs with

specific constructs such as aggregates, and, (2) those with a fundamental approach that bring new

insights into the stable models themselves.

This chapter falls into the second category above because we are not motivated by a particular

construct for which a semantics is needed. Instead, what motivates us is a combination of the

following: (1) pure interest in the philosophy of stable models, (2) practical need to extend stable

models to the full propositional language, and, (3) the current shortcomings of existing extensions

of stable model semantics.

We believe that the main philosophical principle behind the development of stable models (and

the reason for its success) is the principle of rationality: all atoms in all stable models are justified

143
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and justifications are well-founded (not circular). This principle is sometimes known as the property

of being strongly grounded and is, of course, useful when modeling the set of possible belief sets

of rational agents. It was first noted in [154] that one of the places where non-monotonic reasoning

excels is to model the process of reasoning about knowledge and, thus, autoepistemic reasoning was

introduced. Later, in their seminal paper introducing stable model semantics, Gelfond and Lifschitz

[89] noted that stable models also serve the same purpose. Therefore, we expect extensions of

stable model semantics to also adhere to the same philosophical principle and disallow self-justified

models.

As we see in Examples 6.1 and 6.2, neither of the two main extensions of stable model semantics

(i.e., equilibrium model semantics [164] and FLP semantics [67]) guarantee this desired property.

Our examples demonstrate cases where FLP semantics and equilibrium models do not agree. We

argue that, in the first case, the natural interpretation is the one given by FLP semantics, while, in

the second case, equilibrium models give the more natural interpretation. The main achievement of

this chapter is to define a new extension of stable model semantics that works flawlessly in all cases.

Example 6.1 Consider program Π1 as follows:

Π1 :=

{
a← not not b.
b← a.

}
. (6.1)

Π1 is neither a normal nor a disjunctive logic program (because of “not not b” in the body of its

first rule). Thus, stable model semantics is not applicable to Π1. However, both equilibrium model

semantics and FLP semantics are applicable to Π1. Both these semantics agree that Π1 has an

intended model S1 := ∅ but, according to equilibrium models, Π1 has yet another intended model

S2 := {a, b}. We want to argue that S2 suffers from self-justification and, hence, is not rational.

Equilibrium model S2 asserts that both a and b are believed so they should both be justified.

However, according to Π1, the only possible justification for a is “not not b”. Thus, not not b
should be believed and its justification should not depend on a (otherwise, it would constitute a self-

justification). To believe in “not not b”, not b should not be believable, i.e., every way to believe

in b should fail. Now, since the only way to believe b is to first believe in a and since this only way

constitutes a self-justification, b cannot be believed. Thus, we cannot believe in “not not b” and,

hence, we cannot believe in a either. The following self-justified chain summarizes our discussion:

a⇒ (not not b)⇒ b⇒ a

Above argument shows that S2 is self-justified (also sometimes known as circularly justified) and

it should not be an intended model of Π1. Thus, a a faithful extension of stable model semantics can
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only allow S1. So, in this example, FLP semantics works as desired and captures the right model.

Equilibrium model semantics, on the other hand, allows non-intended models.

Before moving on, consider normal logic program Π′1 := {a← not c. , b← a. , c← not b.}.
Stable models of Π′1 are S′1 := {c} and S′2 := {a, b}. We like to point out that, in Π′1, model S′2 is

justified because it assumes “not c” and so it can deduce a and b. In terms of program Π1, however,

this is like assuming the existence of some secret way to justify not not b. Such an assumption

contradicts the closed-world assumption. Hence, Π1 differs from Π′1 in that Π′1 adds a new way to

justify not not b that does not exist in Π1.

Note that there are other semantics that extend stable models (such as Ferraris [70]) that agree

with equilibrium models over the class of propositional programs. Clearly, such semantics also

allow self-justification in program Π1 of Example 6.1. Our next example discusses a case where

FLP semantics allows self-justification while equilibrium models disallow it:

Example 6.2 Consider program Π2 as follows:

Π2 :=

{
a← b.

b← (a ∨ not a).

}
. (6.2)

Since program Π2 is not in the recognized syntax of the original definition of FLP semantics, in this

example, we consider an extension of FLP semantics defined in [197]. In Section 6.4, we consider

yet another (but different) extension of FLP semantics.

According to [197], Π2 has a single intended model T := {a, b}. However, according to Π2,

the only possible justification for atom a is atom b. Also, atom b can only be justified by formula

“a ∨ not a”. However, since “not a” is not true in model T , the only possible justification for

“a ∨ not a” is a itself. Therefore, model T suffers from the following self-justified chain:

a⇒ b⇒ (a ∨ not a)⇒ a

Hence, we believe that T cannot be an intended model of Π2 and that Π2 should not have

any intended models. This view agrees with the interpretation given by equilibrium models for Π2.

Thus, in this example, equilibrium model semantics captures the right intended models while FLP

semantics allows self-justification.

Examples 6.1 and 6.2 show that neither equilibrium model semantics nor FLP semantics do not

capture the right intended models everywhere. This chapter extends stable model semantics in a
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way that is faithful to its founding principle of only allowing rational belief sets. Our semantics has

the following properties:

(1) It is defined for full propositional language,

(2) It extends stable model semantics, and,

(3) It represents the possible belief sets of a rational agent, i.e., all beliefs are justified and self-

justifications are disallowed.

The semantics we propose is based on intuitionistic derivability and, thus, it enables us to use the

full force of intuitionistic logic to study stable models.

In what follows, Section 6.2 reviews the necessary background. Section 6.3 introduces sup-

ported model semantics and gives a proof that supported model semantics indeed extends stable

model semantics (i.e., on the class of normal/disjunctive logic programs, they coincide). Section 6.3

also gives an important characterization of supported models in terms of Kripke structures. Section

6.4 relates our semantics to other non-monotonic semantics. We prove that all supported models

are minimal classical models, Clark completion models, and, most importantly, equilibrium models

(note that the other direction does not hold in general). Finally, Section 6.5 characterizes the com-

plexity of different reasoning tasks in supported model semantics. Our results show that such tasks

remain as computationally complex as similar tasks in other extensions of stable model semantics.

6.2 Background

Here, we review the required background of this chapter.

Logic programs: are sets of rules r of form:

h1; · · · ;hm ← p1, · · · , pi,not pi+1, · · · ,not pn. (6.3)

where 0 ≤ i ≤ n. h1, · · · , hm are propositional atoms called heads of r and p1, · · · , pn are propo-

sitional atoms forming the body of r. A rule r is (a) normal if m = 1, (b) disjunctive if m > 1, and,

(c) a constraint if m = 0. Normal logic programs (NLP) can only have normal rules but disjunctive

logic programs (DLP) can have both normal and disjunctive rules. A constraint can be expressed

using normal rules and, thus, can be included in both NLPs and DLPs. The intuitive reading of Rule

(6.3) is that if all atoms p1, · · · , pi are believed and none of the atoms pi+1, · · · , pn can be believed,

then there is a reason to believe at least one of the atoms h1, · · · , hm.
Propositional programs: are sets of arbitrary propositional formulas. A propositional formula
is a formula constructed using propositional atoms a, b, c, · · · , binary operators ∧, ∨ and →, and



CHAPTER 6. SUPPORTED SEMANTICS FOR PROPOSITIONAL LOGIC PROGRAMS 147

zero-ary constant ⊥. The propositional formula representing Rule (6.3) is:

p1 ∧ ... ∧ pi ∧ (pi+1 → ⊥) ∧ ... ∧ (pn → ⊥)→ h1 ∨ ... ∨ hm. (6.4)

We also use operators←, ¬ and not as syntactical variants of→, i.e., (φ ← ψ) := (ψ → φ) and

(not φ) := ¬φ := φ→ ⊥. Moreover, we define > := (⊥ → ⊥) and ¬.A := {¬a | a ∈ A} (A is a

set of propositional atoms). Furthermore, for propositional program Π, vocab(Π) denotes the set of

all propositional atoms used in Π.

Example 6.3 Propositional programs Π1 and Π2 from Examples 6.1 and 6.2 can be represented as

follows:
Π1 := {((b→ ⊥)→ ⊥)→ a. , a→ b.},
Π2 := {b→ a. , (a ∨ (a→ ⊥))→ b.}.

(6.5)

Here, vocab(Π1) = vocab(Π2) = {a, b}.

Stable model semantics: is a semantics for logic programs. Let Π be a DLP and S a set of proposi-

tional atoms. ΠS is the set of positive rules “h1; · · · ;hm ← p1, · · · , pi” s.t. a rule “h1; · · · ;hm ←
p1, · · · , pi,not pi+1, · · · ,not pn” exists in Π with S ∩ {pi+1, · · · , pn} = ∅, i.e., ΠS is the positive

part of Π that remains applicable according to S. S is a stable model of Π iff S is a minimal classical

model of ΠS .

Equilibrium model semantics: extends stable models to full propositional language and is defined

using satisfiability in logic of here and there (HT-logic). In HT-logic, HT-model is a pair 〈H,T 〉
where H ⊆ T ⊆ U (U : the universe of propositional atoms). In HT-logic, 〈H,T 〉|=HTφ if: 1. φ

is a propositional atom a and a ∈ H , 2. φ := (φ1 ∧ φ2) and 〈H,T 〉|=HTφ1 and 〈H,T 〉|=HTφ2,

3. φ := (φ1 ∨ φ2) and either 〈H,T 〉|=HTφ1 or 〈H,T 〉|=HTφ2, or, 4. φ := (φ1 → φ2) and both of the

following hold: (a) if 〈H,T 〉|=HTφ1 then 〈H,T 〉|=HTφ2, and, (b) if 〈T, T 〉|=HTφ1 then 〈T, T 〉|=HTφ2.

Also, for a propositional program Π, 〈H,T 〉|=HTΠ if 〈H,T 〉|=HTφ for all φ ∈ P . Finally, a set S

of propositional atoms is an equilibrium model of Π if (1) 〈S, S〉|=HTΠ, and, (2) for all S′ ( S:

〈S′, S〉 6 |=HTΠ.

Interested reader is referred to [13] for a thorough review of stable models and to [164] (resp. to

[67]) for a detailed discussion on equilibrium models (resp. FLP semantics). Also, [134] compactly

(and usefully) reviews thirteen different ways of defining stable models.

Intuitionistic logic: is a subset of classical logic without the law of excluded middle. Here,

ConI(Γ) (resp. Con(Γ)) denotes intuitionistic (resp. classical) consequences of Γ.
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6.3 Supported Models

This section introduces the notion of supported models in terms of a form of completion in intu-

itionistic logic. We start by a simple definition of intended models (that we call supported models)

and, thanks to the vast literature on intuitionistic logic, we are able to characterize supported models

in terms of Kripke models. The latter characterization is extremely useful when we relate supported

models to other non-monotonic semantics.

Definition 6.1 (Supported Models) Let Π be a propositional program and let U be the universe of

propositions (particularly, vocab(Π) ⊆ U ). Then, for S ⊆ U , we say that S is a supported model

of Π w.r.t. universe U iff (1) ⊥ 6∈ ConI(Π ∪ ¬.(U \ S)), and, (2) S ⊆ ConI(Π ∪ ¬.(U \ S)).

The intuition behind Definition 6.1 is that a model S is supported in a program Π if the justi-

fication for inclusion of all propositions asserted by S can be traced back to one of the following

primitive justifications (without circularity):

1. Something that is intuitionistically trivial,

2. Something that is asserted by Π, or,

3. Nonbelief in a propositional atom.

The inclusion of the last primitive justification above is motivated by the closed-world assumption

and the innate justification it brings for nonbelief in a propositional atom. Moreover, it is also a

widely accepted philosophical principle that the burden of proof can only be expected for propo-

sitions that are asserted, i.e., propositional atoms in S. Thus, Definition 6.1 says that a model is

supported if, firstly, nonbelief in excluded atoms does not make us inconsistent and, secondly, in-

cluded atoms are justified (without circularity) by the program Π and nonbelief in excluded atoms.

Non-circularity of justifications in Definition 6.1 is guaranteed by the well-founded-ness and finite-

ness of their intuitionistic proofs.

Example 6.4 Consider program Π1 of Example 6.1. Firstly, S1 = ∅ is supported because Π1 ∪
{¬a,¬b} is consistent. Secondly, S2 = {a, b} is not supported because a 6∈ ConI(Π1).

Similarly, consider program Π2 of Example 6.2. Model T = {a, b} is not supported because

a, b 6∈ ConI(Π2) (note that a and b are classically derivable from Π2). Intuitionistic underivability

of a and b is shown using HT-model 〈∅, {a, b}〉 that satisfies Π2 but not a or b.

We now want to prove that supported models extend stable models, but we first need a lemma

and a definition:
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Lemma 6.1 For positive DLP Π (i.e., Π has no negative literal in the body of its rules) and universe

U of propositional atoms, we have that for all S ⊆ U , S is supported in Π iff S is a minimal classical

model of Π.

Proof: Define Π′ := Π ∪ ¬.(U \ S).

(⇒) By S being a supported model of Π, we know S ⊆ ConI(Π
′) ⊆ Con(Π′). Also, since

⊥ ∈ ConI(Γ) iff⊥ ∈ Con(Γ) (for any propositional theory Γ [121]), we know that Π is classically

satisfiable. Therefore, S is a minimal classical model of Π.

(⇐) Let S be a minimal classical model of Π. Since equilibrium models agree with stable models on

DLPs, S is an equilibrium model of Π too. Now, assume that S is not supported. Then, there exists

a Kripke model 〈K, α〉 s.t. α
Π′ but α 6 
S. Since S is a minimal classical model of Π′ and since

every β ≥ α forces Π′, we know that, all maximal states β ≥ α force S. Now, take maximal state

γ ≥ α s.t. γ 6 
S (i.e., if γ′ > γ then γ′
S). Define H := {a ∈ U | γ
a}. Since 〈H,S〉|=HTΠ
′ and

H ( S, our assumption of S being an equilibrium model is contradicted. Hence, S is supported.

Definition 6.2 (Classical Kripke Model) Let S be a set of propositional atoms and let 〈K, α〉 with

K := 〈W,≤,
〉, W := {α}, and ≤:= ∅ be a Kripke model such that α forces a propositional atom

a if and only if a ∈ S. Then, 〈K, α〉 is known as the Kripke representation of classical model S (or,

shortly, the classical Kripke model S).

Note that, for all classical models S, S |= Π iff the Kripke representation 〈K, α〉 of S has α
Π.

Theorem 6.1 (Stable Model = Supported Model (in LP’s)) Let Π be an NLP/DLP and U be the

universe of propositional atoms. Then, for S ⊆ U , S is a stable model of Π iff S is a supported

model of Π w.r.t. U .

Proof: Let Π′ := Π ∪ ¬.(U \ S) and Π′′ := ΠS ∪ ¬.(U \ S).

(⇒) If S is a stable model then, firstly, S is a classical model and thus a classical Kripke model of

Π. Therefore, Π′ is consistent. Secondly, by Lemma 6.1, we know that S is a supported model of

ΠS . Therefore, S ⊆ ConI(Π′′) ⊆ ConI(Π′). Thus, S is supported.

(⇐) Let S be a supported model of Π. Then, firstly, Π′′ is consistent and thus Π′ is also consistent.

Secondly, we know that under assumptions ¬.(U \ S), program Π is intuitionistically equivalent to

program ΠS . Hence, S ⊆ ConI(Π
′′) and thus a supported model of ΠS . Now, by Lemma 6.1, S is

a minimal model of ΠS and thus a stable model of Π.
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Since supported models are defined in terms of intuitionistic reasoning, the full force of intuition-

istic logic can be used to study supported models. In particular, we want to characterize supported

models using Kripke models of a propositional program.

Theorem 6.2 (Characterizing Supported Models) For propositional program Π and finite uni-

verse U of propositional atoms, we have: for all S ⊆ U , S is a supported model of Π w.r.t. U iff (1)

the Kripke representation of S forces Π, and, (2) for all Kripke models 〈K, α〉 of Π∪¬.(U \ S), all

β ≥ α, and all a ∈ S, we have β
a.

Proof: (⇒) Let S be a supported model of Π. Then, Π ∪ ¬.(U \ S) is consistent. Therefore,

S is a classical model of Π and, thus, the Kripke representation of S forces Π. Moreover, since

S ⊆ ConI(Π ∪ ¬.(U \ S)), for all Kripke models 〈K, α〉 of Π ∪ ¬.(U \ S), α
a. Thus, for all

β ≥ α, and all a ∈ S, β
a.

(⇐) Let S be a classical Kripke model of Π s.t. for all Kripke models 〈K, α〉 of Π′ := Π∪¬.(U \S),

all β ≥ α, and all a ∈ S, we have β
a. Then, S is a classical model of Π and, so, a classical model

of Π′. Thus, firstly, Π′ is consistent and, secondly, every a ∈ S is true in all Kripke models of Π′

and, hence, an intuitionistic consequence of Π′. Therefore, S is a supported model of Π.

A nice consequence of Theorem 6.2 is the property that all supported models are minimal clas-

sical models:

Corollary 6.1 (Supported ⊆Minimal Classical) Let Π be a propositional program with finite vo-

cabulary and let S be a supported model of Π. Then, S is a minimal classical model of Π.

Remember Example 6.1 from Section 6.1. Corollary 6.1 shows that, indeed, S2 is not supported

(since it is not a minimal model). Moreover, Corollary 6.1 connects supported models to minimal

classical models. Next section connects supported models to other non-monotonic semantics in a

similar way.

6.4 Relation to Existing Non-monotonic Semantics

This section connects our supported model semantics to other frameworks for non-monotonic rea-

soning. Perhaps, due to the wide acceptance of FLP semantics [67] and equilibrium model semantics

[164], the most important question that must be answered here is how supported models relate to

these two semantics.
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We first start by the relation between our supported semantics and equilibrium models. As

pointed out by [164], HT-logic is an intermediate logic (a logic that lies between classical and intu-

itionistic logic). Therefore, it is no surprise that a very natural connection exists between equilibrium

models and supported models. Indeed, an HT-model is a special kind of Kripke models with only

two states H and T such that H ≤ T . According to [164], S is an equilibrium model of P if

〈S, S〉|=HTP but for all S′ ( S: 〈S′, S〉 6 |=HTP .

So, clearly, all supported models are equilibrium models too because (1) they are classical

Kripke models, and, (2) they are the only minimal Kripke models. The following Theorem states

exactly this fact:

Theorem 6.3 (Supported Models ⊆ Equilibrium Models) For propositional program Π with fi-

nite universe, every supported model is also an equilibrium model.

Note that the inverse of Theorem 6.3 does not hold, i.e., there exist equilibrium models that are

not supported. One such equilibrium model is, indeed, model S2 from Example 6.1. Theorem 6.4

shows that HT-models (unlike equilibrium models) can completely characterize supportedness:

Theorem 6.4 For propositional program Π over a finite universe U , we have that, for every S ⊆ U ,

S is supported iff 〈S, S〉 is the unique HT-model of Π ∪ ¬.(U \ S).

Proof: (⇒) Let S be a supported model of Π. Then, by Corollary 6.1, S is a classical model of

Π′ := Π ∪ ¬.(U \ S) and thus 〈S, S〉 is an HT-model of Π′. Also, for all HT-models 〈H,T 〉 of Π′,

by Theorem 6.2, we have H = T = S.

(⇐) Let S be the unique HT-model of Π′ := Π ∪ ¬.(U \ S). Assume that we have a Kripke model

〈K, α〉 of Π′, a state β ≥ α and some a ∈ S such that β 6 
a. Take maximal state γ ≥ β such that

γ 6 
S (i.e., every state γ′ > γ forces S). Define H := {a ∈ U | γ
a}. Now, if γ is a maximal

state in K (i.e., there is no state γ′ > γ) then consider M := 〈H,H〉 and, otherwise, consider

M := 〈H,S〉. Since M |=HTΠ
′ and H ( S, it contradicts our assumption of 〈S, S〉 is the unique

HT-model of Π′. Therefore, by Theorem 6.2, S has to be supported.

Another interesting semantics for negation as failure in logic programs is given by Clark [36].

The Clark completion idea can be generalized to include rules with fully propositional bodies (in-

stead of just a conjunction of literals). It so happens that supported models are also models of the

Clark completion of a program, i.e., for a program Π consisting of only rules with an atom as their

head, if an atom a is in a supported model S, then there should exist a rule r ∈ P with head(r) = a

such that S classically satisfies body(r). The following theorem states this fact formally:
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Theorem 6.5 (Supported Models ⊆ Clark Completion Models) Let Π be a finite program and U

a finite universe of propositional atoms. Then, all supported models of Π are also Clark completion

models of Π.

Note that Theorem 6.5 can also be viewed as a consequence of Theorem 6.3 because all equi-

librium models of a program are also models of its Clark completion. Indeed, the proof of Theorem

6.5 shows that not being a model of Clark completion guarantees the existence of a minimal Kripke

model with only two states (i.e., an HT-model 〈S′, S〉 with S′ ( S) that contradicts our characteri-

zation of supported models in terms of Kripke models.

Now, let us turn to FLP semantics. The intersection of the syntax of propositional programs and

the syntax for which the original FLP semantics is exactly the syntax of disjunctive logic programs.

On this limited intersection of syntax, FLP semantics coincides with stable model semantics and,

thus, coincides with our supported semantics. However, there are extensions of FLP semantics that

generalize the idea of FLP reducts to a more extensive syntax. Remember Example 6.2 that used

an extension of FLP semantics due to [197]. In Example 6.2, the main reason why model T was

considered an intended model was that “a ∨ not a” was assumed to be supported (something that

cannot be assumed in intuitionistic logic for example). Indeed, in stable model semantics, one cannot

assume such a thing. For example, consider program Π := {a← not a}. According to stable model

semantics, Π has no stable model and, thus, should not have any supported model either. However,

assuming that (a ∨ not a) is supported makes us believe that model S := {a} is supported. So,

although classically valid, (a ∨ not a) is not supported.

The last semantics that we discuss in this section is yet another extension of FLP semantics. This

extension is called the semantics of well-justified FLP answer sets [173]. This semantics is different

from the extension given in [197] even over the class of propositional programs. The motivation

behind development of [173] is very similar to ours but their method to address their concern is

completely different.

Shen and You [174] noticed that standard FLP semantics suffers from self-justification. They

addressed this deficiency using an approach similar to that of default logic (over a limited syntax

of logic programs with C-atoms). Their approach was extended to other syntactical fragments in

[171, 172]. Recently, their approach was extended to general logic programs [173] that also covers

our intended syntactical fragment (full propositional programs).

Although the motivation behind [173] closely corresponds to ours (i.e., we both aim to remove

circular justifications), the approach that we take towards this goal is completely different. We start

from our definition that is given in terms of intuitionistic derivability and is completely declarative
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(i.e., intended models are characterized in terms of their properties and not operationally). However,

[173] takes an operational approach and uses an immediate consequence operator (a generalization

of van Emden-Kowalski one-step provability operator [201]) to describe their intended models.

Apart from the methodological difference above, there also exist propositional programs that

have different intended models according to our supported semantics relative to well-justified FLP

semantics. For example, consider the following program Π3:

Π3 :=

{
a← ¬a.
(a ∨ ¬a)← >.

}
. (6.6)

Firstly, note that program Π3 above is acceptable in both our syntax and the syntax of general logic

programs (as in [173]). Secondly, note that the second rule “(a ∨ ¬a) ← >”, although trivial in

classical logic, is not purposeless in program Π3 above.

Program Π3 in Equation (6.6) is intuitively read as follows: second rule says that either a or ¬a
has to be believed. However, according to the first rule, even if ¬a is believed, a has to be believed

too. So, since one of a or ¬a has to be believed and since in both cases a is believed, according to

Π3, a must be believed. Thus, model S := {a} is the only intended model of Π3.

Indeed, in supported semantics, {a} is the only supported model of Π3. However, according to

the well-justified FLP semantics, Π3 has no well-justified model and here is why:

According to well-justified FLP semantics [173], fΠS
3 = {(a ∨ ¬a) ← >} because the body

of the rule “a ← ¬a” is not satisfied by S and thus this rule is removed. Since S = {a}, we have

that S− = ∅ and, thus, ¬S− = ∅. Therefore, Tα
fΠS3

(∅,¬S−) = Tα
fΠS3

(∅, ∅) = {(a ∨ ¬a)}1. Now,

according to well-justified FLP semantics, S is accepted if and only if S is a classical consequence of

Tα
fΠS3

(∅,¬S−)∪¬S−. However, since ¬S− = ∅, we have that Tα
fΠS3

(∅,¬S−)∪¬S− = {(a∨¬a)}.
Obviously, a ∈ S is not a consequence of “a ∨ ¬a” and, thus, S is not an intended model of Π3

according to well-justified FLP semantics introduced in [173].

Discussions above show that our semantics is more suited to extend stable models to the full

propositional language. A more thorough investigation of how our supported semantics relates to

different extensions of FLP semantics is still needed.

1TαfΠI (∅,¬I−) is the least fixpoint of an operator that generalizes van Emeden-Kowalski one-step provability operator
and is introduced in [173].
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6.5 Complexity

We defined supported semantics and proved some natural connections between supported semantics

and other well-established semantics including stable models, Kripke models, HT-models, equilib-

rium models, minimal classical models and Clark completion models. Except for Kripke models,

deciding about the validity, satisfiability or falsity of a program in those other semantics are rel-

atively easy (decidable in the second level of polynomial hierarchy in the worst case). However,

for Kripke models, deciding whether a propositional program Π is a tautology (i.e., Π is true in all

Kripke models) is PSPACE-complete [127, 180].

In this section we investigate the computational complexity of (1) checking whether a proposi-

tional model S is a supported model of a propositional program Π with respect to a universe U of

propositional atoms, and, (2) doing cautious/brave reasoning for a propositional program P . Obvi-

ously, in this section, we assume that all three parts P , S and U are finite.

Let us first review what we already know about the computational complexity of finding a sup-

ported model (or checking if a given S is supported). On one hand, as disjunctive stable models

coincide with supported models over the class of disjunctive logic programs, we know that (1)

checking supported-ness of a given S is ΠP
1 -hard, (2) brave reasoning about supported models is

ΣP
2 -hard, and, (3) cautious reasoning about supported models is ΠP

2 -hard.

On the other hand, by PSPACE-completeness of checking if a formula is an intuitionistic tau-

tology, we also know that checking if a given S is a supported model can be done in PSPACE. The

following theorem closes the gap between our lower bound (second level of PH) and upper bound

(PSPACE) by proving that it is ΠP
1 -complete to decide if a given S is supported:

Theorem 6.6 (Complexity of Decision Procedure) Let P be a finite propositional program, U be

a finite universe of propositional atoms and S be a subset of U . Then, the problem of deciding

whether S is a supported model of P with respect to universe U is a ΠP
1 -complete problem.

Using Theorem 6.6, we can also characterize the complexity of brave/cautious reasoning about

supported models:

Corollary 6.2 (Complexity of Brave/Cautious Reasoning) Let P be a finite propositional pro-

gram and U be a finite universe of propositional atoms and ST , SF ⊆ U . Then,

1. it is a ΣP
2 -complete task to decide if there exists S such that (1) ST ⊆ S, (2) S ∩SF = ∅, and

(3) S is a supported model of P with respect to universe U (brave reasoning).
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2. it is a ΠP
2 -complete task to decide if all supported models S of P with respect to universe U

satisfy both ST ⊆ S and S ∩ SF = ∅ (cautious reasoning).

6.6 Conclusion and Future Works

Motivated by the non-circularity and well-foundedness of justifications for supported models of a

modular system, in this chapter, we extended the well-established stable model semantics of logic

programs to the full propositional logic while still disallowing self-justifications. Needless to men-

tion that, while stable model semantics has been previously extended to full propositional logic,

all the previous extensions from self-justification. However, the novelty of our approach is to start

with the fundamental ideas that motivated stable models in the first place. Starting from such fun-

damentals, equivalence of supported semantics and stable model semantics (over the class of logic

programs) is a necessary consequence of our approach rather than a surprising coincidence as in

previous extensions.

This chapter also studied the connection between some of the proposed semantics for non-

monotonic reasoning and our supported model semantics. There are still many semantics for non-

monotonic reasoning (such as default logic and autoepistemic logic) for which the relation to our

supported model semantics is not known. We hope that a detailed study of this relation reveals

a deep and intrinsic connection between our semantics and other well-established frameworks for

non-monotonic reasoning.

The last topic that we covered in this chapter is the complexity of reasoning about supported

models. We proved that although we used intuitionistic reasoning to guarantee supportedness of

models, none of the interesting reasoning tasks becomes more computationally complex than before

(when supportedness was not a concern).

One of our future topics of interest is to develop an efficient mechanism to reason about sup-

ported models of a propositional formula. Another future direction is to study the exact relation

between supported models of modular systems and the supported model semantics for propositional

logic programs. We believe that there is an inherent connection between these two semantics and

the results from one domain can be easily carried over to the other domain.



Chapter 7

Discussion and Future Directions

In this thesis, we touched on two fundamental issues of declarative programming in knowledge

representation: (1) the problem of using arithmetic in declarative programming in a controlled man-

ner, and, (2) the problem of modular declarative representation. We will discuss these two general

directions and their possible extensions separately in the two following sections of this chapter.

7.1 Arithmetical Search Problems

In Chapter 3, we showed the shortcomings of existing declarative knowledge representation lan-

guages. We showed that many natural arithmetical problems cannot be expressed by existing declar-

ative languages for knowledge representation despite the fact these problems are computationally

within the bounds of such declarative KR languages. We also introduced a fragment of first-order

logic that captures exactly the set of NP-recognizable arithmetical problems.

Benefits: A Summary

As we described in Chapter 3, the benefits of our study is manifold:

Guaranteeing Universality. Studying expressiveness of a knowledge representation problem guar-

antees the existence of specifications for certain classes of problems. For instance, our expres-

siveness results for knowledge representation languages in Chapter 3 showed that classes of

small-cost arithmetical structures that are recognizable in NP are guaranteed to have repre-

sentations in many of the existing declarative languages. Given the intuitiveness of the notion

of being a small-cost structure, users can check if the problem they are specifying satisfies
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small-cost condition and, if so, our expressiveness proofs can be used as guidelines on how a

standard specification can be obtained.

Identifying Possible Extensions. Studying non-expressiveness of a knowledge representation lan-

guage pinpoints the type of constructs that a language lacks. For example, our study of arith-

metic in existing knowledge representation languages showed that these languages generally

lack constructs for dealing with the number of digits of an input numbers. Thus, designers

of knowledge representation languages can use our non-expressiveness results for equipping

their knowledge representation languages with the right constructs that are guaranteed to in-

crease the expressiveness of their language.

Solving Effectively. By studying characterization results with respect to a complexity class, one

can identify cases when certain reasoning mechanisms with a less resource consumption foot-

print suffice for solving a problem. In these cases, such reasoning mechanisms can be used in

order to obtain solutions more effectively. As an example, in Chapter 3, we showed that logic

PBINT characterizes exactly the set of arithmetical search problems that can be recognized

in NP. Thus, if a problem is specified within the syntax of logic PBINT and in a knowledge

representation language that contains PBINT, it can be automatically deduced that the speci-

fied problem can be solved through a uniform polynomial time translation into a SAT problem

(even if the language is capable of specifying more computationally complex). Moreover, our

proofs in Chapter 3, when interpreted constructively, provide one such uniform translation.

Future Direction: Expressiveness of Other Built-in Constructs

Although Chapter 3 discusses built-in arithmetic in declarative KR programming, the benefits of

our study is a consequence of the approach we have taken rather than the specific constructs (i.e.,

built-in arithmetic) or the specific complexity class (i.e., NP) we have chosen to study. Our choice

to study built-in arithmetical constructs and complexity class NP was due to their importance in

knowledge representation languages. However, many similar results can be derived for other types

of constructs and other complexity classes. To mention a few, of particular interest to us, are the

constructs to create and work with lists and sets. These constructs are very useful for naturally

specifying many knowledge representation problems. Designing and implementing a declarative

language with such built-in constructs that is also guaranteed to capture a complexity class such

as NP is extremely useful because it allows users to describe their problems conveniently while

guaranteeing effective solving process using an underlying solver.
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Needless to say that the expressiveness and capturing properties should not and need not be lim-

ited to the complexity class NP. For example, the computational power of many new KR languages

has gone beyond NP and we are now observing more and more languages that are designed to solve

ΣP
2 -complete problems and even some languages that are designed to solve PSPACE-complete prob-

lems. Thus, it is important to study the expressiveness of the built-in constructs these languages

offer.

Future Direction: Practical Language with Arithmetic

In Chapter 3, we showed that PBINT can express all arithmetical search problems that are recog-

nizable in NP. A consequence of this approach is that adding new polytime computable arithmetical

constructs does not increase PBINT’s expressiveness because all such polytime computable opera-

tors can be axiomatized within PBINT. However, in a practical declarative language, such constructs

are necessary for convenience of users of declarative languages. Aggregates are an example of the

type of arithmetical constructs that can be axiomatized inside NP but are still needed in any practical

declarative language because it is not convenient for a user to always have to axiomatize aggregates.

Hence, we deem it worthwhile to design a practical language that has the same guarantees as

PBINT while providing as many syntactical sugars as possible. The design PBINT-Spec in Chapter

3 is a small step in this direction but a lot more is still needed.

7.2 Declarative and Modular Representation of Problems

In Chapter 4, we defined a framework to combine modules independently of the languages these

modules are implemented in. The main motivation for our framework is to use the power of dif-

ferent declarative languages in a single framework. We introduced a new supported semantics for

our modular systems in Chapter 5 and showed that supported semantics has many interesting im-

plications such as the ability to more easily specify some interesting problems and the ability to

generalize different semantics of multi-context systems. Motivated by these two properties, we ex-

tended supported semantics to multi-context systems in Chapter ?? and to propositional programs

in Chapter 6.

7.2.1 Summary of Contributions

In the three Chapters of 3, ?? and 6, among other things, we did the following:
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Three Semantics: Model-theoretical, Operational and Supported. We introduced three differ-

ent semantics for our modular system framework: the model-theoretical semantics, the op-

erational semantics and the supported semantics. The two former semantics are equivalent,

i.e., the models accepted by the model-theoretical semantics is closely related to the denota-

tion given by the operational semantics. Supported model semantics generalizes the two other

semantics and coincides with them exactly when justifications are non-existent.

Expressiveness and Complexity. We studied the expressiveness and complexity of modular sys-

tems under its model-theoretical or operational semantics. We showed the robustness of our

modular systems framework by showing that the expressiveness of modular systems remains

invariant under varying complexity constraints on primitive modules.

Comparative Expressiveness Study. We showed that our modular system framework under sup-

ported model semantics is comparatively more expressive than multi-context systems be-

cause two different semantics of multi-context systems can be simultaneously translated into

modular systems under supported semantics. Moreover, although empty justification and

reducibility-based justifications are enough for expressing different semantics of multi-context

systems, supported semantics allows us to use many other justification functions and therefore

properly generalizes either of the two previous semantics for multi-context systems.

Lazy Solving Algorithm. Using the model-theoretical view on modular systems, we developed an

algorithm to lazily solve modular systems. We showed the effectiveness of our algorithm

by modelling three state-of-the-art systems that combine different reasoning methods and

showing that our lazy solving algorithm works similar to these practical systems.

Approximation of Solutions. Using the operational view on modular systems, we developed two

approximation methods for approximately solving modular systems that are represented by a

positive or a negative loop. We showed that our approximation methods can be combined into

our lazy solving algorithm to obtain a better solving procedure and to sometimes reduce the

complexity of the solving procedure.

Supported Semantics for Other Systems. We introduced supported semantics to two previously

defined languages for non-monotonic reasoning: the multi-context systems (Chapter ??) and

the propositional logic programs (Chapter 6). For multi-context systems, the addition of sup-

ported semantics allowed us to (1) unify equilibrium semantics and grounded equilibrium

semantics, (2) lift the condition of reducibility from grounded equilibrium semantics and to
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make this semantics applicable to all multi-context systems, and, (3) open the doors for mul-

titudes of new semantics that could not have been characterized in terms of either the equilib-

rium or grounded equilibrium semantics but that could be characterized in terms of supported

semantics. For propositional logic programs, the introduction of supported semantics cre-

ated a natural extension of stable model semantics that preserves the interesting properties of

minimality and rationality of stable models.

7.2.2 Future Direction: Implementation

One of the most important extensions to our work is to develop an efficient implementation of our

lazy solving algorithm and to provide a framework in which all parties involved in a problem can

easily develop specialized CCAV oracles for their specific modules. Moreover, we deem it useful to

also implement several generic oracles for important declarative languages that can be readily used

to combine these languages together.

7.2.3 Future Direction: New Approximation Methods

One of the advantages of our approach when compared to other paradigms for combined solving

is the possibility of introducing powerful mechanisms to approximately find solutions of a modu-

lar system without using the underlying solver. We showcased this possibility by approximating

monotone and anti-monotone feedbacks. However, the possibilities to advance this direction are not

limited to these two cases.

One of the most promising possibilities to advance approximation methods to modular systems

is using the algebraic methods developed by the authors of [51] to define an ultimate approximation

for a non-monotonic operator.

Another approach for defining new approximation methods is to find interesting and general

properties that can be utilized for intelligently pruning the search space of the underlying solver.

One such property that has been proved to be useful in other areas is the convexity of the solutions

of a modular system. It has been shown that defining a meaningful measure of convexity can hugely

reduce the space needed to search for solutions.

7.2.4 Future Direction: Extended Semantics

We showed in Chapter 5 that extending the semantics of modular systems can make it more conve-

nient for users to express their problems using modular systems and, thus, new extended semantics
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can greatly increase the usability of modular systems. One of the possible extensions to the seman-

tics of modular systems is the notion of preference. It seems possible to define preference in modlar

systems in a way that generalizes supported semantics, i.e., there is a natural translation from sup-

ported semantics to preference semantics so that supported models of the original modular system

are the most preferred models of the translates system. Such an extension to the semantics of modu-

lar systems would fill the gap that currently exists in between supported models and non-supported

models.
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[59] N. Een and N. Sörensson. MiniSat v1.13 - a SAT solver with conflict-clause minimization,
system description for the sat competition, 2005.

[60] T. Eiter, M. Fink, and P. Schüller. Approximations for explanations of inconsistency in par-
tially known multi-context systems. In J. P. Delgrande and W. Faber, editors, Proceedings
of the 11th International Conference on Logic Programming and Non-monotonic Reasoning
(LPNMR 2011), Vancouver, Canada, volume 6645 of Lecture Notes in Computer Science,
pages 107–119. Springer, 2011.

[61] T. Eiter, M. Fink, P. Schüller, and A. Weinzierl. Finding explanations of inconsistency in
multi-context systems. In F. Lin, U. Sattler, and M. Truszczynski, editors, Principles of
Knowledge Representation and Reasoning: Proceedings of the Twelfth International Confer-
ence, KR 2010, Toronto, Ontario, Canada, May 9-13, 2010. AAAI Press, 2010.

[62] T. Eiter, M. Fink, and S. Woltran. Semantical characterizations and complexity of equiva-
lences in answer set programming. ACM Trans. Comput. Logic, 8, July 2007.

[63] T. Eiter, G. Gottlob, and H. Veith. Modular logic programming and generalized quantifiers. In
Proceedings of the 4th International Conference on Logic Programming and Non-monotonic
Reasoning (LPNMR’97), pages 290–309. Springer-Verlag, 1997.

[64] T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. A uniform integration of higher-order
reasoning and external evaluations in answer-set programming. In Proceedings of the 19th
International Joint Conference on Artificial intelligence (IJCAI’05), pages 90–96, San Fran-
cisco, CA, USA, 2005. Morgan Kaufmann Publishers Inc.

[65] C. Elkan. A rational reconstruction of nonmonotonic truth maintenance systems (research
note). Artif. Intell., 43(2):219–234, May 1990.

[66] O. Elkhatib, E. Pontelli, and T. C. Son. ASP-PROLOG: A system for reasoning about an-
swer set programs in prolog. In Proceedings of the 6th International Symposium on Practicl
Aspects of Declarative Languages (PADL’04), pages 148–162, 2004.

[67] W. Faber, N. Leone, and G. Pfeifer. Recursive aggregates in disjunctive logic programs:
Semantics and complexity. In J. J. Alferes and J. A. Leite, editors, Logics in Artificial Intel-
ligence, 9th European Conference, JELIA 2004, Lisbon, Portugal, September 27-30, 2004,
Proceedings, volume 3229 of Lecture Notes in Computer Science, pages 200–212. Springer,
2004.



BIBLIOGRAPHY 167

[68] R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets. Complexity
of computation, SIAM-AMC proceedings, 7:43–73, 1974.

[69] R. Fagin. Finite-model theory – a personal perspective. Theoretical Comput. Sci., 116:3–31,
1993.

[70] P. Ferraris. Answer sets for propositional theories. In Proceedings of the 8th international
conference on Logic Programming and Nonmonotonic Reasoning, LPNMR’05, pages 119–
131, Berlin, Heidelberg, 2005. Springer-Verlag.

[71] M. Fink, L. Ghionna, and A. Weinzierl. Relational information exchange and aggregation in
multi-context systems. In J. P. Delgrande and W. Faber, editors, Logic Programming and Non-
monotonic Reasoning - 11th International Conference, LPNMR 2011, Vancouver, Canada,
May 16-19, 2011. Proceedings, volume 6645 of Lecture Notes in Computer Science, pages
120–133. Springer, 2011.
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[106] E. Grädel and M. Otto. On logics with two variables. Theoretical Computer Science, 224:73–
113, 1999.
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