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Abstract 

In this project, we propose and investigate a new approach for solving portfolio optimization 

problems (POP) with cardinality constraints using an evolutionary algorithm based on the distribution of 

diversified baskets (EADDB). 

The Diversified basket is the basket of portfolios each of which obtains one of the lowest risks. 

The distribution of the diversified basket indicates the probability of having each asset in the diversified 

basket. Finding the diversified basket is an NP-hard problem, and we exploit quantum annealing in order 

to approximate the diversified basket. 

In particular, POP is mapped into D-Wave Two™, the first commercially available quantum 

computer, using one of two methods: discretization, and market graph. Each approach creates several 

instances of the problem of finding diversified baskets. D-Wave Two’s output is an approximation to this 

diversified basket, and subsequently the distribution of diversified basket can be determined. Distribution 

of the diversified basket forms the basis of EADDB. The performance of the proposed EADDB has been 

evaluated on the Hang-Seng in Hong Kong with 31 assets, one of the benchmark datasets in the OR 

Library, and has been compared with heuristic algorithms.  

 

Keywords:  Portfolio Optimization Problem; Quantum Annealing; Diversification; Evolutionary 

Algorithm; NP Hard Problem; D-Wave Two™ 
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1.0 Introduction 

1.1 Unconstrained Portfolio Optimization 

 

The first quantitative approach for portfolio asset selection was the Mean-Variance model introduced by 

Markowitz (1952).  This has become the standard method for solving for the combination of assets 

delivering the highest possible expected level of return for the given level for risk, which is the standard 

deviation of the returns.  Markowitz does this by determining the amount of total wealth that is to be 

invested in each market asset to achieve a target level of return while finding the minimum amount of 

variance associated with that target with the maximum amount of diversification. Diversification implies 

that the attractiveness of an individual asset when held in a portfolio can be different from when it is a 

stand-alone asset, so the relationship between assets needs to be carefully considered. An important 

assumption is that returns follow a multivariate Gaussian distribution, Chang, Meade, Beasley and 

Sharaiha (2000) point out that this implies expected return and variance explain return on a portfolio of 

assets completely.   

 

Using the standard Markowitz mean-variance approach the unconstrained portfolio optimization problem 

is given as: 

min
𝑥∈ℛ𝑛

𝑓(𝑥) =  ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑥𝑗
𝑛
𝑗=1

𝑛
𝑖=1  

subject to  ∑ 𝑥𝑖 = 1𝑛
𝑖=1   

∑ 𝑥𝑖𝑟𝑖  = 𝑟𝑛
𝑖=1 * 

δ ≤  𝑥𝑖  ≤ 𝜀 , ∀ 𝑖 ∈ {1, … , 𝑛} 

Where  

n is the number of assets  

c is the covariance between the return of assets i and j 

x is the weight of asset held 

r is the expected return of the asset 

r* is the target expected return 

δ is the lower bound on asset weight 

𝜀 is the upper bound on asset weight 

 

∑ 𝑥𝑖 = 1𝑛
𝑖=1  is defined as a budget constraint, and ∑ 𝑥𝑖𝑟𝑖  = 𝑟∗𝑛

𝑖=1  is defined as a return constraint. The 

result of the Mean Variance approach is a convex “efficient frontier” line through a set of points on a 

variance-mean plane formed by sets of diversified portfolios offering a given return for a minimum 

amount of risk.  In other words this is the optimal set of assets and their weights (how much of the 

investor's total wealth will be invested in each of these assets) an investor should choose given the level 

of return they are seeking to make.  
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The Mean-Variance problem is a polynomial-time optimization problem, and since the objective function 

is quadratic and convex and the constraints are linear, the resulting problem is a quadratic program (Dias, 

2002). Due to these objective function properties the quadratic programming solvers are recognized to be 

the most efficient in terms of computing power. However as Chang, Meade, Beasley and Sharaiha point 

out there are two weaknesses with using Quadratic Programming (QP): 

 

1. The underlying assumption of multivariate normality is violated. 

 

2. Constraining the number of assets in the portfolio is not possible even though it has high practical 

significance. These cannot be translated into a linear constraint, therefore cannot be solved with 

Quadratic Programming. 

1.2 Constrained Portfolio Optimization 

 

Through the use of QP, the efficient frontier generated by all possible combinations of the assets will be 

smooth only when the number of assets available is infinitely large.  Therefore the Markowitz portfolio 

tends to have unreasonably large quantities of individual assets, otherwise the frontier will not be a 

smooth curve, making quadratic programming obsolete because of nonlinear constraints.  

 

Due to transaction costs and managerial concerns for the number of assets that can be effectively 

managed at a given time we will consider applying the cardinality constraint.  The nonlinear cardinality 

constraint limits the number of assets in the portfolio causing the problem to become computationally 

intractable (NP-Hard); Therefore finding an exact solution in a reasonable amount of time is not possible 

with QP making Heuristic methods a viable alternative.  This constraint changes the classical QP into a 

mixed integer quadratic programming (MIQP) problem by adding binary variables into the Markowitz 

model (Moral-Escudero, Ruiz-Torrubiano, and Suarez, 2006). 
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Using the Markowitz mean-variance approach the cardinality constrained portfolio optimization problem 

is given as: 

 

min
𝑥∈ℛ𝑛

𝑓(𝑥) =  ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑥𝑗
𝑛
𝑗=1

𝑛
𝑖=1  

subject to  ∑ 𝑥𝑖 = 1𝑛
𝑖=1   

∑ 𝑥𝑖𝑟𝑖  = 𝑟𝑛
𝑖=1 * 

𝛿 ≤  𝑥𝑖  ≤  𝜀, ∀ 𝑖 ∈ {1, … , 𝑛} 

# supp (𝑥) = 𝐾 

 

Where K is the desired number of assets to be held in the portfolio, and # supp (𝑥) = 𝐾 is defined as a 

cardinality constraint.  

 

Figure 1 indicates the unconstrained efficient frontier (green line) and constrained efficient frontier for the 

choice of 4 out of 22 assets for a sample dataset. The figure in the bottom indicates the asset allocation 

(weight of each asset on the efficient frontier) for expected returns ranging from 0 to .016.

 

                     Figure 1: Efficient frontier and asset allocation found by exhaustive search for 22 Assets Choose 4 
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1.3 Outline of the Rest of the Paper 

 

In section 2 we review the literature that deals with heuristic methods employed to solve portfolio 

optimization with a cardinality constraint. Section 3 describes the structure of genetic algorithms, and 

section 4 provides an introduction to the D-Wave Two™ quantum computer. An evolutionary algorithm 

based on the distribution of diversified baskets (EADDB) is discussed in section 5, which is followed by 

datasets in section 6 and experimental results in section 7. We then finish off by summarizing the 

significance of our results and introduce the idea of improving the EADDB method in the final sections, 

future work and conclusion.  

2.0 Literature Review 
 

Here we will review the literature that deals with heuristic methods to solve portfolio optimization with a 

cardinality constraint.  

 

T.-J. Chang, N. Meade, J.E. Beasley, and Y.M. Sharaiha (2000) proposed finding the efficient frontier 

of a cardinality constrained portfolio by extending the standard mean-variance portfolio optimization 

model using three heuristic algorithms.  The three algorithms were based on genetic algorithms, tabu 

search and simulated annealing.  They revealed that by adding a cardinality constraint the efficient 

frontier could become discontinuous (Chang, Meade, Beasley, and Sharaiha, 2000). Using a heuristic 

technique an approximate solution can be found quickly where classic methods cannot find an exact 

solution or are too slow. In their approach, they assume that there is a decision maker who chooses the 

number of assets (K) by considering the trade-offs of risk, return and effort of managing a certain number 

of assets. In their Genetic Algorithm approach, Chang et al used a sample population size of 100 

randomly generated portfolios. Each of these are then evaluated based on the objective function, 

achieving expected return with the minimum amount of variance possible. The GA then replaces the asset 

which the worst objective function value, continuously replacing dominated solutions. Using five data 

sets of 31 assets from Hang Seng, 85 assets from DAX 100, 89 assets from FTSE 100, 98 assets from 

S&P 100 and 225 assets from Nikkei 225.  To benchmark their heuristics they compared their results to 

an unconstrained efficient frontier.  They found that the GA heuristic, coded in FORTRAN and run on a 

Silicon Graphics Indigo workstation, was the best approximation tool to find the unconstrained efficient 

frontier. The results and algorithms have been made publicly available, and can be found along with more 

detail on the three heuristic approaches in their research paper.  
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Following the Chang et. al. (2000) paper, heuristic approaches have been further investigated in more 

detail for the purposes of greater efficiency and accuracy, supplemented by technological innovation 

(Woodside-Oriakhi, Lucas, Beasley, 2011) .  

 

Using the data sets provided by Chang et. al. (2000), Fernandez and Gomez in 2005 applied a method 

based on artificial neural networks, the Hopfield Network, to compute the cardinality constrained efficient 

frontier (CCEF). They found that using the Hopfield Network they were able to outperform the five 

benchmark problems by getting the lowest variance of return errors when the number of assets chosen to 

be in the portfolio is less than 10, upon which time it converges to the genetic algorithm (Fernandex and 

Gomez, 2005).  They found that artificial neural network approach has an over-fitting problem and is 

readily trapped into local minima. This discovery was significant in that it validated ongoing exploration 

of the three heuristic approaches introduced to solve the CCEF. Chiam, Tan and Mamum (2008) also 

followed on the work done by Chang et. al. (2000) using evolutionary multi-objective (considering risk 

and return simultaneously) portfolio optimization to address the cardinality constraint which introduces a 

combinatorial optimization problem with a complex search space.  In their approach the GA began with 

initializing a randomly generated population. 

 

T. Chang, Yang, and K. Chang (2009) introduced a heuristic approach to portfolio optimization using 

the GA in different risk measures. They used historical daily data from the HANG SENG with 33 assets, 

FTSE with 93 and S&P 100 with 99 assets and set the cardinality constraint from 10 to 90, increasing it 

by an increment of 10 per run. To optimize they used the GA coded in C++ and run on a personal 

computer.  They discovered that the CCEF with a value above one third of total assets in a index is 

dominated by those with a significantly smaller number of assets. They also showed that the computation 

time (CPU time) increased linearly with the increase of the number of assets in the portfolio and that 

investors should not waste their time trying to compute high cardinality constraint values since they are 

dominated by those with lower values.  T. Chang, Yang, and K. Chang (2009) concluded that the GA 

method is an efficient tool to find efficient frontier based on a fixed amount of assets.  In their approach 

the GA also began with initializing a randomly generated population. 
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Zhu, Y. Wang, K. Wang, and Chen (2011) introduced the Particle Swarm Optimization (PSO) 

technique, modeled to map out social behavior of bird flocking or fish schooling, to find the solution for 

the cardinality constrained optimization problem. PSO like the other heuristics reviewed starts off by 

initializing a population of random particles with an associated position and velocity where the search 

particles have a tendency to move towards the better search area over the objective function (Wang, 

Wang, and Chen, 2011). They compare the PSO approach to the GA.  Like the GA, Zhu, Y. Wang, K. 

Wang, and Chen (2011) state that they are both population based, initialized with a population of 

randomly encoded solutions and the search updates the encodings over a series of iterations.  The main 

difference is that PSO has no specific selection process.  With their comparison, they found that the GA 

performed better in instances where the cardinality constraint was set to a significantly high value and 

encouraged further research to be done with hybrid models to improve efficiency.  

 

Woodside-Oriakhi, Lucas, and Beasley (2011) stepped back from the heuristic approach to being their 

study.  They utilized the latest CPLEX version 11.0 on the smaller test problems with up to 85 assets from 

the DAX 100.  They concluded that solving for the CCEF QMIP using CPLEX was not computationally 

effective; therefore they were justified in applying a heuristic approach to solve for the CCEF. Their 

results showed that the most efficient heuristic approach is the GA using the data sets from the Chang, et. 

al. (2000). They innovated by pooling, consolidating efficient portfolios from each of the heuristics and 

eliminating any portfolios that are dominated, and then conducted another search. This resulted in a 

greater degree of accuracy but at the expense of efficiency.  

 

3.0 Genetic Algorithms 
 

Holland (1975) created the first Genetic Algorithm.  The idea originated from Darwinian Evolution, it 

explores a solution space by applying the theory of natural selection. GA’s belong to a class of stochastic 

search methods. To use it, solutions (in our case the portfolios with a chosen expected return and number 

of assets) are encoded into strings of bits (mimicking a decision based model using “0” if the asset is not 

present in the portfolio or “1” if the asset is selected to be in the portfolio). The fitness function, which 

evaluates the results of our objective function that achieves the expected return subject to minimizing 

variance on each portfolio generated, determines which of the initially generated random combinations of 

assets (portfolios) with defined parameters are the most suitable parent portfolios to generate the 

subsequent generation of portfolios (offspring).  The higher the fitness value is, more optimal is the 

solution to the objective function (T.-J Chang, Yang, and K. Chang, 2009).  The fitness function ranks the 

portfolios by variance, the larger the variance (risk) the lower the rank.  The chosen parent portfolios 

generate subsequent portfolios (known as chromosomes in evolutionary terms) by applying crossover (if 
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both parent portfolios contain the same asset the offspring portfolio will be assigned it in a random 

quantity between that of the two parents, but if only one parent has a certain asset then the offspring 

portfolio will have less change of being randomly being assigned that asset) and mutation values (usually 

done by randomly replacing one asset in the offspring portfolio by another which wasn’t originally 

selected, introducing a small degree of stochastic variation, as seen in Woodside-Oriakhi, Lucas, and 

Beasley (2011) ).  

 

The basic steps of a simple GA as defined by T.-J. Chang, Yang, and K. Chang (2009): 

 

1) Generate the initial randomly generated population 

2) Evaluate the fitness of the individuals within the generated population 

3) Select parents from the population considering applied constraints and carry them to the next 

generation applying crossover, mutation and reproduction.  

4) The last population will be replaced by the new population 

5) Repeat step 2 if the termination condition is not satisfied  

 

The termination condition is very important for finding the optimal risky portfolio, due to the trade-off 

between efficiency and accuracy. The number of generations (iterations) needed to find the optimal 

solution has a large range because the initial population (set of portfolios) is randomly created and 

because of the probabilistic nature of the mating/pairing process (Wallace, 1994).  

 

4.0 Technological Innovation: D-Wave Two™ Quantum Computer 

4.1 The Hardware 

 

The financial industry is among the strongest growth sectors for supercomputers driven by exponentially 

increasing data volumes causing greater data complexity.  Currently the market is saturated by classical 

computers which perform one algorithmic operation at a time, quantum computing technology has the 

potential to perform multiple operations simultaneously. 

 

D-Wave™ is a quantum computing company creating the first commercially available quantum 

computer, which uses adiabatic quantum annealing to solve intractable optimization problems.  The 

technology we will be testing in our study to help us optimize a cardinality constrained portfolio will be 

an adiabatic quantum computer, the D-Wave Two, which has not yet been applied to the field of finance.  
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The niobium chip at the heart of the D-Wave is chilled to induce the quantum state. With the user 

modeling a problem into a search for the absolute minimum, The D-Wave Two has 512 qubits giving it 

the ability to perform 2^512 operations simultaneously to allow it to determine the lowest energy required 

to form the solution using the process of “Quantum Annealing” (Bunyk, Hoskinson, Johnson, 

Tolkacheva, Altomare, Berkley, Harris, Hilton, Lanting, and Whittaker, 2014). Neven, Denchev, Rose, 

and Macready (2009) have shown that the adiabatic quantum computer will yield solutions superior to 

those which can be achieved by classical heuristic solvers for discrete global optimization.  We will 

explore this technology’s ability to improve the efficiency and accuracy of current cardinality constrained 

portfolio optimization methods. As the number of entangled qbits increases, with development of the 

technology, the size of the intractable optimization problems that can be addressed efficiently and 

accurately will increase.  We anticipate that with the pace of development that D-Wave has shown, the D-

Wave quantum computers, in conjunction with optimization software development, have a chance at 

becoming the next competitive advantage for financial institutions.  

4.2 Ising Model 

 

Quantum Annealing (QA) is a general method for finding the global minimum of a given objective 

function over a given set of possible solutions by a process using quantum fluctuations (Seki and 

Nishimori, 2012). A physical quantum annealing process is used by D-Wave hardware for an approximate 

minimization for a certain class of Ising objective functions. Optimization of an Ising objective function is 

an NP-hard problem. The Ising minimization problem of 𝑛 variables 𝑠𝑖  ∈  {−1 , +1} is given by: 

 

min
𝒔

∑ 𝑠𝑖𝑠𝑗𝐽𝑖𝑗 +  ∑ 𝑠𝑖ℎ𝑖

𝑖 ∈𝑉(𝑖,𝑗)∈𝐸

 

 

where 𝒔 =  [𝑠1, … , 𝑠𝑛], and 𝐽𝑖𝑗’s and ℎ𝑖’s are real coefficients.. Information about the Ising model is 

expressed by its primal graph 𝐺 = (𝑉, 𝐸), where 𝑉 is a set of vertices corresponding to the optimization 

variables, and 𝐸 is the set of edges in the primal graph. Without loss of generality we can assume that 𝑱 is 

upper-triangular. Sometimes, it is more convenient to model with binary variables rather than 

{−1 , +1} variables. Quadratic Unconstrained Binary Optimization problems (QUBOs) are of the form: 

 

min
𝒙

∑ 𝑥𝑖𝑥𝑗𝑄𝑖𝑗

𝑖>𝑗

 

 

 where 𝑥𝑖  ∈  {0 , 1}, and 𝑄𝑖𝑗’s are real quoficients. QUBOs are NP-hard problems, and are shown to be an 

effective representation of discrete optimization problem models. Ising and QUBO models are related to 

each other through the transformation =  
𝑠+1

2
 .  
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Portfolio optimization problem is mapped into D-Wave Two using one of two methods: discretization, 

and market graph and we explore the fitness of each method. Each approach creates several instances for 

the problem of finding diversified baskets by modeling POP as a QUBO. The output of D-Wave Two is 

an approximation to this diversified basket, and subsequently the probability distribution of the 

diversified basket can be determined. The evolutionary algorithm based on the distribution of diversified 

baskets (EADDB) for solving cardinality constrained portfolio optimization problems is described in the 

next section.  

 

5.0 Methodology: EADDB 
 

In what follows, we propose an algorithm using ideas of evolutionary algorithms for portfolio 

optimization in the presence of cardinality constraints. 

5.1 Discretization  

 

Preliminaries  

For a vector {𝑥1, 𝑥2, … , 𝑥𝑛} in real or binary variables we define the support set of x to be  

supp (𝑥)  = {𝑖: 𝑥𝑖  ≠ 0, 𝑖 = 1, … , 𝑛} 

Definition (CQBO) 

A degree two polynomial in binary variables is called a Cardinality Constrained, Quadratic, Binary 

Optimization problem if it is equipped with a cardinality constraint # supp (δ) ≤ K on its feasible region. 

 

Definition (Discretization) 

Given a quadratic polynomial:  

q = 𝑞(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑥𝑡∑𝑥 +  𝑐𝑡𝑥 

In real variables and with a departure point (𝑥1
0, … , 𝑥𝑛

0) the discretization of q is the quadratic binary 

polynomial: 

𝑞̃ = 𝑞(δ1, δ2, … , δ𝑛) = 𝑥̃𝑡∑𝑥̃ +  𝑐𝑡𝑥̃ 

Where 𝑥̃ = 𝑞(𝑥1δ1, 𝑥2δ2, … , 𝑥𝑛δ𝑛). 

 

We can solve the minimization problem of discretization of a quadratic real polynomial using QA and 

furthermore can solve cardinality constrained versions of the problem. 

 

Definition 

By a population we mean a matrix of zeros and ones, where each row indicates a support set. 
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Example.  

For example if a population is given by: 

𝑋0  = (
1 0 0 1 1 1 ⋯ 1

⋮ ⋱ ⋮
1 1 1 0 0 1 ⋯ 0

) 

Then the first row vector (1, 0, 0, 1, 1, … , 1) indicates the region of points supported by 

assets(1, 4, 5, … , 𝑛). One way of constructing populations is to solve a binary representation of the Min-

Variance Portfolio. 

5.2 Main algorithm 

 

Given n assets indexed by integers {1, … , 𝑛}  we let 𝑟𝑖 be a constant called expected return of asset i. A 

symmetric positive semi-definite n × n matrix C = (𝑐𝑖𝑗) is also given. Let σ𝑖  =  √𝑐𝑖𝑖 be the risk 

associated to asset i and let the correlation between assets i and j be denoted by ρ𝑖𝑗  

ρ𝑖𝑗σ𝑖σ𝑗  =  𝑐𝑖𝑗 

Problem  

The portfolio optimization problem (Markowitz model) with cardinality constraint is  

 

min
𝑥∈ℛ𝑛

𝑓(𝑥) =  ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑥𝑗
𝑛
𝑗=1

𝑛
𝑖=1  

subject to  ∑ 𝑥𝑖 = 1𝑛
𝑖=1   

∑ 𝑥𝑖𝑟𝑖  = 𝑟

𝑛

𝑖=1

 

𝛿 ≤  𝑥𝑖  ≤ 𝜀, ∀ 𝑖 ∈ {1, … , 𝑛} 

# supp (𝑥) = 𝐾 

Solution 

1. First generate an initial population (𝑋0) by solving the discretization of 𝑓(𝑥) around departure 

point (
1

𝐾
, … , 

1

𝐾
),  in the presence of the cardinality constraint. An alternative selection strategy for the 

initial population is solving the quadratic program by removing the cardinality constraint and using 

that solution as the departure point. 

Set L = 0 (first iteration of the algorithm).  

In iteration 𝐿 of the algorithm, given population 𝑋𝐿: 

2. Find 𝑃(𝑥𝑖 = 1) = 𝑝𝑖 (probability of variable 𝑥𝑖 being 1 in a generated population), for all variables  

by counting the number of 1’s in i-th column of the Initial Population 𝑋𝐿, and then dividing the sum 

by M, i.e. 𝑃 (𝑥𝑖 = 1) =  𝑝𝑖 =  
∑ 𝑋𝐿(𝑙,𝑖)𝑀

𝑙=1

𝑀
. M is the number of rows of the Initial Population 𝑋𝐿 . 
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3. Draw a new population, 𝔛𝐿, using 𝑝𝑖’s (we generate strings of 1’s and 0’s). If the number of 1’s in a 

row is greater/smaller than K, we randomly removes/adds 1’s in order to have exactly 𝐾number of 1’s in 

each row. 

 

Example. 𝔛𝐿 is a new population drawn from 𝑝𝑖’s: 

 

 𝔛𝐿  = (
1 0 1 1 1 0 ⋯ 1

⋮ ⋱ ⋮
0 1 1 0 1 1 ⋯ 0

) 

 

4. Use Quadratic Programming (QP) for finding the best solution of the continuous optimization 

problem for each row of 𝔛𝐿. 𝑊𝐿 is a matrix in which each row indicates the best solution of the 

problem found by QP.  

 

Example. 

 

 

 𝔛𝐿  = (
1 0 1 1 1 0 ⋯ 1

⋮ ⋱ ⋮
0 1 1 0 1 1 ⋯ 0

) 

 

And after QP we get  

 

 𝑊𝐿  = (
0.2 0 0.3 0.1 0.1 0 ⋯ 0.4

⋮ ⋱ ⋮
0 0.3 0.5 0 0.05 0.15 ⋯ 0

) 

 

Note. So far, each row in  𝑊𝐿 has met all problem constraints (budget constraint, return constraint and 

cardinality constraint). 

5. Select Parents. Parents are 𝑀′ strings in 𝑊𝐿 with lowest values of objective function 𝑓. 

6. Use linear combinations of parents to generate a new matrix 𝑊̃𝑃, in which each row is a linear 

combination of the selected parents. 

 

Note. Let 𝑊𝐿,𝑗 be the j-th row of matrix 𝑊𝐿. Then the i-th string of 𝑊̃𝐿 is: 

 

𝑊̃𝐿,𝑖 =  ∑ 𝑊𝐿,𝑗 𝜋(𝑗, 𝑖)

𝑀′

𝑗=1
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where 𝑀′is the number of selected parents, and 𝜋(𝑗, 𝑖)’s are the linear combination factors. Both 𝑀′ and 

𝜋(𝑗, 𝑖)’s are parameters of the algorithm which might vary from one simulation run to another, and 

finding their optimal values is an open research problem.   

Note. All row vectors 𝑊̃𝐿,𝑖 meets the return and budget constraints but violate the cardinality constraint. 

 

8. For each row vector 𝑊̃𝐿,𝑖, solve the associated discretization of 𝑓(𝑥) in the presence of the cardinality 

constraint, and generate a new matrix 𝑋𝐿+1. If the number of iterations is less than the maximum number 

of iterations, go to step 2. The maximum number of iterations is another parameter of the algorithm, and 

finding its optimal value is an open research problem. 

Note. Different stopping criteria such as convergence, number of iterations, etc could also be considered. 

5.3 Alternative Approach: Market Graph 

5. 3. 1 Introduction to market graphs 

A market graph is a simple undirected graph depending on a constant threshold θ ∈  [−1, 1] with n 

vertices corresponding to n assets and is constructed in the following manner. Consider correlation 

coefficients 

𝜌𝑖𝑗  =  
⟨𝑅𝑖𝑅𝑗⟩  −  ⟨𝑅𝑖⟩⟨𝑅𝑗⟩

√⟨𝑅𝑖
2 − ⟨𝑅𝑖⟩2⟩⟨𝑅𝑗

2 −  ⟨𝑅𝑗⟩2⟩

 

Where 

𝑅𝑖(𝑡) = ln
𝑃𝑖(𝑡)

𝑃𝑖(𝑡−1)
 , and ⟨𝑅𝑖⟩  =  

1

𝑁
 ∑ 𝑅𝑖(𝑡)𝑁

𝑖=1  

 

and 𝑃𝑖(𝑡) is the price of asset i as a function of time. Then vertices i and j are connected by an edge whenever 

𝜌𝑖𝑗  ≥  𝜃 (Boginski, Butenko, and Pardalos, 2005), (Jallo, and Budai, 2010). 

Note. A maximum independent set of a market graph or a weighted market graph given a threshold 𝜃 is 

known as a diversified portfolio, for the correlation between any pair of assets in the portfolio is less than 

threshold 𝜃.  

 

The differentiating factor of our approach compared to that of the approaches explored in the literature 

review is to search the space first by exploring diversified portfolios and then finding the probability of 

each asset being in the diversified portfolios. 
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5.3.2 Population generation using market graphs 

An alternative method of generating the population given a departure point (𝑥1
0, … , 𝑥𝑛

0) is the following: 

(a) Draw a market graph with parameter 𝜃 

(b) Find the Maximum Independent Set (MIS) (Bondy, and Murty, 1976) of the graph using QA (Choi, 

2010). 

(c) All possible MIS’s for a given 𝜃, and other MIS’s of graphs generated by different 𝜃’s will construct 

our initial population. Note that there is no edge connected between any pair of the nodes in an MIS of the 

market graph, and consequently the correlation between any pair of the assets in the MIS is less than 

threshold 𝜃. In other words, the assets in the MIS are uncorrelated with each other, and they form a 

diversified portfolio. Thus, all possible MIS’s for a given 𝜃 constructs a diversified basket, which is the 

initial population of the algorithm.   

 

The population is now a matrix in zeros and ones in which each row is a MIS of the weighted market 

graph for some 𝜃. Two rows might be generated using different thresholds. (𝑋0)𝑖𝑗 = 1 Indicates that asset 

j is included in the i-th MIS. 

 

Note. We are considering “all” possible MIS’s of weighted market graphs – an MIS violating the 

cardinality constraint is included in the 𝑋0 as well. 

6.0 Datasets 
 

We have used different datasets for performance evaluation of EADBB. Due to an excessive processing 

time for a larger number of assets in the discretization method, only portfolios with less than the number 

of assets compared to the Market graph method have been considered.   

6.1 Datasets used in discretization’s method 

 

The first dataset includes daily prices of 22 stocks from January 2000 through to August 2013 (stock 

tickers: AAN, AA, ABC, ABT, ABV, AB, ABX, AB, ACE, ACI, ACO, ACT, ADC, ADM, AEC, AEE, 

AEG, AEM, AEO, AEP, AES, AET). Daily returns have been calculated using 𝑅𝑖(𝑡) = ln
𝑃𝑖(𝑡)

𝑃𝑖(𝑡−1)
 . 

Expected returns and covariance of stocks’ returns have been computed accordingly using standard 

models/approaches. We have performed experiments on portfolios’ with different number of assets 

ranging from 12 to 22 with the cardinality constraint set fixed at  𝐾 = 4. Lower bound of each asset’s 

weight in the support is set to δ = 0, and the upper bound is set to ε = 1. The portfolio optimization 

problem has been solved by EADDB for 17 return points, ranging from 0 to 0.16 with increments of 0.01.     



22 

 

6.2 Datasets used in Market Graph’s method 

 

We have used a dataset for the portfolio optimization problem from the OR-Library  (Beasley, 1990). We 

have evaluated EADDB’s performance for port-1 (Hang-Seng in Hong Kong), one of the benchmark 

datasets in the OR Library (Beasley, 1990). Expected returns, and correlation between any pair of assets 

are given. In our experiments, the number of assets is 31, and the cardinality constraint is set to 𝐾 = 10. 

The lower bound of each asset’s weight in the support is set to δ = 0.01, and the upper bound is set to ε =

1. The portfolio optimization problem has been solved by EADDB for 50 return points, ranging from 

0.003 to 0.009 with equal return increments of 0.000135.    

 

7.0 Experimental Results 
 

It should be noted that the basic idea of EADDB is to find the mean-variance portfolio by reducing the 

search space using the distribution of a diversified basket. The results shown in this section are for the 

purpose of exploring the usefulness of the distribution of diversified basket method, so the results are 

instances of our simulation runs, and are not necessarily the best results that can be obtained by EADDB. 

In the future work section we elaborate on potential improvements to EADDB. 

7.1 Discretization 

 

Performance of EADDB has been evaluated in comparison with exhaustive search results on the given 

test dataset referenced in the dataset section above. The Number of iterations is set to be 4 in the 

evolutionary algorithm where the size of the population is set to the 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑠𝑠𝑒𝑡𝑠^2. Figure 2 

demonstrates the efficient frontiers obtained by EADDB for the choice of 4 out of 12 assets, where the 

green line is the unconstrained and the blue line is the constrained efficient frontier. Efficient frontiers 

found by exhaustive search are shown in figure 3.  
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                                    Figure 2: Efficient frontiers obtained by EADDB for 12 Assets Choose 4 using discretization 

 
                                         Figure 3: Efficient frontiers obtained by Exhaustive Search for 12 Assets Choose 4 

 

Evolution of EADDB is demonstrated in Figure 4 for expected return 0.08, which is the only point missed 

by EADDB as shown in Figures 2 and 3. We consider the distribution of the diversified basket and the 

evolution of the algorithm for this return, Figure 4. In Figure 4, the orange bars in the first row indicate 

the weights of assets in the optimal support found by exhaustive search. Bars shown from the second row 

to the fifth row, which are labeled by Iterations 1 to 4, indicate the distribution of the diversified basket in 

each iteration of EADDB. Values marked under the horizontal line are weights of assets in a support with 

minimum risk found by EADDB.  
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The higher the bar, the more the associated asset with the bar occurs in the diversified basket. EADDB 

draws populations from the distribution of the diversified basket, which implies that assets with higher 

bars are most likely to occur in a drawn support. In other words, assets with the lowest bars are not likely 

to be in a drawn support, and consequently they are unlikely to be in a support which results in the mean-

variance portfolio. Figure 4 indicates how likely the missed point in the diversified basket was. 

Experimental simulation runs for various expected returns demonstrate that global bests include rarely 

assets associated with the lowest-heights (i.e., the lowest probabilities in the diversified basket). Improved 

versions of EADDB can potentially employ new techniques using such information for reducing the 

search space in finding mean-variance portfolio.  

 

Processing time in our empirical simulations was roughly 100 seconds in the case of 12 choose 4, and 500 

seconds in the case of 22 choose 4. Although drawing the initial population from D-Wave output seems to 

be an effective departure point in our evolutionary algorithm, it is at the expense of the time it takes for 

D-Wave Two to solve the problem. Therefore the discretization method is not a good fit to be solved 

using D-Wave Two. This issue has been resolved by the market graph method, discussed in the next 

section.  

 

    

  
 

                               Figure 4 Evolution of EADDB for expected return 0.08 using discretization for 12 choose 4 
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For the case of 22 choose 4, EADDB misses more points. Figures 5 and 6 indicate the results using 

exhaustive search and EADDB for 22 choose 4, respectively. 

 
                         Figure 5 Efficient frontier and asset allocation found by exhaustive search for 22 choose 4 

 
                  Figure 6 Efficient frontier and asset allocation found by EADDB for 22 choose 4 using discretization  
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Evolution of EADDB is demonstrated in Figure 7 for an expected return of 0.05. In this example, 

EADDB has found the global best of the objective function, ie optimal weights of the support with 

minimum risk. Note that assets with the lowest probabilities in the diversified basket are not included in 

the global best.  

 
                                     Figure 7 Evolution of EADDB for expected return 0.05 in case of 22 choose 4 

 

7.2 Market Graph 

 

We have compared the performance of EADDB for the choice of 10 out of 31 assets with heuristic 

algorithms used globally as benchmarks for POP with cardinality constraints (Chang et. al., and 

Woodside-Oriakhi et. al.). The number of iterations is set to 10 and the size of population is set to 50 in 

the evolutionary algorithm. Both evolutionary algorithm parameters (population size and number of 

iterations) have been chosen to be small numbers so it can give an insight about usefulness of the 

distribution of the diversified basket.   

 

Figure 8 demonstrates the efficient frontier and asset allocation obtained by EADDB for the cardinality 

constrained portfolio. Computing exhaustive search results is a tedious task in this case. The error 

percentage is calculated based on the standard method explained in detail by Chang et. al. and T. Chang 

et. al.. It is defined as the distance between the constrained efficient frontier and the unconstrained 

efficient frontier, hence the unconstrained efficient frontier is drawn for the purpose of error calculations. 

Performance metrics in terms of computational time, error percentage, population size and number of 

iterations are given for EADDB and other heuristic algorithms in Table 1. As discussed earlier, 

parameters of evolutionary algorithm in EADDB have not been tuned to be optimal, and the results in 

table 1 are instances of our simulation runs, and are not necessarily the best answers that can be obtained 

by EADDB.   
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        Figure 8:  Efficient frontier and asset allocation obtained by EADDB for 31 choose 10 with market graph approach 

 

 

 

 Population size # of iterations Time (s) Average Error 

Chang. et. al. 100 31000 172 0.9457 

Woodside-

Oriakhi et. al. 

100 N/A 76 0.85 

EADDB 50 10 529  2.3 

 

    Table 1:  Performance metrics in terms of computational time, error percentage, population size and number of iterations    

for EADDB and other heuristic algorithms 

 

It should be noted that the market graph method gave superior performance in terms of computational 

time compared to the discretization method because it fits D-Wave Two to a greater degree. 
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8.0 Future Work 
 

This paper is the first research done in determining the usefulness of the distribution of diversified baskets 

in portfolio optimization, and it is a broad area of research which can be explored further in the future. 

New evolutionary techniques can be applied to make EADDB more efficient in terms of computational 

time and error. In particular, the more the problem is fit to D-Wave, the faster the evolutionary algorithm 

can be. Experimental simulation runs for various expected returns demonstrate that global bests rarely 

include assets associated with the lowest probabilities in the diversified basket. Improved versions of 

EADDB can potentially employ new techniques using this information for reducing the search space in 

finding efficient mean-variance portfolios. 

 

9.0 Conclusion 
 

In this project, we have proposed a new approach for constructing of diversified portfolios via quantum 

annealing, and have solved portfolio optimization problems with cardinality constraints using an 

evolutionary algorithms based on the distribution of diversified baskets (EADDB). In particular, POP is 

mapped into D-Wave Two using one of two methods: discretization, and market graph. The output given 

by the D-Wave Two is an approximation to this diversified basket, and subsequently the distribution of 

diversified basket can be determined. The distribution of the diversified basket forms the basis of 

EADDB. The performance of the proposed EADDB has been evaluated on the Hang-Seng in Hong Kong 

with 31 assets, one of benchmark datasets in the OR Library (Beasley, 1990), and has been compared 

with heuristic algorithms.  
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