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Abstract  

The collateral systems commonly employed by many derivatives central counterparties 

(CCPs), such as the Standard Portfolio Analysis of Risk (SPAN) or the Value-at-Risk 

(VaR) approach, fail to consider the loss dependence of their clearing members. As a 

consequence, CCPs are often left exposed to simultaneous extreme losses that could 

undermine their stability and that of the entire financial system. In this context, this thesis 

proposes two new collateral methodologies that address this problem. Chapter 2 uses 

copulas to develop a methodology that accounts for the tail dependence of market 

participants. This method allows individual margins to increase when clearing firms are 

more likely to suffer simultaneous extreme losses; thus, reducing the probability and 

shortfall associated with joint margin exceedances. Chapter 3 proposes a collateral 

methodology, called CoMargin, which generalizes the VaR approach to a multivariate 

setting. This method targets and stabilizes the conditional probability of financial distress 

across clearing members, can be generalized to any number of market participants and 

can be backtested using formal statistical tests. The empirical sections of Chapter 3 use 

proprietary data from the Canadian Derivatives Clearing Corporation (CDCC), which 

include daily observations of the actual trading positions of all of its members from 2003 

to 2011. This dataset is the first one of its kind in the economics and finance literature 

and opens the door to the development of new models that do not have to rely on the 

strong assumptions made in the past about the trading behaviour of market participants.  

Keywords:  Collateral; Central Counterparties (CCPs); Derivatives Markets; Extreme 
Dependence; Tail Risk 
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Chapter 1.  
 
Introduction1 

As a consequence of the recent economic crisis, one of the most important 

financial reforms of our lifetime is currently underway. Over-the-counter (OTC) 

derivatives transactions, which represent the largest financial market by size and credit 

exposures, are now required to be collateralized and cleared through central 

counterparties (CCPs). This new environment calls for regulators, academics and 

practitioners to assess and potentially reconsider the risk management models of CCPs, 

particularly those employed to set collateral requirements. Yet, despite the increasing 

systemic importance of these models, academic work in this area is scarce. This thesis 

bridges some of the gap in the literature by analyzing collateral practices in CCPs and by 

proposing new methodologies to enhance their stability. 

Derivatives securities trade in a global market. Standardized contracts typically 

trade on exchanges, where market participants are allowed to deal directly with CCPs. 

More specialized and complex contracts, designed to meet idiosyncratic needs, are 

commonly traded bilaterally on the OTC market. While both markets have experienced 

tremendous growth over the last years, the OTC market has led the way with higher 

notional amounts (see Figure 1.1), current credit exposures (see Figure 1.2) and 

potential future exposures (see Figure 1.3 and Box 2.1). 

 

  

 
1 Sections of this chapter are based on Cruz Lopez (2013b) and Cruz Lopez, Mendes and Vikstedt (2013). 

The views presented here are those of the authors and do not necessarily reflect those of the Bank of 
Canada. 
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Figure 1.1. Notional values of the OTC and exchange traded derivatives markets 

 

Global Canada 

 
 

Note: Dollar values are in USD trillions. OTC amounts (blue line) are represented on the left axis. 
Exchange traded amounts (red line) are represented on the right axis. Global values were 
obtained from the Bank for International Settlements (2012). Canadian figures correspond to the 
six largest banks (RBC, TD, BMO, CIBC, BNS and NBC). Canadian values from 2007 to 2011 
were obtained from the Office of the Superintendent of Financial Institutions (OSFI, 2012). Values 
from 2001 to 2006 were obtained assuming that the share of these six banks represents on 
average 2.10% and 2.7% of the global OTC and exchange traded market, respectively. This 
assumption is consistent with the average share of the Canadian market since 2007 and the 
values reported by CMIC (2011). 
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Figure 1.2. Current credit exposures in the OTC derivatives market. 

 

Global Canada 

Note: Dollar values are in USD billions. Global current credit exposures were obtained from the 
BIS Statistical Release of OTC Derivatives Statistics at end-December 2011 (BIS, 2012). 
Canadian values correspond to the six largest banks (RBC, TD, BMO, CIBC, BNS and NBC). 
From 2007 to 2011 they were obtained from the Office of the Superintendent of Financial 
Institutions (OSFI, 2012). From 2001 to 2006 they were obtained by assuming that the share of 
these six banks represents on average 2.10% of the global OTCD market. This figure 
corresponds to the average Canadian share of the global market in notional amounts from 2007 
to 2011. 
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Figure 1.3. Potential future exposures and collateral pledged in the OTC 
derivatives markets 

 
Global Canada 

   

Note: Dollar values are in USD billions. The solid bars, measured in the left scale, represent the 
potential future exposures (dark blue) and the collateral pledged in the OTC market (light blue). 
The black line, measured in the right scale, shows the percentage of potential future exposures 
that would be left uncovered if all the collateral already pledged in the market was used as initial 
margin. The amount of pledged collateral corresponds to half of the collateral in circulation 
reported by ISDA (2012) after correcting for re-hypothecation. Half of this number is used to avoid 
double-counting, as ISDA sums collateral received and collateral posted. Following Singh (2011), 
it is assumed that from 2001 to 2007 and from 2008 to 2011, 67% and 58% of collateral in 
circulation is the product of re-hypothecation, respectively. Potential future exposures are 
estimated by taking the average ratio of initial margin plus default fund contribution to notional in 
the exchange traded market (0.61%) and applying it to the notional value of the entire OTCD 
market. For Canada, this approach generates values that are consistent with those reported by 
the Office of the Superintendent of Financial Institutions (OSFI, 2012) for the six largest Canadian 
banks (RBC, TD, BMO, CIBC, BNS and NBC). 
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Box 2.1. Credit Exposures 

Current exposures are defined as the sum of 
positive market values (or replacement costs) 
in a portfolio after bilateral netting. They 
measure the immediate dollar amount that an 
investor would lose in her OTC derivatives 
holdings if her counterparties suddenly 
defaulted.  

In the context of central clearing, current 
exposures are determined after marking-to-
market all positions. The clearing house then 
exchanges variation margin across its 
members to settle all outstanding claims.  

Therefore, current exposures provide a direct 
estimate of the amount of collateral needed to 
settle the OTC derivatives contracts currently 
outstanding in the market.  

Current exposures are also known as gross 
credit exposures, gross positive replacement 
cost, current exposure after netting or net 
current exposure, where the word net denotes 
that exposures are measured after bilateral 
netting (BIS, 2012). 

Potential credit exposures correspond to the 
maximum dollar amount that an investor could 
lose in his OTC derivatives holdings during a 
pre-specified period of time (usually one day), 
assuming a set of scenarios or distributions. 

In the context of central clearing, potential 
credit exposures are determined through 
scenario analyses and an equivalent amount of 
initial margin is collected by CCPs to protect 
them against these potential losses.  

Therefore, potential credit exposures provide 
an estimate of the amount of initial margin that 
would be needed if outstanding OTC 
derivatives positions were initiated in (or 
migrated to) a CCP. 

 

During the financial crisis, however, the markets for common OTC transactions, 

such as credit default swaps, collapsed. The opacity of these markets coupled with their 

loose collateral policies exacerbated liquidity constraints that lead to a rapid spread of 

defaults throughout the financial system. Figure 1.3, for example, shows the potential 

credit exposures in the OTC market that should have been covered with initial margins 

and compares these values to the amount of collateral actually pledged after correcting 

for rehypothecation. The black line shows the proportion of potential future exposures 

that would had been left uncollateralized if all pledged collateral had been liquidated. 

The figure clearly shows that OTC transactions have traditionally relied on little or no 

collateral. Centrally cleared transactions, on the other hand, are by construction 

collateralized in terms of both their current and future potential exposures. This practice 

allowed most CCPs to remain solvent and fully operational during the crisis.  
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Therefore, in an effort to reduce systemic risk, on September 2009, the G20 

member countries committed to reform derivatives markets by mandating that most OTC 

contracts be cleared through CCPs and that those remaining bilaterally traded be 

subject to higher collateral and capital requirements. However, while these reforms are 

in principle well intended, it is obvious that their success crucially depends on the 

collateral practices used by CCPs.  

The primary role of a CCP is to concentrate and manage credit risk in one 

location. In derivatives exchanges, clearing houses perform this role along with the 

clearing function (i.e. confirming, matching, and settling all trades). Each clearing house 

transacts with a limited number of market participants, known as clearing members, who 

are allowed to clear their own trades (i.e., conduct proprietary trading), those of their 

customers, and those of non-clearing firms. Through the process of novation, the 

clearing house becomes the counterparty and guarantor to every contract in the 

exchange; thus, reducing the counterparty risk faced by the clearing members. At the 

same time, the CCP manages its own risk exposures primarily through the use of 

margining systems.2 

Margining systems require clearing members to post collateral in a margin 

account (see Box 2.2). This collateral is used to guarantee the trading obligations of 

clearing members over a period of time, usually one day, and to protect the CCP against 

the losses and potential default of its counterparties. Nevertheless, clearing members 

sometimes experience losses that exceed their posted collateral, leaving them with a 

negative balance in their margin accounts. If these clearing members delay their 

payments or default, the CCP has to cover their shortfall with its own funds in order to 

compensate the counterparties with wining positions. Usually, financing the shortfall of a 

single clearing member over a limited period of time does not impose a hefty burden on 

the CCP. However, financing several negative margin balances simultaneously, can 

significantly affect market liquidity, particularly during volatile periods, and it can 

eventually erode the resources of the CCP to the point of causing its failure.  

 
2 Other common credit risk management tools used by CCPs include requiring members to hold minimum 

capital levels, contribute to a default fund, enter into private insurance arrangements and segregate 
between client and firm margin accounts (see Jones and Pérignon, 2013). 
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Box 2.2. What is collateral? 

Collateral has traditionally been used by 
financial market participants to protect against 
credit exposures, especially for secured 
lending, repurchase agreements (repos) and 
derivatives transactions. Depending on the 
nature and risk of the transaction being 
covered, collateral can take many forms, 
ranging from cash to equities or even gold. 

Recent literature and financial regulation 
focuses on two overlapping definitions of 
collateral. Both define a set of assets suitable 
for use as a guarantee in a wide range of 
transactions. The first definition is based on 
market practice and includes financial assets 
that have a low risk of default. These assets 
are known as high-quality assets (HQA). The 
second definition is based on financial 
regulation and encompasses high-quality liquid 

assets (HQLA), the subset of HQA that is 
deemed sufficiently liquid to meet the 
requirements of the Basel III Liquidity 
Coverage Ratio. Common assets in this 
category include AAA, AA and OECD 
government securities, covered bonds, U.S. 
agency debt, local provincial/municipal bonds, 
and some corporate bonds. 

Common securities used as collateral in 
derivatives markets include cash, U.S. 
treasuries, government and corporate bonds, 
and in some cases equities. With the exception 
of cash, most of these assets are subject to 
haircuts; that is, price adjustments set by 
collateral recipients and used to account for 
variations in the credit quality, volatility and 
liquidity of pledged assets. 

 

Nevertheless, despite the fact that simultaneous losses are the major threat to 

the stability of CCPs, the collateral systems commonly employed by many of these 

institutions, such as the Standard Portfolio Analysis of Risk (SPAN) or the Value-at-Risk 

(VaR) approach, only focus on individual risk. As a consequence, these systems fail to 

consider the loss dependence of clearing members and often leave the CCP exposed to 

simultaneous extreme losses that could undermine its stability and that of the entire 

financial system.  

In this context, this thesis proposes two new collateral frameworks that address 

this problem. Chapter 2, titled “Clearing House, Margin Requirements, and Systemic 

Risk”, is based on Cruz Lopez, Harris and Pérignon (2011), a publication in the journal 

Review of Futures Markets that introduces a methodology called Tail-Dependent margin. 

Our approach aims at reducing the probability and shortfall associated with joint margin 

exceedances by increasing the collateral requirements of clearing members when they 

are more likely to experience simultaneous extreme losses. Our methodology relies on 
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the use of copulas to assess the P&L tail dependence coefficient of clearing firms and 

uses this parameter to adjust the corresponding VaR margin estimates. 

Chapter 3, titled “CoMargin: A System to Enhance Financial Stability”, is based 

on Cruz Lopez, Harris, Hurlin and Pérignon (2013), a recently peer-reviewed Bank of 

Canada working paper that continues my research on optimal collateral methodologies. 

In this chapter my co-authors and I introduce another collateral system, called CoMargin, 

which generalizes the VaR approach to a multivariate setting. Like the Tail-Dependent 

system of Chapter 2, CoMargin depends on both the risk of a given market participant 

and its interdependence with other participants. However, instead of trying to minimize 

the occurrence of joint margin exceedances and their shortfalls, CoMargin aims at 

stabilizing the conditional probability of financial distress across clearing members. This 

mechanism allows the CCP to have a predictable and stable amount of collateral to 

cover its exposures even after one or more of its clearing members have suffered an 

extreme loss. The chapter shows theoretically and empirically that CoMargin 

outperforms existing margining systems, particularly when trading similarities across 

clearing members or comovement among underlying assets increase, as was the case 

during the recent crisis. 

While similar in principle, the Tail-Dependent and CoMargin approaches offer 

features that are suitable to different environments. Tail-Dependent margins are more 

appropriate when the objective is to minimize the probability and shortfall associated 

with simultaneous margin exceedances, as would be the case when a CCP is small or a 

regulator or government agency is the lender of last resort. In addition, this approach 

could be easier to implement when standardization across contracts, market participants 

and CCPs is important for regulatory and risk management purposes but the financial 

state of clearing members is too costly to assess or monitor. More specifically, unlike the 

CoMargin approach, the Tail-Dependent system has the advantage that the CCP or 

regulator does not need to set an arbitrary threshold to define an extreme loss. Instead, 

extreme losses in this setting are endogenously defined as the limit to minus infinity in 

the P&L distribution. Although, specifying an arbitrary threshold in CoMargin is no 

different than, for example, setting a discretionary coverage level under the VaR 

approach, this could lead to heterogeneity in the implementation of the model across 

contracts and CCPs.  
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On the other hand, CoMargin is suitable for enhancing the stability of conditional 

coverage probabilities and the resilience of the CCP, which is important when a lender of 

last resort is impractical. This situation can occur, for example, when global CCPs fall 

under multiple-jurisdictions or are so systemically important that their failure could lead 

to a global cascade of defaults that cannot be easily contained. In addition, the 

CoMargin system has the unique advantage of offering a backtesting methodology 

based on formal statistical tests. Therefore, if the benefits of monitoring outweigh the 

costs, this system allows CCPs and regulators to have a clear and objective assessment 

of their collateral policies. 

This thesis provides at least three significant contributions to the literature. First, 

it offers the first empirical assessment of the performance of different margining systems 

that is based on actual, and not assumed, portfolio positions. Second, it adds to the 

literature of financial risk management by proposing two new collateral methodologies 

that can be easily implemented and expanded to more general settings that require the 

management of counterparty risk (e.g., capital requirements, credit risk monitoring, etc.). 

Finally, the dataset used to conduct the empirical analyses constitutes by itself a 

significant contribution. A major constraint in empirical finance in general and risk 

management in particular is the lack of data that can be used for publishable research. 

In the best of cases, this data is highly confidential and in most cases, it does not exist or 

is just recently being collected by regulators. Through my work at the Bank of Canada 

and mutual cooperation with the Canadian Derivatives Clearing Corporation (CDCC), the 

clearing house of the TMX Montreal Exchange, I was able to collect, over a period of a 

year and a half, the proprietary data used in the empirical analysis of Chapter 3. This 

dataset, the first one of its kind in the economics and finance literature, includes the daily 

P&L, margin requirements, default fund contributions and trading positions on the most 

actively traded Canadian derivatives contracts for all CDCC members between January 

2, 2003 and March 31, 2011. These data open the door to the development of new 

models that do not have to rely on the strong assumptions made in the past about the 

trading behaviour of market participants. More importantly, it allows us to depart from the 

traditional approach in empirical finance of implying price dynamics from other price 

dynamics, by letting us observe the quantities of the assets held and traded by market 

participants.  
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Chapter 2.  
 
Clearing House, Margin Requirements, and 
Systemic Risk3 

2.1. Introduction 

Economic turmoil in recent years has heightened the need for well-functioning 

clearing facilities in derivatives markets, particularly when large market participants are 

in financial distress and eventually default (Acworth 2009; Pirrong 2009; Duffie and Zhu 

2011). In a derivatives exchange, the clearing house is responsible for the clearing 

function, which consists of confirming, matching, and settling all trades. The clearing 

house operates with a limited number of clearing firms or futures commission merchants, 

which are private firms that have the right to clear trades for themselves (i.e., proprietary 

trading), for their own customers, and for the customers of non-clearing firms.4  

In order to mitigate default risk, the clearing house requires clearing members to 

post margin (i.e., collateral). At the end of each day, the clearing house marks-to-market 

all outstanding trading positions and adjusts margins accordingly. A problematic situation 

arises, however, when the daily loss of a clearing firm exceeds its posted collateral. In 

this case, the firm may decide to default on its obligations and the clearing house may 

have to draw on its default fund to compensate the winning counterparties.5  Eventually, 

 
3 This chapter is based on Cruz Lopez, Harris and Pérignon (2011).  
4 While derivatives clearing systems have been developed to deal with exchange-traded futures and options, 

regulations have been adopted by G20 countries to require over-the-counter derivatives to go through 
similar clearing processes (Acharya et al., 2009; US Congress’ OTC Derivatives Market Act of 2009; 
US Department of Treasury, 2009; Duffie, Li, and Lubke, 2010). In response, the Chicago Mercantile 
Exchange, Intercontinental Exchange, and EUREX have recently created clearing facilities for Credit 
Default Swaps (CDS). 

5 Although exogenous events unrelated to losses in exchange-traded derivatives might also result in default, 
we do not specifically address these situations. 
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the clearing house may default as well, after its default fund has been exhausted. This 

scenario, as unlikely as it may appear, is plausible, especially if several large clearing 

firms exceed their margin simultaneously and ultimately default. It is also economically 

significant, because the failure of a clearing house would cause a major systemic shock 

that could spread default risk throughout the financial system. 

Current practice in derivatives exchanges is to set the margin level of a derivative 

contract in such a way that it leads to a target probability of a loss in excess of collected 

collateral (Figlewski 1984; Booth et al. 1997; Cotter 2001). Similarly, for a portfolio of 

derivatives, the margin requirement is derived from a distribution of simulated losses 

associated to the current portfolio positions (e.g. the Chicago Mercantile Exchange’s 

SPAN system). We depart from this traditional view and account for tail dependence in 

the losses of clearing firms when setting collateral requirements. More specifically, we 

allow the margin requirements of a particular firm to depend not only on its own trading 

positions, but also, potentially, on other clearing firms’ positions. The basic intuition 

behind this concept is that the collateral requirement of a given clearing firm should 

increase when it is more likely to experience a loss that exceeds its posted margin at the 

same time as other clearing firms. 

Simultaneous margin exceeding losses and defaults are more likely to occur 

when the trading positions across clearing firms are similar or when they have similar 

risk exposures due to increases in the comovement of underlying assets. Conceptually, 

the main source of similarities in trading positions across large clearing firms is that they 

share a common (and superior) information set (Jones and Pérignon, 2013). This 

informational advantage leads to similar directional trades. Furthermore, much of the 

proprietary trading activity on derivatives exchanges consists of arbitraging futures and 

over-the-counter (OTC) markets or cash markets (e.g. cash-futures arbitrage of the S&P 

500 index, eurodollar-interest rate swap arbitrage, etc.). As a result, if large clearing 

firms exploit similar arbitrage opportunities, they will have similar trading positions. 

Empirical evidence of correlated trading among large financial institutions is found in 

many settings, including futures markets. Using data for all Chicago Mercantile 

Exchange’s (CME) clearing firms, for instance, Jones and Pérignon (2013) show that 

extreme losses by systemically-important clearing firms tend to cluster. This finding 
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suggests that the derivative positions of the largest trading firms can be at times very 

similar. 

Our approach for computing margins can be summarized as follows. We start 

with the trading positions of each clearing firm at the end of a given day. We then 

consider a series of scenarios in which both the level and the volatility of all underlying 

assets are shocked by an arbitrary amount – in the spirit of stress testing. For each 

scenario, we mark-to-model the clearing firm’s portfolio and compute the associated 

hypothetical profit-and-loss (hereafter P&L). These hypothetical amounts are used to 

estimate the Value-at-Risk (VaR) margin requirement of each clearing firm, which is 

defined as the ߙ% quantile of the simulated P&Ls. In addition, the hypothetical P&Ls are 

used to compute the coefficient of lower tail dependence for each pair of firms. This 

coefficient is defined as the probability of two clearing members having simultaneous 

extreme losses. Our approach sets the collateral requirement of each clearing firm as a 

function of its highest coefficient of tail dependence with respect to every other firm.  

Through the use of simulations, we show that accounting for interdependencies 

among clearing members decreases the likelihood of simultaneous margin exceeding 

losses and the shortfall associated with these events. Both of these features greatly 

reduce the systemic risk concerns associated with clearing houses. In addition, our 

methodology displays several attractive features. First, it is perfectly compatible with 

existing risk management techniques in place in derivatives exchanges, such as the 

SPAN system (CME, 2009). Second, our methodology can be applied at a daily or even 

higher frequency. This is important as an increasing number of derivatives exchanges 

mark-to-market positions twice a day (e.g. EUREX). Third, our approach differs from the 

“concentration risk” collateral method, which is most typically applied at the individual 

firm level. For instance, the Chicago Mercantile Exchange’s clearing house monitors 

concentrations by focusing on the proportion of open interest on a given contract that is 

controlled by a single clearing firm, and it assigns additional margin to reflect the 

incremental exposure due to concentration.  

In terms of methodology, this chapter is at the confluence of two streams of 

literature. First, we rely on modeling techniques for extreme dependence as in Longin 

and Solnik (2001), Ang and Chen (2002), Poon, Rockinger, and Tawn (2004), Patton 
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(2008), and Christoffersen et al. (2012). While previous papers focus on stock or hedge 

fund returns, we show that tail dependence can also be very useful to jointly model 

clearing members’ P&L on a derivatives exchange. Second, our analysis builds on the 

recent literature on systemic risk. Adrian and Brunnermeier (2011) introduce the CoVaR 

measure that is the VaR of the financial system conditional on the distress of a given 

financial institution. Then they estimate the ∆CoVaR(firm i)  = CoVaR(system|firm i) - 

VaR(system), which captures the marginal contribution of a particular institution to the 

overall systemic risk. Related studies by Acharya et al. (2010) and Brownlees and Engle 

(2012) focus on the Marginal Expected Shortfall of a given bank, defined as the 

expected loss of a particular firm conditional on the overall banking sector being in 

distress. Similar to these papers, we measure, and attempt to internalize, the potentially 

negative externalities of having interconnected market participants. Although in the same 

spirit, we use a new and different methodology which focuses on margin requirements 

and the risk that correlated positions pose to the clearing house.  

The outline of this chapter is the following. In Section 2.2, we show how to 

estimate tail dependence among clearing firm losses. In Section 2.3, we formally 

describe our methodology to set collateral as a function of tail dependence. We assess 

the performance of our method using simulations in Section 2.4. Section 2.5 summarizes 

and concludes this chapter. 

2.2. Tail Dependence 

In derivatives markets, margins serve as performance bonds to guard against 

default. In our work, the performance bond ܤ௜,௧ represents the margin requirement 

imposed by the clearing house on clearing firm ݅ at the end of day ݐ, for ݅ ൌ 1,… ,ܰ. This 

performance bond depends on the outstanding trading positions of the clearing firm. The 

variation margin ௜ܸ,௧ represents the aggregate mark-to-market profit or loss of clearing 

firm ݅ on day ݐ. The relative variation margin ܴ௜,௧ is defined as:  

ܴ௜,௧ ൌ
௜ܸ,௧

௜,௧ିଵܤ
 (2.1)
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Clearing firm ݅ experiences a margin exceeding loss, or an exceedance, at time ݐ 

if ܴ௜,௧ ൏ െ1, or equivalently if ܤ௜,௧ିଵ ൅ ௜ܸ,௧ ൏ 0, since in this case the trading loss exceeds 

posted collateral. In such a situation, the clearing firm may decide to default, which 

would generate a shortfall in the system that needs to be covered by the clearing house. 

By definition, tail dependence measures the probability of two random variables 

having simultaneous extreme events in the same direction. We define the coefficients of 

upper and lower tail dependence to quantify the comovement in revenues across 

clearing firms in extreme market conditions. In our context, the tail dependence structure 

captures the degree of diversification across clearing firms and the likelihood of having 

simultaneous margin exceeding losses across several clearing firms. The coefficient of 

upper tail dependence of the relative variation margins of clearing firms ݅ and ݆ at time ݐ 

is defined as: 

߬௜,௝
௎ ൌ ݈݅݉

௨→ଵ
௜ܴൣݎܲ ൒ ௜ܨ

ିଵሺݑሻ| ௝ܴ ൒ ௝ܨ
ିଵሺݑሻ൧ ൌ ݈݅݉

௨→ଵ
ൣݎܲ ௝ܴ ൒ ௝ܨ

ିଵሺݑሻ|ܴ௜ ൒ ௜ܨ
ିଵሺݑሻ൧	 (2.2)

where	 ܨ௜ሺܴ௜ሻ denotes the marginal cumulative distribution function of ܴ௜ for ݅ ൌ 1,… ,ܰ, 

and ݑ ∈ ሺ0,1ሻ represents the marginal cumulative distribution level. Likewise, the 

coefficient of lower tail dependence of the relative variation margins of clearing firms ݅ 

and ݆ at time ݐ is defined as: 

߬௜,௝
௅ ൌ ݈݅݉

௨→଴
௜ܴൣݎܲ ൑ ௜ܨ

ିଵሺݑሻ| ௝ܴ ൑ ௝ܨ
ିଵሺݑሻ൧ ൌ ݈݅݉

௨→଴
ൣݎܲ ௝ܴ ൑ ௝ܨ

ିଵሺݑሻ|ܴ௜ ൑ ௜ܨ
ିଵሺݑሻ൧ (2.3)

Because we are primarily concerned with shortfalls in the clearing system, in the 

following sections we focus on the lower tail, and simplify the notation as follows:	߬௜,௝ ൌ

߬௜,௝
௅ .  

We model trading revenue dependence across clearing firms by using a bivariate 

copula (Patton 2009). A copula is a function that links together marginal probability 

distribution functions, say ܨ௜ሺܴ௜ሻ and ܨ௝൫ ௝ܴ൯, to form a multivariate probability distribution 
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function, in this case ܨ൫ܴ௜, ௝ܴ൯. According to Sklar’s Theorem (Sklar, 1959), if the 

marginal distributions are continuous, there exists a unique copula function ܥ such that: 

,൫ܴ௜ܨ ௝ܴ൯ ൌ ,௜ሺܴ௜ሻܨ൫ܥ ௝ሺܨ ௝ܴሻ൯ (2.4)

Several features of copulas are useful in our context. First, marginal distributions 

do not need to be similar to each other. Second, the choice of the copula is not 

constrained by the choice of the marginal distributions. Third, copulas can be used with 

ܰ marginal distributions. Fourth, the use of copula functions enables us to model the 

tails of the marginal distributions and tail dependence separately. This last point is very 

important in our case because in a multivariate setting, the likelihood of an extreme 

event can increase either because of fatter tails in the marginal distributions or because 

of fatter tails in the joint distribution function.  

A natural candidate that allows us to incorporate tail dependence is the Student 

 ߭ probability distribution function with ݐ జ be the univariate Studentݐ copula. Let-ݐ

degrees of freedom. Then, for continuous marginal distributions, ܨ௜ሺܴ௜ሻ, the bivariate 

Student ݐ-copula, ఘܶ,జ, is defined as: 

ఘܶ,జ ቀܨ௜ሺܴ௜ሻ, ௝൫ܨ ௝ܴ൯ቁ ൌ ,ఘ,జ൫ܴ௜ݐ ௝ܴ൯ (2.5)

where ݐఘ,జ is the bivariate distribution corresponding to ݐజ and ߩ ∈ ሾെ1,1ሿ is the 

correlation coefficient between ܴ௜ and ௝ܴ. 

A Student ݐ-copula corresponds to the dependence structure implied by a 

multivariate Student ݐ	distribution. It is fully defined by the correlation of the implicit 

variables, ߩ, and the degrees of freedom, ߭. The degrees of freedom define the 

probability mass assigned to the extreme co-movements of the relative variation margins 

(both positive and negative). In addition, this copula assigns a higher probability to joint 

extreme events, relative to the Gaussian copula, the lower the degrees of freedom, 

because a Student t copula with ߭௧ 	→ ∞ corresponds to a Gaussian copula. 
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Student ݐ-copulas allow us to readily obtain an estimate of the coefficient of lower 

tail dependence based on the correlation coefficient and the degrees of freedom 

(Cherubini, Luciano, and Vecchiato 2004 and Schmidt, 2006): 

߬௜,௝ ൌ జାଵݐ2 ቌെ√߭ ൅ 1ඨ
1 െ ߩ
1 ൅ ߩ

ቍ (2.6)

As can be seen from this equation, two parameters, the correlation coefficient 

and the degrees of freedom, fully describe the dependence structure of trading 

revenues. Intuitively, larger correlations and lower degrees of freedom lead to higher tail 

dependence. 

We implement a two-stage semi-parametric approach to estimate the pairwise 

copulas across all clearing firms. The first stage consists of estimating the empirical 

marginal distribution of the trading revenues of each clearing firm. The second stage 

consists of estimating the t-copula parameters, ߩ and ߭, for every pair of clearing 

members through maximum likelihood (Genest, Ghoudi, and Rivest 1995). 

2.3. Margin Requirements 

In this section, we propose a new way of setting margin requirements for clearing 

firms. Our approach accounts for both tail risk and tail dependence structure across 

clearing firms. We consider a derivatives exchange with ܰ clearing firms and ܦ 

derivatives contracts (futures and options) written on ܣ underlying assets. Let ݓ௜,௧ be the 

number of contracts in the derivatives portfolio of clearing firm ݅ at the end of day ݐ: 

௜,௧ݓ ൌ ൥
௜,ଵ,௧ݓ
⋮

௜,஽,௧ݓ
൩ (2.7)

We consider two ways of computing the margin requirement of a clearing firm, 

which we present in turn below. 
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2.3.1. VaR Margin 

The VaR margin requirement is applied on a firm by firm basis, without regard to 

correlations across firms. As in the SPAN system utilized by the CME, we consider a 

series of S scenarios based on potential one-day ahead changes in the value (∆ܺ) and 

volatility (∆ߪ௑) of the underlying assets, as well as in the time to expiration of the 

derivatives products. For each of the S scenarios, we revaluate the portfolio (i.e., we 

“mark-to-model” its positions) and compute the associated hypothetical P&L or variation 

margin of the portfolio. Thus, for each clearing firm and date ݐ, we obtain a simulated 

sample of one-period-ahead variation margins, denoted ൛ݒ௜,௧ାଵ
௦ ൟ

௦ୀଵ

ௌ
, that can be used to 

estimate the VaR margin requirement as follows: 

Definition 2.1: The VaR margin of firm ݅, ܤ௜, corresponds to the ߙ% quantile of its P&L 

distribution: 

Pr൫ ௜ܸ,௧ାଵ ൑ െܤ௜,௧൯ ൌ (2.8) ߙ

 

Thus, VaR margin accounts for the potential margin exceeding losses of a 

particular clearing firm, but it ignores its interdependence with other clearing members. 

In this case, the total collateral collected by the clearing house at time ݐ from all clearing 

firms is: 

௧ܤ ൌ෍ܤ௜,௧

ே

௜ୀଵ

 (2.9)

2.3.2. Tail-Dependent Margin 

The Tail-Dependent margin requirement is based not only on the magnitude of 

simulated losses (as in the VaR margin requirement), but also on the dependence 

structure across clearing firms’ potential losses. Our objective is to increase the 
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collateral requirement of each individual firm by an amount proportional to its degree of 

dependence with other firms. Therefore, the increase in collateral is proportional to the 

incremental risk faced by the clearing house from potentially correlated losses among its 

members.  

Consider the portfolios of derivatives contracts of two clearing firms at the end of 

a given day, ݓ௜,௧ and ݓ௝,௧. For each clearing firm, we compute the variation margins 

generated by the ܵ scenarios described in the previous section, ൛ݒ௜,௧ାଵ
௦ ൟ

௦ୀଵ

ௌ
 and 

൛ݒ௝,௧ାଵ
௦ ൟ

௦ୀଵ

ௌ
, respectively, and compute ܤ௜,௧ and ܤ௝,௧ as in equation (2.8). The tail 

dependence between the clearing firms’ simulated relative variation margins is given by:  

߬̃௜,௝,௧ ൌ ݈݅݉
௨→଴

ൣݎܲ ෨ܴ௜,௧ାଵ ൑ ௜,௧ାଵܨ
ିଵ ሺݑሻ| ෨ܴ௝,௧ାଵ ൑ ௝,௧ାଵܨ

ିଵ ሺݑሻ൧ (2.10)

where ෨ܴ௜,௧ାଵ ൌ ෨ܸ௜,௧ାଵ/ܤ௜,௧. With ܰ clearing firms, we end up with ܰሺܰ െ 1ሻ/2 tail 

dependence coefficients, which can be presented in a lower diagonal matrix: 

ۏ
ێ
ێ
ێ
ێ
ଶ,ଵ̃߬ۍ
߬̃ଷ,ଵ ߬̃ଷ,ଶ
⋮ ⋱

߬̃ே,ଵ ߬̃ே,ଶ … ߬̃ே,ேିଵ ے
ۑ
ۑ
ۑ
ۑ
ې

 

For each clearing firm, we conservatively set its collateral requirement as a 

function of the highest coefficient of tail dependence with respect to all other clearing 

firms:  

߬̃௜,௧ ൌ ൛߬̃௜,௝,௧ൟ௝ୀଵ,௝ஷ௜ݔܽ݉
ே

 (2.11)
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We use this parameter to estimate the Tail-Dependent margin requirement as 

follows: 6 

Definition 2.2: The Tail-Dependent margin of firm ݅, ܤ௜,௧
∗ , corresponds to: 

௜,௧ܤ
∗ ൌ ௜,௧ܤ ൈ ݁௠௔௫൛ఊ൫ఛ෤೔,೟ିఛ൯;଴ൟ (2.12)

 

where ߛ is the tail dependence aversion coefficient and ߬ is a threshold tail dependence 

coefficient below which the collateral is not affected, i.e., ܤ௜,௧
∗ ൌ ௜,௧ if ߬̃௜,௧ܤ ൑ ߬.  Thus, the 

total collateral collected by the clearing house becomes: 

௧ܤ
∗ ൌ෍ܤ௜,௧

∗

ே

௜ୀଵ

 (2.13)

Notice that in the degenerative case where ߛ ൌ 0 or if ߬̃௜,௧ ൑ ߬, we obtain the VaR 

margin requirement ܤ. Thus, the VaR collateral requirement is a special case of the Tail-

Dependent margin requirement. In other words, our approach can be seen as a 

generalized VaR system. An implication of this result is that ܤ௧
∗ ൒  ,௧. As an illustrationܤ

we plot in Figure 2.1, the level of Tail-Dependent margin for different coefficients of tail 

dependence aversion (ߛ ൌ 0.3,0.5,1), ߬ ൌ ܤ ,0.10 ൌ 100, and for a tail parameter ranging 

between 0 and 1. Notice that no additional collateral is required for low coefficients of tail 

dependence. The required collateral increases with higher tail dependence aversion, a 

choice variable for the clearing house, and with higher tail dependence, a parameter that 

can be estimated from simulated trading revenues. 

 
6 As a nested case, the VaR margin requirement implies zero correlations.  
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Figure 2.1. Tail-Dependent collateral 

 

Note: This figure presents the level of Tail-Dependent margin ܤ∗ as a function of the coefficient of 
tail dependence ߬. The VaR margin requirement ܤ is assumed to be equal to 100 and the 
threshold tail dependence coefficient ߬ (below which collateral is not affected) to 0.10. The tail 
dependence aversion coefficient ߛ of the clearing house varies between 0.3 and 1. 

2.4. Controlled Experiment 

To demonstrate the difference between the VaR and Tail-Dependent margin 

requirements, we consider a derivatives exchange with ܰ clearing firms and two call 

options written on different underlying assets. Four clearing firms are assumed to be 

systemically important (݊ ൌ 4) due to their size, so we focus on their margin 

requirements. Panel A of Table 2.1 displays the trading positions of these systemically 

important members in three different states: (1) low tail dependence, (2) moderate tail 

dependence, and (3) high tail dependence. The first state is obtained by selecting 

orthogonal trading positions across the systemically important firms. For the remaining 

states, the level of tail dependence is gradually increased by allowing the second firm to 
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hold a position that progressively resembles that of the first. Notice, however, that the 

positions of the first, third, and fourth clearing firms remain constant across states. In 

addition, non-systemically important clearing firms are assumed to clear the market in 

every state. Thus, each option contract is always in zero-net supply. 

In order to simulate the variation margins for each clearing firm, we define ܵ 

scenarios that combine potential one-day changes in the value of the underlying assets, 

∆ ଵܺ		and ∆ܺଶ, with changes in volatility, ∆ߪ௑భ	and ∆ߪ௑మ. For each scenario, we mark-to-

model the positions using the Black-Scholes model and generate a hypothetical change 

in the value of the portfolio held by each clearing firm. We then compute the coefficients 

of tail dependence between the simulated relative variation margins as described in 

equation (2.10). Panel B of Table 2.1 shows the estimated coefficients of tail 

dependence and Table 2.2 shows the parameter values used for this controlled 

experiment.  

Panel C of Table 2.1 compares three ways of computing collateral. The first two 

are the VaR (ܤ) and the Tail-Dependent margin requirement (ܤ∗) discussed earlier.7 The 

third collateral system aims at being budget-neutral and provides a better benchmark 

against which to compare the allocations of the Tail-Dependent margining system 

because it collects the same amount of aggregate collateral. This Budget-Neutral margin 

requirement is defined as: 

௜,௧ܤ
଴ ൌ ௜,௧ܤ ൅

௧ܤ
∗െܤ௧
݊

for ݅ ൌ 1,… , ݊ (2.14)

where the budget-neutral condition is: 

෍ܤ௜,௧
଴

௡

௜ୀଵ

ൌ෍ܤ௜,௧
∗

௡

௜ୀଵ

(2.15)

 
7 See equation (2.8) for the definition of VaR margin (ܤ) and equation (2.12) for the definition of the Tail-

Dependent margin requirement (ܤ∗). 
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and from equation (2.12) it follows that ܤ௜,௧
଴ ൌ ௜,௧ܤ ൌ ௜,௧ܤ

∗  when ߬̃௜,௧ ൑ ߬ or ߛ ൌ 0. 

The results presented in Panel C of Table 2.1 show that the three margining 

systems are equivalent in the low-dependence state and that they diverge as the level of 

tail dependence increases to 0.247 in the moderate-dependence state, and to 0.908 in 

the high-dependence state. The equivalence across margining systems in the low-

dependence state arises because the tail dependence coefficients are virtually zero, 

thus, ߬̃௜,௧ ൑ ߬ and ܤ௜,௧
∗ ൌ -௜,௧ for all clearing firms. In other words, when default risk is wellܤ

diversified among clearing firms, the Tail-Dependent margin system converges to the 

VaR margin system. On the other hand, in the moderate and high-dependence states, 

the Tail-Dependent margin requirement for clearing firms 1 and 2 increases due to their 

progressively homogeneous trading positions. This homogeneity is captured by the 

higher coefficient of tail dependence that is incorporated into ܤ∗.  

Notice, however, that the VaR and Tail-Dependent margin requirements of firms 

3 and 4 remain unchanged across states as their positions stay orthogonal relative to 

those of the other members. This is not true for the Budget-Neutral case. The Budget-

Neutral margin requirement increases for all members in the moderate and high-

dependence states. This situation arises because the additional collateral that would be 

collected under the Tail-Dependent margining system is now collected across all 

systemically important clearing firms. As a consequence, the Budget-Neutral margin 

requirements of firms 3 and 4 increase in the moderate and high dependence state due 

to the increased tail dependence between firms 1 and 2.  
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Table 2.1. Controlled experiment 

 Low Tail Dependence Moderate Tail Dependence High Tail Dependence 

 1 2 3 4 1 2 3 4 1 2 3 4 

Panel A: Trading Positions 

d=1 100 30 -50 -100 100 125 -50 -100 100 95 -50 -100 

d=2 100 -170 150 -100 100 75 150 -100 100 105 150 -100 

Panel B: Tail Dependence Coefficients 

߬̃ଶ,௝ .000 . . . .247 . . . .908 . . . 

߬̃ଷ,௝ .000 .000 . . .000 .000 . . .000 .000 . . 

߬̃ସ,௝ .000 .000 .000 . .000 .000 .000 . .000 .000 .000 . 

߬̃௜ .000 .000 .000 .000 .247 .247 .000 .000 .908 .908 .000 .000 

Panel C: Margins 

௜ 3,849 6,228 4,310 5,319ܤ 3,849 3,918 4,310 5,319 3,849 3,851 4,310 5,319

௜ܤ
∗ 3,849 6,228 4,310 5,319 4,022 4,094 4,310 5,319 4,905 4,908 4,310 5,319

௜ܤ
଴ 3,849 6,228 4,310 5,319 3,936 4,005 4,397 5,406 4,377 4,380 4,839 5,847

 ௜ .050 .050 .050 .050 .050 .050 .050 .050 .050 .050 .050 .050݌

௜݌
∗ .050 .050 .050 .050 .041 .038 .050 .050 .007 .007 .050 .050 

௜݌
଴ .050 .050 .050 .050 .045 .044 .046 .046 .022 .022 .026 .033 

Note: Panel A presents the trading positions of the four systemically important clearing firms in two 
option contracts (d = 1,2) when tail dependence is low, moderate, and high. Panel B displays the tail 
dependence coefficients among pairs of clearing firms (߬̃௜,௝) and the highest coefficient of tail 
dependence across all pairs (߬̃௜). Panel C show the VaR (ܤ௜),Tail-Dependent (ܤ௜

∗), and Budget-
Neutral margin (ܤ௜

଴). When computing Tail-Dependent margins, we use a tail dependence aversion 
coefficient ߛ of 0.3 and a threshold tail dependence coefficient ߬ of 0.1. Finally, the ݌௜ variables 
denote the probability of a clearing firm experiencing a margin exceeding loss: ݌௜ ൌ ൣݎܲ ௜ܸ,௧ାଵ ൑ െܤ௜,௧൧, 
௜݌
∗ ൌ ൣݎܲ ௜ܸ,௧ାଵ ൑ െܤ௜,௧

∗ ൧, and ݌௜
଴ ൌ ൣݎܲ ௜ܸ,௧ାଵ ൑ െܤ௜,௧

଴ ൧. 
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Table 2.2. Parameters used for the controlled experiment 

Parameter Value 

A. Market and Clearing Members  

Number of derivatives securities (D) 2 

Number of underlying assets (A) 2 

Number of systemically important clearing members (n) 4 

B. Underlying Assets  

Value of underlying asset 1 at ݐ ൌ 0 $100 

Value of underlying asset 2 at ݐ ൌ 0 $100 

C. Derivatives Securities  

Strike price of option contract 1 $100 

Strike price of option contract 2 $100 

Time to maturity of option contract 1 1 year 

Time to maturity of option contract 2 1 year 

D. Margining Systems  

Variation range in the value of the underlying assets േ50% 

Variation range in the volatility of the underlying assets’ returns േ50% 

Number of scenarios for the value of the underlying asset and its volatility (S) 10,000 

Quantile for the VaR margin system (α) 5% 

Tail dependence aversion coefficient (γ) 0.3 

Threshold tail dependence coefficient (߬) 0.1 

 

In order to assess the effectiveness of each margining system, we now turn our 

attention to their relative performance. In order to do this, we simulate changes in the 

value of the call options by randomly selecting one of the ܵ scenarios. For each 

margining system, we compute the probability of margin exceedances (i.e., the 

probability that ܤ௜,௧ିଵ ൅ ௜ܸ,௧ ൏ 0) across clearing firms, the probability of joint margin 

exceedances, and the magnitude of the average margin shortfall given joint margin 

exceedances. The bottom part of Panel C in Table 2.1 shows the probability of margin 

exceedance across clearing firms. Since the quantile for the VaR margining system, ߙ, 

was set to 5% in the simulation (see Table 2.2), the VaR margin system has an 

exceedance probability of 5% in all scenarios by construction. Similarly, in the low-

dependence state, when ܤ௜,௧ ൌ ௜,௧ܤ
∗ ൌ ௜,௧ܤ

଴  for all clearing firms, the probability of a margin 
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exceedance is 5% across margining systems. In the moderate and high-dependence 

states, however, the probability of exceedance is lower for firms 1 and 2 under the Tail-

Dependent margining system and lower for all firms under the Budget-Neutral system 

because more collateral is required relative to the VaR margin case.  

At a first glance, this result would suggest that the Budget-Neutral system 

performs better than the alternatives because it reduces the unconditional probability of 

margin exceedances across clearing firms. However, Figure 2.2 shows that the Tail-

Dependent margining system actually provides a better allocation of margin 

requirements. More specifically, the figure shows that the probability of joint margin 

exceedances is lower under the Tail-Dependent margining system, particularly when tail 

dependence is high. 

Notice that the probability of joint margin exceedances increases monotonically 

with tail dependence under the VaR margin system. On the other hand, for the Tail-

Dependent system, this probability first increases in the moderate-dependence state and 

then decreases in the high-dependence state. This result arises due to the value of the 

tail dependence aversion coefficient, ߛ ൌ 0.3, and the value of the threshold tail 

dependence coefficient, ߬ = 0.1 (see Table 2.2), which translates into a slight increase in 

the required margin for firms 1 and 2 (an additional $173 and $176, respectively) in the 

moderate tail dependence state, and a significantly larger increase (an additional $1,056 

and $1,057 respectively) in the high tail dependence state. Similar results can be 

observed for the Budget-Neutral system for the same reasons. A monotonic decrease of 

the probability of joint margin exceedances could be obtained for the Tail-Dependent 

collateral system if a higher value of  ߛ or a ߬ of 0 is selected. 

Finally, Figure 2.3 shows that the average shortfall (ܤ௜,௧ିଵ ൅ ௜ܸ,௧) given a margin 

exceedance, is lower under the Tail-Dependent margining system in the moderate and 

high-dependence states. Therefore, we can conclude that the Tail-Dependent margining 

system is superior to the alternatives because it provides a better allocation of margin 

requirements. This allocation depends on the composition and homogeneity of the 

trading positions of the clearing members and it provides better protection against joint 

negative outcomes. 
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Figure 2.2. Probability of joint margin exceedances 

Note: The figure presents, for each margining system, the likelihood of clearing firms jointly 
exceeding their posted margin requirements, i.e., ܤ௜,௧ିଵ ൅ ௜ܸ,௧ ൏ 0, given different levels of tail 
dependence between them (low, moderate, and high). The three margin requirements 
correspond to those under the VaR (ܤ), Tail-Dependent (ܤ∗), and Budget-Neutral (ܤ଴) margining 
systems. The results are based on 1,000,000 simulations of the actual changes in the underlying 
asset prices. 

 

0

0.01

0.02

0.03

0.04

0.05

0.06

B B* B° B B* B° B B* B°

Low Moderate High

P
ro
b
ab

ili
ty



 

27 

 

 

Figure 2.3. Average shortfall given joint margin exceedances 

Note: The figure presents, for each margining system, the average shortfall (ܤ௜,௧ିଵ ൅ ௜ܸ,௧) given 
joint margin exceedances and different levels of tail dependence between clearing firms (low, 
moderate, and high). The three margin requirements correspond to those under the VaR (ܤ), 
Tail-Dependent (ܤ∗), and Budget-Neutral (ܤ଴) margining systems. The results are based on 
1,000,000 simulations of the actual changes in the underlying asset prices. 
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2.5. Conclusion 

In this chapter, we present a novel approach to compute margins for a portfolio of 

derivatives securities. The innovative feature of our method is that it accounts not only 

for the riskiness of the trading positions of an individual market participant, but also for 

their interdependence with those of other participants. Our method is a simulation-based 

technique that accounts for extreme tail dependence across potential trading losses.  

We show that accounting for interconnections across clearing firms in a 

derivatives exchange lowers the probability of clearing members experiencing losses 

that exceed their posted collateral simultaneously. In addition, accounting for 

interconnections reduces the magnitude of the shortfall associated with these events. 

Both of these features significantly decrease the systemic risk concerns associated with 

clearing houses. 

While our simulation analysis focuses on margins for option positions, our 

method can be applied to any listed derivative contract such as futures, swaps, or 

exchange-traded credit derivatives. Furthermore, it is important to notice that our 

approach is not limited to derivatives exchanges and can also be used to set collateral in 

any financial network. For instance, our method could be used to set collateral 

requirements for OTC positions. 
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Chapter 3.  
 
CoMargin: A System to Enhance Financial 
Stability8 

3.1. Introduction 

How much collateral should a market participant post against its derivatives 

positions? In this chapter, we argue that margin requirements should increase with both 

the variability and the interdependence of the profits and losses (P&Ls) of market 

participants. We show that commonly used margining systems, such as the Standard 

Portfolio Analysis of Risk (SPAN) or the Value-at-Risk (VaR) approach, often fail to 

properly allocate collateral requirements because they disregard interdependencies 

across the portfolios of different market members. Our objective is to address this issue 

by proposing a new margining system, called CoMargin, which explicitly internalizes P&L 

interdependence. Our methodology is a model-free, scenario based approach that can 

be generalized to any number of market participants and, unlike the SPAN system, it can 

be formally backtested by using an extension of existing statistical techniques. 

We focus on clearing houses in derivatives markets because these institutions 

concentrate a significant amount of credit risk in the financial system (Pirrong, 2009). 

However, our margining and backtesting methodology is general enough that it can be 

applied to any context where counterparty risk needs to be managed. Examples include, 

but are not limited to, collateral and capital requirements for repo transactions, over-the-

counter (OTC) securities dealers, banks, insurance companies and newly-proposed 

swap execution facilities (SEFs). 

 
8 This chapter is based on Cruz Lopez, Harris, Hurlin and Pérignon (2013). The views presented here are 

those of the authors and do not necessarily reflect those of the Bank of Canada or the Canadian 
Derivatives Clearing Corporation. 
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In a derivatives exchange, the clearing house is in charge of confirming, 

matching, and settling all trades. Clearing houses operate with a small number of firms, 

called clearing members (CMs), who are allowed to submit their own trades for clearing 

through their firm accounts (i.e., conduct proprietary trading), as well as those of their 

customers or other non-clearing members through their client accounts.  

The process of novation allows the clearing house to become the only 

counterparty to every contract. For this reason, clearing houses are sometimes known 

as central counterparties (CCPs). Throughout this process, the clearing house remains 

market-risk neutral because, by construction, the number of long positions is equal to the 

number of short positions outstanding for all contracts. However, the clearing house 

accumulates a significant amount of credit risk, which is primarily managed through the 

use of margining systems.9 

A clearing house margining system requires members to post cash or financial 

assets as collateral in a margin account. These funds are used to protect the clearing 

house against the losses and potential default of its members over a period of time, 

usually one day. However, CMs sometimes experience losses that exceed their posted 

collateral, which leaves them with a negative balance in their margin accounts. We refer 

to these losses as margin exceeding losses or just exceedances for short. CMs that 

experience exceedances may delay payment or in some cases default on their 

obligations; thus, creating a shortfall in the market. The CCP has to cover this shortfall 

with its own funds and compensate the clearing members that profited from their trading 

positions. Usually, financing the shortfall of a single CM over a limited time does not 

impose a hefty financial burden on the clearing house. However, when two or more large 

CMs experience simultaneous margin exceeding losses, the consequences tend to be 

more severe. If these CMs delay their payments temporarily, the resulting shortfall tends 

to be short lived, but it can significantly affect market liquidity, particularly during volatile 

periods. On the other hand, if these CMs default, the shortfall tends to be long-lived or 

 
9 Other common credit risk management tools used by CCPs include requiring members to hold minimum 

capital levels, contribute to a default fund, enter into private insurance arrangements and segregate 
between client and firm margin accounts (see Jones and Pérignon, 2013). 
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even permanent which can erode the resources of the clearing house to the point of 

financial distress or even failure.  

While clearing house failures are rare events, the cases of Paris in 1973, Kuala 

Lumpur in 1983 and Hong Kong in 1987 demonstrate that these extreme scenarios are 

not only possible, but also very economically significant (Knott and Mills, 2002).10 In 

addition, the systemic importance of CCPs has increased in recent years due to their 

consolidation through economic integration and mergers and acquisitions, and due to 

the strong pressure from governments and market participants to facilitate or mandate 

the central clearing of OTC derivatives (Acharya et al., 2009; US Congress’ OTC 

Derivatives Market Act of 2009; US Department of Treasury, 2009; Duffie, Li, and Lubke, 

2010; Duffie and Zhu, 2011).11 Therefore, it is increasingly necessary to devise 

appropriate risk management systems that enhance the stability and resiliency of 

clearing facilities. 

Current margining systems employed by derivatives exchanges set collateral 

requirements based on a coverage level or a target probability of an exceedance event 

for an individual contract or portfolio of contracts (Figlewski 1984; Booth et al. 1997; 

Cotter 2001).12 However, by focusing only on individual contracts or member portfolios, 

these systems ignore the fact that sometimes CMs face homogenous risk exposures 

that make their losses highly interdependent. This situation exposes the clearing house 

to simultaneous exceedance events that could undermine its stability. 

The level of P&L dependence across clearing members increases with trade 

crowdedness and underlying asset comovement (Cruz Lopez, 2013a). Trade 

crowdedness refers to the similarity of trading positions across CMs. When positions 

across portfolios are very similar, they tend to have equivalent exposures and returns, 

 
10 Default of CMs is of course much more frequent. Recent examples in the Chicago Mercantile Exchange 

(CME) include Refco in 2005, Lehman in 2008, and MF Global in 2011 (see Jones and Pérignon, 
2013). 

11 The CME, Intercontinental Exchange (ICE), EUREX, Euronext Liffe, and LCH-Clearnet have each 
recently created clearing facilities for Credit Default Swaps. 

12 For example, Kupiec (1994 and 1995) shows the empirical performance of the SPAN system for selected 
portfolios of S&P 500 futures and futures-options contracts and finds that, over the period from 1988 
to 1992 the historical margin coverage exceeds 99% for most portfolios included in the sample. 
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regardless of how underlying assets behave. Underlying asset comovement refers to 

asset returns moving in unison. When underlying assets experience high levels of 

comovement, CMs tend to face similar risk exposures regardless of the composition of 

their portfolios because securities in all portfolios tend to move in the same direction.13  

Both dimensions of P&L dependence are related. However, trade crowdedness 

is directly influenced by the individual trading behaviour of clearing members, while 

asset comovement is determined by aggregate market behaviour. Similar trading 

positions, or crowded trades, tend to arise among large clearing members because they 

share a common (and superior) information set. This informational advantage leads 

them to pursue similar directional trades, arbitrage opportunities and hedging 

strategies.14 On the other hand, underlying assets tend to move in the same direction 

during economic slowdowns or during periods of high volatility, both of which are rarely 

the result of the actions undertaken by an individual market participant.15 

In this chapter we depart from the traditional view of setting margin requirements 

based on individual member positions and propose a methodology that accounts for 

their interdependence. We estimate the margin requirement of each CM conditional on 

one or several other members being in financial distress. A CM is said to be in financial 

distress if its losses exceed its P&L VaR. By adopting this approach, we obtain individual 

margin requirements that increase with P&L dependence, stabilize the probability of 

exceedance events given financial distress, and reduce the risk that the clearing house 

exhausts its funds due to large or sudden shortfalls. 

Our method builds on the CoVaR concept introduced by Adrian and 

Brunnermeier (2011) to identify systemically important financial institutions. CoVaR is 

defined as the VaR of the financial system (i.e., the banking sector) conditional on a 
 
13 The importance of asset comovement has been identified in previous studies. For example, in an early 

attempt to analyze the default risk of a clearing house, Gemmill (1994) highlights the dramatic 
diversification benefit from combining contracts on uncorrelated or weakly correlated assets. 

14 Much of the proprietary trading activity in derivatives exchanges consists of arbitraging futures and OTC 
or cash markets (e.g. cash-futures arbitrage of the S&P 500 index, eurodollar-interest rate swap 
arbitrage, etc.). 

15 Extreme dependence and contagion across assets is discussed in Longin and Solnik (2001), Bae, Karolyi 
and Stulz (2003), Longstaff (2004), Poon, Rockinger and Tawn (2004), Boyson, Stahel and Stulz 
(2010), and Harris and Stahel (2011), among others. 
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given institution being in financial distress (i.e., exceeding its VaR). The core of their 

analysis, denominated ∆CoVaR, measures the marginal contribution of a particular 

institution to the overall risk in the system. ∆CoVaR is calculated as the difference 

between the VaR of the financial system conditional on a given institution being in 

distress and the VaR of the financial system in the median state of the institution. 

Similarly, by inverting the conditioning relationship, one can assess the exposure of a 

given institution to the state of the financial system. 

There are, however, some key differences between the CoMargin and CoVaR 

methodologies that are worth noticing. First, the objective of CoMargin is not to measure 

systemic risk. Instead, it is used to estimate margin requirements that account for the 

interdependence of market participants. Thus, we are not concerned with the state (i.e., 

VaR) of the financial system, but with the coverage that the CCP derives from collecting 

collateral. Second, CoMargin does not define financial distress in terms of the VaR of 

bank stock returns, but in terms of the VaR of the potential (one-day ahead) P&Ls of 

clearing members. Furthermore, unlike CoVaR, which can be estimated by conditioning 

on the financial distress of all members in the banking system, CoMargin can only be 

estimated by conditioning on a subset of market participants, because by construction 

the aggregate P&L across all CMs in a derivatives exchange is zero. Finally, the 

estimation of CoMargin is semi-parametric and much simpler than that of CoVaR, which 

requires a quantile regression approach.  

The CoMargin estimation process starts by taking the trading positions of all 

clearing members at the end of the trading day as given. A series of one-day-ahead 

scenarios based on projected changes in the price and volatility of the underlying assets 

is used to assess changes in the value of the portfolio of each member. For each 

scenario, we mark-to-model the portfolio of each CM and obtain its hypothetical one-

day-ahead P&L. Based on these hypothetical P&L calculations we compute margin 

requirements that target the probability of margin exceedances conditional on the 

financial distress of other members. 

Our results show that the CoMargin system enhances the stability of the CCP by 

maintaining the probability of margin exceedances conditional on the financial distress of 

other members constant and by reducing the occurrence of simultaneous margin 
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exceeding losses. In addition, our method increases financial resiliency because it 

actively adjusts the allocation of collateral as a function of market conditions that 

influence P&L dependence. As a result, the average magnitude of the shortfall given 

simultaneous exceedances is minimized relative to other collateral systems. Both of 

these conditions greatly reduce the systemic risk concerns associated with CCPs. 

The remainder of the chapter is organized as follows. In Section 3.2, we describe 

how margin requirements are currently estimated under the SPAN and VaR margining 

systems. In Section 3.3 we define a list of properties needed to achieve a sound 

margining system. We present the theoretical foundations of the CoMargin system in 

Section 3.4 and examine its empirical effectiveness in Section 3.5. Finally, Section 3.6 

concludes. 

3.2. Traditional Margining Systems 

Consider a derivatives exchange with ܰ clearing members and ܦ derivatives 

securities (futures, options, credit default swaps, etc.) written on ܣ underlying assets. Let 

 ௜,௧ be the number of contracts in the derivatives portfolio of clearing member ݅, forݓ

݅ ൌ 1,… ,ܰ, at the end of day ݐ: 

௜,௧ݓ ൌ ൥
ଵ,௜,௧ݓ
⋮

஽,௜,௧ݓ
൩ (3.1)

Margins are collected every day from each clearing member to guarantee the 

performance of their obligations and to guard the clearing house against default. Let ܤ௜,௧ 

be the performance bond or margin collected by the clearing house from clearing 

member ݅ at the end of day ݐ. This performance bond is a function of the outstanding 

trading positions of that member, ݓ௜,௧.  

The variation margin, ௜ܸ,௧, represents the aggregate portfolio P&L of clearing 

member ݅ on day ݐ. In this chapter, we are interested in cases when trading losses 

exceed margin requirements; that is, when ௜ܸ,௧ ൑ െܤ௜,௧ିଵ. In these cases, we say that 
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firm ݅ has experienced a margin exceeding loss or an exceedance. Identifying firms in 

this state is important because they have an incentive to default on their positions or to 

delay payment on their obligations, which generates a shortfall in the market that needs 

to be covered by the CCP. Given the limited funds available to the CCP, simultaneous 

exceedance events can threaten its stability and survival. 

3.2.1. SPAN Margin 

The CME introduced the Standard Portfolio Analysis of Risk margining 

methodology in 1988. It has since become the most widely used margining system in 

derivatives exchanges around the world. Every day following the market close, clearing 

houses such as the Canadian Derivatives Clearing Corporation (CDCC), the Chicago 

Mercantile Exchange (CME), Eurex, LCH.Clearnet, Nymex and the Options Clearing 

Corporation (OCC), among others, use the SPAN system to estimate the margin 

requirements of their members.  

SPAN is a scenario-based methodology that is used to assess potential changes 

in the value of the derivatives held by each clearing member. However, SPAN does not 

take a portfolio-wide approach. Instead, it divides each portfolio into contract families, 

defined as groups of contracts that share the same underlying asset, and estimates a 

charge for each family independently. Thus, for a portfolio with ݀ ∈  derivatives written ܦ

on ܽ ∈  .underlying assets, the SPAN system computes ܽ contract family charges ܣ

To compute a contract family charge in a portfolio, the SPAN system simulates 

one-day-ahead changes in the value of each contract by using sixteen scenarios that 

vary the price and the volatility of the underlying asset, as well as the time to expiration 

of the contract (see Table 3.1). The range of the potential price changes of the 

underlying asset usually covers 99% of its daily price movements over a historical 

calibration window. A similar approach is adopted for the volatility. The extreme price 

changes are used to assess potential changes in deep out of the money options. The 

scenario analysis yields a risk array for each contract that contains sixteen one-day-

ahead potential value changes (i.e., each maturity and each strike price has its own 
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array).16 The scenario with the worst potential loss for the entire contract family is 

identified and that loss becomes the first part of the contract family charge.  

The second part of the contract family charge consists of a discretionary 

adjustment that is needed because contracts with different expiration months are 

assumed to be equivalent in the scenario analysis. In other words, long and short 

positions written on the same underlying asset but with different expiration months offset 

each other. Therefore, risk managers are required to add an intra-commodity spread 

charge to the worst case scenario loss to account for time-spread trading. The resulting 

value is the contract family charge. 

The collateral requirement for an entire portfolio is computed by aggregating the 

charges across all of its contract families. However, once again, risk managers are 

required to use discretionary aggregation rules to account for commodity-spread trading 

(i.e., simultaneous long and short positions in contracts with the same expiration months 

but written on different but correlated underlying assets). These adjustments are known 

as inter-commodity spread charges.  

It is important to note that both intra- and inter-commodity spread charges involve 

the discretion of risk managers. Thus, these adjustments are rarely consistent across 

commodities, market conditions or clearing houses. This situation coupled with the fact 

that the SPAN system targets underlying price and volatility ranges, instead of the 

probability of portfolio-wide margin exceeding losses, make the exceedance coverage of 

the SPAN system inconsistent across time and markets.  

  

 
16 The projected price changes of non-linear contracts, such as options, are obtained by using numerical 

valuation methods or option pricing models. 
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Table 3.1. Scenarios used in the SPAN system 

Scenario Underlying Asset Price 
Ch

Volatility Change Time to Expiration 
1 0 + volatility range െ1/252 

2 0 - volatility range െ1/252 

3 ൅1/3 x price range + volatility range െ1/252 

4 ൅1/3 x price range - volatility range െ1/252 

5 െ1/3 x price range + volatility range െ1/252 

6 െ1/3 x price range - volatility range െ1/252 

7 ൅2/3 x price range + volatility range െ1/252 

8 ൅2/3 x price range - volatility range െ1/252 

9 െ2/3 x price range + volatility range െ1/252 

10 െ2/3 x price range - volatility range െ1/252 

11 ൅3/3 x price range + volatility range െ1/252 

12 ൅3/3 x price range - volatility range െ1/252 

13 െ3/3	 x price range + volatility range െ1/252 

14 െ3/3 x price range - volatility range െ1/252 

15 Positive extreme change 0 െ1/252 

16 Negative extreme change 0 െ1/252 

Note: The table shows the sixteen scenarios used to determine the contract family charge in the 
SPAN system. Price and volatility ranges usually cover 99% of the data points over a rolling 
historical estimation window. Positive and negative extreme changes are designed to assess the 
effect of deep out of the money options. 

 

  



 

38 

3.2.2. VaR Margin 

VaR is defined as a lower quantile of a P&L distribution. It is the standard 

measure used to assess the aggregate risk exposure of banks (Berkowitz and O’Brien, 

2002; Berkowitz, Christoffersen and Pelletier, 2011), as well as their regulatory capital 

requirements (Jorion, 2007). VaR can also be used to set margins on a derivatives 

exchange. In this case, the margin requirement corresponds to a given quantile of a 

clearing member’s one-day-ahead P&L distribution.  

 

Definition 3.1: The VaR margin of firm ݅, ܤ௜, corresponds to the ߙ% quantile of its P&L 

distribution: 

Pr൫ ௜ܸ,௧ାଵ ൑ െܤ௜,௧൯ ൌ (3.2) ߙ

 

Like the SPAN system, the VaR margin method is applied on a firm-by-firm basis 

using a scenario analysis. However, the scenarios are applied to the entire portfolio 

(Cruz Lopez, Harris and Pérignon, 2011). More specifically, we consider ܵ scenarios 

derived from simulated one-day-ahead changes in the value of the price and the volatility 

of the underlying assets and use them to evaluate each clearing member’s entire 

portfolio. The hypothetical P&L or variation margin of each CM is computed by marking-

to-model its positions in each scenario. Thus, for each CM and date ݐ, we obtain a 

simulated sample of ௜ܸ,௧ାଵ denoted ൛ݒ௜,௧ାଵ
௦ ൟ

௦ୀଵ

ௌ
 that can be used to estimate the VaR 

margin requirement as follows: 

෠௜,௧ܤ ൌ ݈݁݅ݐ݊݁ܿݎ݁݌ ቀ൛ݒ௜,௧ାଵ
௦ ൟ

௦ୀଵ

ௌ
, ቁ (3.3)ߙ100

Compared to market risk VaR (Jorion, 2007), the estimation of VaR margin is 

much simpler. When estimating market risk VaR, there is only one observation available 
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for each asset on date ݐ. Therefore, the quantile of a return distribution of a given asset 

at time ݐ cannot be estimated without making some strong distributional assumptions. 

For example, the historical simulation approach broadly used by financial institutions for 

market risk VaR estimations assumes that the asset returns are independently and 

identically distributed over time. Under these assumptions, the unconditional VaR is 

stationary and can be estimated from the historical path of past returns. The estimation 

of more refined conditional measures also requires some specific assumptions regarding 

quantile dynamics. For instance, the CAViaR approach proposed by Engle and 

Manganelli (2004), assumes an autoregressive process for the quantiles. 

In the context of VaR margin, however, the situation is quite different and much 

simpler because we have ܵ simulated observations of the P&L distribution of each 

clearing member at time ݐ. This is an ideal situation from an econometric standpoint 

because the quantile of the P&L distribution can be directly implied without making any 

assumptions regarding its behavior over time. Thus, ܤ෠௜,௧, which represents the empirical 

quantile based on the ܵ simulated observations (equation 3.3), is a consistent estimate 

of the P&L VaR when ܵ tends to infinity. 

3.3. Characteristics of a Sound Margining System 

Remarkably, there is very little guidance in the literature regarding the properties 

that a sound collateral system should satisfy. Nevertheless, this is a fundamental issue 

that needs to be addressed in order to assess the relative merits of different margining 

methodologies. In this section we attend to this issue by proposing five main properties 

that any well designed margining system must satisfy. These properties and the 

rationale behind them are explained below. 

i. Margins must increase with P&L variability 

Let ߪ௜,௧ be a measure of the variability of the P&L of clearing member ݅ at time ݐ: 

If ߪ௜,௧
ଵ ൒ ௜,௧ߪ

ଶ  then ܤ௜,௧൫ݓ௜,௧, ௜,௧ߪ
ଵ ൯ ൒ ,௜,௧ݓ௜,௧൫ܤ ௜,௧ߪ

ଶ ൯ (3.4)
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As Table 3.2 shows, this basic property is at the heart of existing margining 

methods. Intuitively, it means that since riskier trading portfolios (as measured by their 

variability) tend to have larger potential losses, more collateral must be collected to 

guarantee their performance. Or in simple words, riskier clearing members should post 

higher margins. The SPAN and VaR methods comply with this property because both 

the worst-case loss of the SPAN system and the quantile that determines VaR margin 

tend to increase with the variability of P&Ls.17 

ii. Margins must increase with P&L dependence 

Let ߜ௜,௧ be a measure of dependence between the losses of market participant ݅ 

and those of other market participants at time ݐ. P&L dependence can originate from 

similarities in trading positions, correlated asset prices, or both: 

If  ߜ௜,௧
ଵ ൒ ௜,௧ߜ

ଶ     then   ܤ௜,௧൫ݓ௜,௧, ௜,௧ߜ
ଵ ൯ ൒ ,௜,௧ݓ௜,௧൫ܤ ௜,௧ߜ

ଶ ൯ (3.5)

The intuition behind this property is that a sound margining system should 

prevent (or minimize) the occurrence of simultaneous margin exceeding losses across 

market participants. As shown in Section 3.2, both the SPAN and VaR margin methods 

set margins on a firm-by-firm basis and hence completely disregard P&L dependence 

across clearing members. 

iii. Margins should not be excessively procyclical 

When margins are procyclical, market downturns and excess volatility can lead to 

higher initial margins and more frequent margin calls. This situation can adversely affect 

 
17 Artzner et al. (1999) define a coherent risk measure using four axioms: monotonicity (if the returns of 

portfolio 1 (P1) are always lower than those of portfolio 2 (P2), then P1 is riskier than P2), translation 
invariance (adding $K in cash to P1 reduces its risk by the same amount), homogeneity (increasing the 
size of P1 by a factor S increases its risk by the same factor), and subadditivity (risk measures need to 
account for diversification). Conceptually, with non-subadditive margins, it may be optimal for 
participants to breakdown their trading portfolio into smaller sub-portfolios in order to reduce their 
total margin requirements. However, in practice, clearing houses prevent financial institutions from 
having multiple clearing members. Furthermore, netting rules allow clearing members to post 
considerably less margin than what they would be required to post if they had dislocated portfolios. 
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funding conditions and market liquidity, and can force traders to close out their positions 

simultaneously; thus, intensifying market declines. Brunnermeier and Pedersen (2009) 

explain and model this sequence of reinforcing events which they refer to as a “margin 

spiral”. Current margin requirements are prone to trigger these spirals because they are 

only a function of expected price and volatility changes. In addition, discretionary 

parameters, such as the intra- and inter-commodity charges used in the SPAN system, 

are usually modified after significant or persistent market shocks; thus, causing more 

variability in the margining process, which can be destabilizing for the market.  

iv. Margins must be robust to outliers 

Erratic margin swings due to outliers should be prevented as much as possible 

as they may lead to severe operational problems, such as sudden margin calls. Since 

SPAN margins are based on the maximum simulated loss and not a quantile, they are 

much more sensitive to outliers than VaR margins. 

v. Margins must be testable ex-post 

The only way to systematically measure the effectiveness of a margining system 

is by backtesting it. Backtesting aims at identifying misspecified models that lead to 

either excessive or insufficient coverage for the CCP relative to a target. Therefore, if a 

margining system cannot be backtested using formal statistical methods, we cannot 

identify its potential shortcomings and fine tune it to meet its objectives.  

VaR margins can be easily backtested because they are defined by the quantile 

of the P&L distribution. The intuition behind the backtesting procedure is that the actual 

trading losses of a given clearing member should only exceed its VaR margin α% of the 

time. Well known VaR validation tests can be found in Jorion (2007) and a more refined 

approach can be found in Hurlin and Pérignon (2012).  

On the other hand, backtesting SPAN margin requirements is extremely 

challenging because they are based on the minimum of a simulated P&L distribution, 

which is very hard to identify. Validation tests, in this case, cannot be performed without 

making strong distributional assumptions. More important, however, is the fact that the 

SPAN system cannot be backtested in terms of a coverage probability of margin 
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exceeding losses, as it targets the ranges of the underlying asset prices and volatilities 

instead of the coverage of portfolio-wide P&Ls. Nevertheless, since the objective of 

collecting margins is to guarantee the overall performance of clearing member 

obligations, the probability of margin exceedances is the relevant measure of the 

effectiveness of a margining system. 

In summary, the SPAN system only complies with the first key property, whereas 

the VaR margin system complies with properties one, four and five. Table 3.2 

summarizes these findings. It is interesting to notice, however, that existing margining 

techniques are unable to account for P&L dependence across market participants and to 

produce margin requirements that are not highly procyclical.  

 

Table 3.2. Desirable properties of margin requirements 

Properties SPAN Margin VaR Margin CoMargin 

Reflects P&L variability Yes Yes Yes 

Reflects P&L dependence across participants No No Yes 

Exhibits lower procyclicality No No Yes 

Is robust to outliers No Yes Yes 

Can be backtested No Yes Yes 

 

 

  



 

43 

3.4. CoMargin 

3.4.1. Concept 

The VaR and SPAN collateral systems only focus on firm specific risk; that is, the 

unconditional probability of an individual clearing member experiencing a margin 

exceeding loss. By adopting either method, the clearing house guards itself from unique 

or independent exceedances, but it leaves itself exposed to simultaneous exceedance 

events. These events, however, tend to be much more economically significant because 

they place a more substantial burden on the resources of the clearing house. 

Consider the VaR margin of firms ݅ and ݆. The probability of simultaneous 

exceedances is given by:  

Prൣ൫ ௜ܸ,௧ାଵ ൑ െܤ௜,௧൯ ∩ ൫ ௝ܸ,௧ାଵ ൑ െܤ௝,௧൯൧ 

ൌ Pr൫ ௜ܸ,௧ାଵ ൑ െܤ௜,௧| ௝ܸ,௧ାଵ ൑ െܤ௝,௧൯ ൈ Pr൫ ௝ܸ,௧ାଵ ൑ െܤ௝,௧൯ 

(3.6) 

Equation 3.6 shows that simultaneous exceedance events tend to happen more 

frequently not only when firm specific risk increases (i.e., when Pr൫ ௝ܸ,௧ାଵ ൑ െܤ௝,௧൯ 

increases), but also when P&L dependence increases (i.e., when  Pr൫ ௜ܸ,௧ାଵ ൑

െܤ௜,௧| ௝ܸ,௧ାଵ ൑ െܤ௝,௧൯ increases). In the first case, firms are more likely to experience 

losses that exceed their collateral levels in all states of the world. In the second case, 

firms are more likely to experience these losses at the same time as other firms, either 

because they hold similar positions (i.e., trade crowdedness is high) or because 

underlying assets have a tendency to move together (i.e., underlying asset comovement 

is high). However, VaR and SPAN margins completely disregard P&L dependence and 

its potential effect on the stability of the CCP. In the case of the VaR system, risk 

managers only target unconditional exceedance probabilities by setting a coverage level, 

1 െ  for each clearing member individually. In the case of the SPAN system, risk ,ߙ

managers do not have direct control over the unconditional exceedance probabilities, so 

the clearing house is potentially left even more vulnerable to simultaneous exceedance 

events.  
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Now, consider a fully orthogonal market; that is, a market that has firms with 

orthogonal trading positions and orthogonal underlying asset returns. In this case, firms 

have orthogonal risk exposures and their exceedance probabilities are independent. 

Under the VaR system this means 

Pr൫ ௜ܸ,௧ାଵ ൑ െܤ௜,௧| ௝ܸ,௧ାଵ ൑ െܤ௝,௧൯ ൌ  (3.7) ߙ

and 

Prൣ൫ ௜ܸ,௧ାଵ ൑ െܤ௜,௧൯ ∩ ൫ ௝ܸ,௧ାଵ ൑ െܤ௝,௧൯൧ ൌ  ଶ (3.8)ߙ

Equation 3.8 shows that given a common coverage probability and at least three 

clearing firms, a fully orthogonal market stabilizes and minimizes the probability of 

simultaneous exceedance events across clearing members. In addition, a fully 

orthogonal market provides the best possible level of market stability, regardless of the 

collateral system being adopted by the clearing house, because once the risk manager 

selects ߙ, the probabilities of simultaneous events are also fixed (i.e., ߙଶfor two events, 

 ଷfor three events and so on). Therefore, a fully orthogonal market can be seen as aߙ

conceptual construct that provides a common benchmark for all margining systems.   

With this in mind and in the spirit of the CoVaR measure of Adrian and 

Brunnermeier (2011), we propose a new collateral system, called CoMargin, which 

enhances financial stability by taking into account the P&L dependence of clearing 

members. Our starting point is the framework used to estimate VaR margin 

requirements, which was described in the previous section. Once we establish the ܵ 

scenarios for each underlying asset, we jointly evaluate the portfolios of firms ݅ and ݆ and 

compute their associated hypothetical P&Ls or variation margins, ௜ܸ,௧ାଵ and ௝ܸ,௧ାଵ, 

respectively, such that for each date ݐ, we obtain a panel of simulated P&Ls, denoted 

൛ݒ௜,௧ାଵ
௦ , ௝,௧ାଵݒ

௦ ൟ
௦ୀଵ

ௌ
.  

The CoMargin of firm ݅, denoted ܤ௧
௜|௝, conditional on the realisation of an event 

affecting firm ݆ is: 
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Pr ቀ ௜ܸ,௧ାଵ ൑ െܤ௧
௜|௝|۱൫ ௝ܸ,௧ାଵ൯ቁ ൌ  (3.9) ߙ

The conditioning event that we consider is the financial distress of firm	݆, which 

we define as a loss in its portfolio in excess of its ߙ% VaR, or equivalently, a loss in 

excess of its VaR margin; i.e., ۱൫ ௝ܸ,௧ାଵ൯ ൌ ൛ ௝ܸ,௧ାଵ ൑ െܤ௝,௧ൟ. 

 

Definition 3.2: The CoMargin of firm ݅ conditional on the financial distress of firm ݆, ܤ௜|௝, 

corresponds to the ߙ% conditional quantile of their joint P&L distribution: 

Pr ቀ ௜ܸ,௧ାଵ ൑ െܤ௧
௜|௝| ௝ܸ,௧ାଵ ൑ െܤ௝,௧ቁ ൌ (3.10) ߙ

 

Through Bayes theorem we know that: 

Pr ቀ ௜ܸ,௧ାଵ ൑ െܤ௧
௜|௝| ௝ܸ,௧ାଵ ൑ െܤ௝,௧ቁ ൌ

Pr ቂቀ ௜ܸ,௧ାଵ ൑ െܤ௧
௜|௝ቁ ∩ ൫ ௝ܸ,௧ାଵ ൑ െܤ௝,௧൯ቃ

Pr൫ ௝ܸ,௧ାଵ ൑ െܤ௝,௧൯
 (3.11)

where the numerator represents the joint probability of ݅ exceeding its CoMargin 

requirement and ݆ experiencing financial distress. From equations 3.2 and 3.10, we can 

see that the CoMargin of firm ݅ is defined as the margin level ܤ௧
௜|௝ such that: 

Pr ቂቀ ௜ܸ,௧ାଵ ൑ െܤ௧
௜|௝ቁ ∩ ൫ ௝ܸ,௧ାଵ ൑ െܤ௝,௧൯ቃ ൌ ଶ (3.12)ߙ

Notice that the CoMargin system starts by defining the financial distress level of a 

CM as its VaR margin. This part accounts for firm specific risk. P&L dependence is then 

incorporated by directly targeting the conditional exceedance probability of firm ݅, such 
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that it behaves as if the market was fully orthogonal when firm ݆ is in financial distress. 

Thus, when the market is indeed fully orthogonal, the CoMargin and VaR margin 

requirements are equivalent and produce the same results. When the market is not fully 

orthogonal, any differences between the collateral requirements of these two systems 

can be attributed to P&L dependence. More specifically, ܤ௧
௜|௝ can be interpreted as the 

margin level that guarantees with probability ߙ that firm ݅ remains solvent at an optimal 

level when firm ݆ experiences financial distress. The optimal level of solvency 

corresponds to that seen in a fully orthogonal market, where given the financial distress 

of firm ݆, firm ݅ always has enough funds in its margin account to cover its potential 

losses 1 െ  of the time. Thus, by providing coverage levels, similar to those prevalent %ߙ

in an orthogonal market, the CoMargin system greatly enhances financial stability. 

3.4.2. Illustration 

Properties 

We consider a simple case with two firms that have normally-distributed P&Ls. 

For simplicity, we consider an unconditional distribution, with respect to past information, 

and consequently neglect the time index ݐ. Let 

ሺ ଵܸ, ଶܸሻᇱ~ ܰሺ0, Σሻ 

Σ ൌ ቆ
ଵߪ
ଶ ଶߪଵߪߩ

ଶߪଵߪߩ ଶߪ
ଶ ቇ 

 

In this setting, the CoMargins of both members, denoted (ܤଵ|ଶ,	ܤଶ|ଵ), are defined 

by: 

Pr൫ ௜ܸ ൑ |௜|௝ܤ ௝ܸ ൑ െܤ௝൯ ൌ (3.13) ߙ
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for ݅ ൌ 1, 2 and where ܤ௜ ൌ െߪ௜Φିଵሺߙሻ denotes the unconditional VaR of firm ݅ and Φሺ∙ሻ 

the cdf of the standard normal distribution. The conditional distribution of ௜ܸ given ௝ܸ ൏ ܿ, 

∀ܿ ∈ Թ is a skewed distribution (Horrace, 2005) and is denoted by gሺ∙ሻ. The CoMargin 

for the firm ݅ is the solution to:  

න ݃ሺݑ;

ି஻೔|ೕ

ିஶ

,௜ߪ ,௝ߪ ݑሻ݀ߩ ൌ (3.14) ߙ

݃൫ݑ; ,௜ߪ ,௝ߪ ൯ߩ ൌ
1
௜ߪߙ

ൈ ߶ሺ
ݑ
௜ߪ
ሻ ൈ Φሺ

െܤ௝/ߪ௝ െ ௜ߪ/ݑߩ

ඥ1 െ ଶߩ
ሻ (3.15)

where ϕሺ∙ሻ	denotes the pdf of the standard normal distribution (Arnold et al., 1993). 

Using the expression of CoMargin in equation 3.14, we can illustrate some of its 

properties:  

i. The CoMargin of firm ݅ increases with the variability of its P&L: 

௜|௝ܤ߲

௜ߪ߲
൐ 0 (3.16)

See Appendix A1 for the proof. 

ii. When there is no P&L dependence between firms ݅ and ݆, CoMargin and VaR 

margin converge. In this example, P&L dependence is fully characterized by the 

correlation coefficient, ߩ; thus, 

௜|௝ܤ ൌ ߩ ௜ whenܤ ൌ 0 (3.17)

Notice, however, that this result is not specific to the normal distribution case. 

When there is no dependence (linear or otherwise) between the P&L of the two firms, 

CoMargin converges to VaR margin. See Appendix A2 for the proof. 
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iii. The CoMargin of firm ݅ increases with the dependence between its P&L and that 

of other firms. In this example, the only other member is firm ݆, so  

௜|௝ܤ߲

ߩ߲
൐ 0 (3.18)

See Appendix A3 for the proof. 

iv. When firms ݅ and ݆ have perfect P&L dependence, their CoMargin converges to 

 ,ଶሻߙ௜ሺܤ ,ଶ% VaR marginߙ

lim
ఘ→ଵ

௜|௝ܤ ൌ ଶሻ (3.19)ߙ௜ሺܤ

This property shows that CoMargin is not explosive when P&L dependence is 

high. See Appendix A4 for the proof. 

v. The CoMargin of firm ݅ does not depend on the variability of the P&L of firm ݆: 

߲ ௜|௝ܤ

௝ߪ߲
ൌ 0 (3.20)

See Appendix A5 for the proof. 
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Theoretical Performance 

In order to illustrate the performance of the CoMargin system, we now consider 

the case of four CMs, where two of them, members 1 and 2, have correlated P&Ls, such 

that: 

ܸ	~	ܰሺ0, Σሻ 

where 

ܸ ൌ ሺ ଵܸ, ଶܸ, ଷܸ, ସܸሻᇱ and  Σ ൌ ൮

1 ࣋
࣋ 1

0 0
0 0

0 0
0 0

1 0
0 1

൲ 

We allow the correlation between the P&Ls of firms 1 and 2, ߩ, to increase from 0 

to 0.8. As was explained before, the rising correlation between the P&Ls of these firms 

can reflect an increase in the similarity of their trading positions or an increase in the 

comovement of the underlying assets. The left panel of Table 3.3 shows the margin 

requirements for each CM under both the VaR and CoMargin systems for the levels of 

correlation being considered. To estimate the CoMargin of a given CM, we define the 

conditioning event as at least one of the other three firms being in financial distress.  

The table shows that VaR margin remains constant for all firms regardless of 

their correlation level because this method does not take into account P&L dependence. 

Consistent with the explanation in the previous section, CoMargin and VaR margin are 

equal for all firms when ߩ ൌ 0; that is, when there is no P&L dependence. However, 

notice that CoMargin is greater than VaR margin when ߩ ൐ 0; that is, when there is P&L 

dependence. In addition, CoMargin increases as ߩ increases; that is, as P&L 

dependence increases.  

It is important to notice that CoMargin could be more effective than VaR margin 

either because it provides a better allocation of collateral or simply because it collects 

additional funds. Thus, we address this issue by reporting what we call a Budget-Neutral 

VaR (BNVaR) margin. This margining system is designed to neutralize the second effect 

by collecting as much aggregate collateral as the CoMargin system, but it does so 
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evenly across all clearing members.18 Thus, the BNVaR margin of firm ݅ at time ܤ ,ݐ௜,௧
଴ , is 

defined as: 

௜,௧ܤ
଴ ൌ ௜,௧ܤ ൅

∑ ௧ܤ
௜|௝ே

௜ୀଵ െ ∑ ௜,௧ܤ
ே
௜ୀଵ

ܰ
 (3.21)

Panels A, B and C of Figure 3.1 show the theoretical performance of the VaR, 

BNVaR and CoMargin systems at the clearing member level. The horizontal line in these 

charts highlights the values prevalent when ߩ ൌ 0; that is, when the market is 

orthogonal. Panel A plots the margin levels presented in Table 3.3 discussed above. 

Panel B shows the probability of a given CM exceeding its margin conditional on at least 

another CM being in financial distress. When ߩ ൌ 0, all three margining systems provide 

the same level of coverage. However, as ߩ increases, the VaR and BNVaR margins 

provide less coverage when at least one clearing member is in financial distress. On the 

other hand, CoMargin keeps the coverage level constant. Panel C shows the probability 

of a CM exceeding its margin conditional on at least another CM having an exceedance. 

In this case, CoMargin keeps the conditional probabilities of the uncorrelated CMs stable 

and, unlike VaR and BNVaR, it reduces the conditional probabilities of the correlated 

CMs; that is, those that are more likely to experience simultaneous exceedances. 

Table 3.4 reports the theoretical performance of the different margining systems 

at the CCP level. The table reports the unconditional probability of having a minimum 

number of exceedances and the probability of having additional exceedances given that 

one has occurred. In addition, it reports the expected shortfalls associated with these 

events. Panels C, D and E of Figure 3.1 extend these results to up to four exceedance 

events. Our findings show once again that when ߩ ൌ 0, all three margining systems 

provide the same coverage to the CCP, but as ߩ increases, CoMargin provides the best 

overall coverage.  

 
18 An alternative budget-neutral margin scheme would be to redistribute the additional collateral collected 

from firms 1 and 2 to firms 3 and 4; that is, to collect the additional collateral from the firms that have 
uncorrelated P&Ls. A previous version of this paper conducted that experiment and the relative 
effectiveness of CoMargin is even higher than that reported here. The results are available upon 
request from the authors. 
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The unconditional probabilities in Table 3.4 and Panel D of Figure 3.1 suggest 

that BNVaR margin provides the best unconditional coverage as correlation increases. 

Nevertheless, this result is expected. In our example all four firms are identical in all 

respects except for their correlation level. Since BNVaR collects more aggregate funds 

than VaR margin and it does so evenly across CMs, it is equivalent to a VaR margin with 

a higher coverage level (i.e., lower ߙ). This higher coverage level embedded in BNVaR 

reduces the unconditional probability of individual margin exceedances. However, as 

Panel D and E of Figure 3.1 show, this does not improve the unconditional and 

conditional probability of experiencing additional (i.e. simultaneous) exceedance events, 

particularly as P&L dependence increases. In simple words, collecting more VaR margin 

indiscriminately across CMs does not optimize the coverage to the CCP. 

Finally, Panel F of Figure 3.1 shows the shortfall that the CCP is expected to 

cover given a minimum number of margin exceedances. Notice that both CoMargin and 

BNVaR margin provide similar results that outperform VaR for ߩ ൐ 0. CoMargin, 

however, has a slightly lower shortfall when simultaneous exceedances occur. In 

addition, recall from Panels D and E that the probability of simultaneous exceedances is 

lower under the CoMargin system. Therefore, the ex-ante expected shortfall for 

simultaneous exceedance events under the CoMargin system is less than that under the 

BNVaR margin system. 

The right panel of Table 3.3 and Table 3.4 and Figure 3.2 repeat the previous 

exercise but for P&Ls that are jointly Student t distributed with degrees of freedom ߭, 

,జሺ0ݐ	~	ܸ Σሻ. The variance-covariance structure, Σ, is the same as that considered under 

the normal distribution assumption, but in this case, we set ߩ ൌ 0.4 and let the degrees 

of freedom decrease from 30 to 5.19 Thus, the resulting P&L distributions have 

progressively fatter tails.  

As explained in Cruz Lopez, Harris and Pérignon (2011), changing the 

distributional assumption of the previous exercise from a normal to a Student t 

 
19 We conducted a similar experiment using ߩ ൌ 0 which leads to the same conclusions. The results are 

available upon request by contacting the authors. 
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multivariate distribution, allows us to create a situation where all CMs have some level of 

tail dependence in their P&Ls. This is consistent with empirical evidence.  

The fact that a Student t multivariate distribution allows for tail dependence 

becomes apparent when one considers that in the bivariate case the (upper and lower) 

tail dependence coefficient of firms ݅ and ݆, denoted	߬௜,௝, is defined as 

߬௜,௝ ൌ ఔାଵݐ2 ቌെඨ
ሺߥ ൅ 1ሻሺ1 െ ሻߩ

1 ൅ ߩ
ቍ (3.22)

provided that ߩ ൐ െ1 (Cherubini, Luciano, and Vecchiato 2004 and Schmidt, 2006).  

The results of this exercise are consistent with those presented for the Gaussian 

assumption, but they highlight an important finding: CoMargin is able to capture P&L 

dependence structures that go beyond correlation. Recall that the P&L dependence 

structure is fully characterized by correlation only if P&Ls are normally distributed. 

However, asset prices and P&Ls, particularly those of non-linear portfolios, rarely follow 

normal distributions. Thus, at least in theory, CoMargin is more robust than other 

methods for a wide range of P&L distributions. 
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Table 3.3. Theoretical margin collected under VaR and CoMargin systems 

 
Jointly Normally Distributed P&Ls Jointly Student t Distributed P&Ls  

 CM1 CM2 CM3 CM4 CM1 CM2 CM3 CM4 

 ρ = 0 ν = 30  

VaR 1.645 1.645 1.645 1.645 1.697 1.697 1.697 1.697 

CoMargin 1.645 1.645 1.645 1.645 2.136 2.136 1.791 1.791 

BNVaR 1.645 1.645 1.645 1.645 1.964 1.964 1.964 1.964 

 ρ = 0.4 ν = 10 

VaR 1.645 1.645 1.645 1.645 1.812 1.812 1.812 1.812 

CoMargin 1.981 1.981 1.645 1.645 2.505 2.505 2.138 2.138 

BNVaR 1.813 1.813 1.813 1.813 2.322 2.322 2.322 2.322 

 ρ = 0.8 ν = 5 

VaR 1.645 1.645 1.645 1.645 2.015 2.015 2.015 2.015 

CoMargin 2.374 2.374 1.645 1.645 3.248 3.249 2.840 2.840 

BNVaR 2.009 2.009 2.009 2.009 3.044 3.044 3.044 3.044 

Note: This table presents the VaR (equation 3.2), CoMargin (equation 3.10), and Budget-neutral 
VaR (BNVaR, equation 3.21) margin requirements, assuming four clearing members whose P&Ls 
are jointly normally or Student t distributed. The left panel presents the case where P&Ls are 

jointly normally distributed, such that ܸ	~	ܰሺ0, Σሻ, ܸ ൌ ሺ ଵܸ, ଶܸ, ଷܸ, ସܸሻᇱand Σ ൌ ൮

1 ࣋
࣋ 1

0 0
0 0

0 0
0 0

1 0
0 1

൲ and 

reports the results for different levels of the correlation parameter,ߩ, that range from 0 to 0.8. The 
right panel show the case when P&Ls are Student t distributed with degrees of freedom ߭, 
,జሺ0ݐ	~	ܸ Σሻ. The variance-covariance structure, Σ, is the same as that considered under the 
normal distribution assumption, but in this case, we set ρ=0.4 and let the degrees of freedom 
decrease from 30 to 5. 
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Table 3.4. Theoretical performance of VaR and CoMargin systems 

 
Jointly Normally Distributed P&Ls Jointly Student t Distributed P&Ls 

 Unconditional Conditional on One 
Exceedance

Unconditional Conditional on One 
Exceedance

 
Prob. of 

Exceedances 
Expected 
Shortfall 

Prob. of 
Exceedances 

Expected 
Shortfall 

Prob. of 
Exceedances 

Expected 
Shortfall 

Prob. of 
Exceedances 

Expected 
Shortfall 

 ρ = 0 ν = 30 
VaR 0.185 0.084 0.076 0.451 0.177 0.094 0.123 0.531 

CoMargin 0.185 0.084 0.076 0.451 0.115 0.056 0.074 0.485 

BNVaR 0.185 0.084 0.076 0.451 0.108 0.052 0.088 0.485 

 ρ = 0.4 ν = 10 
VaR 0.179 0.084 0.109 0.466 0.171 0.119 0.151 0.695 

CoMargin 0.138 0.060 0.069 0.433 0.081 0.053 0.090 0.650 

BNVaR 0.129 0.055 0.083 0.430 0.077 0.051 0.104 0.658 

 ρ = 0.8 ν = 5 
VaR 0.165 0.084 0.193 0.505 0.164 0.175 0.191 1.068 

CoMargin 0.110 0.048 0.062 0.432 0.051 0.060 0.129 1.171 

BNVaR 0.077 0.033 0.144 0.428 0.049 0.059 0.141 1.193 

Note: This table presents the theoretical performance of the VaR (equation 3.2), CoMargin (equation 3.10), and Budget-neutral VaR (BNVaR, 
equation 3.21) systems, assuming four clearing members whose P&Ls are jointly normally or Student t distributed. The left panel presents the 

case where P&Ls are jointly normally distributed, such that ܸ	~	ܰሺ0, Σሻ, ܸ ൌ ሺ ଵܸ, ଶܸ, ଷܸ, ସܸሻᇱand Σ ൌ ൮

1 ࣋
࣋ 1

0 0
0 0

0 0
0 0

1 0
0 1

൲ and reports the results for 

different levels of the correlation parameter,ߩ, that range from 0 to 0.8. The right panel show the case when P&Ls are Student t distributed with 
degrees of freedom ߭, ܸ	~	ݐజሺ0, Σሻ. The variance-covariance structure, Σ, is the same as that considered under the normal distribution assumption, 
but in this case, we set ρ=0.4 and let the degrees of freedom decrease from 30 to 5. 
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Figure 3.1. Theoretical performance of VaR and CoMargin systems assuming jointly normally distributed P&Ls  

ρ = 0 ρ  = 0.4 ρ = 0.8 

Panel A: Initial margin collected from each clearing member (dollars) 

Panel B: Probability of a given CM exceeding its margin conditional on at least another CM being in financial distress 

Panel C: Probability of a CM exceeding its margin conditional on at least another CM having a margin exceedance 
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ρ = 0 ρ  = 0.4 ρ = 0.8 

Panel D: Probability of a minimum number of margin exceedances 

Panel E: Probability of additional margin exceedances given that a number of exceedances have occurred 

Panel F: Conditional expected shortfall for the CCP given a minimum number of margin exceedances 

 

Note: This figure presents the theoretical performance of the VaR (equation 3.2), CoMargin (equation 3.10), and Budget-neutral VaR (BNVaR, 
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equation 3.21) systems. We consider four firms with jointly normally distributed P&Ls, such that  ܸ ~ ܰሺ0, Σሻ, ܸ ൌ ሺ ଵܸ, ଶܸ, ଷܸ, ସܸሻᇱand Σ ൌ

൮

1 ࣋
࣋ 1

0 0
0 0

0 0
0 0

1 0
0 1

൲ . We report our results for different levels of the correlation parameter,ߩ, that range from 0 to 0.8. 
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Figure 3.2. Theoretical performance of VaR and CoMargin systems assuming jointly Student t distributed P&Ls 

ν = 30 ν = 10 ν = 5 

Panel A: Initial margin collected from each clearing member (dollars) 

Panel B: Probability of a given CM exceeding its margin conditional on at least another CM being in financial distress 

Panel C: Probability of a CM exceeding its margin conditional on at least another CM having a margin exceedance 
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ν = 30 ν = 10 ν = 5 

Panel D: Probability of a minimum number of margin exceedances 

Panel E: Probability of additional margin exceedances given that a number of exceedances have occurred 

Panel F: Conditional expected shortfall for the CCP given a minimum number of margin exceedances 

 

Note: This figure presents the theoretical performance of the VaR (equation 3.2), CoMargin (equation 3.10), and Budget-neutral VaR (BNVaR, 
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equation 3.21) systems. We consider four firms with joint Student t distributed P&Ls with degrees of freedom ߭, such that  ܸ ~ ,జሺ0ݐ Σሻ, ܸ ൌ

ሺ ଵܸ, ଶܸ, ଷܸ, ସܸሻᇱ,  Σ ൌ ൮

1 ࣋
࣋ 1

0 0
0 0

0 0
0 0

1 0
0 1

൲ and ߩ ൌ 0.4. We report our results for different levels of the degrees of freedom parameter than range from 30 

to 5. 
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3.4.3. Scenario Generation 

One common feature of all margin methods is that they are scenario based. As a 

consequence, generating meaningful scenarios is a crucial stage when setting margin 

requirements. The scenario generating process used for CoMargin incorporates different 

dimensions of P&L dependence to simulate potential changes in the price and volatility 

of the underlying assets  

Since the scenarios used for computing VaR margin are the starting point for the 

estimation of CoMargin, let us start by explaining first the VaR margin scenario 

generating process. Unlike the SPAN margining system, VaR margin uses a portfolio-

wide approach. This allows us to take into account the asset comovement within the 

portfolio of each clearing member without the need for ad-hoc adjustments (i.e., inter- 

and intra-commodity spreads). In order to assess the potential P&L of the entire portfolio 

of each CM, we jointly simulate one-day-ahead changes in the underlying asset prices 

from a semi-parametric copula.  

A copula is a function that links marginal probability distribution functions, say 

 ,஺ሻ, to form a multivariate probability distribution functionݎ஺ሺܨ ,…,ଶሻݎଶሺܨ ,ଵሻݎଵሺܨ

,ଵݎሺܨ ,ଶݎ … ,  is the ܣ ௔ is the standardized return of underlying asset ܽ andݎ ஺ሻ, whereݎ

number of assets underlying the derivatives cleared by the CCP. According to Sklar’s 

Theorem (Sklar, 1959), if the marginal distributions are continuous, there exists a unique 

copula function ܥ, such that 

,ଵݎሺܨ ,ଶݎ … , ஺ሻݎ ൌ ,ଵሻݎଵሺܨሺܥ ,ଶሻݎଶሺܨ … , ஺ሻሻ (3.23)ݎ஺ሺܨ

As stated in Cruz Lopez, Harris and Perignon (2011), using copulas to model the 

multivariate structure of underlying asset returns is useful in this context. First, marginal 

distributions do not need to be similar to each other to be linked together with a copula 

structure. Second, the choice of the copula or multivariate structure is not constrained by 

the choice of the marginal distributions. Third, copulas can be used with ܣ marginal 

distributions to cover all of the underlying assets cleared by the CCP (see Oh and 

Patton, 2012). Finally, the use of copulas allows us to model the tails of the marginal 
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distributions and the tail dependence across underlying assets separately, which is 

particularly important in our case, as the likelihood of an extreme underlying asset return 

might increase either because of fatter tails in the marginal distributions or because of 

fatter tails in the multivariate distribution function. 

We use Student t copulas in our modeling because, unlike their Gaussian 

counterparts, they resemble more closely some of the stylized features of asset returns, 

such as fat tails in the marginal distributions and multivariate tail dependence (Cruz 

Lopez, 2008). Let ܴ be a symmetric, positive definite matrix with ݀݅ܽ݃ሺܴሻ ൌ  ஺ܫ ஺, whereܫ

is the identity matrix of dimension ܣ. Let ݐோ,జ be the standardized multivariate Sudent t 

distribution with correlation matrix ܴ and ߭ degrees of freedom. Then, the multivariate 

Student t copula, ோܶ,జ is defined as: 

ோܶ,జሺܨଵሺݎଵሻ, ,ଶሻݎଶሺܨ … , ஺ሻሻݎ஺ሺܨ ൌ ,ଵݎோ,జሺݐ ,ଶݎ … , ஺ሻ (3.24)ݎ

A Student t copula corresponds to the dependence structure implied by a 

multivariate Student t distribution. It is fully characterized by the variance-covariance 

matrix of the standardized returns and the degrees of freedom, ߭. The degrees of 

freedom define the probability mass assigned to simultaneous extreme returns (both 

positive and negative); the lower the degrees of freedom, the higher the probability of 

experiencing simultaneous extreme returns relative to the Gaussian copula. However, as  

߭	 → ∞  the Student t copula converges to its Gaussian counterpart. In addition, notice 

that the Student t copula allows us to readily obtain an estimate of the coefficient of tail 

dependence across pairs of underlying asset returns as shown in equation 3.22. 

We implement a two-stage semi-parametric approach to estimate a ܣ-

dimensional copula for the underlying asset returns. The first stage consists of 

estimating the empirical marginal distributions of the returns of each underlying asset. 

The second stage consists of estimating the t-copula parameters, ܴ and ߭, through 

maximum likelihood. This approach is commonly known as the canonical maximum 

likelihood estimation (CMLE) method (Genest, Ghoudi, and Rivest 1995). Once the 

copula parameters are estimated, we use the implied multivariate structure to simulate 

potential changes in the price of the underlying assets.  
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If the CCP is clearing instruments that depend on volatility, such as options 

contracts, the exercise can be repeated for different variations of ܴ; that is, for different 

variance-covariance structures. For simplicity, in this chapter we suggest that these 

variations be set according to a pre-defined range relative to values predicted through 

the Dynamic Conditional Correlation method proposed by Engle (2002). 

We use a fixed-length estimation window that is rolled daily to simulate new 

scenarios every day. Thus, once the ܵ potential changes in the price of the underlying 

assets have been simulated, we mark-to-model all of the derivatives in the portfolio of 

each CM to obtain the simulated sample  path ൛ݒ௜,௧ାଵ
௦ ൟ

௦ୀଵ

ௌ
 that is required to estimate 

VaR margin as described in Section 3.3. 

As described in Section 3.4, we use the same scenarios for estimating CoMargin, 

however, in this case we mark-to-model the portfolios of all clearing members 

simultaneously for each scenario to obtain ൛ݒଵ,௧ାଵ
௦ , ଶ,௧ାଵݒ

௦ , … , ௡,௧ାଵݒ
௦ ൟ

௦ୀଵ

ௌ
. This allows us to 

capture P&L dependence across clearing members.  
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3.4.4. Estimation 

In the case of two clearing members, given the simulated path ൛ݒ௜,௧ାଵ
௦ , ௝,௧ାଵݒ

௦ ൟ
௦ୀଵ

ௌ
, 

conditional on ܤ௧
௜|௝, a simple estimate of the joint probability Pr ቂቀ ௜ܸ,௧ାଵ ൑ െܤ௧

௜|௝ቁ ∩

൫ ௝ܸ,௧ାଵ ൑ െܤ௝,௧൯ቃ, denoted ௧ܲ
௜,௝, is given by: 

෠ܲ
௧
௜,௝ ൌ

1
ܵ
෍۷ ቀݒ௜,௧ାଵ

௦ ൑ െܤ௧
௜|௝ቁ ൈ ۷൫ݒ௝,௧ାଵ

௦ ൑ െܤ௝,௧൯

ௌ

௦ୀଵ

 (3.25)

where ݒ௜,௧ାଵ
௦  and ݒ௝,௧ାଵ

௦  correspond to the ݏ௧௛ simulated P&L of firms ݅ and ݆, 

respectively. Given this result, we can now estimate ܤ௧
௜|௝. For each time ݐ and for each 

firm ݅, we look for the value ܤ௧
௜|௝, such that the distance ෠ܲ௧

௜,௝ െ  :ଶ is minimizedߙ

෠௧ܤ
௜|௝ ൌ argmin

ቄ஻೟
೔|ೕቅ
൫ ෠ܲ௧

௜,௝ െ ଶ൯ߙ
ଶ
 (3.26)

Thus, for each firm ݅, we end up with a time series of CoMargin requirements 

ቄܤ෠௧
௜|௝ቅ

௧ୀଵ

்
 for which confidence bounds can be bootstrapped.  

3.4.5. Backtesting 

Just like with VaR margin, CoMargin allows us to test the null hypothesis of an 

individual member exceeding its margin requirement. More importantly, however, is the 

fact that we can also test the probability of exceedances conditional on the financial 

distress of other firms, as defined by the CoMargin of firm ݅, ܤ௧
௜|௝. The null hypothesis in 

this case becomes:  

଴ܪ :	Pr ቀ ௜ܸ,௧ାଵ ൑ െܤ௧
௜|௝| ௝ܸ,௧ାଵ ൑ െܤ௝,௧ቁ ൌ (3.27) ߙ
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Since the null implies that ܧ ቂ۷ ቀ ௜ܸ,௧ାଵ ൑ െܤ௧
௜|௝ቁ ൈ ۷൫ ௝ܸ,௧ାଵ ൑ െܤ௝,௧൯ቃ ൌ  then a ,ߙ

simple likelihood-ratio (LR) test can also be used (Christoffersen, 2009). To assess the 

conditional probability exceedances, we use the historical paths of the P&Ls for both 

members ݅ and	݆; i.e., ൛ݒ௜,௧ାଵൟ௧ୀଵ
்

 and ൛ݒ௝,௧ାଵൟ௧ୀଵ
்

. The corresponding LR test statistic, 

denoted ܴܮ௜|௝ takes the same form as ܴܮ௜: 

௜|௝ܴܮ ൌ െ2lnሾሺ1 െ ே೔|ೕሿߙሻ்ିே೔|ೕߙ ൅ 2ln ቈ൬1 െ
௜ܰ|௝

ܶ
൰
்ିே೔|ೕ

௜ܰ|௝

ܶ

ே೔|ೕ

቉ (3.28)

except that in this case ௜ܰ|௝ denotes the total number of joint past violations 

observed for both members ݅ and	݆; that is, ௜ܰ|௝ ൌ ∑ ۷ ቀݒ௜,௧ାଵ ൑ െܤ௧
௜|௝ቁ்

௧ୀଵ ൈ ۷൫ݒ௝,௧ାଵ ൑

െܤ௝,௧൯. 

3.4.6. Extension to n Conditioning Firms 

Consider now that the conditioning event depends on two firms denoted ݆ and ݇. 

In this case, the CoMargin of firm ݅, denoted by ܤ௧
௜|௝,௞, is defined as follows: 

Pr ቀ ௜ܸ,௧ାଵ ൑ െܤ௧
௜|௝,௞|۱൫ ௝ܸ,௧ାଵ, ௞ܸ,௧ାଵ൯ቁ ൌ (3.29) ߙ

Pr ቂቀ ௜ܸ,௧ାଵ ൑ െܤ௧
௜|௝,௞ቁ ∩ ۱൫ ௝ܸ,௧ାଵ, ௞ܸ,௧ାଵ൯ቃ

Prൣ۱൫ ௝ܸ,௧ାଵ, ௞ܸ,௧ାଵ൯൧
ൌ (3.30) ߙ

The conditioning event that we consider is either firm	݆ or firm ݇, or both, being in 

financial distress; i.e., ۱൫ ௝ܸ,௧ାଵ, ௞ܸ,௧ାଵ൯ ൌ ௝ܸ,௧ାଵ ൑ െܤ௝,௧	ݎ݋	 ௞ܸ,௧ାଵ ൑ െܤ௞,௧. In this case, the 

probability of the conditioning event is equal to 2ߙ only if the financial distress events of 

firms	݆ and ݇ are mutually exclusive. In the general case, we have: 
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Prൣ۱൫ ௝ܸ,௧ାଵ, ௞ܸ,௧ାଵ൯൧ ൌ Prൣ൫ ௝ܸ,௧ାଵ ൑ െܤ௝,௧൯ or ൫ ௞ܸ,௧ାଵ ൑ െܤ௞,௧൯൧ 

ൌ Pr൫ ௝ܸ,௧ାଵ ൑ െܤ௝,௧൯ ൅ Pr൫ ௞ܸ,௧ାଵ ൑ െܤ௞,௧൯ 

 െPrൣ൫ ௝ܸ,௧ାଵ ൑ െܤ௝,௧൯ ∩ ൫ ௞ܸ,௧ାଵ ൑ െܤ௞,௧൯൧ 

ൌ ߙ2 െ Prൣ൫ ௝ܸ,௧ାଵ ൑ െܤ௝,௧൯ ∩ ൫ ௞ܸ,௧ାଵ ൑ െܤ௞,௧൯൧ 

(3.31) 

Hence, CoMargin ܤ௧
௜|௝,௞ satisfies the following condition:  

Pr ቂቀ ௜ܸ,௧ାଵ ൑ െܤ௧
௜|௝,௞ቁ ∩ ۱൫ ௝ܸ,௧ାଵ, ௞ܸ,௧ାଵ൯ቃ

ߙ2 െ Prൣ൫ ௝ܸ,௧ାଵ ൑ െܤ௝,௧൯ ∩ ൫ ௞ܸ,௧ାଵ ൑ െܤ௞,௧൯൧
ൌ (3.32) ߙ

Given this result, we proceed to estimate CoMargin ܤ௧
௜|௝,௞. First, notice that the 

probability Prൣ൫ ௝ܸ,௧ାଵ ൑ െܤ௝,௧൯ ∩ ൫ ௞ܸ,௧ାଵ ൑ െܤ௞,௧൯൧, denoted ௧ܲ
௝,௞, does not depend on the 

CoMargin level ܤ௧
௜|௝,௞; thus, it can simply be estimated by: 

෠ܲ
௧
௝,௞ ൌ

1
ܵ
෍۷൫ݒ௝,௧ାଵ

௦ ൑ െܤ௝,௧൯ ൈ ۷൫ݒ௞,௧ାଵ
௦ ൑ െܤ௞,௧൯

ௌ

௦ୀଵ

 (3.33)

Second, conditional on ܤ௧
௜|௝,௞, the joint probability in the numerator of equation 

3.32, denoted ௧ܲ
௜,௝,௞, becomes: 

௧ܲ
௜,௝,௞ ൌ Pr ቂቀ ௜ܸ,௧ାଵ ൑ െܤ௧

௜|௝,௞ቁ ∩ ۱൫ ௝ܸ,௧ାଵ, ௞ܸ,௧ାଵ൯ቃ 

ൌ Pr ൤ቀ ௜ܸ,௧ାଵ ൑ െܤ௧
௜|௝,௞ቁ ∩ ൣ൫ ௝ܸ,௧ାଵ ൑ െܤ௝,௧൯	or	൫ ௞ܸ,௧ାଵ ൑ െܤ௞,௧൯൧൨ 

ൌ Pr ቂቀ ௜ܸ,௧ାଵ ൑ െܤ௧
௜|௝,௞ቁ ∩ ൫ ௝ܸ,௧ାଵ ൑ െܤ௝,௧൯  

(3.34)
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  or	 ቀ ௜ܸ,௧ାଵ ൑ െܤ௧
௜|௝,௞ቁ ∩ ൫ ௞ܸ,௧ାଵ ൑ െܤ௞,௧൯ቃ 

ൌ Pr ቂቀ ௜ܸ,௧ାଵ ൑ െܤ௧
௜|௝,௞ቁ ∩ ൫ ௝ܸ,௧ାଵ ൑ െܤ௝,௧൯ቃ 

   ൅Pr ቂቀ ௜ܸ,௧ାଵ ൑ െܤ௧
௜|௝,௞ቁ ∩ ൫ ௞ܸ,௧ାଵ ൑ െܤ௞,௧൯ቃ 

  െPr ቂቀ ௜ܸ,௧ାଵ ൑ െܤ௧
௜|௝,௞ቁ ∩ ൫ ௝ܸ,௧ାଵ ൑ െܤ௝,௧൯ ∩ ൫ ௞ܸ,௧ାଵ ൑ െܤ௞,௧൯ቃ 

Thus, a simple estimator of this probability is given by: 

෠ܲ
௧
௜,௝,௞ ൌ

1
ܵ
෍۷ቀݒ௜,௧ାଵ

௦ ൑ െܤ௧
௜|௝,௞ቁ

ௌ

௦ୀଵ

ൈ ۷൫ݒ௝,௧ାଵ
௦ ൑ െܤ௝,௧൯ 

൅
1
ܵ
෍۷ቀݒ௜,௧ାଵ

௦ ൑ െܤ௧
௜|௝,௞ቁ

ௌ

௦ୀଵ

ൈ ۷൫ݒ௞,௧ାଵ
௦ ൑ െܤ௞,௧൯ 

െ
1
ܵ
෍۷ቀݒ௜,௧ାଵ

௦ ൑ െܤ௧
௜|௝,௞ቁ

ௌ

௦ୀଵ

ൈ ۷൫ݒ௝,௧ାଵ
௦ ൑ െܤ௝,௧൯ ൈ ۷൫ݒ௞,௧ାଵ

௦ ൑ െܤ௞,௧൯ 

(3.35)

and the CoMargin ܤ௧
௜|௝,௞ can be estimated by: 

෠௧ܤ
௜|௝,௞ ൌ argmin

ቄ஻೟
೔|ೕ,ೖቅ

൭
෠ܲ
௧
௜,௝,௞

ߙ2 െ ෠ܲ
௧
௝,௞ െ ൱ߙ

ଶ

 (3.36)

Following a similar argument, CoMargin can be generalized to ݊ conditioning 

firms, with ݊ ൏ ܰ െ 1. In this case, the conditioning event is that at least one of the ݊ 

clearing members is in financial distress (see Appendix B for details). 
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3.5. Empirical Analysis 

3.5.1. Data 

In this section we compare the empirical performance of the SPAN, VaR and 

CoMargin systems by using proprietary data from the Canadian Derivatives Clearing 

Corporation (CDCC). The CDCC is the clearing house of the TMX Montreal Exchange, 

the largest derivatives Exchange in Canada. The dataset includes the daily open interest 

(i.e., the daily trading positions at market close) on the three-month Canadian Bankers' 

Acceptance Futures (BAX), the ten-year Government of Canada Bond Futures (CGB), 

and the S&P/TSX 60 Index Standard Futures (SXF) for the forty-eight clearing members 

active in the CDCC between January 2, 2003 and March 31, 2011. To the best of our 

knowledge no other study has ever used actual clearing member positions to analyse 

the performance of competing margining systems. Nevertheless, due to the proprietary 

nature of the data, we are only able to report aggregate results. Table 3.5 presents a 

short description of the data.  

In a derivatives exchange, on any given day, there are many delivery dates 

available on each underlying asset. Over the sample period there were 45 different 

delivery dates available for BAX contracts and 34 delivery dates available for CGB and 

SXF contracts. Thus, the sample includes a total of 113 futures contracts. Table 3.6 

summarizes the specifications of these contracts. The contracts in our sample do not 

constitute the full set of derivatives cleared by the CDCC. However, they represent a 

significant portion of its clearing activity. The documentation provided by CDCC states 

that the BAX, CGB and SXF are among the most actively traded derivatives in Canada. 

Furthermore, BAX and CGB are the most actively traded cleared interest rate contracts 

in the country (Campbell and Chung 2003 and TMX Montreal Exchange 2013a, 2013b 

and 2013c).  
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Table 3.5. Description of the data used in the empirical analysis 

Item Number Comments 
Clearing members 48 There is entry and exit in the sample, so the number of 

clearing members varies over time. 
 

Trading Days 
 

2066 The sample period is from January 2, 2003 to March 
31, 2011. 

Underlying Assets 3 The three underlying assets are: 
1. Yield on the three-month Canadian bankers' 

acceptance. 
2. Yield on the ten-year Government of Canada 

Bond Futures 
3. Level of the S&P/TSX 60 Index 

 
Three-Month 
Canadian Bankers' 
Acceptance Futures 
Contracts (BAX) 
 

45 
 

Delivery dates range from January 2003 to December 
2013. 

Ten-Year 
Government of 
Canada Bond 
Futures Contracts 
(CGB) 
 

34 Delivery dates range from March 2003 to June 2011. 

S&P/TSX 60 Index 
Standard Futures 
Contracts (SXF) 
 

34 Delivery dates range from March 2003 to June 2011. 

Total futures 
contracts 

113 These represent all the futures contracts (i.e., all 
delivery dates) written on the three underlying assets 
during the sample period.  
  

Active firm accounts 
 

21 We report results only for this type of account. 
 

Active client 
accounts 
 

23  

Active omnibus 
accounts 
 

16  

Note: The table presents an overview of the dataset used in the empirical analysis, which was 
obtained from the Canadian Derivatives Clearing Corporation. An account is considered to be 
active on a given day if it has an open interest (i.e., long or short position at the end of the trading 
day) in at least one underlying asset. 
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Table 3.6. Specifications of the contracts included in the empirical analysis 

 S&P/TSX 60  
Index Standard 
Futures (SXF) 

Three-Month Canadian 
Bankers' Acceptance 

Futures (BAX) 

Ten-Year Government 
of Canada Bond 
Futures (CGB) 

 
Underlying The S&P/TSX 60 Index C$1,000,000 nominal 

value of Canadian 
bankers' acceptance 
with a three-month 
maturity. 

C$100,000 nominal 
value of Government of 
Canada Bond with 6% 
notional coupon. 

Interest C$200 times the 
S&P/TSX 60 index 
futures value 

Expiration  
Months 

March, June, 
September and 
December. 

March, June, 
September and 
December plus two 
nearest non-quarterly 
months (serials). 

March, June, 
September and 
December. 

Price  
Quotation 

Quoted in index points, 
expressed to two 
decimals. 

Index : 100 minus the 
annualized yield of a 
three-month Canadian 
bankers' acceptance. 

Par is on the basis of 
100 points where 1 
point equals C$1,000. 

Price  
Fluctuation 

0.10 index points for 
outright positions. 
0.01 index points for 
calendar spreads 

0.005 = C$12.50 per 
contract for the nearest 
three listed contract 
months, including 
serials. 
0.01 = C$25.00 per 
contract for all other 
contract months. 

0.01 = C$10 

Price  
Limits 

A trading halt will be 
invoked in conjunction 
with the triggering of 
"circuit breaker" in the 
underlying stocks. 

None None  

 

Settlement Cash settlement Cash settlement Physical delivery of 
eligible Government of 
Canada Bonds. 

Trading Hours  
(EST) 

Early session*: 6:00 
a.m. to 9:15 a.m.  
Regular session: 9:30 
a.m. to 4:15 p.m.  
* A trading range of -5% 
to +5% (based on 
previous day's 
settlement price) has 
been established only 
for this session. 

Early session: 6:00 a.m. 
to 7:45 a.m.  
Regular session: 8:00 
a.m. to 3:00 p.m.  
Extended session*: 3:09 
p.m. to 4:00 p.m.  
* There is no extended 
session on the last 
trading day of the 
expiring contract month. 

Early session: 6:00 a.m. 
to 8:05 a.m.  
Regular session: 8:20 
a.m. to 3:00 p.m.  
Extended session*: 3:06 
p.m. to 4:00 p.m.  
* There is no extended 
session on the last 
trading day of the 
expiring contract month. 

Source: TMX Montreal Exchange (http://www.m-x.ca).  
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Table 3.7 shows the summary statistics for the contracts in the sample. Panel A 

shows the aggregate statistics for all 113 contracts and Panels B, C and D, report the 

summary statistics by underlying asset. On a typical day, there were approximately 20 

active contracts, 12 of them were BAX, 4 of them were CGB and the remaining 4 were 

SXF. On average, contracts remained active for 363 trading days. However, there is a 

significant dispersion across underlying assets. BAX contracts remained active for 551 

days, whereas CGB and SXF contracts remained active for 239 and 237 days, 

respectively. BAX contracts were also the most actively traded, with an average daily 

gross open interest of 275,000. The corresponding value for CGB and SXF contracts 

was less than half of that for BAX at 131,000 and 111,000, respectively. 

CDCC members have access to three accounts to submit trades for clearing: a 

firm, a client and an omnibus account. The firm account is used by clearing members to 

submit their own trades (i.e., conduct proprietary trading). The client account is used to 

submit trades on behalf of clearing members’ clients. The omnibus account is used for 

all other clearing activities and is the least active account across all clearing members.  

Our analysis includes 21 firm, 23 client and 16 omnibus accounts that were 

active on at least one day of the sample period. An account is considered to be active on 

a given day if it has an open interest (i.e., long or short position at the end of the trading 

day) in at least one underlying asset. Due to disclosure restrictions, we are unable to 

report the owners of each active account by type. However, Table 3.8 provides the full 

list of clearing members that had at least one active client, firm or omnibus account 

during the sample period. Notice that this list includes more clearing members than 

those currently affiliated with the CDCC because some of them entered and exited the 

market during this period.  

Since our objective in this section is to present an assessment of our 

methodology by using actual trading positions, instead of by assuming them, we report 

results only for the firm or proprietary-trading accounts. We consider this appropriate 

because these accounts best represent the actual trading decisions of the clearing 

members. Nevertheless, our results are consistent across all three accounts. 
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Table 3.7. Summary statistics of the contracts included  
in the empirical analysis 

Variable Average Median St.Dev. Min Max

Panel A: All Contracts 

Active contracts per 
day 

19.81 20.00 0.9279 13.00 21.00

Trading days per 
contract 

362.25 253.00 221.72 6.00 756.00

Panel B: BAX Contracts 

Active contracts per 
day 

11.99 12.00 0.14 8.00 13.00

Trading days per 
contract 

550.58 699.00 249.25 6.00 756.00

Open interest long 137.81 131.32 49.21 48.35 310.97

Open interest short -137.81 -131.32 49.21 -310.97 -48.35

Open interest gross 275.61 262.65 98.42 96.71 621.94

Panel C: CGB Contracts 

Active contracts per 
day 

3.93 4.00 0.49 1.00 5.00

Trading days per 
contract 

238.91 253.00 42.73 55.00 255.00

Open interest long 65.26 60.81 27.36 16.15 176.97

Open interest short -65.26 -60.81 27.36 -176.97 -16.15

Open interest gross 130.52 121.62 54.72 32.30 353.94
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Variable Average Median St.Dev. Min Max

Panel D: SXF Contracts 

Active contracts per 
day 

3.89 4.00 0.43 1.00 4.00

Trading days per 
contract 

236.32 250.00 42.58 52.00 255.00

Open interest long 55.28 55.09 14.01 24.40 98.49

Open interest short -55.28 -55.09 14.01 -98.49 -24.40

Open interest gross 110.56 110.17 28.02 48.79 196.99

Note: The table shows the summary statistics of the 113 futures contracts included in the 
empirical analysis. These contracts are divided according to their underlying assets as follows: 
Three-month Canadian Bankers' Acceptance (BAX), Ten-year Government of Canada Bond 
(CGB) and S&P/TSX 60 Index Standard (SXF). Over the sample period (January 2, 2003 to 
March 31, 2011), there were 45 different delivery dates available for BAX contracts and 34 
delivery dates available for CGB and SXF contracts. Open interest values are reported in 
thousands. 
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Table 3.8. Clearing members included in the empirical analysis 

Number Name Number Name 
1 Newedge Canada Inc. 25 Morgan Stanley Canada LTD. 
2 RBC Dominion Securities Inc. 26 CFG Financial Group Inc. 
3 Union Securities LTD. 27 MF Global Canada Co. 
4 T.D. Securities Inc. 28 Haywood Securities Inc. 
5 BMO Nesbitt Burns LTD. 29 Goldman Sachs Canada Inc. 
6 Macquarie Private Wealth Inc. 30 Timber Hill Canada Co. 
7 UBS Securities Canada Inc. 31 Credit Suisse Securities 
8 Desjardins Securities Inc. 32 CIBC World Markets Inc. 
9 Macquarie Capital Markets Inc. 33 NBCN Clearing Services Inc. 
10 Name not reported 34 HSBC Securities (Canada) Inc. 
11 Merrill Lynch Canada Inc. 35 Mackie Research Capital 

Corporation 
12 Odlum Brown LTD. 36 Benson-Quinn GMS Inc. 
13 Penson Financial Services Inc. 37 Scotia Capital Inc. 
14 Dundee securities corporation 38 E*trade Canada Securities 

Corporation 
15 Daex Commodities Inc. 39 Raymond Kames LTD. 
16 Canaccord Capital Corporation 40 Lévesque Beaubien Geoffrion Inc. 
17 Friedberg Mercantile Group LTD. 41 TD Waterhouse Canada Inc. 
18 W.D. Latimer Co. LTD. 42 Citigroup Global Markets Canada 

Inc. 
19 Canadian Imperial Bank of 

Commerce (CIBC) 
43 National Bank of Canada 

20 Jones, Gable & Co. LTD. 44 J.P. Morgan Securities Canada Inc.
21 Name not reported 45 Merrill Lynch Canada Inc. 
22 Timber Hill Canada Company 46 Name not reported 
23 Laurentian Bank Securities Inc. 47 Fidelity Clearing Canada ULC 
24 Deutsche Bank Securities LTD. 48 Maple Securities Canada LTD. 

Note: The table provides the full list of clearing members that had at least one active client, firm or 
omnibus account during the sample period (January 2, 2003 to March 31, 2011). An account is 
considered to be active on a given day if it has an open interest (i.e., long or short position at the 
end of the trading day) in at least one underlying asset. Notice that this list includes more clearing 
members than those currently affiliated with the Canadian Derivatives Clearing Corporation 
(CDCC) because some of them entered and exited the market during the sample period. 

The daily settlement prices for the underlying assets and the futures contracts in 

the sample were obtained from Bloomberg and are plotted in Figure 3.3. Panel A shows 

the time series of underlying asset prices, Panel B shows the underlying asset returns 

and Panel C shows the settlement futures prices for all delivery dates. Lines in different 

colours represent different delivery dates. It is evident from Panel B that the volatility of 

the underlying assets increased dramatically after the onset of the financial crisis in mid-

2007. In addition, Panel C shows an increase in the spread of futures prices during the 

same period, particularly for BAX contracts.  
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Figure 3.4 plots the daily stacked P&L values implied from the positions in active 

firm accounts. For each date ݐ, ݊௔௖௧ ∈ ܰ observations are plotted, which correspond to 

the P&L of the ݊௔௖௧ clearing members that had an active account on that day. Notice 

how the volatility of the P&Ls increased dramatically at the beginning of the financial 

crisis. This is consistent with the trends described for the underlying and futures prices in 

Figure 3.3. Therefore, we consider two sub-periods in our analysis. The first one is the 

pre-crisis period, from the January 2, 2003 to July 31, 2007, and the second one is the 

crisis period, from August 1, 2007 to March 31, 2011. 

Table 3.9 presents the summary statistics for the firm accounts in the sample. 

Panel A reports the values for the full sample period and Panels B and C present the 

values for the pre-crisis and crisis periods, respectively. On a typical day, there were 

approximately 12 clearing members with active firm accounts. This number remained 

relatively stable during the pre-crisis and crisis periods. The average account was active 

for 56% of the days in the sample (1,146 out of 2066 days). The corresponding 

proportion is 75% (858 out of 1,148 days) for the pre-crisis period and 56% (516 out of 

918 days) for the crisis period. The relatively shorter activity during the crisis period was 

partially influenced by the fact that some clearing members exited the market. The P&L 

numbers reported in the table focus exclusively on active accounts. The typical active 

account reported an implied daily loss of $60,000 on the futures contracts listed in the 

sample. During the pre-crisis period, these accounts reported daily losses of $164,000. 

However, during the crisis period, the average account reported a daily profit of $65,000. 

These profits were mostly derived from short positions in BAX contracts. Over the entire 

sample period, the typical account made an implied loss of $38,000. The corresponding 

numbers are a loss of $119,000 and a profit of $39,000 for the pre-crisis and crisis 

periods, respectively.1 

 
1 It is important to notice that the P&L values reported in this paper are those implied by the positions held 

by the clearing members in their firm accounts on the contracts included in the sample. The actual 
accounts of these clearing members, however, included positions in other contracts cleared by the 
CDCC that are not included in our sample. In addition, our P&L values do not include trading 
revenues from other sources, such as non-cleared OTC transactions. 
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Figure 3.3. Underlying assets and futures contracts used in the empirical analysis 

 
Three-month Canadian Bankers' 

Acceptance (BAX) 
Ten-year Government of Canada Bond  

(CGB) 
S&P/TSX 60 Index Standard  

(SXF) 
 

Panel A: Underlying Asset Prices 
 

 
 
 

Panel B: Underlying Asset Returns 
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Three-month Canadian Bankers' 
Acceptance (BAX) 

Ten-year Government of Canada Bond  
(CGB) 

S&P/TSX 60 Index Standard  
(SXF) 

 
 

Panel C: Futures Prices (All Maturities) 
 

 

 

Note: Panel A presents the daily annualized settlement yield for the Three-month Canadian Bankers’ Acceptance, the annualized yield on the Ten-
year Government of Canada Bond and the settlement level of the S&P/TSX 60 Index. Panel B shows the daily returns (i.e., percentage changes) 
of the variables presented in Panel A. Panel C presents the daily settlement futures prices for the futures contracts written on the Three-month 
Canadian Bankers' Acceptance (BAX), Ten-year Government of Canada Bond (CGB) and S&P/TSX 60 Index Standard (SXF), traded in the 
Montreal Exchange. Lines in different colours represent different delivery dates. The sample period is from January 2, 2003 to March 31, 2011. 
Source: Bloomberg. 
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Figure 3.4. Profits and losses for active firm accounts 

 

Note: The figure shows the daily stacked P&L implied from the positions of the 23 active firm 
accounts included in the sample; that is, accounts with an open interest (i.e., long or short 
position) in at least one underlying asset at the end of the trading day. For each date ݐ, ݊௔௖௧ ∈ ܰ 
observations are plotted, which correspond to the P&L of the ݊௔௖௧ clearing members with an 
active account. The sample period is from January 2, 2003 to March 31, 2011 and there are 
ܰ ൌ 48 clearing members in the sample. 
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Table 3.9. Summary statistics of the firm accounts included  
in the empirical analysis 

Variable Average Median St.Dev. Min Max

Panel A: Full Sample period 

Active accounts 
per day 

11.64 12.00 1.09 8.00 15.00

Active days for an 
account 

1145.19 1420.00 911.72 3.00 2066.00

Daily P&L across 
CMs 

-60.92 -97.80 2659.44 -15014.20 17502.52

P&L over time -37.83 0.43 160.57 -455.52 237.50

Panel B: Pre-Crisis period 

Active accounts 
per day 

11.96 12.00 0.95 9.00 15.00

Active days for an 
account 

858.00 1148.00 431.12 3.00 1148.00

Daily P&L across 
CMs 

-163.50 -156.15 2027.37 -6813.50 10381.36

P&L over time -119.12 -0.78 225.46 -671.62 39.80

Panel C: Crisis period 

Active accounts 
per day 

11.24 11.00 1.13 8.00 15.00

Active days for an 
account 

516.05 684.00 418.29 3.00 918.00

Daily P&L across 
CMs 

65.18 -57.43 3280.36 -15014.20 17502.52

P&L over time 39.83 -0.60 135.28 -110.76 484.42

Note: The table presents the summary statistics of the 23 active firm accounts used in the 
empirical analysis. An account is considered to be active on a given day if it has an open interest 
(i.e., long or short position at the end of the trading day) in at least one underlying asset. The 
sample period is from January 2, 2003 to March 31, 2011 and there are ܰ ൌ 48 clearing 
members in the sample. The pre-crisis period is from January 2, 2003 to July 31, 2007 and the 
crisis period is from August 1, 2007 to March 31, 2011. P&L values are reported in thousands of 
dollars and are estimated only for active firm accounts.  
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3.5.2. Empirical Performance 

Using the daily open interest in each firm account, we compute the initial margin 

that should be collected from each clearing member under the SPAN, VaR and 

CoMargin systems. The underlying price range for the SPAN approach is set at 99% and 

ߙ ൌ 2% for the VaR and CoMargin systems. We use a rolling estimation window of 500 

trading days in all cases. As mentioned in Section 3.2, by construction, the SPAN 

system is estimated using the sixteen scenarios in Table 3.1. The extreme scenarios 

(scenarios 15 and 16) are ignored as we are only dealing with futures (i.e., linear) 

contracts. For the VaR and CoMargin systems we consider ܵ ൌ 100,000 scenarios that 

are obtained using the methodology described in Section 3.4. Consistent with our earlier 

discussion and theoretical illustration, we set the financial distress threshold for 

CoMargin at the VaR margin level of the conditioning firms. The conditioning firms are 

the two clearing members with the highest one-day-ahead Expected Shortfall (ES) given 

financial distress. 

For consistency across time periods, we ignore the ad-hoc inter- and intra-

commodity spreads used in the SPAN system and impose a minimum margin of $10,000 

on all active accounts under all systems. This amount allows us to avoid cases when 

clearing members are not required to post any collateral because they have matched 

long and short positions. These cases are likely to result in small exceedances as P&Ls 

in different contracts do not always offset each other. Thus, imposing a minimum margin 

amount prevents an upward bias in the number of SPAN exceedances. This amount, 

however, does not influence the rest of our results as it represents a constant that 

accounts for less than 0.2% of the average individual daily margin required under all 

systems.21  

Table 3.10 reports the summary statistics for the daily margin collected over the 

full sample period under different margining methods. The table also reports budget-

neutral margins for the SPAN (BNSPAN) and VaR (BNVaR) systems using the same 

approach as that described in equation 3.21. The average aggregate daily margin 

 
21 We computed our results under different minimum collateral amounts ranging from $0 to $100,000. The 

results are consistent in all cases. For a minimum collateral of $0, however, the SPAN system yields a 
high number of small exceedances. 
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collected across all clearing members is $112, $101 and $161 million for the SPAN, VaR 

and CoMargin systems, respectively. The typical clearing member posted $9.76, $8.8 3 

and $14.14 million of SPAN, VaR and CoMargin collateral when it entered the market. 

However, on a typical day, clearing members posted $5.85, $5.34 and $8.50 million 

respectively. The discrepancy between the cross-sectional and time series averages is 

derived from the fact that the number of active clearing members changed daily due to 

entry and exit. 

Table 3.11 and Table 3.12 report the summary statistics for the daily margin 

collected over the pre-crisis and crisis periods, respectively. As it would be expected 

given the increased volatility during the financial crisis, both aggregate and individual 

collateral levels are higher during the crisis period. However, the ranking of margin 

collections is consistent throughout the full sample period and the two sub-periods being 

considered. VaR margin consistently collects the least and CoMargin consistently 

collects the most collateral. Similarly, VaR margin consistently shows the least 

dispersion and CoMargin consistently shows the most dispersion of collected margin as 

measured by the standard deviation. This situation arises because CoMargin takes into 

account the variation of more factors than the other margining methods (i.e., the factors 

causing P&L dependence).  

Panel A of Figure 3.5 shows the daily stacked initial margin requirements under 

the SPAN, VaR and CoMargin systems. The stacking process is the same as that used 

in the previous section for the P&L values of Figure 3.4. Notice that all three approaches 

produce margin requirements that are highly correlated. Table 3.13 shows the average 

cross-sectional correlation for the full sample period and the two sub-periods and 

displays the standard deviations in brackets. The high correlation and low dispersion 

between the SPAN and VaR systems coupled with the average collection values shown 

in Table 3.10, Table 3.11 and Table 3.12, indicate that at the individual CM level, SPAN 

margins behave much like VaR margins but at a higher coverage (i.e., lower ߙ) 

probability. However, notice that CoMargin is the least correlated of the three systems 

and shows the widest dispersion. This dispersion is more pronounced during the crisis-

period, when P&L dependence is higher. As mentioned in the previous section, this can 

be explained by the fact that CoMargin converges to VaR margin as P&L dependence 

decreases and diverges as P&L dependence increases. 
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Table 3.10. Daily margin requirements under the SPAN, VaR and  
CoMargin systems over the full sample period 

Mean Median St.Dev. Min Max 

Aggregate Market (CCP level) 

SPAN 112.04 105.71 38.49 49.83 328.77 

VaR 101.40 95.80 36.03 42.90 301.97 

CoMargin 161.31 156.20 64.93 56.89 475.27 

BNSPAN 161.31 156.20 64.93 56.88 475.27 

BNVaR 161.31 156.20 64.93 56.88 475.27 

Cross-sectional (CM level) 

SPAN 9.76 9.16 3.54 3.83 29.86 

VaR 8.83 8.26 3.28 3.30 27.45 

CoMargin 14.14 13.41 6.08 4.38 43.01 

BNSPAN 14.14 13.41 6.08 4.38 43.01 

BNVaR 14.14 13.41 6.08 4.38 43.01 

Time Series (CM level) 

SPAN 5.85 1.48 7.63 0.01 22.65 

VaR 5.34 1.44 7.03 0.01 20.38 

CoMargin 8.50 1.87 11.69 0.01 35.00 

BNSPAN 10.16 5.77 7.67 3.06 27.02 

BNVaR 10.55 6.95 7.06 3.81 25.69 

Note: The table presents the summary statistics of the daily margin requirements under the 
SPAN, VaR (equation 3.2) and CoMargin (equation 3.10) systems for the 23 active firm accounts 
during the full sample period, from January 2, 2003 to March 31, 2011. The budget-neutral 
versions of the SPAN (BNSPAN) and VaR (BNVaR) systems are also presented and were 
computed using equation 3.21. An account is considered to be active on a given day if it has an 
open interest (i.e., long or short position at the end of the trading day) in at least one underlying 
asset. Margin amounts are reported in millions of dollars. 
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Table 3.11. Daily margin requirements under the SPAN, VaR and CoMargin 
systems during the pre-crisis period 

Mean Median St.Dev. Min Max 

Aggregate Market (CCP level) 
SPAN 100.27 100.80 24.19 49.83 154.91 

VaR 91.20 92.31 21.57 42.90 140.43 

CoMargin 140.14 139.08 45.63 56.89 262.98 

BNSPAN 140.14 139.07 45.63 56.88 262.97 

BNVaR 140.14 139.07 45.63 56.88 262.97 

 Cross-sectional (CM level) 
SPAN 8.49 8.32 2.38 3.83 14.98 

VaR 7.72 7.47 2.15 3.30 13.79 

CoMargin 11.94 11.62 4.45 4.38 25.98 

BNSPAN 11.94 11.62 4.45 4.38 25.98 

BNVaR 11.94 11.62 4.45 4.38 25.98 

 Time Series (CM level) 
SPAN 6.30 1.76 7.87 0.01 22.05 

VaR 5.73 1.56 7.27 0.01 19.62 

CoMargin 8.80 2.02 11.40 0.01 32.46 

BNSPAN 9.73 5.58 7.94 2.14 25.50 

BNVaR 9.86 6.01 7.40 2.67 23.83 

Note: The table presents the summary statistics of the daily margin requirements under the 
SPAN, VaR (equation 3.2) and CoMargin (equation 3.10) systems for the 23 active firm accounts 
during the pre-crisis period, from January 2, 2003 to July 31, 2007. The budget-neutral versions 
of the SPAN (BNSPAN) and VaR (BNVaR) systems are also presented and were computed 
using equation 3.21. An account is considered to be active on a given day if it has an open 
interest (i.e., long or short position at the end of the trading day) in at least one underlying asset. 
Margin amounts are reported in millions of dollars. 
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Table 3.12. Daily margin requirements under the SPAN, VaR and CoMargin 
systems during the crisis period 

Mean Median St.Dev. Min Max 
 Aggregate Market (CCP level) 
SPAN 126.76 115.88 47.05 62.72 328.77 

VaR 114.17 102.57 45.25 50.76 301.97 

CoMargin 187.78 174.05 75.01 72.88 475.27 

BNSPAN 187.78 174.05 75.01 72.88 475.27 

BNVaR 187.78 174.05 75.01 72.88 475.27 

 Cross-sectional (CM level) 
SPAN 11.36 10.85 4.07 4.88 29.86 

VaR 10.21 9.51 3.87 4.46 27.45 

CoMargin 16.89 16.21 6.69 5.64 43.01 

BNSPAN 16.89 16.21 6.69 5.64 43.01 

BNVaR 16.89 16.21 6.69 5.64 43.01 

 Time Series (CM level) 
SPAN 7.21 2.24 10.44 0.01 37.10 

VaR 6.58 2.09 9.67 0.01 34.05 

CoMargin 10.95 3.11 16.72 0.01 60.15 

BNSPAN 12.29 7.61 10.86 3.30 42.64 

BNVaR 12.72 8.55 10.10 4.20 40.73 

Note: The table presents the summary statistics of the daily margin requirements under the 
SPAN, VaR (equation 3.2) and CoMargin (equation 3.10) systems for the 23 active firm accounts 
during the crisis period, from August 1, 2007 to March 31, 2011. The budget-neutral versions of 
the SPAN (BNSPAN) and VaR (BNVaR) systems are also presented and were computed using 
equation 3.21. An account is considered to be active on a given day if it has an open interest (i.e., 
long or short position at the end of the trading day) in at least one underlying asset. Margin 
amounts are reported in millions of dollars. 
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Figure 3.5. SPAN, VaR and CoMargin collateral requirements over the full sample period 

SPAN VaR CoMargin  

 
 

Panel A: Initial Margin 
 

 
 
 
 

Panel B: Daily P&L and Initial Margins 
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SPAN VaR CoMargin  

 
 

Panel C: Relative Variation Margin 
 

 

Note: The figure shows the implied margin requirements from the positions in the 23 active firm accounts of the ܰ ൌ 48 clearing members in the 
sample under the SPAN, VaR and CoMargin systems. Panel A shows the daily stacked initial margin requirements. Panel B plots the daily implied 
P&L against its initial margin requirement. Panel C shows the daily stacked values of the relative variation margin, which is defined as the ratio of 
P&L to posted initial margin. The stacking method used in panels A and C is as follows: for each date ݐ, ݊௔௖௧ ∈ ܰ observations are plotted, which 
correspond to the observations of the ݊௔௖௧ clearing members with an active account. The sample period is from January 2, 2003 to March 31, 
2011. 
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Table 3.13. Average cross-sectional correlation between  
the SPAN, VaR and CoMargin systems 

Variable SPAN VaR CoMargin 

Panel A: Full sample period 

SPAN 1.00 
(0.00)   

VaR 0.99 1.00 
(0.01) (0.00)  

CoMargin 0.90 0.90 1.00 
(0.28) (0.29) (0.00) 

Panel B: Pre-Crisis period 

SPAN 1.00 
(0.00)   

VaR 0.98 1.00 
(0.03) (0.00)  

CoMargin 0.94 0.94 1.00 
(0.05) (0.05) (0.00) 

Panel C: Crisis period 

SPAN 1.00 
(0.00)   

VaR 0.99 1.00 
(0.01) (0.00)  

CoMargin 0.90 0.90 1.00 
(0.29) (0.29) (0.00) 

Note: The table shows the average cross-sectional correlation between the SPAN, VaR and 
CoMargin requirements of the 23 active firm accounts in the sample. An account is considered to 
be active on a given day if it has an open interest (i.e., long or short position at the end of the 
trading day) in at least one underlying asset. The sample period is from January 2, 2003 to March 
31, 2011. The pre-crisis period is from January 2, 2003 to July 31, 2007 and the crisis period is 
from August 1, 2007 to March 31, 2011. Standard deviations are reported in brackets. 
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Panel B of Figure 3.5 plots the daily P&L of each active CM against its initial 

margin requirement. The 45 and -45 degree lines are indicated in red. Observations 

falling below the -45 degree line denote margin exceeding losses. Notice that of the 

three margining systems, CoMargin shows the least number of margin exceedances. In 

addition, unlike the other systems, CoMargin tends to concentrate exceedances in low 

initial margin, low P&L points. These points represent clearing members with the 

smallest or least active portfolios; that is, those that are the least likely to pose a 

systemic threat to the CCP.  

Panel C of Figure 3.5 shows the daily stacked values of the relative variation 

margin, which is defined as the ratio of P&L to posted initial margin ( ௜ܸ,௧/ܤ௜,௧ିଵ). Once 

again, the stacking process is the same as that used in Figure 3.4. Observations with a 

relative variation margin below -1, the level depicted with a red line, represent margin 

exceedances. Notice that the CoMargin system exhibits the lowest number of 

simultaneous (i.e. clustered) margin exceedances. 

Table 3.14 summarizes the performance of different margining systems over the 

full sample period. Table 3.15 and Table 3.16 show the corresponding values for the 

pre-crisis and crisis periods, respectively. The left panel of the tables measures 

unconditional performance in terms of the probability of experiencing at least one 

exceedance, the average number of exceedances and the expected shortfall if at least 

one exceedance occurs. The right panel of the tables reports the same measures but 

conditional on at least one member exceeding its margin. 

Consistent with the theoretical results presented in the previous section, our 

empirical results show that the CoMargin system outperforms the SPAN and VaR 

systems in all dimensions, whether these are estimated unconditionally or conditionally. 

At the CCP level, notice how CoMargin consistently has the lowest probability of 

exceedances and the lowest average number of exceedances across the three systems. 

A lowest number of simultaneous exceedances also allows CoMargin to have the lowest 

expected shortfall.  
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Table 3.14. Performance of the SPAN, VaR and CoMargin systems over the full sample period 

Unconditional Conditional on at least one exceedance 

 
Prob. of 

Exceedances 
Avg. 

Exceedances 
Avg. Shortfall 
(CAD Millions) 

Prob. of 
Exceedances 

Avg. 
Exceedances 

Avg. Shortfall 
(CAD Millions) 

 Aggregate Market (CCP level) 
SPAN 0.09 0.15 0.35 0.36 1.63 3.78 

VaR 0.14 0.25 0.44 0.42 1.80 3.20 

CoMargin 0.07 0.10 0.13 0.28 1.44 1.85 

BNSPAN 0.02 0.02 0.16 0.38 1.47 10.15 

BNVaR 0.02 0.03 0.16 0.36 1.47 9.45 

 Cross-sectional (CM level) 
SPAN 0.01 - 0.03 0.14 - 0.34 

VaR 0.02 - 0.04 0.15 - 0.29 

CoMargin 0.01 - 0.01 0.12 - 0.16 

BNSPAN 0.00 - 0.01 0.12 - 0.90 

BNVaR 0.00 - 0.01 0.12 - 0.84 

 Time Series (CM level) 
SPAN 0.01 - 0.02 0.15 - 0.25 

VaR 0.02 - 0.02 0.15 - 0.21 

CoMargin 0.01 - 0.01 0.12 - 0.11 

BNSPAN 0.00 - 0.01 0.11 - 0.74 

BNVaR 0.00 - 0.01 0.11 - 0.69 

Note: The table compares the empirical performance of the SPAN, VaR (equation 3.2) and CoMargin (equation 3.10) systems computed for the 23 
active firm accounts over the sample period, from January 2, 2003 to March 31, 2011. The left panel reports unconditional amounts and the right 
panel reports the same amounts conditional on at least one margin exceedance. An exceedance is defined as a loss that exceeds the margin 
posted by a clearing member at the end of the previous trading day. The budget-neutral versions of the SPAN (BNSPAN) and VaR (BNVaR) 
systems are also presented and were computed using equation 3.21. An account is considered to be active on a given day if it has an open 
interest (i.e., long or short position at the end of the trading day) in at least one underlying asset. Average shortfall values are reported in millions 
of dollars and correspond to the losses expected if margin exceedances occur.  
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Table 3.15. Performance of the SPAN, VaR and CoMargin systems during the pre-crisis period 

Unconditional Conditional on at least one exceedance 

 
Prob. of 

Exceedances 
Avg. 

Exceedances 
Avg. Shortfall 
(CAD Millions) 

Prob. of 
Exceedances 

Avg. 
Exceedances 

Avg. Shortfall 
(CAD Millions) 

 Aggregate Market (CCP level) 
SPAN 0.09 0.12 0.08 0.31 1.35 0.90 

VaR 0.12 0.19 0.12 0.40 1.60 1.03 

CoMargin 0.07 0.09 0.04 0.25 1.27 0.60 

BNSPAN 0.01 0.01 0.03 0.23 1.23 2.22 

BNVaR 0.01 0.01 0.03 0.31 1.31 2.36 

 Cross-sectional (CM level) 
SPAN 0.01 - 0.01 0.11 - 0.08 

VaR 0.02 - 0.01 0.13 - 0.09 

CoMargin 0.01 - 0.00 0.10 - 0.05 

BNSPAN 0.00 - 0.00 0.10 - 0.17 

BNVaR 0.00 - 0.00 0.10 - 0.18 

 Time Series (CM level) 
SPAN 0.01 - 0.00 0.12 - 0.06 

VaR 0.02 - 0.01 0.14 - 0.07 

CoMargin 0.01 - 0.00 0.11 - 0.04 

BNSPAN 0.00 - 0.00 0.09 - 0.17 

BNVaR 0.00 - 0.00 0.10 - 0.18 

Note: The table compares the empirical performance of the SPAN, VaR (equation 3.2) and CoMargin (equation 3.10) systems computed for the 23 
active firm accounts over the pre-crisis period, from January 2, 2003 to July 31, 2007. The left panel reports unconditional amounts and the right 
panel reports the same amounts conditional on at least one margin exceedance. An exceedance is defined as a loss that exceeds the margin 
posted by a clearing member at the end of the previous trading day. The budget-neutral versions of the SPAN (BNSPAN) and VaR (BNVaR) 
systems are also presented and were computed using equation 3.21. An account is considered to be active on a given day if it has an open 
interest (i.e., long or short position at the end of the trading day) in at least one underlying asset. Average shortfall values are reported in millions 
of dollars and correspond to the losses expected if margin exceedances occur. 
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Table 3.16. Performance of the SPAN, VaR and CoMargin systems during the crisis period 

Unconditional Conditional on at least one exceedance 

 
Prob. of 

Exceedances 
Avg. 

Exceedances 
Avg. Shortfall 
(CAD Millions) 

Prob. of 
Exceedances 

Avg. 
Exceedances 

Avg. Shortfall 
(CAD Millions) 

 Aggregate Market (CCP level) 
SPAN 0.10 0.19 0.69 0.42 1.93 6.91 

VaR 0.16 0.31 0.83 0.45 1.99 5.32 

CoMargin 0.07 0.12 0.24 0.32 1.63 3.33 

BNSPAN 0.02 0.03 0.32 0.47 1.63 15.58 

BNVaR 0.03 0.04 0.34 0.39 1.57 13.46 

 Cross-sectional (CM level) 
SPAN 0.02 - 0.06 0.17 - 0.63 

VaR 0.03 - 0.08 0.18 - 0.48 

CoMargin 0.01 - 0.02 0.14 - 0.30 

BNSPAN 0.00 - 0.03 0.14 - 1.40 

BNVaR 0.00 - 0.03 0.14 - 1.21 

 Time Series (CM level) 
SPAN 0.02 - 0.04 0.18 - 0.51 

VaR 0.02 - 0.05 0.16 - 0.36 

CoMargin 0.01 - 0.01 0.13 - 0.24 

BNSPAN 0.00 - 0.02 0.12 - 1.15 

BNVaR 0.00 - 0.02 0.12 - 0.99 

Note: The table compares the empirical performance of the SPAN, VaR (equation 3.2) and CoMargin (equation 3.10) systems computed for the 23 
active firm accounts over the crisis period, from August 1, 2007 to March 31, 2011. The left panel reports unconditional amounts and the right 
panel reports the same amounts conditional on at least one margin exceedance. An exceedance is defined as a loss that exceeds the margin 
posted by a clearing member at the end of the previous trading day. The budget-neutral versions of the SPAN (BNSPAN) and VaR (BNVaR) 
systems are also presented and were computed using equation 3.21. An account is considered to be active on a given day if it has an open 
interest (i.e., long or short position at the end of the trading day) in at least one underlying asset. Average shortfall values are reported in millions 
of dollars and correspond to the losses expected if margin exceedances occur. 

  



 

92 

In addition, the relative performance of CoMargin increases when we condition 

on at least one exceedance event. This finding shows that CoMargin does a better job at 

protecting the CCP from simultaneous exceedances, even after a clearing member has 

surpassed its margin. Furthermore, Table 3.15 and Table 3.16 show that the relative 

performance of CoMargin also improves during the crisis period, when P&L dependence 

is more persistent. This indicates that CoMargin tends to provide more protection to the 

CCP when it is needed most; that is, when simultaneous exceedance events are more 

likely to occur. 

The cross-sectional panels of Table 3.14, Table 3.15 and Table 3.16 show the 

probability that a typical CM surpasses its margin on any given day, and the expected 

shortfall associated with this event. Once again, the conditional probabilities and 

expected shortfalls are lower for CoMargin than for SPAN and VaR margins. This 

implies that under the SPAN and VaR systems, the typical CM is more likely to 

experience a margin exceeding loss when another CM has exceeded its margin, than 

under the CoMargin system. In addition, notice how both the conditional and 

unconditional probabilities increase for the SPAN and VaR systems during the crisis 

period relative to the pre-crisis period. These results imply that when P&L dependence 

increases, SPAN and VaR margin requirements are more likely to be exceeded by the 

typical CM than CoMargin requirements. 

The time series panels in tables Table 3.14, Table 3.15 and Table 3.16 show the 

average values over the sample period for each CM. By definition, the unconditional 

probability of exceedances corresponds to one minus the coverage level. For VaR 

margin, this probability corresponds to ߙ ൌ 2%, which was used for its estimation. 

Similarly, CoMargin shows a constant unconditional exceedance probability of 1% during 

the full sample and both sup-periods. However, notice that for the SPAN system this 

probability increases (i.e., its unconditional coverage decreases) during the crisis period. 

This situation arises because the SPAN system targets price and volatility ranges 

instead portfolio-wide P&L quantiles, as it is the case in the VaR and CoMargin systems. 
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Table 3.14, Table 3.15 and Table 3.16 also show the performance of the budget-

neutral SPAN and VaR systems (BNSPAN and BNVaR, respectively). As explained in 

the previous section, these artificial constructs allow us to test whether CoMargin 

performs better that its counterparts due to its allocation of collateral or due to the fact 

that it collects more funds. At a first glance, the results show that at the CCP and CM 

level, budget-neutral margins tend to perform better than CoMargin in terms of 

unconditional exceedance probabilities. However, as explained in the previous section, 

this is consistent with our theoretical results. By construction, budget-neutral methods 

tend to collect more aggregate collateral than the SPAN and VaR margining systems 

and spread the additional requirements evenly across clearing members. This allocation 

of collateral increases the coverage level of the SPAN and VaR systems across all CMs 

and reduces their unconditional exceedance probabilities. 

For the pre-crisis period, Table 3.15 shows that BNSPAN slightly outperforms 

CoMargin in terms of conditional exceedance probabilities. However, there is an 

explanation for this finding that is also consistent with our theoretical results. During 

periods of low P&L dependence, such as the pre-crisis period, unconditional 

exceedance probabilities tend to be more important than conditional probabilities in 

determining the likelihood of simultaneous distress events (see equation 3.6). By 

collecting more collateral across all CMs, BNSPAN further reduces the unconditional 

exceedance probabilities of SPAN margins, to the point that it reduces the likelihood (but 

not the expected shortfall) of simultaneous distress events. This effect is further 

reinforced by the fact that during low P&L dependence periods, the CoMargin of many 

CMs converges to VaR margin (see equation 3.17), which Table 3.15 also shows has a 

higher unconditional exceedance probability than SPAN. 

Nevertheless, despite the fact that budget-neutral measures sometimes have 

lower exceedance probabilities, in all cases, the results show that CoMargin yields the 

lowest expected shortfalls. This finding is once again consistent with our theoretical 

results. Relative to the CoMargin system, budget-neutral methods effectively transfer 

margin requirements from firms with high P&L dependence to those with low P&L 

dependence; thus, leaving the CCP exposed to simultaneous exceedance events. 

These simultaneous events account for the higher (conditional and unconditional) 

expected shortfalls under the budget-neutral systems. Since expected shortfalls 
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ultimately determine the impact on the funds available to the CCP, our findings show 

that CoMargin allocations enhance the resilience of clearing houses by minimizing the 

likelihood and economic impact of adverse events.  

Figure 3.6 extends our empirical findings by conditioning on up to three margin 

exceedance events. The results on the charts confirm that CoMargin tends to perform 

better than the SPAN and VaR systems even after accounting for the additional amount 

of collateral required (i.e., after using budget-neutral measures).   
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Figure 3.6. Empirical performance of the SPAN, VaR and CoMargin systems 

 

Full Sample  Pre-Crisis  Crisis  
 
 

Panel A: Probability of a minimum number of margin exceedances 
 
 

 
 
 

Panel B: Probability of additional margin exceedances given that a number of exceedances has occurred 
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Full Sample  Pre-Crisis  Crisis  
 
 

Panel C: Conditional expected shortfall for the CCP given a minimum number of margin exceedances 
 
 

 

Note: The figure compares the empirical performance of the SPAN, VaR (equation 3.2) and CoMargin (equation 3.10) systems computed for the 
23 active firm accounts in the sample. The budget-neutral versions of the SPAN (BNSPAN) and VaR (BNVaR) systems are also presented and 
were computed using equation 3.21. An account is considered to be active on a given day if it has an open interest (i.e., long or short position at 
the end of the trading day) in at least one underlying asset. The sample period is from January 2, 2003 to March 31, 2011. The pre-crisis period is 
from January 2, 2003 to July 31, 2007 and the crisis period is from August 1, 2007 to March 31, 2011. 
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3.6. Conclusion 

In this chapter, we present a new methodology, called CoMargin, to estimate 

margin requirements in derivatives CCPs. Our approach is innovative because it 

explicitly takes into account both the individual risk and the interdependence of the P&Ls 

of market participants. As a result, CoMargin produces collateral allocations that 

enhance the stability and resilience of the CCPs, which in turn reduce their systemic risk. 

We show theoretically and empirically that CoMargin outperforms the widely 

popular SPAN and VaR margining approaches. Our method performs particularly well 

relative to these alternatives when the level of P&L dependence across market 

participants increases, as was the case during the recent financial crisis. Therefore, 

CoMargin provides more protection to the CCP when it needs it most. 

At a technical level, we show how credit risk can be assessed using a scenario-

based approach that takes into account the co-movement of underlying assets and 

similarities across portfolios. We also contribute to the literature by developing a 

backtesting methodology that relies on formal statistical tests and that can be 

generalized to any number of market participants. Formal backtesting techniques are 

particularly important in the context of structural market changes, such as, those that 

occurred during the financial crisis as a result of policy changes (e.g., the current G20 

mandate to centrally clear OTC derivatives).The use of systems that cannot be 

backtested, such as SPAN, impose a challenge to both risk managers and regulators, 

who need to assess the effectiveness and consistency of their risk management policies. 

Finally, at a more general level, the chapter illustrates the importance of 

accounting for simultaneous extreme events, or interdependencies, when managing 

credit risk. Our approach can be seen as a stepping stone that can be generalized and 

used in different situations, such as estimating collateral requirements for repo and other 

over-the-counter (OTC) transactions, assessing capital requirements for banks and 

insurance companies, or monitoring the accumulation of credit risk across market 

participants for regulatory purposes. 
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Appendix A.  
 
Proofs for CoMargin Properties 

Proof A1: Let 	ܪሺܤ௜|௝,  :௜ሻ be a function such thatߪ

,௜|௝ܤሺܪ	 ௜ሻߪ ൌ න ݃ሺݑ, ݑ௜ሻ݀ߪ െ

ି஻೔|ೕ

ିஶ

ߙ ൌ 0 (A1)

Note that we simplified the notation of the pdf ݃ሺݑ;  ,௜ሻ compared to equation 3.15. Thenߪ
the CoMargin can be defined as an implicit function 	ܤ௜|௝ ൌ ݄ሺߪ௜ሻ. By the Implicit 
Functions Theorem, we have: 

௜|௝ܤ߲

௜ߪ߲
ൌ െ

ܤఙ೔ሺܪ
௜|௝, ௜ሻߪ

,௜|௝ܤ஻ሺܪ ௜ሻߪ
 (A2) 

The derivative ܪ஻ሺܤ௜|௝,  :௜ሻ can be expressed as followsߪ

,௜|௝ܤ஻൫ܪ ௜൯ߪ ൌ െ݃൫െܤ௜|௝; ௜൯ߪ ൏ 0 (A3)

and is negative since ݃ሺݑ;  ௜ሻ is a pdf. Thus, the sign ofߪ
డ஻೔|ೕ

డఙ೔
 is given by the sign of 

ܤఙ೔ሺܪ
௜|௝,  :௜ሻߪ

ܤఙ೔൫ܪ
௜|௝, ௜൯ߪ ൌ

߲
௜ߪ߲

ቌ න ݃ሺݑ; ௜ሻߪ

ି஻೔|ೕ

ିஶ

ݑ݀ െ ቍߙ ൌ න
߲݃ሺݑ; ௜ሻߪ
௜ߪ߲

ି஻೔|ೕ

ିஶ

(A4) ݑ݀

For simplicity, let us consider the case where ߩ ൌ 0: 

߲݃ሺݑ; ௜ሻߪ

௜ߪ߲
ൌ

߲
௜ߪ߲

൭
1
௜ߪ
߶ ൬

ݑ
௜ߪ
൰൱ ൌ െ

1
௜ߪ
ଶ ߶ ൬

ݑ
௜ߪ
൰ െ

ݑ

௜ߪ
ଷ ߶′ ൬

ݑ
௜ߪ
൰ (A5)

Since ߶ᇱሺݔሻ ൌ െݔ	߶ሺݔሻ, we have: 

߲݃ሺݑ; ௜ሻߪ

௜ߪ߲
ൌ െ

1
௜ߪ
ଶ ߶ ൬

ݑ
௜ߪ
൰ ቆ1 െ ൬

ݑ
௜ߪ
൰
ଶ
ቇ (A6)

For any value of ݑ such that ݑ ൏ െߪ௜, we have ߲݃ሺݑ; ௜ߪ߲/ሻߩ ൐ 0. This condition is 
satisfied when ݑ ∈ ൣെ∞,െ	ܤ௜|௝൧ since െܤ௜|௝ ൌ ሻߙ௜Φିଵሺߪ	 ൌ െߪ௜Φିଵሺ1 െ ሻ and Φିଵሺ1ߙ െ
ሻߙ ൐ 1 for most of the considered coverage rates (e.g. 1%, 5%). Consequently, the 
integral AX8 is also positive and ܪఙ೔൫ܤ

௜|௝, ௜൯ߪ ൐ 0. Then we conclude that: 
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௜|௝ܤ߲

௜ߪ߲
ൌ െ

ܤఙ೔ሺܪ
௜|௝, ௜ሻߪ

,௜|௝ܤ஻ሺܪ ௜ሻߪ
൐ 0 (A7)

A similar result can be obtained when we relax the assumption. 

 

Proof A2: If ൌ 0 , the last term in equation 3.15 becomes Φ൫െܤ௝/ߪ௝൯ ൌ ΦሺΦିଵሺαሻ	ሻ ൌ   ߙ
since ܤ௜ ൌ െߪ௜Φିଵሺߙሻ. Consequently, the CoMargin of firm ݅ is the solution of the 
following integral: 

න
1
௜ߪ
ൈ ߶ሺ

ݑ
௜ߪ
ሻ

ି஻೔|ೕ

ିஶ

ݑ݀ ൌ (A8) ߙ

By properties of the normal distribution, we have	ܤ௜|௝ ൌ 	െߪ௜Φିଵሺߙሻ ൌ  .௜ܤ

 

Proof A3: Let 	ܨሺܤ௜|௝,  :ሻ be a function such thatߩ

,௜|௝ܤሺܨ ሻߩ ൌ න ݃ሺݑ; ሻߩ

ି஻೔|ೕ

ିஶ

du െ ߙ ൌ 0 (A9)

Note that we simplified the notation of the pdf ݃ሺݑ;  ,ሻ compared to equation 3.15. Thenߩ
the CoMargin can be defined as an implicit function 	ܤ௜|௝ ൌ ݂ሺߩሻ. By the Implicit 
Functions Theorem, we have: 

௜|௝ܤ߲

ߩ߲
ൌ െ

,௜|௝ܤఘሺܨ ሻߩ

,௜|௝ܤ஻ሺܨ ሻߩ
 (A10)

where ܨఘሺ. ሻ and ܨ஻ሺ. ሻ denote respectively the first derivative of the ܨ function with 
respect to ߩ and ܤ. For any function ܪሺݔሻ defined as: 

ሻݔሺܪ ൌ න ݄ሺݐሻ

ି௕ሺ௫ሻ

ିஶ

(A11) ݐ݀

we have ܪ′ሺݔሻ ൌ ݄ሺܾሺݔሻሻ ൈ 	߲ܾሺݔሻ/߲ݔ. Consequently, the derivative ܨ஻ሺܤ௜|௝,  ሻ can beߩ
expressed as follows: 

,௜|௝ܤ஻൫ܨ ൯ߩ ൌ െ݃൫െܤ௜|௝; ൯ߩ ൏ 0 (A12)

and is negative since ݃ሺݑ;  is given by the sign of ߩ߲/௜|௝ܤ߲ ሻ is a pdf. Thus, the sign ofߩ
,௜|௝ܤఘሺܨ  :ሻߩ
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,௜|௝ܤఘ൫ܨ ൯ߩ ൌ
߲
ߩ߲

ቌ න ݃ሺݑ; ሻߩ

ି஻೔|ೕ

ିஶ

ݑ݀ െ ቍߙ ൌ න
߲݃ሺݑ; ሻߩ
ߩ߲

ି஻೔|ೕ

ିஶ

(A13) ݑ݀

Given the expression of the pdf ݃ሺݑ;  :ሻ we haveߩ

߲݃ሺݑ; ሻߩ

ߩ߲
ൌ െ

1
௜ߪߙ

ൈ ߶ ൬
ݑ
௜ߪ
൰ ൈ 	߶ ቆ

െܤ௝/ߪ௝ െ ௜ߪ/ݑߩ

ඥ1 െ ଶߩ
ቇ

ᇩᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇪᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇫ
஺

ൈ ൭
െߪ/ݑ௜ඥ1 െ ଶߩ െ ሺܤ௝/ߪ௝ ൅ ሺ1ߩ௜ሻߪ/ݑߩ െ ଶሻିଵ/ଶߩ

1 െ ଶߩ
൱

ൌ ܣ ൈ ൬
1

1 െ ଶߩ
൰
ଷ/ଶ

ൈ ቆ
ݑ
௜ߪ
൅
௝ܤߩ
௝ߪ
ቇ 

(A14)

This function is positive for any value of ݑ such that ݑ ൑ ௜ܤߩ	 ൌ െߪߩ௜Φିଵሺαሻ with 
െߪߩ௜Φିଵሺαሻ ൐ 0. Since 	ܤ௜|௝ ൒ 0 by definition, this condition is satisfied for the interval 
ൣെ∞,െ	ܤ௜|௝൧	and ܨఘ൫ܤ௜|௝, ൯ߩ ൐ 0. Then we conclude that: 

௜|௝ܤ߲

ߩ߲
ൌ െ

,௜|௝ܤఘሺܨ ሻߩ

,௜|௝ܤ஻ሺܨ ሻߩ
൐ 0 (A15)

 

Proof A4: For ߩ ൌ 1, the pdf ݃൫ݑ; ,௜ߪ ,௝ߪ  ,൯ in equation 3.15 is degenerated. Howeverߩ
when ߩ tends to one, we have: 

lim
ఘ→ଵ

Φቆ
െB୧/ߪ௝ െ ݑߩ

ඥ1 െ ଶߩ
ቇ ൌ 1 (A16)

as long as ݑ ൏
ି୆౟
ఙೕ

ൌ Φିଵሺαሻ. If we assume that the standardized CoMargin for ݅ is larger 

than the standardized VaR margin for ݅, i.e., െܤ௜|௝/ߪ௜ ൑  :௝, then we haveߪ/௝ܤ

lim
ఘ→ଵ

݃ሺݑሻ ൌ
1
௜ߪߙ

ൈ ߶ ൬
ݑ
௜ߪ
൰ (A17)

And consequently the CoMargin corresponds to the VaR margin defined for a coverage 
rate ߙଶ since: 

lim
ఘ→ଵ

න
1
௜ߪ

ି஻೔|ೕ

ିஶ

ൈ ߶ ൬
ݔ
௜ߪ
൰ ݔ݀ ൌ ଶ (A18)ߙ

lim
ఘ→ଵ

௜|௝ܤ ൌ െ ଶሻ (A19)ߙ௜Φିଵሺߪ
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We can check that condition െܤ௜|௝/ߪ௜ ൑ ଶሻߙ௝ is satisfied since Φିଵሺߪ/௝ܤ ൑ Φିଵሺߙሻ.  

 

Proof A5: Since ܤ௝ ൌ െߪ௜Φିଵሺߙሻ, the pdf ݃ሺ. ሻ in equation 3.15 can be rewritten as: 

݃൫ݑ; ,௜ߪ ,௝ߪ ൯ߩ ൌ
1
௜ߪߙ

ൈ ߶ሺ
ݑ
௜ߪ
ሻ ൈ Φ ቈ

Φିଵሺߙሻ െ ௜ߪ/ݑߩ
ඥ1 െ ଶߩ

቉ (A20)

As ݃ሺ. ሻ does not depend on ߪ௝, ߲ܤ௜|௝/߲ߪ௝ ൌ 0. 
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Appendix B.  
 
CoMargin with n Firms 

With ݊ conditioning firms, ݊ ൏ ܰ െ 1, the conditioning event of the CoMargin is 

that at least one of the ݊ clearing members is in financial distress. Thus, the definition of 

CoMargin becomes:  

Pr ቂቀ ௜ܸ,௧ାଵ ൑ െܤ௧
௜|௡ቁ ∩ ۱൫ ଵܸ,௧ାଵ, . . , ௡ܸ,௧ାଵ൯ቃ

Prൣ۱൫ ଵܸ,௧ାଵ, . . , ௡ܸ,௧ାଵ൯൧
ൌ (B1) ߙ

where the probability to observe the conditioning event is: 

Prൣ۱൫ ଵܸ,௧ାଵ, . . . , ௡ܸ,௧ାଵ൯൧ ൌ Prൣ൫ ଵܸ,௧ାଵ ൑ െܤଵ,௧൯ ݎ݋ ݎ݋… ൫ ௡ܸ,௧ାଵ ൑ െܤ௡,௧൯൧ (B2)

Using Poincaré's formula for the probability of the union of events, we can see 

that: 

Prൣ۱൫ ଵܸ,௧ାଵ, . . , ௡ܸ,௧ାଵ൯൧ ൌ෍Prൣ൫ ௝ܸ,௧ାଵ ൑ െܤ௝,௧൯൧

࢔

ୀ૚࢐

 

െ ෍ Prൣ൫ ௝ܸభ,௧ାଵ ൑ െܤ௝భ,௧൯ ∩ ൫ ௝ܸమ,௧ାଵ ൑ െܤ௝మ,௧൯൧

࢔

ଵஸ௝భழ௝మஸ௡ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
૛	࢙࢚࢔ࢋ࢜ࢋ

 

൅
෍ Prൣ൫ ௝ܸభ,௧ାଵ ൑ െܤ௝భ,௧൯ ∩ ൫ ௝ܸమ,௧ାଵ ൑ െܤ௝మ,௧൯

࢔

ଵஸ௝భழ௝మழ௝యஸ௡

		

∩ ൫ ௝ܸయ,௧ାଵ ൑ െܤ௝య,௧൯൧ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
૜	࢙࢚࢔ࢋ࢜ࢋ

 

…൅ሺെ1ሻି࢔૚Prൣ൫ ଵܸ,௧ାଵ ൑ െܤଵ,௧൯ ∩ …∩ ൫ ௡ܸ,௧ାଵ ൑ െܤ௡,௧൯൧ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
࢙࢚࢔ࢋ࢜ࢋ	࢔

 

(B3) 



 

107 

Thus, the probability of the conditioning event can be rewritten as follows: 

Prൣ۱൫ ଵܸ,௧ାଵ, . . , ௡ܸ,௧ାଵ൯൧ ൌ ߙ݊ െ ௧ܲ
௡ (B4)

where ௧ܲ
௡	denotes the sum of the probabilities of all common events (for two events, 

three events, etc.). An estimator of this value, ෠ܲ௧
௡, can be obtained from the simulated 

path ൛ ଵܸ,௧ାଵ
௦ , . . , ௡ܸ,௧ାଵ

௦ ൟ
௦ୀଵ

ௌ
 . When the financial distress events of the conditioning firms are 

mutually exclusive, however, the probability of the conditioning events simplifies to ݊ߙ. 

Therefore, an estimator of the CoMargin of firm ݅ conditional on ݊ clearing members, 

௧ܤ
௜|௡, is the solution of the program: 

෠௧ܤ
௜|௡ ൌ argmin

ቄ஻೟
೔|೙ቅ

ቆ
෠ܲ
௧
௜,௡

ߙ݊ െ ෠ܲ
௧
௡ െ ቇߙ

ଶ

 (B5)

where ෠ܲ௧
௜,௡	 denotes the estimator of Pr ቂቀ ௜ܸ,௧ାଵ ൑ െܤ௧

௜|௡ቁ ∩ ۱൫ ଵܸ,௧ାଵ, . . , ௡ܸ,௧ାଵ൯ቃ, which is 

obtained by generalizing equation 3.34 conditioning on ܤ௧
௜|௡. 

 

 


