
VALIDATION OF XML DOCUMENT BASED ON

PARALLEL BIT STREAM TECHNOLOGY

by

Shiyang Yang

B.Sc.,Beihang University, 2009

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the

School of Computing Science

Faculty of Applied Sciences

c© Shiyang Yang 2013

SIMON FRASER UNIVERSITY

Fall 2013

All rights reserved.

However, in accordance with the Copyright Act of Canada, this work may be

reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,

research, criticism, review and news reporting is likely to be in accordance

with the law, particularly if cited appropriately.

APPROVAL

Name: Shiyang Yang

Degree: Master of Science

Title of Thesis: Validation of XML Document Based on Parallel Bit Stream

Technology

Examining Committee: Dr. William Sumner

Chair

Dr. Rob Cameron, Senior Supervisor

Dr. Thomas Shermer, Second Supervisor

Dr. Fred Popowich, Examiner

Date Approved:

ii

Administrator
打字机文本

Administrator
打字机文本

Administrator
打字机文本

Administrator
打字机文本
Dec 23, 2013

Partial Copyright Licence

iii

Abstract

The validating of XML files is a main component of XML file processing. This thesis inves-

tigates single-instruction multiple-data(SIMD) and parallel bit stream technologies in high

performance XML validation. The content model and datatypes of the schema are trans-

lated into regular expressions and then into parallel bitwise operations. The element content

and data of the instance file are extracted to form byte streams, and then transformed into

parallel bit streams. Finally, the parallel bitwise operations are applied on corresponding bit

streams to validate the content model or datatype. This method is then studied by changing

the characteristic of the instance files, such as the proportion of content data, occurrences

of elements. Comparisons of the performance are also made with Xerces, the well known

XML parser with validator. Whereas the parallel bit stream validation algorithm requires

less than 20 cycles per byte, while Xerces requires 40 to 300 cycles per byte.

iv

Acknowledgments

I would like to thank all the people who has helped and supported me during my graduate

study.

My first and sincere appreciation goes to my senior supervisor Dr. Robert D. Cameron,

for all I have learned from him and for his continuous help in all stages of this thesis. I

would also like to thank him for encouraging me and providing valuable insights. I could

not have completed this thesis without him.

I would also like to thank my supervisor Dr. Thomas C. Shermer, my thesis examiner

Dr. Fred Popowich and Dr. William Sumner for being in my committee and reviewing this

thesis.

I would like to express my deep gratitude to all of my colleagues in Dr. Cameron’s lab

for their help and support. They are Dan Lin, Nigel Medforth, Ken Herdy, Vera Lukman,

Hua Huang, Qiang Zhang and Rui Yang. I specially thank Nigel Medforth for his help and

suggestions during my research.

Last but not least, I would like to thank my family for their un questioning love and

encouragement. This thesis is dedicated to them.

v

Contents

Approval ii

Partial Copyright License iii

Abstract iv

Acknowledgments v

Contents vi

1 Introduction 1

2 Background 3

2.1 Regular Expression and XML parsing . 3

2.2 Basic of XML Validation . 4

2.2.1 Document Type Definitions . 5

2.2.2 XML Schema . 7

2.3 Regular Expression and XML Validation . 9

2.4 Related Work . 11

3 Content Model Validation 13

3.1 Problem Statement . 13

3.2 Algorithm Overview . 13

3.3 Content Model Extraction . 15

3.4 Element Name Alphabet . 18

3.5 Content Array . 19

3.6 Regular Expression Transformation . 20

vi

3.7 Validation . 20

4 Data Type Validation 22

4.1 Problem Statement . 22

4.2 Algorithm Overview . 22

4.3 Data Type System . 23

4.4 Data Extraction . 23

4.5 Data Type and Regular Expressions . 25

4.6 Validation . 26

5 Performance Studies 28

5.1 Performance Study 1 . 28

5.2 Performance Study 2 . 34

5.3 Performance Study 3 . 40

6 Conclusion and Future Work 46

6.1 Conclusion . 46

6.2 Future Work . 46

Appendix A Validation Problem #1 48

A.1 Schema Listing . 48

A.2 Element Names and GIDs . 50

A.3 Regular Expressions for Content Models . 50

A.4 Regular Expressions for Data Types . 51

Appendix B Validation Problem #2 52

B.1 Schema Listing . 52

B.2 Element Names and GIDs . 54

B.3 Regular Expressions for Content Models . 55

B.4 Regular Expressions for Data Types . 55

Appendix C Regular Expressions of Built-in XML Schema Datatypes 57

C.1 string . 57

C.2 normalizedString . 57

C.3 boolean . 57

vii

C.4 decimal . 58

C.5 integer . 58

C.6 nonPositiveInteger . 58

C.7 negativeInteger . 58

C.8 long . 58

C.9 int . 58

C.10 short . 59

C.11 byte . 59

C.12 nonNegativeInteger . 59

C.13 unsignedLong . 59

C.14 unsignedInt . 59

C.15 unsignedShort . 59

C.16 unsignedByte . 59

C.17 positiveInteger . 60

C.18 float . 60

C.19 double . 60

C.20 duration . 60

C.21 dateTime . 60

C.22 time . 61

C.23 date . 61

C.24 gYearMonth . 61

C.25 gYear . 61

C.26 gMonthDay . 62

C.27 gDay . 62

C.28 gMonth . 62

C.29 hexBinary . 62

C.30 base64Binary . 62

C.31 anyURI . 62

C.32 QName . 63

C.33 NOTATION . 63

Bibliography 64

viii

Chapter 1

Introduction

The emergence of XML as a standard representation format for data on the Web has led to a

rapid increase of databases that store, query, and update XML data. XML validation is the

process of checking whether an XML document is both well-formed and also valid to follow

a defined structure. An XML document must respects the rules dictated by a particular

Document Type Definition (DTDs)[1] or XML schema[6] or more recently, RELAX NG

schema.

An XML document can be processed abstractly as a tree of nested elements. Check-

ing that a word satisfies a regular expression[5] is the start of checking whether an XML

document satisfies a DTD.

Single-instruction-stream, multiple-data-stream (SIMD) is particularly applicable to com-

mon tasks of graphics, audio, video and other applications. It is also proven useful in appli-

cation of high-performance text processing. SIMD is a parallel processing technology which

is capable of deploying the same instruction on multiple data simultaneously.

Nowadays, processor manufacturers including Intel, AMD, ARM and IBM have em-

braced their instruction set architectures with SIMD extensions to improve the performance

of process.

Instead of a byte-at-a-time text processing method, SIMD based text processing method

is based on the concept of parallel bit streams. The idea is to transpose byte oriented

character stream data into eight parallel bit streams, each of which comprises one bit of

each byte. In the validation of an XML document, there are several components which are

able to be converted into a byte stream processing issue. The content model validation and

the datatype validation are of those components.

1

CHAPTER 1. INTRODUCTION 2

This thesis proposes an algorithm to convert the sequence of elements into byte streams,

of which, each stream consists of the IDs of each child-elements of a corresponding element.

Therefore, the problem of the content model validation is converted into a byte stream pro-

cessing problem, and we can apply the parallel bit stream technology to achieve a significant

speed-up.

However, the problem of datatype validation can also be converted into a byte stream

processing problem. By abstracting the content of each element, and streaming them into

corresponding byte streams, the byte streams of different types are created and available to

be processed using parallel bit stream technology.

To evaluate the performance of the algorithm, tests are run and comparisons are made

with the traditional byte-at-a-time validator. We apply both the parallel bit stream tech-

nology algorithm and the traditional validator on several different test cases.

The rest of this thesis is organized as follows. Chapter 2 introduces the background of

XML parsing and validation, SIMD technology, and parallel bit stream technology. Chapter

3 presents the algorithm of abstraction of content model and the validation against gram-

mars. Chapter 4 describes the algorithm of datatype validation base on parallel bit stream

technology. Chapter 5 shows performance comparisons of the parallel bit stream technology

base validation algorithm and the traditional validator. In Chapter 6, the results and future

work are discussed.

Chapter 2

Background

2.1 Regular Expression and XML parsing

Regular expressions provide a concise and flexible means to specify and recognize strings

of text. Most formalisms provide boolean “or”, grouping and quantification operations to

construct regular expressions. For “or” operation, a vertical bar separates alternatives.

Parentheses are used define the scope and precedence of the operators in grouping. The

most common quantifiers are the question mark, asterisk and plus sign. A question mark

indicates there is zero or one of the preceding element. The asterisk indicates the preceding

element can occur zero or more times, while the plus sign indicates there is one or more of

the preceding element.

In XML regular expressions, a piece is an atom, possibly followed by a quantifier. A

branch consists of zero or more pieces and a regular expression is composed from zero or

more branches, separated by vertical bars.

There are two types of characters that are used in regular expressions: metacharacters

and normal characters. A metacharacter has special meaning in regular expressions, but

can be escaped to be used as normal character. Metacharacter includes “\”,“?”,“*” and so

on.

XML DOM(Document Object Model) is a platform and language-neutral interface that

allows programs and scripts to dynamically access and update the content, structure, and

style of an XML document. According to the DOM, everything in an XML document is a

node. It views an XML document as a tree-structure, which is called a node-tree. The nodes

in the node tree have a hierarchical relationship to each other. Relationships are described

3

CHAPTER 2. BACKGROUND 4

as parent, child and sibling.

SAX(Simple API for XML) is an event-based sequential access parser API for XML

documents. It provides a mechanism for reading data from an XML document that is an

alternative to DOM. Where the DOM operates on the document as a whole, SAX parsers

operate on each piece of the XML document sequentially. Compared with DOM, SAX has

its benefits such as minimum memory requirement and speed. And drawbacks, such as in

XML validation, it requires access to the full document.

One approach of XML paring is called pull parsing. It treats the document as a series of

items which are read in sequence using the iterator design pattern. A pull parser creates an

iterator that sequentially visits the various elements, attributes, and data in an XML docu-

ment. Code that uses this iterator can test the current item (to tell, for example, whether it

is a start or end element, or text), and inspect its attributes (local name, namespace, values

of XML attributes, value of text, etc.), and can also move the iterator to the next item.

The code can thus extract information from the document as it traverses it. The recursive-

descent approach tends to lend itself to keeping data as typed local variables in the code

doing the parsing, while SAX, for instance, typically requires a parser to manually main-

tain intermediate data within a stack of elements which are parent elements of the element

being parsed. Pull-parsing code can be more straightforward to understand and maintain

than SAX parsing code. Examples of pull parsers include StAX in the Java programming

language, XMLReader in PHP and System.Xml.XmlReader in the .NET Framework.

2.2 Basic of XML Validation

XML validation is the process of checking a document written in XML to confirm that it is

both well formed and also valid in that it follows a defined structure. A valid document re-

spects the rules dictated by a particular DTD or XML schema document. The requirements

of the schema include such constraints as:

• Elements and attributes may be included, and their structure

• The structure as specified by a regular expression syntax

• How character data is to be interpreted

CHAPTER 2. BACKGROUND 5

2.2.1 Document Type Definitions

DTDs(Document Type Definitions) define the legal building blocks of an XML document,

which include elements, attributes, entities, PCDATA, CDATA, etc. A DTD uses a different

syntax from XML. DTD are limited when it comes to the actual types of data they can

include. A valid XML document contains only elements that are defined in the DTD. There

are also limitations on ordering child elements. Here is an example DTD.

<!DOCTYPE RECIPE_COLLECTIONS [

<!ELEMENT collection (description,recipe*)>

<!ELEMENT description ANY>

<!ELEMENT recipe (title,ingredient*,preparation,comment?,nutrition)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT ingredient (ingredient*,preparation)?>

<!ATTLIST ingredient name CDATA #REQUIRED

amount CDATA #IMPLIED

unit CDATA #IMPLIED>

<!ELEMENT preparation (step*)>

<!ELEMENT step (#PCDATA)>

<!ELEMENT comment (#PCDATA)>

<!ELEMENT nutrition EMPTY>

<!ATTLIST nutrition protein CDATA #REQUIRED

carbohydrates CDATA #REQUIRED

fat CDATA #REQUIRED

calories CDATA #REQUIRED

CHAPTER 2. BACKGROUND 6

alcohol CDATA #IMPLIED>

]>

In the DTD, a typical element type defination is as the following.

<!ELEMENT recipe (title,ingredient*,preparation,comment?,nutrition)>

This defines an element and its possible content. In this case, it defines that the “recipe”

element contains five elements:“title,ingredient,preparation,comment,nutrition”, of which,

the child element “ingredient” can occur zero or any times, and the child element “comment”

can occur zero or one time. Each element defined has a content model: a description of the

element’s expected contents.

There are several keywords and expressions specify an element’s content:

• EMPTY specifies that the defined element allows no content.

• ANY specifies that the defined element allows any content, with no restriction.

• (#PCDATA) specifies that the defined element allows only parsed character data.

• Or a mixed content, which means that the content may include at least one text

element and zero or more named elements.

• Or an element content, which means that there must be no text elements in the

content. Element content consists of:

– A content particle, which can be either the name of an element declared in the

DTD, or a sequence list or choice list. There may follows an optional quantifier.

∗ a sequence list indicates that it is an ordered list of one or more content

particles. All the content particles must follow a relative order.

∗ a choice list means an exclusive list of two or more content particles, only one

of these content particles may appear in the content of the defined element.

– A quantifier is a single character that immediately follows the specified item to

which it applies, to indicate the number of successive occurrences of these items.

∗ + for specifying that there must be at least one occurrences of the item.

CHAPTER 2. BACKGROUND 7

∗ * for specifying that any number of occurrences of the item is allowed.

∗ ? for specifying that there must not be more than one occurrence of the

item.

Also, there are attribute list declarations such as following.

<!ATTLIST nutrition protein CDATA #REQUIRED

carbohydrates CDATA #REQUIRED

fat CDATA #REQUIRED

calories CDATA #REQUIRED

alcohol CDATA #IMPLIED>

This defines the list of all possible attributes associated with the given element type, it

consists of the declared name of the attribute, its data type, and its default value. In

this case, the element type “nutrition” has an attribute named “protein”, and four other

attributes of the “CDATA” data type. Four of them are required and the other is implied,

which means that this attribute is not required.

Here are some attribute types supported by XML:

• CDATA means characters data and indicates that the value of the attribute can be

any textual value.

• ENTITY means the effective value of the attribute can only be the name of an un-

parsed external entity.

• ID means the effective value of the attribute must be a valid identifier.

A default value can define whether an attribute must occur (#REQUIRED) or not

(#IMPLIED), or if it has a fixed value(#FIXED), or what value should be used as a

default value.

2.2.2 XML Schema

XML Schema is an XML-based alternative to DTD. An XML schema describes the structure

of an XML document, which consists of constraints on the structure and content of docu-

ments. XML Schema are much more powerful than DTDs, because XML Schema support

data types, and they are in XML syntax and also they are extensible.

Here is an example of XML Schema:

CHAPTER 2. BACKGROUND 8

<?xml version="1.0" encoding="ISO-8859-1" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="shiporder">

<xs:complexType>

<xs:sequence>

<xs:element name="orderperson" type="xs:string"/>

<xs:element name="shipto">

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="address" type="xs:string"/>

<xs:element name="city" type="xs:string"/>

<xs:element name="country" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="item" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="title" type="xs:string"/>

<xs:element name="note" type="xs:string" minOccurs="0"/>

<xs:element name="quantity" type="xs:positiveInteger"/>

<xs:element name="price" type="xs:decimal"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name="orderid" type="xs:string" use="required"/>

</xs:complexType>

</xs:element>

</xs:schema>

CHAPTER 2. BACKGROUND 9

A simple element is defined like:

<xs:element name="orderperson" type="xs:string"/>

In this case, the data type of the element “orderperson” is string.

A complex element is an XML element that contains other elements or attributes. A

complex element is defined like:

<xs:element name="shipto">

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="address" type="xs:string"/>

<xs:element name="city" type="xs:string"/>

<xs:element name="country" type="xs:string"/>

</xs:sequence>

</xs:complexType>

The element type “shipto” is a complex element, it contains four child elements, which are

“name”, “address”, “city” and “country”.

A complex element can also have attributes, where an attribute defination is like:

<xs:attribute name="orderid" type="xs:string" use="required"/>

It specifies the name, data type of the attribute, and it also indicates that the attribute is

required in the element.

There are also some other XML schema languages in widespread use such as RELAX

NG and Schematron.

2.3 Regular Expression and XML Validation

Regular expressions provide a concise and flexible means to specify and recognize strings of

text. Each character in a regular expression is either understood to be a metacharacter which

has a special meaning, or a regular character with its literal meaning. Together, they can be

used to identify textual material of a given pattern. The characters in regular expression are

divided into two types, literal characters and special characters. Literal characters are just

CHAPTER 2. BACKGROUND 10

simple textual characters while there are 11 special characters which have special meanings,

such as “?”, which indicates a option. There are also operations in regular expressions such

as “or”, grouping and quantification. A vertical bar separates alternatives, which means

pattern matches one of the alternatives. For example a|b can match “a” or “b”. Grouping

specifies that this part of regular expression can be applied to a operator together. For

example, (ab) can be referred as a whole. And a quantifier after a token or a group specifies

the quantity of the part of the regular expression. The most common quantifiers are the

question mark ?, the asterisk *, and the plus sign +:

• ? indicates there is zero or one of the preceding element.

• * indicates there is zero or more of the preceding element.

• + indicates there is one or more of the preceding element.

Since content model and data type validation are two major parts of XML validation, and

both of which can be referred to a regular expression matching problem. A content model

specified using a regular expression over element names while basic regular expressions are

over literal characters. DTD analogues of regular expression syntax are given below[2]:

RE Syntax DTD Syntax Meaning

ε EMPTY no element content is allowed

ab a,b both a and b must occur, in order specified

a | b a | b one(and only one) of a or b must occur

a* a* zero or more occurrences of a must occur

a+ a+ one or more occurrences of a must occur

a? a? zero or one occurrence of a must occur

#PCDATA content is text rather than an element

In the follow XML Schema example shows how a data type with a specific pattern is

defined.

<simpleType name="better-us-zipcode">

<restriction base="string">

<pattern value="[0-9]{5}(-[0-9]{4})?"/>

</restriction>

</simpleType>

CHAPTER 2. BACKGROUND 11

Pattern is a constraint on the value space of a datatype which the literals must match a

specific form. The value of pattern must be a regular expression. It’s only used to validate

whether an entire element matches a pattern or not, rather than for extracting matches

from large blocks of data.

2.4 Related Work

Zhang et al [19] present a high-performance XML parsing and validation technique and de-

velop a schema-specific parsing method which uses a two-stack push-down automaton(PDA)

for single-pass parsing and validation without backtracking. Several efforts have been

made to address the parsing and validation performance through the use of schema-specific

(grammar-based) parsers.But these parsers are either time efficient, but encode many states

as a result, or space efficient with backtracking. The new schema-specific parsing method

described in their paper is the first successful attempt to achieve both time and space op-

timal. Performance measurements were taken against Xerces and Expat, two widely used

runtime-based parsers. The throughput of their work is on average 10 times faster than

Xerces parser with validation, and also 2 times faster than non-validating Expat. Perfor-

mance measurements were also taken against some schema-specific parser, like gSOAP. The

result showed that there is still 4 times faster.

Futher work presents a table-driven streaming XML parsing and searching technique

called TDX. It speed-up XML parsing, validationg and searching by pre-recording the states

of an XML parser. The parsing table combines parsing, validation and search into a single

pass. It is pre-processed at compile time, so the looking up takes constant time. TDX im-

plements a single pass predictive validating parser without bachtracking or function calling

overheads.

Another related work by Kostoula et al [13, 15, 17] describes a system in which high-

performance XML parsers are customized using parser generation and compilation tech-

niques. Parsing is integrated with Schema-based validation and deserialization. In the

paper, they analyze a variety of architectural considerations relating to the design of high-

performance XML systems, and compared with an experimental prototype implementation

known as XML Screamer. It compiles customized validating XML parsers from an XML

Schema. On the tests reported in their paper, their XML Screamer can process XML at

speeds of roughly 100 to 200 Mbytes per sec on the 4 GHz processors. Screamer is between

CHAPTER 2. BACKGROUND 12

1.5 to 3.3 times faster than Expat, and between 3.2 to 5.3 times faster than nonvalidating

Xerces. Besides, it delivers from 7.8 to 15.4 times the throughput of Xerces when both

parsers are validating.

Perkins et al [16] present a method for generating efficient parsers by using the schema

component model itself as the representation of the grammar. XML Schema grammar can

be used during parsing to improve performance, but the expressiveness of XML Schema

does not fit well to the generic intermediate representations associated with the traditional

grammar=based parser generation. Their method enables the use of grammar-sensitive

primitives and other forms of specialized an optimistic validation that increase parsing

performance significantly.

There is also another related work by Lowe et al [14], which proposed an offline parser

generation approach to enhance online processing performance for XML documents con-

forming to a given DTD. They presented an algorithm that maps DTDs to deterministic

context-free grammars, and made them suitable for standard parser generators. They took

the approach of specific parsing, which means that a parser applies to documents conforming

to a given DTD only. They also compared their implementation to Xerces and expat.

One of the related works by Chiu and Lu [11] developed a framework for schema-specific

parsing centered on an intermediate representation which abstracts the computational steps

necessary to validate against a schema. They compared their implementation to Libxml2,

expat and gSOAP. The result showed that the performance difference between expat and

their work was about 7 times. Results suggest that their approach is significantly faster

than non-schema-specific parsers.

Thompson and Tobin [18] give complete details on how to convert W3C XML Schema

content models to Finite State Automata, including numeric exponents and wildcards. They

also described Enforcing the Unique Particle Attribution constraint and implementing re-

striction checking in polynomial time using their FSAs.

Chapter 3

Content Model Validation

3.1 Problem Statement

Given an object XML document of a particular class and corresponding markup declarations

that provide a grammar for a class of documents in the form of DTD or XML schema, the

content model validation checks the object XML document against the element content

model grammar that has been extracted from the markup declarations. The content model

here is defined as the constraint for the element contents.

3.2 Algorithm Overview

As shown in figure 3.1, there are three stages in this algorithm. The first stage extracts the

element content model grammar from the markup declarations. The second stage builds

up the element name pool and also the content arrays. The third stage checks the arrays

against the element content model grammar by applying parallel bit stream technology.

In the first stage, structures of element content model grammar are built by parsing

the XML schema documents. The element content model grammar is built on content

particles, which consist of names, choice lists of content particles, or sequence list of content

particles. An element type should have a corresponding content model structure which

indicates information above.

In the second stage, an element name alphabet is constructed. Each element type will

have a unique general GID. All the GIDs are of identical bit width, which means for all the

GIDs, the number of bits to represent them will be the same. During the process of the

13

CHAPTER 3. CONTENT MODEL VALIDATION 14

Figure 3.1: Architecture

CHAPTER 3. CONTENT MODEL VALIDATION 15

parsing of the object document, element content arrays are build up. One array of a certain

element type consists of the GIDs of all the appearances of the children of this element type,

along with signs of every closing of this element type. So there is one array for each element

type.

In the validation stage, each array will be checked against the corresponding element

content model grammar. Firstly, the arrays of bytes are transformed to a set of 8 or 16

parallel bit streams, depending on the bit width of each GID. Based on the grammar, each

GID of the children, choice lists and sequence lists are checked in parallel by using bitwise

logic and shifting operations. If there is any invalid child, or misordering of the children,

the error will be indicated.

Section 3.3 introduces the extraction of the element content model grammar and what

information is in the grammar.

Section 3.4 presents how the alphabet is defined.

Section 3.5 indicates how the element type arrays are constructed.

Section 3.6 considers how the validation is carried out on the arrays against the grammar

by employing the parallel bit stream technology.

3.3 Content Model Extraction

In DTD documents, an element definition consists of the ELEMENT keyword, the element

name, and the content it can contain. For the element content model, we only focus on

the content about other elements that the element can contain. While in XML schema

documents, adding children to an element requires the use of complex types. To list one

or more child elements, a sequence element is needed. For the case where there is only one

child element from a list of alternatives, choice element is needed.

As shown in Table 3.3, by using the parallel bit streams, we can mark every element

name start and end positions, and then locate each element instance in the document.

Futhermore, by removing the first mark in the streams by only one bit-wise operation, we

can easily located the next element name in the source file. It is how the syntactical items

are located and gathered.

During the process of DTD or XML schema document parsing, the element content

model is extracted and stored as element content model structures. Each structure consists

of all possible children of the element, a sequence of children and choice alternatives of

CHAPTER 3. CONTENT MODEL VALIDATION 16

Table 3.1: XML Example 1

<library>

<book id="b0836217462" available="true">

<isbn>

0836217462

</isbn>

<title lang="en">

Being a Dog Is a Full-Time Job

</title>

<author id="CMS">

<name>

Charles M Schulz

</name>

<born>

1922-11-26

</born>

<dead>

2000-02-12

</dead>

</author>

<character id="PP">

<name>

Peppermint Patty

</name>

<born>1966-08-22</born>

<qualification>

bold, brash and tomboyish

</qualification>

</character>

<character id="Snoopy">

<name>

Snoopy

</name>

<born>1950-10-04</born>

<qualification>

extroverted beagle

</qualification>

</character>

</book>

</library>

CHAPTER 3. CONTENT MODEL VALIDATION 17

Table 3.2: Schema Example 1

<xs:element name="library">

<xs:complexType>

<xs:sequence>

<xs:element name="book" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element ref="isbn"/>

<xs:element ref="title"/>

<xs:element ref="author" minOccurs="0"

maxOccurs="unbounded"/>

<xs:element ref="character" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute ref="id"/>

<xs:attribute ref="available"/>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

children.

One DTD document or XML schema document can refer to XML documents of one

class of application. So when processing multiple XML documents of the given class, the

content model extraction only needs to be done once.

For the XML Schema in table 3.2, the grammar structure of element type “book” is like

table 3.4. The element type “book” has a sequence of children, which consists of element

type “isbn”, “title”, “author” and “character”. The type “isbn” and “title” must occur only

once, while elements “author” and “character” should follow the “title” element, and they

can occur from zero to unbounded times. The table doesn’t show the grammar structure

of the element type “library”, which consists of a sequence of elements of “book”, and they

can occur from zero to unbounded times.

CHAPTER 3. CONTENT MODEL VALIDATION 18

Table 3.3: Content Model Gathering Example

Source Text </address><city>Vancouver</city><country>

Start Tag Marks ___________1_____________________1_______

Element Name Start __1________1_______________1_____1_______

Element Name End _________1_____1_______________1________1

Table 3.4: Grammar Structure

book

isbn
title
author minOccurs=“0” maxOccurs=“unbounded”
character minOccurs=“0” maxOccurs=“unbounded”

3.4 Element Name Alphabet

A system of notation is built to represent an element with a unique GID, which is called

element name alphabet. The GIDs should have same bit width. Depending on the quantity

of the kinds of different element type, the bit width of the GID is set as 8 or more bits.

8-bit GIDs can represent up to 256 different element types, while 16-bit GID is for up to

over 40000 element types. For most cases, a document will contain less than 256 different

element types, so only 8-bit GIDs are needed.

As for some XML documents with the same document type, the number of the kinds of

different elements can be represented by less than 8 bits. Because in the validation stage,

the bytes of the GIDs will be transformed into a set of bit streams, the fewer bits we need to

represent the GID, the fewer number of bit streams we will need, and the fewer operations

we will need to do each validation process.

The GIDs are allocated to the elements by the order the elements occur in the schema

document, by which a map of the content model structures and the element GIDs are

constructed. There will also be a GID representing the closing of a element.

For the object XML document shown in Table 3.1, the element name alphabet looks

like Table 3.5. Every type of elements will get a corresponding unique GID, besides, there

is a special type called element closing, which has a GID as zero. There are 10 types of

elements in the object XML document, so the GIDs assigned to the types are from 1 to 10.

The element closing type indicates where one element is closing.

CHAPTER 3. CONTENT MODEL VALIDATION 19

Table 3.5: Element Name Pool

Element Name Pool

Element Type ID

library 1
book 2
isbn 3
title 4
author 5
character 6
name 7
born 8
dead 9
qualification 10
element closing 0

3.5 Content Array

The content arrays are constructed while parsing the object XML document. Each element

type has a corresponding content array for one object document. When parsing the content

of element A, if element B occurs, the GID of element B will be appended to content array of

element A. When the element is closing, the GID of current element closing will be appended

to the content array. The content array of element A only contains A’s direct children.

The other elements should also have one content array for each element. Each content

array contains the information of the content of the element for the entire document.

The content arrays of the example XML document in table 3.1 are shown in table 3.6.

For the element type ”book”, it’s a sequence of its children. First GID 3 indicates element

type ”isbn”, and follows a element of type ”title” and so on. The last position of each array

is an GID 0, which indicates the element closing positions of each element type.

Table 3.6: Content Array

library 2 0

book 3 4 5 6 6 0

author 7 8 9 0

character 7 8 10 10 0

CHAPTER 3. CONTENT MODEL VALIDATION 20

3.6 Regular Expression Transformation

To validate the content model against the grammar with parallel bit streams, we need

to generate the bitwise operation code from the regular expression of the content model

grammar. In the example above, from the content model grammar of the element “book”

and the element name pool, we can get the regular expression of the element “book”, which

is:

2(34(5)*(6)*)0

In the regular expression, each GID except “0” represents a element type, while GID “0”

represents the end of the current element.

To input the regular expression into the Regular Expression bitwise code generator, it

will generate the code of the bitwise validation function of the corresponding element.

The XML representation for a model group schema component includes “all”, “choice”

and “sequence” element information items. The “choice” and “sequence” items can be

represented using regular expression easily, however the “all” item allows the elements to

occur in any order, which is not easy for regular expression to represent, so the “all” item

validation is not included in the validation algorithm for now.

3.7 Validation

In the validation stage, the content arrays are validated against the content model structures

one by one. Assuming the bit width of the GIDs is 8, each array is transformed in a set

of 8 parallel bit streams, each stream represents one bit position of the 8 bits of the GIDs.

They are called basic streams. As shown in table 3.7.

For each element type, related element types and their GIDs are already known according

to the grammar. Element type streams will be generated by applying bitwise operations

on the basic streams. An element type stream is to identify a GID position at which the

element type occurs. A stream for the closing GID is also generated.

From the regular expression of the grammar of the object element, the bitwise operations

are applied on the basic bit streams, and the match stream is generated. In the example

above, there are two element occurrences but only the first one is a match, because one

child of the second occurrence of the element “book” is missing. Then the “xor” operation

is applied on the match stream and element occurrence stream, to find the errors.

CHAPTER 3. CONTENT MODEL VALIDATION 21

Table 3.7: Basic Streams and Match Streams

book 3 4 5 6 6 0 3 5 6 0

basic8 0 0 0 0 0 0 0 0 0 0

basic7 0 0 0 0 0 0 0 0 0 0

basic6 1 1 1 1 1 1 1 1 1 1

basic5 1 1 1 1 1 1 1 1 1 1

basic4 0 0 0 0 0 0 0 0 0 0

basic3 0 1 1 1 1 0 0 1 1 0

basic2 1 0 0 1 1 0 1 0 1 0

basic1 1 0 1 0 0 0 1 1 0 0

element occurrence 0 0 0 0 0 1 0 0 0 1

match 0 0 0 0 0 1 0 0 0 0

error 0 0 0 0 0 0 0 0 0 1

Chapter 4

Data Type Validation

4.1 Problem Statement

Given an object XML document of a particular class and corresponding markup declarations

that provide a grammar for a class of documents in the form of DTD or XML schema, the

data type validation checks the content of the elements of the object XML document against

the data type constraint of the element.

4.2 Algorithm Overview

There are three stages in this algorithm. The first stage parses the DTD or XML schema

document, extract the element content data type constrain of each class of elements. The

next stage of the algorithm extracts the content data of each class of elements in a corre-

sponding buffer, to prepare for the transformation to parallel bit streams. The last stage

validates the content data streams by using parallel bit stream technology.

In the first stage, the element content data type constraints can be extracted in the

process of XML schema documents in chapter 3. We will discuss the definition of datatype

in section 4.3. The elements with an identical type of content data will be assigned to one

group.

In the second stage, element content data will be extracted from the object document,

and byte streams of the content data of different element group will be formed. The data

from different element instances of the same group will be consecutive in the streams.

In the last stage, the byte streams are first transformed to a set of 8 parallel bit streams.

22

CHAPTER 4. DATA TYPE VALIDATION 23

Then the content data are validated against the data type constraints in parallel. When an

invalid data is found, an error will be indicated.

Section 4.3 introduces the data type system of XML Schema.

Section 4.4 indicates how the content data is extracted, and how the data streams is

built during the parsing of the instance file.

Section 4.5 presents how the constraint of the datatypes is translated into regular ex-

pressions.

Section 4.6 introduces that how the validation of datatypes is carried out on the data

streams against the definition by employing the parallel bit stream technology.

4.3 Data Type System

Datatypes are part of the specification of XML Schema language. They define facilities for

datatype definitions that are used in XML Schema. In this specification, a datatype consistes

of three properties, a value space, a lexical space and a small collection of functions, relations

and procedures associated with the datatype.

The value space of a datatype is the set of values for the datatype. The relations of

identity and equality are required for the value spaces. The validation of the value space of

the datatypes is not covered in the algorithm.

The lexical space of a datatype is the prescribed set of strings of the datatype. Functions,

relations and procedures associated with the datatype is the lexical mapping. The validation

of lexical space and lexical mapping is the object of the algorithm.

Atomic datatypes are the types whose value spaces contain only atomic values. Boolean,

dateTime and double are all atomic datatypes. One of the relations of the atomic datatypes

is list. List datatypes are the values consist of finite-length sequences of atomic values.

The lexical space is composed of space-separated literals of the atomic type. Another lex-

ical mapping is called union. Union types may be defined as “ordered unions” of atomic

datatypes of union types.

4.4 Data Extraction

The data extraction stage pulls out the content of particular datatypes, and contributes a

data stream for each datatype. For each datatype, there is a corresponding data stream that

CHAPTER 4. DATA TYPE VALIDATION 24

Figure 4.1: XML datatypes

CHAPTER 4. DATA TYPE VALIDATION 25

consists of the content data of the whole object document of that datatype, and splitting

characters to separate data of each occurrence.

The elements will be classified by the content datatype during the parsing of the XML

Schema document. When parsing the object document, content data of a same element class

will be appended into a stream of that type consecutively. In Table 4.1, a slice of a xml

document, the data type of the content of the element “textureCoordinates” is “doublelist”

as defined in the schema in Table 4.2, which is a list of doubles split by white spaces. The

data is extracted into a buffer, which contains all the data of the element “textureCoordi-

nates”, split by identical symbols of one byte, to indicate the end of the data content of

each occurrence of the element. In this case, the splitting character is “#”, which will not

appear in any valid data of type “doublelist”.

Table 4.1: XML Example 2

<app:target uri="#PolyID16_1737_484245_123631">

<app:TexCoordList>

<app:textureCoordinates ring="PolyID16_1737_484245_123631_0">

152.196947454962 1.3123359580052 150.425219300984

</app:textureCoordinates>

</app:TexCoordList>

</app:target>

<app:target uri="#PolyID99_1141_449345_378934">

<app:TexCoordList>

<app:textureCoordinates ring="PolyID99_1141_449345_378934_0">

0.757565797553053 -0.105958583378923 0.757314870865753

</app:textureCoordinates>

</app:TexCoordList>

</app:target>

The datatype buffer of the example in table 4.1 are shown in table 4.3. Every occurrence

of the data of type “doublelist” is extracted into a buffer in order, and the splitting character

“#” is put in between data of different element occurrences.

4.5 Data Type and Regular Expressions

Most of the datatypes defined by Schema can be represent by regular expressions, as de-

scribed in Appendix C. And there are two ways that other datatypes can be derived by

CHAPTER 4. DATA TYPE VALIDATION 26

Table 4.2: XML Schema Example 2

<xs:element name="textureCoordinates" type="doublelist"/>

<xs:simpleType name="doublelist">

<xs:list itemType="xs:double"/>

</xs:simpleType>

Table 4.3: Data Buffer of Doublelist

1 5 2 . 1 9 6 9 4 7 4 5 4 9 6

2 1 . 3 1 2 3 3 5 9 5 8 0 0

5 2 1 5 0 . 4 2 5 2 1 9 3 0

0 9 8 4 # 0 . 7 5 7 5 6 5 7 9

7 5 5 3 0 5 3 - 0 . 1 0 5 9

5 8 5 8 3 3 7 8 9 2 3 0 . 7

5 7 3 1 4 8 7 0 8 6 5 7 5 3

built-in datatypes: “List” and “Union”. List datatypes are those having values, each of

which consists of a finite-length sequence of values of an atomic datatype. Union datatypes

are union of one or more other datatypes. The list and union logic can be fulfilled by regular

expressions, so as long as the atomic datatypes can be represented by regular expressions,

list and union datatypes of them can be represented as well.

In this case, the regular expression of the datatype “doublelist” is as follow:

^[-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?([]+[-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?)*$

However, there are some datatypes and some value constraining facets which can not be

represented by regular expressions easily in the data type system of XML Schema, such as

the length of the data value, maximum and minimum value of the data value.

4.6 Validation

To validate the datatypes against the grammar with parallel bit stream technology, the

bitwise functions for each datatype are generated based on the regular expressions. The

regular expressions are input into the regular expression bitwise code generator, to get the

bitwise validation functions of all the datatype occurs in the instance file.

CHAPTER 4. DATA TYPE VALIDATION 27

Also the data streams are transformed into 8 parallel bit streams, each stream repre-

sents one bit position of each byte of the data. The validation function is applied on the

corresponding basic bit streams, every match is marked in a bit stream, at the position of

the end of each occurrence of the data. Then the “xor” operation is applied on the match

stream and splitting character stream, to find any mismatch.

Chapter 5

Performance Studies

In this chapter, performance studies of the implementation of the algorithm on different

XML schemas and the comparison against the well-known XML parser and validator Xerces

are shown. Also the difference in performance of the implementations with different param-

eters such as the size of the datatype buffer are also studied. The instance documents in

this chapter are all generated by schema based XML file generators, the size of the instance

files are over 10 Mbytes. All the experiments are carried out on 64-bit CPU with 3.4 Ghz

and SSE4.1/4.2 and AVX instruction sets.

5.1 Performance Study 1

The instance files in this section are all based on the schema in Appendix A. The schema

shows that only one datatype needs to be validated, which is “doublelist”, so for the imple-

mentation, only one data buffer is needed.

Table 5.1: Measurements

instance file 1 2 3 4 5 6 7 8
data proportion 9.7% 25% 35% 36% 51% 60% 83% 92%

element occurrence per Kbyte 145.67 109.50 104.19 51.70 79.26 64.55 29.07 11.49
symbol table(cycle/byte) 7.66 6.46 5.80 5.53 4.75 3.92 1.92 1.17

datatype validation(cycle/byte) 1.19 2.17 2.52 2.49 2.95 3.36 3.78 3.80
datatype gathering(cycle/byte) 1.24 1.28 1.81 1.91 1.69 1.84 1.30 0.75

content model validation(cycle/byte) 2.39 1.47 1.94 2.04 1.75 1.71 1.46 1.28
content model gathering(cycle/byte) 2.05 1.16 1.44 1.12 0.89 0.88 0.34 0.06

28

CHAPTER 5. PERFORMANCE STUDIES 29

Table 5.1 provides benchmark data for parallel validation on instance files with different

characteristics as data proportion and element proportion. The performance of each com-

ponents of parallel validation are measured in term of cycle per byte. Each column in Table

5.1 represents an XML instance.

Performance Analyses

The over all performance achievable with parallel validation ranges from 6.34 to 9.17 cycle-

per-byte, which are from 11.04 to 15.33 instance-per-byte accordingly, including content

model and datatype validation.

Symbol Table Performance

Figure 5.1: Symbol Table Performance

The symbol table contains the element name and GID informations, which is used to im-

plement element name pool used for both content model validation and datatype validation.

As shown in Figure 5.1, the overhead of symbol table reaches a peak when the percentage

of the data gets to the lowest point of about 9%, which is less than 8 cycle-per-byte. Then

the overhead of symbol table module drops as the percentage of the content data increases.

CHAPTER 5. PERFORMANCE STUDIES 30

The reason is mainly that as the percentage of the data increases, the number of both the

occurrences of content data and element instances decreases, each time there is an occur-

rence of those, there will be a memory access, hash function will be applied. So in this case,

the performance of symbol table module increases, while the percentage of the content data

increases.

As shown in Table 5.1, as the data proportion increases from 9.7% to 92%, the number

element occurrence per Kbyte decreases from 145.67 to 11.49, while the overhead of symbol

table module decreases from 7.66 cycle-per-byte to 1.17 cycle-per-byte. And from Figure 5.1,

we can tell that the relation of the overhead of symbol and the data proportion is linear, and

the data proportion has reached 90%, almost the maximum percentage of a document that

content data can be, so the maximum overhead of symbol table is about 9 cycle-per-byte.

The overhead of symbol table should also be affected by the number of element types

in the instance file, since the more element types the instance file has, the more overhead it

will have for hashing and storing the information, so the performance of symbol table will

be different for other cases.

Datatype Validation Performance

Figure 5.2: Datatype Validation Performance

CHAPTER 5. PERFORMANCE STUDIES 31

The performance of the datatype validation component is mainly affected by the data

proportion of the instance file, as shown in Figure 5.2, the overhead of the datatype valida-

tion increases as the percentage of the datatype in the instance file increases, and reaches a

peak when the proportion of the datatype is about 90% of the instance file. The peak over

head of the datatype is under 4 cycle-per-byte, or 7 instruction-per-byte. The overall over-

head of datatype validation component includes two parts, the overhead of data gathering

and data validation. The overhead of data validation is dependent on the number of bit-wise

operations of the validation function, so the overhead of data validation is more stable in

this case. While the overhead of the data gathering is dependent on the data proportion

and the number of the occurrences of content data. Because there is at least one memory

copy operation each occurrence of the content data, so when the data proportion and the

number of the occurrences are higher, the overhead of the whole datatype validation module

is higher.

Figure 5.3: Datatype Gathering Performance

The gathering of the data is a component of the datatype validation, which is also

affected by the data proportion of the instance file. As shown in Figure 5.3, the overhead of

data gathering varies as the percentage of the datatype increases, reaching a peak of about

2 cycle-per-byte, or over 2 instance-per-byte when the 40 percent of the instance file is of

CHAPTER 5. PERFORMANCE STUDIES 32

the datatype.

Content Model Validation

Figure 5.4: Content Model Performance1

As shown in Figure 5.4, the overhead of content model validation reaches a peak when

the percentage of the datatype is about 9%, which is less than 3 cycle-per-byte. And when

the data is of over 90% of the instance file, the overhead of content model is the lowest, less

than half cycle-per-byte. The overhead of the content model validation module includes two

parts, first of which is the overhead of the gathering of content model, second is the overhead

of content model validation. The overhead of content model validation is dependent on the

average number of occurrences of element instances and the number of operations of the

validation functions. The number of the operations in the validation functions vary for

different element types. The overhead of content model gathering, however, is dependent

mainly on the average number of occurrences of element instances, because each occurrence

will lead to a hashing and memory access operation, and compared to the overhead of the

validation functions, the overhead of the gathering dominates. So the most contribution of

the overhead of the content model validation module is the gathering of the content model.

The overhead of content model is not only affected by the percentage of the datatype,

CHAPTER 5. PERFORMANCE STUDIES 33

but also by the number of element per Kbyte and the average length of the element names.

The number of elements varies from 11 to 145, and the overhead of content model changes

in the range of 0.16 to 2.38 cycle-per-byte.

Figure 5.5: Content Model Performance2

Because that we have already addressed that the most contribution of the overhead of

the content model validation module is the content model gathering. The range of the

overhead falls in the range of 0.06 to 2.04 cycle-per-byte.

Performance Summary

As shown in Figure 5.6, the performance of the validation module, without the symbol

module, doesn’t change very much. It ranges from 3 to 5 cycle-per-byte. The over all

overhead including symbol table falls into a range from 4 to 12 cycle-per-byte.

Compared with the overhead of the validation only, the overhead of the symbol table

in some cases can be the most contribution. Because as we discussed, as the change of the

overhead of the symbol table is more than the change of the overhead of the validation mod-

ules, while the characteristic of the instance file changes, so after some point, the overhead

of the symbol table will dominate in the overall performance.

CHAPTER 5. PERFORMANCE STUDIES 34

Figure 5.6: Over All Performance1

5.2 Performance Study 2

The instance files in this section are all based on the schema in Appendix B. The schema

shows that there are there are four datatypes needed to be validated. Besides, there are

three complex element types, including content model of “sequence” and “choice” rules.

The instance files in this section are more complex than the files of section 5.1, there are

4 different datatypes need to be validated, and the rules of content model constraint is also

more complex.

Datatype Gathering

As shown in Figure 5.7, the overhead of datatype gathering increases as the data occurrence

per Kbyte increases.

So the performance of datatype gathering is mainly dependent on the occurrence of data

per Kbyte of the instance file, as the range of the occurrence of data per Kbyte changes from

0 to 65, the overhead of datatype gathering falls into a range of 1.14 to 5.30 cycle-per-byte,

or 1.50 to 9.33 instruction-per-byte. Because each time there is an occurrence of the content

data, there is at least one memory copy operation, when the length of the data is long or

CHAPTER 5. PERFORMANCE STUDIES 35

Figure 5.7: Datatype Gathering Performance

Figure 5.8: Datatype Gathering Performance 2

CHAPTER 5. PERFORMANCE STUDIES 36

it falls to the boundary of the buffers, there can be multiple memory copy operations. And

the overhead of the memory copy dominates in the overhead of the datatype gathering,

so the performance of datatype gathering is mostly dependent on the average number of

occurrences data per Kbyte of the instance file.

The difference between the files in this section and in section 5.1 is that, there are

multiple datatypes need to be validated in the files in this section. For datatype gathering

module, multiple datatypes will lead to overhead of datatype buffer entry searching, cursor

locating and so on. So the overhead of data gathering module in this section is more than

the sample case in section 5.1, and the result in this section is more common in XML

documents.

As shown in Figure 5.8, the overhead of datatype gathering is less dependent on the av-

erage data length of the instance file. Because the overhead of datatype gathering dominates

by the overhead of memory copy operations. And the overhead of memory copy operations

dependents less on the length of the data copied, so for the same amount of total data, the

shorter average length of each occurrence of the data it is, the more copy operations it will

need and the more overhead there will be for datatype gathering.

Content Model Gathering

Figure 5.9 indicates that the performance of content model gathering is mainly dependent

on the occurrence of elements per Kbyte of the instance file. Because when we gather the

content model information, the element names are transformed into GIDs, the performance

is less dependent on the average length of element names. As shown in the figure, the

overhead of content model gathering module ranges from 2 cycle-per-byte to less than 6

cycle-per-byte, which is from less than 1 instruction-per-byte to less than 3 instruction-per-

byte.

The content model gathering module is the same as in section 5.1, the only difference is

the number of the element types that need to be validated. Since the overhead of content

model gathering is mainly dependent on the number of element instances, the figures in

both sections show the same result.

CHAPTER 5. PERFORMANCE STUDIES 37

Figure 5.9: Content Model Gathering Performance

Datatype Validation

In this section, the performance of datatype validation module is discussed, the overhead of

datatype gathering is not considered.

The performance of datatype validation is dependent on data occurrence, average data

length and data bytes per Kbyte of instance file. Because the number of operations for the

validation of each data type varies, the performance of over all datatype validation depends

on the proportion of each type of data as well. As shown in Figure 5.10, The overhead

of datatype validation falls into a range from 0.03 to 2.39 cycle-per-byte, or 0.17 to 5.19

instruction-per-byte.

It is different from the performance study 1 in section 5.1, because the current instance

file is based on a schema which has more than one data type to be validated, the performance

of datatype validation is also dependent the proportion of each different datatypes. However,

the number of operations of the validation function for different datatypes dependent the

regular expressions of the datatypes. Usually the more complex the regular expression is,

the more operations there are. But since the operations are applied on the register parallel,

the difference will be reduced.

CHAPTER 5. PERFORMANCE STUDIES 38

Figure 5.10: Datatype Validation Performance 1

Figure 5.11: Datatype Validation Performance 2

CHAPTER 5. PERFORMANCE STUDIES 39

Figure 5.12: Datatype Validation Performance 3

As shown in Figure 5.12, the overhead of datatype validation increases when the data

proportion increases, before the overhead of datatype validation reaches more than 1 cycle-

per-byte, the affect of the change of data proportion to the performance of the datatype

validation module is very small, which is lest than 1 cycle-per-byte.

Content Model Validation

In this section, the performance of content model validation module is discussed, the over-

head of content model gathering is not included.

The performance of content model validation varies with the number of occurrence of

element per Kbyte of the instance file. Because the number of operations to validate different

element types are not the same, the performance of content model validation is dependent

on the proportion of each element type as well. As the occurrence changes in the range of

4.64 to 63.66, the overhead of content model validation falls into a range of 0.16 to 1.18

cycle-per-byte, or 0.33 to 3.02 instruction-per-byte.

CHAPTER 5. PERFORMANCE STUDIES 40

Figure 5.13: Content Model Validation Performance

Over All Validation

The over all performance of validation is the subtotal of both the content model validation

and datatype validation, since the characteristics of the instance files are different, in term

of the percentage of the data bytes and element occurrence, the performance varies in a

range from 0.19 to 2.58 cycle-per-byte, or 0.60 to 5.26 instruction-per-byte. As shown in

Figure 5.14.

5.3 Performance Study 3

The instance files in this section are all based on the schema in Appendix B. The schema

shows that there are there are four datatypes needed to be validated. Besides, there are

three complex element types, including content model of “sequence” and “choice” rules.

Performance Against Xerces

As shown in Figure 5.15, as the element occurrence per Kbyte increases, the overhead of

the validation of Xerces rises rapidly. The performance of the validation of Xerces is tested

CHAPTER 5. PERFORMANCE STUDIES 41

Figure 5.14: Over All Validation Performance

CHAPTER 5. PERFORMANCE STUDIES 42

Table 5.2: Performance Against Xerces

element per Kbyte parallel validation(cycle/byte) Xerces(cycle/byte)
8.4360001279 3.1309240841 213.265894733
13.6562448835 2.3989508048 171.294562504
21.0198433557 3.5931549873 120.109194821
25.72279118 3.838526008 91.2817089821

29.0875104267 3.7435517285 71.4113897988
31.0111394734 4.8541471414 57.2968200868
33.2440301963 5.2872566644 40.2126389571
36.519440708 4.0315018027 77.0690224924
42.752459889 5.1375744752 147.899139108
47.2608134928 5.2561934806 199.522025888
52.8446273297 5.7556525993 267.437901581
55.8190281212 6.2307075233 295.704017855
57.6546050727 7.2438551494 314.967140622
58.7472846131 7.3811013552 332.991834564

by calculating the difference of the performance of Xerces with the validation and without

the validation.

As we can see from the table, of all the test results, Xerces needs at least more than 40

cycle-per-byte to validate the instance file, while our implementation only need 5 cycle-per-

byte, there is a 7 times difference between our implementation and Xerces. Furthermore,

for some case, there will be an approximately 60 times speed up against Xerces.

Figure 5.15: Performance Against Xerces

CHAPTER 5. PERFORMANCE STUDIES 43

Performance Against icXML

Table 5.3: Performance Against icXML

element per Kbyte parallel validation(cycle/byte) icXML validation(cycle/byte) icXML
8.4360001279 3.1309240841 214.6861036 232.258652352
13.6562448835 2.3989508048 185.891746442 207.337024897
21.0198433557 3.5931549873 123.7482789 151.895853424
25.72279118 3.838526008 88.9758646706 122.227056428

29.0875104267 3.7435517285 62.9855909601 99.7191369029
31.0111394734 4.8541471414 49.1089104569 87.7510078353
33.2440301963 5.2872566644 30.1368451346 70.9301644372
36.519440708 4.0315018027 61.2728551829 103.969180588
42.752459889 5.1375744752 118.93790525 164.24458079
47.2608134928 5.2561934806 152.678688094 201.388552872
52.8446273297 5.7556525993 211.862372468 262.476126648
55.8190281212 6.2307075233 229.996432294 282.466941365
57.6546050727 7.2438551494 255.893780412 309.38315187
58.7472846131 7.3811013552 263.846181264 319.365940862

Figure 5.16: Performance Against icXML

As shown in Figure 5.16, as the element occurrences per Kbyte increases, the overhead

of the validation of icXML varies. The performance of the validation of icXML is tested by

calculating the difference of the performance of icXML with and without the validation.

As shown in the table, even icXML shows much improvement in most of the cases against

Xerces, there is still at least 5 time difference between our implementation and icXML.

CHAPTER 5. PERFORMANCE STUDIES 44

Performance Against Other Validation Methods

One of the related work by Margaret [13, 15, 17] shows that the best performance of val-

idating is from 21.45 to 43.08 cycle per byte on their benchmarks. While our work shows

that the performance of validating including symbol table processing is from 8.40 to 27.57

cycle per byte on our benchmarks.

Branch Miss Rate Analysis

Branch misprediction occurs when CPU mispredicts the next instruction to process in branch

prediction, which is aimed at speeding up execution. Branch miss rate is the percentage of

the number of branch misprediction of the total branch prediction. While the program is

being executed, there are conditional branches. CPU has a branch predictor that tries to

guess which way a branch will go before this is known for sure. When the CPU predicts

the branch wrong, there will be more over head to re-execute the instructions in the right

branch. So if the branch miss rate is lower, more speed-up will be gain.

The data gathering module has much more branches than the other modules, so in this

section, the relation between the length of the data segment and the branch miss rate of

the data gathering module is analyzed.

Figure 5.17 shows that, as the length of the data segment increases from 1 Block Size

to 20 Block Size, the branch miss rate dropped in every test cases, which will increase the

performance, as shown in Figure 5.18.

From the result, we can tell that the branch miss rate decrease as the size of the segment

increase from 1 block to 8 blocks then to 40 blocks. However, the performance difference

is not very much between size of 8 blocks and size of 40 blocks cases, so the segment of 8

blocks is good enough.

CHAPTER 5. PERFORMANCE STUDIES 45

Figure 5.17: Branch Miss Rate Analysis

Figure 5.18: Branch Miss Rate Analysis 2

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, a new algorithm of XML validation based on parallel bit stream technology

is proposed. Instead of the traditional byte at a time validation method, this algorithm

converts the content model and content data into parallel bit streams, then validate them

parallel with bitwise operations. This algorithm takes advantage of the regular expression

to bitwise operations technology, to make both content model and content data validation

into pattern matching problems.

As demonstrated, the performance of the algorithm can achieve at least 5 times speed-

ups over the traditional XML parser Xerces. The speed-up can be much more as the

characteristic of the instance file changed.

6.2 Future Work

One of the future work of this algorithm will be to fulfill more modules of XML validation,

such as attribute validation. The future work also includes to implement a schema/DTD

parser to translate the grammars into regular expressions and then into bitwise operations

automatically.

The datatype validation module needs to be improved to process the data types and

value constraining facets which can not be represented by regular expression easily. The

content model validation module also needs to be improved to be able to process “all”

content model item.

46

CHAPTER 6. CONCLUSION AND FUTURE WORK 47

One of the features that the system could not handle by now is the content model rule

“all”. The “all” element allows the child elements to appear in any order and each child

element can occur zero or one time. The reason that this feature is not supported by the

system is that the “all” rule can not be represented by one sample regular expression. But

there are alternative methods. One of them is also by using regular expressions, but by using

multiple of them. For each child element, one regular expression is needed for validating that

there is at least one instance of this child element type if needed, another regular expression

will make sure that there is no more than one occurrence.

Another future work is to apply this algorithm on existing XML parsers, such as Xerces

and icXML, to improve the performance of those parsers on XML validation.

Appendix A

Validation Problem #1

This schema has named has one data type, and four nontrivial content models.

A.1 Schema Listing

<?xml version="1.0" encoding="UTF-8" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="records">

<xs:complexType>

<xs:sequence>

<xs:element name="shiporder" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="orderperson" type="xs:string"/>

<xs:element name="shipto">

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="address" type="xs:string"/>

<xs:element name="city" type="xs:string"/>

<xs:element name="country" type="xs:string"/>

</xs:sequence>

48

APPENDIX A. VALIDATION PROBLEM #1 49

</xs:complexType>

</xs:element>

<xs:element name="item" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="title" type="xs:string"/>

<xs:element name="note" type="xs:string"

minOccurs="0"/>

<xs:element name="quantity" type="

xs:positiveInteger"/>

<xs:element name="price" type="doublelist"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name="orderid" type="xs:string"

use="required"/>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

<xs:simpleType name="doublelist">

<xs:list itemType="xs:double"/>

</xs:simpleType>

APPENDIX A. VALIDATION PROBLEM #1 50

records 1
shiporder 2

orderperson 3
shipto 4
name 5

address 6
city 7

country 8
item 9
title 10
note 11

quantity 12
price 13

A.2 Element Names and GIDs

A.3 Regular Expressions for Content Models

The content model of four element types which have child elements needs to be validated.

GID “0” is used to represent end tag of each element.

The element type “record” has a sequence of “shiporder” elements, the maximum number

of the occurrences is unbounded, so the regular expression of the content model of the

element type “record” is:

1(2)*0

The element type “shiporder” has a sequence of the group of the element “orderperson”,

“shipto” and “item”, they must be in order, and the maximum number of the occurrences

of element type “shipto” and “item” is unbounded, so the regular expression of the content

model of the element type “shiporder” is :

2((3)(4)+(9)+)0

The element type “shipto” has a sequence of the group of the element “name”, “address”,

“city” and “country”, they must occur only once and in order, so the regular expression of

the content model of the element type “shipto” is :

4((5)(6)(7)(8))0

APPENDIX A. VALIDATION PROBLEM #1 51

The element type “item” has a sequence of the group of the element “title”, “note”,

“quantity” and “price”, which must occur in order. While the “note” element can occur

zero or one time. The regular expression of the the content model of the element type

“item” is:

9((a)(b)?(c)(d))0

Here the Character “a” to “d” indicate GID “10” to “13”.

A.4 Regular Expressions for Data Types

There is only one data type in this schema need to be validated, which is from the element

type “price”, the data type is “doublelist”, which is a list of the built-in data type “double”

in XML Schema. The character “#” is used as the splitter.
The regular expression of the data type “doublelist” is:

(^|#)[-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?([][-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?)*#

Appendix B

Validation Problem #2

This schema has four nontrivial content models, and four data types.

B.1 Schema Listing

<?xml version="1.0" encoding="UTF-8" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="records">

<xs:complexType>

<xs:sequence>

<xs:element ref="purchaseOrder" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="description">

<xs:complexType>

<xs:sequence>

<xs:element name="producer" type="xs:string"/>

<xs:element name="distributor" type="xs:string"/>

52

APPENDIX B. VALIDATION PROBLEM #2 53

<xs:element name="retailer" type="xs:string"/>

<xs:element name="phone" type="phone_number"

maxOccurs="unbounded"/>

<xs:element name="p" type="doublelist"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="payment">

<xs:complexType>

<xs:choice>

<xs:element name="creditCard" type="CC"/>

<xs:element name="debitCard" type="DC"/>

</xs:choice>

</xs:complexType>

</xs:element>

<xs:element name="purchaseOrder">

<xs:complexType>

<xs:sequence>

<xs:element ref="description" minOccurs="0"/>

<xs:element ref="payment" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:simpleType name="phone_number">

<xs:restriction base="xs:string">

<xs:pattern value="\d{3}-\d{3}-\d{4}"/>

</xs:restriction>

</xs:simpleType>

APPENDIX B. VALIDATION PROBLEM #2 54

<xs:simpleType name="CC">

<xs:restriction base="xs:string">

<xs:pattern value="\d{16}"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="DC">

<xs:restriction base="xs:string">

<xs:pattern value="\d{13}"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="doublelist">

<xs:list itemType="xs:double"/>

</xs:simpleType>

</xs:schema>

B.2 Element Names and GIDs

records 1
description 2
producer 3

distributor 4
retailer 5
phone 6

p 7
payment 8

creditCard 9
debitCard 10

purchaseOrder 11

APPENDIX B. VALIDATION PROBLEM #2 55

B.3 Regular Expressions for Content Models

There are four element types which has child element, which are “records”, “description”,

“purchaseOrder” and “payment”. Here the character “a” and “b” indicate GID “10” and

“11”.

The element type “records” has a sequence of element of type “purchaseOrder”, the

maximum number of the occurrences is unbounded, so the regular expression for the content

model of element type “records” is:

1(b)+0

The element type “description” has a sequence of the group of the element type “pro-

ducer”, “distributor”, “retailer”, “phone” and “p”. The maximum number of occurrences

of the element type “phone” and “p” are unbounded. So the regular expression for the

content model of element type “description” is:

2((3)(4)(5)(6)+(7)+)0

The element type “payment” has a choice between the two element type “creditCard”

and “debitCard”, so the regular expression for the content model of element type “payment”

is:

8((9)|(a))0

The element type “purchaseOrder” has a sequence of the group of element type “de-

scription” and “payment”, in which the maximum number of the occurrences of the element

“payment” is unbounded. The regular expression for the content model of element type

“purchaseOrder” is:

b((2)(8)+)0

B.4 Regular Expressions for Data Types

There are four data type definitions in the schema, which are of element type “phone”, “p”,

“creditCard” and “debitCard”. The character “#” is used as the splitter.

The data type of “phone” is defined as a patterned string, the regular expression of the

data type “phone number” is:

APPENDIX B. VALIDATION PROBLEM #2 56

(^|#)[1-9]{3}-[1-9]{3}-[1-9]{4}#

The data type of “p” is “doublelist”, which is a list of built-in type “double” in XML

Schema. The regular expression of the data type “doublelist” is:

(^|#)[-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?([][-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?)*#

The data type of “creditCard” is a patterned string, which has a length of 16. The

regular expression of the data type “CC” is:

(^|#)[1-9]{16}#

The data type of “debitCard” is a patterned string, which has a length of 13. The

regular expression of the data type “CC” is:

(^|#)[1-9]{13}#

Appendix C

Regular Expressions of Built-in

XML Schema Datatypes

C.1 string

The string datatype represents character strings.

C.2 normalizedString

The normalizedString represents white space normalized strings. It is the set of strings that

do not contain the carriage return, line feed, nor tab characters.

The regular expression of normalizedString type is :

[^\xD\xA\x9]+

C.3 boolean

The boolean type can have the following legal literals {true, false, 1, 0 }.
The regular expression of boolean type is:

true|false|1|0

57

APPENDIX C. REGULAR EXPRESSIONS OF BUILT-IN DATATYPES 58

C.4 decimal

The decimal is a finite-length sequence of digits, separated by a period as a decimal. The

“+” sign is prohibited, the decimal point is required.

The regular expression of decimal type is:

[-]?[0-9]+\.[0-9]*

C.5 integer

The regular expression of integer type is:

[-]?[0-9]+

C.6 nonPositiveInteger

The regular expression of nonPositiveInteger type is:

0\|-[0-9]+

C.7 negativeInteger

The regular expression of negativeInteger type is:

-[0-9]+

C.8 long

The long type is derived from integer by setting the value of maxlInclusive to be 9223372036854775807

and minInclusive to be -9223372036854775808.

C.9 int

The int type is derived from long by setting the value of maxlInclusive to be 2147483647

and minInclusive to be -2147483648.

APPENDIX C. REGULAR EXPRESSIONS OF BUILT-IN DATATYPES 59

C.10 short

The short type is derived from int by setting the value of maxlInclusive to be 32767 and

minInclusive to be -32768.

C.11 byte

The byte type is derived from short by setting the value of maxlInclusive to be 127 and

minInclusive to be -128.

C.12 nonNegativeInteger

The regular expression of nonNegativeInteger type is:

[+-](0|[+]?[0-9]+)

C.13 unsignedLong

The unsignedLong is derived from nonNegativeInteger by setting the value of maxlInclusive

to be 18446744073709551615.

C.14 unsignedInt

The unsignedInt is derived from unsignedLong by setting the value of maxlInclusive to be

4294967295.

C.15 unsignedShort

The unsignedShort type is derived from unsignedInt by setting the value of maxlInclusive

to be 65535.

C.16 unsignedByte

The unsignedByte type is derived from unsignedShort by setting the value of maxlInclusive

to be 255.

APPENDIX C. REGULAR EXPRESSIONS OF BUILT-IN DATATYPES 60

C.17 positiveInteger

The positiveInteger type is derived from nonNegativeInteger by setting the value of minIn-

clusive to be 1.

C.18 float

The value of float consists of the values m * 2ˆe, where m is an integer whose absolute value

is less than 2ˆ24, and e is an integer between -149 and 104.Float also includes not-a-number

value, which can be represented as INF, -INF or NaN.

The regular expression of float type is:

[-+]?[0-9]*[\.]?[0-9]+([eE][-+][0-9]+)?

C.19 double

The double type is similar as the float type, except the m is less than 2ˆ53, and e is between

-1075 and 970.

The regular expression of double type is:

[-+]?[0-9]*[\.]?[0-9]+([eE][-+][0-9]+)?

C.20 duration

The duration data type is used to specify a time passed, which is specified in the form of

“PnYnMnDTnHnMnS” where “P” and “T” are required. The regular expression of duration

type is:

[-+]P([0-9]+Y)?([0-9]+M)?([0-9]+D)?T([0-9]+H)?([0-9]+M)?

([0-9]+(\.[0-9]+)?+S)?

C.21 dateTime

DataTime values include integer-valued year, month, day, hour and minute properties, a

decimal-valued second property, a boolean timezoned property, and also one decimal-valued

timeOnTimeLine property.

APPENDIX C. REGULAR EXPRESSIONS OF BUILT-IN DATATYPES 61

The regular expression of dateTime type is:

(-)?[0-9]{4}[0-9]*-[0-9]{2}-[0-9]{2}T[0-9]{2}:[0-9]{2}:[0-9]+

\.?[0-9]*[+-][0-9]{2}:[0-9]{2}Z?

C.22 time

The time type represents an instant of time of a day. The regular expression of time type

is:

[0-9]{2}:[0-9]{2}(-[0-9]{2}:[0-9]{2})?

C.23 date

The value space of date consists of top-open intervals of exactly on day in length on the

timelines of dateTime. It includes year, month and day properties and an optional timezone-

valued timezone property.

The regular expression of date type is:

[0-9]{4}[0-9]*-[0-9]{2}-[0-9]{2}(-[0-9]{2}:[0-9]{2})?

C.24 gYearMonth

The gYearMonth type represents a gregorian month in a gregorian year. The regular ex-

pression of gYearMonth type is:

(-)?[0-9]{4}-[0-9]{2}

C.25 gYear

The gYear type represents a gregorian year. The regular expression of gYear type is:

(-)?[0-9]{4}

APPENDIX C. REGULAR EXPRESSIONS OF BUILT-IN DATATYPES 62

C.26 gMonthDay

The gMonthDay type represents a gregorian date of a year. The regular expression of

gMonthDay type is:

[0-9]{2}-[0-9]{2}

C.27 gDay

The gDay type represents a gregorian day. The regular expression of gDay type is:

[0-9]{2}

C.28 gMonth

The gMonth type represents a gregorian month. The regular expression of gMonth type is:

[0-9]{2}

C.29 hexBinary

The hexBinary type represents hex-encoded binary data. The regular expression of hexBi-

nary type is:

[0-9A-F]+

C.30 base64Binary

The base64Binary type represents Base64-encoded binary data.

C.31 anyURI

The anyURI type represents a Uniform Resource Identifier Reference. A URI is a sequence

of characters, used to identify a name of a web resource. The regular expression of anyURI

type is:

(http|ftp|mailto|crid|file):[a-zA-Z0-9._]*

APPENDIX C. REGULAR EXPRESSIONS OF BUILT-IN DATATYPES 63

C.32 QName

The QName type represents XML qualified names.

C.33 NOTATION

The NOTATION type represents the NOTATION attribute type.

Bibliography

[1] Document type definition. http://en.wikipedia.org/wiki/Document_type_

definition.

[2] Dtd and regular expression. http://www.dcs.bbk.ac.uk/~ptw/teaching/dtd-new/

notes.html.

[3] Extensible markup language (xml) 1.1. http://www.w3.org/TR/2004/

REC-xml11-20040204/#NT-doctypedecl.

[4] perf: Linux profiling with performance counters. https://perf.wiki.kernel.org/

index.php/Main_Page.

[5] Regular expression. http://en.wikipedia.org/wiki/Regular_expression.

[6] Xml schema part 1: Structures second edition. http://www.w3.org/TR/

xmlschema-1/.

[7] Xml schema part 2: Datatypes second edition. http://www.w3.org/TR/xmlschema-2/.

[8] Robert D. Cameron, Ehsan Amiri, Kenneth S. Herdy, Dan Lin, Thomas C. Shermer,
and Fred Popowich. Parallel scanning with bitstream addition: An xml case study. In
Euro-Par (2), volume 6853 of Lecture Notes in Computer Science, pages 2–13. Springer,
2011.

[9] Robert D. Cameron, Kenneth S. Herdy, and Dan Lin. High performance xml parsing
using parallel bit stream technology. In CASCON, page 17. IBM, 2008.

[10] Robert D. Cameron and Dan Lin. Architectural support for swar text processing with
parallel bit streams: the inductive doubling principle. In ASPLOS, pages 337–348.
ACM, 2009.

[11] Kenneth Chiu and Wei Lu. A compiler-based approach to schema-specific xml parsing,
2004.

[12] Buhwan Jeong, Jungyub Woo, Boonserm Kulvatunyou, and Hyunbo Cho. Jess-based
web interface for xml document validation. Expert Syst. Appl., 36:683–689, 2009.

64

BIBLIOGRAPHY 65

[13] Margaret G. Kostoula, Morris Matsa, Noah Mendelsohn, Eric Perkins, Abraham
Heifets, and Martha Mercaldi. Xml screamer: an integrated approach to high per-
formance xml parsing, validation and deserialization. In WWW ’06 Proceedings of the
15th international conference on World Wide Web, pages 93–102, 2008.

[14] Welf M. Lowe, Markus L. Noga, and Thilo S. Gaul. Foundations of fast communication
via xml. Annals of Software Engineering, 13:357–379, 2002.

[15] Morris Matsa, Eric Perkins, Abraham Heifets, Margaret G. Kostoulas, Daniel Silva,
Noah Mendelsohn, and Michelle Leger. A high-performance interpretive approach to
schema-directed parsing. In WWW ’07 Proceedings of the 16th international conference
on World Wide Web, pages 1093–1114, 2007.

[16] E. Perkins, M. Matsa, M. G. Kostoulas, A. Heifets, and N. Mendelsohn. Generation
of efficient parsers through direct compilation of xml schema grammars. IBM Systems
Journal, 45:225, 2006.

[17] Eric Perkins, Morris Matsa, Margaret Gaitatzes Kostoulas, Abraham Heifets, and Noah
Mendelsohn. Generation of efficient parsers through direct compilation of xml schema
grammars. IBM Systems Journal, 45:225–244, 2006.

[18] Henry S. Thompson and Richard Tobin. Using finite state automata to implement w3c
xml schema content model validation and restriction checking. In XML Europe, 2003.

[19] Wei Zhang. High-performance xml parsing and validation with permutation phrase
grammar parsers. In Web Services, 2008. ICWS ’08. IEEE International Conference
on, pages 286–294, 2008.

[20] Wei Zhang. Efficient Xml Stream Processing And Searching. PhD thesis, The Florida
State University, 2012.

	PCL Declaration 2013 Fall.pdf
	Partial Copyright Licence

	PCL Declaration 2013 Fall.pdf
	Partial Copyright Licence

	PCL Declaration 2013 Fall.pdf
	Partial Copyright Licence

