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Abstract

This thesis presents measurements of the dynamical conductivity of a MnSi film via terahertz

time domain spectroscopy. We determine the Drude scattering rate and plasma frequency at

low temperatures, and compare these to theoretical predictions. From a comparison of the

plasma frequency measurement with band theory, we determine a mass renormalization of

m∗/m ' 5.5. Above Tc = 50 K, fits to the Drude model yield negative values for τ , indicat-

ing the existence of a pseudogap. At low temperatures and low frequencies, the resistivity

has the form ρ(ω, T ) = A
[
(~ω)2 + b(πkBT )2

]
, with b & 1. At the lowest temperatures, we

estimate b ' 4, with a large systematic uncertainty that we characterize for later improve-

ment. This result is consistent with Fermi liquid theory predictions for electron-electron

scattering.

iv



Acknowledgments

There are many people who contributed to this work. In particular, I would like to express

my gratitude to:

Steve Dodge who is one of the most knowledgeable people that I have met and to whom

it is easy to talk about anything of interest. I am most grateful to him for supporting

me and giving me the opportunity to work in his lab.

Amir Farahani for teaching me how to work with the THz setup. This work could not

be done without his tremendous help, guidance and support.

Payam Mousavi for sharing his exceptional programming skills, his smart ideas on how

to do things and his blunt statements, but I am most grateful for his emotional and

intellectual support throughout this work.

Derek Sahota for always being ready to help with anything and everything and for an-

swering all of my questions in any area.

Ian Bushfield for his patience and guidance in the lab. He was the one who taught me

the basic rules of working in the lab.

Ken Myrtle for all of his help, especially in the machine shop when I was building the

mounts.

Bryan Gormann for all of his help.

Anthony Steigvilas for being so full of surprises and making our office a more interesting

place.

Yongki Kim for being so kind and helpful.

v



Rohan Abraham for keeping the office interesting.

Ted Monchesky and Eric Karhu for providing a great MnSi sample.

Farnaz Rashidi and Shima Alagha for being my friends, my listeners, my company,

and my main supports throughout this work.

vi



Contents

Approval ii

Partial Copyright License iii

Abstract iv

Acknowledgments v

Contents vii

1 Introduction 1

2 Terahertz time-domain spectroscopy 3

2.1 Generation and detection of THz waves . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Mode-locked lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 THz generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 THz detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.4 Terahertz setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Conductivity measurements with THz-TDS 11

3.1 Analysis methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Transfer function fits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.2 Drude parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.3 Fermi liquid parameter estimation . . . . . . . . . . . . . . . . . . . . 14

3.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Substrate matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.2 Analysis example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

vii



3.2.3 Procedure at low temperatures . . . . . . . . . . . . . . . . . . . . . . 17

4 Experimental consequences of Fermi liquid theory 19

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Fermi liquid theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.1 Historical background . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.2 Quasiparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Quasiparticle decay rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4 Previous measurements of the ω-T scaling parameter . . . . . . . . . . . . . . 23

4.4.1 Temperature range of FLT . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4.2 Absorptivity of UPt3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4.3 Infrared reflectivity of HgBa2CuO4+δ . . . . . . . . . . . . . . . . . . 26

4.4.4 Optical conductivity of Ce.95Ca.05TiO3.04 . . . . . . . . . . . . . . . . 26

4.4.5 Optical spectroscopy of Nd1−xTiO3 . . . . . . . . . . . . . . . . . . . 28

4.4.6 Optical spectroscopy of URu2Si2 . . . . . . . . . . . . . . . . . . . . . 29

4.4.7 Terahertz spectroscopy of MnSi . . . . . . . . . . . . . . . . . . . . . . 30

5 THz time-domain spectroscopy of MnSi films 35

5.1 Basic facts about MnSi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 THz-TDS on MnSi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2.2 Conductivity spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.3 Resistivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.4 Relaxation time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.5 Plasma frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2.6 Frequency-temperature scaling parameter . . . . . . . . . . . . . . . . 45

6 Conclusions and future directions 49

Bibliography 50

viii



Chapter 1

Introduction

Fermi liquid theory (FLT) is one of the most fundamental theories in solid state physics. It

is extremely successful in describing the normal state of the majority of metals. A modified

version of FLT allows us to characterize the superconducting state of many metals at low

temperatures. Despite the strong Coulomb interactions between the electrons, FLT treats

electrons inside metals as free particles with renormalized masses, and yet accurately predicts

many properties of metals such as the specific heat, the T 2 dependence of the resistivity,

and many others. The fact that the behavior of an interacting system of electrons can

be very accurately predicted by considering the non-interacting system with renormalized

parameters was one of the major insights gained through the success of the FLT.

Originally, FLT was developed by Landau to explain the properties of liquid He-3, but

soon after it was realized that a similar approach could be used to deal with other Fermi

systems, like electrons in metals. A central prediction of the theory is that currents should

decay at a rate give by
1

τ(ω, T )
= A

[
(~ω)2 + b(πkBT )2

]
, (1.1)

where A is a material dependent constant and ω is the frequency of an applied electromag-

netic field. When electron-electron scattering is the dominant source of scattering, Gurzhi

showed that b = 4 [10]. In this thesis, we will test this prediction in the compound MnSi.

FLT is a low energy theory, and in order to investigate its predictions, like the scattering

rate, one needs to be in the low frequency/temperature regime. While it was relatively sim-

ple to cool down to low enough temperatures, accessing a sufficiently low frequency range

has proven to be more challenging. Quasiparticle scattering rates for many metals lie at

1
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frequencies that remained unexplored decades after infrared and microwave spectroscopy

came along. This part of the frequency spectrum was known as the “terahetz gap”. Ad-

vances in ultrafast lasers in 1980s along with the development of Auston opto-electronic

switches [2, 9, 25], led to the development of THz time-domain spectroscopy (THz-TDS),

capable of covering the gap. One of the biggest advantages of THz-TDS is the direct

measurement of the field amplitude with a subpicosecond resolution. Unlike in intensity

detection methods, it is possible to extract both the real and imaginary parts of the di-

electric function simultaneously. Hence, without the need for Kramers-Kronig relations,

approximating extrapolations can be avoided.

MnSi is a very well-studied metal with a large variety of interesting properties. Earlier

optical measurements [17] had indicated deviations from FL behavior as its scattering rate

and optical conductivity did not follow FLT predictions. However, the measurements were

done in the infrared frequency regime and did not extend into the THz range. This thesis

extends the frequency to the THz region, and investigates the FLT predictions. In particular,

this thesis is focused on testing Eq. 1.1 and finding the value of b for MnSi. Along the

way, we also make several novel observations about the conductivity of MnSi, including

temperature-dependent measurements of the scattering rate and plasma frequency.

This thesis is organized as follows.

• Chapter 2 is devoted to instrumentation and methods in time-domain THz spec-

troscopy. I explain the process of THz generation and detection using dipole antennas.

• In Chapter 3, I will discuss the process of measuring the conductivity of a thin metal

film on a substrate and the models we use for analyzing the transmission amplitude

data.

• In Chapter 4, I will introduce Fermi liquid theory and the quasiparticle concept, and in

the end I will summarize previous studies on the relationship between the frequency-

dependent resistivity and the temperature-dependent resistivity.

• In Chapter 5, I will briefly discuss the previous work on MnSi, followed by the pre-

sentation of our experimental results and conclusions.



Chapter 2

Terahertz time-domain

spectroscopy

The terahertz frequency range is loosely defined as the region of the electromagnetic spec-

trum between 30 GHz (λ = 1 cm) to 10,000 GHz (λ = 30 µm). Spectroscopic techniques

have been used to probe the infrared and microwave frequency regions for many decades, but

extending these to the terahertz region proved difficult. As a result, this frequency region

remained unexplored for decades, and became known as the THz gap. With the invention

of the photoconductive dipole antenna in the mid 1980s [2], along with the development

of ultrafast femtosecond lasers, a new era in THz technology began. This has generated

intense interest in the scientific and engineering applications of terahertz radiation. Tera-

hertz time domain spectroscopy (THz-TDS) has now found a wide range of applications,

from measuring paper thickness to determining the optical conductivity of metals [7, 19].

The THz-TDS technique has numerous advantages over conventional spectroscopic tech-

niques. Most importantly, it is a coherent technique. This enables us to obtain both the

real and imaginary parts of a material’s electromagnetic response function directly, without

using Kramers-Kronig relations. Consequently, THz-TDS provides accurate and reliable

estimates of the complex response function at terahertz frequencies [24].

3
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Figure 2.1: The electromagnetic spectrum with the THz gap. From Kübler [14].

2.1 Generation and detection of THz waves

In THz-TDS, there are two major methods to generate and detect THz radiation: with

photoconductive antennas and with nonlinear optical techniques. We used photoconductive

antennas for the work described here. In this method, terahertz pulses are generated and

detected by femtosecond laser pulses incident on photoconducting dipole antennas. A re-

markable symmetry in THz-TDS is that the same type of dipole antenna that generates the

terahertz pulses can be used to detect them. In this case the femtosecond laser pulses serve

to take time-domain snapshots of a photocurrent that gets driven by the incident terahertz

pulses. In the subsequent sections I elaborate on each element in the system that we use to

generate and detect THz radiation.

2.1.1 Mode-locked lasers

A laser cavity of length L has a large number of longitudinal modes that are equally spaced

in the frequency domain by ∆ν = c/2L. Normally, modes have an arbitrary phase with

respect to each other, which leads to a continuous flow of light in the cavity. However, if

the modes have fixed phase with respect to each other (i.e. they are locked together), they

interfere constructively and a series of short pulses are created in the time domain. The
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Figure 2.2: The intensity of a mode-locked laser in both the frequency domain and the
temporal domain. In the frequency domain, the large number of modes is separated by
c/2L with an envelope that is set by the laser medium bandwidth. In the time domain the
pulse separation is 2L/c and the width of the pulse is set by the width in the frequency
domain.

length of the pulse in the time domain is determined by number of modes in the frequency

domain, which in turn is determined by the medium’s gain bandwidth, as shown in Fig 2.2.

Therefore, the length of the pulse in the time domain is inversely related to the medium

bandwidth. The more modes the medium bandwidth can contain, the narrower our pulse

would be in the time domain. This illustrates the need for a medium with a high gain

bandwidth, for example, Ti:Sapph crystals with a bandwidth larger than 100 THz.

The laser cavity must be designed in such a way that the mode-locked state is stable

with respect to the continuous state. Kerr-lens mode locking is one of the techniques to

achieve this. The optical Kerr effect causes the refractive index of the crystal inside the

cavity to become intensity dependent:

n = n0 + n2I (2.1)

where n0 and n2 are constants. This increases the path length of the center of beam where

it has the highest intensity, just like the central ray through the convex lens. The path

length difference between the central ray and rays from outside of the central region results

in refraction and self-focusing of the beam. By designing the laser cavity for high efficiency
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in the presence of this optically induced lens, the cavity becomes stable in the pulsed mode.

In our setup we use a Ti:sapphire oscillator that in the mode-locked state generates 30 fs

pulses centered at 800 nm. The repetition rate and average power are 80 MHz and 550 mW,

respectively. Half of the total power is used to drive our THz-TDS setup, while the other

half is directed for use in other optical systems.

2.1.2 THz generation

We generate THz pulses by directing a laser pulse at a specially engineered dipole antenna,

shown schematically in Fig. 2.3. Two horizontal conducting strips serve as a parallel-wire

transmission line that establishes electrical contact to the vertically oriented antenna at

the center. The antenna contains a gap of a few microns that is filled with semiconductor

material. To generate photocarriers across the antenna gap, the semiconductor band gap

must be smaller than the photon energy of the incident beam. A bias field then accelerates

the photo-induced carriers. In the far field approximation,

ETHz =
µ0

4πr
[r̂× (r̂× p̈)], (2.2)

p̈ ∝ dj

dt
,

where µ0 is the free space permeability, r is the distance from the dipole, p is the dipole

moment and j is the induced photocurrent density [8]. Consequently, the radiated THz

field is proportional to the time derivative of the photocurrent, as shown in Fig. 2.4. A

picosecond photocurrent pulse will then produce a nearly single-cycle pulse of broadband

THz radiation.

2.1.3 THz detection

The detection process is illustrated in Fig. 2.5. As with the generation process, an ultrafast

laser beam creates photocurrent across the antenna gap. Unlike the generation process,

however, an incident THz pulse provides the driving field for the photocurrent. The am-

plitude and the direction of the photocurrent is determined by the amplitude and the sign

of the THz field at the moment of photoexcitation. By monitoring the photocurrent as a

function of the delay between the laser pulses at the generator and the detector, we can

map the entire electric field of the pulse as a function of time.
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Figure 2.3: Schematic of our dipole antenna. Femtosecond laser pulses are focused on an
area of semiconducting material that fills the gap between the two metal contacts, and the
current flows when a bias is applied. From Lea [15].

2.1.4 Terahertz setup

The entire THz-TDS set up is shown in Fig. 2.6. The beam splitter (BS) divides the

laser beam into two parts; one beam is used for generating THz pulses and the other is

used for detecting them. The laser pulse excites photocarriers in the emitter antenna to

generate the THz pulse. This pulse is collected and focused onto the sample via two off-axis

parabolic mirrors. The pulse is transmitted through the sample located in a cryostat. Once

transmitted, the pulse is collimated and focused onto the detector antenna, where it is gated

by a pulse from the same laser beam that we use to generate THz pulses. The entire THz

signal is mapped by varying the delay stage.
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Figure 2.4: Photocurrent from antenna after being excited by an optical pulse, and the
resulting THz pulse. From Farahani [6].
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and excites the photocarriers. (b), (c) The THz pulse incident on the antenna makes the
current flow between two metal strips (d) The measured current maps out the THz field in
time. Adapted from Dexheimer [5].



CHAPTER 2. TERAHERTZ TIME-DOMAIN SPECTROSCOPY 10

Computer
Femtosecond 
Laser Pulses

Delay
Stage

Fixed Delay Stage

Preamp

  Lock-in 
Amplifier

Emitter Detector

P P
Sample

Parabolic Mirrors

    BS

MO MO

~
MOD

0 5 10 15 20
−150

−100

−50

0

50

100

150

t (ps)

E
(t)

 (a
.u

)

E
(f)

 (a
.u

)

0.5 1 1.5 2 2.5
10−2

100

102

104

f (THz)
3

a) b)

c)

Figure 2.6: (a) Typical time-domain pulse. (b) Frequency-domain spectra of one hundred
consecutive THz pulses. (c) Schematic illustration of THz-TDS setup. A beamsplitter
divides the ultrafast laser beam into two arms: one goes to the detector and the other
one goes to the delay stage before hitting the emitter antenna. The delay stage enables
us to change the delay time between the arrival of the laser pulse and THz pulse. The
emitter antenna generates a THz pulse, which is collimated then focused by two off-axis
parabolic mirrors through the cryostat onto the sample. The transmitted pulse is collected
and focused onto the detector antenna by two additional paraboloids. The THz pulse
amplitude is modulated through the emitter bias voltage, so that the detector photocurrent
can be measured with a lock-in amplifier (LIA) and recorded by the computer.



Chapter 3

Conductivity measurements with

THz-TDS

We can obtain valuable information about the electronic structure of a material from the

optical conductivity. In this chapter, I explain how we determine the optical conductivity

from THz transmission measurements and how material properties can then be extracted

from it.

3.1 Analysis methods

Our measurements are performed in transmission on a thin metallic film deposited on a

transparent substrate. By comparing the field Esample(t) transmitted through this structure

and the field Eref (t) transmitted through a bare substrate, we can determine the complex

transmission amplitude, T̃ (ω), over our measurement bandwidth. We collect our data in

the time domain but we do our analysis in the frequency domain, by Fourier transforming

the discrete pulses and forming the transmission quotient:

Ẽsample(ω) = F {Esample} ,

Ẽref (ω) = F {Eref}

T̃ (ω) =
Ẽsample(ω)

Ẽref (ω)
. (3.1)

Consideration of the boundary conditions on the electric and magnetic fields on both sides of

the film leads to a relation, often known as the Tinkham formula, between the transmission

11
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amplitude and the complex conductivity of the film:

σ̃(ω) =
ns + 1

Z0df

[
1

T̃ (ω)
− 1

]
. (3.2)

Here ns is the index of refraction of the substrate at terahertz frequencies, Z0 ' 377 Ω is

the impedance of the free space and df is the film thickness [27]. Alternatively we can write

the Tinkham formula in the following form:

T (ω) =
1

1 + γσ̃(ω)
, (3.3)

where γ = dZ0/(n + 1). In principle, σ̃(ω) can take a variety of functional forms, but it is

usually advantageous to assume a parameterized form like the Drude model, and then fit the

resulting parameterized transfer function to the transmission amplitude. This procedure is

described in the following section.

3.1.1 Transfer function fits

To obtain a sample’s optical constants, we fit a transfer function T2,1(θ;ω) to the quotient

Ẽsample/Ẽref , where θ is the set of fit parameters in vector form. Both Ẽref and Ẽsample

carry noise with variances σ2
1 and σ2

2 and if Ẽref is small, the quotient can amplify this

noise. Thus, rather than minimizing the chi-squared function χ2 =
∑
i

1
σ2
i
|T1,2(θ;ωi) −

Ẽsample(ωi)/Ẽref (ωi)|, we minimize the cost function [7]:

C(θ) =
1

2

∑
i

Ẽsample(ωi)− T2,1(θ;ωi)Ẽref (ωi)

σ2
2 + |T2,1(θ;ωi)|2σ2

1

. (3.4)

Rational polynomials provide a simple and common functional parameterization, where

different polynomial degrees can be chosen for the numerator and denominator. Therefore,

the transfer function can be represented by:

T2,1 (s) =
b0 + b1s+ b2s

2 + · · ·+ bNs
N

a0 + a1s+ a2s2 + · · ·+ aMsM
e−ηs. (3.5)

Here s = iω and we include e−ηs to account for the delay associated with any optical

thickness mismatch between the reference and sample substrates. As written, all of the

parameters {an} and {bn} may be rescaled by constants without changing the function

T̃ (ω), so we must fix the scale by setting one of the parameters to a constant, for example

a0 = 1. We refer to a transfer function with polynomials of degree M and N as an (M,N)

model. In this work we use (0,0), (1,1), and (2,2) models, as described below.
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3.1.2 Drude parameter estimation

Extracting parameters from our data can now be done in two steps:

I. Finding the thickness mismatch between substrates

Typically, the optical thicknesses of our reference and sample substrates are measurably

different. The thickness mismatch introduces a phase shift in our transmition amplitude,

T̃ (ω) = exp

[
iωns
c

(d2 − d1)

]
, (3.6)

that must be considered in the analysis. To find the mismatch, we fit a (0,0) model with a

delay η to the transmission amplitude ratio:

T̃ (ω) =
Ẽsample(ω)

Ẽref (ω)
= b0e

−ηs. (3.7)

This gives

η =
ns
c

(d1 − d2). (3.8)

Ideally, after characterizing this mismatch in a set of substrates, a thin metallic film is

deposited on the sample substrate for comparison with a known reference.

II. Extract parameters from Drude conductivity model

Using the assumption that free electrons undergo diffusive motion with an average scattering

lifetime τ , Drude derived an equation for the conductivity in metals:

σ(ω) =
σ0

1− iωτ
, σ0 =

ne2τ

m
= ε0ω

2
pτ, (3.9)

where n is the carrier density, m is the carrier mass, ε0 is the free space permittivity, τ is the

scattering lifetime, and ωp =
√
ne2/ε0m is known as the plasma frequency. After shifting

the reference pulse to account for the substrate thickness mismatch, Eq. 3.3 then yields a

(1,1) rational polynomial model for the transfer function,

T (s) =
−1/τ + s

−(1/τ + γε0ω2
p) + s

=
b0 + b1s

a0 + a1s
, (3.10)

with b1 = a1 = 1, and

τ = − 1

b0
, ε0ω

2
p =

b0 − a0

γ
. (3.11)
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The product of τ and ε0ω
2
p gives the dc conductivity,

σ0 =
1

ρ
= ε0ω

2
pτ. (3.12)

Experimentally, both τ and ρ have relatively constant uncertainties, so we focus on

ω−2
p = ε0ρτ (3.13)

to avoid the divergent uncertainty in b0 = −1/τ as τ approaches zero.

3.1.3 Fermi liquid parameter estimation

Fermi liquid theory predicts that at low frequencies and temperatures the conductivity

of a metal should approach the Drude model, with a correction due to electron-electron

scattering:

σ(ω) =
ε0ω

2
p

1/τ − iω +Bω2
. (3.14)

Together with Eq. 3.3, this gives a (2,2) rational polynomial model for the transfer function,

T (s) =
−1/τ + s−Bs2

−(1/τ + γε0ω2
p) + s−Bs2

=
b0 + b1s+ b2s

2

a0 + a1s+ a2s2
, (3.15)

with b1 = a1 = 1, τ = −1/b0, and ε0ω
2
p = (b0 − a0)/γ as in the Drude model, and a Fermi

liquid scattering amplitude given by

B = −a2 = −b2. (3.16)

3.2 Analysis

3.2.1 Substrate matching

The substrate mismatch is measured prior to the film deposition. After characterizing

two substrates from the same batch, one is kept as the reference and the other one is

sent for the film deposition. The optical thickness mismatch of the substrates used in

our experiment is small and independent of temperature, so it is sufficient for us to make

repeated measurements of η at room temperature and fit the results with a (0,0) model

to get an overall value for η. Fig. 3.1 shows a typical distribution of 100 η measurements.

In a typical experiment, we can obtain an uncertainty of ση̄ ' ση/
√
N ' ±0.2 fs. In

the experiments discussed in this thesis, the absolute mismatch between the sample and

reference substrates is always less than 10 fs.
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Figure 3.1: The distribution of 100 repeated measurements of η at room temperature.

3.2.2 Analysis example

To illustrate the analysis method, Fig. 3.2 shows the reference and sample pulses for a thin

film of MnSi at T=40 K.

The lower part of the figure shows the time-domain fit residuals, defined as

R(t) = Esample(t)−F−1
{
T̃ (θ;ω)Eref (ω)

}
, (3.17)

where θ is a vector of the fit parameters, θ = [ω2
p, τ ]. Although the residuals show clear

structure indicative of systematic errors in the measurement, the magnitude of the residuals

is two orders of magnitude smaller than the signal amplitude. From repeated measurements

on the same sample we can estimate the resulting uncertainty in τ to be less than a few

femtoseconds.

The inset of Fig. 3.2 shows that the sample pulse appears to arrive ahead of the reference

pulse. A naive interpretation of this is that the THz pulse propagates through the MnSi

film faster than the speed of light, but it is more correct to describe this phenomenon as

pulse distortion. For high sheet conductivity, σ̃(ω)d, the transmission amplitude is small,

|T̃ | �1, and can be written as:

T̃ (ω) ∝ 1

σ̃(ω)
' 1− iωτ

σ0
' ρ0e

−iωτ . (3.18)
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Figure 3.2: The sample and reference pulse at T=40 K. The inset shows the zero crossings
of the sample pulse and the reference pulse. The time difference between these two is
approximately the scattering lifetime. The bottom of the figure shows the residual which is
smaller than the pulse by two orders of magnitude.
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Considering the reference pulse as a harmonic plane wave Eref = E0e
−iωt, the sample pulse

can be written as Es = E0ρ0e
−iω(t+τ). The sign of this phase shift produces a negative

delay that is directly related to the scattering lifetime. The arrow shows the difference in

zero crossing of two pulses which approximately is equal to the scattering lifetime.

3.2.3 Procedure at low temperatures

For low temperature measurements, our samples are mounted on a sample holder that moves

vertically in a cryostat that has a continuous flow of liquid He. The terahertz pulses enter

and exit horizontally through two cryostat windows. The samples are mounted on apertures

as shown in Fig. 3.3. In our setup a set of three circular apertures is used. We make

transmission measurements through the bottom, middle and top apertures consecutively,

and then change the temperature for next set of measurements. At low temperatures, the

measurements of η develop a dependence on the cryostat temperature that we must remove.

Previous measurements in our lab by Saeid Kamal and Graham Lea showed that the optical

path length of the cryostat windows changes as η(T ) = C/T , where C=2570 fs-K and T

is the temperature inside the cryostat. Our working hypothesis is that moving the sample

holder up and down causes a slight temperature fluctuation inside the cryostat that leads

to a change in the optical path length of the windows. To reduce this systematic error,

we mount the sample between the two references as Fig. 3.3 shows. Taking the average

of transmission pulses between top and the bottom substrate cancels this error to the first

order [15].
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THz pulse

Figure 3.3: Sample positioning and mounting. Left: Our apertures move vertically as we
take measurements on different specimens. Right: typical sample mounting arrangement,
with our sample of interest typically placed between the two references. From Lea [15].



Chapter 4

Experimental consequences of

Fermi liquid theory

4.1 Introduction

Fermi liquid theory (FLT) was developed by Lev Landau to explain the properties of liquid

He-3, but it successfully captures the physics of a wide range of degenerate interacting Fermi

systems, from neutron stars to conventional metals. Today, it is commonly referred to as

the Standard Model of the metallic state, to emphasize its fundamental nature. Fermi liquid

theory explains why a strongly interacting system of fermions behaves like a non-interacting

system in many respects. The basic idea is to incorporate interactions in a phenomenological

way that I will explain in this chapter.

A central prediction of Fermi liquid theory is that the conductivity of a metal should

depend quadratically on both temperature and frequency,

Re(σ−1(ω, T ))− ρ0 ∝ 1/τ = A[(~ω)2 + b(πkBT )2] (4.1)

where ρ0 is the residual resistivity, A is a constant that varies with material, and b is a

constant, equal to four in FLT, that we will call the frequency-temperature (ω-T ) scaling

parameter [10]. Although b has been determined for many materials, none of them has

agreed with the FLT prediction of b = 4. As I will show in Ch. 5, we have obtained

preliminary evidence that the THz conductivity of MnSi agrees with Eq. 4.1 with b→ 4 as

T → 0, in agreement with FLT. Before presenting these results, in this chapter I will review

the origin of Eq. 4.1 and previous measurements of the scaling factor b.

19
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4.2 Fermi liquid theory

4.2.1 Historical background

In an attempt to construct models to describe the qualitative and quantitative properties

of metals, physicists came up with the noninteracting electron gas model. The assump-

tion was that when atoms of a metallic element are brought together to form a metal, the

valence electrons become detached and electrons move freely while ions remain immobile.

Drude assumed that the electrons form an ideal gas with a Boltzmann velocity distribution.

This yielded good agreement with the resistivity values at room temperature and with the

Wiedemann-Franz law of thermal conductivity, but also predicted a value of 3nkB/2 for

the specific heat that was much larger than the experimentally observed values for typical

metals [1]. This puzzling situation was resolved when the Pauli exclusion principle was in-

troduced and Sommerfeld replaced the Maxwell-Boltzmann distribution by the Fermi-Dirac

distribution. The Sommerfeld theory of metals, which adapts the classical Drude model to

the case of quantum Fermi-Dirac statistics, correctly predicts the Wiedemann-Franz law,

explains both the conductivity and specific heat of metals, and provides a framework for

understanding a wide range of other phenomena in metals [1]. The success of the Sommer-

feld theory created another puzzle, however: it ignores electron-electron interactions, which

are known to be strong at metallic densities. Landau’s Fermi liquid theory explained how

this occurs.

Studies of liquid He-3 showed that its behavior is strongly influenced by quantum effects,

and due to these effects, He-3 is liquid at T=0 K and the ambient pressure. Landau theory

is the first theory of quantum liquids that describes the properties of a so called Fermi-liquid

system. This type of quantum system consists of interacting particles with spin 1/2 that

obey Fermi-Dirac statistics. This class of material includes liquid He-3, electrons in metals

and heavy nuclei. The building block of the Fermi liquid theory (FLT) is quasiparticles,

which I will review it in the following section.

4.2.2 Quasiparticles

Landau imagined a dense system in which interactions between particles increases gradually

from zero to some maximum value given by experiment. If the turning on procedure is slow

enough, the eigenstates of the noninteracting system will transform into eigenstates of the



CHAPTER 4. EXPERIMENTAL CONSEQUENCES OF FERMI LIQUID THEORY 21

interacting system smoothly, with a rigorous one-to-one correspondence. For each particle

in the non-interacting system, there is a “quasiparticle” in the interacting system with

the same momentum, spin and charge. Similar to particles in the non-interacting system,

quasiparticles obey the Pauli exclusion principle. However, the Fermi velocity and effective

mass are renormalized from their noninteracting values. In Landau’s picture, the particle

moves with the distortion brought by the interaction, and it is dressed with a self-energy

cloud. The dressed particle is known as a quasiparticle with the effective mass m∗.

Like a noninteracting Fermi gas, the ground state of quasiparticles is filled up to the

Fermi momentum pF = ~kF , and an excited state is created by putting a quasiparticle in

an unoccupied state is denoted by (p, σ). The energy of the quasiparticle is given by the

usual expression, with an effective mass m∗:

ε(p) =
p2

2m∗
, (4.2)

Similarly, the Fermi velocity and density of states for a spherical Fermi surface are given

by:

vF =
pF
m∗

, (4.3)

dN

dε
=

3Nm∗

p2
F

, (4.4)

and the specific heat is

cv =
m∗(3π2N)1/3

3~2
k2
BT. (4.5)

4.3 Quasiparticle decay rate

If a quasiparticle above the Fermi surface undergoes a collision with another quasiparticle be-

low the Fermi surface, the dominant scattering process is to create a quasiparticle-quasihole

pair. This process is shown schematically in Fig. 4.1, in which a quasiparticle with mo-

mentum p1 scatters into a state with one quasihole at p2 and two quasiparticles at p3 and

p4:

p1 + p2 → p3 + p4. (4.6)

The constraints on the magnitude of the particles are |p2| < pF , |p3| > pF and |p4| =
|p1 + p2 − p3| > pF . For |p1| − pF � pF ,

2pF − |p1| < |p2| < pF (4.7)



CHAPTER 4. EXPERIMENTAL CONSEQUENCES OF FERMI LIQUID THEORY 22

p1

p4

p
3

p2

Figure 4.1: The kinematics of the decay of quasiparticles near the Fermi surface (From
lecture notes by D. Broun).

pF < |p3| < |p1|+ |p2| − pF . (4.8)

By Fermi’s golden rule, the total probability of Eq. 4.6 is proportional to the density of final

states,

ρ(p2, p3) =

∫
δ(ε1 + ε2 − ε3 − ε4)dp2dp3. (4.9)

For fixed ε, this becomes:∫ pF

2pF−p1
dp2

∫ p1+p2−pF

pF

dp3 =
1

2
(p1 − pF )2 (4.10)

∝ (ε1 − εF )2. (4.11)

At low temperatures, T plays the role of energy, causing the Fermi-Dirac distribution to

develop a width of kBT in energy. This leads to an increase of the density of final states by

(kBT)2 and consequently to an increase of the decay rate:

1

τqp
= a[ε2 + (πkBT )2]. (4.12)

Here, τ is the decay rate of a single quasiparticle, and π accounts for the first Matsubara

frequency in the complex plain. To understand conductivity, however, we must consider

the lifetime of two-particle states, since a quasiparticle must make a transition from one

state into another to produce a current. Accounting for this, we get a relationship for the
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frequency and temperature dependent resistivity that is qualitatively similar to the single-

particle scattering rate,

1

τopt
= Re[ρ(ω, T )] = A[(~ω)2 + b(πkBT )2],

but with b = 4, not b = 1. The origin of this difference comes from the single-particle

and two-particle excitations. The single-particle excitations are fermions, while the two-

particle excitations are bosons. Green’s function has different responses in each case that

makes b = 1 or 4. b = 4 in the two particle scattering was worked out by Gurzhi for the

first time and has been revisited ever since [10, 16]. Recently, it reemerged as a topic of

interest, and Maslov and Chubukov [16] showed that the magnitude of b depends on the

interplay between inelastic (electron-electron) and elastic scattering. If the scattering is

purely inelastic b = 4, in the case of purely elastic scattering b = 1, and if the source of

scattering is a mixture of elastic and inelastic, 1 < b <∞. Experimentally, the value b = 4

expected from FLT has never been observed. One of the experimental challenges has been

to access the regime in which FLT is valid, with ~ω ∼ kBT at relatively low temperatures.

Recognizing the significance of this region, this thesis investigates the properties of a FLT

metal in the terahertz region, where ~ω is comparable to kBT at low temperatures. We

measured the dynamical conductivity of MnSi in THz region, and find that b ' 4 at low

temperatures. Before presenting the results of our measurements, I will review other works

related to measurements of b.

4.4 Previous measurements of the ω-T scaling parameter

4.4.1 Temperature range of FLT

Before discussing specific experiments, I would like to start by looking more closely on

the temperature range that FLT is valid. FLT is a low energy theory, restricted to a

particular frequency and temperature range. More recently, Berthod et al. [4], Maslov and

Chubukov [16] extended the range into a higher temperature regime where resistivity no

longer behaves like ω2 and T2. However, one still needs to be in a particular temperature

range to test FLT. Berthod et al. [4] showed that FLT applies fully below TFL ' 0.1T0,

and breaks down completely at T1 = 3T0/8, where T0 can be obtained from the following

relation:
~

τ(ω)
=

2

3πkBT0
[(~ω)2 + (2πkBT )2]. (4.13)
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We must be well below T0 to obtain a conclusive result regarding the FL behavior. We can

experimentally determine T0 by finding the coefficient A, where ρ(T ) = ρ0 +AT 2,

AT 2 =
1

ε0ω∗p
2τ∗(0)

=
1

ε0~ω∗p2

2

3πkBT0
(2πkBT )2 (4.14)

where ω∗p
2 = ω2

p/(1 + λ) is the square of the renormalized plasma frequency, determined

from an optical measurement. By comparing Eq. 4.13 and Eq. 4.14 we find

T0 =
8πkB
3ε0~

1

Aω∗p
2 '

1.24× 1023

Aω∗p
2 [K], (4.15)

where A and ω∗p
2 are determined experimentally, with units of Ω-m/K2 and s−2, respectively.

Using this method, I calculated T0 for the following works and comment on whether they are

in the right temperature regime or not. Table 4.4.1 shows the results of these calculations.

Material UPt3 Hg1201 Ce.95Ca.05TiO3.04 Nd1−xTiO3 URu2Si2 MnSi

T0 (K) 17 719 1156 1037 103 180

Table 4.1: The summary of T0 estimations for different materials discussed in this chapter.

4.4.2 Absorptivity of UPt3

Sulewski et al. [26] measured the absorptivity of UPt3 for λ = 50− 1000 cm−1 from T=1.2-

300 K. By relating the absorptivity to the resistivity, they determined the magnitude of b

in the far infrared region. To cover the wide frequency range of the measurements, they

used two different methods to generate the radiation and three techniques to determine the

absorptivity. From 50 to 1000 cm−1, they used a Michelson interferometer with a mercury

arc, and from 2 to 60 cm−1, they used a lamellar grating interferometer in place of the

Michelson interferometer. To measure the absorptivity, from 2 to 30 cm−1, the transmission

line technique was used; from 10 to 300 cm−1, the nonresonant cavity technique was used;

and from 250 to 1000 cm−1, the absorptivity was obtained after the incident light makes two

reflections from the UPt3 sample at 45 degree angle of incidence. Since we are interested

in the measurement in the frequency region λ < 60 cm−1, I focus on the transmission line

technique.

In the region λ < 30 cm−1 and T = 1.2 − 55.6 K, since the absorptivity is small, they

used a transmission-line technique with large sensitivity. This apparatus consists of two

coaxial cables with a rod of polycrystalline UPt3 serving as the center conductor for one
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Figure 4.2: The frequency and temperature range that is covered for each material discussed
in this chapter. Each material is denoted by a different colored rectangle that extends over
the frequency and temperature range of the measurement. The dotted line at T1/T0 = 3/8
corresponds to the coherent regime in which the FLT is broadly valid and the dashed line at
TFL/T0 = 0.1 corresponds to where FLT applies fully. The analogous frequencies are also
indicated [4].
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of them and a copper rod as the center of the other one, to serve as a reference. Both the

UPt3 sample and the copper reference cables have copper outer conductors. To measure

the absorptivity, the ratio of the transmission of the two coaxial cable were compared and

absorptivity of UPt3 was determined. After the measurement process, they obtained the

complex conductivity by performing a Kramers-Kronig transformation. The data shows

that dc resistivity has a T 2 dependence at temperatures below 2 K, and the scattering rate

has the form expected from FLT,

1

τ
∼ (kBω)2 + (bπkBT )2, (4.16)

but with b ≤ 1, in quantitative disagreement with FLT. Fig. 4.2 shows the frequency and

temperature range that they covered. According to the T0 value for this material, they cov-

ered a low energy and temperature range, and test the FLT in the proper range. Therefore,

b is indeed in disagreement with the FLT prediction for UPt3.

4.4.3 Infrared reflectivity of HgBa2CuO4+δ

Mirzaei et al. [18] measured the infrared reflectivity of the compound HgBa2CuO4+δ (Hg1201)

for energy range 8 meV to 3.7 eV from T = 10− 390 K. A Fourier transform spectrometer

was used to measure the energy range from 8 meV to 1.24 eV and the ellipsometry tech-

nique was used to measure the energy range 0.8 − 3.7 eV. Mirzaei et al. found that the

resistivity is proportional to T 2 for the range of T = 70 − 223 K and the scattering rate

follows the universal form (~ω)2 +(bπkBT )2, with b ' 1.5. Fig. 4.2 shows the frequency and

temperature range that Mirzaei et al. did their measurements, in the unit of T0. Although

the temperature range is in the optimum region T<.1T0 to investigate the FL behaviors,

the energy range is higher than the optimum frequency region. So, the value of b might be

different at lower frequencies where FLT applies fully, but it crosses over to 1.5 for energy

range higher than 8 meV.

4.4.4 Optical conductivity of Ce.95Ca.05TiO3.04

Katsufuji et al. [13] studied the optical conductivity of Ce.95Ca.05TiO3.04 for the energy

range of .01-3 eV and temperature range of T=5-290 K. They measured the reflectivity

from a single crystal of Ce.95Ca.05TiO3.04 and by using Kramers-Kronig transformation, they

inferred the optical conductivity. For a wide energy range (from .01-1 eV) the scattering
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rate ~/τ is proportional to T 2 and they claim that the scattering rate follows Eq. 4.1 with

b = 1.7. This conclusion was based on the data presented in Fig. 4.3. Part (a) of this figure

Figure 4.3: (a) The scattering rate (~/τ) as a function of T2 at different frequencies. (b)
The scattering rate (~/τ) as a function of (~ω)2 at various temperatures. Closed circles
show the dc value of the same sample. The slope of the dashed line represents the estimated
ω2 coefficient in the scattering rate in Eq. 4.17. From Katsufuji et al. [13].

is the scattering rate as a function of T2 for different energies. Part (b) is the scattering

rate as a function of (~ω)2 at various temperatures. They argue that the scattering rate

has a linear relationship with (~ω)2 and the slope for all temperatures are identical for

(~ω)2 < .01, equal to 12 eV−1. By using the following relation:

~
τ

=
~
τ0

+ α(kBT )2 + β(~ω)2, (4.17)

and information from Fig. 4.3, they find the magnitude α/β to be 17 which makes b =

17/π2 ' 1.7, which they assert is consistent with b'1. Throughout this paper, authors

mistakenly assume that FLT predicts b = 1, and argue that their result is consistent with

the theory.

Using Eq. 4.13 and information from Fig 4.3, I found T0=108 K. Their measurements

include only one spectrum at T � 108 K, however. Due to the poor signal to noise at low

frequencies, the slope of the curve is not very well defined. The poor signal to noise can

be observed in the inconsistency of their optical measurements and the dc measurements,
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where none of the closed circles matches with the value of the optical conductivity at ω = 0,

Fig. 4.3(b). As Fig. 4.2 suggests, for the most part they are in a range with temperature

higher than T0, and only one measurement was done in low enough temperature. So, the

value of b determined only at one temperature and at the region that the signal to noise

ratio is poor can not be considered a reliable test of FLT [13].

4.4.5 Optical spectroscopy of Nd1−xTiO3

Yang et al. [29] used a Fourier transform spectrometer to measure the optical conductivity

of Nd1−xTiO3 between 50 and 40000 cm−1 for different doping levels at six different temper-

atures ranging from 28 K to 295 K. They measured the normal-incident reflectance from a

single crystal of the sample located in a helium flow cryostat and obtained the conductivity

information by Kramers-Kronig analysis. The scattering rate was obtained by fitting the

conductivity at different temperatures to the extended Drude model,

σ(ω, T ) =
1

4π

ω2
p

1/τ(ω, T )− iω[1 + λ(ω, T )]
, (4.18)

where σ(ω, T ) is the complex optical conductivity, ωp is the plasma frequency, 1/τ is the

scattering rate, and 1+λ(ω) = m∗(ω)/m is the mass renormalization. Yang et al. find

that for x = .095, the sample becomes metallic and displays Fermi-liquid behavior at low

frequencies. They show that the scattering rate follows Eq. 4.1 with b = 1.1. The authors in

this paper also assert incorrectly that FLT predicts b = 1, and according to this assumption

they argue that their result is consistent with the theory. This claim is based on the

data presented in Fig. 4.4. In Fig. 4.4(a), they plot the scattering rate spectra at various

temperatures as a function of frequency squared. They assert that the curves are linear

and parallel to each other, but note that the dependence on ω2 deviates from the linear

shape at lower temperatures. The solid line in Fig. 4.4(a) is the least square fit to the room

temperature scattering rate. The dashed line is the slope that gives b = 4, which I plot for

comparison. Fig. 4.4(b) shows the scattering rate as a function of (kBT )2. The solid triangles

represent the scattering rate derived from four point probe resistivity measurements, and the

dashed line is the linear fit to the points. The closed circles are the dc resistivity obtained

by optical measurements and the dashed line is the linear fit to it. The slopes of the two

linear fits are different, and authors used the slope of the optical measurement to find b. By

using the information from the dc resistivity fit and the slope of the linear fit to the room

temperature data in Fig. 4.4(a), they determine the magnitude of b in Eq. 4.1 to be 1.1.
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Using Eq. 4.13 and information from Fig 4.4(b), I found two values of T0, one based

on the direct dc resistivity measurement and one based on the optical measurement. For

the direct dc measurement, T0=344 K and for the optical measurement, T0=1036 K.1 So,

the temperature range to investigate FLT properties is T < 86 K or T < 259 K. Since the

authors used the slope of the optical measurements to find b, I used T0 that is obtained from

optical measurements to plot Fig. 4.2. T0 = 259 K, puts most of their measurements in the

right temperature range. However, to find b they used the slope of the room temperature

measurements, which would give a value of T0 that would put them outside of the proper

temperature range. The other issue here is their poor signal to noise ratio at the low

frequency range where they did their investigations. This can be observed in Fig. 4.4(b),

where the slope of the direct dc measurements and the optical measurements are so different.

This discrepancy, together with the poor signal-to-noise ratio of the data used in their fits,

raises questions about the value of b that they obtained and the degree to which it can be

considered a reliable test of FLT.

4.4.6 Optical spectroscopy of URu2Si2

Nagel et al. [20] used infrared spectroscopy to measure the reflectance of a single crystal

of URu2Si2 for the temperature range 5 K to 75 K. They obtained the optical conductivity

by using Kramers-Kronig analysis and argue that the frequency-dependent resistivity of

URu2Si2 follows Eq. 4.1 with b = 1. This conclusion is based on the data presented in

Fig. 4.5. Part A of this plot shows the scattering rate as a function of frequency for three

different temperatures and the dashed line is 1/τ∗ = ω. The significance of this line is that

FLT applies where 1/τ < ω, so only T = 20 K is in the FLT regime while other are not [4].

The scattering rate was acquired by applying the extended Drude model, Eq. 4.18, to the

conductivity. Part B of Fig. 4.5 shows the resistivity as a function of frequency for three

different temperatures, where solid circles represent the dc resistivity, measured separately.

The dashed lines are fits to ρ(ω) = A′ω2 + c, with A′(T ) and c(T ) as fit parameters. By

comparing this equation with

ρ(ω) = A[(~ω)2 + b(πkBT )2],

1Since Yang et al. does not indicate the value of the mass renormalization, m∗/m assumed to be 4.



CHAPTER 4. EXPERIMENTAL CONSEQUENCES OF FERMI LIQUID THEORY 30

we find that c(T ) = Ab(πkBT )2. The inset of Fig. 4.5(B) is c(T ) as a function of T 2.

Therefore, the slope gives the coefficient A′ = b(π)2A = .3µΩ-cm K−2, which results in

b = 1. This conclusion is based on a least-squares fit to three points for three temperatures,

T = 17.5 K, 18 K, and 22 K. The resistivity for T = 18 K and 22 K are presented in Fig. 4.5,

so the agreement between one of the data points and the real measurements is not shown

and the other two fits and measurements are not in a very good agreement. By this method

they find b = 1.

Using the reported value for ω∗p and the reported value of A, where ρ(T ) = ρ0 + AT 2,

I estimated T0=103 K. This makes their measurement in the right temperature range.

However their signal to noise is poor at low frequency, as can be observed in the Fig. 4.5(B)

where many of their optical measurements are inconsistent with the dc measurements. This

raises doubt about the validity of b based on those data points. The paper by Nagel et al.

also cites a value b = 2.5 for a measurement on chromium by another group [3]. In the

original paper no attempt was made to obtain the value for b, and Nagel et al. appears to

have obtained this value from their conductivity measurement at temperature 320 K. As I

mentioned in the previous section, FLT is valid at low temperatures, so its applicability to

room temperature measurements is open to question.

Material Tmax(meV) ωmax(meV) b Source

UPt3 1 1 < 1 [26]
Ce.95Ca.05TiO3.04 25 100 1.72 [13]

Cr 28 370 2.5 [3]
Nd.95TiO4 24 50 1.1 [29]
URu2Si2 2 10 1 [20]

Table 4.2: Summary of experimental studies to determine the prefactor b, for some heavy
fermions, compiled by Nagel et al. [20].

4.4.7 Terahertz spectroscopy of MnSi

In the next chapter I will discuss our THz-TDS measurements of a thin MnSi film for

the frequency range 0.1 THz to 1.0 THz and temperature range T=6.5-290 K. With the

THz-TDS technique, the complex conductivity is acquired directly, without using Kramer-

Kronig analysis, so it is more accurate than conventional optical methods. By applying the

procedure that I described earlier in this section, we found T0=180 K. For the temperature

range T<180 K, we have enough data to conclusively test FLT. Fig. 4.2 shows our frequency
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and temperature range in comparison with the other work discussed here. Fig. 4.6 shows the

<e(σ−1) as a function of frequency for three selected temperatures and the fits to Eq. 4.1.

As the temperature decreases, the value of b increases, and at the lowest temperature,

T = 6.5 K, we estimate b = 3.88 ± 0.23, consistent with the FLT prediction. As I will

discuss, systematic uncertainties limit the strength of this conclusion, so further work will

still be necessary to test FLT fully. If confirmed, this is possibly the first observation of

Fermi liquid frequency-temperature conductivity scaling in a metal.
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b 
= 

4

Figure 4.4: (a) The scattering rate (~/τ) as a function of (~ω)2 at various temperatures.
The solid line shows a least-squares fit to the room-temperature data. (b) Closed circles
show the dc value of the scattering rate as a function of temperature squared. The solid
line is a least squares fit to the closed circles. The solid triangles show the dc scattering
rate obtained from the direct dc measurements of the resistivity and the dashed line is the
linear fit to it. The large dashed line is where b = 4. From Yang et al. [29].
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A

B

Figure 4.5: (A) Scattering rate of URu2Si2 as a function of frequency for three different
temperatures. The dashed line is 1/τ∗ = ω (B) The optical resistivity as a function of
frequency for three different temperatures. Solid lines are the data and dashed lines are
the fit to a parabolic equation with A′ and c(T ) as fit parameters. The inset of the plot is
the c(T ) as a function of T 2 for three temperatures T= 17.5 K, 18 K, 22 K. From Nagel et
al. [20].
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Figure 4.6: The resistivity of MnSi as a function of frequency for three selected temperatures.
Dots are data points and solid lines is the fit to Eq.4.1.



Chapter 5

THz time-domain spectroscopy of

MnSi films

In this chapter, I present the results from our THz-TDS measurements on a thin film of

MnSi. From the optical conductivity measurements, we extract other physical properties like

the scattering lifetime, resistivity and plasma frequency. At low temperatures and low fre-

quencies, the conductivity is consistent with the prediction of FLT, ρ(ω, T ) = [σ(ω, T )]−1 =

ρ0 +A[(~ω)2 + (2πkBT )2].

5.1 Basic facts about MnSi

MnSi is a remarkably well studied material. It crystallizes in the B20 structure, depicted in

Fig 5.1, and exhibits a helically ordered magnetic ground state. An intense interest has been

focused on its properties as a function of pressure, where it exhibits a quantum phase tran-

sition from a helimagnetic phase to a non magnetic phase. Fig. 5.2 shows the temperature

pressure phase diagram of MnSi, where different colors correspond to different phases. The

phase diagram shows that at low pressures and low temperatures, the Fermi liquid behavior

dominates and as the temperature increases the non-Fermi liquid behavior dominates, and

as the pressure increase MnSi goes to the paramagnetic phase [22]. Although most of the

interest on MnSi is focused at its behavior as a function of temperature, even at the ambient

pressure it exhibits unusual behaviors. As depicted in Fig. 5.3, the conductivity has a very

sharp peak at low temperature, which rolls over much more gradually than one would expect

35
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Figure 5.1: Two views of the B20 crystal structure of MnSi, showing four cubic cells. The
larger atoms are Mn and smaller ones are Si. Right: a view along the (111) direction. Left:
view along the (100) direction. From Jeong et al. [11].
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Figure 5.2: Temperature-pressure phase diagram of MnSi. PM corresponds to the param-
agnetic region, FL corresponds to the region that Fermi liquid behavior is valid and NFL
corresponds to the region that Fermi liquid behavior is no longer observed. From Ritz et
al. [22].
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Figure 5.3: Optical conductivity of MnSi at four different temperatures. From Mena et
al. [17].

from a conventional Drude model. This was pointed out by Mena et al., and they suggested

this behavior is an evidence for physics beyond Fermi liquid theory [17]. Using infrared

spectroscopy, they showed that the conductivity of MnSi follows an anomalous power law

form:

σ̃(ω) =
σ(0)

(1− iωτ)α
, (5.1)

with α = 0.5. For α = 1 this general form reduces to the Drude conductivity.
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Figure 5.4: a) Dc resistivity of a single crystal of MnSi as a function of temperature, from
Mena et al. [17]. b) Dc resistivity of a thin film of MnSi as a function of temperature.
The red arrow indicates the point of transiton from the helimagnetic phase to non magnetic
phase. The transition temperature for the single crystal is at 30 K, while for the thin film
is at 50 K.

5.2 THz-TDS on MnSi

5.2.1 Sample preparation

Ted Monchesky and his former PhD student Eric Karhu from Dalhousie university provided

the MnSi sample. This film is 25 nm and is grown epitaxially on a high resistivity Si(111)

wafer. The final MnSi film is a result of co-deposition of Mn and Si by the molecular

beam epitaxy (MBE) method [28]. The high quality of the film was reflected in the residual

resistivity ratio which was above 25. The phase transition temperature of MnSi is noticeably

different between thin films and single crystals, as a result of the strain induced by the

substrate. This difference can be observed in Fig. 5.4 that shows the dc measurement

of a single crystal and a thin film side by side, with arrows to indicate their transition

temperatures. In the single crystal the transition temperature is Tc ' 30 K , while for the

thin film it is Tc ' 40 K.
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5.2.2 Conductivity spectra

We use THz-TDS to measure the frequency-dependent conductivity for the temperature

range T=6.5-290 K. The results of our measurements are shown in Fig. 5.5. The colour

of the curves changes from blue to red, where blue corresponds to the lowest temperature

and the red corresponds to the highest temperature. We restrict our fits to the frequency

range 100-900 GHz, where the signal to noise ratio is best. At low temperatures, σ1 falls

rapidly with the frequency while at higher temperatures, it becomes nearly independent of

the frequency. As this occurs, σ2 rises rapidly from σ2(ω = 0) = 0 at low temperatures, but

develops a weakly negative slope at high temperatures. I will discuss the influence of the

significance of this negative slope in Sec. 5.2.4.

Fig. 5.5.c) and Fig. 5.5 d) show the Drude fit to the conductivity data for selected

temperatures. There is good agreement between the conductivity at lower temperatures

and the Drude fit. This is supported by Fig. 5.6, which shows the value of α obtained from

direct fits of Eq. 5.1 to the conductivity spectra in Fig. 5.5. When α is allowed to vary, the

best fit is close to the value found by Mena et al. at higher frequencies [17], but it approaches

α = 1 as the temperature is lowered. As we will see in Sec. 5.2.3, our measurement shows

that α 6= 1 at temperatures for which the resistivity still satisfies the T2 dependence. We

leave this puzzling observation as an open question.

5.2.3 Resistivity

The temperature dependent dc resistivity for T=6.5-290 K is shown in Fig. 5.7. The dc

resistivities measured optically and by four-point probe method are shown. We obtain good

agreement between the two methods, if we scale the four-point measurement results by 1.08.

This is justified as there is some uncertainty associated with the contact resistance and size.

Note that, apart from the overall scale, the two measurements have identical temperature

dependence. Our results show a kink in the temperature dependent resistivity at T = 50

K, signaling a phase transition. This corresponds to a transition from a helimagnetic state

to a paramagnetic state at this temperature. Below 50 K, we fit the resistivity to ρ(T ) =

ρ(0) + aTµ to obtain ρ(0) = 7.02± 1.10 µΩ cm, a = 0.03 µΩ cm K−1.97 and µ = 1.97± 0.10.

The results are consistent with µ = 2, the FLT prediction.
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Figure 5.5: Conductivity as a function of frequency for temperature range T=6.5-290 K.
a) and b) are the real and imaginary part of the measured conductivity, respectively. The
temperature increment is not the same for the entire range. The temperature increments
are: 1 K for 6-10 K, 2 K for 10-20 K, 2.5 K for 20-100 K, 5 K for 100-200 K and 10 K for
200-290 K. c) and d) are the real and imaginary part of the Drude fit to the conductivity for
temperatures T=6.5 K, 14 K, 18 K, 22.5 K, 30 K and T=200 K. The markers are the data
points and solid lines are the fits. In this figure the error bars are smaller than markers, so
we just show markers.
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Figure 5.6: α as a function of temperature. At low temperatures α approaches 1.
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Figure 5.7: Dc resistivity as a function of temperature. Circles represent the temperature
dependent dc resistivity obtained by optical measurements. Solid line shows the four-point
resistivity measurement, scaled up by a factor of 1.08. Bottom right inset: dots are the dc
resistivity below 50 K and the solid line is the fit to ρ(T ) = aTµ + ρ(0), as described in the
text.
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5.2.4 Relaxation time

For materials that exhibit Drude behavior,

σ̃(ω) =
σ0

1− iωτ
, (5.2)

the slope of σ2(ω) gives us a direct measure of the Drude scattering lifetime τ :

lim
ω→0

1

σ0

dσ2

dω
= τ. (5.3)

If we take Eq. 5.3 as the definition of τ , we can use the Kramers-Kronig relations to obtain

a general relationship between τ and σ1(ω),

τ =
2

π

∫ ∞
0

1− σ1(ω′)/σ0

ω′2
dω′. (5.4)

Hence, τ is related to a weighted integral of the curvature of σ1. We use Eq. 5.4 as the

general operational definition of τ . To see how τ behaves when σ1 deviates from the Drude

form, we examine Eq. 5.4 for the sum of a Drude and Lorentzian peak,

σ̃(ω) =
σ0

1− iωτ
− iωε0Ω

ω2
0 − ω2 − iγω

, (5.5)

where γ and Ω are positive. The value of τ calculated using Eq. 5.4 for this generalized

conductivity could yield negative results. This is due to the strong upward curvature in the

conductivity that can not always be outweighed by the positive contribution from higher

frequencies. Although, a negative scattering lifetime appears to be non-physical at first

sight, this upward curvature in the conductivity is a sign of developing a pseudo-gap. Mena

et al. observed this behavior in optical conductivity measurements of MnSi as shown in

Fig. 5.3. The figure shows an upward curvature in the conductivity at T=300 K. Fig. 5.8

demonstrates how a negative τ can potentially arise from the generalized conductivity model.

Fig. 5.8 (a)-(c) shows the steps in the calculation of τ starting from, Eq. 5.2, the Drude

conductivity relation, while Fig. 5.8 (d)-(f), shows the same calculation for the modified

Drude conductivity in Eq. 5.5. Comparing, Fig. 5.8(c) and 5.8(f), we observe that in

the case of the Drude conductivity, the function flattens out and falls as 1/ω2 at high

frequencies. Consequently, the conductivity is a Lorentzian centered at the zero frequency

with an amplitude of τ2 and a width of 1/τ with an area of πτ/2 which is always positive.

Fig. 5.8(f) shows the integrand of the operational definition of τ as a function of frequency,

for the generalized conductivity. The curvature at zero frequency is negative, dominating
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Figure 5.8: Step by step comparison between obtaining the scattering lifetime for Drude like
and more general form of conductivity. Fig. 5.8a to c is the process of obtaining τ for the
Drude like conductivity and Fig. 5.8d to f is the process of obtaining τ for a more general
form of conductivity, Eq. 5.5. Fig. 5.8a and d show the shape of σ1/σ0, part b and e shows

how 1− σ1/σ0 look like and part c and f are 1−σ1/σ0
ω as a function of frequency.

the positive contributions coming from the higher frequencies, for which the amplitude is

suppressed by 1/ω2. This can produce a negative value for τ .

Fig. 5.9 shows a measurement of τ determined in this way, as a function of temperature.

At the lowest temperature, a large scattering lifetime is observed that drops dramatically

as it reaches the critical temperature of 50 K. Above the critical temperature, τ becomes

negative, which is an indication of upward curvature in σ1(ω) near ω = 0 that we attribute

to a pseudo-gap in the density of states.
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Figure 5.9: Scattering life time as a function of temperature. At the lowest temperature
we have a huge scattering lifetime, half a picosecond that decreases at higher temperatures,
and becomes negative.

5.2.5 Plasma frequency

From measurements of the relaxation time and resistivity we can determine the plasma

frequency ωp, a fundamental ground-state property of the Fermi surface is given by:

ω−2
p = ε0ρτ, (5.6)

where ρ is the dc resistivity, τ is the scattering life time, and ε0 is the free space permittivity.

Fig. 5.10 shows the result of the temperature dependent plasma frequency measurements.

At low temperatures where we believe the conductivity has the Drude format, the plasma

frequency saturates at about 1 eV, while at higher temperatures where conductivity is not

Drude like, the plasma frequency can not be inferred. Preliminary band theory calculations

give ωp = 2.34 eV [23], which allows us to estimate the mass renormalization due to

interactions beyond the band theory framework:

m∗

mb
=

(
ωp
ω∗p

)2

= 5.5, (5.7)

where ω∗p corresponds to our measured plasma frequency and mb and ωp correspond to the

value from band theory calculations.
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Figure 5.10: Plasma frequency as a function of temperature. At low temperatures the
conductivity follows the Drude model, plasma frequency is 1 eV.

5.2.6 Frequency-temperature scaling parameter

One of the goals of this work is to test Fermi liquid theory experimentally for thin films of

MnSi. There has been some debate in the literature on whether or not MnSi follows FLT.

Here, we measure the temperature dependence of the resistivity and compare it to the FLT

prediction,

ρ(ω, T ) = ρ0 +A[(~ω)2 + b(πkBT )2], (5.8)

where, FLT predicts b=4 [10]. As I discussed in Ch. 4, estimates of b made for various

compounds presumed to follow FLT have not been consistent with this prediction. However,

as we have access to lower frequencies compared to previous works, we can estimate b well

within the regime of validity for FLT. A suitable compound for this study is MnSi, as good

quality thin films can be grown. This is essential for our measurements. Additionally, there

has been some debates in the literature [17] on whether or not it follows FLT which makes

MnSi an interesting case to study.

The details of our analysis procedure are described in Chapter 3. In summary, in the

frequency domain, we fit the ratio of a reference pulse (i.e. through a substrate) to a sample

pulse (i.e. through a thin film on a substrate) to Eq. 3.5, a rational polynomial function
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with polynomials of degree (1,1). This is equivalent to a transfer function corresponding to

the Drude model, Eq. 3.9. From this fit, we determine τ and ρ0, the scattering life-time

and dc resistivity respectively. The same procedure can be performed by fitting the transfer

function to a rational polynomial with polynomials of degree (2,2). Here the parameter b

is related to the coefficient of the second order parameter in the denominator.

Inside the cryostat, we have three separate apertures installed on a motorized stage.

At any time, one of the apertures can be moved behind the cryostat window so that it is

aligned with the propagation direction of the terahertz pulse. As I discussed in Sec. 3.2.3, to

tackle the systematic uncertainties associated with our measurements at low temperatures,

we follow the following procedure. The sample is mounted on the middle aperture while

two reference substrates are mounted on the remaining apertures. At each temperature, we

perform pairs of reference/sample measurements, once with the bottom reference substrate,

and again with the top reference substrate. This is to characterize and account for the

potential systematic differences associated with the sample holder position.

Fig. 5.11 shows the results of the two measurements and their average. We plot 1/b

versus temperature because the random error in this quantity is relatively constant, which

causes the random error in b to diverge when 1/b→ 0. The dotted line corresponds to the

FLT prediction of 1/b = 1/4. At low temperatures, the estimate of 1/b from the averaged

measurements is consistent with the prediction of the FLT, then increases to unity at higher

temperatures. However, this change is also correlated with a divergence between the two

measurements, indicating a potentially large systematic error from the sample positioner.

In the very near future we will be working to eliminate this source of uncertainty to obtain

a more rigorous test of FLT. However, if we assume the average is the correct value of b,

Fig. 5.12 shows the resistivity spectrum as a function of frequency for different temperature.

Measured frequency-dependent resistivities are plotted along with the b values that are

obtained from the rational polynomial fit.
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Figure 5.11: Estimated 1/b as a function of temperature. © corresponds to the measurement
where the bottom substrate is the reference, × corresponds to the measurements where the
top substrate is the reference, solid squares correspond to the average of these two, and the
dotted line is where 1/b = 1/4.
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Chapter 6

Conclusions and future directions

We have used THz-TDS to measure the dynamical conductivity of a thin film of MnSi over

a temperature range T= 6.5 - 290 K. From fits to the Drude form at low frequencies, we

obtain ρ0 and τ as a function of temperature. We find good agreement between the optically

measured resistivity and that measured by a four-point probe technique. Both measurements

show a kink at T≈50 K which is the transition point between the helimagnetic phase and

the non magnetic phase. At the lowest temperature, the value of τ reaches 0.5 ps, but

drops dramatically as temperature increases and takes a negative value for temperatures

above 50 K. The negative value is an indication of a pseudogap at higher temperatures.

At the lowest temperatures, the plasma frequency saturates at 1 eV, which gives a mass

renormalization of about 5.5 when compared with the plasma frequency obtained from band

theory calculations.

One of the main goals of this thesis was to test the FLT prediction and for the universal

function of resistivity, ρ(ω, T ) = A[(~ω)2+b(kBT )2]. We find that b ' 4, consistent with FLT

for the lowest temperature, with significant systematic uncertainty. This value of b decreases

as the temperature increases, and for T>20 K, approaches 1. To improve the systematic

uncertainty in the system, we are planning to replace the Mylar windows of the cryostat

with sapphire windows. We believe that the source of uncertainty at low temperatures is the

optical path length sensitivity of Mylar to small temperature fluctuations in the cryostat.

The optical path length of sapphire does not show such a large sensitivity to temperature.

After changing the windows we expect to be able to measure the value of b more reliably.
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