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Abstract 

Statistical variability is considered by researchers and educators as the very foundation 

of statistics and without variability, there would be no use for statistics. Research 

studies, however, show that while students are good at calculating the formal measures 

of variability such as range, interquartile range and standard deviation, many are 

challenged by what these measures mean. I assumed that post–secondary students’ 

difficulties with the formal measures of variability are partly imposed by the 

predominantly static environments in which they learn those concepts. Thus, I designed 

two dynamic mathematics sketches (DMS) using The Geometer’s Sketchpad and 

explored how first year university statistics students think about variability, focussing on 

their constructs of distribution, mean and standard deviation. Five students were 

clinically interviewed, firstly without using the DMS; secondly, while using the DMS in a 

computer-based environment; and lastly after interacting with the DMS.  

I used one-on-one, task-based interviews and collected data following foundations of 

statistical thinking theoretical perspectives. Analysis of video transcripts and screen 

shots also relied on the foundations of statistical thinking, focusing on students’ 

considerations of variability including aggregate reasoning with data; and also on 

semiotic mediation theoretical perspective. Data analysis revealed that before using the 

DMS, my participants were more likely to think about measures of variability in terms of 

procedures and calculations. However, during and after their interactions with the DMS, 

participants showed a difference in that they were more likely to link the changes in data 

distribution with change in standard deviation and the mean, and to discuss the 

functional connections in their own words. The findings seem to suggest that applying 

dynamic computing tools could provide students with deeper understanding of the 

meaning of statistical variability, and thus could help them build stronger foundation for 

understanding more challenging concepts in statistics and mathematics. The study also 

sheds light on the contributions of dynamic, physical and tactile learning tools in 

mediating meanings of statistical concepts. I also propose a multi-variation reasoning 

framework based on participants’ interactions with the DMS in the computer-based 

environment. More contributions to, and implications for, university/college statistics 

research and curriculum are discussed.  

Keywords:  Statistical variability; dynamic mathematics sketches ; Sketchpad; 
computer-based environment ; considerations of variability; semiotic 
mediation; University /college statistics 
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1. Introduction 

This chapter has five sections: Section 1.1 provides a short history of my 

teaching experience, which was important in shaping my choice of research topic. In 

Section 1.2, I situate my study in statistical variability, followed with an example of 

variations in data distributions in Section 1.3. Section 1.4 provides my working definitions 

of the terms “static” and “dynamic” environments as used in this study. I provide an 

overview of the Chapters in the dissertation in Section 1.5.  

1.1. The Beginnings  

From 2002 to July 2008, I worked as a lecturer in the Department of Mathematics 

at Kyambogo University in Uganda. The Department of Mathematics offered courses for 

students majoring in mathematics, as well as those majoring in other subjects such as 

Economics, Geography, Business, Physics and Computer Science. I taught a Probability 

and Statistics course to students who were majoring in Computer Science. The teaching 

activities comprised of lecturing, weekly assignments, and tests; then the final 

examinations were written at the end of the semester. My students did not have the 

opportunity to use computers as part of their coursework. Although the Department of 

Computer Science had a computer laboratory, the computers did not have statistical 

data software installed on them; they were used for teaching Computer Science courses 

such as writing and testing computer programs. I had the SPSS data analysis software 

on my personal laptop computer, but was not able to assign work to my students given 

that they lacked the software in the laboratory to practice with. It was frustrating to teach 

students without involving them in some practical activities using concepts that they 

learned in class. Although the students did well in the course and the external examiners 

were satisfied with the standard of teaching, I felt that more work needed to be done to 

include more activities for students in the teaching and learning of statistics. However, I 

did not have a clearer suggestion than asking the University to purchase the license for 
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data analysis software for teaching statistics. I passed my recommendation on in my 

course report to the head of the Department of Computer Science at the University. 

In August 2008, I joined a PhD programme in mathematics education at Simon 

Fraser University. I also took up part-time position as a Research Assistant (RA) for a 

professor who was investigating the impact of dynamic technology on students’ 

understanding of mathematical concepts. The project involved using The Geometer’s 

Sketchpad (Jackiw, 1991, 1995), hereafter called Sketchpad, to investigate dynamic 

reasoning across the mathematics curriculum. We engaged university-level students 

with dynamic sketches and documented how they talked and gestured about the 

concepts targeted in the sketches. The dynamic mathematics sketches seemed to offer 

students new ways of thinking about abstract mathematical concepts. For example, it 

was motivating to observe students actively participate in the tasks, first by predicting 

what might happen, and then checking their predictions through interacting with the 

sketches. It was also motivating to see how the dynamic nature of the sketches, in 

addition to the particular tasks that we used, helped students develop meaningful ways 

of thinking about mathematical concepts they had previously only memorised, such as 

the sign of the product of two negative numbers. I also participated in interviewing 

mathematics instructors on what steps they took to solve some specific mathematical 

problems. Did they, for instance, use computers, or pen and paper? As would be 

expected, there were no straight answers as to how each individual solves a problem, 

given that problems vary and their solutions also vary. However, we drew some very 

insightful answers on using technology in general, and computer technologies in 

particular, to solve mathematical problems. It remained a question in my mind if students 

also used some of the techniques professional mathematicians applied while solving 

mathematical problems.  

In 2010, while in the doctoral program, I was offered a teaching assistant (TA) job 

in the department of Statistics and Actuarial Science, and assigned to the Statistics 

Workshop (SW). The SW was a drop-in tutorial for students who needed help with 

specific concepts in statistics. My job included answering students’ questions and 

assisting them to solve statistical problems on their own. The actual work varied from 

student to student, but in general, it involved discussing the concepts with the student 

by, for instance, reviewing the statistical principles that applied to the specific problems; 
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reviewing examples and some applications, as well as pointing the student to some 

additional information to help him or her solve the tasks as independently as possible. I 

also supported students in analyzing statistical data using computer software such as 

JMP and SPSS. It was quite motivating to work with the students and to observe them 

solve problems by themselves after the discussions.  

However, in the course of my work, I noted that students more often asked for 

help with problems that required them to analyze data and provide the meaning of their 

results in the real context from where the data came, than with questions that asked for 

direct use of statistical formulas in calculations. I will provide an example of reasoning 

with graphical data in Section 1.3. Attending to students’ questions enabled me to 

identify problems areas in terms of concepts that they frequently asked for help with. The 

problem areas included explaining the variations in distributions and making inferences 

from samples to the population. My interest in pursuing research study in the university 

level introductory statistics developed from attending to students’ questions related to 

reasoning with data representations and interpreting the results. I assumed that the 

students’ challenges were associated with the notions of statistical variability. 

1.2. Situating the Study on Variability. 

Statistics is a general intellectual method that applies wherever data, 
variation, and chance appear. It is a fundamental method because data, 
variation, and chance are omnipresent in modern life.  
  (Moore, 1998, p. 134) 

I believe that Moore’s statement cited above also says something about the 

capacity of “the modern life”, or today’s technologies, to measure variations in ways that 

were not possible in past decades. Quantitative information is available literally 

everywhere, including areas such as economics, psychology, health, industry and 

education. Thus, the need to evaluate different kinds of data is higher today than it was 

in the past. Moreover, numerical data are very often used with the goal of adding 

credibility to arguments (Watson, 2006), as well as in advertisements such as sales 

promotions, sports, and in politics. However, as Watson argues, critical evaluation of 

information, providing evidence-based arguments as well as critically evaluating data-
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based claims are skills that all students should learn as part of their statistics education. 

However, research studies reveal that many students view statistics concepts as 

challenging to learn (Garfield & Ben-Zvi, 2004). For example, it is not uncommon to hear 

a statement such as “I’m really not good at statistics” from students, even the ones who 

succeed in other mathematics courses. 

From my review of related literature on the concept of variability, I found that   

standard deviation and the mean—concepts that are widely applied in university-level 

introductory statistics courses—were particularly challenging to students (delMas & Liu, 

2005). Based on some of delMas and Liu’s recommendations from their study, as well 

as my own interest in dynamic computing technologies, I designed two sketches using 

Sketchpad, which I thought would make the functional connection among standard 

deviation, the mean and data distribution more obvious or visible. I choose these three 

concepts given that they are important to the understanding of statistical variability in a 

data set. I also designed related tasks in the static environment, which participants first 

solved before they embarked on solving similar tasks using Sketchpad. I wondered if the 

use of my sketches would help students develop a better understanding of statistical 

variability. 

1.3. Static and Dynamic Environments 

My working definition of an environment is a setting, physical and or non-

physical, where a learning activity is enacted. By “static environment”, I mean a more 

traditional, paper-and-pencil-based classroom setting where written (including diagrams) 

and spoken words are the primary means of instruction. I use “dynamic environment” to 

refer to a computer–based setting where a student interacts directly with mathematical 

objects (including diagrams and models) that change continuously over time. I 

distinguish the static from the dynamic environment in that in the former tasks are 

performed without the computer technologies, whereas tasks in the latter are performed 

using dynamic mathematics sketches (as discussed in Hegedus & Moreno-Armella, 

2009). 
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1.4. Explaining Variations in Distributions 

Describing variations in graphs are concepts that are usually covered at the 

beginning of introductory statistics courses before introducing concepts such as the 

mean, median, mode and standard deviation to describe distributions. Following is an 

example (adapted from Moore, 2010), which involves basic reasoning with a graph: A 

university conducted a study to investigate the mode of transport used by people 

entering the campus. From 7 A.M. to 10 P.M., monitors were posted at every entrance to 

the university on a chosen day. The monitors recorded the mode of transportation used 

by each person as he or she entered the campus. The following bar chart was 

constructed based on this information. If 1500 people entered campus on a particular 

day, (approximately) how many people arrived by car? 

Mode of Transportation

P
e
rc
e
n
ta
g
e

FootBusBikeCar (passenger)Car (driver)

50

40

30

20

10

0

Chart of Percentage vs Mode of Transportation

 

Figure 1:  Bar graph showing mode of transport to a university campus 
(Adapted from Moore, 2010) 

I choose this example to show a simple application of the notion of variability in data 

distribution in graphs and to point out the possible questions that students could ask for 



 

6 

help with in solving the problem. Some students could ask why there are two separate 

variables for Car (driver) and Car (passenger). Other students could ask about the word 

“approximately”, for instance, how is it possible to “approximate” a human being? Yet a 

few others may have problems reading off the graph and converting the percentage to 

the number of people who arrived by car. In general, most students in introductory 

statistics would probably solve this example by themselves. However, for the few who 

might ask for help, discussing with them the main ideas in the task, through questioning, 

estimating, and reasoning, would likely convince them that, approximately 60 percent of 

the 1500 people travelled to campus by car on that particular day. That puts the number 

to approximately 900 people. As for the Car (driver) being a separate variable from the 

Car (passenger), explanations would vary. The more likely explanation from the graph 

suggests that the majority of people who traveled to the campus on that particular day 

drove their own cars alone.  

As I mentioned at the beginning of this chapter, in my Research Assistant (RA) 

work, I had been asked to design tasks that students could use to explore the meaning 

of certain mathematical concepts. I had noticed that the interactive and dynamic 

technology seemed to evoke students’ interest in the concepts they engaged in, having 

them not focussing a lot on symbols or formulas as they interacted. I was seeing what 

Moreno-Armella, Hegedus, and Kaput (2008) have argued, which is that “the nature of 

mathematical symbols have evolved in recent years from static, inert inscriptions to 

dynamic objects or diagrams that are constructible, manipulable and interactive” (p. 

103). According to them, students can use dynamic environments to reflect on their 

thoughts and construct new mathematical knowledge, for example, by exploring and 

defining properties of concepts that have been modeled graphically. The RA job also 

involved interviewing professional mathematicians on what steps they took to solve 

problems in mathematics. Working with dynamic technology motivated me to continue 

researching other mathematical topics using the same software. I will pursue the 

dynamic environments in the chapters that follow. Below is an overview of the chapters 

in this dissertation. 
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1.5. Overview of the Chapters 

There are altogether seven chapters in this dissertation: Chapter 1 gives the 

background and my motivation to undertake a research study in statistical variability. In 

Chapter 2, I provide more working definitions of the terms that I frequently use in the 

dissertation, such as statistical reasoning, statistical thinking and statistical literacy 

(SRTL) as well as variation, variability, and signs. To provide some context to the study, 

I briefly review the historical developments in the current statistics curriculum, 

particularly from the 1990s to date. The evolving of the statistics curriculum document 

(GAISE, 2005), which is widely used in North American colleges and Universities, as 

well as in other parts of the world, is also reviewed. Moreover, I review research studies 

on the notions of distribution, the mean and standard deviation, which directly relate to 

my study.  

In Chapter 3, I discuss two main theoretical perspectives that have influenced the 

current study. First, I discuss perspectives that relate to the foundations of statistical 

thinking, focusing on the considerations of variation (Wild & Pfannkuch, 1999; also 

Konold & Higgins, 2003; Reid & Reading, 2008; Carlson, Jacobs, Coe, Larsen & Hsu, 

2002). Carlson et al.’s work does not come directly from a statistical research study, but 

it provides some insight into the notion of covariational reasoning that relates to my 

research. The foundations of statistical thinking provide me with a platform to discuss my 

findings in terms of participants’ actions such as: noticing and describing variations in 

data distributions; measuring and explaining variation; predicting and testing the impact 

of variation; and looking for causes of variation in a data set. Second, I discuss 

perspectives on the applications of signs in mediating meanings of mathematical 

concepts as well signs as means of communicating with and learning from others in the 

same community (Vygotsky, 1978; as elaborated by Falcade, Laborde & Mariotti, 2007; 

and Bartolini Bussi & Mariotti, 2008). Vygotsky's socio-cultural historical perspectives 

relate to how tools aid one's thinking from interpersonal level, to a more personal level, 

through cognitive process Vygotsky calls internalization.  

Having identified issues in the literature in Chapter 2 and adopted theoretical 

lenses to interpret my participants’ expressions in Chapter 3, in Chapter 4, I discuss the 

tasks, procedures and materials that I use in collecting data for my study. Using 



 

8 

Sketchpad, and applying statistical principles, I design dynamic sketches for participants 

to explore the concept of variability. In particular, my study participants use the sketches 

to explore functional linkages among standard deviation, mean and the data distribution. 

I focus on standard deviation and its links with the mean and distribution of a data set.  

In Chapter 5, I analyze the interview data from participants’ expressions in the 

static and their interactions with the dynamic sketches in the computer-based 

environment introduced in Section 1.3. My analysis of the tasks with the dynamic 

sketches focuses on participants’ interactions with the Dragging tool of Sketchpad and 

also on spoken words, during and after their interactions with the sketches. In Chapter 6 

I discuss the data analysis from Chapter 5 and link the discussions to my research 

questions. Chapter 7 is my concluding chapter, where I respond directly to my research 

questions. In Chapter 7, I also discuss the limitations of the study as well as its 

contributions. As well, I suggest some implications for the teaching and learning of 

statistics at the university/college levels. In the same chapter, I also make 

recommendations for further study on the topic of variability.  
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2. The Teaching and Learning of 
University Level Statistics  

The cornerstone of teaching in any area is the development of a 
theoretical structure with which to make sense of experience, to learn 
from it and to transfer insights to others.  
  (Wild & Pfannkuch, 1999, p. 224) 

The review of literature in this chapter comprises of two main parts. In the first 

part, I review concepts that are more related to variability in statistics, whereas in the 

second part, I focus on the technology and related concepts. However, the dichotomy is 

rather artificial in that in Chapter 4, where I design interview tasks, the two parts 

mentioned above are not discussed separately. Section 2.1, discusses how I apply the 

terms statistical reasoning, statistical thinking, and statistical literacy in the dissertation. 

In Section 2.2, I review curriculum developments in the teaching and learning of 

statistics at the tertiary level from the 1990s and connect the developments with the 

current issues in the teaching and learning of statistics. Section 2.3 gives an overview of 

the current challenges in teaching and learning statistics, focusing on the challenges 

from students' side. In Section 2.4, I provide reviews of research studies on the concepts 

of distribution, mean and standard deviation. That ends the first part of the reviews. In 

the second part, which begins at Section 2.5, I review studies that involve computer 

technologies in general and dynamic computer-based technology in particular, for 

teaching and learning concepts in mathematics and statistics.  

2.1. Statistical Reasoning, Thinking, Literacy (STRL) 

Statistical reasoning, thinking and literacy (SRTL) are broad concepts that have attracted 

various theoretical perspectives from researchers. For instance, Gal (2002) considers 

statistical literacy as the ability to interpret, critically evaluate, and communicate 

statistical information. Other researchers (e.g., Garfield, 1999; Rumsey, 2002; Snell, 
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1999; and Garfield & Ben-Zvi, 2008) all agree that statistical literacy is about 

understanding and using the basic language of statistics as well as being able to 

interpret different representations of data. The common thread on statistical literacy 

among these researchers seems to be on interpreting and communicating statistical 

information using statistical language. Next, on statistical reasoning, Garfield & Ben-Zvi 

(2008) conceive it as “mental representations and connections that students have 

regarding statistical concepts” (p. 34). For example, reasoning about the spread of data 

from the centre and connecting that with magnitude of standard deviation as an index of 

spread. Garfield and Ben-Zvi’s conception suggests a connection with Carlson et al.’s 

(2002) mental actions in covariational reasoning that I discuss later in this chapter. On 

statistical thinking, Wild and Pfannkuch (1999) propose being able to distinguish 

between different approaches to solving problems. For example, knowing why a 

particular method works better for a given task than another method. According to them, 

statistical thinking includes understanding the theories that inform statistical processes. 

Their view suggests a higher cognitive level for statistical thinking than statistical 

reasoning and literacy. Some models that describe the hierarchical structure of SRTL 

have been proposed. 

delMas (2002) proposes two models of SRTL: the ‘overlap model’ and the 

‘subset model’ (see Figure 2). In the overlap model, the three constructs share some 

common elements, but statistical thinking is considered at a higher cognitive level than 

reasoning and literacy. In Figure 2a, statistical literacy is modeled at the foundation, 

followed by statistical reasoning; and thinking is at the highest level. However, in the 

subset model shown in Figure 2b, statistical thinking and reasoning share some 

common elements, but the two are considered as elements of statistical literacy. 

2.1.1. Critiquing SRTL 

The models in Figure 2 show some overlap among the elements of the SRTL. 

However, given that reasoning, thinking, and literacy are cognitive functions, and thus 

cannot be directly measured, I believe that the overlap model is more suitable for 

describing SRTL. I take Gal’s (2002) consideration of statistical literacy as the ability to 

interpret and critically evaluate statistical information, to relate to my study. Gal’s 

consideration, though, is not radically different from Garfield and Ben-Zvi’s (2008) 
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position on statistical literacy as being able to use the basic language and tools of 

statistics to interpret different representations of data. However, Garfield and Ben-Zvi do 

not explicitly mention the critical evaluation of statistical information that Gal 

emphasizes. In this study, I would like my participants to critically evaluate statistical 

information and to communicate their ideas of variability in their own words.  

 
 

(a) (b) 

Figure 2. The overlap and hierarchical model of SRTL. (a) Literacy is modelled 
at the foundation and Thinking is modelled at the highest level; and 
(b). The subset model of SRTL where Thinking and Reasoning are 
subsets of Literacy (delMas, 2002). 

I incorporate Garfield and Ben-Zvi’s (2008) consideration of statistical reasoning 

as mental representations and connections that students make with statistical concepts. 

Moreover, I will use Wild and Pfannkuch’s (1999) perspective on statistical thinking as 

the way mathematicians and statisticians solve tasks. According to them, statistical 

thinking also includes being able to understand the underlying principles behind 

statistical processes. Their views are consistent with the Vygotskian socio-cultural 

perspective of learning, which I adopt in my study.  

Statistical Literacy

Statistical Reasoning

Statistical Thinking 

Statistical Thinking 

Statistical Literacy

Statistical Reasoning 
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2.1.2. Summary of the SRTL Working Definitions 

Summarizing my working definitions of statistical reasoning, thinking, and 

literacy: I take statistical reasoning as mental representations and connections that 

students make with statistical concepts (Garfield and Ben-Zvi’s, 2008). Statistical 

thinking is considered as having a mindset of statisticians/mathematicians, which 

includes knowing the principles behind different statistical processes. Statistical thinking 

also includes being able to freely choose alternative approaches to solving 

statistical/mathematical tasks as well as being able to communicate the solutions to 

others in the community (Wild & Pfannkuch). On statistical literacy, I take Gal’s (2002) 

consideration of being able to interpret and critically evaluate statistical information. 

2.2. The Reforms in the Introductory Statistics Curriculum 

Before I discuss the current issues in the teaching and learning of statistics, I 

provide a brief historical context from the 1970s. The teaching and learning of statistics 

from the 1970s to date can be loosely characterized into two time periods or eras. The 

first era (1970-1989), that I describe as the “Kahneman era”, referring to the work of 

Kahneman and his colleagues, comprised research studies that focused on: identifying 

students’ misconceptions of statistics (e.g., Kahneman, Slovic & Tversky, 1982); 

comparing levels of students’ statistical reasoning (e.g., Fong, Krantz & Nisbett, 1986); 

and testing models of statistical reasoning to explain why students reasoned incorrectly 

(e.g., Konold, 1989a,1989b; Pollatsek, Konold, Well, & Lima, 1984). Those researchers, 

to their credit, conducted many “diagnostic tests” (testing why students reasoned 

incorrectly), and set the stage for more research studies in the second era.  

The second time period that I describe as the “post-Kahneman era” begins in 

early the 1990s. That period witnessed research studies and curriculum developments 

that aimed at improving the teaching and learning of statistics (e.g. Cobb, 1992, 1993; 

Moore, 1997; 1998; Garfield, 2000; GAISE, 2005). One of the important developments 

was the setting up of the curriculum working group by the Mathematical Association of 

America (MAA) that developed the new guidelines for teaching statistics Cobb (1992). 

The guidelines suggested three broad recommendations for the teaching and learning of 
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statistics at the post-secondary level. First, it emphasized teaching students the basic 

elements of statistical thinking. Second, it recommended the use of data in teaching 

statistics, arguing that students learn better with examples that they can easily relate to 

in their daily lives (e.g. Figure 1). Third, the report advocated for active learning, arguing 

that learning should not be passive, but should involve appropriate activities, which can 

mediate abstract concepts for the students. Moreover, Cobb’s (1992) publication also 

suggested specific elements that should be considered in each of the three broad 

recommendations mentioned above, such as paying attention to the methods of 

collecting reliable data, and being aware of the presence of variability in the data.  

The recommendations from the working group chaired by Cobb were 

unanimously endorsed by the American Statistical Association (ASA) and expanded into 

a curriculum document called, Guidelines for Assessment and Instruction in Statistics 

Education (GAISE, 2005), which document is widely used in many post–secondary 

institutions in North America and other parts of the world. The GAISE (2005) curriculum 

recommends teaching approaches that support building conceptual understanding of 

students rather than teaching based on memorisation and calculations for their own 

sake. The curriculum also encourages students to use technology for learning concepts 

and for analyzing data, aiming to free students from calculations so that they can focus 

more on interpreting and reasoning with data output. 

2.3. Challenges in the Teaching and Learning of Statistics  

In spite of the achievements made in the curriculum developments in statistics, 

research studies reveal some challenges with respect to how students learn the 

concepts (see, for example, Ben-Zvi & Garfield, 2004). According to Ben-Zvi and 

Garfield, many students consider statistical concepts as too abstract to understand and 

sometimes counterintuitive. Thus, instructors may find it frustrating to motivate such 

students and have them actively participate in learning statistical concepts. As the 

example in Figure 1 attempts to show, statistical principles require some minimum level 

of mathematical knowledge (e.g., basic knowledge of fractions, proportions and 

decimals) to aid students’ work with the analysis of data. However, as Ben-Zvi and 

Garfield suggest, students who have difficulty with basic mathematics are also more 
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likely to have challenges learning statistical content. But university-level statistics 

courses require students to be able to explain their solutions in clear statistical words. 

However, Ben-Zvi and Garfield claim many students have challenges reporting their 

solutions in statistically acceptable words. Ben-Zvi and Garfield's claim suggest that 

students need more practice with communicating statistical information as they develop 

formal meanings of statistical concepts. In the next section, I review research studies on 

how student think about the notions of distribution, mean and variability, which are 

important in developing students’ statistical reasoning and thinking.  

2.4. The ‘Big Ideas’: Distribution, Centre, and Variability 

The International Statistical Reasoning, Thinking, and Literacy (SRTL) research 

forum is a network of researchers who are interested in studying the development of 

students’ statistical reasoning, thinking and literacy. The current studies have focused on 

some key ideas in foundation statistics, the so-called the “big ideas” of a discipline 

(Bransford, Brown & Cocking, 2000; Wiggins & McTighe, 1998). Three of the big ideas 

that relate to the current study are distribution, mean, and variability (or spread). I review 

research studies on each idea.  

2.4.1. Research Studies on Distribution 

Studies on how students solve statistical problems reveal that they tend to 

consider data sets more in terms of individual values rather thinking about data as a 

whole (e.g., Hancock, Kaput, & Goldsmith, 1992; Konold & Higgins, 2003). Konold and 

Higgins (2003) suggest that students should be engaged in learning activities that help 

them consider a distribution of data as a whole before they focus on unique cases in a 

distribution, 

If the data values students are considering vary […] why should they not 
[…] think about those values as a whole? Furthermore, the answers to 
many of the questions that interested students for instance, “Who is 
tallest? Who has the most? […]—require locating individuals […] within 
the group (p. 203).  
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It stands to reason that if learners are not given tasks that ask them to think about 

distributions in aggregate, then they pay attention to the unique cases, such as the 

largest or the smallest values in a data set. In fact in 1997, Konold, Pollatsek, Well, and 

Gagnon conducted a research study with two pairs of high school students who had just 

completed a year-long course in probability and statistics. Konold et al. applied software 

to a large data set and asked participants in the study to explore and respond to different 

questions about the data set. Participants were also asked to support their answers with 

data summaries and graphs. The researchers reported that instead of considering data 

as a whole, their participants focused on comparing individual cases in each group. 

In a related study, Konold and Higgins (2003, cited in Garfield & Ben-Zvi, 2008) 

propose four different ways that students think about data: i) data as pointers—seeing 

data as pointers to some events that do not relate to distribution; ii) data as cases—

focusing on the identity of individual cases in the data set (e.g., small values or large 

values in the data set); iii) data as a classifier—paying attention to the frequency of 

particular data values (e.g., how many data points in the data set show large values 

compared to the total number of data values present); and iv) data as aggregate—

focusing on the overall and the emergent characteristics of the data set as a whole (e.g., 

considering data distribution in terms of its shape, centre and spread of data values from 

the centre). 

Other studies have focused on how students view shape, centre and spread of 

data as characteristics of a distribution. For example, Zawojewski and Shaughnessy 

(2000) analyzed data on students’ responses on the National Assessment of 

Educational Progress (NAEP) materials spanning 15 years. Their finding suggested that 

students were challenged by the concept of the mean and its links to the data 

distribution. The authors speculated that students may have had difficulties connecting 

between the notions of the centre and spread of the distributions. Distribution seems so 

central to understanding other concepts that, for example, Mokros and Russell (1995) 

suggest that the concept of distribution should be taught before students are introduced 

to the mean, and other related notions. 

In general, research studies suggest that students think about graphs of data 

distributions more as representations of facts rather than as tools for reasoning with, and 
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learning something from the data set (Wild & Pfannkuch, 1999; Konold & Pollatsek, 

2002). Thus, some researchers agree on teaching approaches that could help students 

make sense of data, through for example, detecting and discovering patterns in data, 

generating and testing hypotheses, noticing the unexpected (Pfannkuch, 2005; Watson, 

2005); "unlocking the stories in the data” (Garfield & Ben-Zvi, 2008, p.171); and 

developing skills and abilities that can be used in interpreting statistical information 

(Bakker, 2004; Bakker & Gravemeijer, 2004; Garfield, and Ooms, 2005).  

Summarizing my reviews on distribution, the main findings include Konold, and 

Higgins’s categories of how students think about data distribution as pointers, cases, 

classifiers, and aggregate. According to them, students should be helped to consider 

distributions in aggregate. Overall, research studies show that students look at graphs 

as representations of factual information rather than as tools for reasoning about the 

data. It may be that the static graphs do not evoke the students’ imaginations enough for 

them to consider graphs as reasoning tools. 

2.4.2. Research Studies on the Mean 

Research studies about the mean include, for example, Pollatsek, Lima and 

Well's (1981) study that asked college students to calculate the weighted mean of a data 

set. The researchers expected that the mathematically competent college students in 

their study could easily compute the mean of a group of two sets of numbers. Pollatsek 

et al. report that most students in their study answered the question without considering 

that the two means were taken from two groups of different sample sizes and scores. 

The authors conclude that for many students, dealing with the mean was more of 

calculation than conceptual act. Pollatsek et al. further contend that “computational rules 

not only do not imply any real understanding of the basic underlying concept, but may 

actually inhibit the acquisition of more adequate (relational) understanding” (p. 202). I 

add that designing learning tasks is as important as the results obtained from the tasks. 

Thus, if the learning goal is to move students away from focusing on calculations to 

learning the concepts, then the tasks should be designed so that calculations are not 

foregrounded.  
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In a different study, Hardiman, Well and Pollatsek (1984) tested whether working 

on tasks using a balance model would promote students’ deeper understanding of the 

mean. A balance model depicts data values placed on a balance beam at given 

distances (deviations) from the mean such that the resultant ‘weights’ on either side of 

the fulcrum are at equilibrium (Hardiman, Well & Pollatsek, 1984; Strauss, 1987). Forty-

eight college students participated in the study that included the pre-test, the training 

sessions, and the post-test of paper and pencil items. The researchers report that 

students who trained on the balance model performed significantly better on the post-

test problems than those who did not. The findings suggest that the balance model may 

have contributed to the students’ conceptual understanding of the mean as a point of 

equilibrium in a data distribution that changes as distribution of data points on the beam 

is changed. 

In summary, Hardiman et al.’s (1984) balance model of the mean was a major 

contribution to understanding the concept of the mean. Their model that still applies 

today contrasts with Pollatsek et al.’s (1981) results based on calculations. Hardiman et 

al.’s findings suggest that using suitable models of concepts, be they physical and tactile 

models, could help students understand abstract ideas much better.  

2.4.3. Research Studies on Variability  

If the concept of […] variation is puzzling even to statisticians and 
researchers, how much more puzzling must it be to those just embarking 
on their data handling careers?  
  (Reading & Shaughnessy, 2004, p. 202) 

As the Reading and Shaughnessy citation above suggests, the terms variation 

and variability have different meanings. In statistics education research, for instance, 

some researchers have applied variation and variability independently (e.g., Reading & 

Shaughnessy, 2004), while other researchers use the same terms interchangeably (e.g., 

Makar & Confrey, 2005; Garfield and Ben–Zvi, 2008). Variation is closely linked to the 

concepts of a variable (something that is liable to change) and to uncertainty (something 

unpredictable). Maker and Confrey (2005) define variation as the “quality of an entity to 

vary, including variation due to uncertainty” (p. 28). In this study, I use the terms 
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variation and variability interchangeably, focusing on how students think about of 

standard deviation, mean, and distribution of a data set. 

Educators and researchers agree that variability is an important concept in 

statistics (Rossman, 1996; Garfield & Ben-Zvi, 2008). We know from research studies 

that students struggle with the concept of variability although they can quite easily 

calculate indicators of variability such as the range, interquartile range and standard 

deviation in a data set. Garfield and Ben–Zvi (2008) explain: 

While students can learn how to compute formal measures of variability, 
they rarely understand what these summary statistics represent, either 
numerically or graphically, and do not understand their importance and 
connection to other statistical concepts. (p. 205) 

Several other research studies have examined different aspects of variability 

(Meletiou & Lee, 2002; Lann & Falk, 2003; delMas & Liu, 2005; Reading & Reid, 2005, 

2006; Slauson, 2008; Reid & Reading, 2008). Many of these studies were based in the 

classrooms where the researchers were also the teachers. Meletiou and Lee (2002) 

designed an experimental classroom study that followed a non-traditional approach. The 

researchers assumed that students’ success in statistics depended on helping them gain 

sound awareness of variation. The authors engaged students on tasks with variation as 

the main principle. They report that the results of the assessment at the end of the 

course were encouraging in the sense that the majority of the students had a good grasp 

of the meaning and use of standard deviation. For example, the students were able to 

explain “[…] that one calculates standard deviation to obtain information about the 

distribution between the scores […] outside the centre” (p. 30). The authors propose that 

teachings that use realistic examples are more likely to connect to students’ experiences 

and to help them improve their statistical reasoning than those which do not. Although 

Meletiou and Lee’s study involved a relatively small number of students, which could 

restrict generalizing their study findings, their study nevertheless, was helpful in offering 

a methodology that other researchers can build on. 

In another study on variability, Lann and Falk (2003) asked first-year university 

students to consider variability in a data set by incorporating measures such as the 

standard deviation, mean, and deviations from the mean in their considerations. Lann 
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and Falk report that a large proportion of students chose the range instead of other 

measures of variability such as the standard deviation. The author's findings suggest 

that students were challenged differentiating among measures of variability. May be, as 

Mokros and Russell (1995) suggest, the concept of distribution was not well grounded to 

support the students’ reasoning about the notion of variability. Moreover, in a different 

study, Slauson (2008) investigated college students’ conceptual understanding of 

variability focusing on the standard deviation and standard error. She taught two 

sections of introductory statistics classes over one semester using two different 

methods. One section was taught using the formal lecture method covering topics on 

standard deviation, sampling distributions and standard error. The second section 

completed a hands-on, active learning laboratory covering the same topics as the first 

group. She collected data from the two sections and analyzed them. Her analyses 

revealed that: 

Students’ conceptual understanding of ideas related to standard deviation 
improved in the active class, but not in the lecture class […]. The analysis 
of the qualitative data suggests that understanding the connection 
between data distributions and measures of variability is very important 
for students to successfully understand standard error. (p. iii) 

Slauson’s findings agree with Meletiou and Lee as well as Lann and Falk's 

findings, suggesting in general, that using hands-on and realistic examples were more 

likely to connect to students’ daily experiences and to support them in their statistical 

reasoning (Cobb, 1992). Also important is students’ awareness of the connections 

among data distributions and measures of variability that, in particular, Slauson’s study 

mentions.  

Furthermore, Read and Reading (2008) designed a sequence of teaching 

strategies with activities (e.g., short quizzes, assignment, and class tests), that aimed at 

assessing the understanding of variation by university-level students. Reid and Reading 

analyzed students' responses to test items, and from their findings, the authors 

developed four levels of students’ consideration of variability (i.e., no consideration, 

weak, developing, and strong considerations of variation), each with a set of descriptors. 

For example, the hierarchy with no consideration of variation had two descriptors—i.e., 

students not being able to display any meaningful consideration of variation in the 
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context of the tasks given; and they do not acknowledge variation in relation to other 

concepts. I will revisit Reid and Reading's consideration of variation hierarchies in 

Chapter 3. So far, I have discussed classroom-based studies on variability that have 

attempted to transform existing traditional methods of teaching statistics and make them 

more active in the sense of Cobb’s (1992) recommendations and the new curriculum 

guidelines (GAISE, 2005). 

I now review one more study on variability conducted by delMas and Liu (2005), 

which involves more active use of technology in designing learning tasks. delMas and 

Liu’s study is particularly important to the current study in that I respond to some of their 

recommendations. The authors explored tertiary students’ ability to coordinate how the 

mean varies with standard deviation and how such a connection can be used to 

measure the variability of distributions of data sets. delMas and Liu developed a dynamic 

conception of standard deviation that included a visual (graphical) understanding of 

distribution as data points on the number line at different distances from the mean. The 

authors assumed that the dynamic coordination of the mean with distance from the 

mean provided a more concrete, physical and interactive tool for mediating the abstract 

concept of standard deviation. 

delMas and Liu further designed computer-generated graphs (e.g. Figure 3) to 

promote students’ understanding of standard deviation. For example, in Figure 3a, the 

tallest bar has eight data points; each data point having a numerical value ‘1’ marked on 

the horizontal number line. The location of the mean point is shown by an arrow along 

the number line whereas the arithmetical value of the mean is shown below the arrow. 

However, for standard deviation (not shown in Figure 3), both the horizontal bar and the 

arithmetic value appear below the mean.  
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(a) 

 
(b) 

Figure 3.  Comparing standard deviations in pair of graphs (delMas & Liu, 
2005). 

The graphs were designed so that for each pair of histograms, such as those shown in 

Figure 3, the numerical values for both the mean and the standard deviation were 

displayed for the graph in Figure 3(a), but, for the graph in Figure 3(b), only the mean 

value was shown (e.g., mean=4.76). Students were then asked to predict and justify 

their predictions, whether the standard deviation in Figure 3(b), would be larger, smaller 

or the same as that shown in Figure 3(a).  

delMas and Liu report that although their tasks created some awareness by 

moving students away from initially focusing on the mean value, to considering the 

variability of data values about the mean, most students used a rule-based approach to 

compare variability across distributions instead of reasoning from conceptual 

representation of the standard deviation. By “a rule-based approach”, I suggest the 

researchers meant students focusing their comparison on individual characteristics 

between the two distributions, such as the tallest or shortest bars, rather than reasoning 

about the deviations of the bars from the centre. delMas and Liu’s findings appear 

consistent with Slauson’s (2008) findings, which is that understanding the connections 

between data distributions and measures of variability is very important for students’ 

learning of statistics. From their findings, delMas and Liu made some recommendations 

for future considerations. For example, they recommended more studies that would help 

focus on factors that affect the standard deviation in a given data distribution. They state: 
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Is there a way to modify the task so there is less emphasis on a correct 
solution and more emphasis on exploring the relationships among the 
factors that affect the standard deviation? One possibility is to modify the 
software so that the mean and standard deviation are not automatically 
revealed. This might promote reflection. (p. 80)  

My study builds on, and extends, delMas and Liu’s recommendations in that it 

proposes tasks with emphasis on students “exploring the relationships among the 

factors that affect the standard deviation” (p. 80), the mean and distribution of data set. 

However, I adopt different theoretical and methodological approaches than those used 

by delMas and Liu (see Chapters 3 & 4).  

Summarizing the articles in the first part of the chapter, although there is a 

general agreement that variability is a very important concept in statistics, the concept is 

not well understood by many students. Research studies reviewed in this chapter have 

shown that students tend to focus on comparing individual values in the data set rather 

than consider data in aggregate. Slauson’s (2008) study, supported by findings from 

other studies, however, strongly suggests that understanding the connections between 

data distributions and measures of variability is very important in helping students 

develop a deeper meaning of variability. delMas and Liu (2005) proposed a conceptual 

model that provides the connections between the mean with distance from the mean, 

offering a more concrete, physical and interactive tool for mediating the abstract concept 

of standard deviation. Details of my study design, which uses dynamic sketches for 

connecting data distributions and measures of variability, are discussed in Chapter 4. In 

the second part of the current chapter, I focus on technology for teaching and learning 

statistics.  

2.5. Technology for the Teaching and Learning of Statistics 

This section provides an overview of the technologies that are used in statistical 

data analysis as well as those that are used for teaching and learning of concepts in 

mathematics and statistics. After a short introduction of the former, I will focus my 

discussion on the latter. 
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2.5.1. Data Analysis Software Packages 

Statistical software packages are in general developed for analyzing statistical 

data. Examples of such software packages include SAS, Minitab, JMP, S-Plus, SPSS 

and R. Many of these packages, except for the R software, are menu-driven, in that they 

do not require detailed programming knowledge to be able to use them. However, most 

data analysis software are "black boxes" in the sense that the user does not see how the 

actual execution of the task given that it is performed inside the computer. Rather, the 

software provides the output (final product) after the user has entered in the data (the 

raw material) and instructed the computer to carry out the analysis. The process is 

however, slightly different for educational software packages. 

2.5.2. Educational Software Packages 

Educational software packages are those that have been developed to help 

students learn concepts in statistics or mathematics. Examples include Fathom, Cabri, 

Logo and Sketchpad. Tinker Plots and Mini tools have been used mostly in the 

elementary schools to help younger students handle statistical concepts using data (see 

Konold & Miller, 2005; Ben-Zvi, 2006; Bakker & Gravemeijer, 2004). Fathom, like Tinker 

Plots also offers a dynamic environment for teaching data analysis and statistics, using 

special features such as dragging, visualizing and simulating concepts (Ericson, 2002). I 

will, however, focus my discussion on the Sketchpad and will justify my choice in 

Chapter 4 in the design of the sketches for my study. 

2.5.3. Dynamic Geometry for Teaching and Learning Mathematical 
Concepts 

Geometry is not merely an attractive side dish in a balanced 
mathematical diet, but an essential part of the entrée. (Goldenberg, 
Cuoco & Mark, 1998, p.3)  

The main feature that sets dynamic geometry software (including Sketchpad) 

apart from other geometry software programs (such as Turtle Geometry or the 

Geometric Supposer) is its real-time transformation called “dragging.” The dragging 

feature makes it possible for users, after constructing a geometric figure, to freely move 
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parts of the figure and observe how the parts respond dynamically and continuously to 

the movement. As the parts are moved smoothly over the domain where they exist (e.g., 

on the horizontal number line), some mathematical relations defined in the original figure 

are preserved as will be evident in the participants’ activities with the sketches in 

Chapters 5. 

Thus, the dynamic properties of mathematical objects can be used for developing 

mathematical concepts (Goldenberg, Cuoco & Mark, 1998; Moreno-Armella, Hegedus & 

Kaput, 2008). These researchers agree that students’ experiences with dynamic 

geometry are based on their observing and interpreting the signs produced in the 

dynamic environment (Goldenberg et al., 1998). In fact, Moreno-Armella et al. further 

suggest that a dynamic environment can enable the user to explore mathematical 

properties through dragging using the mouse pointer and the Dragging tool of 

Sketchpad. According to them, dragging also promotes exploring concepts by for 

instance, questioning, “What does this surface look like when I drag and move the 

object?” (p. 103). I suggest that the dragging action proposed by the above authors 

generate signs which, according to Vygotsky (1978), can mediate meanings of 

mathematical concepts for students.  

2.5.4. Pierce and Vygotsky’s Perspectives on Signs 

Pierce defines a sign “as anything which is so determined by something else, 

called its object, and so determines an effect upon a person” (Atkin, 2013, para. 1). 

Pierce’s perspective suggests that the “object” of a sign could be associated with the 

meaning the user derives from the sign. I believe Peirce’s definition is similar to 

Vygotsky’s (1978) mediating perspective of sign in that both researchers suggest an 

indirect role of sign, for example, in the helping students construct meanings of 

mathematical concepts.  

However, the Vygotskian perspective is specific on the mediation role of signs as 

well as the sociocultural and historical perspectives of learning such as the role 

language in cognitive developments. In terms of the former, a square, for instance, can 

function as a sign for the size of a data point’s variable. Further, when such a data point 

is dragged along a line in the Sketchpad environment, the area of the square may 
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increase or decrease in size. In that case, the sign is the changing size of the square, 

which is related to the mathematical meaning of variance. Vygotsky emphasises the 

mediating role of signs in helping learners construct meanings for concepts.  

The second related aspect of sign from a Vygotskian perspective concerns the 

sociocultural applications of sign. Vygotsky assumes that speech, for example, is a sign 

that can be used to socialize. He elaborates that one may use interpersonal 

communication to ask for help from a member of the community who is more familiar 

with a given task. Vygotsky argues that, after mastering the task, one’s social speech 

tends to turn inward so that instead of asking for help from someone else, one appeals 

to himself or herself for the solution. For Vygotsky, language (as a sign), which initially 

served an interpersonal function, now takes on an intrapersonal function that leads to 

internalization. He proposes that the process of internalization of social speech is linked 

to one’s practical intellect (Vygotsky, 1978). In my study, I analyze both the sign 

generated due to participants’ actions with physical cultural tools, and also their speech 

during actions with the tool.  

Although the Piercian and the Vygotskian perspectives both extend the use of 

sign to cognitive functions, I believe Vygotsky stresses the socio-cultural and historical 

perspectives of cognition development more than Pierce does. Moreover, Vygotsky is 

quite explicit on the process of internalization, which he develops from the interpersonal 

(socialized) functions of signs to the intrapersonal (personalized) functions. However, by 

“anything which is so determined by something else, called its object”, Pierce’s 

perspective seems to suggest a more direct role of sign in the user’s mind, while 

Vygotsky’s emphasises the mediation role of sign, leading to personal awareness. In my 

discussions, I adopt the Vygotskian perspective of sign given that it suits the context of 

my study of using sociocultural tools for learning concepts. 

2.5.5. The Application of the Dynamic Tools as Instruments for 
Learning Concepts 

This last section of the chapter discusses a specific example (see Falcade, 

Laborde & Mariotti, 2007) that involved use of dynamic technology. The authors’ 

assumptions are based on the Vygotskian perspectives, which I also adopt in the current 
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study. Falcade et al. designed a teaching experiment and applied the Trace tool of the 

Cabri dynamic software for constructing the meaning of a mathematical function. The 

teaching experiment comprised of laboratory activities, individual student’s reflections 

through notes-writing after the activities, and whole-class discussions facilitated by the 

teacher. Falcade et al. analyzed the teaching experiment based theoretical assumptions, 

summarized below: 

(i) The idea of variation (or co-variation) implied a relation between two 
changing entities, one depending on the change in other (similar to Carlson et 
al. 2002).  

(ii) Motion—defined as change in space according to change in time—is used 
as a metaphor for co-variation. 

(iii) The dynamic geometry environment (DGE) provided a semantic domain 
(space and time) within which variation was experienced as motion. 

(iv) The particular tools and objects that students interacted with in the DGE 
were considered as signs, referring to the notion of the function as co-
variation. These (psychological) tools are considered as instruments of 
semiotic mediation (Vygotsky, 1978).  

Assumption iv) suggests that the Trace tool of the Cabri software can be considered as 

a psychological tool and as such can be taken as an instrument of semiotic mediation 

(Vygotsky, 1978). The transformation of a physical tool into the psychological tool 

(instrument of semiotic mediation) is a process Vygotsky calls internalization. Vygotsky 

describes internalization as an “internal reconstruction of an external operation” (p. 56). 

From their study, Falcade et al., report some evidence of internalization when their 

students interacted with the Dragging and Trace tools to solve the tasks: 

The episode […] gives some evidence of the complex process of 
internalization through which the Dragging and Trace tool are transformed 
into psychological tools. […]. Furthermore, […] collective [whole class] 
discussion shows a particular way in which the Trace tool can function as 
a semiotic mediator. (p. 331).  

The authors further report that their students reasoned about the meaning of variability in 

terms of motion, while the idea of co-variation was incorporated in the coordinated 

movement of points on the computer screen. The authors’ notion of co-variation is 

consistent with Carlson et al.’s (2002) perspective of covariational reasoning that 

connects movements of one point on the computer screen with movements of another 
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point on the screen. Similar research studies report, for example, how motion can 

provide both the physical and psychological grounding that could enable students to 

construct mathematical meanings (Healy & Sinclair, 2007); the differences between 

static and dynamic mathematical representations focusing on the teacher’s expressions 

(Sinclair & Yurita, 2008); and the evolution of signs, showing more personal meanings of 

the learners shaping into mathematical meanings of concepts (Bartolini Bussi & Mariotti, 

2008). 

2.6. Summary  

In this chapter, I provided fairly extensive reviews of research studies on the 

teaching and learning of introductory statistics from 1970s, but focused more on the 

periods from the 1990s to date. From the early 1990s to date, there have been 

noticeable shifts of focus from identifying students’ learning difficulties, to designing 

strategies and implementing them with the goal of building students’ statistical 

reasoning, thinking, and literacy (STRL). More recent research studies (e.g., Slauson, 

2008), suggest that the connections between data distributions and measures of 

variability, such as the standard deviation and the mean, are important factors in 

enabling students to understand other concepts in statistics. I also reviewed studies on 

the application of signs, produced through actions with dynamic computing technologies 

and found some evidence that signs can mediate meanings of challenging mathematical 

concepts for students. The next chapter discusses the theoretical perspectives that 

informed the current study.  
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3.  Theoretical Perspectives  

In this chapter, I present two main theoretical perspectives that have influenced 

my study. The first perspective relates to the foundations of statistical thinking (Wild & 

Pfannkuch, 1999), also elaborated by other researchers (e.g., Konold, Higgins, Russell, 

& Khalil 2003; Reid and Reading, 2008). On the foundations of statistical thinking, my 

interest will be on my study participants’ considerations of variability, for example, 

actions such as: noticing, estimating, predicting, testing and describing variation in a 

data set. The second theoretical perspective is Vygotsky’s (1978) semiotic mediation 

and his socio-cultural historical theory of learning, also elaborated by other researchers 

(e.g., Falcade, Laborde & Mariotti, 2007; Bartolini Bussi & Mariotti, 2008). Vygotsky’s 

theory incorporates the use of cultural tools for mediating meanings of concepts, which 

relates to my use of Sketchpad as a cultural tool to design learning tasks in a computer-

based environment. I now discuss each theoretical perspective in the following sections. 

3.1. Foundations or Statistical Thinking  

According to Hacking (1975, cited by Pfannkuch and Wild, 2004), reasoning 

based on evidence from available data is relatively a new development and been slow in 

its growth and importance. Hacking suggests two changes that have shaped, in general, 

the current thinking, including what is considered to be the nature of knowledge and the 

nature of evidence. First, he submits that the concept of knowledge shifted from an 

absolute truth toward knowledge based on opinion. That shift, according to Hacking, 

resulted into thinking also shifting toward probabilistic perspectives. Second, the nature 

of evidence also shifted away from pronouncements, for instance, by those in positions 

of authority, toward inferences based on data (e.g., Stigler, 1999). 

In his 1999 book, “Statistics on the Table”, Stigler further adds to, and apparently 

agrees with, Hacking’s propositions about the importance of data for supporting claims. 
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Stigler quotes a 1910 letter from Karl Pearson, a very prominent statistician, and 

regarded by some as the author of modern statistics, to The Times of London. Pearson 

was issuing a challenge to scientists, as well as to the lay-people, to do more than 

merely assert an answer—evidence must be provided, and that evidence need not be 

quantitative: “if the question is important and one position has been advanced with well-

considered supporting evidence, then it is incumbent upon a critic to ‘put statistics on the 

table’” (p. 1). Stigler clarifies that “putting statistics on the table” is more than just putting 

forward numbers as evidence. It involves a careful analysis of the “forces that would 

affect any data, methods for measuring and expressing the uncertainty […] and the 

conventions for settling issues such as […] when an assertion should be rejected or not” 

(p. 1). These shifts in thinking and reasoning, according to Hacking, initiated a new way 

of thinking in the statistics community. 

In the same year that Stigler wrote his book, Wild and Pfannkuch identified five 

elements (also called the foundations), which they considered to be fundamental to 

statistical enquiry. They are: i) considering variability; ii) reasoning with statistical graphs; 

iii) integrating statistical and contextual knowledge; iv) 'Transnumeration'—representing 

data in a way that enables a clear understanding of the concepts; and v) recognizing the 

need for data. Wild and Pfannkuch’s foundations of statistical thinking perspectives are 

indeed quite broad, having many applications outside statistics education (e.g. in 

industrial processes). However, I will focus my examples to statistics and mathematics 

education. In connection with the considerations of variability, I incorporate Carlson, 

Jacobs, Coe, Larsen and Hsu’s (2002) work on covariational reasoning, which compares 

change in variable ‘A’ with change in another variable ‘B’ in a functional relation. 

Although Carlson et al.’s covariational reasoning was not developed directly from a 

statistical research, but from mathematics, it has some relevance to consideration of 

variability.  

3.1.1. Consideration of Variability 

Wild and Pfannkuch (1999) make five assumptions in their considerations of 

variability: i) variability is an observable reality; ii) some variation can be explained 

whereas others cannot be explained based on our current knowledge; iii) random 

variation is the way statisticians model unexplained variation; iv) unexplained variation 
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may be produced through random sampling; and v) randomness is a human construct 

for describing variation where patterns cannot be detected. Assumptions iii), iv) and v) 

which focus on random variation, are not discussed in the current dissertation. I discuss 

assumptions i) and ii) using two examples from Reid and Reading’s (2008) work on the 

considerations of variations that I mentioned in Chapter 2. I will also briefly discuss 

Carlson, Jacobs, Coe, Larsen and Hsu’s (2002) notions of covariational reasoning.  

Consideration of Variation Hierarchies 

Reid and Reading’s (2008) study, introduced in Chapter 2, is based on Wild and 

Pfannkuch’s considerations of variation principles. Reid and Reading analyzed students’ 

responses to class tests and homework assignments, and also revisited similar work that 

they previously developed (e.g. Reading & Reid, 2005; Reid & Reading, 2004, 2006), to 

formulate a consideration of variation hierarchy (CVH) framework in Table 1. In Table 1 

each of the four hierarchies (i.e., none, weak, developing, and strong) has a set of 

descriptors shown in the second column. The descriptors were developed from specific 

tasks, which could suggest that the hierarchies also depend on the learning tasks that 

are assigned to the students, and so they can be contextual to the tasks.  

Table 1.  Consideration of Variation Hierarchy (Reid & Reading, 2008). 

Consideration of 
Variation Hierarchy 

Descriptors 

None – do not display any meaningful consideration of variation in context 

– do not acknowledge variation in relation to other concepts (e.g., distribution) 

Weak – identify features of only one source of variation 

– acknowledge variation in relation to other concepts 

– incorrectly describe variation 

– do not base description of variation on the data 

– anticipate unreasonable amount of variation 

– poorly express description of variation 

– refer to irrelevant factors to explain variation 

– incorrectly refer to relevant factors to explain variation 

– do not use variation to support inference 
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Consideration of 
Variation Hierarchy 

Descriptors 

Developing – recognize the effect of a change in variation in relation to other concepts 

– correctly describe variation 

– base description of variation on the data 

– anticipate reasonable amount of variation 

– clearly express description of variation 

– correctly refer to relevant factors to explain variation 

– use variation to support inference 

– do not link the within-group and between-group variation 

Strong – link within-group and between-group variation to support inference 

Reid and Reading propose that to be categorized as “weak”, “developing” or “strong” 

consideration of variation, a student’s response on an assigned task should include the 

first item on the list of descriptors for that hierarchy. For example, in the ‘weak’ 

consideration of variation hierarchy (CVH), the first descriptor is that a student is able to 

‘identify features of only one source of variation.’ However, given that responses to tasks 

may vary from one student to another, I suggest that using more than one descriptor in 

each hierarchy could capture a more accurate range of students’ consideration of 

variation. Given that the hierarchies were not developed with a focus on the use of 

particular computing tools, such as, in my case the dynamic technology, the CVH does 

seem to help me interpret data obtained from a similar environment, namely the static 

environment, not the dynamic environment. 

Covariational Reasoning  

Covariational reasoning is a framework developed by Carlson, Jacobs, Coe, 

Larsen and Hsu (2002) for interpreting university calculus students’ reasoning with co-

varying mathematical entities in a dynamic setting. The authors define covariational 

reasoning as cognitive activities involved in coordinating two varying entities, while 

attending to the ways in which the entities change in relation to each other. For the 

authors, covariational reasoning includes mental actions, which can be described by 

observed behaviour of the student, but the behaviour is associated with cognitive 

functions of the individual student. For instance, mental action at level one is associated 

with coordinating the value of one variable with changes in another variable. The 

observed behaviour associated with this level is the verbal coordination of two entities 
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such as a statement ‘entity A changes as entity B changes.’ Carlson et al. proposed five 

mental actions that were associated with students’ behaviours on a calculus task. 

However, only the first three (see Table 2) of the five Carlson et al.'s categories suit my 

study. The fourth category (i.e., coordinating the average rate of change); and the fifth 

category (i.e., coordinating instantaneous rate of change of the function), do not directly 

apply in my study, but they apply to calculus in mathematics.  

Table 2.  Covariational Reasoning Framework (Carlson et al., 2002). 

Mental 
action  

Descriptions of mental actions Behaviours 

Mental action 
1 (MA1) 

Coordinating the value of one variable 
with changes in the other variable  

Verbal indications of coordinating two 
variables 

Mental action 
2 (MA2) 

Coordinating the direction of change of 
one entity with change in the other 
entity. 

Verbalizing an awareness of the direction of 
change in one entity while considering 
changes in the second entity. 

Mental action 
3 (MA3) 

Coordinating the amount of change in 
one entity with changes in the other 
entity. 

Verbalizing an awareness of the amount of 
change in one entity while considering 
changes in the second entity. 

Carlson et al. assign a level of mental action to the learner according to the 

highest level attained. If, for example, a student’s mental actions reveal quantitative 

coordination—coordinating the amount of change in one entity with changes in the 

second entity—then the student is assigned at level three. From Table 2, and the 

discussions in this section, it is obvious that not all the levels of mental actions proposed 

by Carlson et al. apply to Wild and Pfannkuch’s considerations of variability in statistics. 

However, I modified the framework and used it in statistics for interpreting students’ 

reasoning with dynamic activities. Moreover, Wild and Pfannkuch emphasize statistical 

reasoning and thinking without putting any categories to student interactions. I will adopt 

Wild and Pfannkuch's considerations and categorize students' interactions from tasks, 

but not the students themselves.  
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3.1.2. Reasoning with Statistical Graphs 

The second element in Wild and Pfannkuch’s (1999) foundations is about 

reasoning with graphs. Although Wild and Pfannkuch’s use the term ‘model’, I interpret a 

model to include a graph. For example, a statistical graph such as a histogram can be 

used to reason about the variability of a data set. Pfannkuch and Wild (2004) explain 

that: 

When we use statistical models [graphs] to reason with, the focus is more 
on the aggregate-based rather than individual-based reasoning […]; 
individual–based reasoning concentrates on the single data points and 
with little attempts to relate them to the wider data set, whereas 
aggregate-based reasoning is concerned with patterns and relationships 
in the data set as a whole. (p. 20) 

Hancock, Kaput, and Goldsmith (1992) add that students’ ability to reason from group 

tendencies rather than from individual cases is fundamental in developing their statistical 

thinking. Other researchers (e.g., delMas & Liu, 2005) have proposed using models, 

including dynamic graphs, to help the students to visualize patterns and to reason about 

the distributions of data sets.  

3.1.3. Integrating Statistical Data with Context  

Biehler and Steinbring (1991) contend that data cannot be detached from its 

context. For Biehler and Steinbring, exploring concepts with data should include asking 

and answering questions about the patterns that are observed in the data, and whether 

or not the outcomes relate to the context of the data. Other researchers (e.g., 

Shaughnessy, Garfield & Greer, 1996; Pfannkuch & Wild, 2004) agree that students 

need to have the mind-set of a ‘detective’, to look for information hidden in the data since 

data arise from specific contexts (Pfannkuch & Wild, 2004). I apply the notion of ‘data 

detective’ and ‘looking for information hidden in the data’ in my methodology in Chapter 

4, where I ask participants to make conjectures about the patterns in the graphs, justify 

their conjectures and then later check them through interactions with the graphs. 
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3.1.4. Representing Data to Enable Clear Understanding of 
Concepts  

Transnumeration is a term invented by Wild and Pfannkuch (1999) to describe a 

learning environment (and also outcome) where data are represented in clear ways 

through graphs or models, to help students understand generally challenging statistical 

concepts. The process of transnumeration can include representing data in a graphical 

form so as to make the patterns of variations in the data set easily visible to the 

students. For example, using a histogram to present data set so that the spread of data 

from the mean reveal the shape of the distribution, providing clearer information about 

the variation in the data. Ben–Zvi and Friedlander (1997) suggest from their study on 

data representations and analysis that students who handle multiple representations of 

data in meaningful and creative ways, for instance, by searching for patterns in the data 

to convey mathematical ideas, are more likely to reason and to think statistically than 

those who are not able to handle data, for example, in meaningful and creative ways. 

3.1.5. Recognizing the Need for Data  

According to Wild and Pfannkuch (1999), being aware of the inadequacies of 

anecdotal evidence and personal experiences to base decisions is very important. For 

Wild and Pfannkuch, basing decisions on deliberately collected data is “a statistical 

impulse” (p. 227). By that, I suggest, Wild and Pfannkuch probably mean that basing 

decisions on data is something statisticians take for granted. The authors' views are 

consistent with Hacking as well as Stigler’s notion of putting statistics on the table that I 

discussed earlier. I will use these perspectives in both the design and the analysis of my 

data in Chapters 4 and 5. I now present the second theoretical perspective that 

influenced in my study—semiotic mediation. 

3.2. Using Socio-cultural Historical Tools to 
Mediate Meanings of Mathematical Concepts  

The contribution of different artifacts and instruments in the activity of learning 

mathematics is documented in many research studies (e.g., Rabardel 1995; Verillon & 

Rabardel, 1995; Bartolini Bussi & Mariotti, 2008). Rabardel considers an artifact as a 
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material object designed according to a particular goal and as such holds some specific 

knowledge. For example, the Compass Tool is traditionally used in mathematics for 

constructing circles. However, the functions of the Compass Tool can be extended 

beyond the original design if it is applied in combination with other tools such as the Line 

tool to construct, for instance, a square. However using a tool in combination with other 

tools requires specific knowledge and skills by the user. According to Rabardel and 

Samurçay (2001), an instrument is different from an artifact in that it possesses both an 

artifact-type (non-task specific) component as well as the utilization schemes 

(components of an artifact which are used to solve specific tasks). According to 

Rabardel (1995), the instrumental genesis—the process of transforming an artifact to an 

instrument—is not physical but a psychological process, which depends on the 

knowledge of the user and how he or she applies an artifact to a specific task.  

Moreover, instrumental genesis includes two other processes—the 

instrumentalization (how a user applies an artifact on a task) and the instrumentation 

(how the artifact impacts the user’s knowing)—such that the artifact is considered to 

have evolved into an instrument. The instrumentation process differs from the 

instrumentalization process in that in the former, the knowledge that a user may gain by 

using an artifact is constrained by the design of the artifact (Trouche, 2005). Going back 

to the earlier example of the Compass tool, whereas it can construct a circle, it cannot 

construct a triangle without combining its function with that of a Line tool.  

However, critiques of instrumental genesis point out that it does not go far 

enough to explain how learners can gain an understanding of mathematical concepts 

(see Bartolini Bussi & Mariotti, 2008). Instead, instrumental genesis focuses more on the 

processes of transforming an artifact into an instrument than on learners’ understanding 

of mathematical concepts. Bartolini Bussi and Mariotti caution that the contribution of an 

instrument to cognitive development is a delicate issue that should be carefully 

considered so as not to over-simplify a complex problem. In my study, I use semiotic 

mediation for two reasons. First, semiotic mediation fits in well with the use of social-

cultural tools, which include modern computing tools as well as locally designed 

mathematical sketches. Second, semiotic mediation links the use of physical tools with 

cognitive tools in the activities of teaching and learning mathematical concepts. I take a 
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Vygotskian approach, which distinguishes psychological tools (internal tools) from 

corporeal tools and categorizes the latter as external tools.  

3.2.1. Semiotic Mediation  

According to the Vygotskian theoretical perspective, artifacts are products of 

human activity, which play a fundamental role in cognitive development (see Vygotsky, 

1978; Falcade, Laborde & Mariotti, 2007; Bartolini Bussi & Mariotti, 2008). The 

Vygotskian perspective assumes a dialectical dependency between physical external 

tools and signs. By a dialectical dependency, Vygotsky (1978) highlights both the 

common elements and the differences between tools and signs: 

The tool’s function is to serve as a conductor of human influence on the 
object of the activity; it is externally oriented; it must lead to changes in 
the objects […]. The sign on the other hand, changes nothing in the 
object of a psychological operation. It is a means of internal activity aimed 
at mastering oneself; the sign is internally oriented. (p. 55)  

Vygotsky’s perspective on tools and signs appears different from other 

psychological perspectives in that he highlights the different functions played by a tool 

and a sign in a cognitive process. He defines internalization as the process of 

transforming an external tool into an internal tool. The analysis of internalization involves 

analyzing a system of signs (e.g., words, drawings, gestures, and accompanying 

actions), which follow an activity with the external tool (Falcade, Laborde & Mariotti, 

2007; Wertsch & Addison Stone, 1985). Falcade et al. (2007) elaborate that the use of 

particular signs, especially speech, contributes to mental processes such as concept 

formation. For Falcade et al, a specific tool may function as a semiotic mediator and by 

that they mean new meanings related to the actual use of a physical tool by a student,  

do evolve, often under the guidance of an expert, or a cultural mediator such as a 

teacher, to a correct understanding of mathematical ideas represented in the tasks. 

Falcade et al. further elaborate that the Dragging tool may be considered as a 

sign (an instrument of semiotic mediation) referring to its role in bringing about changes 

in the different entities, for instance in a dynamic graph in a Sketchpad environment. . 
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The authors propose that personal meanings that emerge from students’ dragging 

actions in the Sketchpad environment can evolve into mathematical meanings. 

3.2.2. Analysing the Semiotic Potential of the Dragging tool  

Bartolini Bussi and Mariotti (2008) propose two basic domains in a dynamic 

geometry environment (DGE): the construction domain and the motion domain. The 

construction functions of a DGE (e.g. Sketchpad) allow one to produce graphics on the 

computer screen by using construction tools (e.g., the Point tool, Line, and Bisector 

tools). However, the motion domain works through the dragging action of the Dragging 

tool so that dragging action preserves the properties that define a given sketch. For 

example, a properly constructed square in a DGE retains its mathematical features, 

even if the original size of the square increases or decreases through dragging. 

Bartolini Bussi and Mariotti identify two kinds of motion in the DGE: the direct and 

indirect motion, both related to different utilization schemes. Direct motion occurs when a 

basic element such as a point is dragged on the computer screen by acting directly on it 

using the mouse. Indirect motion occurs if by dragging a basic point on the sketch, other 

points also move, but do not alter the geometrical properties of the sketch. Bartolini 

Bussi and Mariotti propose that using the Dragging tool to move the basic point within 

the sketch can enable the user to experience the functional dependency between direct 

and indirect motion so that the Dragging tool can be considered as a sign referring to the 

mathematical notion of variability. Moreover, the “the space/time movement of a point on 

the screen preserves the content of the sign as it evolves from the artifact sign (moving 

point) to the mathematical sign (variable)” (p.757). According to the authors, a sign can 

be used as “an index of the move from personal sense to mathematical meaning” (p. 

757). In other words, the signs shape conceptual understanding of mathematics through 

moving from an explicit use of the artifact to the mathematic context. The authors 

propose three categories of signs that can evolve from a student’s use of dynamic tools 

in a mathematical task: 

Artifact signs refer to the context and activity that the artifact is applied to. 

Bartolini Bussi and Mariotti (2008) submit that the signs “sprout from the activity with the 

artifact, their meanings are personal and commonly implicit, strictly related to the 
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experience of the subject” (p. 957). In other words, the artifact signs are similar, for 

example, to Noss and Hoyles’ (1996) “situated signs”—how a learner develops 

mathematical meaning in a particular learning environment—and also to Radford’s 

(2003) “contextual generalization”, which describes the kind of expressions a learner 

applies in the context of using a tool on a particular task. Bartolini Bussi and Mariotti 

propose that artifact signs are connected to the mathematical signs through pivot signs 

(Fig. 4).  

Pivot signs as stated above, link the artifact sign to the mathematical signs and 

they may refer to activities in both domains. Bartolini Bussi and Mariotti explain that pivot 

signs are characterized by their shared meanings in instrumented actions but also 

through natural language:  

The characteristic of these signs is their shared polysemy, meaning that 
[…] they may refer both to the activity with the artifact; in particular […] to 
specific instrumented actions, but also to natural language, and to the 
mathematical domain. Their polysemy makes them usable as a 
pivot/hinge fostering the passage from the context of the artifact to the 
mathematics context. (p.757) 

The diversity of meanings that characterises pivot signs could make them 

problematic to distinguish from artifact signs and from mathematical signs since they 

assume a position between the two signs. However, Bartolini Bussi and Mariotti add that 

pivot signs “express a first detachment from the artifact, but still maintaining the link to it 

in order not to lose the meaning” (p. 757), which provides more guidelines on pivot 

signs. Since each instrumented activity is assumed to be unique, the guidelines seem 

adequate to identify pivot signs from both the artifact and mathematical signs.  

Mathematical signs differ from artifact signs in that they refer to the 

mathematical context and meanings shared within a cultural community of 

mathematicians (Sfard, 2008). The signs may be expressed as a “proposition, for 

example a definition, a proof, or a statement requiring proof according to the standards 

shared by the mathematical community” (Bartolini Bussi & Mariotti, 2008, p. 757). In the 

example that follows (Fig. 5), I discuss the emergence of artifact, pivot and mathematical 

signs from a teaching experiment (Falcade, Laborde & Mariotti, 2007; Bartolini Bussi & 
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Mariotti, 2008) conducted in 10th grade mathematics classes. The example was chosen 

to show how different signs can emerge from using an artifact in a mathematical activity. 

 

Figure 4.  Relationship among the different signs in a mathematical activity. At 
the basic level are the artifact signs and at the higher level are the 
mathematical signs. Pivot signs link artifact signs with mathemtical 
sign (adapted from Bartolini Bussi & Mariotti, 2008). 

Figure 4, provides an adapted version of how the artefact, pivot and mathematical signs 

emerge from an instrumented mathematical task. The artefact signs evolve in the activity 

of using a physical tool to solve a given task. Combining with other signs that are 

produced during solving a mathematical task, the artifact signs link to the pivot signs, 

which may evolve into mathematical signs. There may be situations where the pivot 

signs are indistinguishable from artefact signs or from the mathematical signs. In such a 

case, the pivot signs could appear to be by-passed by the artefact signs that evolve 

directly into the mathematical signs. The example below attempts to highlight some of 

the above scenarios.  

3.2.3. Example  

Three basic points A, B and P are shown in Cabri dynamic environment. The 

construction in Figure 7 provides point H as the orthogonal projection of point P onto line 

AB. Falcade, Laborde & Mariotti (2007) chose this construction because they wanted a 

Mathematical 
culture 

Mathematical 
signs 

Artifact signs Task 

Artifact 
Pivot signs 
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strong visual representation of the notions of the domain and image of a mathematical 

function on the screen. Students worked in pairs and explored the effect of 

systematically moving one of the three points A, B and P, one at a time. They were to fill 

in a table explaining what moved and what did not move when they dragged each point. 

Finally, each small group was asked to write a common answer on the worksheet. Below 

is what student FE wrote: 

FE:  [1] Moving P, we realized that H is moving , whatever direction P is         
[2] moving, except when P goes perpendicular to the line on which H is 
[3] moving, (the line) passing through B and A. Dragging B, H forms a     
[4] circle, passing through P and A.  
 

 

Figure 5.  The graphic marks appearing on the screen after using the Dragging 
tool and Trace tool. The Trace tool can be considered as a sign 
referring to the mathematical notion of trajectory. (Bartolini Bussi & 
Mariotti, 2008, pp. 770-771). 

In lines [1-2], FE’s statements, “‘moving P’ … ‘H is moving’…whatever direction ‘P is 

moving’” are examples of artifact signs. However “‘P goes perpendicular’ [2] and ‘H is 

moving’” can be considered as pivot sign that connects to the mathematical sign in lines 

[3-4], “dragging B, H forms a circle passing through P and A.” In this example the 

Dragging tool is used as an instrument of semiotic mediation for the meaning of circle.  
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The second example, still based on Figure 5, is from a different student, JK: 

JK:  [5] The initial points are named independent variables, in fact they can be 
[6] moved individually and in our case all over the plane. H is called       
[7] dependent variable and we understand easily why, it cannot move by 
[8] itself, but always in function of some other moment (that is, it depends 
[9] on it). 

JK’s statement in line [5], “the initial points are named independent variables” suggests 

evidence of the mathematical sign, “independent variable”, referring to the free 

movement of the initial points and stating the relation between motion and the variability 

of points “all over the plane.” The statement in [lines 5-6], “the initial points are named 

independent variables, in fact they can be moved individually and […] all over the plane” 

combines both artifact signs (“moved individually and … all over the plane”) and the 

mathematical sign (named “independent variables”). From Figure 5, it can be argued 

that the space/time movement of the basic points on the screen (artifact signs) evolves 

into a mathematical sign (variable). In this example, the pivot signs seem by-passed by 

artefact signs evolving directly into the mathematical signs. Dragging tool is an 

instrument of semiotic mediation for the functional connection among the moving entities 

A, B, P and H. 

3.3. Summary  

In this chapter, I have discussed two main theoretical perspectives that inform my 

research. First, I discussed Wild and Pfannkuch’s foundations of statistical thinking, but 

focused on examples on considerations of variability, such as students reasoning with 

different types of statistical models, including graphs. Second, I used semiotic mediation 

theoretical perspective (Vygotsky, 1978). The Vygotskian perspective and distinguishes 

cultural tools (artifacts) from psychological tools in that the former serve external 

functions (interpersonal or social functions), whereas the latter serve intrapersonal 

functions (internal or psychological functions). Vygotsky uses the term internalization to 

denote a process whereby an external tool is transformed into a psychological tool. 

Similarly, the artefact signs can evolve into mathematical signs, for instance, from a 

student's actions with the tool as well as a realization that is mediated by the signs 

produced while he or she solves the task (Example in Section 3.2.3).  
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The main assumptions discussed in this chapter with regard to mathematical 

tasks implemented in a dynamic geometry environment (DGE) are: i) Dragging activities 

support learners' making and checking conjectures by, for example, directly interacting 

with the graphs in in a DGE (Arzarello et al., 2002); ii) The use of particular signs, for 

example speech, contributes to concept formation by leaners (Bartolini Bussi & Mariotti, 

2008; Vygotsky, 1978); iii) Tool mediated actions can shape learners’ evolving 

mathematical meanings (Falcade, Laborde & Mariotti, 2007); and, (iv) Learning takes 

place through internalization—a process whereby social (interpersonal) experiences are 

transformed into intrapersonal ones (Vygotsky, 1978). 

Based on issues that were reviewed in Chapter 2, and on the theoretical 

assumptions summarized in the current chapter, my study explores participants’ thinking 

about the notions of distribution, the mean and the standard deviation before, during, 

and after they have interacted with the dynamic sketches designed with the Sketchpad. 

The aim of my study is to gain an understanding of how students—in particular, students 

enrolled in a university-level introductory statistics courses—respond to the features of 

statistical variability, before, during and after interacting with the dynamic mathematics 

sketches. The specific research questions are: 

1. What do students say about measures of statistical variability, such as 
distribution, mean and standard deviation, in a data set presented in a 
static environment?  

2. How do students express the notions of variability while interacting with 
dynamic mathematics sketches? 

3. How do students express notions of variability after interacting with 
dynamic mathematics sketches? 

4. What might be the contribution of dynamic mathematics sketches to 
students’ awareness of variability and statistical thinking? 

Drawing on the assumptions discussed in this chapter, I hypothesize that my 

participants’ descriptions of standard deviation, mean and distribution in the end will 

reveal more dynamic and physical expressions. I will consider such expressions as 

evidence of their consideration of statistical variability. I further hypothesize that my 

participants’ interactions with the Dragging tool and dynamic sketches will enable them 

express meanings for standard deviation, mean and distribution more clearly than they 

were able to do in the static environment. Chapter 4 presents the methodology used in 
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collecting data for the study. I will analyze the data in Chapter 5 and discuss the analysis 

of the data in Chapter 6.  
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4. Methodology of the Study 

This chapter describes the procedures, materials and methods that I have used 

in the data collection. The chapter begins with an overview of the concept of variability, 

the standard deviation and the mean, aiming to set the background for the design of 

dynamic sketches, designed to explore the notions of statistical variability. Section 4.2 

discusses further the design principles used in the dynamic sketches. In Section 4.3, I 

briefly outline the content that my study participants covered in their university-level 

statistics courses. I follow with a brief introduction of each participant in my study. 

Section 4.4 presents a report of a pilot study that I conducted, which enabled me to 

modify and improve on the initial study design. I present the interview tasks used in the 

data collection in Section 4.5. Given that I adopt a task-based clinical interviewing 

methodology (Ginsburg, 1981; diSessa, 2007), I discuss the merits of clinical 

interviewing in Section 4.6. In Section 4.7, I summarize the discussions in the current 

chapter.  

4.1. Statistical Variability  

In Chapter 2, I provided my working definition of the terms variability and 

variation, and in fact clarified that I use the terms interchangeably in this dissertation. 

Statistical variability, which is the focus in this study, is understood as a feature of the 

dispersion of data from its centre. Throughout this dissertation, the term variability is 

used to mean statistical variability, unless specific references are made to other types of 

variability. Although, the terms dispersion, spread and variability are often used 

interchangeably, I use variability and spread more frequently in my writing than I do 

dispersion. Variability (also called dispersion, scatter or spread) denotes how stretched 

or squeezed is a distribution (e.g., a theoretical distribution or the distribution of a 

statistical sample) from the centre. Common examples of statistical variability include the 
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range, interquartile range, variance, and standard deviation. The current study focuses 

on the standard deviation, the mean, and distribution as features of statistical variability.  

4.1.1. Standard Deviation and Variance as Features of Variability  

The variance of a data set—symbolized by 
2

2 )())1/(1( ∑ −−= xxns
i  combines 

all the values in the data to provide a single measure of spread. Standard deviation, the 

square root of the variance—symbolized by 
)2/1(

2

])())1/(1[( ∑ −−= xxns
i  (where  is 

the mean, 
i

x  is a given data point from the data set of finite size 1>n )—is the most 

commonly used measure of spread. If, for example, 2, 4, 6 and 4 are distances rounded 

to the nearest kilometre, from a central point, to four different locations and in four 

different directions, then the mean distance  = ∑
=

=

4

1
)/1(

i

i i
xn =4 km, the variance 

2
2 )())1/(1( ∑ −−= xxns

i = 2.667km2, and standard deviation, 633.1667.2 ==s km. 

Squaring the deviations from the mean and dividing the sum of the squared deviations 

by the degrees of freedom, (n-1), gives the variance. Variance can thus be described as 

the mean squared deviation of data values from the mean. 

4.1.2. Standard Deviation and Mean as Features of Variability  

Standard deviation can be conceptualized as a measure of the spread of data 

values from the mean. The magnitude of standard does not have a direct relationship to 

the magnitude of the mean in a data set. For example, the family of the Gaussian 

distributions in Figure 6, all the curves follow the general Gaussian density function 

given by ]/))(2/1(exp[)])2(/(1[),,( 222/12 σµπσσµ −−=Φ xx . The curves however, vary, 

one from another; those with relatively larger magnitudes of standard deviation (e.g. 

2/1)5(=σ  and 
2/1)1(=σ ) appear more spread out than those with smaller magnitudes of 

standard deviation (i.e. 
2/1)5.0(=σ  and 

2/1)2.0(=σ ). The blue curve with the smallest 

magnitude of standard deviation ( 447.0=σ ) shows the highest peak of the Gaussian 

curve among all the curves shown. 
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Figure 6.  Gaussian density functions. The blue, red and yellow curves have 
the same mean. The shape of the distribution depends on the 
magnitude of standard deviation. 

The yellow curve with the largest magnitude of standard deviation also shows the largest 

spread on the graph compared to the blue curve with the smallest magnitude of standard 

deviation. Figure 6 suggests the influence of standard deviation in controlling the spread 

of the Gaussian distributions. 

4.2. Design of the Sketches 

I designed two dynamic sketches using Sketchpad. Sketchpad was chosen 

among many similar software based on the background that I presented in Chapter 1, as 

well as the issues that I found in my review of literature in Chapter 2. Although some 

functions of Sketchpad are also available in other dynamic software, the dragging 

function of Sketchpad, which enables the user to interact with the sketches more directly 

and directly notice the changes, greatly influenced my choice of Sketchpad. In my 

Research Assistant work, discussed in Chapter 1, I had noticed that students pay more 

attention to the mathematical concepts built in the sketches if they have some direct 

involvement with the tasks.  
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I used a small sample (n=6) of data points in designing my sketches so that 

participants could more clearly notice the movements of individual points on the 

horizontal axis and focus their attention on exploring patterns in the data distribution. I 

relied on Konold’s (2007) advice that I called ‘parsimonious tool design’—in that it 

privileges using fewer variables over many variables in designing a tool, to help users 

find the essential elements they need from the tool. Konold explains that if “[...] you try to 

be helpful by including most of what everyone wants in a tool, it becomes so bloated that 

the users then complain that they cannot find what they want” (p. 9). My sketches 

incorporated as many features as were possible for participants to explore variability; but 

the sketches were also designed to ensure clarity of tasks to the participants. 

4.2.1. The dyMS Sketch  

The sketch in Figure 7, that hereafter I call the dyMS sketch (dynamic mean and 

standard deviation), is designed with six numerical data values positioned at points A, B, 

C, D, E, and F on the horizontal axis. Each data points on the number line take on a 

numerical value, which changes along the horizontal number line as the point is dragged 

horizontally from left to right and in the opposite direction. A data point can be selected 

using the mouse pointer, holding the left button of the mouse down and dragging the 

data point along the horizontal axis, using the Dragging tool of Sketchpad. As a data 

point is dragged to the left or to the right side of the mean line, the numerical scales for 

the mean and standard deviation change. In particular, the farther away a data point is 

from the mean the bigger is the size of standard deviation in the data set. 

The mean-line in Figure 7 is a perpendicular line that passes through the mean 

(mean-point) of a data set distributed on the horizontal axis. The mean-line can be 

conceived as a geometrical representation of a moving mean. I define a mean-line by a 

perpendicular line that passes through the mean-point. The mean line also serves as 

reference line from where a square for each data point is constructed. I used a line 

instead of a point so as to provide a more visual representation of the centre of data as 

participants dragged data points on the horizontal axis. In fact, a major design 

consideration in using the mean-line over a point is that a line is more visual and 

physical for participants to easily see the “moving mean” as they dragged data points 

along the horizontal axis. 
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In Figure 7a, six data points have a mean-point, = ∑
=

=

6

1
)/1(

i

i i
xn =2.74 and 

standard deviation 
)2/1(26

1
])())1/(1[( ∑

=

=
−−=

i

i i
xxns =1.30. Each of six data points is 

positioned on the horizontal number line at some distance 
i

d  ( 6,...,1=i ) away from the 

mean-point. In general, data point i at distance 
i

d  from the mean line forms a 

geometrical square with area 
2

i
d . The sum of areas of all the squares is equivalent to the 

magnitude of sample variance 
2
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xxn Hence, 

having data points at locations far away from the mean line implies that the sum of the 

squares will be large, resulting in large magnitudes of the variance and standard 

deviation. Standard deviation (the square root of the mean squared deviation of data 

values from the mean) is represented by the side length of the square obtained from the 

sum of the six squares constructed from the six data points to the mean-line. I used the 

square area so as to provide a visual representation of how variance (hence standard 

deviation) changes as data distribution changes through dragging points on the 

horizontal axis, using the Dragging tool of Sketchpad. 

Figure 7a shows the six data points A, B, C, D, E, and F before any of them is 

dragged on the horizontal axis. In Figure 7b, data point F on the far right is dragged 

slightly toward the mean line, reducing the magnitude of standard deviation from 1.30 to 

1.19. In Figure 7c, data point D on the right side of the mean line has been dragged 

across to the left side of the mean line and the magnitude of standard deviation has 

reduced further from 1.19 to 1.18.  
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(a) (b) (c) 

Figure 7.  The dyMS sketch. (a) Before data points are dragged on the 
horizontal axis; (b) After data point F on the far right is dragged 
slightly to the left; (c) After data point D is dragged across the mean 
line to the left side.  

The graphs in Figure 7 show that, standard deviation increases as the square areas 

increase. Conversely, standard deviation decreases as the square areas decrease. In 

other words, variability in the data distribution increases as data points are dragged 

farther away from the mean line. 

4.2.2. The gC Sketch  

Figure 8 provides the second sketch that I name the gC sketch (Gaussian Curve) 

with a density function given by ]/))(2/1(exp[)])2(/(1[),,( 222/12 σµπσσµ −−=Φ xx  as 

reviewed in Section 4.1.2. In designing the gC sketch, I assumed that the data sample 

used in the task is drawn from a normally distributed population. The normality 

assumption is important given that my data sample is small. Although participants did 

not have the density at each data point similar to what they would normally see, for 

example in a histogram, to be able to fit a Normal curve onto, I assumed, from a 

modeling viewpoint, that the density of each data point varied proportionately and 

symmetrically with its distance from the mean. The closer a data point is to the mean-

line, the higher the density, so the peak of the gC sketch would be high at that point. 

Conversely, the farther away a data point was from the mean-line, the lower the density, 

resulting into a lower peak of the gC sketch. I expected that participants would be able to 

connect the distance of a data point from the mean-line with the change in the height of 
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curve. Overall, my aim of fitting the Gaussian density function on numerical, but 

continuous data is to enable students analytically but also graphically explore changes in 

the height of the curve with the changes in the standard deviation as well as the 

distribution of data points on the horizontal axis.  

Figure 8a shows the shape of the gC sketch before dragging the data points on 

the horizontal axis toward the mean line. The relatively large numerical value of 

standard deviation in Figure 8a confirms that there is more variability in the distribution 

as shown by the low height of the gC Sketch. In Figure 8b, data point P on the far right 

has been dragged closer to the mean line and the numerical value of standard 

deviation has reduced from 1.20 to 0.92. Figure 8c has each of the six data points 

slightly dragged closer to the mean line and the numerical value of standard deviation 

has reduced from 0.92 to 0.64, showing even less variability in the data distribution 

than in the other two sketches. Figure 8 shows that as the data points are dragged 

closer to the mean, variability reduces and the curve peak rises.  

(a) (b) (c) 

Figure 8. The gC sketch: (a) Original placement of data points; (b) After 
dragging far right data point F toward the mean line; (c) After 
dragging far left data point T toward the mean line.  

The rise in the curve peak contrasts with the increase in the area of the square on the 

dyMS sketch as the magnitude of standard deviation increases. 

4.2.3. Potential Limitation of the gC Sketch  

The gC has some potential limitations which could include the following: Students 

may find it difficult to link a small number of discrete data points distributed on the 

horizontal axis with a normal curve that is fitted above the points (see Fig. 8). Students 

may be used to seeing, from their statistics courses and from textbooks, a normal curve 
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that is constructed from a graph such a histogram. Unlike a histogram, the gC sketch 

may not provide students with a direct way of connecting the variability of each data 

point on the horizontal axis with the area under the approximated normal curve. To 

address that potential limitation, the gC sketch could be redesigned with each data point 

having unit width, but the heights vary along the horizontal axis to form a histogram that 

is approximately normally distributed. This may provide students with a clearer sense of 

the area under the curve, which is a very important component for determining statistical 

probabilities for continuous random variables located on the horizontal axis. 

Given that the shape and position of a normal distribution curve depend on two 

key parameters—the mean and standard deviation—another possible option of 

designing the gC sketch would be to focus students’ attention directly on how the mean 

and standard deviation vary with Gaussian curve. This could be done by designing 

sliders for the mean and standard deviation, and linking the two entities with the height 

of the Gaussian curve. However, this option may have a limitation as well in that it does 

not necessarily help students see how the curve relates to the actual changes in the 

distribution of data points on the horizontal axis. In others words, it does not seem to 

address Garfield and Ben-Zvi’s concern that student generally have difficulties 

connecting the mean, standard deviation and the distribution of data. 

4.2.4. Analysis of the Dynamic Sketches  

Figure 9 shows how standard deviation and the mean vary as data points are 

dragged on the horizontal axis relative to the mean line. Dragging data points to the right 

side and away from the mean line increases the magnitudes of standard deviation and 

the mean, whereas dragging the points toward the mean line, but on the right side 

decreases both parameters.  

Similarly, if data points are dragged on the left side of the mean line and away 

from it, the standard increases whereas the mean value decreases. Keeping on the left 

side of the mean line, if a point is dragged toward the mean line, the magnitude of 

standard deviation decreases, but the mean increases.   
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Figure 9.  The behaviour of the standard deviation (Stdev.) and the mean as 
data points are dragged on the horizontal axis, to the right and to the 
left side of the mean line. 

Moreover, if all the data points are selected and dragged on the horizontal line to the 

right or left side of the mean line, standard deviation remains the same, but the mean 

decreases as the points are dragged away to the left side and increases as points are 

dragged to the right side of the mean line. The conditions apply in both sketches in 

Figures 7 and 8. In this study, the dragging action is confined to the horizontal axis, 

either to the left or to the right side of the mean line. 

4.3. Outline of the Concepts covered in the Introductory 
Statistics Courses 

Having described the design of the sketches, I now present an overview of the 

topics that participants covered in introductory statistics courses before participating in 

the interviews. The participants all took a university-level introductory statistics course 

that included three to four hours of lectures per week for thirteen weeks and forty hours 

per week of drop–in tutorials, which were conducted in the Statistics Workshop. I believe 

that participants came into the study having covered all the concepts that they needed in 

in the interviews. Moreover, the interviews were not designed for students to explore the 
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meaning of variability from a slightly different standpoint than what they may have 

learned in class. 

The topics covered by participants in their statistics courses included: describing 

distributions with graphs (e.g., bar graphs, pie charts, box plots, histograms and stem 

plots); describing distributions with numbers (i.e., the mean, mode, median, standard 

deviation; and the Normal distribution (e.g. the Normal curve describing density, applying 

the 68-95-99.7 rule, and applying the Standard Normal curve to solve statistical 

problems). Additional topics covered by participants included scatterplots, correlation, 

simple linear regression, marginal and conditional distributions, the chi-square tests and 

introduction to tests of hypotheses. The topics are broad, but I focused on the foundation 

ideas of variability, which are important for participants to progress to the more 

advanced topics in their statistics courses. 

4.4. The Study Participants  

Participants in the study were university students currently enrolled in a one-

semester first year statistics courses or who had completed the course in the previous 

semester. Instructors from the Department of Statistics taught the courses. I recruited 

volunteers for the study by contacting them directly from the Statistics Workshop, where 

I worked as a teaching assistant. At the beginning of the research study, I conducted a 

pilot study in which I interviewed seven volunteers. The analysis of the pilot video 

transcripts and notes enabled me to make three major changes in the final data 

collection framework. 

First, the pilot study revealed that all my study participants had not used 

Sketchpad. In the final interview, I ensured that participants practiced with Sketchpad 

before they did the scheduled interviews. Second, the analysis of the pilot video also 

revealed that some participants did not justify their predictions as I expected them to do 

(see Appendix B and C), but began checking predictions on the computer immediately 

after stating them. In the final interview, I adjusted the protocol to ensure that 

participants stated their predictions and justified them before using the sketches to check 

predictions. One practical step that I took was to prompt participants to talk about their 
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predictions before they could check on the computer. I also followed up their answers 

with further questions until they did not have more to say on a given thread of thought. 

Third, I added more functions on the dynamic sketches to include “hide” and 

“show” buttons (Figs.7 & 8). For example, the  “Hide measurement of standard 

deviation“ and “Hide measurement of mean” buttons made it possible for participants to 

make their predictions about changes in the mean and standard deviation without 

obtaining any hints shown on the sketches. Hiding the mean and standard deviation was 

my response to one of the recommendations that delMas and Liu (2005) made in their 

study (see Chapter 2). The information obtained from the pilot study contributed 

significantly to the changes that I made in the final study.  

In the final phase, I contacted ten new students again through the Statistics 

Workshop. The selection of study participants was purposive in the sense that I picked 

students who took introductory statistics courses, and also who were active in the 

statistics workshop. I also considered diversity in my selection in terms of the subject 

major of participants, and their gender. Out of the ten students contacted, eight (four 

male and four female) participated in the interview. The two students who did not 

participate in the study had changes in their study schedules. After collecting data from 

the eight participants, I watched the individual video recordings several times. I also 

transcribed the video records into text and compared different responses to the interview 

questions. Moreover, I analyzed screen shots of participants’ actions during the interview 

as well. Based on my initial screening of data, I decided to exclude three sets of data 

based on the following grounds.  

First, I left out data that had large portions of information that was not directly 

relevant to the topic of my study. For example, when asked about his/her thinking about 

the mean, one of the participants jokingly replied that the term ‘mean’ was to do a “mean 

person.” Another participant discussed the word “centre” in terms of the “epicentre” and 

gave an example of the “Tsunami” being the epicentre. Such were the portions of data 

that I felt would not relate to my research questions. Second, I also excluded data sets 

that I was unable to transcribe from audio to text because in some cases participants 

spoke so faintly that the words were not clear. Moreover, I did not have provision in my 

interview plan for recalling participants to clarify statements that they had made during 
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the interviews. After very careful screening, I was left with data for five participants. 

Below, I present a profile of the five participants whose interview data are analyzed and 

reported in this dissertation. I have used pseudonyms Anita, Boris, Halen, Kars and Yuro 

to protect the identity of study participants as required by the ethics. 

Anita  
Anita was in her second year pursuing a bachelor’s degree in health 
sciences. She had used SPSS software in her statistics course, but had 
not used Sketchpad. Anita practiced with Sketchpad before the final 
interview and was comfortable with the software during her interview. 
Anita did the interview in the last week of the semester before taking her 
final examination in statistics. 

Boris 
Boris was in his third year pursuing a bachelor of statistics degree, 
majoring in actuarial science. He had taken an introductory statistics 
course in the previous semester. Boris had not used Sketchpad before 
but had used JMP statistical software in his statistics course. He had a 
stronger background in statistics and mathematics than the other 
participants, partly as a requirement for gaining his current subject major. 
Boris did the interview toward the end of the semester.  

Halen  
Halen was in her third year pursuing a bachelor’s degree in health 
sciences. Like Boris and Anita, Halen had not used Sketchpad before, but 
was familiar with the JMP and SPSS software from her statistics course. 
Halen practiced with Sketchpad before the interview and did not have 
problems using it in the interviews. She did the interview after writing all 
her semester examinations. 

Maya 
Maya was a third-year student pursuing a bachelor’s degree in health 
sciences. Like the rest of the participants, Maya had not used Sketchpad 
before, but was familiar with JMP software. She practiced with Sketchpad 
before the interview and showed no difficulty using the software in the 
interview. Maya participated in the interview before her final examination 
in statistics.  

Yuro  
Yuro was in his third year pursuing a bachelor’s degree in health 
sciences. He did the interview at the end of the semester after writing his 
final examination in statistics. Like all participants, Yuro had not used 
Sketchpad before but was familiar with the JMP software from his 
statistics course. Yuro practiced with Sketchpad before the interview and 
never showed any difficulty with Sketchpad in the interview. 
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As I stated earlier, the pilot study revealed that my study participants had not 

used Sketchpad before the interviews, but were familiar with statistical data analysis 

software. However, after some practice with Sketchpad before the interviews, 

participants showed no difficulty using Sketchpad in the interviews. Their familiarity with 

other statistical data analysis software could have contributed to their relatively short 

time to adjust to using Sketchpad. Also Sketchpad's dragging facility seemed to allow 

participants use it without prior knowledge of Sketchpad. 

4.5. The Interview Tasks  

 I designed a set of four different tasks that altogether took approximately fifty 

minutes per interview session. The tasks include one short opening task (10-12 

minutes); two longer tasks (30 minutes) that participants solved with the dynamic 

sketches; and one short task at the end of the session (10-12 minutes). In the opening 

task (Task 1), I asked participants to briefly describe their thinking about six terms in 

Appendix A. However, in the end I only analyzed their thinking about three terms shown 

in Figure 10, which I considered more related to my study on variability. I initially 

included the six items so as to gradually lead participants to the constructs that I was 

aiming for, rather than ask them directly about the three constructs. For example, I first 

asked them about “centre” before asking them to talk about the “mean.” 

TASK 1: In this activity, you are to briefly describe what comes to your mind 

when I mention the following terms: (a) Distribution; (b) Mean; and (c) 

Standard deviation. 

Figure10.  The interview task used to collect data at the beginning  

The choice of the three terms in Figure10 was also informed by the issues that I found in 

my review of the literature (Chapter 2). 

In Task 2 in Figure 11, I read out the instructions to the participants and clarified 

the tasks before they started to perform the task. I also ensured that they were 

comfortable with Sketchpad for checking their predictions.  
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TASK 2: You are to drag any of the six data points A, B, C, D, E and F (Fig. 7a) on 

the horizontal axis, to the left or to the right of the mean line and observe how the 

magnitudes of the standard deviation and the mean change. Before you drag any 

point, predict how standard deviation, the mean and areas of the squares change as 

you drag the point on the horizontal axis.  

Figure11.  The interview task based on the dyMS sketch 

Task 2 relates to the properties of the standard deviation and the mean, which I 

reviewed in Sections 4.1.1-4.1.2. 

In Task 3, shown in Figure 12, I read out the instructions to the participants and 

answered any questions before participants started on the task. I also ensured that 

participants explained their predictions before checking with the dynamic sketches. Task 

3 connects changes in standard deviation and the mean, with changes in the height of 

the gC curve, as data points are dragged on the horizontal axis. Detailed description of 

Tasks 2 and 3 are in Appendices B and C respectively. 

TASK 3: You are to drag any of the six data points T, S, R, P, Q and O (Fig. 8a), on 

the horizontal axis, to the left or right of the mean line and to describe how standard 

deviation and the mean, as well as how height of the gC sketch, change as you 

drag the points on the horizontal axis. Before you drag any of the points, first predict 

how standard deviation, the mean, and the height of the curve will change as you 

drag a data point.  

Figure 12.  The interview task based on the gC sketch 

In Task 4, shown in Figure 13, participants reflected on a one-item task about 

standard deviation. I conjectured, based on participants’ activities with the dynamic 

sketches that they would also include the notions of distribution and mean while 

reflecting on standard deviation. Hence, I did not ask participants about the mean and 

distribution directly.  
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TASK 4: In this activity, you are to say what comes to your mind when I mention 

the term Standard deviation. 

Figure 13.  The interview task at the end. 

4.6. Data Collection  

I used a one-on-one, task-based, clinical interviewing method (Ginsburg 1981; 

diSessa, 2007) to collect data from my participants. All the interview activities were 

videotaped. In Task 1 (Fig. 10), I asked participants to describe their thinking about the 

concepts of distribution, mean and standard deviation before they interacted with the 

dynamic sketches. These terms were chosen, among the six original terms, because 

they relate more to the features of variability in a data set. This interview segment 

informed the study on students’ thinking about the notions of standard deviation, mean 

and the distribution before interacting with dynamic sketches. The data collected from 

this segment contributed to answering my first research question.  

In Task 2, with the buttons for standard deviation and the mean in Figure 7a, 

turned off so that no hints were provided on the screen, I asked participants to predict 

how the mean, standard deviation and the squares would change, if they dragged the 

any data point on the horizontal axis (to left or right side of the mean line). My interview 

data were participants’ verbal statements, their drawings on paper or in the air, as well 

as body movements, especially their hand movements. I recorded participants’ actions 

during predictions and also during interactions with the sketches. The data collected 

from this segment contributed to answering my second, third and fourth research 

questions.  

In Task 3 (Fig. 12), which was implemented with the gC sketch (Fig. 8), I ensured 

that the numerical values of standard deviation and mean were turned off. I then asked 

participants to predict how the magnitudes of standard deviation, the mean as well as 

the height of the gC curve would change if they dragged the data points on the 

horizontal axis. I did not specify the direction of dragging because I assumed that 

participants would include the direction of dragging from the mean line in their 
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predictions. I followed participants’ initial responses with probes until they exhausted 

their thoughts. After predicting the changes on the sketch, participants used the 

Dragging tool and moved data points along the horizontal axis as they talked about the 

changes that they noticed on the gC sketch. The aim this task was for participants to 

connect the changes in the standard deviation and the mean, with the changes on the 

curve peak and the data distribution. Task 3 contributed answers to my second, third 

and fourth research questions.  

In the Task 4, (Fig. 13), participants reflected on the notion of the standard 

deviation, similar to one of the questions they answered at the beginning of the 

interview. This task informed the study on participants’ thinking about variability after 

interacting with the dynamic sketches. Data collected from Task 4 contributed to 

answers to my third and fourth research questions.  

The video records included participants’ verbal statements, drawings, as well as 

gestures, especially, hand movements. I watched the videotapes several times and also 

took screen shots of participants’ gestures and drawings as they expressed their thinking 

about the notions of variability. I transcribed all the video records of the interviews into 

text and analyzed them. In my analysis, I paid close attention to statements that related 

to aggregate reasoning with data. I also analyzed participants’ statements on their use of 

the Dragging tool and how it enabled them to think about variability.  

I adopted clinical interviewing method, drawing on the work of Piaget (1972), and 

the more recent work of Ginsburg (1981) and diSessa (2007). Although Piaget’s work 

focuses on young children, his theory has been reformulated to accommodate other age 

groups as well. From my review of literature, I found that clinical interviewing technique 

can facilitate collecting very helpful insights from participants through their statements. 

Those statements and the different expressions from participants can provide 

information that may lead to, for example, redesigning the task to solve a given 

mathematical problem. Moreover, clinical interviewing also supports hypothesis testing 

(Ginsberg, 1981) for instance, by asking participants to make predictions on specific 

tasks and then check their predictions.  Furthermore, according to diSessa (2007), 

clinical interviewing method is also suitable for identifying the cognitive processes behind 

intellectual tasks. In fact, diSessa work relates more to my study in the sense that his 
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research involves clinical interviews with participants using computer technology. The 

next section provides some theoretical perspectives that informed my data collection.   

4.6.1. Theoretical Perspectives used in the Data Collection 

I designed my data collection procedures broadly based on the foundations of 

statistical thinking, but more toward the considerations of variability. I thus aimed at 

helping my participants engage and reason with data distributions in the dynamic 

sketches other than use the sketches as if they were representing static information 

(Wild & Pfannkuch, 1999; Konold & Pollatsek, 2002; Hancock, Kaput, & Goldsmith, 

1992). I also aimed at moving participants away from focusing on calculations, to, for 

example, detecting and discovering patterns in the data distributions; generating 

hypotheses about data distributions, and physically checking their hypotheses with the 

dynamic sketches (Pfannkuch, 2005a; Watson, 2005; Ginsberg, 1981). Moreover, I 

incorporated in my study, developing participants’ skills in making judgements in ways 

that would help them derive meaning from my sketches (Friel, Curcio, & Bright, 2001). 

Furthermore, I considered in my designs, delMas, Garfield, & Oom’s (2005) proposal 

that incorporating the ideas of area and density in graphs were important in developing 

students’ understanding of theoretical distributions. 

4.7. Summary 

In this Chapter, I have described the design of two dynamic sketches (the dyMS 

and gC sketches) whose main functions are to show: i) how standard deviation varies 

with data distribution from the mean; and ii) how standard deviation controls the height, 

and shape the Gaussian curve. I have also discussed the interview tasks that I use in my 

data collection and provided the rationale for choosing clinical interviews over any other 

interviews. One of the influences of clinical interviews on this study is that it can provide 

in-depth information on participants’ mathematical thinking based on their interview data. 

Finally, I have provided the theoretical perspectives that informed my data collection 

procedures. For example, the tasks were designed with the aim moving students away 

from focusing mostly on the skills of calculations to helping them detect, discover and 

reason about patterns in data distributions. The tasks aimed at provoking participants to 
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generate, justify and test their hypotheses about the changes in data distributions, the 

mean and standard deviation. In Chapter 5, I analyze data that I collected following the 

Methodology discussed in the current chapter. 
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5. Analysis of Data 

In this chapter, I use the two main theoretical perspectives that I discussed in 

Chapter 3 to analyze my interview data. First, based on the foundations of statistical 

thinking (Wild & Pfannkuch, 1999), and focusing on the considerations of variability, I 

analyze episodes of my participants’ considerations of features of variability in the static 

and in the dynamic computer-based environments. By the “considerations of variability”, 

I mean participants’ expressions that reveal evidence of their understanding of the 

features of variability, and the functional connections among standard deviation, the 

mean and the distribution of data set. By “understand”, I mean participants’ verbal or 

written expressions, which reveal mathematically/statistically accepted statements. The 

second theoretical perspective used in the analysis of data is semiotic mediation 

(Vygotsky, 1978; also elaborated by Falcade, Laborde & Mariotti, 2007; as well as 

Bartolini-Bussi & Mariotti, 2008). Using the semiotic mediation lens, I will focus my 

analysis on participants’ use of signs produced during the tasks and how the signs 

mediate participants' understanding of statistical variability.  

Given that I use two main theoretical perspectives to analyze data for each of the 

five participants, some episodes of participants’ data will be analyzed from more than 

one theoretical perspective. I use the sign “[A#]” when citing an episode from participant 

A’s data. For example, “[Anita, 5]” represents Anita’s statement cited elsewhere in the 

dissertation. However, when citing in Anita’s own data, I only use the “[5]” without her 

name. As well, the sign “[…]” is used to indicate lengthy statements that have been 

shortened for clarity, but without aiming at changing the original meaning. In my analysis 

I will use the terms "gC sketch" and "gC curve" to mean the same thing, especially when 

I refer to the "height" or "peak" of the gC curve. Lastly, the italicized statements in the 

square brackets are my own, aimed at providing additional information on the analysis. 

Data for the five participants are presented and analysed following the same order—

Anita, Boris, Halen, Maya and Yuro—as presented in Chapter 4.  
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5.1. Anita 

I first analyze Anita’s interview data from Task 1, and then examine her 

interactions with the dynamic sketches in Tasks 2 and 3 (in Sections 5.1.2 and 5.1.3). In 

Section 5.1.4, I analyze Anita’s final reflections in Task 4. 

5.1.1. Activity in the Static Environment  

In Task 1, I prompted Anita to “describe the term distribution.”  

[1] Anita: Well, immediately what pops up is the normal distribution curve 
because that is part of what we have in statistics and also in my 
other courses; and we also learn every day in our lives as well 
[that] many things are normally distributed. 

For Anita, her image of the distribution was the “normal distribution curve”, because “that 

is part of what” she learned “in statistics and also in other courses.” I asked Anita for 

some examples of the things that are “normally distributed” “in our lives.”  

[2] Anita: For example, grades are normally distributed, so many of my 
course grades are normally distributed to get the normal standard 
for the class grades.  

Anita’s statements [in 1 & 2] linked the normal distribution to her “course grades”, 

which she said were “normally distributed.” Using Konold and Higgins’ (2003) categories, 

Anita used the term distribution as a pointer to her course grades rather than distribution 

as a construct of how a data set is spread out from its centre.  

I then asked Anita, “What about the term mean?” Anita’s response focused on 

the “simple definition” of the mean and the procedure of obtaining the average of a data 

set.  

[3] Anita:  I immediately think of averages because, um, well, simple 
definition of mean I guess would be adding up the numbers in the 
data set and then dividing it up by the figures you have [...]. 

By “adding up the numbers in the data set and then dividing it by the figures you 

have” [3], Anita’s did not think about the mean as a balance point in a dataset that can 

(Hardiman, Well and Pollatsek, 1984). According to Reid & Reading (2008), descriptions 
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that focus on single entities in a data set, with no attention to their connections to the 

distribution of data, show no consideration of variability. Anita’s thinking of the mean 

focused on calculating a single value rather than considering the mean as the balance 

point in a data set. 

When I asked Anita, “How about the standard deviation?” she paused for a 

moment and then said: 

[4] Anita:  I think that [standard deviation] is kind of related to the mean. As I 
said before, if you […] can figure out the mean of data […], then 
you can derive the standard deviation, um and you can also figure 
out the normal distribution curve. 

By “[standard deviation] is kind of related to the mean” in [4], Anita seemed to 

suggest that standard deviation is also obtained through a procedure similar to the way 

in which the mean is derived. She also correctly asserted that one needs the mean in 

order to compute the standard deviation. Further, she said that both the mean and the 

standard deviation were needed in order to “figure out” the normal distribution curve. I 

expected Anita to provide a more general sense of standard deviation as a measure of 

the spread of data from its centre. However, Anita’s image of standard deviation focused 

on obtaining standard deviation by “deriving” it. Based on Wild and Pfannkuch’s (1999) 

as well as Konold and Higgins’ (2003) aggregate category, which considers a data set 

as a whole, including how it is spread out from the centre, Anita’s consideration of 

standard deviation did not show aggregate reasoning. Rather she seemed incorrectly, to 

suggest that standard deviation meant the same thing as the Z-scores in the Standard 

Normal curve. I will now analyze Anita’s interactions with the dyMS and the gC sketches.  

5.1.2. Activity with the dyMS Sketch 

In Task 2, based on Figures 7a and 11, I asked Anita to “predict how the squares 

would change if you move any of the data points on the horizontal axis?” Anita replied: 

[5] Anita:  Well, if I take one [data] point for example B [below Fig. 14], if I 
move it away from the centre, um, square [B] might get ah, I think 
the [...] the square will move this way [moved her left hand to left 
side of the sketch] […] so it would get a bit bigger, that’s what I 
think.  
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Although Anita had not yet used the Dragging tool to “move” the data points on 

the horizontal axis, her prediction “I think the […] square will move this way […] so it 

would get a bit bigger” seemed to consider the direction of movement and the magnitude 

of change in the square, which the interview question did not anticipate. The interview 

question anticipated that the considerations of variability would primarily be occasioned 

by dragging the data points on the horizontal axis using the Dragging tool. It seems that 

visualizing the sketch evoked an image of a physical motion in Anita’s mind.  

Moreover, Anita’s prediction that “if I move it [point B] away from the centre […] 

the square will move this way […] so it will get bigger” acknowledged both the “centre” of 

the distribution and the deviation from the centre, suggesting an aggregate way of 

reasoning with data (Wild & Pfannkuch, 1999). Carlson et al. (2002) categorize 

statements such as [5], which consider change in the direction of movement of one 

entity in relation to change in magnitude of another entity, as evidence of quantitative 

coordination.  

I asked Anita to talk a bit more about the change in the magnitude of the 

standard deviation, “What about the standard deviation?” I asked. Anita paused for a 

moment, and then replied:  

[6] Anita:  If the mean gets smaller, then the standard deviation would um 
[pause] I think the standard deviation would um, get larger. 

Using the analysis framework in Figure 9, Anita’s prediction in [6] is correct, but 

only in the sense that dragging a point to the left side and away from the mean line 

would decrease the mean as standard deviation increases. Her prediction is consistent 

with Carlson et al.’s (2002) covariational reasoning, which accounts for a ‘change in 

entity Y in relation to a change in entity Z’. In Anita’s case, covariational reasoning is 

about the mean getting “smaller” as “standard deviation would […] get larger” through 

dragging a data point to the left side of the mean line. In general, the mean and standard 

deviation do not co-vary, but there are maybe cases in which both the standard deviation 

and the mean increase or decrease together (as in Fig. 9).  
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Figure 14. A snapshot of the dyMS Sketch before dragging the data points.  

To prepare for checking her predictions, I asked Anita to click with mouse 

pointer, the buttons “Show measurement Stdev.” and “Show measurement mean” on the 

dyMS sketch (Figure 14). Before Anita dragged a data point on the horizontal axis, the 

numerical values of standard deviation and the mean  on the sketch were Stdev.=0.33; 

and Mean=1.89. I prompted Anita, “go ahead and […] check your predictions.”  

Anita selected data point F on the far right of the mean line with the mouse 

pointer and using the Dragging, she moved point F on the horizontal axis slightly to the 

right side. She stopped and said:  

[8] Anita:  The mean gets smaller [as] standard deviation gets larger.  

 It seems Anita expected the mean and standard deviation to change the same way as 

they did on the left side of the mean line [in statement 6]. I asked her to “move the data 

point [F] again and watch how the mean and standard deviation are changing”. She 

dragged point F slowly to her right side and as the square grew bigger, she suddenly 

stopped dragging, suggesting some surprise. She said, “First, the mean got smaller, 

then it got larger, or maybe I’ll drag it back again and see.” She dragged the same data 

point briefly to her left and then back to her right side and continued dragging farther to 

the right of the mean line (Figure 15). Then she said: 

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Stdev = 0.33

Mean = 1.89

Show Unit PointsShow Unit PointsShow Unit PointsShow Unit PointsHide Measurement Mean

Hide Measurement Stdev
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[10]. Anita:  Oh, so both of them [ the mean and standard deviation] got larger, 
yeah, ok, so I thought the mean would get smaller and the 
standard deviation would get larger but actually both of them are 
increasing. 

Anita’s statement [10], “I thought the mean would get smaller and standard 

deviation would get bigger, but actually both of them were increasing” is consistent with 

the analysis in Figure 9. Her statement also suggests evidence that the Dragging tool 

enabled her to connect changes in standard deviation with changes in the mean, as the 

she dragged the data points on the horizontal axis. By “Oh, so both of them got larger”, 

Anita showed some surprise on realizing that the standard deviation increased as the 

mean increased. She had predicted that the mean would decrease as standard deviation 

increased and her current result contradicted her prediction [8]. The contradiction 

seemed to cause a new realization by Anita, from her statement “Oh so both of them got 

larger, […].” 

 

Figure 15. The square grew so big after Anita dragged data point F farther to 
the right.  

I asked Anita to “explain why the mean increased as standard deviation 

increased.” [10] Anita argued that if the distance from the mean of a data point was 

large, then the magnitudes of standard deviation and the mean in the data set would 

also increase: 
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[11] Anita:  Yes, because um if you drag this data [touched point F with 
mouse pointer] farther to the right […] then the mean will increase 
and therefore the standard deviation will increase. If I move this 
[touched point C, Fig. 14, with mouse pointer] a little bit to the left, 
then it will decrease because I’m moving it to the negative side of 
the graph, so it slowly decreases as you could see. 

The statement “if I move this [data point C] a little bit to the left, then it will 

decrease because I am moving it to the negative side of the graph […]” revealed Anita’s 

consideration of variability in the sketch. Anita’s may have used the change in the 

direction of dragging “to the negative side” to make a correct analogy with the “decrease” 

in the numerical values of the mean and standard deviation. Her statement supports my 

argument that the Dragging tool was used as semiotic mediator (Falcade et al., 2007) for 

Anita to link the changes in the mean and the standard deviation, with the direction of 

dragging the data point from the mean line.  

Moreover, Anita’s statement [11, lines 1-3], “if you ‘drag’ this data”, “the mean will 

‘increase’” and “therefore standard deviation will ‘increase’, suggests a linkage between 

the two entities, as well as the artifact signs describing actions with the Dragging tool 

(Bartolini Bussi and Mariotti, 2008). The statement “if you ‘drag’ […] farther to the right” 

[11, line 2] suggests a pivot sign linking the artifact sign to the mathematical sign, “then 

the mean will increase and therefore standard deviation will ‘increase’.” Based on 

Falcade et al. (2008), Anita’s statement [11] supports my previous argument that she 

used the Dragging tool as a semiotic mediator to explore the relation between the mean 

and the standard deviation. 

5.1.3. Activity with the gC Sketch 

In Task 3, based on Figure 16, I asked Anita to “predict how the curve [peak] 

would change if you drag the data points on the horizontal axis.” She predicted that the 

curve peak would “rise a bit more” if a point was dragged toward the mean line: 

[13] Anita:  I think if you move this data point at O (Fig. 16) toward the mean 
[line], it will make the shape rise a bit more. 
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Figure 16. A snapshot of gC Sketch before the dragging action  

Although Anita’s statement [13] was correct, she did not justify it. I asked her why the 

peak of the gC sketch would “rise a bit more?” Anita argued that it was because at point 

P (Fig. 17), the curve “is really flat”,  

[14] Anita: Because already at P point over here [Fig. 17] this part of the 
graph nearby the P point is really flat. 

 

Figure 17. Anita gauges the flatness of the gC sketch at point P. 

Anita positioned her thumb and index finger as if she gauging the thickness of the ‘curve 

at point P (Fig. 16).  
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However, Anita’s prediction was not explicit about the change in the magnitude of 

standard deviation in relation to the height of the GC sketch. In Chapter 4, I 

hypothesized that participants will be challenged predicting changes in the magnitudes 

of standard deviation and the mean, relative to the rise or fall in the height of the gC 

curve. I conjectured that participants would link the increase in the height of the gC curve 

with an increase in the magnitude of standard deviation and vice versa, contrary to the 

framework presented in Figure 9.  

I probed Anita, “how do you know that the curve peak will rise as you move the 

data point toward the mean line?” She paused for a moment and then stated her 

“theory”: 

[15] Anita: Ok, well um, I’m not exactly sure it [the curve peak ] would actually 
rise or would be flat, but I have a theory that it will rise a little bit 
um, since it would be closer to these other data points [touched on 
the data points nearer the mean line with the mouse pointer]. I 
think with more clustered data points, the mean will also increase 
and therefore the graph would also rise.  

Anita is correct in saying that clustering will make the peak rise, but she is 

incorrect in saying that clustering will cause the mean to increase. I asked Anita to “[…] 

go ahead and test” her theory with the gC sketch. She dragged data point O (Fig. 16) on 

currently on the right side toward the mean line. Then she dragged data point P, closer 

to point Q. As she dragged the points closer to the mean line, the curve peak kept on 

rising (Fig. 18a), and when she noticed the pattern, she said “oh!” as she momentarily 

stopped dragging. Anita dragged data points T, S and R, one after another toward the 

mean line and when the curve in Figure 18b showed, she said: 

[16] Anita: Actually, I didn’t know that.  

It’s not clear if Anita “didn’t know” because she seems to verify, through dragging, her 

prediction that clustering the data point will indeed increase the height of the curve. So 

perhaps she was not sure of her prediction. However, perhaps she noticed, as she 

dragged the data points towards each other, that the value of the mean was changing—

when dragging points from the left toward the mean line, the mean increased and when 

dragging points from the right towards the mean line, the mean decreased. So her 
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comment may indicate that she did not know how the mean would change when she 

clustered the data points.  

 
(a) 

 
(b) 

Figure 18. (a) Anita dragging data points closer to the mean; (b) Anita used her 
right index finger to draw a Normal curve in the air.  

Based on Falcade et al. (2007) findings, I argue that the Dragging tool served as a 

semiotic mediator for Anita to connect the changes in the curve peak with changes in the 

spread of the data points on the horizontal axis.  

5.1.4. Reflecting on the Standard deviation 

In Task 4, I asked Anita “What do you say about standard deviation?” I expected 

her to connect the concept of standard deviation with the mean as well as with the 

distribution of data points on the horizontal axis. 

[17] Anita: Standard deviation, um, I did one of those examples based on the 
data points and the graphs, um, I realized that as the mean was 
increasing farther to the right, the standard deviation was also 
increasing, so that was a very direct relationship with the mean, 
[…] whenever you moved a certain data point to the right or left, 
based on how much you moved it […]. 

By “I realized that as the mean was increasing farther to the right, the standard 

deviation was also increasing, so that was a very direct relationship with the mean”, 

Anita referred to the functional linkage among the standard deviation, the mean, and the 

data distribution of data “whenever you moved a certain data point to the right […] the 

standard deviation was also increasing […].” Her statement, though incorrect, partially 
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evokes Wild and Pfannkuch’s (1999) aggregate reasoning perspective, since she seeks 

to establish a connection between different features of variability in a data set.  

Anita’s statement [17], “as the mean was ‘increasing’ [17, line 2] […] standard 

deviation was also ‘increasing’ [17, lines 2-3]” suggests the artifact signs (Bartolini-Bussi 

and Mariotti’s, 2008). The statement “increasing farther to the right” suggests the pivot 

sign, which links the artifact sign with the mathematical sign, “the standard deviation was 

also increasing, so that was a very direct relationship with the mean” [17, lines 2-4]. 

Based on Bartolini-Bussi and Mariotti’s classification of signs, Anita seem to move from 

the less mathematical and more action related statements (artifact signs), to the more 

formal mathematical statements (mathematical signs), such as, “I realized that as the 

mean was increasing farther to the right, the standard deviation was also increasing.” In 

this example, the signs are the increasing numerical scales for the mean and standard 

deviation, as well as the statements that Anita makes about the changes she observes. I 

argue that the Dragging tool, used as semiotic mediator, enabled Anita to see the 

connections among the three features of variability—standard deviation the mean, and 

distribution. 

5.1.5. Summary of Anita’s Data Analysis 

Analysis of Anita’s data revealed that in the static environment, she focused 

mostly on the procedure for calculating the mean and deriving standard deviation from 

the mean rather than focusing on the meaning of those concepts. For example, to Anita, 

the mean was obtained by adding up data points and dividing the sum by the number of 

data points present. Anita also seemed to incorrectly suggest that standard deviation 

was the same as the Z-scores in the standard normal curve, instead of describing 

standard deviation more generally as how spread out or clustered a data set is from its 

centre. Thus, in terms of considerations of variability, Anita did not provide a clear link 

among the features of variability—standard deviation the mean, and distribution—being 

discussed in this study. 

However, after interacting with the sketches, Anita showed some evidence of 

considerations of variability (e.g., in statements [13], [15], [16], & [17]). Anita’s 

expressions after interacting with the sketches compared to her statements in the static 
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environment suggest evidence that the Dragging tool mediated the mathematical 

meaning of standard deviation and enabled Anita to become more aware of the features 

of statistical variability.  

5.2. Boris 

Boris’ followed the same interview format as Anita, starting with Task 1. In 

Sections 5.2.2 and 5.2.3, I analyze Boris’ interactions with the dynamic sketches (Tasks 

2 & 3). Section 5.2.4 provides Boris’ reflections on the term standard deviation toward 

the end of the interview. In Section 5.2.5 I provide a summary of my analysis of his data. 

5.2.1. Activity in the Static Environment  

In Task 1, I asked Boris, “What comes to your mind when you hear the word 

distribution?” Boris replied:  

[1] Boris:  It’s [the] observed frequency of some data [pause], yeah. 

By the observed frequency of some data”, Boris probably meant how a data set 

is distributed. Although Boris’ thinking about distribution was in general a correct one, he 

did not refer to the centre of data and the spread of data from the centre. Boris’ reply to 

my next question “what about the mean?” was equally a brief one. He answered in one 

word “average.” Boris did not elaborate what he meant by “average” as he was generally 

brief in his answers. However, he probably meant the same process that Anita described 

about the mean in [Anita, 3]. 

I then asked Boris, “what about the standard deviation?” Boris paused for a 

moment, moved his right hand across toward his left side as he said: 

[2] Boris: [standard deviation] kind of measures the variation of data from 
the mean [pause], standard deviation, deviation [pause], yeah 
finish with that. 

Boris repeated the words “standard deviation” and “deviation” a number of times 

after stating that “[standard deviation] kind of measures the variation of data from the 

mean” [2]. Although Boris was generally brief, in general, his thinking about standard 
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deviation is a more correct representation of standard deviation than Anita's. His thinking 

seems consistent with Wild and Pfannkuch’s (1999) aggregate reasoning that 

emphasizes identifying the centre of data and deviation of data from the centre. 

5.2.2. Activity with the dyMS Sketch 

In Task 2, based on Figures 11 and 14, I asked Boris to “predict how the squares 

would vary if you drag any of the data points on the horizontal axis”:  

[3] Boris:  If you move [data points] away from the centre, the square is 
getting bigger and bigger because the square is the distance from 
the centre right? If you move away you get a bigger square […]  

Boris’ description, “the square is getting bigger and bigger […] if you move away 

from the centre”, suggests dynamic thinking about the change in the square in relative to 

the distance of a data point from the mean line. His verbal statement not only suggests 

covariational reasoning (Carlson et al. 2002), but it also includes some aggregate 

reasoning with the graph as it relates changes in the spread of data with the “centre.” It 

seems that the sketch in Figure 14 evoked the image of ‘physical movement’ in Boris’ 

mind, as he imagined the square “getting bigger and bigger.” Boris’ statement also 

reveals a consideration of variability in that he recognizes “the centre” and correctly 

predicts that “if you move away” from the centre, you get a bigger square.” The “move 

away”, and “the square is getting bigger and bigger” are examples of artifacts signs 

(Bartolini Bussi & Mariotti, 2008), in that the signs relate directly to the activity of 

dragging the points with the Dragging tool.  

Boris’ predictions focused more on moving data points “away” from the mean 

line. I asked Boris, “what if you move data points on the opposite side of the mean line?”  

Boris looked at the sketch (Fig. 14) for a moment. Then he said, “Well, if you 

move data points”, [paused, his eyes still fixed on the sketch], then he continued, 

[4] Boris:  Oh yeah, yeah, on the other side, it doesn’t matter as long as you 
move away from the centre, you will get bigger square […]. 

By statement [4], Boris meant that dragging a data point away from the mean line 

did not matter "as long as you move away from the centre" the square area will increase. 
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His prediction in [4] is consistent with the analysis in Figure 9 in that standard deviation 

increases as data points are dragged away from the mean line on either side. I asked 

Boris “[…] go ahead and check your prediction” and he using the Dragging tool, he 

moved data point F to the right side of the mean line. As the square area F increased 

(Fig. 19), he said:  

[5] Boris:  Yeah, yeah, they are getting bigger, the boxes are just scales; 
they are actually just scales to see how the relative differences 
are. That was interesting.  

 

Figure 19.  Boris dragging a point F farther away from the mean on the right  

Given that Boris had correctly predicted the change in the squares in statement 

[4], his reaction in [5] only served to confirm his prediction. By “the boxes are scales”, 

Boris suggested that the areas of the squares represented how far apart a given data 

point was from the mean line. A big square area meant that the data point was quite far 

away from the mean line, whereas a small square corresponded to a data point closer to 

the mean line. Boris’ statement that “the boxes are scales” is interesting in that he 

evokes a new metaphor of weight (scales are used for measuring mass) to describe the 

relative differences in the spread of data points from the mean. 

In terms of physical actions, Boris moved body, especially his hands a lot as he talked. 

He also produced artifact signs more frequently than he did mathematical signs. For 

example, the statement “if you move [data points] away from the centre, the square is 

getting bigger and bigger […]”in [3] is a set of artifact signs linked to using the Dragging 
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tool to “move” or drag data points. It may be that artifact signs prompt more gestures 

than mathematical signs, which are often static and formal.  

5.2.3. Activity with the gC Sketch 

In Task 3, based on Figures 12 and 16, I asked Boris “to predict how the gC 

sketch” in Figure 16 “will change if you drag a data point on the horizontal axis.” He 

predicted that the gC sketch would be skewed on one side if he moved a point away 

from the mean line. However, if he moved the points closer to the centre, he went on, 

“the density will be more concentrated around the mean […]” [:6]: 

[6] Boris: Well if you drag a point, […] away from the mean, the curve will be 
skewed to that side [moved his right hand his right side] […]. As 
you move the points to the right, […] far away from the mean […] 
the curve will no longer be symmetric, instead it will be skewed on 
one side. If you move the points on that side [moved his right hand 
to left side], it will be skewed on that side. If the points are closer 
to the centre […] the density will be more concentrated around the 
mean […] you have like a sharp peak […]  

It is not clear why Boris thought that the distribution would be skewed. Perhaps in 

the initial presentation of the gC sketch, the points are distributed more or less 

symmetrically along the number line, and the curve is also symmetric. He may thus have 

thought that moving one of the points would distort this distribution and then skew the 

curve. In fact, as I explained in Chapter 4, I assumed a normally distributed data set, but 

I had not told Boris this before asking for a prediction.  

Boris’ prediction that “if the points are [moved] closer to the centre […], the 

density will be more concentrated around the mean […]” is one example of how standard 

deviation controls the shape of the curve, one main result that I was aiming for in the 

study. Although Boris did not mention standard deviation directly, his prediction 

suggested a connection with the magnitude of standard deviation. Boris was able to 

correctly link changes in the height of gC curve with the direction of movement of data 

points on the horizontal axis. I let him go ahead and check his prediction, “you can now 

test your predictions.” Boris used the Dragging tool and moved data point O (Fig. 16) on 

briefly to the right side and to his left, then back to his right. As he moved the point back 

and forth he said:  



 

77 

[7] Boris:  Yeah, skewed to the left, move away […]  

It was not clear if Boris actually observed a skewed distribution or he was recalling from 

his earlier prediction. But as he continued dragging the data point O toward the mean 

line the peak of the gC sketch continued rising (Fig. 20a), and Boris said, “if you move 

[…] to the centre […] you get a sharp peak.” Boris’ last statement confirmed his 

prediction in [6] that, “if the points are closer to the centre […] the density will be more 

concentrated around the mean […] you have like a sharp peak.” His statement also 

provides evidence that he used the Dragging tool as a semiotic mediator for connecting 

the rise in curve peak with the clustering of data points on the horizontal line. 

I asked Boris, “What happens if you move all the data points closer to the mean 

line?” Boris did not answer immediately, but he dragged the data points one after 

another, toward the mean line. He said, “well, this (Fig. 20a) is not quite centre yet […]” 

as he continued dragging the points closer to the mean line. When he obtained the 

sketch shown in Figure 20b, he stopped dragging and said: 

[9] Boris:  […] if you move everything at the centre, it will be a degenerate 
distribution […]. Any points not at the centre will have a zero 
density. You have like a vertical line, all the mass are 
concentrated there  

Boris did not answer my question but started dragging the data points perhaps to get 

answer to my question. It probable that he did not have the answer without first 

checking. After dragging the data points closer and obtaining Figure 20b, Boris talked 

about “a degenerate distribution”, and explained that any data point not close enough to 

the centre “will have a zero density.” His statement reveals the contribution of the 

Dragging tool that enabled Boris to easily and quickly produce different kinds of curves, 

including extreme examples as the one in Figure 20b.  
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(a) 

 
(b) 

Figure 20. (a) Boris dragging data points on the gC sketch toward the mean 
line; (b) Boris pointing up at “the vertical line” with his left index 
finger.  

The curve in Figure 20b also evoked a lot of mathematical signs from Boris 

compared with Anita, such as “degenerate distribution”, “zero density” and “vertical line 

[with] all the mass concetrated there”, which I had not anticipated in my design of tasks 

with the gC sketch. I attribute the generation of mathematical signs with the activity of 

dragging data points using the Dragging tool.  

5.2.4. Reflecting on the Standard deviation 

In Task 4, with the computer closed, I asked Boris, “What do you think about the 

term standard deviation?” Boris replied, as he moved his right hand to his right side, 

suggesting movement of points away on the right side of the mean line:  

[10] Boris:  Standard deviation, as you move the points away from the mean, 
[moved his right hand to his right side], the standard deviation 
increases, that’s what the graph shows. As you concentrate data 
at the center it gets less deviated, you get small values of standard 
deviation. If the data points are equal difference from each other, 
[…] shift[ting] the data points to the left or right […] just shifts the 
mean, but it won’t change the standard deviation. 

Boris’ statement [10] can be considered as a summary of the main constructs 

that he developed from his interactions with the sketches. First, the statement, “as you 

move the points away from the mean, the standard deviation increases” suggests 

dynamic thinking as well as a consideration of the functional connection among standard 
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deviation, the mean and the changes in the data distribution with dragging. Second, the 

last three lines in statement [10], which I have labelled [10b], reads: 

[10b] Boris […] If the data points are equal difference from each other, […] 
shift[ting] the data points to the left or right […] just shifts the 
mean, but it won’t change the standard deviation. 

Boris statement [10b] is still correct even if the data points are not placed at 

“equal” distances “from each other” on the horizontal axis. In fact, selecting all the six 

data points with a mouse pointer and dragging one of them on horizontal axis, will shift 

the mean, “but it won’t change” the magnitude of “the standard deviation”. In this 

example, the Dragging tool was used as a semiotic mediator for the functional 

connection between the mean and standard deviation as well as the data points. I argue 

that without dragging the data points and observing the patterns in the graph, it would 

have been more challenging for Boris to connect the patterns of change in the mean and 

the no change in standard deviation, with the distribution of data points on the horizontal 

axis. No other participant noticed this pattern on the sketches as Boris did.  

5.2.5. Summary of Boris’ Data Analysis 

In Task 1, Boris was quite brief in his responses compared with Anita. However, 

Boris’ statements in Task 1 provided generally correct statements about his 

consideration of variability compared with Anita. For instance, he considered standard 

deviation as a measure of “variation of data from the mean”, a description which, in 

general, is consistent with Wild and Pfannkuch’s (1999) as well as Konold and Higgins’ 

(2003) aggregate reasoning. Boris’ interactions with the dynamic sketches showed 

stronger and clearer considerations of variability than in the static environment in that he 

was able to connect the patterns of change in standard deviation with the dragging of 

data points [e.g. 10b]. After interacting with the dynamic sketches, Boris also showed 

more dynamic and physical thinking about standard deviation (e.g. in statement [10]) 

than he previously showed in the tasks. Boris' statements about the changes in different 

entities in the dynamic sketches (i.e., the standard deviation, the mean, the peak of the 

gC sketch, the dragging of the data points on the horizontal axis relative to the mean 

line) led me to think of extending the covariational reasoning perspectives proposed by 



 

80 

Carlson et al. (2002) as well as by Falcade et al. (2007). I will discuss the extension in 

Chapters 6 and 7. 

5.3. Halen 

Unlike Anita and Boris, Halen used a lot of drawings while solving Task 1. She 

also used gestures similar to those Anita and Boris made. In Section 5.3.1, I analyze 

Halen’s transcripts in the static environment, followed by her interactions with the 

sketches in Sections 5.3.2 and 5.3.3. Section 5.3.4 provides Halen’s reflections on the 

notion of standard deviation after the tasks. I provide a summary of analysis in Section 

5.3.5. 

5.3.1. Activity in the Static Environment  

On Task 1, I asked Halen, “What comes to your mind when you hear the word 

distribution?” Like Anita, Halen said the “normal distribution” was “the first thing” that 

came to her mind: 

[1] Halen:  […] to me the first thing would be like the normal distribution […] 
and then it could be like other distributions, like […] skewed to one 
side, or to the other side. 

For Halen, the first meaning of distribution “would be like the normal distribution” 

and “then other [...] distributions.” Halen’s image of distribution, like Anita, focused on 

one example, the normal distribution and did not include the spread of data values from 

the centre (Konold et al., 2003; Wild & Pfannkuch, 1999). To Halen and also Anita, the 

term distribution served as pointer (Konold & Higgins, 2003) to the normal distribution 

rather than how data is spread out from its centre. It may be that students pay more 

attention to the normal distribution than to distribution because it applies directly to their 

concerns such, as in grading their courses (e.g., [Anita, 2]). I asked Helen, “how about 

the mean?” 

[2] Halen:  Mean to me is like the average, like if you have a couple of 
numbers, you add them all up and then you divide by how many 
numbers there are, you get like the average or the mean. 
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Halen’s thinking about the mean was associated with a formal mathematical 

process, “if you have a couple of numbers, you add them all and divide by how many 

you have.” Her thinking of the mean was unlike the balance model proposed by 

Hardiman, Well, and Pollatsek’s (1984). Hardiman et al.’s model considers the mean as 

a location of the centre of data, but the centre can change with the distribution of data. 

Lastly, I asked Halen about standard deviation, “what about standard deviation?” Halen’s 

statement, like Anita, also suggested thinking about the Z-scores in the standard Normal 

curve.  

[3] Halen:  Standard deviation […] um, that is similar to the deviation […] If 
you have like this one right here [she sketches the curve shown in 
Fig. 21], like the standard deviation at the centre will be zero, and 
then […] you have in here like one standard deviation will be sixty 
eight percent […]. I forgot the numbers exactly but from here to 
here that will be the second standard deviation, and from here to 
here that will be the third standard deviation from the centre. 

Halen sketched the normal distribution curve (Fig. 21) and explained that “[…] 

the standard deviation at the centre will be zero […] one standard deviation will be sixty 

eight percent […]”. Halen’s description of the so call “68-95-99.7” principle suggests that 

she recalled from her introductory statistics course. The “68-95-99.7” rule of thumb is a 

principle which relates the spread of data from the mean to the estimated percentage of 

the population that has been covered under a given investigation. For example two 

standard deviations away from the mean represent an estimated 95% coverage of the 

total population.  
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Figure 21.  Halen sketch of the normal distribution curve 

Although Halen’s specified the centre of the distribution and the deviations from 

the centre in her sketch, she did not provide a clear image of the standard deviation. Her 

sketch instead focused on describing the Z-scores (also called the standard scores), 

which are measures of how many standard deviations are above or below the mean of a 

given data set. I expected Halen to relate standard deviation more generally to the 

measurement of variability or spread in a data set. Although Halen’s drawing shows 

some considerations of how data vary from the mean, it is a special case of the Normal 

distribution curve. Moreover, her statement seemed to incorrectly suggest that 

distribution is the same thing as Normal distribution curve, and that the standard 

deviation is the same as the Z-score. According to Konold and Higgins (2003), Halen 

used the Normal distribution as a pointer to distribution and the Z-score as a pointer to 

standard deviation. 

5.3.2. Activity with the dyMS Sketch  

In Task 2, based on Figure 14, Halen was asked to “predict how the standard 

deviation, the mean and area of the squares change as you drag a point on the 

horizontal axis”: Halen’s prediction was not clear. It appears she imagined that the 

widths of the squares would change but not the heights if the data points were dragged 

on the horizontal line: 

[4] Halen: Um, well if […] you were to stretch this way [she move a data 
point away on the left side of the mean line—Fig. 22], I think they 
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[the squares] will become […] a bit more narrow. […] as you go 
this way [outward] it becomes like skinnier and larger than this. 

 

Figure 22.  Halen’s sketch showing the ‘squares’ looking “skinnier”  

By the squares “become a bit more narrow as you go this way” Halen probably meant 

that the lengths of the squares would increase as the data points were dragged away 

from the mean line (Fig. 22), but not the heights of the squares. She seemed to be 

talking about the square stretching into a rectangle, which suggests that the squares 

were not functioning as signs for the size of the standard deviation. Indeed, the shape of 

the square does not change when the size of the standard deviation changes. I asked 

Halen, “What makes you think that the square will become more narrow […]?” 

[5] Halen:  Um, like when I look at it, it’s just from imagination, like what I 
think will happen, just things going through my mind. 

Halen imposed motion on the square even if the square looked static, predicting that the 

square “becomes […] skinnier” as a data point was dragged away from the mean line. 

Halen may have thought that the data point controlled the width of the square, instead of 

the area of the square. 

I asked Halen to “go ahead and check” her prediction. She used the Dragging 

tool and selected data point C on the left side of the mean line (Fig. 14) and dragged it 

away from the mean line and back toward the mean line. As square area C increased 

and decreased (Fig. 23), Halen said “oh, that’s so cool.” “What do you mean?” I asked. 
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[6] Halen:  Oh […] I thought like […] they would all go together […] if I did this 
[she dragged data point C slightly to her left], all of them would go 
together at the same time, but oh, ok, […] so, it affects both sides. 

Halen’s statement in [6] suggests some surprise at how the square areas 

changed. She noticed that dragging a data point on the horizontal axis “affects” the 

squares on “both sides” of the square. Her statement “yeah, so it affects both sides” 

revealed a change in her awareness considering her earlier prediction in [4] which 

incorrectly suggested the square “ becomes like skinnier and larger” as a data point was 

dragged away from the mean line. 

 

Figure 23.  Halen drags data point C to the left side of mean line with the 
Dragging tool. 

Statement in [6] suggests that Halen used the Dragging tool as a semiotic mediator for 

the movement of data points on the horizontal axis and connected the changes in the 

areas of the squares with dragging. Yet, the statement “oh, that’s so cool” suggests 

affective dimension of Halen’s interaction with the sketch. Overall, Halen’s statements 

from her activity with the dyMS were different from those coming from the tasks she 

solved in the static environment. In fact in the static environment, Halen relied more on 

the formal procedures such as the “68-95-99.7” rule, as well as the algorithm for 

calculating the value of the mean in a set of numbers. However, with the dynamic 

sketch, Halen seem to do more exploring and discovering patterns by herself and her 

statements were more physical and dynamic in a sense. For example, statement [6], “I 

thought […] they would all go together […] if I did this […].” 
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5.3.3. Activity with the gC Sketch  

In Task 3, using Figure 24, I asked Halen to “predict how the height of the gC 

sketch would change as you drag the data points along the horizontal axis?” Halen 

predicted that dragging the points away from the mean line “will flatten up the graph […]” 

[7] Halen: Ok, keeping the other one in mind [i.e., Task 2 with the dyMS 
sketch], well if I did [drag], let’s say, I did A [Fig. 25a], then […] 
um, I think if we pull data at A this way [to the left side, Fig. 25b], 
[pause], I think it will flatten up the graph. And if you did this one 
[on right side of mean line], the same thing, the line will move this 
way [to the right side] and the graph will become narrower. 

 

Figure 24. The gC Sketch. 

Halen sketched Figure 25a and later used the pen to trace the curve (Fig. 25b) 

on the computer to confirm her prediction that dragging data point A to the left side “will 

flatten the graph.” By “flatten up the graph” Halen probably meant that ‘height of the gC 

sketch would go down' if the data points were dragged away from the mean line. Based 

on Halen’s opening remark, “ok, keeping the other one in mind […]”, there is reason to 

believe that her correct predictions on the gC sketch were mediated by her previous 

interactions with the dyMS sketch given that some entities, such as the data points 

looked similar on both sketches. 
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(a) (b) (c) 

Figure 25. (a) and (b): Halen showing that dragging a data point to the left side 
of the mean line “will flatten up the graph”; (c) Halen traces the 
curve with the highest peak after gradually dragging  the data points 
closer to the mean line. 

I asked Halen, “what if you move all the data points […] closer to the mean line?” 

She said that “[…] maybe the peak will be higher […] if you crush them altogether” and 

sketched a curve (Fig. 25c) with the height of the curve gradually rising as data points 

were progressively dragged closer and closer to the mean line.  

[8] Halen:  […] um, I think when you push them in the centre […], I think [the 
mean] line might deviate a little depending on what point you start 
at But then I guess [...] maybe the peak will be higher […] if you 
crush them altogether, maybe they will just be like this [Fig. 25c].  

Helen traced with a pen, the final curve with the highest peak after dragging data points 

closer and closer to the mean line (see Fig. 25c). I probed her, “how do you know the 

curve peak will rise?” She said: 

[9] Halen:  I don’t know, I just think that when you push them [data points] 
together, the peak will become higher. 

Although Halen stated in [9] that she did not “know” why the curve would rise, her sketch 

in Figure 25c seemed to convey her correct thinking—a change in the height of the 

curve as the data points were dragged closer to the mean line—(i.e. as standard 

deviation decreased, the height of gC sketch rose). I conjectured that Halen linked the 

physical action of ‘crushing’ [8] and ‘pushing [data points] together’ [9] to the rise in the 

peak of gC curve. 
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Halen’s statement in [9] also showed some evidence of covariational reasoning—linking 

the rise in the peak of the curve (“the peak will be higher”) with change in the direction of 

moving the data points inward (“if you crush them [points] altogether”).  

I asked Halen to “[…] go ahead and test your prediction.” She used the Dragging 

tool and moved data point A on then left side of the mean line (Fig. 24) slowly to the far 

left and as the peak of the gC sketch decreased, Halen said, “ok, yeah, I was mostly 

right, the line moves that way.” By “the line moves that way”, Halen probably meant that 

the height of the gC curve dropped as she dragged the data point A farther away from 

the mean line. If that is what she meant, then Halen’s last statement shows some 

evidence that the Dragging tool served her as a semiotic mediator to connect the change 

in the height the curve and the spread of data on the horizontal axis.  

5.3.4. Reflecting on the Standard deviation  

In the static environment, Halen's construct of standard deviation pointed to the 

Z-scores in the standard Normal curve. She also did not connect standard deviation, the 

mean, and data distribution in a functionally related way. In Task 4, and with the 

computer now closed, I asked Halen “do you […] see any links between the standard 

deviation and the mean?”  

[10] Halen:  Well, if you change standard deviation, the mean is going to 
change. When I was looking at the graphs, I didn’t realize that, like 
[…] the red line [mean line], the red line like [...] if you move the 
points together [she moved her hands closer together—Fig. 26], 
the mean is going to change too. 

Halen seemed to recall from her interactions with the sketches that “if you 

change standard deviation”, the mean “will change.” Although her statement showed 

evidence of covariational reasoning, the word “change” was not explicit. Moreover, 

although the mean and the standard deviation both change, there is no covariational 

relation between them (see Fig. 9). For example, as discussed before, moving a data 

point to the left side of the mean line causes an increase in standard deviation, but a 

decrease in the mean. However, from Halen’s hand movement in Figure 26, it could be 

that by “change”, she meant an increase in the height of the gC curve, but she was not 

explicit about what she meant. Her statement in [10], “when I was looking at the graph, I 
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did not realize that if you move the points together, the mean is going to change too]” 

suggests some new evidence that she now became aware of the connection between 

the increase height of gC curve and the change in magnitude of standard deviation. I 

argue that Halen used the Dragging as a semiotic mediator for the meaning of the rise in 

the height of the gC and the distribution of data points on the horizontal axis. 

 

Figure 26. If you move the points together the mean is going change  

5.3.5. Summary of Halen’s Data Analysis 

In the static environment, Halen did not clearly state the meaning of the terms 

distribution, mean and standard deviation in an aggregate way. Rather, she used the 

concept of distribution as pointer to the normal distribution. Halen’s thinking about the 

mean also relied on the procedure of obtaining an average of numbers by adding them 

up and dividing by the total number. However, during and after her interactions with the 

dynamic sketches, Halen showed some considerations of variability. For example, her 

predictions about the changes in the gC sketch were generally correct (statements [8], 

[9], & [10]) although not as explicit and detailed as Boris’ were. Nevertheless, she 

seemed to make generally correct but obvious mathematical statements such as “if you 

change standard deviation, the mean is going to change” and “if you move [data points] 
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together the mean is going change too” which are examples of mathematical signs 

(Bartolini Bussi & Mariotti, 2008). Thus, it can be argued, more generally that the 

Dragging tool enabled Halen to construct the mathematical meaning of standard 

deviation as an important index of variability. 

However, compared to Anita and Boris, Halen was not explicit about her use of 

the word “change.” In statement [10] she says, “If you ‘change’ standard deviation, the 

mean is going to ‘change’ too” but does not clarify the “change.” In fact as Boris’ 

example [Boris, 10] shows, there are conditions in which the mean can "change", but 

standard deviation does not change through dragging the data points. Halen’s statement 

excludes such conditions, and focuses on the more general change when data points 

are dragged on the right side of the mean line. 

5.4. Maya 

Maya used gestures, especially hand movements quite often when responding to 

questions. In the static environment, like Anita and Halen, Maya also showed similar 

thinking, for example, the use of “formula” to “calculate out” the mean. I first analyze 

Maya’s transcripts in the static environment and then her interactions with the dynamic 

sketches.  

5.4.1. Activity in the Static Environment  

In Task 1, I asked Maya to “describe the term distribution”:  

[1] Maya:  Distribution is just how things are spread out, they can be evenly 
distributed or they can be randomly distributed, just the placing of 
values or data, or objects.  

Although Maya’s image of distribution did not specifically mention elements such 

as shape, centre and deviation from the centre, which would conform to Konold and 

Higgins’s (2003) aggregate reasoning, in general, her reference to “how things are 

spread out” probably suggests some aggregate reasoning. In that case Maya’s image of 

distribution carries some element of consideration of variability (Wild and Pfannkuch, 

1999).  
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I asked Maya, “how about the mean?” Like Anita and Halen, Maya’s thinking 

about the mean seemed to show more about "the answer to a formula […]". She said: 

[2] Maya:  The mean is the answer to a formula where we add up all the 
values in a particular data set and divide by the number of values 
that are there, so mean is like a number, like a specific number, 
[the] mean is more specific, it’s like calculated out.  

By the statement, “so the mean is like a number, like a specific number, [the] 

mean is more specific, it’s like calculated out”, Maya seemed to emphasize calculating 

the mean, an image which was not different than Anita and Halen’s thinking about the 

mean. Her statement confirms Pollatsek, Lima, & Well’s (1981) proposition that for many 

students, dealing with the mean is more of a calculation than a conceptual undertaking.  

I asked Maya, “what about standard deviation?”. Like Anita and Halen, Maya 

suggested the the Normal curve although she did not explicitly say so: 

[3] Maya: Standard deviation? Um, standard deviation, I see standard 
deviation in graphs, there is like one, two, three, four; then there’s 
negative one, negative two, negative three, negative four. You can 
calculate standard deviation. 

Drawing on a similar statement from Halen, Maya’s statement “[…] I see 

standard deviation in graphs [...] there is like one, two, three […], then […] negative one, 

two […]” strongly linked standard deviation with z-values found in standardized Normal 

curve. Her thinking also seemed to inform Halen’s drawing shown on the sketch in 

Figure 21. However, when I asked Maya “which graphs do you see standard deviation in 

[…]?” she was not sure about the specific graph. Seemingly, the term “Normal curve” 

had disappeared from Maya’s immediate recall,  

 

[4] Maya: It’s like a graph and […] there is the middle and then there is 
standard deviation, right? It separates, there is a graph that 
separates the standard deviation into measures, is that standard 
deviation or is that central tendency? 

Maya uses the terms “standard deviation” and “central tendency” with no clear 

connection between them. I assumed that Maya was looking for the term the Normal 

distribution curve given that her classmates, Anita and Halen had showed the same 



 

91 

image. By “it’s like a graph […] there is the middle and then there is standard deviation 

[…]”, I believed Maya was thinking about the Normal curve, but she had forgotten the 

name. I probed, “what sort of graph?”  

[5] Maya: I forgot […] a graph like a regular, um, I forgot what that graph is 
called, it’s a hill, right? Yeah, a graph that has a hill so um. 

Maya’s statement “a graph that has a hill” [5] gave me more reason to believe 

that she was thinking about the Normal distribution curve. I then offered her a hint, “You 

mean the bell, bell curve?” Maya immediately responded, “bell shape curve, bell shape 

graph?” But she left a question mark that made me believe she meant another word for 

the “bell curve.” Then I suggested the “Normal curve?” which she responded to by 

repeating the “Normal curve” four times:  

[6] Maya: Normal curve, Normal curve, so anyways, there is, I see a graph, 
and there is a Normal curve and then the Normal curve has been 
separated into like eight sections. Is that standard deviation? I 
think that is what it is? 

Like Anita and Halen, Maya seemed unsure of the distinction between standard 

deviation and the Z-scores. There was a general misrepresentation of standard deviation 

by my participants, as the Z-scores and distribution as the normal distribution curve. I 

expected participants to be aware that the Z-scores are the standardized values of data 

points that measure how many standard deviations a given point is above or below the 

mean value. The standard deviation in general, is a feature of how spread out or how 

clustered a distribution is from the centre. Thus, Maya’s image of “a graph that separates 

the standard deviation into measures” did not explicitly describe what the standard 

deviation is or what it does, rather, it described one of the applications of standard 

deviation, namely in the standard normal curve, as Halen had sketched in Figure 21. 

I probed Maya more about standard deviation, “so, for you standard deviation 

is…?” Maya was quiet for a moment, and then she said: 

[7] Maya: Standard deviation is how far away from the mean a data point is, 
it is like a category, it categorizes how far away from the mean a 
data [point] is. 

Maya’s statement [7] shows that she revised her thinking and provided a clearer 

understanding of standard deviation than her statement [6]. I believe it was through 
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questioning and probing that evoked Maya's more correct thinking of standard deviation. 

I conjectured that questioning, probing as well as prompting can help students re-

construct concepts that they have already learned, but which they may have forgotten. 

Bartolini Bussi and Mariotti (2008) have discussed the role of the teacher as a cultural 

mediator in assisting to learn and connect meanings between concepts. The role of a 

teacher as a cultural mediator in students’ learning, however, is not the focus of the 

current study. I will now proceed to analyze Maya’s interactions with the dynamic 

sketches in the computer environment. 

5.4.2. Activity with the dyMS Sketch  

In Task 2, based on Figures 11 and 14, I prompted Maya to “predict how the 

squares will change if you drag the data points on the horizontal axis.”  

[8] Maya: I think when I move the points, the lines that the points are 
connected to will also move 

Maya’s statement [8] was not clear, but she probably meant that the ‘vertical side of the 

square “will also move” if a data point was dragged. Her statement was obviously 

correct, but it did not offer much understanding of the features of variability in the curve. 

It may be that my original question was not focused, so I asked Maya more specifically 

about the changes in the square, “How do the squares change as you move the data 

points on the horizontal axis to the left or to the right of the mean line?”  

[9] Maya: Well, I guess when I move the points to the left, the square will 
increase. 

[10] Int:  Why is that? 

[11] Maya: Because the farther away the point is from the centre, then the 
greater area it has. 

Maya correctly defended her prediction in [9] by her statement in [11], “because the 

farther away the point is […] the greater area it has.” It seems the distance from the 

centre and the change in the area of square were signs that mediated Maya's 

understanding of the patterns in sketches. However, Maya's use of the signs was at the 

artefact level, but not yet at the mathematical signs in that she did not link the change in 
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the area of the square with the change in the magnitude of standard deviation. I asked 

Maya about the direction of moving the data points:  

[12] Int:  Ok, so your claim is that when you move the points to the left side 
of the mean line, the square area will increase. What if you move 
the points to the right side? 

[13] Maya: To the left, the area will increase and to the right then the square 
area will decrease. 

Maya's prediction “to the left the area will increase and to the right then the 

square area will decrease” was correct but only if the dragging activity was restricted to 

the left side of the mean line and away from it, as the framework in Figure 9 shows. If 

however, the dragging action was on the right side of the mean line, Maya’s statement 

would not stand because both standard deviation and the mean increase with data 

points dragged away from the mean line. I asked Maya to “[…] go ahead and check" her 

predictions.  

Maya used the Dragging tool and slowly moved data point B (Fig. 14) away to left 

side of the mean line. She continued dragging the point back and forth on the horizontal 

axis (Fig. 27b) and said:  

[14] Maya: So, the mean increases as standard deviation […]. As standard 
deviation increases, the mean also increases. Oh no, the mean 
decreases right? […] Oh, this is nice. 

Maya’s initial statement in [14], “As standard deviation increases, the mean also 

increases” did not account for the direction of dragging the data points on the left side of 

the mean line.  
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(a) 

 
(b) 

Figure 27.  (a) The dyMS sketch before Maya dragged the points; (b) The dyMS 
sketch after Maya dragged a data point to the left of the mean line. 

Maya continued dragging the data point B on the horizontal axis, but on the left 

side of the mean line. She was able to notice that “as standard deviation increases, […] 

the mean decreases” which statement provides evidence that the Dragging tool 

mediated the change in the standard deviation and the mean as Maya dragged data 

point B away on the left side. Her remark “oh, this is nice” at the end of [14] suggests the 

affective dimension of Maya’s interactions with the sketch. It seems that Maya was 

pleased with what she noticed on the sketch. 

5.4.3. Activity with the gC Sketch  

In Task 3, based on Figures 12 and 16, I prompted Maya to “predict how the gC 

sketch will change if you drag the points on the horizontal axis.” 

[15] Maya: […] I guess as I move the points, the purple line [curve] will also 
rise. So, when the standard deviation increases, the curve will 
also increase, sort of rise. 

Maya predicted that “[…] when the standard deviation increases, the curve will 

also increase [...]” but she did not specify the direction of dragging the data points that 

would cause such a change. By the “purple line will also rise”, Maya suggested that the 

height of the gC sketch would rise. Maya’s prediction [in 15] that “when standard 

deviation increases, the peak of the gC sketch “will also increase” seemed to incorrectly 

suggest that the height of the gC curve co-vary with standard deviation. Maya's 

statement [15] supports my design hypothesis that some students may misinterpret the 
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increase in the magnitude of standard deviation and link it to the increase in the height of 

gC curve, and vice versa. I challenged Maya, 

[16]. Int: Since we now know that standard deviation increases as you 
move data points away from the mean line, do you mean that the 
curve peak will increase as you move data points away from the 
mean line? 

Maya paused for a moment while looking at the sketch (Fig. 16). Then she 

predicted more correctly that moving data points away from the centre will cause the 

height of the gC curve to "plunge" or "go down": 

[17] Maya: When I move the [data] points away from the centre, the curve will 
plunge, go down [spread her hands out and briefly moved them 
down and up—Fig. 28]; but when I move points closer to the 
centre, the curve will rise? 

 

Figure 28.  Maya spreading her arms across the screen and saying the curve 
peak will go down   

As Maya said, “[…] the curve will plunge […]”, she spread her arms across the 

computer screen (Fig. 28), and moved them down, maybe internalizing how the height of 

gC curve would “go down” as data points were dragged away “from the centre”. It seems 

that statement [16] mediated Maya’s more correct prediction in [17]. According to 

Vygotsky, interpersonal communication can lead to intrapersonal communication when 

an individual masters the task and is able to perform by her or by himself. Maya had also 

appealed to her own intellect (Vygotsky, 1978) and revised her predictions in Task 2, 
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after similar interpersonal communication. It seems the sketch in Figure 28 also evoked 

a more physical and dynamic thinking by Maya, considering her use of the active verbs 

such as “move points away”, “the curve will plunge”, “but when I move points closer”, 

“the curve will rise” in [17]. She also interiorized her statements by physical action, for 

example, spreading her arms across the screen in Figure 28. 

I asked Maya to “[…] go ahead and check your predictions.” Maya moved data 

point O (Fig. 16) on the right of the mean line, farther to right side and back toward the 

mean line. As she dragged the point back and forth, the height of the gC sketch 

decreased and increased alternately. Maya continued dragging the same point slowly 

back and forth and said “opposite, opposite, oh, opposite […] to what I got. It’s like a hill 

[…].” She drew a curve in the air with her right index finger (Fig. 29a) as she said “It’s 

like a hill.”  

By “opposite […] to what I got […]” Maya seemed to notice something different in 

the gC curve that her prediction did not correctly state. In particular, she probably 

noticed, contrary to what she predicted that, by dragging the data points toward the 

mean line, she obtained something that looked “like a hill.” I asked her to “drag all the 

points closer to the centre and describe what happens” My aim was to check her 

thinking about the link between standard deviation and the change in the height of the 

gC sketch. Maya slowly dragged all the six data points one after another, closer and 

closer to the mean line and as she dragged the points much closer together, the sketch 

in Figure 29b evolved and Maya she said “Wow, so big!” 
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(a) (b) (c) 

Figure 29. (a) Maya pointing on the rising peak of the gC sketch with her right 
index (b) Maya dragged the points much closer to the mean line and 
obtained the sketch looking like a ‘stick’ (c) Maya restored the 
sketch (in b) to a more normal size.  

By “wow, so big”, Maya probably meant that the peak of the gC sketch was "very 

high". She also may have been surprised by the sudden change in the shape of the 

curve, which she probably had not seen before. Maya used her right index finger to draw 

a picture of the gC sketch with a lower peak in the air as she said “I thought the curve 

would just be like that.” Her reaction to the sudden change in the height of the gC curve 

was different, for instance, than Boris, who correctly predicted how the height of the gC 

would change, and he seemed to showed less surprise at the result he obtained after 

checking. Maya asked if she could “see up” suggesting seeing the “tip” of the sketch in 

Figure 29b, 

[19] Maya: Can I see up? Can I move the graph up? 

I answered, “Yes, you can”, but was not convinced that I gave Maya a satisfactory 

answer to her question. However, I anticipated that later she would discover the answer 

by herself. Maya scrolled up the page using the mouse pointer for about half a minute 

without getting near to the tip of the sketch. Then she asked “Is this forever, does it go 

on forever?” I did not reply. Instead, I posed a question to her, “What should we do to 

restore the sketch to its normal shape? Maya did not respond to my question but she 

kept looking at the gC sketch on the screen. After some moments of silence, I asked 

Maya to “scroll back to the horizontal axis and drag the data points apart”. She scrolled 

to the horizontal axis, dragged some data points apart and was able to restore the peak 

to a more normal height (Fig. 29c). When she had finished dragging some data points 
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apart, and restored the curve, she answered my earlier question, saying, “I just separate 

the points." I followed up Maya’s answer with a general comment: “Yes, and that tells 

you a lot about your data, how your data set is varying”, to which Maya responded:  

[20] Maya: Because standard deviation is like a measure of how far apart the 
points are from the mean […].  

Maya correctly linked the changes she had observed in the height of the gC 

sketch to the standard deviation as “[…] a measure of how far apart the points are from 

the mean” [20]. Her statement showed that she used the Dragging tool (along with the 

sign of the gC curve) as semiotic mediator to construct the meaning of standard 

deviation, different than she originally did at the beginning of the interview through 

"deriving" standard deviation. Maya’s statement can also be considered as a 

mathematical sign (Bartolini Bussi & Mariotti, 2008). Her statement satisfies Wild and 

Pfannkuch’s (1999) aggregate reasoning with graphs in that she connects the centre of 

data with the spread of the distribution from its centre. 

Furthermore, when I remarked, “[...] when the data set is spread out in a certain 

way, the gC sketch also behaves in a certain way.” Maya responded: 

[21] Maya: When the data points are farther away from the centre, then the 
Normal curve will fall, and when the points are towards the centre, 
the Normal curve will rise. 

At the beginning of Task 3, Maya had a hard time predicting how the height of 

the gC sketch would vary with changes in the magnitude of the standard deviation. 

Based on Maya statements [20, 21] after interacting with the sketches, I propose that the 

dragging action enabled her to connect the changes in the magnitude of the standard 

deviation with changes in the height of the gC sketch. I argue that Maya used the 

Dragging tool as an instrument of semiotic mediation for the mathematical meaning of 

standard deviation and its connection to the height of the gC sketch.  

Maya did not get to the final result in statements [20 & 21] all by herself, but 

initially she obtained some partial assistance from me, acting as a cultural mediator. 

However, as Maya became more aware of her task, partly through our interpersonal 

communication (e.g. probing, questioning, predicting, and recalling some known ideas), 

and also by her own action with the Dragging tool, Maya seemed to stand on her own 
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and make correct mathematical statements, for example, “because standard deviation is 

like a measure of how far apart the points are from the mean […].” Maya’s episode 

validates the Vygotskian hypothesis that meaningful use of a cultural tool includes 

interpersonal interactions, as Vygotsky claims, before intrapersonal interaction (or 

internalization). I argue that Maya became aware of the mathematics involved in the task 

(i.e. the link between standard deviation and the change in the height of the gC sketch) 

by utilizing the Dragging tool as an instrument of semiotic mediation as well as the 

interpersonal communication (or language) which got transformed into intrapersonal 

communication for Maya (Vygotsky,1978). 

5.4.4. Reflecting on the Standard deviation  

In Task 4, (Fig. 14) and with the computer closed, I prompted Maya, “what do 

you think about the term standard deviation?” Maya’s said:  

[22] Maya:  Standard deviation is certain point away from the centre of a 
population and there is negative and positive standard deviation. I 
have a picture of a normal distribution divided into sections, which 
are called standard deviation and those sections are not equal 
unless they have the same positive and negative value. There is a 
formula, I forgot but it’s like standard deviation equals the square 
root of the variance. 

Maya’s thinking of standard deviation as “a certain point away from the centre of 

the population” was probably linked to the spread of data points from mean, which would 

generally go for correct statement in that her statement recognizes the “centre of a 

population”, which in general, agrees with Wild and Pfannkuch’s (1999) as well as 

Konold et al.’s (2003) perspectives of aggregate reasoning. However, Maya’s “picture of 

a normal distribution divided into sections” confuses the construct of the standard 

deviation with the Z-scores. The Z-score is used in the standard normal curve to provide 

information on how many standard deviations above or below the population mean, a 

given data point is. The farther away a data value is from the mean of the population, the 

less likely that the overall impact of that data point on the whole population can be 

ignored, or will simply happen by chance. Based on her statements after interacting with 

the sketches, I described Maya’s thinking about variability as mixed (i.e. showing both 

static and aggregate) consideration of variability. It is not clear why Maya suddenly fell 
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back to the static mode of thinking, having shown very clear mathematical meaning of 

standard deviation in statements [20-21]. Maya's mixed consideration of variability 

suggests that the dynamic sketches were important in evoking her thinking of variability; 

but without the sketches, Maya seemed to fall back to the static mode of thinking. It may 

be that Maya, as was the case with Halen, needed some more time to interact with the 

dynamic sketches, to enable her attain a more stable understanding of the features of 

variability. 

5.4.5. Summary of Maya’s Data Analysis  

In the static environment, Maya provided a relatively clear image of the term 

distribution compared to Anita and Halen. However, Maya's thinking about the mean and 

standard deviation was similar to Anita and Halen's in the sense that, for the mean, 

Maya also relied on the processs of adding numbers up and dividing by the total number 

present in the data set, an image that supports Pollatsek et al.’s (1981) finding that many 

students consider the mean more as a number rather than an important concept for 

reasoning about the centre of data and the distribution of data points about the mean. 

Moreover, during her interactions with the dynamic sketches, Maya initially had 

challenges predicting changes in the sketches, but after using the sketches, she showed 

clearer awareness of the connections among standard deviation, the mean and 

distribution. I suggest that Maya’s interaction with the Dragging tool occasioned her 

consideration of the features of variability. However, after using the sketches and having 

the sketches put away from her, Maya seemed to fall back to her original thinking of 

distribution in the static environment. She also used standard deviation similarly as a 

pointer (Konold & Higgins, 2003) to the Z-scores in the standard Normal curve. I 

conjectured, based on previous studies (e.g. delMas & Liu, 2005; Konold & Higgins, 

2003), that students who consider distribution as a pointer to the Normal distribution 

curve are more likely to use standard deviation as a pointer to with the Z-scores. 

Moreover, such students are more likely to fall back to the static thinking about variability 

when they are not actively engaging with the dynamic tool. 
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5.5. Yuro  

Yuro was also quite brief in answering some questions in the interview, similar to 

Boris. Like all other participants, Yuro also moved his hands as he responded to the 

interview tasks. In the first section, I analyze Yuro’s transcripts from the tasks he 

performed in the static environment. In Sections 5.5.2 and 5.5.3, I analyze episodes of 

Yuro’s interactions with the dynamic sketches. Sections 5.5.4 and 5.5.5 are respectively 

Yuro’s reflections on the term standard deviation after the tasks, and a summary of my 

analysis. 

5.5.1. Activity in the Static Environment  

 In Task 1, I asked Yuro, “What comes to your mind when you hear the word 

distribution?” Based on similar responses that I received from his classmates (e.g. 

[Halen, 3]), Yuro also seemed to consider distribution in terms of standard deviation and 

the normal distribution curve: 

[1] Yuro: Standard deviations, how far are um, how far […] points are […] 
around the dots […] one point on the left, one point on the right 
and then one point in the middle and then all these random points 
around it. 

Although there is link between the “distribution” of a data set and the “standard 

deviation”, Yuro’s image of distribution in this particular question did not present a clear 

connection between the two constructs. When Yuro describes “one point on the left, and 

one point on the right and then one point in the middle”, he may be referring to the units 

of standard deviation from the mean that he would have seen in class, which are usually 

represented on the normal curve (as was seen also in Halen’s sketch).  

When I asked, “What comes to your mind when you hear the term mean?” Yuro 

responded in one word: “Average”, and did not elaborate his answer. However, by 

“average”, I assumed that Yuro meant adding up numbers and dividing the sum by the 

total number in the data set, given that his course mates, Anita and Halen had already 

given similar statements. In fact, all participants provided a similar response for the 

mean. On the last question in Task 1, I asked Yuro, “What comes to your mind when you 

hear the term standard deviation?”  
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[2] Yuro: Spread […] same things, there’s standard deviation and deviation 
[…] same things to me. 

Yuro’s thinking of standard deviation as “spread” was correct, but not completely 

developed in that he did not include the construct of “centre” of the distribution of a data 

set. Yuro also seemed unsure about the meanings of “deviation” and “standard 

deviation”. To him “standard deviation and deviation” seemed to mean the “same 

things.” However, I expected Yuro to consider deviation as the distance of a single data 

point from the centre of data, whereas standard deviation accounts for the entire data 

set as discussed in Chapter 4. It may be that students find the distinction between 

deviation and standard deviation unclear because deviation is not as much talked about 

in statistics courses as standard deviation.  

5.5.2. Activity with the dyMS Sketch  

In Task 2, and using Figure 14, I prompted Yuro to predict “how the squares will 

change as you drag the data points on the horizontal axis.” Yuro predicted that dragging 

a data point toward the mean line would cause the corresponding square “to be smaller.” 

I asked Yuro “Why?” and he replied: 

[3] Yuro:  Um, why? Oh yeah, I just think it’s going to move this way […]. I 
just think this is going to move this way […] ah, what should I say 
ok, I’m going to move this way […], the whole thing is going to go 
this way.  

Yuro did not give reason "why" the square was going “to be smaller”. Rather, he focused 

on the dynamic movement of a data point, “it’s going to move this way”, “this is going to 

move this way”, “I’m going to move this way”, and “the whole thing is going to go this 

way”. In fact, Yuro’s was not specific about what exactly was “going to move this way”. I 

restated the question more specifically, “[…] If you moved a data point to the left or to 

the right side of the mean line, how would the squares change?” Yuro replied:  

[4] Yuro:  Oh, if you move it this way [he moves his left hand to the left side] 
it’s going to increase, and if you move it this way [moves his right 
hand to the right], it’s going to decrease. 

Yuro accompanied his predictions with hand movements, to the left and to the right as 

he said “this way it’s going to increase [moves his left hand to the left side] and this way 
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it’s going to decrease” [moves his right hand to the right-side]. When I probed, “Why is 

that?” Yuro more or less restated his prediction in [4]: 

[5] Yuro:  Because over here [stretches his hand on the screen near the 
mean line—Fig.30a] this is kind of like a central point, and then 
these are distributions around the central point, and if you are 
going to move this one, your distribution is going to increase. 

By “[…] your distribution is going to increase” Yuro was not clear but he probably meant 

that the square area was going to increase if a data point was dragged away to the left 

side of the mean line.  

(a) (b) 

Figure 30  (a) Yuro stretches his right hand to the screen to show the 
distribution around the mean line. (b)Yuro points the horizontal 
length of a square, which he believed would ‘increase’ if data points 
were dragged away from the centre.  

I asked Yuro to click on the buttons for standard deviation and the mean to 

enable him observe how the scales changed as he dragged the data points on the 

horizontal axis. After Yuro clicked on the buttons with the mouse pointer, I asked him to 

“[…] go ahead and check your predictions.” Yuro dragged data point B on the left side 

(Fig. 14), away from the mean line and then back toward the mean line as the area of 

square B increased and decreased. As he continued dragging point B back and forth 

and noticing the changes on the sketch, Yuro said “Oh, I was wrong.” I followed up his 

remark, “why” he thought he “was wrong.” Yuro explained as he pointed to the left side 

of the mean line (Fig. 30b), that "he felt" only the horizontal length of the squares 

increase, but not the height.  
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[6] Yuro:  Because I only felt that this [put his index finger on the horizontal 
line—Fig. 30b] was going to increase but not this one [vertical 
length of the square]. But now that I think about it, it makes sense 
because […]. I thought […] the heights would be constant […].  

Yuro’s statement, “but now that I think about it, makes sense […]” can be considered as 

evidence of his considerations of variability, which I suggest, was occasioned by the 

dragging action and by his coordinating the signs produced in dragging the data points. 

The Dragging tool made it possible for Yuro to “make sense” of (or internalize) the 

changes in the squares as he dragged the data points on the horizontal axis. However, 

Yuro’s initial “wrong” thinking about the square is not an isolated case in the sense that 

Halen also had similar difficulty (see Fig. 22), with the horizontal length of the square 

increasing, but not the height. It is not clear why Halen and Yuro thought about the 

square that way, but I believe it is challenging for some students who, in general, learn 

concepts using static tools, to imagine a square dynamically increasing or decreasing in 

area without its losing its mathematical “squareness”—i.e. maintaining the same width 

and height on all four sides, at the four right angles. 

5.5.3. Activity with the gC Sketch  

In Task 3, I asked Yuro to “predict how the peak of the gC sketch would change if 

you move the data points on the horizontal axis?”  

[7] Yuro:  […] I don’t […] remember exactly, but I think that if you move [the 
data points] the curve is not going to be affected by standard 
deviation that much, but you have to move it may be extremely.  

By “the curve is not going to be affected by standard deviation that much” [19] Yuro was 

not clear in his prediction but he probably meant that moving the data points on the 

horizontal axis was not going to cause a big change in the peak of the height of gC 

curve, except if “you have to move” the data points “extremely.” This of course would be 

correct if each of the six points were one of the infinite points that make up the normal 

distribution. But Yuro did not specify the direction of moving the point, so I asked, “In 

which direction is the data point being moved?”  

[8] Yuro:  Just any […] like if you move this point [pointed at O—Fig. 16] all 
the way to the right […], the curve should go like, should change 
its height […]. 
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Although Yuro provided a clear direction of dragging the point, “all the way to the right”, 

he did not clarify if the “change” in the “height” of the gC sketch was going to be an 

increase or a decrease. That led me to ask:  

[9] Int:  Should the curve peak go down or go up as you drag the data 
point O “all the way to the right?” 

[10] Yuro: The height? It should go down. If you move it that way [left side of 
mean line], it’s going to go down as well. 

Yuro’s prediction in [10] was correct, suggesting that he could connect the 

change in the height of the gC sketch with the change in the distribution of data points 

on the horizontal axis. However, when I changed the question “what if you move data 

point T and then point O (both on opposite sides from the mean line, Fig. 16), toward the 

mean line?” Yuro predicted that the curve peak was “still going to go down”, 

[11] Yuro: It’s [the peak] still going to go down […] not flat, it’s going to 
decrease slightly. Doesn’t matter where you move it this way, it 
will decrease […]. 

Predicting changes on the gC sketch seemed problematic to Yuro, and more generally 

to the other participants as well except Boris. In fact, Anita, Halen and Maya had hard 

times predicting the patterns of change in the gC sketch. It is not clear if participants' 

incorrect predictions were partly contributed to by the design of the gC sketch, which 

only provides individual data points on the horizontal axis and a normal curve fitted on 

them. However, Boris' correct prediction with the same sketch weakens the design 

claim. Interestingly, all the participants were familiar with the Normal curve, as they all 

covered the normal curve in the statistics courses. May be the difficulty was not with the 

normal curve per se, but with dynamic nature of the normal curve that participants had 

not encountered before. I expected Yuro to apply his response in [10], but in the 

opposite sense, and predict that moving two data points toward the mean line would 

show an increase in the peak of gC sketch.  

With the numerical scales for the mean and standard deviation turned on by 

Yuro, I asked him to go ahead and “check your predictions [...]”. Yuro dragged data point 

O (Fig. 16) away from the mean line and back toward the mean line and said: 
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[12] Yuro:  Ok, so it decreases [as he dragged data point O away on the 
right]; it decreases [as he dragged point T away on the left side 
away]. Oh, it increases [as he dragged point T toward the mean 
line]. 

As Yuro dragged data point O and then after he dragged T, away from the mean 

line, he noticed that the height of the gC sketch decreased. He then changed direction 

and dragged data point T back toward the mean line and the peak of the gC sketch 

slightly increased as he said “Oh, it increases” [12]. Based on the semiotic mediation 

perspective, Yuro’s statements, “Ok, so it decreases”; and “Oh, it increases” revealed 

instances where the Dragging tool, along with the visual feedback provided, enabled him 

to relate the changes in the gC sketch with changes in the magnitude of the standard 

deviation. 

I asked Yuro to check “what happens if you drag all the points closer to the mean 

line?” Yuro responded by slowly dragging the data points, one after another, closer to 

the mean line and as the sharp peak (Fig. 31) emerged he said: 

[13] Int: Oh, ok the centre point changes and the curve becomes narrower 
[…] ah ok, yes it becomes narrower and there is less error in that 
curve. 

 

Figure 31. Yuro dragged data points closer to the centre and noticed that “the 
curve becomes narrower and there is less error.” 

By “the centre point changes and the curve becomes narrower […]”, it is not clear what 

Yuro meant, but he may have observed from his dragging action that, as the magnitude 

of standard deviation decreased, the peak of gC sketch increased and the curve became 
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“narrower” having “less error.” By “the centre point” changes, Yuro probably meant the 

mean line changing its location as data points were dragged on the horizontal axis. Still, 

statement “the centre point changes” suggests an artifact sign whereas the statement “ 

the curve becomes narrower” suggest a pivot sign connecting the more mathematical 

sign “[…] and there is less error in that curve” (Bartolini Bussi and Mariotti, 2008). His 

last sentence “[…] and there is less error in that curve” suggests that the Dragging tool 

served as a semiotic mediator for the magnitude of error in the curve, the “narrower” the 

curve, the “less error in that curve.” Moreover, it is not clear if by “less error in that curve” 

Yuro had in mind the small magnitude of standard deviation associated with such a 

sketch in Figure 31, but Yuro did not mention standard deviation explicitly.  

5.5.4. Reflecting on the Standard deviation 

In Task 4, with the computer closed, I asked Yuro to reflect on the notion of 

standard deviation after the tasks. “What do you say about the term standard deviation?” 

I asked. Yuro paused for a moment and said: 

[14] Yuro:  Standard deviation is the spread-like distances from the mean. I 
think the same thing […] yeah distances from the mean. Spread, 
standard deviation [pause]. You know what, actually I think now 
spread is actually different […] 

Yuro appear to correctly associate “standard deviation” with the “spread” describing it as 

“spread-like distances from the mean.” However, from his last statement in [14], Yuro 

seemed to change his mind, thinking that “spread is actually different” from standard 

deviation. I asked him, “Have you changed your mind?”  

[15] Yuro:  Yeah, that’s what, because now that I think about it [standard 
deviation], I use in a different way. Yeah, standard deviation I just 
think of it as the distance from the mean, to the points that are 
around the mean. 

Yuro’s consideration of standard deviation as “distance from the mean to the 

points that are around the mean” may have been evoked by his interaction with the 

dynamic sketches, for instance, the changes in the gC sketch in Figure 31. Although 

Yuro’s statement [15] suggests a distinction between spread and standard deviation, his 

main challenge appeared related to the use of statistical terms rather than his 
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considerations of variability. In fact, Yuro’s statement in [14], “standard deviation is the 

spread-like distances from the mean” and statement [15] “standard deviation, I just think 

of it as the distance from the mean”, are not very different. Thus, I believe that Yuro used 

the terms standard deviation and spread as if they were different and yet he likely meant 

the same thing.  

5.5.5. Summary of Yuro’s Data Analysis 

In the static tasks, Yuro was rather brief in his answers, but he provided 

adequate information to enable me understand his thinking about variability. His thinking 

about of distribution and the mean and standard deviation in the static environment 

seem to rhyme with those of Anita, Halen and Maya. Yuro’s interactions with the 

dynamic sketches in the computer-based environment revealed much clearer 

consideration of the connections among standard deviation, the mean and data 

distribution than in the static environment. At the end of the task, when the computer 

was already closed, Yuro struggled with the meaning of spread and standard deviation. 

However, it was not clear if Yuro’s struggle was about reconciling the meaning of 

standard deviation from the dynamic sketches and the one he learned in class, which 

was more formal and static. It seems that Yuro’s more correct thinking about standard 

deviation dependent more on him interacting with the dynamic and physical sketches 

than without the sketches. 

5.6. Summary of Chapter 

Table 3 summarizes participants’ notions of standard deviation before, during, 

and after interacting with the dynamic sketches. Before interacting with the dynamic 

sketches, four of the five participants were more likely to link standard deviation with the 

normal distribution curve. Moreover, all the five participants considered the mean as 

“average”, a number obtained by adding up a set of numbers and dividing the sum by 

the number of data values in the set.  
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Table 3.  Summary of Participants’ Notions of Standard Deviation before, 
during, and after Interacting with the Sketches 

 Before During After 

Anita As I said before, if you 
[…] can figure out the 
mean of data […] then 
you can derive the 
standard deviation, 
um and you can also 
figure out the normal 
distribution [...] curve. 
[Static/Procedural= 
S/P.] 

If you drag [a data point 
farther to the right] then the 
mean will increase and 
therefore the standard 
deviation will increase. If I 
move this [point to the left] 
then it will decrease 
because I’m moving […].  

[Dynamic/Physical=D/Ph.] 

Standard deviation, […] I did one 
of those examples based on […] 
the graphs, um, I realized that as 
the mean was increasing farther to 
the right, the standard deviation 
was also increasing, so that was a 
very direct relationship with the 
mean, […] whenever you moved a 
certain data point to the right or 
left, based on how much you 
moved it […]. [D/Ph.] 

Boris  [Standard deviation] 
kind of measures the 
variation of data from 
the mean. [Aggregate 
reasoning= AGR]. 

If you move [points] away 
from the mean line, the 
square is getting bigger and 
bigger because the square 
is the distance from the 
mean line right […]. [D/Ph.]  

Standard deviation, as you move 
the points away from the mean, the 
standard deviation increases, 
that’s what the graph shows […]. If 
the data points are equal 
difference from each other, […] 
shift the data points to the left or 
right […] it just shifts the mean but 
it won’t change the standard 
deviation. [D/Ph.] 

Halen Standard deviation 
[…] that is similar to 
the deviation […] if 
you have [the Normal 
curve], the standard 
deviation at the centre 
will be zero, and […] 
one standard 
deviation will be sixty 
eight percent […]. 
[S/P.] 

If you […] stretch this way 
away from the mean line, I 
think they [the squares] will 
become [...] a bit more 
narrow […] becomes like 
skinnier and larger.[…]. 
[D/Ph.]. I thought like […] 
[the squares] would all go 
together […] ok they just 
don’t […]. Like if you move 
this side it […], yeah so it 
affects both sides. [AGR.] 

Well, if you change standard 
deviation the mean is going to 
change. When I was looking at the 
graphs, I didn’t realize that, […] if 
you move the points together […], 
the mean is going to change too. 
[D/Ph.] 
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 Before During After 

Maya  […] I see standard 
deviation in graphs, 
there [are] like one, 
two, three, [and] four; 
then there’s negative 
one, negative two, 
negative three, and 
negative four. You can 
calculate standard 
deviation. [S/P.] 

 Standard deviation is how 
far away from the mean a 
data point is, it is like a 
category, it categorizes how 
far away from the mean a 
data [point] is. [AGR.] 

Standard deviation is a certain 
point away from the centre of a 
population […] [AGR.]. I have a 
picture of a normal distribution 
divided into sections, which are 
called standard deviation 
[…].There is a formula, I forgot but 
it’s like standard deviation equals 
the square root of the variance. 
[S/P.] 

[AGR.], [S/P.] = MIXED 
considerations of standard 
deviation. 

Yuro Standard deviations, 
[…] how far the points 
are […] around the 
dots […] one point on 
the left, one point on 
the right and then one 
point in the middle and 
then all these random 
points around it. [S/P.] 

 

Oh, if you move [a point to 
the left side, the square] is 
going to increase, and if you 
move [the point to the right 
side, the square] is going to 
decrease. [D/Ph. Because I 
only felt that [the horizontal 
line] was going to increase 
but not [vertical sides of the 
square]. But now that I think 
about it, it makes sense 
because […]. I thought […] 
the heights would be 
constant […]. [AGR.] 

Standard deviation is the spread-
like distances from the mean […]. 
Yeah, standard deviation I just 
think of it as the distance from the 
mean to the points that are around 
the mean. [AGR] 

During interactions with the dynamic sketches in Sketchpad, all the participants 

were able to link changes in standard deviation with the dragging of data points on the 

horizontal axis, and with the mean. After the tasks, four of the five participants were 

more likely to coordinate changes in the data points with changes in the magnitudes of 

the standard deviation and the mean. One participant (Maya) showed mixed 

considerations of the meaning of the standard deviation after the tasks. By mixed 

considerations, I mean that, Maya showed aggregate reasoning about standard 

deviation, but she also reasoned about standard deviation in a static way. For example, 

Maya’s statement that “standard deviation is a certain point away from the centre of a 

population” [Maya, 22] generally satisfies aggregate consideration (Wild & Pfannkuch, 

1999), but the statement “[…] standard deviation equals the square root of the variance 

shows a static and more procedural consideration of standard deviation. Hence, I 
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described Maya’s constructs of the standard deviation as “mixed consideration of 

variability.”  

From Table 3, four categories of participants’ constructs of standard after using 

the dynamic sketches stand out. They are, not in any particular order: i) static/ 

procedural; ii) aggregate iii) dynamic/physical; and iv) mixed consideration. The static 

considerations reveal thinking about standard deviation, and in general reasoning about 

data, based on more formal procedures (e.g. text book formulas) rather than provide 

qualitative meanings of concepts. The aggregate considerations of standard deviation 

identify the centre of data and the deviations of the data values from the centre, while 

dynamic and physical considerations involve a lot of body (e.g. hand) movement while 

participants explain their thinking about a concept. In general, dynamic/ physical 

interactions include aggregate reasoning, except it involves more physical and dynamic 

expressions. Finally, mixed construct includes some elements of aggregate reasoning as 

well some elements of static reasoning. Table 3 shows that in general, participants 

progressed from static/ procedural thinking about standard deviation to more physical 

and dynamic constructions of the meaning of standard deviation. I argue that the 

Dragging tool was used as semiotic mediator for the meaning of standard deviation and 

its functional linkages with the mean and data distribution on the horizontal axis. In 

Chapter 6, I discuss the analysis of data and link the discussions to my research 

questions. I will respond more directly to the research questions in Chapter 7, as I 

conclude the study.  
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6. Discussion  

In Chapter 5, based on two major theoretical perspectives, I analyzed my 

participants’ considerations of variability on the tasks that they solved in the static, and in 

the dynamic environments. Based on the Vygotskian socio-cultural and historical 

perspectives, I argued in Chapter 5 that the Dragging tool was used by participants as 

an instrument of semiotic mediation for the meaning of standard deviation and its links 

with the other features of variability such as the mean and data distribution. Participants’ 

thinking about standard deviation showed four categories: i) static/procedural ii) 

aggregate; iii) dynamic/physical; and iv) the mixed considerations. Moreover, based on 

the foundations of statistical thinking, focusing on the considerations of variability, my 

analyses revealed that the dynamic sketches supported participants' reasoning about 

data distributions in aggregate, by stating the connections between the centre of data, 

and the spread of data values from the centre.  

The current chapter, which comprises of three sections, discusses results of the 

analyses in Chapter 5 with reference to the issues that were raised in the previous 

chapters, particularly in Chapters 2 and 3. Section 6.1 discusses participants’ 

considerations of variability as they solved tasks in the static environment. I base my 

discussions on Wild and Pfannkuch’s (1999) foundations of statistical thinking, focusing 

on the consideration of variability. In connection with the considerations of variability 

perspectives, I also include the use of the dynamic sketches for constructing 

mathematical meanings (Konold & Higgins, 2003). Konold and Higgins (2003) propose 

four different ways that students think about a given data set. They are data as: i) 

pointers; ii) cases; iii) classifiers; and iv) aggregate. Aggregate consideration focuses on 

the overall characteristics of a data set and not only on the characteristics of single data 

points. I used aggregate reasoning perspective to analyze participants' statements both 

in the static and in the dynamic environments, whereas Reid and Reading’s (2008) 

consideration of variability hierarchies (CVH) suited my analysis of tasks in the static 

environment.  
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In connection with the considerations of variability, I also discuss Carlson et al.’s 

(2002) covariational reasoning perspective. Covariational reasoning did initially enable 

me to attend to the participants’ thinking about the changes in the magnitude of standard 

deviation in relation to changes in the magnitude of the mean as the data points were 

dragged along the horizontal axis. However, it is important to underline that the mean 

and the standard deviation do not in fact co-vary. Moreover, the participants were 

moving points, and not changing the mean or the standard deviation directly. Further, 

out of the five levels of Carlson et al.’s covariational reasoning framework (i.e. 

coordinating value, direction, quantity, average rate, and instantaneous rate), only three 

levels (i.e. value, direction, and quantity) applied to my interview data. Nevertheless, I 

used this covariational reasoning perspective as a starting point for developing a multi-

variation reasoning perspective, which I discuss in Chapter 7. 

In Section 6.2, I discuss evidence of participants’ considerations of variability 

while they solved tasks with the dynamic sketches. Using the Dragging tool of 

Sketchpad, participants explored the functional connections between the notions of 

standard deviation and the mean as they dragged data points along the horizontal axis. 

To consider the complex relationships between physical tools, and signs produced by 

the tools while participants solve the tasks, I based my interpretations on Vygotsky’s 

socio-cultural historical perspective of learning and on semiotic mediation. According to 

Vygotsky (1978), the social environment influences learning through the use of its 

artifacts, that is, through its cultural objects and language. Moreover, social interactions 

can transform students’ learning experiences from interpersonal to more personal 

awareness through a process of internalization.  

Section 6.3 discusses participants’ considerations of variability as they reflected 

on the notion of standard deviation at the end of the interview tasks. I chose standard 

deviation given that it is an important feature, among others, for describing variability, for 

instance in in a Gaussian distribution. Standard deviation also links with other concepts 

such as the mean and distribution to provide more information about a given data set. 

My expectation was that after the tasks, participants would be able to state the functional 

connections among the standard deviation, the mean and the data distributions in their 

own words, as well as to reason with graphs of distributions in aggregate. I now discuss 
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in detail participants’ interactions in each of three sections mentioned above, and link the 

discussions to my research questions.  

6.1. Participants’ Considerations of Variability in the Static 
Environment 

The notion of variability encompasses many constructs in statistics, but I chose 

three constructs in my study: standard deviation, mean and distribution. In Chapter 2, I 

reviewed research studies about students’ understanding and difficulties with the notion 

of distribution (e.g., Konold, Pollatsek, Well, & Gagnon, 1997). I also reviewed students’ 

challenges with the concept of sampling distributions, which includes the ideas of 

variability (Chance, delMas, & Garfield, 2004; delMas, Garfield, & Chance, 2004). In 

connection with the notion of sampling distribution, delMas and Liu (2005) propose that 

part of students’ challenges with this concept may be related to their difficulties with 

concepts such as the mean, distribution and standard deviation as well as the linkages 

among these concepts. For example, a study by Garfield, delMas and Chance (1999) 

reveals that some students struggle comparing distributions in histograms, focusing on 

the top part of the bars (i.e. smooth or irregular) instead of comparing the relative density 

of the data points around the mean of the distributions.  

Analysis of my data revealed that in the static environment, participants’ 

descriptions of distribution, mean and standard deviation tended to focus on the normal 

distribution. Although the normal distribution is one example of a family of distributions, it 

seemed to be the prototypical one for the participants. For instance, when I asked what 

the term distribution meant to them, Anita and Halen responded thus: 

Anita: Well, immediately what pops up is the normal distribution curve 
because that is part of what we have in statistics […] 

Halen:  […] to me the first thing would be like the normal distribution […] 
and then it could be like other distributions […] 

Reactions from my participants show that the normal distribution is “the first thing” that 

“pops up” when they hear the term distribution. The normal distribution curve is an 

important theoretical model in introductory statistics and has many applications in 
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modeling real situations. For example, to Anita, the normal distribution is “part of what 

we have in statistics”, suggesting that it was one of the main theoretical models that she 

learned in her statistics course. She also stated, rightly or wrongly, that the normal 

distribution was used in grading her courses. From my participants’ statements, the 

normal distribution seem to distract their attention from a more general understanding of 

distribution, which includes the shape, centre and spread of data from that centre. It 

seems that students pay more attention to the concepts that directly apply to them, and 

in the process, may ignore the other meanings related to such concepts. Anita and 

Halen paid no attention to the concept of distribution beyond the normal distribution. 

Based on Konold and Higgins’ (2003) work, my study found that in the static 

environment, participants were more likely to reason with data as pointers (e.g., Anita’s 

“immediately what pops up is the normal distribution [...]”); data as cases (e.g. Halen’s 

“to me, first thing would be like the normal distribution and then […] other distributions”); 

and using data as a classifier (e.g., Anita’s “I immediately think of averages because […] 

simple definition of the mean […] would be adding up the numbers […]”). These 

examples exclude aggregate reasoning, which Konold and Higgins propose as evidence 

of students’ consideration of variability and statistical thinking.  

Moreover, four out the five participants in my study were more likely to consider 

the mean as a “number” obtained by a process of “adding up the numbers […].” For 

example, Anita expressed her thinking about the mean as follows:  

Anita: I immediately think of averages because, um, well, simple definition of the 
mean, I guess would be adding up the numbers in the data set and then 
dividing it up by the figures you have. 

The students’ challenges with the construct of the mean, or the arithmetical average, are 

not new. Nineteenth-century scholars faced the same dilemma. As Stigler (1999) 

describes, Quetelet and Jevons wrestled with questions such as: How should we 

interpret a social average when the identity of each of the elements in the aggregate is 

well known? For example if “the heights of Adelphe Quetelet and William Stanley Jevons 

are 5΄1˝ and 5΄9˝, what then is 5΄5˝? Surely not the height of Adelphe Quetelet or William 

Stanley Jevons” (p. 3). A related question was, should we model the behaviour at the 

individual level (micro-level), or should the model be at the level of the group distribution 

(macro-level), through a bell–shaped Normal curve as Galton and Edgeworth would 
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have it? Stigler submits that although the individual-level (micro-level) models had the 

appeal of capturing much of the individual information in the data, the data usually failed 

the checks because the models did not “capture between individual dynamics or 

correlation” (p. 4). The group (or aggregate) models had the benefit of “much wider 

applicability as a compensation for less sensitivity to individual dynamics, and less ability 

to incorporate individual characteristics” (p. 4). Modern statistics has preserved both 

approaches, but there have been more appeals in favour of the group model over the 

individual-level model. However, my study revealed a strong tendency of my participants 

to reason about the mean at the micro-level, as a single value. Thus it is not surprising 

that my participants did not use Hardiman, Well & Pollatsek’s (1984) balance model of 

the mean, by considering the mean in aggregate. 

On the concept of standard deviation, participants who linked the image of 

distribution with the normal distribution curve were more likely to associate the Z-scores 

with the standard deviation. Halen, for example, sketched a Normal curve [Fig. 21] and 

used it to describe her thinking about standard deviation: 

Halen: Standard deviation […] if you have like this one right here [she points at 
her sketch in Fig. 21], like the standard deviation at the centre will be 
zero, and then […] you have in here, like one standard deviation will be 
sixty eight percent […], from here to here that will be the second standard 
deviation […]. 

Another example was Maya, who reported that she “sees standard deviation in graphs”, 

which “graphs” she later clarified meant the “Normal curve”. According Maya, you can 

also “calculate standard deviation”,  

Maya: Standard deviation? Um, standard deviation, I see standard deviation in 
graphs, there is like one, two, and three four; then there’s negative one, 
negative two, negative three […]. You can calculate standard deviation. 

My findings on students’ thinking about standard deviation agree with delMas and Liu’s 

(2005) submission that: 

Most instruction on the standard deviation tends to emphasize teaching a 
formula, practice with performing calculations, and tying the standard 
deviation to the empirical rule of the normal distribution (p. 56). 
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Although delMas and Liu’s quotation above is about instruction for which I have 

no direct evidence, it suggests some anecdotal evidence on the down-side of teaching 

with a focus on calculations and algorithms. delMas and Liu contend that instructions 

that emphasize calculations and procedures do not necessarily promote conceptual 

understanding of standard deviation. The author’s contention is supported by similar 

findings by Pollatsek, Lima & Well’s (1981) on their students’ understanding of the mean 

of a data set. Pollatsek et al. contend that the computational rules do not imply any real 

understanding of the basic underlying concept, but in addition may actually inhibit 

students’ understanding of other related concepts. Both delMas and Liu as well as 

Pollatsek et al. draw researchers’ and educators’ attention to designing learning tasks 

that do not focus students on calculations as the primary method of teaching and 

learning concepts.  

However, given that students forget some concepts that they have learned in 

class, it is not possible that classroom instruction is entirely responsible for all the gaps 

in students’ understanding of concepts. Moreover, there are a lot of supplementary 

materials outside the classroom, (e.g. text books, applets etc.) that students can use to 

support their classroom learning. Many of these resources in undergraduate basic 

statistics are designed following the GAISE’s (2005) learning goals of teaching and 

learning statistics (in Chapter 2). For instance, Moore’s (2013) textbook, “The Basic 

Practice of Statistics”, which is widely used in introductory statistics courses, fully 

supports GAISE’s learning objectives, such as using ‘actual’ or ‘real’ data to help 

students construct meanings of concepts; emphasizing conceptual understanding rather 

than focusing on applying formulas and algorithms; encouraging collaborative learning 

such as group projects, and class discussions; and having students use well-selected 

computing tools for teaching and learning concepts. In general, many of GAISE’s 

teaching and learning goals are implemented with the static tools, such as paper and 

pencil, graphs and diagrams in the text books. What is not well known is how students 

engage with physical and dynamic models of statistical variability. I discuss this question 

in the next section. The discussions in the current section contribute to answering my 

first research question.  
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6.2. Participants’ Considerations of Variability while 
Solving Tasks with Dynamic Sketches  

In Section 6.1, I discussed the analysis of my participants’ constructs of variability 

in the static environment, which related to my first research question. In this section, I 

discuss findings from the analysis of participants’ interactions with the dynamic sketches 

in three overlapping categories, namely: i) dynamic and physical expressions, including 

gestures; ii) constructions of mathematical meanings; and iii) affective and aesthetic 

expressions (e.g. fun, surprise, and amazement) while engaging with the tasks. Lastly, I 

discuss participants’ understanding of the constructs of standard deviation and statistical 

variability in Section 6.3. I will use some episodes presented in the previous chapters as 

examples. 

6.2.1. Physical and Dynamic Expressions  

At the prediction and the testing of predictions, my participants’ showed more 

physical body movements and gestures than they did in the static environment. For 

instance, they used active verbs such as “increasing”, “decreasing”, “going down”, 

“getting smaller” and “clustering”, which Bartolini Bussi & Mariotti (2008) associate with 

artifact signs, that is, signs associated with using a physical tool on a given task. For 

example, while interacting with the dyMS sketch, Anita said, “I saw the mean ‘getting 

smaller’ and standard deviation ‘gets bigger’ […]”. Boris predicted that “if you ‘move’ 

[data points] away from the centre, the square is ‘getting bigger and bigger’ […].” For 

Boris, the size of the square was a metaphor for “scale”, which represented how far a 

data point was from the mean line. Boris’ example revealed dynamic and physical 

thinking, which seemed to be evoked by the perceived action of dragging the points on 

the horizontal axis. Maya’s predicted that, “when I move the [data] points away from the 

centre, the curve will plunge, go down” and accompanied her prediction by spreading out 

her arms across the table as she said “the curve will plunge” (Fig. 28). 

Moreover, when asked to predict how the squares on the dyMS sketch would 

change if he dragged the data points on the horizontal axis, Yuro attention was focused 

on the activity of “moving” rather than on the object that was moving or being moved: 

“it’s going to move this way”; “this is going to move this way”; “I’m going to move this 



 

119 

way”; and “the whole thing is going to go this way” [Yuro, 3]. It is interesting that Yuro’s 

own “moving” did not come first but after “it” and “this”, suggesting that he was engaged 

more with the motion than the object being moved. His expressions support Arzarello et 

al.’s (2009) proposition that dynamic thinking is multimodal (i.e., involves many different 

aspects). It seems from Yuro’s statements that multimodal thinking is a complex manner 

of thought, which involves some kind of physical movement.  

The examples given so far (and there are more to come), suggest that my 

sketches evoked dynamic and physical thinking from the participants. My participants’ 

interactions with the sketches also linked changes in two or more varying entities in the 

dynamic sketches, such as Maya’s statement in Chapter 5, “When I move the [data] 

points away from the centre, the curve will go down, but when I move points closer to the 

centre, the curve will rise.” Although there is no covariational relationship in the context 

of Carlson et al. (2002), in Maya’s statement, her statement specifies the direction of 

moving the “[data] points away from the centre” in connection with the change in the 

height of the gC sketch as she states, “the curve will rise.” Carlson et al. consider the 

statement “the curve will rise” as quantitative coordination, in that it accounts for the 

amount and direction of change in a given entity. According to them quantitative 

coordination is one of the higher cognitive levels of covariational reasoning.  

Overall, the tasks with the gC sketch showed to be more challenging for the 

participants to predict than those on the dyMS sketch. The main challenge seemed to 

arise from participants assuming that the height of the gC sketch would increase as data 

points were dragged away from the mean line. I had anticipated in my design that some 

participants might associate an increase in standard deviation with increase in the height 

of the curve and a decrease in the standard deviation with a decrease in the height of 

the curve. Hence, participants’ incorrect prediction about changes on the gC sketch was 

not particularly surprising.  

After interacting with the sketches, participants thinking about the concepts 

seemed different from their thinking at the beginning of the interview. For example, Yuro 

associated the sharp peak of the gC curve with “less error” in the curve. From his 

statement it is not clear if by less “error” Yuro meant reduced magnitude of the standard 

deviation. Participants’ considerations of the variability after interacting with the dynamic 
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sketches support de Freitas and Sinclair’s (2011) proposal that diagrams can give rise to 

new ways of thinking, as well as new kinds of awareness. I argue that the sketches 

evoked dynamic and physical, time-dependent thinking in my participants, which 

seemed to support their considerations of variability. Section 6.2.1 contributes to a 

response to my second, third and fourth research questions. 

6.2.2. Using the Signs to Construct Mathematical Meanings  

Studies suggest that students are more likely to consider functional relations 

among varying entities in terms of discrete values than in a qualitative way (e.g., 

Trigueros & Ursini, 1999; Thompson, 1994). In designing my sketches, I incorporated 

both the qualitative and numerical considerations. For instance, I included the numerical 

scales for standard deviation and the mean in order to enable participants confirm their 

predictions (Chapter 4 & 5). During interactions with the dynamic sketches, participants 

were able to link changes in standard deviation with changes in the mean, as well as the 

time-dependent movement of data points on the horizontal axis. After her interactions 

with the sketches, for example, Halen indicated more awareness of the links between 

standard deviation and the mean, 

Halen: Well, if you change standard deviation, the mean is going to 
change. When I was looking at the graphs, I didn’t realize that […] 
if you move the points together […] the mean is going to change 
too  

Although Halen was not as explicit in her use of the word “change”, she 

acknowledged the functional connection between standard deviation and the mean, in 

her statement “[…] if you change standard deviation, the mean is going to change.”, 

Halen “realized” that change in the standard deviation was linked to change in the mean, 

led me to argue that she relied on the signs produced in the dragging action to 

internalize the changes on the sketch. Wertsch and Addison Stone (1995) submit that 

internalization is an evolving connection between the physical changes produced from 

using an artifact, and the internally-oriented signs. For Wertsch and Addison Stone, 

internalization represents the process of constructing individual knowledge as generated 

by a shared experience. Halen’s statement suggests that she became aware of the 
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connection between the standard deviation and the mean as well as the movements of 

the data point on the horizontal axis, though at the level of using the artefact.  

A similar episode occurred when Anita solved the task on the dyMS sketch. She 

dragged a data point away from the centre on the right side of the mean line, and after 

realizing that both the standard deviation and the mean increased in magnitude, contrary 

to her predictions, said: 

Anita:  Oh, so both of them got larger, yeah ok, so I thought the mean 
would get smaller and the standard deviation would get larger but, 
actually both of them are increasing. 

Anita’s statement, “[…] actually both of them are increasing” suggests that she 

became aware of the changes in the magnitude of standard deviation and the mean and 

related them with the direction of dragging the data points on the horizontal axis, away 

from the mean line. Drawing on Bartolini Bussi and Mariotti (2008), I argue that the 

Dragging tool was used by Anita as an instrument of semiotic mediation for the links 

between standard deviation, the mean and distribution of a data set. The discussions in 

this section contribute to a response to my second, third and fourth research questions. 

6.2.3. Engaging in the Tasks: Surprise, Amazement, Fun  

When I look at the tool like this one [the dynamic sketch], my first 
question is, what would I use it for? I am always keen on anything that 
gets people to play, anything that brings a sense of discovery, and 
wonder, the fun thing (Interview from a mathematician, cited in Ekol, 
2011) 

This section briefly discusses the affective and aesthetic dimensions of learning 

(i.e., episodes in which participants expressed surprise, amazement, and fun during their 

interactions with the dynamic sketches). The affective components of teaching and 

learning are rarely discussed in mathematical activities. The citation at the beginning of 

this section is from a professional mathematician who was asked to evaluate a dynamic 

sketch for solving mathematical problems. His response, as well as evidence from other 

studies (e.g. Sinclair & Gol Tabaghi, 2010), show that professional mathematicians’ 

activities do include affective and aesthetic elements such as elegance, fun, clarity, 

simplicity, brevity, structure and power (e.g. see Jacobsen, 2010). However, it is unclear 
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if mathematicians agree that these elements can be developed and promoted by the 

teacher through mathematics teaching and learning activities. 

During their interactions with the sketches, my participants used statements that 

suggested surprise and amazement at some of the results they obtained from the 

activities. For example, Maya’s “oh, this is nice”; Boris’ “that was interesting”; Halen’s 

“Oh, that’s so cool” and Maya’s “Wow, so big!” all suggested affective dimensions. In the 

case of Maya, she seemed so amazed at seeing a very high and thin gC sketch that she 

said “Wow, so big!” It seems Maya had not anticipated such a sketch to evolve from a 

normal distribution curve. Researchers (e.g., Sinclair, 2001; Sinclair, Zazkis, Liljedhal, 

2002; Sinclair, Pimm, & Higginson, 2006) agree that expressions such the above have 

some aesthetic as well as affective dimensions. The authors further agree that the 

affective dimensions can include sensations of pleasure as a result of apprehending and 

discerning information, including patterns in a learning activity. In fact, Sinclair (2001) 

conceives an aesthetic response as an act of acknowledging structure or order 

perceived as being intuitive and pleasing. I believe the responses from my participants 

support Sinclair’s and the above researchers’ findings.  

Furthermore, although the affective aspects of learning are not usually given 

much attention in the teaching and learning of mathematics nor in research, some 

researchers (e.g., Sivan, 1986; Schunk, 1995) disagree with the classical views that 

affective dimensions are entirely an internal state, or wholly dependent on the 

environment as predicted by reinforcement theories (e.g., Skinner, 1953). Rather, Sivan 

(1986) contends that motivation depends on the cognitive activity in interaction with 

sociocultural and instructional factors, which include language and other forms of 

assistance to the learners by the teachers. Moreover, Schunk (1995) believes that good 

instruction can raise motivation for learning and motivated learners tend to look for 

affective learning environment.  

More recent studies show that although students recognize that affective 

components are important, they do not integrate these components in their individual 

studies. For example, Petocz and Reid’s (2003) research studies on students’ 

experience of learning statistics showed that students rated enthusiasm as very 

important to good teaching. However, interestingly, students’ scores on the affective 
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scales were consistently independent of aspects of teaching and learning such as how 

organized the learning materials and activities were. Thus, the affective components 

were completely de-linked from students’ discussion of their own learning. Petocz and 

Reid conclude that students “value enthusiasm and motivation, but they believe that it is 

an aspect of their study that comes from outside rather than from within.” (p.50) I have 

argued that students’ responses to the affective components reflect how the teaching 

and learning institution considers them. In general, the affective dimensions are not 

considered as contributory to learning.  

In fact, Roth and Lee (2007) point out tensions between the epistemological and 

ontological aspects of human development (Packer & Goicoechea, 2000); the 

differences between de-contextualized and embodied knowledge (Lave & Chaiklin, 

1993); the difficulty of planning for specific forms of learning (Holzkamp, 1992); and the 

apparent disjunction between individual learners and their social environments (Barab &; 

Shultz, 1986). Roth and Lee use these examples to argue strongly that, by excluding 

affective dimensions, contemporary applications of the Vygotskian historical socio-

cultural theories have not taken a holistic approach as Vygotsky may have intended. The 

discussions in this section have attempted to show that the affective components are 

indeed important and need to be considered more in the teaching and learning designs. 

Section 6.2.3 contributes to a response to my second, third and fourth research 

questions. 

6.3. Students’ Considerations of Variability after the Tasks  

[…] Our investigation, […] showed that as the basic forms of activity 
change […] and a new stage of social and historical practice is reached, 
major shift occur in human mental activity. These […] involve the creation 
of new motives for action and radically affect the structure of cognitive 
processes. Luria (1976, p. 161; cited by Bartolini Bussi & Mariotti, 2008, 
p.747): 

This section provides an overview of participants’ awareness of the meaning of 

variability after the tasks. I cite Luria (1976) to provide some context to the discussions in 

this section. The main argument in this section is that the signs produced by my 

participants’ interactions with the sketches supported them to consider variability in a 
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way that was different than at the beginning before they interacted with the dynamic 

sketches. I use an episode from Boris’ data to exemplify my argument. 

Toward the end of the interview, I asked Boris to reflect on the term standard 

deviation: 

Boris:  […] as you move the points away from the mean, the standard 
deviation increases […]. As you concentrate data at the center […] 
you get small values of standard deviation. If the data points are 
[at] equal difference from each other, without changing the 
difference between them, shift[ting] the data points to the left or 
right […] just shifts the mean, but it won’t change the standard 
deviation. 

It is worth noting that Boris stated the above results after interacting with the 

dyMS and gC sketches. His statement reveals a deeper awareness of how standard 

deviation may not change as the mean changes with the movement of data points on the 

horizontal axis. Boris’ results cannot be easily stated without using the sketches to 

observe the changes as the points are dragged physically. Other participants in my 

study also showed more awareness of the meaning of standard deviation and its 

applications after using the sketches (for example, Anita’s, statement “[…] I thought the 

mean would get smaller and the standard deviation would get larger but actually both of 

them are increasing”, suggests that after using the sketches, she became more able to 

link changes in standard deviation to changes in the mean. I argue that the signs 

produced by participants’ interactions with the dynamic sketches supported them to link 

the features of statistical of variability. This Section contributes to a response to my 

second, third and fourth research questions. I now move to Chapter 7, and respond to 

my research questions, as well as discuss some contributions of my study to 

statistics/mathematics education. 
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7. Conclusion 

Chapter 6 discussed findings from the data analysis chapter and linked the 

discussions to my research questions. In this chapter, I summarize the analyses and 

respond directly to my research questions. As well, I discuss some contributions of my 

study to research in mathematics/statistical education in general, and to the teaching 

and learning of statistics at the university (and perhaps secondary) level in particular. 

There are altogether six sections in this chapter: Section 7.1 provides specific answers 

to my research questions. In section 7.2, I discuss limitations of the study and issues of 

validity of my results. Section 7.3 proposes some contributions of my study to research 

in mathematics and statistical education, in the area of variability. I discuss implications 

of the study for post-secondary introductory statistics curriculum in section 7.4. In section 

7.5, I suggest areas for future research studies. I conclude the chapter with brief 

personal reflection on the study, in section 7.6.  

7.1. Responding to my Research Questions  

As articulated in Chapter 3, the following are the specific research questions that 

the current study set out to answer:  

1. What do students say about measures of statistical variability, such as 
distribution, the mean and standard deviation, in a data set presented in a 
static environment?  

2. How do students express notions of variability while interacting with 
dynamic mathematics sketches? 

3. How do students express notions of variability after interacting with 
dynamic mathematics sketches? 

4. What might be the contribution of dynamic mathematics sketches to 
students’ considerations of variability and statistical thinking? 

I will respond to the questions one by one. 
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7.1.1. What do Students say about Measures of Statistical 
Variability such as Distribution, the Mean, and Standard 
Deviation, in a Data set presented in a Static Environment? 

Based on my analyses and discussions in the previous chapters, the current 

study found that the majority of my participants were more likely to consider the normal 

distribution curve as the prototypical (and perhaps even only) example of a distribution. I 

expected participants to think about distribution more broadly in terms of how a data set 

is spread out from its centre rather than focusing on one example, which is the normal 

distribution. In fact, four out of the five participants in my study provided the normal 

distribution curve when asked about distribution. Hence, I argue that the image of the 

normal distribution seems to distract students from the general image of distribution. 

Moreover, three participants (Anita, Halen, and Maya) considered the mean as a 

number obtained by ‘adding up the numbers and dividing by the number of data values 

in a data set.’ Two of the participants (Boris and Yuro), were quite brief in their answers 

and each described the mean as the “average”, which I interpreted to mean the same 

thing as adding up the numbers and dividing the sum by the number of data values in 

the data set. Thus, all the five participants shared the same static image of the mean 

based on using the formula for the mean rather than the conceptual meaning of the 

mean. Moreover, three of the five participants incorrectly equated standard deviation 

with the Z-scores in the standard Normal curve rather than considering it as a measure 

of how spread out a data set is from its centre. My findings on the notions of distribution, 

mean and standard deviation were not surprising given findings from previous studies 

(e.g. Pollatsek, Lima & Well, 1981; Hardiman, Well, & Pollatsek, 1984; Konold & 

Pollatsek, 2002). Pollatsek, Lima & Well (1981) had shown that many students think 

about the mean in terms of calculations rather than as a conceptual model. Pollatsek et 

al. (1981) contend that “computational rules [...] may actually inhibit the acquisition of 

more adequate (relational) understanding” (p. 202). In my study, participants who 

considered the mean and standard deviation in terms of calculations at the micro-level 

(Stigler, 1999) were more likely to be challenged by relating the mean and standard 

deviation in a dynamic and functional way. For example Anita’s, “if you can figure out the 

mean of a data set […] then you can derive the standard deviation” (Anita [4]) focused 
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on calculations (deriving) rather than on the qualitative links among the mean, standard 

deviation, and the distribution of data. 

Like Anita, Halen’s thinking of the mean was, “if you have a couple of numbers, 

you add them all up and then you divide by how many numbers there are, you get like 

the average or the mean.” Halen thought of standard deviation as a pointer (Konold & 

Higgins, 2003) to standard normal curve (Fig. 21) rather than a feature of variability in a 

data set. Anita and Halen’s examples represent the thinking that most of my participants 

had about the notions of distribution, the mean and standard deviation in the static 

environment. To summarize my answer to the first research question: my study 

participants were more likely to consider the term distribution as the ‘normal distribution’. 

The term mean was more likely to be considered as a number obtained through the 

process of adding up numbers and dividing by the total number of data points present; 

whereas standard deviation was more likely to be linked to the Z-scores in the standard 

Normal curve. Hence, participants’ constructions of distribution, the mean, and the 

standard deviation showed static images, suggesting the links with images found in text 

books. That leads to my second research question. 

7.1.2. How do Students Express Notions of Variability while 
Interacting with the Dynamic Mathematics Sketches?  

My participants used semiotic resources (Arzarello et al., 2009) such as 

gestures, drawings, and words, to construct the meaning of features of variability, such 

as the standard deviation, the mean and distribution. Through moving data points along 

the horizontal axis using the Dragging tool of Sketchpad, participants used the signs 

produced in the activity to explore the patterns and to interpret the relationships among 

the changing entities. Thus, based on a semiotic mediation perspective, the signs 

produced in the interactions supported participants’ considerations of statistical 

variability. I argue that the dynamic sketches contributed to my participants’ 

considerations of the relations between data distributions, the mean and the standard 

deviation. Moreover, the physical and dynamic expressions by the participants, for 

example, Boris’ statement that “the squares are getting bigger and bigger” support my 

hypothesis in Chapter 3, that students’ thinking about standard deviation after interacting 

with the sketches would show more dynamic and physical expressions. I propose that 
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the sketches evoked dynamic and physical thinking in my participants, which seemed to 

support their considerations of variability in aggregate.  

Second, the use of signs enabled participants to interpret complex dynamic 

connections on the sketches and to communicate these patterns in a more mathematical 

way. For example, Halen’s statement, “When I was looking at the graph, I didn’t realize 

that […] if you move the points together […] the mean is going to change too” suggest 

that after the interactions she did consider the changes in the graph and became more 

aware of the dynamic links between standard deviation and the mean. Vygotsky calls 

such ‘realization’ by Halen “internalization” (an internal reconstruction of the meaning of 

variability through an activity with a physical tool). In Chapter 3, I assumed that my 

participants’ interactions with the dynamic sketches would enable them express 

meanings of standard deviation, the mean and distribution more clearly than they did 

when solving similar tasks in the static environment. My findings so far support this 

assumption. I propose that the signs that evolved from participants’ expressions while 

dragging points using the Dragging tool supported them in constructing mathematical 

meaning of variability. 

Third, during their interactions with the dynamic sketches, participants used 

verbal expressions such as “oh, that’s so cool”, “wow, so big!”, “oh, this is nice” which, 

suggested their affective engagements with the tasks. Research studies indicate that the 

affective and aesthetic domains are rarely considered in mathematics teaching and 

learning activities, partly due to lack of a robust instrument to assess it. However, Roth 

and Lew (2007), with some examples, strongly contend that affective dimensions should 

be an integral part of teaching and learning. Several other studies (e.g. Sinclair, Pimm & 

Higginson, 2006; Sinclair, Zazkis & Liljedhal, 2003) also show that the affective and 

aesthetic dimensions are present in the ways mathematicians solve problems. To sum 

up my answer to the second research question: analyses of my data reveal that the 

activities with dynamic sketches evoked physical and dynamic expressions from my 

participants, which helped them to develop the meaning of statistical variability. In 

particular, the dragging actions seem to help participants reason about the features of 

variability and to state the patterns they noticed without using formulas or algorithms. 

Moreover, the sketches also evoked affective dimensions from my participants, such as 

surprise, pleasure, amazement and some fun, which I found to be consistent with the 
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problem-solving practices of professional mathematicians (e.g., Sinclair & Gol Tabaghi, 

2010; Ekol, 2011). 

7.1.3. How do Students Express Notions of Variability after 
interacting with the Dynamic Mathematics Sketches?  

Analyses of my data revealed improved considerations of the meanings of 

standard deviation, mean and distribution among participants during, and after the tasks 

in the dynamic environment compared with the static environment. I propose that 

dragging actions, and the signs produced in the interactions enabled participants to 

internalize the mathematical features of statistical variability. The dynamic sketches also 

evoked physical and dynamic expressions from my participants, for instance, Maya’s 

statement, “When I move the [data] points away from the centre, the curve will plunge, 

go down” was accompanied by a physical action of opening her arms and lowering them 

(Fig. 28), suggesting the deictic gesture for “plunge” or “go down.” Moreover, the 

dynamic sketches also evoked considerations of motion in participants’ statements of 

variability (e.g., [Yuro, 3]; and [Boris, 5] in Chapter 5). These findings support Angel and 

Gibb’s (2013) more recent proposal that digital environments, such as Sketchpad have 

strong connection to the affective modes of communication. 

7.1.4. What might be the Contribution of Dynamic Mathematics 
Sketches to Students’ Considerations of Variability and 
Statistical Thinking?  

The major contribution of the dynamic mathematics sketches, as seen in 

participants’ interactions, was that the sketches provided participants with physical and 

concrete mathematical tools with which to reason about abstract mathematical 

constructs, such as standard deviation, mean and distribution, and to relate these 

constructs to statistical variability. Moreover, the tasks with the dynamic mathematics 

sketches moved participants away from considering features of statistical variability 

merely as numbers obtained from calculations using formulas, but to begin to attend to 

the patterns and meanings of these features in aggregate. From a Vygotskian 

perspective, the signs produced in participants’ interactions with the dynamic 

mathematics sketches mediated their constructions of the meaning of statistical 
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variability and enabled them to reason statistically. Moreover, the sketches also evoked 

aesthetic and affective aspects of the mathematics which seemed to motivate 

participants. For example, the statement below shows how Maya reasoned with a 

statistical graph (the dyMS sketch); it also has some affective elements after Maya 

solved the task:  

So, the mean increases as standard deviation […]. As standard deviation 
increases, the mean also increases. Oh no, the mean decreases right? 
[…] Oh, this is nice [Maya, 14]. 

Maya seemed pleased with her finding after successfully solving the task. However, the 

affective and aesthetic components were not noticed in my participants’ statements 

when they performed tasks in the static environment, which suggests that dynamic and 

physical sketches more easily evoke affective and aesthetic considerations in the 

learning tasks than static mathematical tools. 

7.2. Limitations of the Study  

I summarize the limitations in the study in three categories: i) the design of the 

dynamic sketches; ii) the number of study participants; and 3) the challenge of 

integrating the dynamic with the static concepts. The first two issues are so important 

that they can raise questions of broader validity of the study results. The third limitation 

is important to consider in developing curriculum materials, for instance, materials that 

use dynamic graphs for teaching university-level statistics courses. 

7.2.1. The Design of the Dynamic Sketches  

First, a possible design limitation is that the sketches may have given participants 

a false impression that the mean and standard deviation always co-varied when data 

points are dragged on the horizontal line. However, as Boris was able to prove, dragging 

data points may vary the mean value but standard deviation remains unchanged. One 

way of helping students to understand this is to design a task that first asks students to 

predict “What will happen to standard deviation and the mean if you select all the data 

points and drag them on the horizontal axis, to the right or to the left of the mean line?” 
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After their prediction, students could then check by selecting all the data points and 

dragging them on the horizontal axis, to the left or right side of the mean line.  

Second, I used a small sample of numerical data points to design the dynamic 

sketches. However, as I explained in Chapter 4, I chose a small data set that so as to 

focus (Konold, 2007) participants on exploring the patterns of variability among the 

entities on the sketches. Based on my findings, I am satisfied that the study largely 

fulfilled the scope of its design. My study focus was on how students construct meanings 

about statistical variability in the static, and in the dynamic environments and whether 

the dynamic sketches contributed to their understanding. Moreover, I did not witness 

questions from my participants that would have required more data points. However, 

notwithstanding all the precautions that I took in the designing the sketches, limitations 

cannot be entirely ruled out. Future studies may be interested in increasing the number 

of data points and involving a small group of two to three students to work together to 

see if their interactions with the sketches and the discussions among them generate 

more mathematical signs. 

7.2.2. The Number of Study Participants  

I took a qualitative approach to the study and interviewed five participants in the 

final study. I ensured that I used complete data for all five participants on the same 

constructs. Overall, having complete and consistent data from all participants supported 

the validity and reliability of my findings. I believe that the measures that I took in 

planning, designing and implementing the study enabled me to adequately address all 

the issues that came to my attention. However, future studies can consider involving 

more participants, for instance, in small-group interviews rather than in one-on-one 

interviews in my case, to give another perspective of the learning outcomes.  

7.2.3. Integrating the Dynamic with Static Concepts  

Given that, in general, students are used to the textbook materials that are 

generally static, it stands to reason that my participants initially had some difficulties 

integrating dynamic concepts with the static ones. For example, the idea of the mean 

changing its value over time as data points were changed seemed problematic to my 
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participants at the prediction stages. As well, the continuity of the normal distribution 

curve was challenging for most of them to predict, but later on, the tasks proved to be 

quite interesting for them. I argue that moving students from a predominantly static 

learning environment to a more dynamic one is a challenging task for both the students 

and the instructors, but the dynamic activities engage students in the learning tasks 

more than the static ones. Curriculum planning and design may consider incorporating 

dynamic sketches in the activities for teaching and learning abstract concepts in 

statistics and mathematics. I will come back to curriculum issues in my 

recommendations toward the end of this chapter. 

7.3. Contributions to Research in the 
Mathematics/Statistics Education 

The study has contributed to two locally designed sketches, the dyMS Sketch 

(pronounced as the Dimes Sketch), and the gC Sketch (pronounced as the Geek 

Sketch). The designs were based on statistical principles, and implemented using 

Sketchpad software. As I discussed in Chapters 5 and 6, the physical and dynamic as 

well as the visual nature of the sketches evoked participants’ thinking about the notions 

of variability. My claim is that at the end of the tasks, participants were more able to 

explain, in their own words, patterns of change in standard deviation in relation to 

change in the mean, in connection with changes in data distribution. Formerly, 

participants relied on text book rules and formulas rather than on their own constructions 

of meanings of concepts. My findings suggest that the dynamic sketches have great 

potential to engage participants in the tasks and to challenge them to look for meanings 

of concepts. 

7.3.1. Extending the Conceptual Understanding of Statistical 
Variability  

Given the importance of variability in statistics, I believe my study contributes 

some novelty in integrating geometrical-computing tools to the teaching and learning of 

statistical variability in first-year university-level statistics. Geometrical approaches 

enable students to explore concepts using physical models and to develop meanings as 
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they move toward formal mathematical meanings. For example, the physical sketches 

allow students to explore with graphs, to test conjectures, and to solve problems by 

integrating geometrical thinking (Jackiw, 1991, 1995; Goldenberg et al., 1998) with 

statistical thinking (Wild and Pfannkuch, 1999; Pfannkuch & Wild, 2004), as well as 

statistical reasoning (Cobb 1993; Moore, 1997; GAISE, 2005). Moreover, geometrical 

approaches can enhance students’ understanding of the meaning of symbols, when they 

apply the symbols in the calculations. From the participants’ statements as they solved 

tasks with the dynamic sketches, I developed a framework that I call a multi-variation 

reasoning (MVR). 

7.3.2. Proposing a Framework for Multi-variation Reasoning. 

In Section 3.2, I presented a covariational reasoning perspective based on 

Carlson, Jacobs, Coe & Hsu’s (2002) work and noticed its similarity with Falcade, 

Laborde and Mariottti’s (2007) work on reasoning about two co-varying entities. Carlson 

et al. (2002) define covariational reasoning as cognitive activities involved in 

coordinating two varying entities while attending to the ways in which the entities change 

in relation to each other. Their definition is consistent with Falcade et al.’s (2007) 

geometrical framework on “co-variation” (p. 3) that the authors implemented in a 

secondary classroom setting while teaching the concept of function in mathematics. 

Unlike the above researchers, however, I use covariational reasoning as a platform to 

develop a multi-variation reasoning framework in my participants’ considerations of 

variability in statistics. Hence, my study extends the work of Carlson et al. and Falcade 

et al. on covariational reasoning in secondary school mathematics to multi-variation 

reasoning framework in the undergraduate statistics. 
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A B 

Figure 32. Covariational relation between two varying entities A and B 
(Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Falcade, Laborde, & 
Mariotti, 2007). 

Both Carlson et al. (2002) and Falcade et al. (2007) explored co-variation 

reasoning between two functions A and B. The researchers’ framework can be 

represented more generally as “Change in entity ‘A’ responding to change in entity ‘B’” 

(Figure 32).  

Figures 33 and 34 respectively show three and four entities that change when 

participants solve tasks on the dyMS and gC. The entities that vary on the gC sketch are 

represented by the letters U, V and W. The proposed multi-variation framework 

describing participants’ interactions is: “Change in entity ‘U’ in relation to change in entity 

‘V’, both responding to change in entity ‘W’.” 

            V 

 

U                                                W 

Figure 33. The multi-variation relationships among three varying entities U, V 
and W. 

The statement below is given as an example of the statements that students may make 

as they interact with the dyMS sketch and interpret the changes in the sketch, 

As the data points are dragged away from the mean line on the right side (U), the 
magnitudes of the standard deviation (V), and the mean (W) both increase. 
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With respect to the activities with the gC sketch, I used four entities U, V, W, and 

Z (Fig. 34). The multi-variation framework is: ‘Change in entity U, effecting changes in 

entities V, W, and Z.” For example, the statement, below can be considered under a 

multi-variation framework involving four entities: 

As the data points are dragged toward the mean line from the right side (U), the 
magnitudes of standard deviation (V) and the mean (W) decrease, whereas the 
height of the gC sketch increases. 

Of course students’ statements are expected to vary as they solve similar tasks, but 

common elements should include: i) key words that specify changes in magnitude of the 

entities (e.g. increase or decrease in an entity); ii) direction of movement of an entity 

from the mean-line (e.g. away from the mean line or toward the mean-line); and iii) 

statements should specify the space where the task is being solved (e.g., on the right 

side or left side of the mean line). 

              V 

 

U W 

       Z 

Figure 34. The multi-variation relationship involving four varying quantities U, 
V, W and Y used to analyze tasks on the gC sketch.  

Building on Carlson et al.’s (2002) and Falcade et al.’s (2007) work and on the above 

proposals, I define a multi-variation reasoning (MVR) as follows: “Statements/actions 

that involve coordinating changes in three or more entities, while attending to the specific 

ways that the entities change in magnitude, direction and location in relation to a 

reference point.”  

Table 4 provides a summary of the different levels of a multi-variation reasoning 

framework. It is worth noting that, a multi-variation framework does not categorize the 

students or the learners; rather, it categorizes the statements that the students make 
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during interactions with the sketches. Column one presents the levels of consideration of 

variability (CVs), one through five. Column two describes the possible activity at each 

CV level. Column three proposes some behaviour that can be observed in each level. I 

have used the notation CV (#) to specify one level from another (e.g. CV1 is level one 

and CV2 level 2). There are five levels in my proposed framework. Following are brief 

descriptions for each CV level. 

CV1 is the level one consideration of variability. At this level, students’ 

statements on the tasks are more general and do not specify the change in the first 

entity in response to change in the second entity. The term “change” could be a 

decrease or an increase in a given entity but it is not made explicit in students’ 

statements. For example, Halen’s statement, “if you change standard deviation, the 

mean is going to change too” [Halen, 10, p. 84] satisfies a CV1 level. CV2 is the level 

two consideration of variability. It includes a statement of the direction of change in one 

entity responding to change in the second entity. CV3 is the third level of consideration 

of variability that includes coordinating the magnitude of change in one entity in relation 

to the change in another entity. CV3 is similar to Carlson et al.’s (2002) quantitative 

coordination. In fact CV1, CV2, and CV3 are similar to Carlson et al.’s first three levels of 

covariational reasoning (i.e. considering—change, direction, and magnitude of one 

entity—in relation to change in the second entity).  

In CV4, the fourth level of considerations of variability, a student is expected to 

relate the amount of change in one entity with changes in two different entities at the 

same time. CV4 relates more to the tasks with the dyMS sketch. In CV5, the fifth level of 

consideration of variability, a student is expected to connect the amount of change in 

one entity with changes in three different entities on the sketch. CV5 relates to the 

interactions with the gC sketch. The CV levels apply equally in the dyMS and the gC 

sketches, except CV5 that does not apply on the dyMS sketch. 
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Table 4. The Proposed Multi-variation Reasoning Framework  

Consideration 
of Variability 
(CV) level 

Descriptions of actions Behavior 

CV1 Coordinating the change in one 
entity with changes in another 
entity.  

Statement and actions which show coordinating 
two entities, e.g., “A changes when B changes” 

CV2 Coordinating the direction of 
change of one entity with 
change in another entity. 

Statement and actions showing an awareness of 
the direction of change of one entity while 
considering changes in the second entity, e.g., “A 
changes as B is moved to the right side of a 
reference point”” 

CV3  Coordinating the amount of 
change of one entity with 
changes in the another entity 

Statement and actions showing consideration of 
the amount of change of the in one entity while 
considering changes in the second entity. e.g., As 
“entity A increases, entity B decreases as it is 
moved to the left side of a reference point.” 

CV4 Coordinating the amount of 
change in one entity with the 
changes in two other entities 

Statement and actions showing consideration of 
the amount of change in one entity while 
responding to changes in two other entities (Fig. 
33). The magnitudes of A and B both increased as 
entity C changed direction.  

CV5 Coordinating the amount of 
change in one entity with 
changes in three other entities 

Statement and actions showing consideration of 
the amount of change in one entity while 
responding to changes in three other entities (Fig. 
34). e.g., The magnitudes of A and B both 
decreased as C changed in the direction d, such 
that D increased. 

If a student’s statement on a dynamic task includes elements in the highest CV level in 

Table 4, then his or her interactions are placed at that level. For example, Boris’ 

statement [Boris, 10] in Chapter 5, includes coordinating the amount of change in one 

entity with changes in three or more entities, hence his interaction can be categorized at 

CV level five (i.e. CV5) of consideration of variability.  
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7.4. Implications for the Curriculum 

Beginning topics in introductory statistics can be considered as the foundation for 

understanding more advanced topics in statistics. Thus, students may benefit from 

integrating geometrical approaches that would help them understand the connections 

among concepts by, for example, exploring and testing conjectures. The two sketches 

designed can be modified and used as teaching and learning resources for developing 

conceptual understanding about standard deviation and its links with the mean and data 

distribution. The physical and dynamic representations may enable students develop 

greater coordination between symbolic and static representations, which are mostly 

found in textbooks, and the dynamic ones, which are not. I propose that the geometric 

approach to teaching variability would help students develop flexibility among different 

representations of concepts. In fact, as my study findings suggest, interactions with 

dynamic and physical geometric representations of concepts could enable students to 

develop more aggregate reasoning with data. 

Integrating dynamic and geometric concepts can also enable students to explore 

concepts and to build their own knowledge on the basis of properties that are noticed on 

the sketches (as was the case in Gol Tabaghi’s (2012) study of linear algebra concepts). 

At the start of the tasks, participants in my study recalled more procedural and symbolic 

approaches to the concepts of distribution, the mean and standard deviation, but they 

did not recall the concepts. My study agrees with Gol Tabaghi’s (2012) recommendation 

that a balance between the two approaches—dynamic geometric in her instance and in 

my case dynamic analytical—would enable students to overcome certain learning 

difficulties. I suggest that the two approaches be used concurrently with students 

exploring the dynamic approaches through small projects and homework assignments. 

My study participants also showed difficulties distinguishing between the terms 

distribution and the normal distribution as well as between standard deviation and the Z-

scores in the standard Normal curve. In both cases, when asked about distribution, all of 

them except one considered the normal distribution curve. Similarly for standard 

deviation, my participants considered the Z-scores in the standard Normal curve. I 

suggest that the general construct of distribution be introduced to students through 

dynamic graphs for them to coordinate and construct the meanings of concepts such as 
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the mean, standard deviation and other features of variability in the data set. Using more 

specific sketches such as the gC sketch, students could then focus on the Normal curve 

as a special case of distribution. As Gol Tabaghi’s (2012) study proposes, the integration 

of dynamic and geometric concepts could provide students with concrete contexts for 

meaning making of abstract notions such as the standard deviation.  

With respect to the assessment of tasks, I recommend, based on this study that 

students are assessed through small projects and course assignments. For example, 

students can be asked to explore properties of concepts such as standard deviation, 

through dynamic geometric graphs and to write reports (500-600 words) about their 

findings. Such reports have two benefits: i) they can encourage students to use the 

geometric tools for exploring mathematical/ statistical constructs; and ii) they can also 

encourage students to practice communicating their results with a larger audience, for 

example, in small groups discussions. I recommend that the curriculum material be 

designed following the Vygotskian socio-cultural context, with emphasis on exploring 

concepts, writing reports and communicating results with a larger audience. However, I 

also support students having a strong content base of the subject of mathematics and 

statistics. Emphasis on communication alone without mathematical content is not 

sufficient. It is akin to drilling students on the English lexicon for its own sake. 

7.5. Implications for Future Studies  

I have proposed in my study that the pivot signs may be more easily evoked in 

activities involving small-to-large-group discussions than in individual interactions. Future 

studies could shed more light on these questions: “Are the pivot signs independent of 

artifact signs? Does group size (the number of participants working together on 

mathematical tasks, using dynamic mathematics sketches) affect the generation of 

mathematical signs?” One suggestion is to organize a study in which participants work 

on tasks in small groups, but vary the group sizes, while others work on the same task 

individually.  

With regard to the multi-variation framework, I recommend that future studies 

consider testing and validating my proposed levels of consideration of variability on 
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statistical/mathematical tasks. Finally, the current study proposes that foundation 

statistics students are more likely to face challenges with statistical terminologies and 

statistical language in general, which impact negatively on their understanding of the 

meaning of statistical ideas. More studies, especially on variability, would clarify this 

claim. On the issue of statistical language, I recommend that more opportunity is given 

for students to practice writing and communicating mathematical/statistical concepts in 

small working groups and where possible, in larger groups, to consolidate ideas that 

they learn especially in large classes. Small group and presentations, facilitated by 

teaching assistants could help students develop analytical skills and build confidence in 

sharing statistical/mathematical concepts with peers. 

7.6. Personal Reflection 

This study has enabled me to appreciate more deeply the challenges that 

students can face with the meaning of statistical concepts and, by extension, with 

statistics as a discipline. If students are not comfortable with the foundation concepts, 

they are very unlikely to understand other related concepts. Statements such as 

“statistics is not my subject” that some students make about the subject could be linked 

to foundation concepts of statistics that they failed to get to grips with, conceptually. By 

interacting with the participants in my study and reading their transcripts, I was 

encouraged in my belief that taking this line of research has been worthwhile. The study 

has made me want to continue to extend the applications of dynamic, physical and more 

interactive tools for learning concepts in statistics. In the future, I would like to extend the 

study on the normal distribution by incorporating more concepts, given that the normal 

distribution attracts many applications as well as students’ attention, and yet poses some 

challenges at the same time such as using the Normal curve to estimate probability of an 

event happening. I believe that the engagement, commitment, fun, and the sheer joy, 

among many other benefits that such an approach entails, is worth putting time on.  

At a more personal level, the study took me through many theoretical and 

philosophical landscapes, which I had to navigate to find my own bearings and come 

back home. Along the way, I traversed through many lands, some known and others not 

so well known to me. I passed through the Vygotskian land and the Vygotskians gave 
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me a pair of binoculars to help me navigate the semiotic terrain and join the Wild land. In 

the Wild land, the Wildians also handed me another pair of binoculars to navigate the 

rocky foundations and find my way home. I cherish the thoughts and wisdom of all those 

who pointed me to my way home. And now I am Home! 
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Appendix A. 
 
Interview Task 1: 
Exploring Participants’ Constructs of the 
Features of Variability in the Static Environment  

What comes to your mind when you hear these words?  

i) Distance 

ii)  Centre  

iii) Deviation 

iv) Distribution 

v) Mean 

vi)  Standard deviation 
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Appendix B. 
 
Interview Task 2: 
Exploring Participants’ Constructs of Variability with the 
dyMS Sketch  

There are six numerical data points marked on the horizontal number line and labelled 

B, C, F, E, A and D. The vertical purple line shows the mean-line of the six data points. 

The length from each data point to the mean-line constitutes one side of a square 

formed with that point and the mean-line. Each square is identified with its respective 

data point, for example, “square B” is formed with data point B as one of its four corners. 

Six different squares are similarly constructed and all the squares touch the mean-line at 

two points: i) at the mean-point (all six squares); and ii) at one other point either below or 

above the horizontal line. You are to select any one of the data points, say, ‘D’ using the 

mouse pointer, and to drag it on the horizontal axis away from, or toward the mean-line. 

As you drag the point, square ‘D’ will change according to the direction of dragging and 

the standard deviation of the data set will also change with dragging the point. You are 

to describe the changes in the square and the standard deviation as you drag the point. 

However, before you drag any of the data points, predict, and justify your prediction, how 

the square, and standard deviation will change as you drag the point.  

 
a 

 
b 

Figure B1. .The original design of dyMS sketch. a) dyMS sketch before dragging data point; 
b) dyMS sketch after dragging data point E toward the mean line from the right 
side and square area E gets much smaller.  
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Appendix C. 
 
Interview Task 3: 
Exploring Participants’ Constructs of Variability with the 
gC Sketch  

There are six numerical data points are marked on the horizontal number line and 

labelled B, C, F, E, A and D. The vertical purple line is the mean line for the six data 

points. A Gaussian curve very close to the horizontal line is fitted on the six data points 

and its peak as well the standard deviation of the data set will change as you drag a data 

point toward the mean-line or away from it on either side. You are to select one of the six 

data points using the mouse pointer and to drag it on the horizontal axis away from or 

toward the mean line. As you drag the point, the curve peak will change according to the 

direction of dragging. You are to describe the changes that you notice in the peak and 

the standard deviation as drag the points. Before you carry out the task, predict and 

justify your prediction, how the curve peak and standard deviation of the data set will 

change.  

 
2a 

 
2b 

Figure C1. The original design of the gC Sketch. 2a) The gC sketch before data points are 
dragged much closer to the mean line; 2b) the gC sketch after data points have been dragged 
much closer to the mean line.  


