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Abstract

Panorama photos/videos provide a brand new way to demonstrate 360 degree

view of a scene in different platforms. While existing techniques can create and

store the photos/videos as a whole frame, the first part of this thesis presents a

development of efficient tile-based coding system for storing and transmitting

the panoramic photos/videos, thus preserving the bandwidth and improving the

quality of the photos/videos. It also improves the user experience especially for

mobile users. Furthermore, the latest coding standard high efficiency video cod-

ing standard (HEVC) and its extension is utilized to replace H.264/AVC coding

structure in original tile-based system. With a model-based rate distortion op-

timization algorithm for choosing the quantization parameters across different

tiles and layers, we further improve the rate-distortion performance for this

system. In the second part of the thesis, we focus on improving the efficiency

of interactive multiview video streaming system, where users can switch view

points during the playback, and the system can generate virtual view. A novel

downsampling-based interactive multiview video stream system is proposed to

offer a new degree of freedom to the system design. With the bitrate adap-

tive downsampling ratio selection and joint depth-texture bit allocation, the

rate-distortion performance of the system can be improved at low rate regimes.

.
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Chapter 1

Introduction

1.1 Introduction

Social networks like Facebook, Twitter have attracted billions of users allowing

people share their life online. Thanks to the ubiquitousness and convenience

of mobile phones, the number of photos and videos uploaded to these social

networks is exploding. For example, in the popular picture share application

instagram [1], there are 16 billions photos, 1.2 billions likes daily, and 55 millions

new photos each day. We can easily feel the trend that multimedia sharing will

be dominant in social networks. This gives us the inspiration in two manners.

One is that instead of traditional picture or video sharing, how to use new

media formats to show our life. The other is due to the limit of bandwidth,

how to save the bitrate consumption.

Panorama photos/videos and multiview videos are two emerging new media

formats. A panoramic photo/video is basically a recording of a real world

1



Chapter 1. Introduction 2

scene from all angles, the viewer has control of the viewing direction, up down

and sideways, where the view in every direction is recorded. Multiview videos

provide a free viewpoint for the user to enjoy a 3D scene for movies or TV

series. Applications like Google Street View, Immersive media [2] has shown

that how powerful, useful and entertaining that panorama photos/videos can

be. However, existing transmitting and storage schemes still have some space

to improve.

The first part of this thesis focused on tile-based interactive panorama video

system. In this part, we proposed an efficient way to transmit panorama video

stream, where traditional whole panorama video frames are divided into mul-

tiple tiles. This system is inspired by ClassX which is an interactive online

lecture video system developed by Stanford University. [3] As a result, with the

combination of ClassX and OpenGL, a new tile-based mobile panorama video

decoding system is created.

By pan/tile/zoom functionalities, this system allows users to easily get the re-

gion of interest (RoI). Therefore, the user experience is improved. Tile-based

video streaming technique allows the system have a chance to satisfy the real-

time interactive implementations. By further exploiting the rate distortion

behaviour across different tiles, rate-distortion performance can be further im-

proved. Up to 1.02 dB Peak Singal to Noise Ratio (PSNR) gain is achieved by

this model-based approach.

Another problem for the existing tile-based system is that the correlation be-

tween different resolution layers has not been exploited. In this thesis, we
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proposed a replacement of traditional H.264/AVC coding system by the scal-

able extension of the latest High Efficiency Video Coding standard, the SHVC.

With this latest standard, we can further exploit the correlation between dif-

ferent layers and get more coding gain. In addition, by implementing spatial

scalability bit allocation strategy from previous scalable video coding (SVC)

standard, we again achieve up to 1.32 dB PNSR gain.

The second part of this thesis proposed a new strategy for coding interac-

tive multi-view video stream (IMVS). This method is inspired by the fact that

at low bitrate, it is more efficient to downsample the signal before encoding.

With the same bitrate, we can achieve better R-D performance compared to

traditional coding scheme. In [4], they proposed a mix-resolution strategy in

multi-view video coding (MVC), in which the right-eye view is downsampled to

improve overall visual quality. Brust [5] presented a mixed resolution approach

for stereo video coding to get better subjective quality. However, the down-

sampling approach has not been applied to IMVS framework. In our approach,

we assess not only the virtual views but also the base views. With this new

framework, we also proposed a rate-adaptive approach to select the optimal

down-sampling ratio according to the band-width budget. In addition to above

contributions, we further study the bit allocation problem between depth and

texture in IMVS. By proposed model-based joint optimization algorithm, we

can get an improvement up to 0.65 dB gain in PSNR compared to traditional

non-downsampling coding scheme.
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1.2 Thesis Outline

Chapter 2 begins with the background of tile-based streaming system classX.

The chapter details the rendering technique for current panorama photo/videos.

Next, we explain how classX and OpenGL are combined.

Chapter 3 presents a model-based bit allocation algorithm for tile-based system.

The idea is from scalable video coding bit allocation algorithm. We describe

how this algorithm works in current framework and the fast algorithm is stated.

Results are presented. After that, we consider transmission scenario, and use

the same reasoning process with slight modification to get the solution.

Chapter 4 provides the background of SHVC and high efficiency video coding

(HEVC), and details two distinct parts, the replacement for original H.264/AVC

coding structure, and the optimization under SHVC framework, both of which

are used in improving the video quality.

Chapter 5 proposes a novel down-sampling based IMVS approach. We then

present the rate adaptive downsampling ratio selection strategy and the joint

depth and texture bit allocation optimization is discussed.

Finally, the thesis is concluded in Chapter 6.

1.3 List of Contributions

The following demos and achievement have been produced during this project.

• Demo for OpenGL based ClassX decoder can be viewed in this link:
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http://www.youtube.com/watch?v=JSq1TOGYBgo

• By model-based QP optimization algorithm for tiling based panorama video

system, Up to 1.02 dB Peak Singal to Noise Ratio (PSNR) gain is achieved.

• By proposed downsampling based IMVS and model-based joint optimization

algorithm for texture image and depth map, we can get an improvement up

to 0.65 dB gain in PSNR compared to traditional non-downsampling coding

scheme.

http://www.youtube.com/watch?v=JSq1TOGYBgo


Chapter 2

Panorama Video Streaming

System Based on Tiling Method

Thanks to the popularity of inexpensive high-definition (HD) video recoding

technology, people can enjoy a detailed video when they are watching soccer

games, Blue-ray DVD, and TV series. However, limited bandwidth or wireless

network are often the hurdles for delivering HD video content. There are mul-

tiple ways to solve this problem. One way is to create HD video content at

different quality levels. But this strategy will influence the user’s experience

and it does not consider the fact that people may just focus on some specific

region of the whole frame.

6
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2.1 ClassX Background

To solve above problem, Stanford University developed a novel interactive video

streaming system called ClassX[3]. It is for publishing Stanford’s lectures on-

line. Since most existing streaming system only allows users to watch a pre-

defined view, it is not convenient for users to select the region they are interested

in. ClassX provides a tile-based video streaming system. With these feature, the

video streaming system avoids sending the entire high definition (HD) frames,

therefore reducing the total bits to be transmitted. Under this scheme, an en-

coder creates multiple resolution layers from original HD video sequence. For

each layer, the video is divided into tiles. Each tile is encoded independently

by H.264/AVC. The generated tiles are stored at the server. When the user

select specific region of interest(RoI), the server will deliver the corresponding

tiles. As a result, once the user has standard video decoders, they can easily

get the RoI without transmitting the part they do not want. The base layer

which has the lowest resolution will give users the whole video scene. This layer

just has one tile which is called thumbnail and it is delivered to the user all the

time. When a user zoom in the video, tiles in the higher resolution layers are

retrieved and users will get better quality[3].

2.2 Panorama Video Rendering Background

Relying on the development of computer computation ability, three dimensional

(3D) video/image processing technique is becoming more and more popular in
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Figure 2.1: The coding scheme for classX. The original HD video is dyad-
ically downsampled to three resolution layers. Each layer is further divided
into tiles. Each tile is independently coded using and H.264/AVC video

encoder

daily life, such as 3D video game and panorama TV. One of the most use-

ful library and tool for realizing all kinds of 3D operations is OpenGL(Open

Graphics Library). OpenGL is an application programming interface (API) for

rendering 2D and 3D computer graphics on multiple platforms such iOS, an-

droid or Windows. With these APIs, we can interact with a Graphics processing

unit(GPU), to achieve hardware-accelerated rendering[3].

With the help of OpenGL, we can map 2D video into 3D surface. Therefore, we

can get a 3D virtual feeling of the image/videos. There are two kinds of exist-

ing techniques for storing 2D panorama image/videos. One is equirectangular

projection, the other is cube mapping.

The equirectangular projection is a mapping that make a portion of the surface

of a sphere to a flat image or its inverse operation. The mathematical expression
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Figure 2.2: An equirectangular image from google street view

is as follows:[7]

x = λ cosϕ1,

y = ϕ,

(2.1)

where λ is the longitude of a sphere; ϕ is the latitude of a sphere; ϕ1 are the

standard parallels; x is the horizontal value for 2D texture coordinates; y is the

vertical value for 2D texture coordinates.

Cube mapping is a mapping that uses a six-sided cube as the map shape[8].

The image is projected onto the six faces of a cube and stored as six square

textures.

Cube mapping is usually preferred over equirectangular mapping because it

eliminates many of the problems for equirectangular mapping such as image

distortion, viewpoint dependency, and computational inefficiency. Also, cube

mapping provides more flexibility to support real-time rendering.

With OpenGL, we can simply map flat image/videos to a sphere or a cubic and

get our panorama image/videos.
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Figure 2.3: A cubic panorama image

2.3 Motivation and Implementation of OpenGL

+ ClassX

The motivation of this section is that rather than transmitting the whole

panorama video stream, we use a tiling-based approach to save the bandwidth.

To achieve this goal, the key point is to create a link between OpenGL and

ClassX.

Because the rendering part is done by most open source application, like freepv

[9] and Immersive Media, our focus is replacing their video coding module by

ClassX. The platform we choose is iOS 5.0. With powerful Xcode 4.0 develop

tools from Apple, we create a strong link between existing classX encoding

structure and panorama rendering in OpenGL. To be more specific, we combine
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ClassX coding system with typical rendering environment OpenGL, a cubic

mapping demonstration is generated in our demo. The implementation detail

is in Appendix A[10].

Fig 2.4 demonstrate our software which links OpenGL and ClassX. In the cubic

rendering video (c) and (d), it can be seen that the video is now in the cubic

texture rendering which means that we can apply OpenGL operation to this

video from now on. And also, when users presses + or - button, the texture

become clear gradually which means the stream right now is different from

before. In another word, when the user zoom in the video, the tiles that is

delivered is in the second or third resolution layer.

Note that in the demo, the video is directly streamed from the ClassX server,

not from the local computer. In conclusion, in this chapter, we successfully

created is an OpenGL-based ClassX decoder.
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(a) (b)

(c) (d)

Figure 2.4: Illustration for the demo for OpenGL + ClassX



Chapter 3

Bit Allocation for Tile-based

Interactive Panorama Video

3.1 Model-Based Bit allocation Scheme

Previous chapter introduces the tile-based panorama video streaming system.

It allows a panorama sequence to be divided into some rectangular blocks which

are called tiles. In the classX, fixed quantization parameters (QP) is assigned

to each tile. In general, this is not optimal. This assignment is only suitable for

the sequence with similar content throughout the whole frame. However, tiles

of a frame can usually have different contents. Some of the tiles need more bits

to achieve the same quality (PSNR), some of them need less. Inspired by this

fact, we proposed to optimize the QP for each tile, based on the rate-distortion

(R-D) characteristic for each tile. Using this model-based bit rate allocation

algorithm, the overall R-D performance of the whole sequence is improved. In

addition, in real streaming system, we can get the probability distribution for

13
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the users’ selection for each tile from the server. So it is desirable to develop

an optimized bit allocation scheme by taking the tile content difference and the

selection probability patterns into account. We put this probability issue into

our problem formulation when doing the optimization.

Motivated by the same reason, Singara[12] proposed an entropy based weighted

bit rate allocation algorithm. This algorithm use the fact that entropy of a

complex tile is more than the entropy of smooth tile. It has a good performance

but the complexity is too high. Zhicheng Li[13] proposed a visual attention-

based bit allocation strategy to improve the subjective quality of the video.

However, it is not applicable to tile-based panorama video system.

The motivation for this section is to provide an algorithm to improve the video

quality and meet the constraint of certain bandwidth by selecting appropri-

ate quantization parameters. The key issue in bit allocation and rate control

is to estimate or model the R-D behavior of the video encoder. The R-D be-

haviour of an encoder is specified by its rate-quantization (R-Q) and distortion-

quantization (D-Q) functions. In order to get the desired performance, accurate

R-Q and D-Q models are the key point.

If we regard every tile as a layer in Scalable Video Coding (SVC), we can

reference to some existing bit allocation schemes in SVC[11]. Unlike the layers

in SVC which are dependently encoded, each tile here is encoded independently

and we do not need to consider the dependency in this chapter.
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3.1.1 Problem Formulation

We assume that the bit rate constraint for one group of picture (GOP) of a

sequence is given. So within one GOP, the quantization parameter (QP) will

be assigned to each tile. In another word, during the period of one GOP, for

specific tile, the QP will be fixed. However, different tiles can get different

QP. When a bit budget constraint is imposed, it is essential for an encoder to

efficiently distribute the bit budget to tile for the optimal coding efficiency.

With the selection pattern collected from the users, we can get the optimal QP

selection for each tile. In this section, we focus on the bits stored at the server,

i.e, we use total bit rate here. In section 3.3.1, we will use the expected bit rate

to simulate the actual transmitted bits.

Let N be the number of tiles. Rk(Qk) and Dk(Qk) are the distortion and rate

model of the k-th tile with respect to a quantization vector(Q1, ..., Qk). Given

the bit budget Rtotal, the bit allocation problem can be formulated as

Q∗ = (Q∗1, ..., Q
∗
N) = arg min

Qk∈Q

N∑
k=1

wk ·Dk(Qk)

s.t.

N∑
k=1

Rk(Qk) ≤ Rtotal

(3.1)

where Q∗ = (Q1∗, ..., Q∗k) is the selected Q vector for all tiles. Q is the set of

all quantization candidates. and wk is the probability for the users’ selection of

each tile. As a result, the total distortion is defined as a weighted sum of each

individual tile.
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The Lagrangian multiplier method converts the constrained optimization prob-

lem in eq. 3.1 to an equivalent unconstrained optimization problem by creating

the cost function as

Q∗ = arg min
Qk∈Q

J(Q, λ),

J(Q, λ) =
N∑
k=1

wk ·Dk(Qk) + λ
N∑
k=1

(Rk(Qk) −Rtotal)

(3.2)

where λ is the Lagrangian multiplier.

To solve the quantization step size Q in eq. 3.2, one solution is to use a full

search method over all possible combinations. However, since complexity is ex-

ponentially large when the number of tiles increases, we need alternatives with-

out decreasing the performance too much. To solve this problem, we present a

model-based solution in next two sections.

3.1.2 Distortion and Rate Modeling

Generally speaking, the R-D characteristics of a tile are represented by a func-

tion consisting of quantization step sizes. The impact of an individual quanti-

zation parameter on the R-D characteristics has to be known to solve the bit

allocation problem.

For the R-Q model and D-Q model, we employ the models developed in [11].

D(Qi) = b ·Qβ
i ,

R(Qi) = a ·Q−αi
(3.3)
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Where Qi is the quantization step, a, b, α, β are model parameters. For

the derivation of model parameters, we first plot R(Q) and D(Q) for every

pre-encoded tile, then use curve fitting tools in method find out the optimal

parameters for each tile. As shown in figure 3.1, we can have nearly 90%

accuracy to model the R-D behaviour of each tile.

3.1.3 Solution to the Lagrangian Formulation

With the R-Q and D-Q models and the parameters derived above, we have ev-

erything we need to solve the bit allocation problem for tile-based video stream-

ing system. Since the proposed models are defined by closed-form expressions,

a numerical solution to the Lagrangian formulation becomes doable.

By inserting the R-Q and D-Q models expressions, the Lagrangian cost function

can be written as

J(Q, λ) =
N∑
k=1

wk ·Dk(Qk) + λ(
N∑
k=1

Rk(Qk) −Rtotal)

=
N∑
k=1

wk · b ·Qβk
k + λ(

N∑
k=1

a ·Q−αkk −Rtotal)

(3.4)

To derive the optimal solution of the Lagrangian cost function, we take the par-

tial derivatives with respect to Qk and λ, which yields the following equations:

wk · bβkQβk−1
k + λ · (−αkaQ−αk−1k ) = 0, k = 1..N,

N∑
k=1

a ·Q−αkk −Rtotal = 0

(3.5)
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Figure 3.1: Curve fitting result for the proposed D-Q model

Note that there are N + 1 variables Q1,Q2 and λ to be solved because other

parameters are derived in an earlier stage.
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Figure 3.2: Curve fitting result for the proposed R-Q model

For the implementation, the proposed algorithm consists of three stages:

1. Pre-encoding each tile, derive the model parameters;
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2. Input the parameters into the final eq. 3.5 and derive the optimal QP for

each tile.

3. Actual encoding based on the assigned QP.

Finally, each tile is encoded to produce the final bit stream stored at the server

at the target bit rate.

3.1.4 Experimental Result and Conclusion

To assess the techniques presented in this section, we collected two sets of

data from two HD sequences, Raven and Touchdown which represents two

typical sequences. Raven has more difference in content across different tiles.

Touchdown has less complex content across the whole frame. Each sequence

has a resolution of 1920 × 1080 pixels and at 30 frames/second. The Interactive

Region of Interest (IRoI) encoder in classX creates 2 dyadic resolution layers

with a total of 5 tiles. Each tile has 480 × 270 pixels and is encoded into an

H.264/AVC bit-stream using x264(v.0.77) codec library. The motion estimation

is set to have quarter-pixel accuracy with a search range of 16 pixels.

We consider four tiles in the second layer without losing the generality here.

We can easily generalize this case to the third layer. In order to simulate the

real client behaviour and test all kinds of situation, we assume four probability

sets, as shown in table 3.1, to simulate the probability which users choose each

tile.

From table 3.2, we know that the average PSNR gain for Raven and Touchdown

are 1.02dB and 0.16dB respectively. In figure 3.4 and 3.5, we can get a more
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(a)

(b)

Figure 3.3: Content comparison between raven and touchdown

Table 3.1: Simulation Probability sets

Tile1 Tile2 Tile3 Tile4

set1 0.3398 0.3175 0.1942 0.1485
set2 0.3297 0.865 0.3197 0.2641
set3 0.4026 0.1762 0.227 0.1942
set4 0.2951 0.3281 0.046 0.3308

straightforward feeling of the result. With the result above, we can make a

conclusion that for a sequence whose content is diverse across different tiles,
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Figure 3.4: Optimal bit allocation in tile-based video streaming system
(Probability set 1), (a)Raven (b)Touchdown

the proposed algorithm will get more gain. However, for smooth sequences, the

gain is very limited.
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Figure 3.5: Optimal bit allocation in tile-based video streaming system
(Probability set 4), (a)Raven (b)Touchdown
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Table 3.2: PSNR gain (dB) for optimal bit allocation in tile-based video
streaming system

PSNR gain (dB)

Prob Set Raven Touchdown
1 1.0322 0.0545
2 1.7309 0.2366
3 1.015 0.077
4 0.3149 0.2833

Average 1.02325 0.16285

3.2 A Fast Bit Allocation Algorithm for Tile-

based Streaming System

In previous section, we proposed a model-based bit allocation algorithm. It can

achieve up to 1.02dB PSNR gain in our test. The drawback is that we need

four parameters to form the R-D models. In this section, we will present a fast

bit allocation algorithm for tile-based streaming system. With this method, we

can reduce the complexity without losing too much gain.

Generally, there are two ways to optimize the bit allocation in encoding. One

is to keep the sum of bit rate as a constant value and maximize the subjective

quality like we did in previous section. However, The parameters are calculated

from pre-encoded videos which is time consuming and complex for the computer

to deal with in real time. To avoid this, we take a different approach: preserve

the quality while minimizing the bit rate[13]. it turns out that by doing this

there is no need to use the R-Q model, thus reduce the complexity. The details

of this new method are described as follows:
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3.2.1 Problem Formulation

Assume that the R-D function is as follows for a given tile i[13]:

Di(Ri) = σ2
i · e−γRi (3.6)

in which Di stands for the mean square error, Ri denotes the bitrate, and

σ2 is a measurement of the variance of the encoding signal and describes the

complexity of the video content, γ is a constant coefficient. If we take the users’

selection probability pattern into consideration, the encoding distortion in tile

i can be written as follows:

D′i = wi ·Di (3.7)

here wi is the client’ selection probability for each tile. Here we made an

assumption for the probability distribution. In reality, the server will collect

this information within a sufficient long time to get the distribution for each

tile.


min

∑
i

Ri

s.t.
∑
i

piDi = D

(3.8)

Here Ri is the total bits used for each tile. Di is the distortion for each tile

which is encoded by H.264/AVC. pi is the pre-defined probability assumption
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for each tile. D is the target distortion. With the Lagrangian multiplier method

we can solve this equation in close form:


J(D1, D2, ...DN) =

∑
i

Ri + λ(
∑
i

piDi −D)

Ri =
1

γ
(log σ2 − logDi)

(3.9)

in which N is the number of tiles in the encoded image. To obtain the solution,

we take the partial derivative of the the objective function:

∂J

∂D1

=
∂J

∂D2

= ...
∂J

∂DN

= 0 (3.10)

Solving these equation above, we obtain:

Di =
1

pi
× 1

N
×D (3.11)

In paper [13], they assumed that D is linear to Q.

D = k ×Qstep (3.12)

By this relationship, they got

Qistep =
1

pi
× 1

N
×Qstepbaseline (3.13)

In order to improve the performance, we made a slight modification to this

reasoning process: We use a more accurate D-Q model as follows:
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D(Q) = e ·Qβ (3.14)

From equation 3.10, we can get,

Di =
1

γλpi
(3.15)

In addition to this equation, we have a relationship between Di and D,

∑
i

piDi = D (3.16)

By solving the two equations above, we can get:

Q = β

√
1

eipiDN
(3.17)

The advantages for this problem formulation is that we do not need to know the

relationship between R and Q. We only need two parameters for each tile here.

Besides, we have a closed-form solution instead of numerical calculation. The

complexity has been reduced significantly compared to previous model-based

algorithm.

We can make a conclusion as follows:

• Easy to implement because the final solution is a close-form solution.

• Reduce the number of model parameters we need to derive, thus decrease

the complexity.
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Table 3.3: Fast Algorithm PSNR gain in under 4 probability assumptions

PSNR Gain (dB)

Fast Model-based

Prob Set Raven Touchdown Raven Touchdown

1 0.0557 -0.0375 1.0322 0.0545
2 1.2412 0.2051 1.7309 0.2366
3 0.7429 -0.0828 1.015 0.077
4 -0.3717 0.2164 0.3149 0.2833

Average 0.417025 0.0753 1.02325 0.16285

• The performance is decent.

According to the analysis above, we can apply this algorithm to guide the

quantization parameter adjustment to conduct the optimized bit allocation.

3.2.2 Experimental Result and Conclusion

The test environment setting is the same as previous section 3.1. We still use

two sequences Raven and Touchdown for comparison purpose.

From table 3.3, we know that the PSNR gain for Raven and Touchdown are

0.42 and 0.08 respectively. Compared to the model-based algorithm in previous

section, we will lose some gain. But in terms of complexity, we use a simple

close-form solution to get the final QP assignments which is very practical for

real-time implementation. The comparison is shown in figure 3.6 and 3.7.
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Figure 3.6: Fast bit allocation algorithm in tile-based video streaming
system(Probability set 1) (a)Raven (b)Touchdown
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Figure 3.7: Fast bit allocation algorithm in tile-based video streaming
system(Probability set 2) (a)Raven (b)Touchdown
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3.3 Optimal Bit allocation for ClassX in Trans-

mission Scenario

3.3.1 Transmission Scenario

In this section, we consider the expected transmission rate. We need to slightly

modify the previous reasoning process in section 3.1. The only change is that

now we use expected transmission bitrate rather than total bitrate. The motiva-

tion is that in real transmission scenario, the average bitrate is a more accurate

simulation.

In our problem formulation, we do not consider the transmission error in this

thesis. The new problem can be formulated as follows:

Q∗ = (Q∗1, ..., Q
∗
N) = arg min

Qk∈Q

N∑
k=1

wk ·Dk(Qk)

s.t.
N∑
k=1

wkRk(Qk) ≤ Rtotal

(3.18)

To derive the optimal solution of the Lagrangian cost function, we take the par-

tial derivatives with respect to Qk and λ, which yields the following equations:

bβkQ
βk−1
k + λ · (−αk · ak ·Q−αk−1k ) = 0, k = 1..N,

N∑
k=1

wkak ·Q−αkk −Rtotal = 0

(3.19)

The rest steps are the same as the section 3.1.
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Table 3.4: PSNR gain (dB) in transmission scenario

PSNR gain (dB)

Prob Set Raven Touchdown
1 0.8112 0.0081
2 0.9629 0.0113
3 0.9238 0.0118
4 0.3869 0.006

Average 0.7712 0.0093

3.3.2 Experimental Result and Conclusion

The test environment and setup is the same as previous section 3.1. For se-

quence raven, we can get 0.8 dB gain. However, for sequence touchdown, the

gain is very limited. The reason is that in transmission scenario, it is much

more sensitive to the content across different tiles. We can conclude that this

strategy can be only applied to videos with various contents across different

regions.
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Figure 3.8: R-D curves in transmission scenario (Probability set 1) (a)
Raven and (b)touchdown
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Figure 3.9: R-D curves in transmission scenario (Probability set 4)( a)
Raven and (b)touchdown



Chapter 4

SHVC Implementation for

ClassX

4.1 Background For HEVC and SHVC

Nowadays, the display size for electronic devices have a large range, from small

smart phones such as iPhone to tablets and even larger PC screen and dig-

ital TV. More and more Apps such as image sharing and video conference,

require video streaming system that deal with the transmission under the con-

ditions that display resolutions, computing abilities are different. The problem

here is how to meet these various requirements efficiently. In these circum-

stances, scalable video coding (SVC) shows an promising potentials to solve

this problem[14][15]. In SVC, we only need to encode the video sequence once,

we can create a stream with spatial, quality and temporal scalability. In another

words, it enables the decoder to get the video according to the specific display

35
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Figure 4.1: Tile partitioning example in HEVC

size and rate. Compared to traditional non-scalable coding, scalable video cod-

ing has the ability to save more bandwidth. Therefore, it will provides a solution

for large-scale streaming system and improve the user experience.

SVC has a long history and it has been studied widely. Most previous video

coding standards, such as MPEG4, H.264/AVC, have extensions to support

scalability features. However, the weakness for SVC is that it increases the

decoder complexity which is critical to mobile platform. These problems limits

the popularity in market. Currently, a scalable extension for the new video

coding standard High Efficiency Video Coding (HEVC) is under development

to solve the problems above.

HEVC is the latest video compression format, a successor to H.264/AVC (Ad-

vanced Video Coding). The most impressive improvement for HEVC is that it

nearly double the data compression ratio compared to H.264/AVC at the same

level of video quality. It can support 8K Ultra HD and resolutions up to 8192 x

4320 which is very promising to be the next generation TV resolution. Besides,

HEVC adopted a number of advances in video coding technology. The first

version of the standard was completed and published in early 2013[16].
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One significant feature in HEVC is tile: The operation to partition a picture

into rectangular regions. Tiles are independently decodable because they are

encoded with some shared header information. The main purpose of tiles is to

provide the capability for parallel processing such as multi-thread and multi-

core processing. This built-in feature can be naturally used in tile-based video

streaming system. There are at least two benefits: Firstly, we exploit the

dependency across different resolution layers. Secondly, we replace the H.264

by HEVC which provides a significant coding gain.

4.2 Motivation and SHVC Implementation in

ClassX

In ClassX, in case a given tile is not available at the client end, it fills in missing

pixels by upsampling relevant parts of the thumbnail(The lowest resolution has

just one tile). Thus, at the same time, there are always at least two tiles being

transimitted to the client. Since the content between different layers are highly

correlated, without losing the generality, we can exploit the redundancy through

two layers[3].

There are state-of-art techniques that enable SHVC to reduce the bitrate needed

to encode spatial layers. The most important one is inter-layer prediction. In

SHVC, inter-layer prediction is employed by inserting inter-layer reference (ILR)
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pictures into the enhancement-layer reference picture list(s) for enhancement-

layer motion-compensated prediction. In another word, the prediction of enhancement-

layer is from three kinds of prediction frames, the first one is formed by motion-

compensated prediction from reconstructed base-layer frame, the second one is

from temporal prediction within the current enhancement-layer. The third one

is from averaging base-layer reconstruction signal with a temporal prediction

signal[20].

By the above inter-layer prediction in SHVC and the tile functionality naturally

built in HEVC, it is motivated to use SHVC for tile-based streaming system.

Thus by replacing H.264 in ClassX with SHVC, we can further reduce the

bitrate for encoding the panorama sequence.

The only problem we need to solve is that: In the latest SHVC software 3.0.1, it

does not support flexible tiles assignment, i.e. the number of tiles for different

layers should be the same. By modifying the current software, we can set

different tile numbers for different layers. In our setup, we have one tile in the

base layer, and four tiles in the enhancement layer.

The functionality of assigning different tiles number in different layers is imple-

mented based on test model SHVC 3.0.1. The configuration condition random

access (RA) is tested for the sequence BasketballDrive. The BD-rate [18] is used

as the criterion to evaluate the coding performance. And, both the bit rates of

base-layer pictures and enhancement-layer pictures are considered when calcu-

lating the BD-rate. Fig. 4.2 demonstrates the result for implementing SHVC

in ClassX. The simulcast means we simply use HEVC to encode the sequence
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Figure 4.2: R-D curves for SHVC implementation in ClassX

with different resolutions, and we stream different versions with different res-

olutions independently without any inter-layer prediction. H.264 enh is the

original ClassX coding scheme in which we only transmit H.264 stream for the

enhancement layer. Enh only means that we use HEVC to encode the enhance-

ment layer video. SHVC with two layers is the bitstream which contain two

resolutions and encoded by SHVC. From this figure, we know that, compared to

simulcast, we can significantly improve the R-D performance by using SHVC. In

addition, compared to original ClassX coding scheme which using H.264/AVC,

we can use nearly the same bitrate for the enhancement layer to encode our

two layers bitstream by using SHVC.
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4.3 Joint QP Optimization for Spatial Scala-

bility in SHVC

Since SHVC is still under development, no inter layer QP optimization scheme

is proposed right now. Based on the method in [11], we propose a model-based

spatial layer bit allocation algorithm for SHVC in this thesis. The challenge of

this problem lies in the fact that the rate distortion (R-D) behavior of an en-

hancement layer is dependent on its base layers because of inter-layer prediction.

It is shown by experimental results that the proposed two-layer bit allocation

algorithm can achieve a better coding performance. A group of pictures-based

spatial layer bit allocation schemes is implemented for simulation purpose.

4.3.1 Problem Formulation

In spatial scalability of SHVC, a video is encoded in such a way that the output

bit stream provides various spatial resolutions. Assume that the bit budget

for one GOP of spatial layers in H.264/SVC is given. Within one GOP, the

objective is to allocate the bit budget to different spatial layers of the whole

GOP, and then assign the bit budget to each tile within the same spatial layer.

Note that a practical rate control algorithm for SHVC spatial scalability in tile-

based streaming system operates at two levels. 1) the layer-level bit allocation

by selecting a quantization parameter for each spatial layer for one GOP. In

this level, we get a target QP for the enhancement layer to guide us select the

QP for each tile in the enhancement layer; 2) the tile-level bit allocation by

selecting a quantization parameter for each tile within the same spatial layer.
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This section has focused on the solution to the first level. As to the second-

level, we use the same QP assignment mechanism in Chapter 3 to select the

quantization parameter for each tile.

The optimization problem for dependent bit allocation can be stated as fol-

lows. We seek the quantization step-size of each spatial layer so that the total

distortion is minimized subject to the total bit budget constraint. For the en-

hancement layer, the quantization parameter is our target average quantization

step-size. For base layer, since only one tile in this layer, the solution for the

base layer will be the final one. Let N be the number of spatial layers in a

frame. Rk(Q1, ..., Qk) and Dk(Q1, ..., Qk) are the rate and the distortion model

of the kth layer with respect to the vector of quantization step-sizes, denotes

by (Q1, ..., Qk). Given the bit budget RT of one GOP and two spatial layers,

the bit allocation problem can be formulated mathematically as

Q∗ = (Q∗1, ..., Q
∗
N) = arg min

Qk∈Q

N∑
k=1

wk ·Dk(Q1, ..., Qk)

s.t

N∑
k=1

Rk(Q1, ..., Qk) ≤ Rtotal,

N∑
k=1

wk = 1

(4.1)

where Q∗ = (Q∗1, ..., Q
∗
N) is the optimal quantization parameters, and Q is all

possible quantization parameter candidates. Q1, ..., Qk−1 in the R-D functions

of the kth layer is dependent upon previously coded (k-1) layers. Furthermore,

wk is a weighting factor that indicates the importance of the kth layer. Thus, the

total distortion is defined as a weighted sum of the distortion of each individual

layer.
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The Lagrangian multiplier method again can be used to convert the constrained

optimization problem in Eq. 4.1 to an equivalent unconstrained optimization

problem by introducing the Lagrangian cost function as

Q∗ = arg min
Qk∈Q

J(Q, λ)

J(Q, λ) =
N∑
k=1

wk ·Dk(Q1, ..., Qk) + λ · (
N∑
k=1

Rk(Q1, ..., Qk) −RT )

(4.2)

where λ is the Lagrangian multiplier. To solve the problem given in Eq. 4.2, we

will model the R-D characteristics of dependent layers as elaborated in section

4.3.3.

4.3.2 Bit Allocation Analysis for Two Spatial Layers

In this section, we consider the bit allocation problem for two-layer case (i.e.,

N=2). The solution can be generalized to multilayer case. Mathematically, the

Lagrangian cost function of two-layer case can be expressed as

J(Q, λ) = w1 ·D1(Q1)+w2 ·D2(Q1, Q2)+λ ·(R1(Q1)+R2(Q1, Q2)−RT ). (4.3)

In the following discussion, we assume the equal importance of these two layers;

namely, w1 = w2 = 0.5. This assumption makes sense when two layer are

treated equally important. In order to ease the computational burden and avoid

the requirement to collect all the R-D data while keeping decent optimality, we
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will adopt a model-based approach that analyzes the R-D dependence between

these two layers of SHVC in the next section.

4.3.3 Rate and Distortion Modeling

Generally speaking, the R-D model of a dependent layer [i.e., R2(Q1, Q2) and

D2(Q1, Q2)] can be represented by a function of the quantization step-size of

the reference layer (Q1) and the dependent layer (Q2). For dependent R-D

modeling, if we can convert the multi-variable rate and distortion models into

several independent single-variable functions, the solution to the bit allocation

problem would be significantly simplified. We will propose a way to achieve this

goal in the following discussion. The following dependent model can satisfy our

ultimate objective[11]:

D2(Q1, Q2) ≈ (ζQ1 + ν) ·Qβ
2 (4.4)

where ζ, ν and β are model parameters, which are independent of Q1 and Q2

R2(Q1, Q2) =

 r ·R1(Q1) + (s− r) ·R1(Q2/2) if Q2 ≤ 2Q1

s ·R1(Q2/2) if Q2 > 2Q1

(4.5)

The Cauchy-density-based R-D model has a good balance between complexity

and estimation accuracy. Thus, for R1(Q1) and D1(Q1) of the base layer, we

adopt the following models:

D1(Q1) = b ·Qβ
1 and R1(Q1) = a ·Q−α1 (4.6)
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where a,b,α, and β are model parameters. With the enhancement layer R-D

model given in Eq. 4.4 and Eq. 4.5, and the base layer R-D models in Eq.

4.6, we are ready to solve the bit allocation problem for SHVC with two spatial

layers. Since the proposed R-D models are defined by completely closed-form

expressions, a numerical solution by computing to the Lagrange formulation

in 4.3 becomes viable. After pre-encoding the sequence by SHVC, we can get

the rate and distortion data. With this information, we can derive the model

parameters.

4.3.4 Solution to the Lagrangian Formulation

The rate model in Eq. 4.5 can be further simplified when we impose the fol-

lowing constraint:

0 ≤ QP2 −QP1 ≤ 6 (4.7)

This constraint is usually met by the optimal solution (Q∗1, Q
∗
2). Under the

above conditions, the Lagrangian cost function in Eq. 4.3 can be written as

J(Q, λ) =
1

2
(b ·Qβ1

1 + (ζQ1 + ν) ·Qβ2
2 )

+λ · ((1 + r) · aQ−α1 + (s− r) · a(Q2/2)−α −RT )

(4.8)

To derive the optimal solution of the Lagrangian cost function, we take the

partial derivatives with respect to Q1, Q2, and λ , which yields the following
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three equations:

bβ1 ·Qβ1−1
1 + ζ ·Qβ2

2 − aα(1 + r)Q1(−α− 1) · λ = 0

νβ2 ·Qβ2−1
2 − 1/2aα · (s− r)(Q2/2)−α−1 · λ = 0

a · (1 + r)Q−α1 + a · (s− r)(Q2/2)−α −RT = 0

(4.9)

Note that there are three variables Q1, Q2, and λ in 4.9 to be solved while

other parameters are determined in an earlier steps. To be more specific, the

proposed algorithm consists of three stages:

1) pre-encoding the sequence by SHVC for model parameter derivation,

2) Numerical calculation using eq. 4.9 and get the step size Q assignment to

different layers, in our test case, the number of layers is two.

3) With the determination from the previous step, we know the target Q for

the enhancement layer. By repeating the same algorithm in chapter 3, we can

further improve the R-D performance.

4) actual encoding based on computed Q1 , Q2 and Q for each tile in the

enhancement layer that optimize the Lagrangian cost function using the one-

to-one correspondence between quantization step-size Q and quantization pa-

rameter QP. Finally, each layer and each tile in one GOP unit is encoded to

produce the final bit stream at the target bit rate.
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Table 4.1: PNSR gain for BasketballDrive

PSNR gain after PNSR gain after
layer optimization tile optimization

Prob1 0.8284 0.1396
Prob2 0.6592 0.0011
Prob3 0.811 0.1375
Prob4 0.8799 0.1405

Ave 0.794625 0.104675

Table 4.2: PNSR gain for Kinomo

PSNR gain after PNSR gain after
layer optimization tile optimization

Prob1 1.3008 0.2629
Prob2 1.3634 0.0773
Prob3 1.3008 0.1685
Prob4 1.3481 0.2085

Ave 1.328275 0.1793

4.3.5 Experimental Result

The proposed two-spatial-layer bit allocation algorithm was implemented based

on scalable HEVC test model SHVC 3.0.1 and Matlab. Since there is no spatial

layer bit allocation algorithm in the current version of SHVC software, we

compare the performance of the proposed two-layer bit allocation algorithm

against that of the fixed QP method[18]. We also compare the result after

implementing previous tile-based QP optimization strategy in the enhancement

layer, i.e. a two-step optimization scheme, the layer level optimization and

the tile-level optimization. From table 4.1 and 4.2, we can figure out that

the average PSNR gain among two layers for basketballdrive and kinomo are

0.79dB and 1.33dB separately. With additional optimization among the tiles

in the enhancement layer, we can get another 0.1dB and 0.17dB coding gain

respectively. The R-D curve comparison is showed in figure 4.3 and 4.4. The
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Figure 4.3: R-D curve comparison for BasketballDrive

provability assumption is the same as table 3.1.
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Figure 4.4: R-D curve comparison for Kinomo



Chapter 5

Downsampling-Based Interactive

Multiview Video Stream

Multi-view video as a new way to represent the 3D world has attracted massive

attention due to greatly enhanced stereoscopic viewing experience. Users can

choose an arbitrate view point to enjoy 3D movies, TV shows, sports game, and

etc. Unlike conventional single-view video systems, a multi-view video system

allows the user to choose their own view to enjoy a video, thus interactivity is

the most attractive feature for this kind of application. It brings a freedom and

entertainment to the user. However, this interactive multi-view video stream-

ing (IMVS) system dramatically increases the data amount and computation

burden.

In free viewpoint TV, if the selected view is not encoded, view synthesis is

used to create virtual view based on the neighboring views. To simplify view

synthesis, depth info is used in some systems. Therefore the rate-distortion of

IMVS also involves bit allocation between texture and depth[24].
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5.1 Motivation

Previous research has shown that downsampling ahead of encoding and then

upsamling after decoding can improve the rate-distortion performance, espe-

cially at low bitrate[22]. Inspired by those research, this thesis proposed a

downsampling-based IMVS. In Fig 5.1, we demonstrate the proposed scheme.

Existing schemes use original resolution base views to synthesis virtual view.

Our proposed scheme first downsamples the original base view before encoding,

at the reciever side, we upsample the base view into original resolution and

synthesis the virtual view.

5.2 Preliminary Result for Using Downsam-

pled Views in IMVS

In this section, we present a preliminary result to verify that using downsampled

views in IMVS can lead to improved performance at low rates. We use HEVC

reference software HM 11.0 to be the encoder for base views. Since this is

a preliminary result, we use independent coding strategy to simplify the test

process. For synthesis part, we use HEVC 3D extension software HTM 1.0 to

acquire virtual view with the help from depth view. The benchmark scheme

uses the original resolutions for all encoded views. In our experiment, we encode

View 1 and View 3 of the Kendo and Balloons dataset, and synthesize View 2.

The original resolution is 1024 x 768.
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Figure 5.1: Proposed scheme for IMVS

The proposed scheme downsamples the coded views before encoding them, and

upsamples them after decoding. The upsampled views are then used to syn-

thesize virtual views. The downsamling ratio is 0.5 in this section. In the next

section, we will discuss the bitrate adaptive downsampling ratio selection.

The detailed experimental steps are:

1. Downsample the original Views 1 and 3.

2. Encode them by HEVC, set a QP, get the bitrate for each view. Decode the

sequence, and upsample to the original resolution.

3. Based on the bitrates above, find the corresponding QP for the original

1024*768 resolution sequences such that they will have the same bitrates. These

are called degraded sequences here, because they will need higher QP values to

get the same rates.
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4. This completes the preprocessing part: we have downsampled-then-upsampled

sequences, and degraded sequences with original resolution. They have the al-

most the same bitrates.

5. We then synthesis View 2 in the two methods, and get its PSNR.

Note that for PNSR, we use the average PSNR for three views, two views and

one virtual view. The bitrate is calculated by the sum of two base views.

The corresponding R-D curves are shown in Fig 5.2. As expected, the proposed

method has better performance than benchmark at low rate. For sequence

Kendo, the average PSNR gain is 0.18dB for all rates. If we only measure the

gain below 600kb/s, the average gain will be 0.51dB. For sequence Balloon, the

average PSNR gain is 0.06dB, If we only measure the gain below 700kb/s, the

average gain will be 0.3dB.

Based on these preliminary results, we can conclude that by encoding some

views with reduced resolution, we can get better overall performances for both

the downsampled views as well as other synthesized views at low rates.

5.3 Bitrate-adaptive Downsampling Ratio Se-

lection

From previous section, we noticed that in high rate, the fixed downsamling

ratio 0.5 will not be useful anymore. This phenomenon inspired us to create

bitrate adaptive downsamling ratio selection approach to further improve the

performance.
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Figure 5.2: Preliminary result for downsampling-based IMVS, the R-D
comparison for Kendo and Balloon
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In this strategy, we assume three downsampling ratios, 0.5, 0.675, 0.75, the

corresponding resolutions are 512*384, 640*480, and 768*576. In the first step,

as shown in Fig.5.3, we simply collect the R-D points for different cases. With

this information, we can pick the optimal point. For example, for sequence

kendo, in the range 0-500kb, we choose 0.5, in the range 500-750kb/s, we choose

0.675. In the range 750-1000kb/s, we choose 0.75. Compared to the fixed

downsampling ratio, for sequence balloons, we can get another 0.16 dB gain.

For sequence kendo, this number will be 0.15 dB.

5.4 Model-based Joint Depth and Texture QP

Optimization

Depth-Image Based Rendering (DIBR) view synthesis technology is used in

IMVS. Depth image records the distance information between objects and the

camera. Texture image along with depth image can generate the virtual view.

Consequently, the compression of texture and depth images is required. Yannick

[23] combined both depth and texture data simultaneously into a joint R-D

surface model so that enables to find the optimal bit-allocation. Cheung[25]

proposed a trellis based algorithm to joint optimize both texture and depth

maps. However, there is no R-D optimization scheme for downsampled IMVS

since this framework is new.

In this section, we present a model-based joint depth and texture optimization

scheme. The critical point for this strategy is finding a model for the synthesised
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Figure 5.3: R-D curves for different downsamling ratio (a)Kendo (b) Bal-
loons
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Figure 5.4: Rate adaptive downsampling ratio selection result (a)Kendo
(b) Balloons
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(a) (b)

Figure 5.5: Comparison between original IMVS and proposed IMVS

view. We follow the virtual view model in [21]:

Dv = ADt +BDd + C (5.1)

Dv here is the distortion for the synthesised view. Dt is the average distortion

for the texture video. Dd is the average distortion for the depth maps. A, B

and C are model parameters.

Traditionally, D-Q model can be regard as a linear relationship.

Dt = αQt + βt, Dd = αQd + βd (5.2)

Since the left base view and right base view nearly have the same R-D curve,

so here we actually have an assumption that QtL = QtR = Qt, and QdL =

QdR = Qd. This assumption makes sense when the base views are encoded

independently. With above three equations, we can get
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Dtotal = AtDt+BtDd+C = At(αtQt+βt)+Bt(αdQd+βd)+C = µQt+νQd+E

(5.3)

For R-Q model, we have[21]

Rt = atQ
−1
t + bt, Rd = adQ

−1
d + bd (5.4)

Where Rt is the bitrate for texture, Rd is the bitrate for depth maps.

Note that even we downsample the original frame, we can still use the same

form for R-D and R-Q model, which can be verified. From Fig. 5.6, the R-D

and R-Q model is still suitable for downsampling case.

Based on above models, We can formulate the optimization problem:

min
Qt,Qd

(µQt + νQd + E)

s.t. atQ
−1
t + bt + adQ

−1
d + bd ≤ Rc

(5.5)

With the objective function and Lagrangian multiplier λ, we have

min
Qt,Qd

F = µQt + νQd + E + λ(atQ
−1
t + bt + adQ

−1
d + bd −Rc) (5.6)
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Take the partial derivative respect to Qt, Qd and λ, we can get:

µ− λatQ
−2
t = 0

ν − λadQ
−2
d = 0

atQ
−1
t + bt + adQ

−1
d + bd −Rc = 0

(5.7)

The solution is as follows:

Qt =
at +

√
νatad
µ

Rc − bt − bd
, Qd =

√
µ

ν

ad
at
Qt (5.8)

With this solution, we can further improve the downsample-based IMVS. For

sequence Kendo and Balloons, we can get another 0.14dB gain and 0.12 dB

respectively compared to fixed 1:5 (depth:texture) bit allocation strategy for

downsample-based IMVS as shown in fig.5.7.
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Figure 5.7: Joint depth and texture QP optimization for downsampling-
based IMVS (a)Kendo (b) Balloons



Chapter 6

Conclusion

In Chapter 2 and 3 of this thesis, we presented panorama video system based on

tiling method and an algorithm that can optimize R-D performance across mul-

tiple tiles to eliminate extra consumption of bandwidth. The motivation behind

this is not to send the whole frames or images in the 3D panorama application.

According to our results, the proposed algorithm is better in some cases where

the sequence has complex content for different tiles. Then, we simplify the

algorithm by formulating the objective function from another perspective to

reduce its computational complexity, assuming that the objective is to preserve

the overall PSNR. In addition, we apply this algorithm in transmission scenario

with slight modification to the objective function.

Chapter 4 presents a replacement of origial H.264/AVC coding system in ClassX.

With brand new video coding standard HEVC and SHVC and our novel inter-

layer bit allocation algorithm, we significantly improve the R-D performance

for our tile-based panorama video system.
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Chapter 5 presents a novel downsampling-based IMVS, where a full resolution

video can be downsampled and quantized first, then upsampled back to origi-

nal resolution to synthesis virtual views. Next, we propose a bitrate adaptive

downsamling ratio selection to find the best downsampling ratio, based on the

target bit rate. This approach, along with joint depth and texture optimization

algorithm, allows us to improve the overall PNSR for both base views and vir-

tual views under the same bit budget. Future work includes how to generalize

the proposed optimization framework to more than 3 views and find a simplified

R-D model to get an one-pass optimization algorithm.

Our technology is promising in changing the way videos displayed and shared in

social network, enabling a more interactive user experience for viewing multiple

panorama videos and 3D videos.
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Appendix A

Details of Cube-based

Rendering of Panorama Videos

Using OpenGL and iOS 5

In October 2011, Apple release iOS 5 coming with a new set of APIs that makes

developing with OpenGL much easier than it used to be. The new set of APIs

is called GLKit. Four main features are included:

GLKView/GLKViewController. These classes make developer use much more

simple and brief code to set up a basic OpenGL ES project.

GLKEffects. These classes provide a convenient way to get some basic lighting

and texturing working.

GLMath. Prior to iOS 5, nearly every project needed their own math library

with basic projection vector and matrix. Now with GLMath, most of the math

functionalities are prepared for the developers.
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GLKTextureLoader. This class is the most useful one for our goal to combine

OpenGL and ClassX. GLKTextureLoader makes it much easier to load images

as textures to be used in OpenGL. The developers dont have to write a com-

plicated codes dealing with different image formats. A single function call will

load a texture successfully.

A.1 GLKView

To get started with OpenGL ES 2.0, the first step we need to follow is to add a

subview to the window that we can draw with OpenGL. Previously, we need to

write nasty codes like creating a render buffer and frame buffer, etc to get this

working. But now its simple with a new GLKit class called GLKView. If we

want to use OpenGL rendering inside a view, you simply add a GLKView which

is essentially a subclass of UIView and configure a few properties on it. You

can then set a class as the GLKViews delegate. Once it needs to be drawn, and

it will call a method on that class. In this method we can fill in our OpenGL

commands.

Before using GLKit, we need to add a few frameworks to our project.

Step 1: Select the project in the Project Navigator.

Step 2: select the ClassXMobile target.

Step 3: select Build Phases, Expand the Link Binary With Libraries section,

and click the Plus button.
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Figure A.1: Add required framework to the project

Step 4: From the list, select the following frameworks and click Add: Quartz-

Core.framework, OpenGLES.framework and GLKit.framework.

In file AppDelegate.h, add the declaration of the header file for GLKit as follows:

#import <GLKit/GLKit.h>

A.2 Creating Cubic by OpenGL

In order to make this project compatible for the future use - cubic projection

implementation, I start with a nice and simple task by rendering a cubic to the

screen. The basic unit of cubic is square. Since when rendering geometry with

OpenGL, we cant render squares. However, OpenGL can render triangles. As a

result, we can create a square with two triangles. Position defined the location

of each vertex of the triangles. Indices catched the vertex of each square and

make a complete cubic. The codes are as follows:

typedef struct {
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float Position [3];

float Color [4];

float TexCoord [2];

float Normal [3];

} Vertex;

const Vertex Vertices [] = {

// Front

{{1, -1, 1}, {1, 0, 0, 1}, {1, 0}, {0, 0, 1}},

{{1, 1, 1}, {0, 1, 0, 1}, {1, 1}, {0, 0, 1}},

{{-1, 1, 1}, {0, 0, 1, 1}, {0, 1}, {0, 0, 1}},

{{-1, -1, 1}, {0, 0, 0, 1}, {0, 0}, {0, 0, 1}},

// Back

{{1, 1, -1}, {1, 0, 0, 1}, {0, 1}, {0, 0, -1}},

{{-1, -1, -1}, {0, 1, 0, 1}, {1, 0}, {0, 0, -1}},

{{1, -1, -1}, {0, 0, 1, 1}, {0, 0}, {0, 0, -1}},

{{-1, 1, -1}, {0, 0, 0, 1}, {1, 1}, {0, 0, -1}},

// Left

{{-1, -1, 1}, {1, 0, 0, 1}, {1, 0}, {-1, 0, 0}},

{{-1, 1, 1}, {0, 1, 0, 1}, {1, 1}, {-1, 0, 0}},

{{-1, 1, -1}, {0, 0, 1, 1}, {0, 1}, {-1, 0, 0}},

{{-1, -1, -1}, {0, 0, 0, 1}, {0, 0}, {-1, 0, 0}},

// Right

{{1, -1, -1}, {1, 0, 0, 1}, {1, 0}, {1, 0, 0}},

{{1, 1, -1}, {0, 1, 0, 1}, {1, 1}, {1, 0, 0}},
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{{1, 1, 1}, {0, 0, 1, 1}, {0, 1}, {1, 0, 0}},

{{1, -1, 1}, {0, 0, 0, 1}, {0, 0}, {1, 0, 0}},

// Top

{{1, 1, 1}, {1, 0, 0, 1}, {1, 0}, {0, 1, 0}},

{{1, 1, -1}, {0, 1, 0, 1}, {1, 1}, {0, 1, 0}},

{{-1, 1, -1}, {0, 0, 1, 1}, {0, 1}, {0, 1, 0}},

{{-1, 1, 1}, {0, 0, 0, 1}, {0, 0}, {0, 1, 0}},

// Bottom

{{1, -1, -1}, {1, 0, 0, 1}, {1, 0}, {0, -1, 0}},

{{1, -1, 1}, {0, 1, 0, 1}, {1, 1}, {0, -1, 0}},

{{-1, -1, 1}, {0, 0, 1, 1}, {0, 1}, {0, -1, 0}},

{{-1, -1, -1}, {0, 0, 0, 1}, {0, 0}, {0, -1, 0}}

};

const GLubyte Indices [] = {

// Front

0, 1, 2,

2, 3, 0,

// Back

4, 6, 5,

4, 5, 7,

// Left

8, 9, 10,

10, 11, 8,

// Right
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12, 13, 14,

14, 15, 12,

// Top

16, 17, 18,

18, 19, 16,

// Bottom

20, 21, 22,

22, 23, 20

};

A.3 Creating Vertex Buffer Object

The next step is to send the data to OpenGL. By the OpenGL Vertex buffer

objects, we call few functions to send the data to OpenGL.

So in method setupGL, the critical thing it does is set the current OpenGL

context to the current context. This is important in case some other code has

changed the global context.

Once we prepare to draw, we have to tell OpenGL which vertex buffer objects

we will use. So we need to bind the vertex and index buffers.

Next, we use the glEnableVertexAttribArray to enable three attributes, the ver-

tex position, the vertex color, and the texture position. GLKit has predefined

constants we need to use for these GLKVertexAttribTexCoord0, GLKVertex-

AttribTexCoord1, GLKVertexAttribPosition and GLKVertexAttribColor. Next,
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we call glVertexAttribPointer to feed the correct values to these variables for

the vertex shader.

The usage of parameters is explained as follows:

The first parameter specifies the attribute name.

The second parameter specifies how many values are present for each vertex.

For example, in Vertex struct, we can see that for the position there are three

floats (x,y,z), so the number here is 3.

The third parameter specifies the type of each value.

The fourth parameter is always set to false.

The fifth parameter is the size of the data structure containing the per-vertex

data. So we can use the function sizeof here to get the compiler to compute it

for us.

The final parameter is the offset within the structure to find this data.

- (void)setupGL {

[EAGLContext setCurrentContext:self.context ];

glEnable(GL_CULL_FACE);

self.effect = [[ GLKBaseEffect alloc] init];

NSDictionary * options = [NSDictionary

dictionaryWithObjectsAndKeys:

[NSNumber numberWithBool

:YES],

GLKTextureLoaderOriginBottomLeft ,
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nil];

NSError * error;

NSString *path = [[ NSBundle mainBundle]

pathForResource:@"tile_floor" ofType:@"png"];

GLKTextureInfo * info = [GLKTextureLoader

textureWithContentsOfFile:path options:options

error:&error ];

if (info == nil) {

NSLog(@"Error loading file: %@", [error

localizedDescription ]);

}

self.effect.texture2d0.name = info.name;

self.effect.texture2d0.enabled = true;

path = [[ NSBundle mainBundle] pathForResource:@"

texture" ofType:@"png"];

info = [GLKTextureLoader textureWithContentsOfFile

:path options:options error :& error];

if (info == nil) {

NSLog(@"Error loading file: %@", [error

localizedDescription ]);

}

self.effect.texture2d1.name = info.name;

self.effect.texture2d1.enabled = true;

self.effect.texture2d1.envMode =

GLKTextureEnvModeDecal;
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glGenVertexArraysOES (1, &_vertexArray);

glBindVertexArrayOES(_vertexArray);

glGenBuffers (1, &_vertexBuffer);

glBindBuffer(GL_ARRAY_BUFFER , _vertexBuffer);

glBufferData(GL_ARRAY_BUFFER , sizeof(Vertices),

Vertices , GL_STATIC_DRAW);

glGenBuffers (1, &_indexBuffer);

glBindBuffer(GL_ELEMENT_ARRAY_BUFFER , _indexBuffer

);

glBufferData(GL_ELEMENT_ARRAY_BUFFER , sizeof(

Indices), Indices , GL_STATIC_DRAW);

glEnableVertexAttribArray(GLKVertexAttribPosition)

;

glVertexAttribPointer(GLKVertexAttribPosition , 3,

GL_FLOAT , GL_FALSE , sizeof(Vertex), (const GLvoid

*) offsetof(Vertex , Position));

glEnableVertexAttribArray(GLKVertexAttribColor);

glVertexAttribPointer(GLKVertexAttribColor , 4,

GL_FLOAT , GL_FALSE , sizeof(Vertex), (const GLvoid

*) offsetof(Vertex , Color));

glEnableVertexAttribArray(GLKVertexAttribTexCoord0

);

glVertexAttribPointer(GLKVertexAttribTexCoord0 , 2,

GL_FLOAT , GL_FALSE , sizeof(Vertex), (const GLvoid

*) offsetof(Vertex , TexCoord));
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glEnableVertexAttribArray(GLKVertexAttribTexCoord1

);

glVertexAttribPointer(GLKVertexAttribTexCoord1 , 2,

GL_FLOAT , GL_FALSE , sizeof(Vertex), (const GLvoid

*) offsetof(Vertex , TexCoord));

glEnableVertexAttribArray(GLKVertexAttribNormal);

glVertexAttribPointer(GLKVertexAttribNormal , 3,

GL_FLOAT , GL_FALSE , sizeof(Vertex), (const GLvoid

*) offsetof(Vertex , Normal));

glBindVertexArrayOES (0);

}

A.4 Rendering the GLtexture On the Cubic

To make objects appear 3D on a 2D screen, we need to apply a projection

transform on the objects. Heres a diagram that shows how this works:

Basically we have two planes, a near plane is close to us and a far plane is far

from us. The objects we want to display are between these two planes. The

closer an object is to us we scale it so it looks smaller, and the closer the object

is to the far plane we scale it so it looks bigger. This is similar to the way a

human eye works.

GLKit provides you with some handy functions to set up a projection matrix.

The one we are using allows us to specify the field of view along the y-axis, the

aspect ratio, and the near and far planes:
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The field of view is similar to camera lenses. A small field of view magnifies

images by making them closer to us. A large field of view is like a wide angle

lens it makes everything seem farther away. The aspect ratio is the aspect

ratio you want to render to (i.e. the aspect ratio of the view). It uses this in

combination with the field of view (which is for the y-axis) to determine the

field of view along the x-axis.

By GLKMatrix4MakePerspective in the GLKit math library, we can easily

create a perspective matrix for us all we have to do is pass in the parameters

discussed above. We set the near plane to 2 units away from the eye, and the

far plane to 10 units away. Aspect is the aspect ratio of the GLKView.

We need to set one more property now the modelViewMatrix. The mod-

elViewMatrix is the transform that is applied to any geometry that the effect

renders.

To make the square rotate, we add rotation variable and change it by units

per update.

Note that iOS 5 provide a very powerful function to deal with the reading

of GLtexture, by GLKTextureLoader we can make UIImage buffer image into

GLtexture buffer by only one single call.

Finally, we set the model view matrix on the effects transform property.

- (void)update {

NSDictionary * options = [NSDictionary

dictionaryWithObjectsAndKeys:
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Figure A.2: The projection demonstration

[NSNumber numberWithBool

:YES],

GLKTextureLoaderOriginBottomLeft ,

nil];

NSError * error;

CGImageRef image = _framebuffer.CGImage;

GLKTextureInfo * info = [GLKTextureLoader

textureWithCGImage:image options:options error:&

error];

self.effect.texture2d1.name = info.name;

self.effect.texture2d1.enabled = true;

self.effect.texture2d1.envMode =

GLKTextureEnvModeDecal;

if (mode_switch){
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float aspect = fabsf(self.view.bounds.size.width /

self.view.bounds.size.height);

GLKMatrix4 projectionMatrix =

GLKMatrix4MakePerspective(GLKMathDegreesToRadians

(30.0f), aspect , 2.0f, 10.0f);

self.effect.transform.projectionMatrix =

projectionMatrix;

GLKMatrix4 modelViewMatrix =

GLKMatrix4MakeTranslation (0.0f, 0.0f, -6.0f);

_rotation += 15 * self.timeSinceLastUpdate;

modelViewMatrix = GLKMatrix4Rotate(modelViewMatrix

, GLKMathDegreesToRadians (25), 1, 0, 0);

modelViewMatrix = GLKMatrix4Rotate(modelViewMatrix

, GLKMathDegreesToRadians(_rotation), 0, 1, 0);

self.effect.transform.modelviewMatrix =

modelViewMatrix;

}

}
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