
PARAMETERIZED TRACTABILITY AND

KERNELIZATION

OF PROBLEMS ON UNIT DISK GRAPHS

by

Navid Imani

M.Sc., Simon Fraser University, 2008

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

in the

School of Computing Science

Faculty of Applied Sciences

c© Navid Imani 2013

SIMON FRASER UNIVERSITY

Fall 2013

All rights reserved.

However, in accordance with the Copyright Act of Canada, this work may be

reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,

research, criticism, review and news reporting is likely to be in accordance

with the law, particularly if cited appropriately.

APPROVAL

Name: Navid Imani

Degree: Doctor of Philosophy

Title of Thesis: Parameterized Tractability and Kernelization of Problems on

Unit Disk Graphs

Examining Committee: Dr. Ramesh Krishnamurti

Chair

Dr. Qian-Ping Gu, Professor, Computing Science

Simon Fraser University

Senior Supervisor

Dr. Pavol Hell, Professor, Computing Science

Simon Fraser University

Supervisor

Dr. Jiangchuan Liu, Associate Professor, Computing

Science

Simon Fraser University

SFU Examiner

Dr. Guochuan Zhang, Professor of Computer Science,

Zhejiang University

External Examiner

Date Approved:

ii

Partial Copyright Licence

iii

Abstract

Unit disk graphs are used extensively in the field of networks in order to model the infras-

tructure of ad hoc wireless communication networks. Development of efficient algorithms

for problems on unit disk graphs has therefore been a hot topic largely driven by the prac-

tical applications. This is while there are no general frameworks known in the literature for

obtaining parameterized algorithms or kernelization results on UDGs. Clique Partition

is one of the Richard Karp’s original 21 NP-hard problems and is proved to be an extremely

useful tool for obtaining solutions for other fundamental combinatorial problems such as

Dominating Set, UDG Realization and Facility Location. We make the following

contributions in this thesis: (1) We develop a novel framework for obtaining parameterized

and FPT algorithms for Clique Partition and related problems on UDGs. (2) We bridge

the complexity gap between the UDG and precision UDG classes through introducing a new

useful subclass, namely quasi-precision UDGs, with interesting properties. We further de-

scribe (relaxed)-quasi-precision UDGs by proving structural properties for the subclass and

classify the cases when the problems do not admit FPT algorithms under our framework. (3)

We propose a new approach for constructing polynomial approximation schemes (PTAS) for

Minimum Clique Partition on UDGs which results in significant computational speed-up

comparing to the best previously known PTAS for the problem. (4) We introduce first-time

data reduction rules for the problems of Clique Partition and Weighted Clique Par-

tition and enhanced data reduction rules for Clique Cover on UDGs. (5) We develop a

framework for obtaining linear-size kernels on quasi-precision UDGs and provide the suffi-

cient criteria for the problems under which the framework applies.

iv

v

Acknowledgments

I would like to express my gratitude to my senior supervisor Dr. Qian-ping Gu. Without

his support and guidance, this thesis would have not been possible. I would like to thank

Dr. Pavol Hell for being the supervisor during my Ph.D. studies and for his many precious

remarks on my thesis. My gratitude also goes to Dr. Jiangchuan Liu for acting as interal

examiner for my Ph.D. defence and to Dr. Guochuan Zhang for being the external examiner

of my defence.

vi

Contents

Approval ii

Partial Copyright License iii

Abstract iv

Dedication v

Acknowledgments vi

Contents vii

List of Figures xi

1 Introduction 1

1.1 Parameterized Algorithms on UDGs . 2

1.2 Contributions of the Thesis . 2

1.2.1 A Parameterization Framework for Clique Partition and Related

Problems on UDGs . 3

1.2.2 Improved Polynomial Approximation Scheme for Minimum Clique

Partition . 5

1.2.3 A Kernelization Framework for Problems on Quasi-precision UDGs . . 6

1.3 Thesis Outline . 6

2 Background and Related Work 8

2.1 Definitions and Notations . 8

2.2 Data Reduction . 12

vii

2.2.1 Vertex Cover and Related Problems 12

2.2.2 Dominating Set . 13

2.2.3 Connected Dominating Set . 14

2.3 Separators, Minors and Bidimensionality . 14

2.3.1 Background . 14

2.3.2 Bidimensionality Framework . 15

2.3.3 Contraction Decomposition . 16

2.3.4 (Meta)-Kernelization . 20

2.3.5 Kernels for Problems on H-Minor-Free Graphs 22

2.4 Kernels for Degenerate Graphs and UDGs . 24

2.4.1 Background . 24

2.4.2 Degenerate Graphs . 25

2.4.3 Unit Disk Graphs . 29

3 Algorithms for Clique Partition on UDGs 36

3.1 Introduction . 36

3.2 Definitions and Notations . 37

3.3 Arbitrary UDGs . 38

3.3.1 A Parameterized Algorithm . 47

3.4 Data Reduction . 49

3.5 Summary . 53

4 FPT Algorithms on Precision & Quasi-precision UDGs 54

4.1 Introduction . 54

4.2 Precision UDGs . 55

4.2.1 An FPT Algorithm on Precision UDGs 61

4.3 Quasi-precision UDGs . 62

4.3.1 An FPT Algorithm on Quasi-precision UDGs 68

4.4 Structure of Quasi-precision UDGs . 68

4.5 Summary . 74

5 Improved PTAS for Minimum Clique Partition 75

5.1 Introduction . 75

5.2 Plane Decomposition . 76

viii

5.3 Exact Solution for UDG with Restricted Geometry 79

5.3.1 Dumitrescu and Pach’s Approach . 79

5.3.2 Using Convex Regions . 82

5.4 Summary . 84

6 Parameterized Algorithms for Other Problems 85

6.1 Clique Cover . 85

6.1.1 Data Reduction . 86

6.1.2 A Parameterized Algorithm on Arbitrary UDGs 89

6.1.3 Analysis . 89

6.1.4 Fixed-parameter Algorithms on Precision and Quasi-precision UDGs . 92

6.2 Weighted Clique Partition . 93

6.2.1 Data Reduction . 95

6.2.2 Analysis . 97

6.2.3 Fixed-parameter Algorithms . 98

6.3 Summary and Future Work . 99

7 Kernelization Framework on Quasi-precision UDGs 101

7.1 Introduction . 101

7.2 Data Reduction . 102

7.3 Analysis . 104

7.4 Application . 106

7.4.1 Dominating Set . 106

7.4.2 Connected Dominating Set . 107

7.4.3 Independent Set . 108

7.4.4 Clique Cover . 109

7.4.5 Clique Partition . 110

7.5 Summary . 113

8 Conclusion and Future Work 114

8.1 Summary of Contributions . 114

8.2 Future Work . 116

ix

Appendix A Proofs 118

A.1 Proof of Formula (3.3) for calculating |qxzqyz| 118

Bibliography 120

Index 130

x

List of Figures

Chapter 2

2.1 Two disks of radius 1 centered at points u and v. The area where the vertices

of Λv,w appear is highlighted in darker color. 31

2.2 Two alternative unit disk representations of K3. The representation on the

left does not satisfy the Helly property. 32

Chapter 3

3.1 An arbitrary UDG on 4 vertices, its corresponding unit disk representation

and region coverage graph. 39

3.2 An arbitrary placement of disks ζx, ζy and ζy with centers x, y and z such

that Helly property does not hold. Points qxy, qyz and qxz are marked on the

boundary of Ω = ζx ∩ ζy ∩ ζz. 42

3.3 Coverage of a square of length
√

2, denoted S√2, by 4 disks of radius 1/2.

Line segments Lu and Ll have the length
√

3. 43

3.4 Points {p1, ..., p4} are originally placed at the four corners of an axis-aligned

1/2×
√

3/2 square (drawn in dashed black). The corresponding disks cover an

area including a 1×
√

3 rectangle (drawn in solid blue). As |qxyqxz| decreases,

the horizontally aligned pairs (also the vertically aligned pairs) of points are

shifted ε/2 units towards (respectively ε′/2 units away from) each other hor-

izontally (respectively vertically), such that their corresponding disks cover

an area including a (1 + 2ε′)× (
√

3 + 2ε) rectangle (drawn in solid red). . . . 46

xi

Chapter 4

4.1 A circle of radius 1
2 + ε and a set of points distributed inside the circle close

to its boundary. Every pair of points that form an independent set in UDG

are connected with a dashed blue line in the illustration. 56

4.2 Dδ is depicted as a disk with red boundary in the center of the figure. The

filled ring around Dδ shows annulus Ψ. The dashed red line in Ψ is the

possible location of points for a scenario with maximum number of regions in

Dδ. 57

4.3 A hexagonal mesh is placed over the plane. Hexagons with face distance 1, 2

and 3 from p0 are colored red, green and blue respectively. 59

4.4 A possible decomposition of the points of a UDG to dense islands. The

respective graph is (λ, α)-quasi-precision for some value of λ and α. 63

4.5 Graph Ki,i is depicted on the left side. The edges highlighted in red form

a perfect matching in Ki,i. Clique-prism Li corresponding to the selected

matching in Ki,i is pictured on the right side. 72

Chapter 5

5.1 A hexagonal mesh with edge length 1/2 is placed over a circle of radius 3.

Every such a hexagon can be inscribed in a circle of radius 1/2. 80

Chapter 6

6.1 A weighted graph on n vertices consisting of two cliques and a perfect match-

ing. Choosing the two cliques of size n/2 as the partition would results in

a solution of weight 2
n
2

+1 while the optimal solution for Weighted Clique

Partition is the set of n/2 matchings. 94

xii

Chapter 1

Introduction

Computation is an inevitable part of nowadays technological artifacts. Although the use of

algorithms as systematic ways of performing a series of actions has been known long before

the invention of electronic devices, the formal design of algorithms became prominently in-

evitable with the development of theory of computation.

The classical theory of complexity attributes the hardness of a problem as a function of

its input size only. Hence, under the assumption that P6= NP, there are numerous natural

problems for which super-polynomial running-time is inevitable when complexity is mea-

sured in terms of the input size. It is while some inputs for such problems consist of sections

that are easy to deal with and those that are more difficult. This sometimes makes the

problem computable in a time that is polynomial in the input size and exponential or worse

in some parameter k. Hence, if k is fixed at a small value and the growth of the function

over k is relatively small then such problems can still be considered “tractable” despite their

traditional classification as “intractable”. Parameterized complexity hence can be regarded

as two-dimensional generalization of P vs. NP where, while estimating the running-time in

addition to the overall input size n, the effects of a secondary measurement that captures

additional problem-relevant information, is also taken into account.

An effective approach in fixed-parameter algorithmics is that before starting a cost-intensive

exact algorithm to solve a fixed-parameter tractable problem characterized by a parame-

ter k, a polynomial-time pre-processing data reduction phase is executed to shrink the input

data of size n to a smaller instance. This is done through applying a set of reduction rules

1

CHAPTER 1. INTRODUCTION 2

to the input instance. The solution for the original input then can be reconstructed in

polynomial time in n using a solution for the shrunk instance. The shrunk instance is called

problem kernel. It is then hoped that the size of the problem kernel is upper-bounded by a

polynomial in k, independent of n. The process is then called kernelization.

1.1 Parameterized Algorithms on UDGs

Unit disk graphs have been used extensively in the field of networks in order to model the

infrastructure of ad hoc wireless communication networks. In this scenario, node locations

are modeled as points in the plane, and the area within which a signal from one node can

be received by other nodes is modeled as a circle. Driven by the applications, the design of

practical algorithms on UDGs is of paramount importance in real-life applications.

However, the unit disk graph setting is often too relaxed to admit straight-forward

algorithmic results. For example, the size of cliques (and hence the Euler genus) in UDGs

is not bounded and therefore many of the techniques for bounded genus and H-minor-free

graphs cannot be directly applied to UDGs. In reality, there are no general frameworks

known in the literature to obtain kernelization or to design parameterized algorithms for

problems on UDGs. However, one might exploit the specific sparsity properties to obtain

improved results for specific problems.

We try to fill this gap in research by introducing novel techniques and frameworks

that can be adopted to obtain parameterized algorithms and kernelization results for a

range of problems on UDGs. It is however important to notice that for many classical

NP-hard problems, the class of unit disk graphs is still too “wild” to admit kernelization

or FPT results [9]. Therefore, in an attempt to explore the boundaries of fixed-parameter

tractability, it deems necessary to restrict our focus to subclasses of UDGs that exhibit more

attractive geometrical properties. Yet, to adhere to generality, we require them to include

the whole class of UDGs when the choice of the parameter is unrestricted.

1.2 Contributions of the Thesis

In this section, we provide an outline of the problems that are tackled in this thesis. For each

problem considered here, we point out the state-of-the-art results and our contribution in

that context. In what follows, we assume that all input graphs that are fed to the algorithms

CHAPTER 1. INTRODUCTION 3

are simple (without self-loops or multi-edges) and undirected and are assumed to be on n

vertices and m edges. We refer to the parameter in the decision version (of the standard

parameterization) of the problem by k. When specified as a unit disk graph, we assume

that the input is provided as a set of points (centers of disks) in the plane described by their

Cartesian coordinates.

1.2.1 A Parameterization Framework for Clique Partition and Related

Problems on UDGs

We introduce a framework for parameterization of clique covering problems1 on UDGs.

Clique Partition asks whether the vertices of a graph can be partitioned into a certain

number of cliques.

1) Our first exact parameterized algorithm for Clique Partition on arbitrary UDGs

relies on a novel idea and a geometric theorem that demonstrates the use of convex regions

for guessing clique partitions. This results in an algorithm of running-time O(n6k+2) on

arbitrary UDGs which significantly improves on the previously known algorithms for the

problem on UDGs. The only previously known singly-exponential algorithm for the problem

has running-time of O(n80q) and is restricted to UDGs whose points are within a square of

known size [54]. Here q is an upper bound on the number of cliques in a partition.

2) Studying fixed-parameter tractability of Clique Partition, we design first-time data

reduction rules for the problem on arbitrary UDGs. A novel geometric technique along with

a detailed analysis of the properties of the reduced graph with respect to those reduction

rules results in fixed-parameter algorithms of running-times

O(2(3k+1) log k+12k log 1
ε
+30kn+mn) and 2O(k log k

λ
)n+O(mn) for Clique Partition on the

classes of ε-precision and (λ, α)-(relaxed)-quasi-precision UDGs with α ≤ 1/2, respectively.

To the best of our knowledge this is the first fixed-parameter algorithm for the problem on

a UDG subclass.

Finally, we fine-tune our approach to apply to a number of other interesting problems.

Given a graph with positive weights assigned to its vertices, Weighted Clique Parti-

tion asks whether there exists a clique partition of at most a certain weight for a graph. The

1By “clique covering” problems, we specifically refer to Clique Partition, Clique Cover and
Weighted Clique Partition, although the tools presented in this work can be technically applied to
other related problems.

CHAPTER 1. INTRODUCTION 4

weight function for a partition is defined as the sum over the maximum weight of vertices

of each partition.

3) Studying the problem of Weighted Clique Partition, we are able to design pa-

rameterized algorithms with the same running-time as the ones for Clique Partition on

the discussed classes of UDGs. We further consider extending our framework to the problem

of Clique Cover which asks whether the edges of a graph can be partitioned into a certain

number of (not necessarily disjoint) cliques. When the input is provided as an arbitrary

UDG, we obtain a parameterized algorithm of running-time O(n6k+3) for Clique Cover.

4) We also manage to design improved reduction rules for the problem and use it to

derive FPT algorithms for Clique Cover on the classes of ε-precision UDGs and (λ, α)-

(relaxed)-quasi-precision UDGs of running-times O(2(3k+1) log k+12k log 1
ε
+24km + mn) and

2O(k log k
λ

)m+O(mn), respectively. Our framework further applies when the reduced graph

(rather than the input instance) belongs to the discussed subclasses of UDGs.

Next, we discuss a few key components that are essential in development of our param-

eterization framework and are of independent theoretical and practical interest.

Quasi-precision UDGs

It is known that the complexity of many graph optimization problems remains NP-hard

even when restricted to the inputs that can be realized as UDGs. Some of these prob-

lems are 3-Coloring, Feedback Vertex Set, Vertex Cover, Connected Vertex

Cover, Cycle Packing and Clique Partition [26]. Similarly, many such problems are

believed not to admit polynomial-size kernelization or fixed-parameter algorithms on UDGs.

In an attempt to study the problems on more tractable classes of UDGs, ε-precision [5] and

bounded-area UDGs [78] were introduced in the literature. Yet, in many cases such sub-

classes appear too trivial. For example, ε-precision UDGs immediately translate to graphs

of bounded degree (See the discussion in Section 4.2). On the other hand, bounded area

UDGs are known to have bounded clique partition size [78] and as a result, a number of

problems such as k-Coloring and Hamiltonian Circuit are easily solvable on UDGs of

bounded area.

In order to get the best of both worlds, we introduce (α, λ)-quasi-precision UDGs as

UDGs which are only partially λ-precision, yet their imprecision components have bounded

area. We show that (α, λ)-quasi-precision UDGs are ubiquitous in the UDG class in the

CHAPTER 1. INTRODUCTION 5

sense that any UDG is quasi-precision for some values of λ and α. In particular, precision

UDGs and bounded-area UDGs are derived as trivial cases of quasi-precision class. Quasi-

precision UDGs are also non-trivial, meaning that in their general setting none of the known

graph parameters are proved to be bounded when considered on the class.

A) We demonstrate how the kernelization and parameterization frameworks obtained in

our work can be extended to the class of (relaxed)-quasi-precision UDGs.

B) We further study the structure of quasi-precision UDGs and prove structural obstruc-

tions for the parameterization of problems under our framework. In particular, we show

that UDGs which do not admit FPT algorithms under our framework include as subgraph

a loosely-connected co-bipartite graph.

Data Reduction Rules for (Weighted) Clique Partition/Cover

Data reduction is an effective technique in kernelization and construction of parameterized

algorithms and hence the design of reduction rules that can safely reduce the size of input

to smaller instance in polynomial time is of independent theoretical and practical interest.

Considering the inputs provided as UDGs, we design first-time data reduction rules

for the problems of Clique Partition, Weighted Clique Partition and enhanced

data reduction rules for Clique Cover which in time O(mn) shrink the input to a reduced

instance. When the input is assumed to be restricted to precision and quasi-precision UDGs,

our detailed analysis can prove that the size of the reduced instance is indeed bounded by

a function which is only linear in the parameter k.

1.2.2 Improved Polynomial Approximation Scheme for Minimum Clique

Partition

Studying the optimization version of Clique Partition, we design randomized (1 + ε)-

approximation algorithms for Minimum Clique Partition on arbitrary UDGs. Our first

PTAS is based on an adoption of the technique of [54] and a new packing argument and has

an improved running-time of n(176/ε)2+O(1/ε).

Furthermore, we propose a novel approach for deriving PTAS which relies on the geo-

metric theorem on coverage of cliques by convex regions. The new PTAS still runs in time

nO(1/ε2) · (1/ε2), yet the hidden constant in big O notation is significantly (at least 13 times)

smaller than the fastest previously known PTAS. In practice, this allows our algorithm to

CHAPTER 1. INTRODUCTION 6

run in a reasonable time on instances of size |I|13, if the previous algorithms could solve an

instance I of size |I|.

1.2.3 A Kernelization Framework for Problems on Quasi-precision UDGs

Despite the vast application of unit disk graphs and paramount importance of effective

parameterized algorithms for problems on real world inputs described as UDGs, there are

almost no general tools or frameworks known in the literature that aim at design of poly-

nomial kernels or (sub)-exponential parameterized algorithms on such inputs.

We describe a general framework for kernelization of problems on quasi-precision UDGs.

Through the introduction of a simple generic data reduction rule that reduces the input

instance in polynomial time to smaller instance and a detailed analysis, we prove that when

λ is set as a parameter, polynomial-size kernels are attainable for numerous problems on a

large class of (λ, α)-quasi-precision UDGs. Furthermore, we characterize the problems for

which polynomial-size kernels are derivable through the application of this framework by

providing sufficient criteria for the correctness of the generic reduction rule. The problems

covered in this framework include many classical NP-hard problems for which no positive

kernelization results were known beforehand on any non-trivial graph class. Among those are

Dominating Set, Connected Dominating Set, Clique Cover, Clique Partition

and Independent Set.

1.3 Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2, we state the preliminary

definitions and some notations that are used throughout the rest of thesis. There, we also

review some of the previous works in the field of parameterized algorithms and kernelization

and clarify the gap in research that this thesis addresses.

In Chapter 3, we study the problem of Clique Partition on unit disk graphs. We

describe a novel approach for obtaining parameterized results for the problem on arbitrary

UDGs. Later, we introduce first-time reduction rules for the problem on arbitrary UDGs

which reduces the problem to a smaller instance in polynomial time and provide a proof of

correctness for the reduction rules.

In Chapter 4, we study the fixed-parameter tractability of the Clique Partition prob-

lem on subclasses of UDG. In particular, we propose an approach for obtaining improved

CHAPTER 1. INTRODUCTION 7

fixed-parameter algorithms for the problem on precision UDGs using data reduction and

detailed analysis. We define quasi-precision UDGs later in this chapter as a non-trivial

subclass of UDGs and further strengthen the results for Clique Partition to (relaxed)-

quasi-precision UDGs by showing how the fixed-parameter results can be extended to that

subclass. We further demonstrate the significance and usefulness of quasi-precision UDGs

by proving structural obstructions for this subclass of UDGs.

In Chapter 5, we study the optimization version of the Clique Partition problem,

namely Minimum Clique Partition, with respect to approximation when the input is a

UDG representation of a graph in the plane. In particular, using a packing argument which

was used in Chapter 3, we obtain simple improvements over the running-time of previous

polynomial time approximation schemes (PTAS) for Minimum Clique Partition. Later,

we devise a novel approach for obtaining PTAS on the problem which results in a PTAS

with significant running-time speed-up for Minimum Clique Partition on UDGs.

In Chapter 6, we discuss parameterization of a few other related problems on UDGs. In

particular, studying the problems of Clique Cover and Weighted Clique Partition,

we demonstrate how to derive results parallel to the ones obtained for Clique Partition

(in Chapter 3 and 4) for the above two problems on the previously discussed classes of

UDGs.

In Chapter 7, we design a framework for kernelization of problems on quasi-precision

UDGs. In particular, we establish criteria under which a problem would admit polynomial

kernels on the class of quasi-precision UDGs. Having defined a generic data reduction

rule, we perform an analysis to show that, if the problem satisfy the defined criteria, the

size of the instance after performing the reduction rule is bounded by a polynomial in the

parameter. We further demonstrate the importance and use of this framework by discussing

its application to a few candidate problems.

We finally conclude the thesis in Chapter 8 and discuss possible future works and direc-

tions in this line of research.

Chapter 2

Background and Related Work

In this chapter, we review some of the tools and frameworks introduced in the parameterized

algorithms literature for obtaining results on restricted classes of graphs, while the main

focus is on the classes of graphs that admit small1 problem kernels or fixed-parameter

algorithms.

In Section 2.1, we put forth the definitions and notations that we adhere to throughout

this thesis. Section 2.2 reviews the works in the field of data reduction by drawing a few

case studies. We discuss the general frameworks that are introduced in the literature for

obtaining parameterization and kernelization results in Section 2.3. Finally, in Section 2.4,

we review the related work on sparse classes of graphs (degenerate graphs and unit disk

graphs) in this line of research.

2.1 Definitions and Notations

Let G = (V,E) be a graph. For a pair of vertices u, v ∈ V , an undirected edge between u and

v in G is expressed by uv. A graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V and E′ ⊆ E.

Furthermore, if E′ = {uv ∈ E | u, v ∈ V ′}, then G′ is called an subgraph of G induced by

V ′, denoted G[V ′] alternatively. We refer the reader to a textbook on graph theory e.g.

[112] for the other well-known terminologies. We denote by dG, the diameter of G, that is

the maximum distance between any two vertices in G. Given two graphs G1 = (V1, E1) and

G2 = (V2, E2) on n vertices, G1 is isomorphic to G2 (written G1
∼= G2) if there is a bijection

1By “small”, we often mean upper-bounded by a polynomial function of the parameter. However, this
definition is very much dependent on the choice of the problem.

8

CHAPTER 2. BACKGROUND AND RELATED WORK 9

f : V1 → V2 such that ∀uv ∈ E1, f(u)f(v) ∈ E2. We denote by Gg, the class of all graphs

embeddable in some surface of Euler genus g.

Given an edge e = xy of a graph G, the graph G\e is the graph obtained from G after

deleting the edge e. Similarly, the graph G/e is obtained from G after contracting the edge

e, that is, after removal of edge e, the endpoints x and y are replaced by a new vertex vxy

which is adjacent to the old neighbors of x and y. Given a subgraph X of G, we denote

by G/X the graph obtained from G after contracting every edge in X. Graph H = G/X

obtained after a sequence of edge-contractions is said to be a contraction of G and is denoted

H ≤c G. Given a graph G, a subgraph X of G and G, a collection of subgraphs of G, we de-

note by G/X the class of graphs obtained from G after replacing every graph H ∈ G by H/X.

A graph H is a minor of a graph G if H is the contraction of some subgraph of G. The minor

relation between G and H is denote by H ≤m G. We call edge deletion and contraction

(resp. ′\′ and ′/′), the minor operations. A graph is H-minor-free, if it does not contain H as

a minor. Similarly, a graph class GH is H-minor-free when all its members are H-minor-free.

Next, we review some of the standard definitions of parameterized complexity. We refer

the interested reader to a text book on parameterized complexity e.g. [53] for a more formal

discussion.

Definition: [Parameterized problem]

A parameterized problem Π is a subset of Γ∗ × N for some finite alphabet Γ. An instance

of a parameterized problem then consists of a pair (I, k), where k is called the parameter.

Assuming that k is given in unary, k ≤ |I|. We denote by Π the set of all no-instances of Π.

Definition: [FPT]

A fixed-parameter algorithm gives a solution to a problem with an input instance of size n

and a parameter k in time f(k) · nO(1) for some computable function f depending solely on

k. The class of all problems for which a fixed-parameter algorithm exists is known as Fpt.

We also refer to the function f(k) · nO(1) as Fpt-time.

In the parameterized complexity paradigm, the main complexity classes and the relation

between them are described as follows:

CHAPTER 2. BACKGROUND AND RELATED WORK 10

Fpt ⊆W[1] ⊆W[2] ⊆ · · · ⊆W[P] ⊆ XP

The focus of this chapter is on the design of solutions for concrete computational prob-

lems. Hence, we avoid the formal definition of the classes and discuss only those that have

compelling practical significance within the context of their associated complete problems.

For this purpose, it usually suffices to only mention the relation of a given problem with the

classes Fpt, W[1] and (sometimes) XP. We refer the interested readers to a textbook on

parameterized complexity (e.g. [53]) for a formal definition of the complexity classes.

It is worth noticing that k-Max Clique is a complete problem for W[1] class while

another classical problem, k-Dominating Set is a complete problem for W[2]. The class

XP consists of parameterized decision problems Π, such that for each instance (I, k), it can

be decided in O(f(k)|I|g(k)) time whether (I, k) ∈ Π, where f, g are computable functions

depending on k only. That is, XP consists of parameterized decision problems which can

be solved in polynomial time if the parameter k is considered as a constant.

Definition: [Kernelization]

Let Π be a parameterized problem consisting of input pairs (I, k), where I is the input

instance and k is the parameter for I. Then, kernelization or reduction to a problem kernel

is to map an instance (I, k) to a reduced instance (I ′, k′) called problem kernel such that

k′ ≤ k and |I ′| ≤ g(k) for some function g only depending on k, (I, k) ∈ Π if and only if

(I ′, k′) ∈ Π, and the reduction is computable in polynomial time in the size of (I, k). Here,

g(k) is called the kernel size.

Definition: [PTAS]

A polynomial time approximation scheme (PTAS) is an algorithm which takes an instance

I of an optimization and a parameter ε > 0 and produces a solution that is within a factor

(1 + ε) of being optimal, in a time polynomial in |I| for any fixed ε. That is, the running-

time has to be bounded by O(|I|f(1/ε)) for a computable function f depending on ε only.

An efficient PTAS (EPTAS) is the one that requires the running-time to be O(|I|c) for a

constant c independent of ε. However, the big-O can still depend on ε arbitrarily.

Therefore, EPTAS is, in a sense, the closest to what practical applications hope to obtain

for an NP-hard problem. Interested readers can refer to textbook on algorithms (e.g. [109])

for a detailed discussion on classical approximation.

CHAPTER 2. BACKGROUND AND RELATED WORK 11

The following theorem stresses the importance of existence of kernels the best as a practical

tractability measure.

Theorem 2.1.1. [61, Th. 1.32]

For a minimization (resp. maximization) problem Π̊, the parameterized problem denoted by

Π is defined as the language consisting of all pairs (I, k) where I is an instance of Π̊ and

Opt(I) ≥ k (resp. Opt(I) ≤ k). If Π̊ has an EPTAS then Π ∈ Fpt.

Thus, if a parameterized problem Π, naturally associated with an optimization problem Π̊,

is hard for W[1], then Π̊ cannot have an efficient PTAS unless Fpt = W [1].

Cai & Huang [20] introduced the concept of FP-approximation where given a decision prob-

lem and a parameter k, in Fpt-time the approximation algorithm either answers that no

optimal solution of value k exists or it produces a solution whose value is a ratio away from

the parameter k. Approximation with respect to different choices of parameters have at-

tracted a lot of attention in the literature. Marx [93] has provided a comprehensive survey

of the topic.

Definition: [Tree decomposition] [105, 106]

A tree decomposition of a graph G = (V,E) is a pair (X , T) where T = (VT , ET) is a tree

and X = {Xi | i ∈ VT } is a collection of subsets of V with the following properties:

1.
⋃
i∈VT Xi = V ,

2. for each edge xy ∈ E, {x, y} ⊆ Xi for some i ∈ VT ,

3. for each x ∈ V the set {i | x ∈ Xi} induces a connected subtree of T .

The width of the tree decomposition (X , T) is then defined as maxi∈VT |Xi − 1|]. Treewidth

of G is the minimum width of all tree decompositions of G and is denoted by tw(G).

For example, the treewidth of a tree on at least 2 vertices is 1 and a complete graph on

k vertices has the treewidth of k − 1. The usefulness of tree decomposition became more

apparent in the late 1980s when it turned out that many algorithmic problems that are NP-

complete for arbitrary graphs might be solvable efficiently for graphs of bounded treewidth

through dynamic programming, using the tree-decompositions of these graphs [7, 13].

CHAPTER 2. BACKGROUND AND RELATED WORK 12

2.2 Data Reduction

Data reduction is a popular technique in the literature of fixed-parameter algorithms and

kernelization. Pre-processing hard problems is not a new concept and it can be traced back

to the very beginning of algorithm research. The concept of data reduction to a problem

kernel was introduced by Downey and Fellows [53] for the first time to formalize reductions

for parameterized complexity purposes. In a nutshell, data reduction is a technique to

introduce a set of useful reduction rules that can be applied exhaustively to an input instance

to shrink it to a smaller instance in polynomial time. A solution for the original input then

should be able to be reconstructed in polynomial time using a solution for the reduced

instance. It is hoped then that the size of the reduced instance can be bounded by a

function depending on the parameter only.

The Vertex Cover problem is perhaps one of the earliest problems studied with respect

to data reduction [97]. Cai et al. [19] proved that every fixed-parameter tractable problem is

kernelizable. The research on proving kernels of polynomial (linear) size using data reduction

has been receiving much attention. Readers may refer to [14, 75] for a comprehensive survey

of the topic.

2.2.1 Vertex Cover and Related Problems

The ease and usefulness of data reduction is perhaps best demonstrated in its application to

Vertex Cover problem. The Vertex Cover problem asks for the minimum cardinality

of a set C of vertices in graph G of such that each edge of G is incident to at least one

vertex in C. The parameterized version of the problem k-Vertex Cover asks for a given

parameter k whether |C| ≤ k.

It is easy to get a kernel of size 2k vertices and Θ(k2) edges for k-Vertex Cover us-

ing a few simple reduction rules. This kernel is known to be optimal in size; this is proved

by Dell et al. in [32] by showing that no kernel of size O(k2−ε) is possible unless the poly-

nomial hierarchy collapses to its third level (PH = Σp
3). However, Jansen recently showed

in [80] that this might be due to the fact that k is almost always linear in n and therefore

studied the problem with respect to a different parameter, namely feedback vertex set num-

ber, fvs(G) and still obtained a cubic kernel for the Vertex Cover problem. In contrast

Weighted Vertex Cover does not admit a polynomial-size kernel unless the polynomial

CHAPTER 2. BACKGROUND AND RELATED WORK 13

hierarchy collapses [80].

Let C be a collection of subsets of a finite set S. A hitting set is a subset of S that has

a nonempty intersection with every element of C. The Hitting Set problem is to decide

whether there is a hitting set with cardinality at most k for a given (S,C). The input pair

can also be regarded as a hypergraph such that S and C correspond to the sets of vertices

and hyperedges, respectively. In this sense, the Hitting Set is equivalent to the general-

ization of Vertex Cover on hypergraphs. If the cardinality of the subsets in C is bounded

by a fixed natural number d, then the problem is called d-Hitting Set and is known to be

fixed-parameter tractable. Although this problem does not admit a polynomial-size kernel,

if d is set to be a constant kernelization results are possible [81]. In particular, 3-Hitting

Set is reducible to a kernel of size O(k2) according to the work of Abu-Khzam [1].

2.2.2 Dominating Set

Given a graph G with vertex set V (G), the Dominating Set problem asks for a minimum

subset D ⊆ V (G) of vertices such that every vertex in V (G)\D has a neighbor in D.

The cardinality of a minimum dominating set of G is known as the domination number

of G, denoted by γ(G). The Dominating Set problem is an important NP-hard graph

problem [67], which belongs to a broader class of domination and covering problems. From

applications’ point of view, dominating problems appear in numerous practical settings

such as resource allocations and wireless networks [76, 77, 111]. The evident importance of

Dominating Set problems is well-described by the enormous amount of research focusing

on these problems. The algorithmic complexity of the domination and related problems are

discussed in detail in the book of Haynes et al. [77].

In the parameterized setting, it is known that the Dominating Set problem on ar-

bitrary graphs is W [2]-complete, that is, not fixed-parameter tractable [53] but when re-

stricted to planar graphs it is fixed-parameter tractable [2, 3]. The best known fixed-

parameter algorithm for the Dominating Set problem on planar graphs runs in time

O(211.98
√
γ(G)nO(1)) [49]. Data reduction for the Dominating Set problem has received

much attention [4, 24]. Indeed, dominating set is one of the first few problems to be chal-

lenged using data reduction. The landmark paper of Alber et al. [4] give data reduction

rules which always reduce a planar graph of n vertices to a problem kernel of size O(γ(G))

in O(n3) time. This result was slightly improved later in [24].

CHAPTER 2. BACKGROUND AND RELATED WORK 14

2.2.3 Connected Dominating Set

A vertex u is dominated by a vertex v in a graph G if either u = v or {u, v} ∈ E(G) (u is

adjacent to v). A vertex v is dominated by a vertex set U , if either v ∈ U or v is adjacent to

at least one vertex of U . Similarly, a vertex set U ′ is dominated by a vertex set U , if every

vertex of U ′ is dominated by U . If a set U ′ is dominated by a set U , we say U ′ is dominated

by the vertices of U . A subset D ⊆ V (G) is a dominating set of G if V (G) is dominated

by D. A connected dominating set (CDS) of G is a subset D ⊆ V (G) such that D is a

dominating set of G and the subgraph G[D] is connected. The Connected Dominating

Set problem is then to find a minimum CDS D of G. The decision version of the problem

Connected k-Dominating Set asks given a graph G and a positive integer k, whether

the size of minimum connected dominating set of G denoted γc(G) is at most k [73].

It is not known whether Connected Dominating Set is fixed-parameter tractable

in arbitrary graphs but it becomes tractable when restricted to planar graphs [51], where

it plays an important role in efficient routing in wireless networks [85]. Lokshtanov et

al. [88] showed a linear-size problem kernel of at most 3968187γc(G) vertices for Con-

nected Dominating Set on planar graphs. Gu & Imani [73] independently proved that

on planar graphs, the problem admits a linear-size problem kernel of much smaller size (at

most 413γc(G) vertices). Quite recently, Luo et al. [90] further shrink this upper bound to

130k.

2.3 Separators, Minors and Bidimensionality

2.3.1 Background

In this section, we discuss the tools and frameworks for kernelization of problems on classes

of graphs that are more general than the planar graphs. In particular, we consider graphs

embeddable on a fixed surface (with a fixed genus) as a direct generalization of the planar

graphs.

A larger class that we consider here is the graphs excluding a fixed graph as a minor.

The theory of graph minors perhaps began with the Wagner’s theorem [110] stating that a

graph is planar if and only if it does not contain the complete graph K5 nor the complete

bipartite graph K3,3 as a minor. Later, Robertson and Seymour showed that every family

of graphs that is closed under minors can be defined by a finite set of forbidden minors

CHAPTER 2. BACKGROUND AND RELATED WORK 15

[104]. The latter statement particularly stresses the importance of studying the H-minor-

free graphs in algorithmic research. Later, Demaine et al. [45] made it possible to obtain

algorithmic results on this class of graphs by proposing a polynomial time algorithm for

structural decomposition of H-minor-free graphs.

2.3.2 Bidimensionality Framework

The theory of bidimensionality developed in a series of papers [33–36, 38–44, 47] over the

last decade providing a general framework for designing efficient fixed-parameter algorithms

and approximation algorithms for NP-hard problems on large classes of graphs. This the-

ory applies to graph problems that are bidimensional meaning that the value of solution

for the k × k grid graph (respectively other dense graphs) grows with k, while the value

of solution does not increase after performing a minor operation (contracting or deleting

edges). Examples of such problems include Feedback Vertex Set, Vertex Cover,

Minimum Maximal Matching, Face Cover, Dominating Set, Edge Dominating

Set, r-Dominating Set, Connected Dominating Set, Connected Edge Dominat-

ing Set, Connected r-Dominating Set, and Unweighted TSP Tour (a walk in the

graph visiting all vertices) [42].

The main idea behind the bidimensionality theory is that the value of the bidimensional

problems on a graph G is almost captured by the value of the problem on its biggest grid

minor. More specifically, the treewidth in such problems is upper-bounded by a function

of the problem’s solution value. By proving this bound, it is possible to design an (sub-

)exponential algorithm in the solution size, when (sub-)exponential dynamic programming

based on tree-decomposition is known for the problem. Also this framework can be used to

yield PTASs for bidimensional problems [43, 62]. The results in this line includes PTASs

for the Weighted Traveling Salesman problem (Weighted TSP) and for Minimum-

Weight c-Edge-Connected Submultigraph on bounded-genus graphs.

Definition: [Minor bidimensional problem][39]

A parameterized problem Π is called minor bidimensional if

• The value of the parameter does not increase by a minor operation (deleting/contracting

an edge) i.e. for any pair of graphsH ≤m G and an integer k, (G, k) ∈ Π⇒ (H, k) ∈ Π,

and

CHAPTER 2. BACKGROUND AND RELATED WORK 16

• The value of solution on a (r × r)-grid R, is at least δr2 for some δ > 0, i.e. ∃δ > 0

such that (R, k) /∈ Π for k ≤ δr2.

Definition: [Contraction bidimensional problem][39]

A parameterized problem Π is called contraction bidimensional if

• The value of the parameter does not increase by a contraction operation i.e. for any

pair of graphs H ≤c G and an integer k, (G, k) ∈ Π⇒ (H, k) ∈ Π, and

• The value of solution on triangulated folded (r × r)-grid Γr, is at least δr2 for some

δ > 0 i.e. ∃δ > 0 such that (Γr, k) /∈ Π for k ≤ δr2.

We simply call a problem Π bidimensional if Π is minor bidimensional or contraction bidi-

mensional.

2.3.3 Contraction Decomposition

Definition: [Separator]

Let G = (V,E) be an undirected graph. A vertex set S ⊆ V is called a separator for G, if

S divides V into A1 ⊆ V and S2 ⊆ V such that:

• A1 ∪ S ∪A2 = V, and

• No vertex in A1 is adjacent to a vertex in A2, i.e. N(A1) = N(A2) = S.

The triple (A1, S,A2) is called a separation of G.

One can generalize the above definition to the case where the separator S divides V into `

subsets {A1, ..., A`} instead of two. In this case S is called an `-separator for G. We call a

separator S small, if |S| = o(|V |).

There are a variety of different separator tools known in the literature partitioning the

vertex set or the edge set of graphs into sets satisfying certain criteria. The most historic

ones are perhaps the Lipton and Tarjan’s vertex separator for planar graphs [87] followed by

the Baker’s separation theorem [8]. The main technique in these decompositions is to find

relatively small cuts in the graph that minimize the interaction between the pieces. Among

such results there are a few which make a connection between the size of the separator and

the treewidth of the graph.

CHAPTER 2. BACKGROUND AND RELATED WORK 17

Definition: [Separator theorem] [87]

An f(.)-separator theorem with constants α < 1, β > 0 for a class G of graphs closed under

taking vertex-induced subgraphs, is a theorem of the following form: Let G ∈ G be a graph

on n vertices, then there is a separation (A1, S,A2) of G such that:

• Neither A1 nor A2 contains more than αn vertices, and

• S contains no more than βf(n) vertices.

Contraction decomposition states that the edges of every graph of bounded (Euler) genus

can be partitioned into any prescribed number k of pieces such that contracting any piece

results in a graph of bounded treewidth (where the bound depends on k). Demaine et al.

[37] state the result formally as follows:

[Contraction decomposition]

For a fixed integer g, and any integer k ≥ 2 and for every graph G of Euler genus

at most g, the edges of G can be partitioned into k sets such that contracting

any one of the sets results in a graph of treewidth O((g + 1)2k). Furthermore,

such a partition can be found in O((g + 1)5/2n3/2 log n) time [37].

The main application of this method is its use as a tool for obtaining PTASs for contraction-

closed problems (whose optimal solution only improves under contraction), a much more

general class than minor-closed problems (whose optimal solution improves under taking

minor) [37]. In particular, the framework obtained through contraction decomposition yields

PTASs for the Weighted Traveling Salesman problem and for Minimum-Weight c-

Edge-Connected Submultigraph on bounded-genus graphs.

The following result by Eppstein [55] relating the treewidth and diameter in a bounded-genus

graph, is useful in understanding the idea of this technique.

[Bounded local-treewidth]

Let G = (V,E) be a graph embedded in a surface of genus g and let x0 ∈ V . If

every vertex of G is at distance at most d from x0 then tw(G) ≤ 3d+ 3 if g = 0,

and tw(G) = O(g.d) if g ≥ 1 [55].

The first result discusses contraction decomposition of planar graphs [37].

[Planar graph decomposition]

If w ≥ 6k(q + 3) for integers k ≥ 1, q ≥ 0, Cwk,q contains the class of all planar

graphs [37].

CHAPTER 2. BACKGROUND AND RELATED WORK 18

The above result can be extended to other surfaces by applying induction on the Euler

genus. Cutting the graph along a simple non-contractible curve in G embedded in a surface

with genus g would result in a graph with a smaller genus g′ < g for which the induction is

assumed to be true.

[Bounded-genus decomposition]

Given any integers k ≥ 1, q ≥ 0, and g ≥ 0, let w = 120k(g + 1).(2g + q + 2).

Then Gg ⊆ Cwk,q [37].

The above result was further strengthened by Demaine et al. in [46] so that it applies to H-

minor-free classes of graphs. They did so by proving a nicer decomposition for H-minor-free

graphs which was a long standing open problem and is formalized as follows.

[H-minor-free decomposition]

For any fixed graph H, there is a constant cH such that, for any integer k ≥ 1,

every H-minor-free graph G can have its edges partitioned into k+1 color classes

such that contracting any one of the color classes results in a graph of treewidth

at most cHk. Furthermore, such a partition can be found in polynomial time

[46].

Applications

The above result can be used to obtain a variety of PTASs and exact algorithms for a

number of problems on H-minor-free graphs. First, we provide a few definitions.

Definition: [(δ, α)-spanner]

Given a weighted graph (G,w) with weight w, a constant δ > 0, G′ – a (δ, α)-spanner for G

– is a graph such that Opt(G′) ≥ α.w(G′), for some constant α > 0 (possibly depending on

δ) and any c-approximation to G′ can be converted into a (1 + δ).c-approximation solution

to G in polynomial time.

What follows provides a framework for obtaining PTAS on H-minor-free graphs using con-

traction decomposition, given that the problem satisfies the required criteria.

[PTAS via contraction decomposition]

Let Π be a minimization problem closed under contraction on weighted graphs,

solvable in polynomial time on graphs of bounded treewidth. Furthermore, sup-

pose the following criteria is true:

CHAPTER 2. BACKGROUND AND RELATED WORK 19

• There is a polynomial-time algorithm that given a weighted H-minor-free

graph (G,w) and a constant δ > 0, calculates an H-minor-free graph G′

such that G′ is (δ, α)-spanner of G.

• There is a polynomial-time algorithm that given a subset S of edges of a

weighted graph (G,w) and given an optimal solution for G/S, constructs

a solution for G of value at most Opt(G/S) + βw(S) for some constant

β > 0.

Then for any fixed minor H and any constant 0 < ε < 1, there is a polynomial-

time (1 + ε)-approximation algorithm for problem Π on H-minor-free graphs.

Furthermore, if α grows as a function of n, then the running-time becomes

bounded by a polynomial multiplied by the cost of solving the problem on graphs

of treewidth O(α).

Next, we demonstrate the use of this framework by describing how it can be applied to a

number of candidate problems.

k-Cut.

Instance: A graph G = (V,E) and a weight function f : E → R.

Question: Find a minimum-weight set of edges whose removal would partition G

into k connected components.

Weighted TSP.

Instance: A graph G = (V,E) and a weight function f : E → R.

Question: Find a Hamiltonian cycle such that the sum of weights on its edges is

minimum.

The first result is obtained by the application of contraction decomposition to the problem

of k-Cut. Notice that, since there is a vertex of degree at most O(|V (H)|
√

log |V (H)|) in

an H-minor-free graph G, a k-cut in G can have a size at most cHk for some constant cH

depending on the minor H only. Now, one can use contraction decomposition and partition

the edges to cHk + 1 sets such that at least one of the sets has no intersection with the

optimum solution. By guessing this set among the cHk + 1 and contracting the edges, we

CHAPTER 2. BACKGROUND AND RELATED WORK 20

are left with a graph of bounded treewidth in time 2Õ(k)n.2 This is formalized as follows.

Proposition: There is an exact fixed-parameter algorithm that calculates k-Cut on H-

minor-free graphs in time 2Õ(k)n+ nO(1) [46].

The existence of a spanning-subgraph is also promised in [71] as below.

Given an edge-weighted graph excluding Kh as a minor, there is a polynomial-

time greedy algorithm to find a spanning subgraph approximating all shortest-

path distances within a factor of 1 + ε, and with total edge-weight at most

α = O((h
√

log h. log n)/ε) times the weight of a minimum spanning tree.

The following result by Dorn et al. [50] addresses the problem of finding optimal-weight

TSP in weighted H-minor free graphs.

Given a weighted graph G excluding H as a minor with |V (H)| = h and tw(G) ≤
k, there is an exact algorithm of time 2f(h)kn that finds an optimal-weight TSP

for some function f(h).

Now one can use the PTAS framework defined earlier, along with the spanner promised

above to obtain a PTAS for Weighted TSP.

Proposition: Weighted TSP admits a PTAS on H-minor-free graphs.

2.3.4 (Meta)-Kernelization

(Meta)-Kernelization theory states that all problems expressible in Counting Monadic Sec-

ond Order (CMSO) logic satisfying a compactness property, admit a polynomial-size kernel

on graphs of bounded genus, while all problems that have finite integer index and satisfy a

weaker compactness condition admit a linear-size kernel on graphs of bounded genus [15].

Definition: [Radial distance] [15]

Given a graph G = (V,E) embedded in a surface Σ of Euler genus g, the radial distance

between two vertices x and y is the minimum length of an alternating sequence of incident

vertices and faces starting from x and ending in y. Given a S ⊆ V , we denote by Rr
g(S) the

set of all vertices in V with a redial distance at most r from some vertex in S.

2Here Õ means that there can be an extra log factor (rather than a constant) hidden in the Big-Oh
notation.

CHAPTER 2. BACKGROUND AND RELATED WORK 21

Definition: [Compactness] [15]

A parameterized problem Π ⊆ Gg×N is said to be compact if there is an integer r such that

for all (G, k) ∈ Π, there is an embedding of G in a surface Σ of Euler genus g and a set

S ⊆ V with |S| ≤ k · r such that Rr
g(S) = V .

Similarly, Π is called quasi-compact if there exists integer r such that for every (G, k) ∈ Π

there is an embedding of g in a surface Σ of genus g and a set S ⊆ V of size at most r · k
such that tw(G\Rr

g(S)) ≤ r.

Definition: [Counting monadic second order]

Counting monadic second order, CMSO is an extension of monadic second order (MSO)

with the addition of the following atomic formula: Let U denote a set X, then cardn,p(U) =

true if and only if |X| ≡ n mod p. For an introduction on monadic second order logic, please

refer to [27–30].

Definition: [CMSO problem] [15]

A p-min-CMSO problem Π ⊆ Gg × N is, given a graph G = (V,E) and an integer k

as input, to decide whether there is a vertex/edge set S of size at most k such that the

CMSO-expressible predicate PΠ(G,S) is satisfied. Similarly, in a p-eq-CMSO problem,

the size of S is required to be exactly k and in a p-max-CMSO problem, the size of S is

required to be at least k. The annotated version Π̇ of a p-min/eq/max-CMSO problem, Π

is defined as follows. A triple (G, Y, k) is given as input where G is a graph and Y ⊆ V is

a set of black vertices. In the annotated version of a p-min/eq-CMSO graph problem, S

is additionally required to be a subset of Y . For the annotated version of a p-max-CMSO

graph problem, S is not required to be a subset of Y but instead of |S| ≤ k, we require that

|S ∩ Y | ≤ k.

The main result of this section is regarding the kernelization of Π̇ for Π a p-min/eq/max-

CMSO problems.

[Kernelization of CMSO problems]

Let Π be a p-min/eq/max-CMSO parameterized problem over the class of

graphs embeddable in a surface of Euler genus g. Further, assume either Π or Π

is compact. Then Π̇ admits a cubic kernel if Π is a p-eq-CMSO problem and a

quadratic kernel if is a p-min/max-CMSO problem [15].

CHAPTER 2. BACKGROUND AND RELATED WORK 22

The existence of finite integer index for a problem is a stronger condition that can be used

to prove the existence of smaller kernels for a problem. The next statement exploits this

condition for kernelization of bounded-genus graphs.

[Kernelization of problems with finite integer index]

Suppose Π ∈ Gg×N has finite integer index and either Π or Π is quasi-compact.

Then, Π admits a linear-size kernel [15].

2.3.5 Kernels for Problems on H-Minor-Free Graphs

Bidimensionality, as discussed before, is best known as a framework for obtaining sub-

exponential parameterized algorithms for specific problems (bidimensional problems) on

H-minor-free graphs.

Given a graph G = (V,E) and S ⊆ V , we define ∂G(S) as the set of vertices in S that have

a neighbor in V \S. For a set S ⊆ V the neighborhood of S is NG(S) = ∂G(V \S).

Definition: [Protrusion][65]

Given a graph G = (V,E), a set X ′ ⊆ V is an r-protrusion of G if |N(X ′)| ≤ r and

tw(G[X ′ ∪ N(X ′)]) ≤ r. The vertex set X = X ′ ∪ N(X ′) is then called the extended

r-protrusion of X ′.

Definition: [Terminal graph][65]

A terminal graph is a triple (V,E,X) with (V,E), an undirected graph and X ⊆ V , an

ordered set of vertices called the set of terminals. Terminal graph (V,E,X) is called k-

terminal graph, if |X| = k. If there are no edges between vertices in X, then the terminal

graph is called open. The operation ⊕ takes two k-terminal graphs G1, G2 and merge them

into a graph H = G1⊕G2 by taking their disjoint union and identifying ith terminal of the

first terminal graph with the ith terminal from the other terminal graph for i = 1, · · · , k
(multi-edges in H are then removed if any).

Definition: [Reduction rule][65]

A reduction rule R : G0
R→ G1 is an ordered pair of open t-terminal graphs G0, G1. The

application of a reduction rule R is the operation that takes a graph H of form H = H0⊕H2

and replace it by the graph H ′ = H1 ⊕H2, where H0
∼= G0 and H1

∼= G1.

CHAPTER 2. BACKGROUND AND RELATED WORK 23

For a parameterized problem Π, a class G, and a reduction rule G0 → G1, we say that

G0 ≡Π G1 if ∃c > 0 such that for all t-terminal graphs G2 (for t the number of terminals in

G0, likewise in G1) and for all k, I) G0 ⊕G2 ∈ G iff G1 ⊕G2 ∈ G, II) (G0 ⊕G2, k + c) ∈ Π

iff (G1 ⊕G2, k) ∈ Π.

Definition: [Finite integer index][65]

A parameterized problem Π has finite integer index in a graph class G, if for every t there

exists a finite set S of t-terminal graphs such that S ⊆ G and for any t-terminal graph G1,

there exists G2 ∈ S such that G1 ≡Π G2. Such a set S is called a set of representatives for

(Π, t).

Roughly speaking, a minimum set of representatives for Π over G corresponds to the mini-

mum set of reduction rules. Also note that ≡Π is an equivalence relation and hence it defines

|S| equivalence classes over G.

Definition: [Separation property][43, 44]

A minor-bidimensional problem Π, has the separation property if for any graph G, given

any vertex cut S, and an optimal solution Opt to G, for any union G′ of some subset of

connected components of G\S, |Opt(G′)| − O(|S|) ≤ |Opt ∩G′| ≤ |Opt(G′)|+O(|S|).

A contraction bidimensional problem has the separation property, if it satisfies the follow-

ing: Given a graph G, let S be a vertex cut whose removal disconnects G into k connected

components C1, · · · , Ck.
For any I ⊆ {1, · · · , k}, let GI be the graph obtained from G after contracting each

component Cj in G for j /∈ I into a vertex in N(Cj) with the lowest index. The optimal

solution forG, Opt can be bounded in the following way: |Opt(GI)|−O(|S|) ≤ |Opt∩GI | ≤
|Opt(GI)|+O(|S|). If Π has the separation property, we call Π separable.

Intuitively, the reduction rules for Π, look for extended γ-protrusion X of unbounded size

Θ(γn/k) and replace G[X] with a graph H ∈ S of bounded size c(γ,Π).

The following result extends the previous theorem to the H-minor-free graphs, provided

that the problem is bidimensional and separable.

[Bidimensionality and Kernelization]

Every minor-bidimensional problem Π with the separation property and finite

CHAPTER 2. BACKGROUND AND RELATED WORK 24

integer index, has a linear-size kernel on graphs excluding some fixed graph as a

minor. Every contraction bidimensional problem Π with the separation property

and with finite integer index, has a linear-size kernel on graphs excluding some

fixed apex graph as a minor [65].

2.4 Kernels for Degenerate Graphs and UDGs

2.4.1 Background

One of the most formal classifications of graphs into useful classes, is perhaps, based on the

topology (more specifically genus) of the surface on which the graph is embeddable with no

edges crossing. The more general classes of graphs such as apex-minor-free and H-minor-

free classes of graphs are also a generalization of the same concept (since for each surface

there is a finite set of excluded minors). Despite the fact that this classification is very

well-defined and hence many useful frameworks are developed for obtaining algorithmic and

complexity results, many of the problems that come from application fail to conform to any

of the classes mentioned above.

Degenerate graphs and unit disk graphs are two large classes which are not minor-free or

embeddable on a fixed-surface. For example, one can convert any graph into a 2-degenerate

graphs by subdividing its edges (this does not change the genus). Similarly, in the case

of unit disk graphs, the size of cliques (and hence the Euler genus) is not bounded. As

a result, the previous techniques for bounded genus and H-minor-free graphs cannot be

directly applied to these classes of graphs. In reality, there is no general framework known

in the literature to deal with kernelization of problems on the classes of graphs that are not

minor-closed. However, one might exploit the specific structural properties of degenerate

graphs and unit disk graphs to obtain results for specific problems on these classes. Here, we

often focus our attention on combinatorial problems for which no polynomial-size problem

kernels are hoped in the class of general graphs and verify whether they admit kernels of

polynomial-size on the restricted classes.

CHAPTER 2. BACKGROUND AND RELATED WORK 25

2.4.2 Degenerate Graphs

Definition: A graph is d-degenerate if its every subgraph contains a vertex of degree at

most d. Given a problem Π on general graphs we denote by d-deg-Π, the problem Π on the

class of d-degenerate graphs.

It is known that planar graphs are 5-degenerate. Alon & Gutner [6] and later Golovach &

Villanger [69] proved that Dominating Set and Connected Dominating Set, which

are W[2]-hard in general graphs [53], become Fpt when they are restricted to d-degenerate

graphs. Very recently, Philip et al. [101] proved that Dominating Set is in Fpt and

admits a polynomial-size kernel on a class of graphs including the degenerate graphs: graphs

excluding Ki,j as a subgraph [92].

Lower Bound Kernelization

Degenerate graphs have particularly been studied with respect to negative results and lower

bounds on the size of possible kernels. Cygan et al. [92] studied the hardness of kernel-

ization for a few connectivity problems showing that unless PH = Σp
3, there do not exist

polynomial-size kernels for Connected Dominating Set, Steiner Tree, Connected

Feedback Vertex Set and Connected Odd Cycle Transversal in d-degenerate

graphs for d ≥ 2.

There are two general approaches for obtaining lower bound kernelization results in the

literature. The first approach is using a reduction from an NP-hard problem. We first need

to define a parameterized variant of a polynomial reduction.

Definition: Let P and Q be two parameterized problems. We say that P is polynomial

parameter reducible to Q, written P ≤Ptp Q, if there exists a polynomial time computable

function f : Σ∗×N→ Σ∗×N and a polynomial p, such that, ∀(x, k) ∈ Σ∗×N if f((x, k)) =

(x′, k′), we have (x, k) ∈ P ⇐⇒ (x′, k′) ∈ Q for k′ ≤ p(k). The function f then is called a

polynomial parameter transformation (PPT).

The following is a known result regarding the application of polynomial parameter trans-

formation to polynomial size kernelization.

[Kernels under PPT]

Let P and Q be parameterized problems and P̊ and Q̊ be the unparameterized

CHAPTER 2. BACKGROUND AND RELATED WORK 26

versions of P and Q respectively. Further suppose that P̊ is NP-hard and Q̊ is

in NP. Assume there is a polynomial parameter transformation from P to Q.

Then if Q admits a polynomial-size kernel, so does P [92].

One can use the above theorem to prove lower bound on the size of kernels. More specif-

ically, for a problem P not admitting a polynomial-size problem kernel and satisfying the

theorem’s criteria, and Q with unknown kernel lower bounds, one can find a polynomial

parameter transform from P to Q to prove that Q does not have a polynomial-size kernel.

We demonstrate this by showing reductions for two combinatorial problems.

Connected Vertex Cover.

Instance: A graph G = (V,E) and a non-negative integer k.

Question: Is there a subset S ⊂ V of vertices with |S| ≤ k such that G[S] is connected

and every edge e ∈ E, has an end vertex in S?

Connected Odd Cycle Transversal.

Instance: A graph G = (V,E) and a non-negative integer k.

Question: Is there a subset S ⊂ V of vertices with |S| ≤ k such that G[S] is connected

and G[V \S] is bipartite?

Connected Feedback Vertex Set (CFVS).

Instance: A graph G = (V,E) and a non-negative integer k.

Question: Is there a subset S ⊂ V of vertices with |S| ≤ k such that G[S] is connected

and G[V \S] contains no cycles?

Proposition: Connected Vertex Cover≤Ptp 2-deg-Connected Odd Cycle Transver-

sal and Connected Vertex Cover ≤Ptp 2-deg-Connected Feedback Vertex Set

[92].

Steiner Tree.

Instance: A graph G = (V,E), a set of terminals T ⊂ V and an integer k.

Question: Is there a subset S ⊂ V with |S| ≤ k such that G[S ∪ T] is connected?

Proposition: Steiner Tree ≤Ptp 2-deg-Steiner Tree [92].

CHAPTER 2. BACKGROUND AND RELATED WORK 27

Finally, since by the result of [48], Steiner Tree and Connected Vertex Cover do

not admit polynomial-size kernels on the class of general graphs, one can use the theorem

regarding kernelization under PPT to obtain the following results.

Steiner Tree, Connected Feedback Vertex Set and Connected Odd

Cycle Transversal do not admit a polynomial-size kernel on 2-degenerate

graphs unless PH = Σp
3 [92].

Many of the results in this section are obtained using a polynomial parameter reduction

from Colorful Graph Motif [92] which is defined as follows:

Colorful Graph Motif.

Instance: A graph G = (V,E), an integer k and a function g : V → {1, · · · , k}.
Question: Is there a connected subset of vertices, S ⊂ V with |S| = k such that g|S
is bijective?

The second approach is using the composition theorem for obtaining lower bound kernel-

ization.

Definition: [Compositional problem]

A composition algorithm for a parameterized problem Q ⊂ Σ∗ × N is an algorithm that

receives as input a sequence (x1, k), (x2, k), · · · , (xt, k) with (xi, k) ∈ Σ∗ × N for 1 ≤ i ≤ t,

uses polynomial time Σt
i=1|xi| + k and outputs (y, k′) ∈ Σ∗ × N with (y, k′) ∈ Q iff

∃1≤i≤t(xi, k) ∈ Q and k′ a polynomial in k. A parameterized problem is then called compo-

sitional if there is a composition algorithm for it.

The following important result demonstrates the use of compositional problems for proving

non-existence of polynomial size kernels.

[Negative kernelization for compositional problems]

Let Q be a compositional parameterized problem whose unparameterized version

Q̊ is NP-complete. Then, unless PH = Σp
3, there is no polynomial kernel for Q

[92].

Using the above theorem, it is not hard to show that the Colorful Graph Motif does

not admit a polynomial kernel on forests of maximum degree 3. Fellows et al. [58] already

showed that this problem is NP-hard on this class of graphs. To show the kernel lower

CHAPTER 2. BACKGROUND AND RELATED WORK 28

bound, it is enough to take the disjoint union of graphs and the union of functions g as the

composition algorithm to prove that the problem is compositional and use the theorem re-

garding kernelization of compositional problems immediately. Since forests are 1-degenerate

graphs, we get:

Proposition: 1-deg-Colorful Graph Motif does not admit a polynomial-size kernel

unless PH = Σp
3 [92].

Now, we can use reductions from Colorful Graph Motif to Connected Dominating

Set and Steiner Tree to obtain negative results for the latter problems.

Proposition: d-deg-Colorful Graph Motif ≤Ptp (d+ 1)-deg-Connected Dominat-

ing Set and 2-deg-Connected Dominating Set does not admit a polynomial-size kernel

unless PH = Σp
3 [92].

Proposition: d-deg-Colorful Graph Motif ≤Ptp (d + 1)-deg-Steiner Tree and 2-

deg-Steiner Tree does not admit a polynomial-size kernel unless PH = Σp
3 [92].

Positive results

The research on parameterized tractability of degenerate graphs is still in its early stages.

In particular, the complexity of many problems have not yet been studied for the degenerate

class of graphs. Therefore, here we mention briefly a few positive kernelization results in

the field.

k-Dominating Set has been studied in the class of graphs that do not have a biclique

Ki,j as a subgraph [101] where polynomial-size kernels of O((j + 1)2(i+1)k2i2) vertices has

been proven. Considering the fact that d-degenerate graphs do not have a Kd+1,d+1 as a

subgraph, one can obtain a kernel for k-Dominating Set on degenerate graphs using the

result of [101]. Since a d-degenerate graph on n vertices can have at most n.d edges, we

have:

Proposition: k-Dominating Set problem on d-degenerate graphs has a kernel of O((d+

2)2(d+2)k(2d+1)2) vertices and edges [101].

The Minimum Fill-in problem is studied in the context of degenerate graphs and some

other families of sparse graphs in [66].

CHAPTER 2. BACKGROUND AND RELATED WORK 29

Minimum Fill-in.

Instance: A graph G = (V,E), a non-negative integer k.

Question: Can G be triangulated by adding at most k edges?

The problem which is also known as Chordal Graph Completion is NP-complete and

is also proved to be in Fpt due to an algorithm with running-time O(2O(
√
k log k) + kmn)

[64].

Proposition: Minimum Fill-in problem has a d-degenerate kernel of size O(k3/2) on

d-degenerate graphs [66].

2.4.3 Unit Disk Graphs

Unit disk graphs (UDGs) can be defined in three equivalent ways:

• For n points in the plane, form a graph with n vertices corresponding to the n points,

and an edge between two vertices if and only if the distance between the two points

is at most 1.

• For n unit circles in the plane, form a graph with n vertices corresponding to the n

circles, and an edge between two vertices if and only if one of the corresponding circles

contains the other’s center.

• For n circles of unit diameter in the plane, form a graph with n vertices corresponding

to the n circles, and an edge between two vertices if and only if the two circles intersect.

Studying the algorithmic aspects of problems on UDGs has been an attractive topic of re-

search in the past. The readers can refer to [9] for a recent survey. Although the class of unit

disk graphs is very restricted, it is not closed under the minor operation and hence many

of the algorithmic results applicable to minor-closed class of graphs do not immediately

follow for UDGs. It is shown for example in [26] that the complexity of many NP-hard

optimization problems on general graphs remain NP-hard in the unit disk graph setting.

Some of these problems are 3-Coloring, Feedback Vertex Set, Vertex Cover, Con-

nected Vertex Cover, Cycle Packing and Clique Partition. Breu & Kirkpatrick

[18] showed that the problem of recognizing unit disk graphs is NP-hard, and thereby an-

swered one of problems left open in [26].

CHAPTER 2. BACKGROUND AND RELATED WORK 30

Let Σ be the 2-dimensional Euclidean plane. For two points p1 and p2 in Σ, we denote

by dist(p1, p2) the Euclidean distance between the two points. For a point v of Σ, we

define D(v) = {w|dist(v, w) ≤ 1/2} to be the disk with radius 1/2 and center v, and

∂D(v) = {w|dist(v, w) = 1/2} to be the boundary of D(v). Given an input graph G, we

consider a unit disk representation of G where disks of radius 1/2 are placed in the plane

centered at every vertex of V (G). In this case, we alternatively refer to V (G) as point set

P = {p1, · · · , pn} ⊂ R2 with XY-coordinates, corresponding to the centers of disks. When

we want to refer to a disk of radius 1/2 centered at a vertex v ∈ V (G), we denote it by

D(v). Yet, whenever the center of the disk is unimportant in the context or the disk is not

centered at a vertex of G, we refer to the disk by Dr where r is the radius of the disk.

Although, unit disk graphs are not in general planar, as an intersection graph of some

geometrical objects (disks) in the plane they exhibit some planar properties. The following

result describes structural properties for UDGs.

A UDG has no induced subgraphs isomorphic to K2,3 or K1,6. [91].

The above theorem implies that the size of a maximum independent set in the neighborhood

of a vertex v, G[N(v)], is at most 6. However, this can be proved to be smaller if the vertex

is located on the convex hull of the point set. Particularly, Marathe et al. [91] prove the

following:

Let G be a unit disk graph and v be a vertex in G with the the smallest X-

coordinate. The size of a maximum independent set in G[N(v)] is at most 3

[91].

One can use the above results, for example to argue a lower bound on the size of cliques

based on the maximum degree of a UDGs.

Proposition: A unit disk graph G with maximum vertex degree ∆ contains a clique of

size at least d∆/6e+ 1 [91].

Given a pair of vertices v and w in a unit disk graph G with dist(v, w) ≤ 1, let us denote

by Dv ∩ Dw the intersection of two disks of radius 1 centered at v and w and by Λv,w, the

subset of vertices of G that are in Dv ∩ Dw. See Figure 2.4.3.

Let C be the vertex set for a maximum-sized clique in G = (V,E), then C ⊆ Λv,w

for some v, w ∈ V with dist(v, w) ≤ 1 [26].

CHAPTER 2. BACKGROUND AND RELATED WORK 31

Figure 2.1: Two disks of radius 1 centered at points u and v. The area where the vertices
of Λv,w appear is highlighted in darker color.

Draw a straight line from v to w dividing Dv ∩ Dw into two halves. Let us denote by Λ−v,w

and Λ+
v,w the set of vertices in each of the halves. Then for each of the two regions, every

two of vertices in that region have pairwise Euclidean distance of at most 1. Therefore, the

graph induced by Λ−v,w (likewise Λ+
v,w) is a clique. Thus, one can conclude the following:

Proposition 2.4.1. The subgraph of G induced by Λv,w is the complement of a bipartite

graph.

Definition 2.4.1. [Helly property][26]

An intersection graph on a set of geometrical objects is said to satisfy the Helly property if

for every number of k objects intersecting pairwise their k-fold intersection is a non-empty

set.

The set of unit disks in the plane does not necessarily satisfy the Helly property. In partic-

ular, a set of 3 unit disks can be placed in the plane such that they pairwise intersect each

other however the mutual intersection of the 3 unit disks be empty. See Figure 2.4.3 for an

example of the case. Both drawings are valid unit disk representations of K3. Yet, only the

CHAPTER 2. BACKGROUND AND RELATED WORK 32

Figure 2.2: Two alternative unit disk representations of K3. The representation on the left
does not satisfy the Helly property.

representation on the right satisfies the Helly property.

Connected Vertex Cover.

Instance: A graph G = (V,E) and a non-negative integer k.

Question: Is there a subset S ⊂ V of vertices with |S| ≤ k such that G[S] is connected

and every edge e ∈ E, has an end vertex in S?

When restricted to the planar graphs the problem is known to have a kernel with 14k vertices

according to the work of Guo and Niedermeier [74]. On the contrary, Connected Vertex

Cover does not admit a polynomial-size kernel in the general graphs unless the polynomial

hierarchy collapses [48]. It is not hard to see that for a connected unit disk graph with n

vertices, the size of a connected vertex cover is at least n/12 [113]. This leads to a trivial

kernel of at most 12k vertices for the problem on the UDG class [79].

Red-Blue Dominating Set.

Instance: A graph G = (V,E), a non-negative integer k, a partition of the vertices

into Red and Blue color classes: R ⊆ V and B ⊆ V , with R ∩B = ∅ and R ∪B = V .

CHAPTER 2. BACKGROUND AND RELATED WORK 33

Question: Is there a subset S ⊆ R with |S| ≤ k of red vertices such that every blue

vertex b ∈ B is adjacent to at least one vertex in S?

The Red-Blue Dominating Set on unit disk graphs is not easier than k-Dominating

Set on the same class of graphs when parameterized by the size of the solution set. Indeed

there is an easy reduction from the regular k Dominating Set to Red-Blue Dominating

Set problem by making a copy of every vertex and coloring one red and the original vertex

blue. This makes Red-Blue Dominating Set also W[1]-hard on UDGs when the problem

is parameterized by k. However, [79] shows that the situation is different when Red-Blue

Dominating Set is parameterized by the size of the smaller color class in which case the

problem admits a polynomial-size kernel on unit disk graphs. This is in sharp contrast with

the result of Dom et al. [48], which proves that the problem does not admit a polynomial-

size kernel on general graphs when parameterized by |R|+k or |B|+k unless the polynomial

hierarchy collapses.

Reduction rules.

• If there are vertices v, w ∈ R such that N(v) ∩B ⊆ N(w) ∩B, delete v.

• If there are vertices v, w ∈ B such that N(v) ∩R ⊆ N(w) ∩R, delete w.

To bound the size of the reduced graph, then one can use the following result by Jansen et

al. [79].

Let G be a unit disk graph whose vertices are partitioned into two sets X and

Y . If for all v, w ∈ X it holds that N(v) ∩ Y 6⊆ N(w) ∩ Y , then |X| = O(|Y |2)

[79].

Proposition: Red-Blue Dominating Set has a kernel with O(min(|R|, |B|)2) vertices

on unit disk graphs.

H-Matching.

Instance: A Graph G, a connected graph H, an integer k.

Question: Does G contains at least k vertex-disjoint subgraphs that are isomorphic

to H?

CHAPTER 2. BACKGROUND AND RELATED WORK 34

For simplicity, let us denote |V (H)| by h. In the class of general graph, H-Matching can be

reduced to a kernel of size O(kh−1) [95]. Yet, there is a linear-size kernel for the problem on

minor-free graphs according to the recent works of [65]. H-Matching on unit disk graphs

has a kernel with O(k) vertices for every fixed H using the following argument of Jansen [79].

Reduction rule.

Delete all vertices in G that are not contained in an isomorphic copy of H.

Analysis.

Consider a maximal H-matching of G with vertex set S, containing k∗ copies of H. Since

the copies are disjoint, it is clear that k∗h vertices are included in the solution. Let O = V \S
be the set of vertices not included in any of the copies of H chosen. Suppose a vertex v ∈ V
has more than 6(h− 1) neighbors in O. Since G is a UDG, G[N(v)∩O] has a clique of size

h and hence there is a copy of H in O, contradicting the maximality of the solution. Let

dH be the diameter of graph H, then for every vertex v ∈ O, v is at a distance at most dH

from some vertex w ∈ S. Using the bounded degree argument, the number of vertices in O

with distance i ≤ dh from some vertex in S is at most 6(h− 1)i|S|. Adding this up we get

|V | = O(k∗(6h)dH). Therefore, for a solution of size k and a fixed H, after the reduction

the number of vertices in graph is linear in k.

Proposition: H-Matching admits a kernel of O((6h)dH · k) vertices on unit disk graphs.

Definition 2.4.2. [ε-precision][5]

A unit disk graph G with center of disks P = {p1, ..., pn} is called an ε-precision UDG, if

for every pair of distinct points pi, pj ∈ P , the Euclidean distance between the two points

d(pi, pj) is at least ε. The class of such unit disk graphs are denoted UDGε.

The class of penny graphs (also known as unit coin graphs), are defined as UDG1, the

1-precision UDG.

Bounded-area UDGs

Intuitively, if the area of distribution of the centers of disks is known beforehand one can

predict some density properties for UDG. Unit disk graphs whose vertices are located in

a square-shaped region with fixed area α, are studied in [78]. When α is set as the pa-

rameter, there is a fixed-parameter algorithm for Hamiltonian Circuit problem on unit

CHAPTER 2. BACKGROUND AND RELATED WORK 35

disk graphs. k-Vertex Coloring is also proved to be in Fpt when α and k are set as

the parameter. Similarly, polynomial kernelization results can be obtained for the above

problems with the bounded area restriction. On the other hand, two of the classical NP-

hard problems, Independent Set and Dominating Set remain in W[1] when given the

bounded area restriction.

Let us denote the square-shaped region with fixed area α, by S . We also denote by,

UDGS , the class of unit disk graphs such that the vertices of the graph are placed in S .

Since the vertices of the graph inside any imaginary disk of diameter 1 has to induce a

clique, it is not hard to see using a tiling argument that a unit disk graph on S has a clique

partition with bounded number of cliques depending on α only. This interesting property

can be used to prove better results for specific problems on this class of graphs.

For example, Ito et al. [78] showed that if G is a unit disk graph on S , then G has a

clique-partition of size at most p = 2α + 2
√

2α + 1 = 2α + o(α). Likewise, Hamiltonian

Circuit problem can be solved in time O(m + cpp2) assuming that G has m edges yet

the constant c is large. Namely, c = 1818. It is also possible to design an algorithm of

running-time O(kk.p) for solving k-Coloring on G [78].

On the other hand, when parameterized by α, there are fpt-reductions from α-Independent

Set to k-Independent Set and from α-Dominating Set to k-Dominating Set making

the problems as difficult as k-Dominating Set with respect to parameterized complexity.

Proposition: Dominating Set and Independent Set are in W[1] even on the class of

UDGS [78].

Chapter 3

Parameterized Algorithms for

Clique Partition on UDGs

In this chapter, we study the parameterization of Clique Partition on UDGs.

Clique Partition.

Instance: An undirected graph G = (V,E), a non-negative integer k.

Question: Is there a set C of cliques in G such that for every vertex v ∈ V , there

exists at least a clique c ∈ C with v ∈ c and |C| ≤ k?

3.1 Introduction

Beside its theoretical importance which we will discuss later in detail, Clique Partition

is proved to be a useful tool for solving other problems. For example, Pemmaraju et al.

[99] describe how a clique partition with small number of cliques can be used to construct

a large collection of mostly disjoint dominating sets. Small-sized clique partitions can also

be used for calculating sparse spanners [86]. In the realm of unit disk graphs, there are

techniques in the literature [100] that benefit from small-sized clique partitions as the main

component of their algorithm for obtaining high-quality realizations of UDGs. Pandit et al.

[98] show how Clique Partition can be used to derive approximation algorithms for the

Facility Location problem on UDGs.

Clique Partition is one of the Richard Karp’s original 21 problems which were shown

36

CHAPTER 3. ALGORITHMS FOR CLIQUE PARTITION ON UDGS 37

to be NP-complete in his landmark paper [82]. On general graphs, Clique Partition is

equivalent to Vertex Coloring of the complement graph and hence is not fixed-parameter

tractable and is inapproximable within n1−δ for any δ > 0 [54]. Bhasker & Tariq [11] stud-

ied the number of cliques in a minimum clique partition and provided an upper bound of⌊
1+
√

4n2−4n−8m+1
2

⌋
for this parameter which is also proved to be tight.

Supowit [107] first showed the NP-completeness of the problem on UDGs. Later, Cerioli

et al. [22] proved that it remains NP-complete even when restricted to unit coin graphs,

a subclass of ε-precision UDGs. Design of practical algorithms for Clique Partition on

UDGs has received a particular attention in the literature. There are PTAS algorithms

for the problem on the class of UDGs due to the result of Dumitrescu & Pach in 2011

[54] and also the work of Pirwani & Salavatipour in 2010 [102]. The best known PTAS

produces a (1 + δ)-approximate solution for the problem in O(n1/δ2) time [54] while the

best approximation ratios for practical and randomized algorithms are 3 and 2.16 due to

Cerioli et al. [22] and Dumitrescu & Pach [54] both running in O(n2) time. One of only

few classes of graphs for which Clique Partition is known to be polynomially solvable

is the class of ω-strip graphs [17] — when all points of a UDG lie in a parallel strip of

width ω ≤
√

3/2. Despite the importance of the problem, exact parameterized algorithms

for Clique Partition have not explicitly been studied in the literature. However, in [54],

the authors describe an exact algorithm of running-time O(n80k) to calculate an optimal

solution for the problem on a UDG restricted to a square of known width; here k is an upper

bound on the number of cliques in an optimal solution.

Notice that Clique Partition should not be confused with the slightly easier (and

polynomially kernelizable) problem of (Edge) Clique Partition studied by Mujini &

Rosamond [96] and Rees [103] where the goal is to partition the edges of a graph into a

minimum number of cliques such that every edge is in exactly one clique in the partition.

3.2 Definitions and Notations

Let Σ be the 2-dimensional Euclidean plane. For two points p1 and p2 in Σ, we denote

by dist(p1, p2) the Euclidean distance between the two points. For simplicity, when the

presence of an edge or line segment is clear from the context, we alternatively refer to the

length of the line segment (edge) p1p2 by ‖p1p2‖. An open region on Σ is an arc-connected

subset of Σ homeomorphic to the unit open disk {(x, y)|x2 + y2 < 1}. For an open region r,

CHAPTER 3. ALGORITHMS FOR CLIQUE PARTITION ON UDGS 38

we denote by r the closure of r, and by ∂(r) = r \ r the boundary of r. A region r is called

convex if a straight line segment between any two points on the boundary of r is a subset

of r. For a point v of Σ, we define D(v) = {w|dist(v, w) ≤ 1/2} to be the disk with radius

1/2 and center v, and ∂D(v) = {w|dist(v, w) = 1/2} to be the boundary of D(v).

In what follows, we use G to refer to the unit disk graph (UDG) on n vertices and m

edges. Given the input graph G, we consider a representation of G where disks of radius

1/2 are centered at every vertex in V (G) in the plane. In this case, we alternatively refer to

V (G) as point set P = {p1, · · · , pn} ⊂ Σ with XY-coordinates, corresponding to the centers

of disks. When we want to refer to a disk of radius 1/2 centered at a vertex v ∈ V (G), we

denote it by D(v). Yet, whenever the center of the disk is unimportant in the context or

the disk is not centered at a vertex of G, we refer to the disk by Dr where r is the radius

of the disk. Let S ⊆ V (G) be a subset of vertices of G. We denote by ΛS = ∩v∈SD(v)

and ΦS = ∪v∈SD(v) the intersection and the union of disks of radii 1/2 with centers in S,

respectively. We define Rg(S) = ΦS \ (∪v∈S∂D(v)) to be the set of arc-connected regions

obtained after removing from ΦS , the boundary ∂D(v) of every D(v) with v ∈ S and

Dg(S) = {{p}|{p} = ΛS′ , S′ ⊆ S} to be the set of degenerate regions (points) generated by

the single point intersection of disks corresponding to subsets of vertices in S. Finally, we

define RS = Rg(S) ∪ Dg(S). For a region r ∈ RS , let XG(r) = {v ∈ V (G)|r ⊆ D(v)} be

the set of all vertices of G such that the disks centered at them include r.

Remark: Throughout the text while referring to the standard parameterization of a prob-

lem (k-Π), if it is clear from the context, we remove the parameter k from the name of the

problem. On the other hand, when we refer to the optimization version of the problem, we

prefix the name with the relevant optimization term (Minimum-Π or Maximum-Π).

Remark: With a little abuse of the definition of region, we call each element of Dg(S) a

convex region. This is despite the fact that each element of Dg(S) is a singleton set of one

point.

3.3 Arbitrary UDGs

Definition 3.3.1. [Region coverage graph]

The region coverage graph of G denoted by ~G = (~V , ~E) is defined as follows: Every region

in RV (G) is represented as a vertex. Hence ~V = RV (G). A directed edge (r1, r2) ∈ ~E is

CHAPTER 3. ALGORITHMS FOR CLIQUE PARTITION ON UDGS 39

Figure 3.1: An arbitrary UDG on 4 vertices, its corresponding unit disk representation and
region coverage graph.

present, if (1) r1 ∩ r2 6= ∅ and XG(r1) ⊂ XG(r2), and (2) for any region r ∈ ~V \ {r1, r2}
with XG(r1) ⊂XG(r), XG(r) 6⊆XG(r2).

It is easy to observe that ~G is a planar directed acyclic graph (DAG).

Proposition 3.3.1. For any UDG G, ~G has at most n(n − 1) + 1 vertices and at most

3n(n− 1)− 3 edges.

Proof. We upper-bound |~V | using an induction on the number of disks. Consider m + 1

disks in the plane and let us identify one of them (say the (m+ 1)th disk) by D. Since all

disks have the same radius, D can cross the boundary of each of the remaining m disks at

most twice. Notice that if more than two disks intersect at a single point then the number

of regions would be smaller. Therefore, to upper-bound the number of regions, without loss

of generality, we assume that at any intersection point at most two disks intersect. Let fm

be the total number of intersection points formed after intersecting the boundary of m such

CHAPTER 3. ALGORITHMS FOR CLIQUE PARTITION ON UDGS 40

disks. Then:

fm+1 = fm + 2m,

f1 = 0.

Therefore,

fn = n(n− 1).

Consider the planar multi-graph formed with the above intersection points as vertices and

the connected curve on the boundary of the disks as edges. By the assumption that every

vertex is created by intersection of exactly 2 disks, we conclude that the degree of every

vertex is exactly 4. Hence, there are exactly 2fn edges (arcs) in the graph. Then we can

calculate the number of faces using the Euler formula for planar graphs as fn + 1. The

number of regions is therefore upper-bounded by n(n− 1) + 1. To upper-bound | ~E|, let us

first notice that although ~G is a directed graph, it has no multiple edges. Therefore, | ~E|
is equal to the maximum number of edges in a planar undirected graph which is upper-

bounded by 3N − 6 for a graph on N vertices. In the case of ~G, we get this upper bound as

3n(n− 1)− 3.

Remark: A vertex v of ~G is called a sink vertex if it has no outgoing edges. We denote by

S ⊂ ~V the set of all sink vertices in ~G. A convex region r ∈ RV (G), corresponds to a sink

vertex in ~G and a clique in G. We call G[XG(r)], a especial clique of G.

A recent paper of Fomin et al. [63] independently introduces a planar structure similar to

the region coverage graph proposed here. However, the graph they define is undirected and

unweighted and is used for a different purpose. In order to be able to use ~G as a platform

for calculating Clique Partition, it is sufficient to show that for every maximal clique c

in G, there can be at most a constant number of sink vertices in ~G such that every vertex

in c is included in at least one of the cliques corresponding to the sink vertices.

Remark: The set of unit disks in the plane does not necessarily satisfy the Helly property

(Definition 2.4.1). In particular, 3 unit disks can be placed in the plane such that they

intersect pairwise, yet their mutual intersection is empty. With a little abuse of notation,

we say a set of vertices (does not) satisfy the Helly property if the disks of radius 1/2

centered at those vertices (does not) satisfy the Helly property.

CHAPTER 3. ALGORITHMS FOR CLIQUE PARTITION ON UDGS 41

Lemma 3.3.1. Every maximal clique c of a UDG G is included in the union of at most four

especial cliques.

Proof. We consider two cases. Let us first assume that any three vertices {x, y, z} ⊆ V (c)

satisfy the Helly property (Definition 2.4.1). Then by Helly’s theorem [16, Problem 29,

Intersecting Convex Sets: Helly’s Theorem], the mutual intersection of set of disks of radius

1/2 centered at V (c), ΛV (c), is non-empty. In this case, one can simply find a special clique in

G that contains c in the following way: Take an arbitrary point p in the mutual intersection

ΛV (c). Find a region r ∈ RV (G) with p ∈ r̄ and a convex region s ∈ RV (G) such that there

is a path from vertex r to sink vertex s in ~G. G[XG(s)] is a especial clique in G containing

c. For the proof argument to be comprehensive, here we also provide an alternative proof

of Helly’s theorem for disks in the plane. That is, we prove by induction that if for every

subset S ⊆ V (c) with |S| = 3, ΛS 6= ∅, then ΛV (c) 6= ∅.
For |V (c)| = 3, ΛV (c) 6= ∅ by the Helly property. Assume that ΛV (c) 6= ∅ for |V (c)| = k−1.

We prove that ΛV (c) 6= ∅ for |V (c)| = k. Let c′ be a clique consisting of k − 1 arbitrary

vertices of c. By the induction hypothesis, ΛV (c′) 6= ∅. Let u be the vertex of V (c) \ V (c′).

If D(u) ∩ ΛV (c′) 6= ∅ then ΛV (c) 6= ∅. So we assume that D(u) ∩ ΛV (c′) = ∅. For vertex

v ∈ V (c′) with ∂D(v) ∩ ∂ΛV (c′) 6= ∅, we call ∂D(v) ∩ ∂ΛV (c′) a boundary arc of ΛV (c′).

Let P = {p|p is an intersection point of two boundary arcs of ΛV (c′)}. Let q be

a point of P such that the distance between q and u is minimum among all points of P .

Assume that point q is formed by the intersection of the boundaries of disks centered at

v and w. Since D(u) ∩ ΛV (c′) = ∅ and the distance between q and u is minimum for all

points of P , D(u)∩D(v)∩D(w) = ∅, a contradiction to the assumption that for every three

vertices of V (c) the Helly property holds.

Now let us assume that the Helly property does not hold for a triple {x, y, z} ⊆ V (c).

We prove that there are (not necessarily distinct) convex regions r1, ..., r4 ∈ RV (G) such

that V (c) ⊆ ∪4
i=1XG(ri). Let us denote by ζx, ζy and ζz, disks of radius 1 centered at x,

y and z, respectively and let Ω = ζx ∩ ζy ∩ ζz (See Figure 3.2). Since any disk D(u) with

u ∈ V (c)\{x, y, z} has to intersect D(x), D(y) and D(z), u has to lie in Ω.

Next we show that if one can cover Ω with at most t arbitrary disks of radius 1/2 in

the plane, for t a constant integer, then the clique c is contained in at most t especial

cliques. Let {p1, ..., pt} be arbitrary points in the plane and let D(pi), 1 ≤ i ≤ t, denote a

CHAPTER 3. ALGORITHMS FOR CLIQUE PARTITION ON UDGS 42

Figure 3.2: An arbitrary placement of disks ζx, ζy and ζy with centers x, y and z such
that Helly property does not hold. Points qxy, qyz and qxz are marked on the boundary of
Ω = ζx ∩ ζy ∩ ζz.

disk of radius 1/2 centered at point pi. If Ω ⊆ ∪ti=1D(pi), then for every u ∈ V (c), there is

a point p ∈ {p1, ..., pt} such that dist(u, p) ≤ 1/2. Without loss of generality, assume that

p = p1. Consider a region r1 in RV (G) such that p ∈ r1. Since dist(u, p) ≤ 1/2, u ∈XG(r1).

The region r1 might not be convex but one can traverse the edges in ~G, starting from vertex

r1 to reach a sink vertex. Let s1 be a sink vertex in ~V reachable from r1 in ~G (hence s1 = r1

if r1 is convex). The region corresponding to s1 is convex. Also, since XG(r1) ⊆ XG(s1),

it also holds that u ∈ XG(s1). In a similar way, we can find a convex region si if p = pi

for 1 < i ≤ t. Therefore, we can find t especial cliques G[XG(si)] for 1 ≤ i ≤ t such that

V (c) ⊆ ∪ti=1XG(si). Clearly, the condition above holds for some value of t.

CHAPTER 3. ALGORITHMS FOR CLIQUE PARTITION ON UDGS 43

Figure 3.3: Coverage of a square of length
√

2, denoted S√2, by 4 disks of radius 1/2. Line

segments Lu and Ll have the length
√

3.

Finally, we prove that there exist four points p1, p2, p3, p4 such that Ω ⊆ ∪4
i=1D(pi). To

do so, we assume that the points p1, p2, p3, p4 are placed at the 4 corners of a square of

width
√

2/2. Notice that with the above placement, 4 disks of radius 1/2 centered at pi,

1 ≤ i ≤ 4, cover a square of width
√

2 (See Figure 3.3). Let us denote by S√2, this square

after possible translations and rotations in the plane (The position of S√2 is determined by

the coordinates of p1, p2, p3, p4). Therefore, to complete the proof, we show that one can

place S√2 such that Ω ⊂ S√2. Let us denote by qxy the intersection point of the circles of

radius 1 at x and y that lies on the boundary of Ω. That is, qxy = ∂ζx ∩ ∂ζy ∩ ζz. Similarly,

we define qyz = ∂ζy ∩ ∂ζz ∩ ζx and qxz = ∂ζx ∩ ∂ζz ∩ ζy. See Figure 3.2. Let us also denote

by âx the arc on the boundary of Ω between qxy and qxz. Similarly, we define ây and âz.

CHAPTER 3. ALGORITHMS FOR CLIQUE PARTITION ON UDGS 44

Without loss of generality, assume that xy is the shortest among {xz, yz, xy}. Let σ = ‖xy‖.
Notice that if σ is close to zero because the Helly property does not hold for {x, y, z}, the

distance of z from both x and y is close to 1.

Let mz be the point on âz with maximum distance from qxy (See Figure 3.2) and let

hz = ‖qxymz‖. To show that Ω ⊂ S√2, we upper-bound the values of hz and ‖qxzqyz‖.
‖qxzqyz‖ is maximized when x = y. In this case, ‖qxzqyz‖ =

√
3 and hz has the global

minimum value of 1. For ‖xy‖ > 0, as the distance between x and y increases, the

value of ‖qxzqyz‖ decreases and the value of hz increases. To obtain an upper bound

on hz, notice that hz is maximized when ‖xz‖ (alternatively ‖yz‖) is minimized. Yet,

since σ = ‖xy‖ is assumed to be at most ‖xz‖ (alternatively ‖yz‖), hz is maximized when

‖xy‖ = ‖xz‖ = ‖yz‖ =
√

3/2 (This is obtained from the disks in Figure 3.2 by pulling the

centers {x, y, z} closer together so that they mutually intersect at a single point). In which

case, the value of hz can be easily calculated as
√

13/4 + 1/4 <
√

3. To see a proof, observe

that in this configuration, both z and qxy are on the perpendicular bisector of xy. Let mxy

be the middle point of line segment xy. The length of line segment qxyz is calculated as

follows:

‖qxyz‖ = ‖qxymxy‖ − ‖zmxy‖ =
√

1− 3/16−
√

3/4− 3/16 =
√

13/4− 3/4. (3.1)

Since the triangle 4xyz is equilateral, triangle 4qxyqyzqxz is similar to 4xyz and the per-

pendicular to the side xy is also a perpendicular to line segment qxzqyz. Finally, since the dis-

tance of z from any point of âz is exactly 1, we obtain hz = 1+‖qxyz‖ =
√

13/4+1/4 ≈ 1.15.

See Figure 3.2 for details.

Consider a line segment from the upper-left corner of S√2 (point A in Figure 3.3) to a

point 1 unit distance below the upper-right corner of the square on its boundary (point C

in Figure 3.3). Call it Lu. Observe that ‖Lu‖ =
√

3. We also define Ll as the line segment

between the lower-right corner of S√2 (point D in Figure 3.3) and a point 1 unit distance

above the lower-left corner of the square on its boundary (point F in Figure 3.3). Clearly,

‖Ll‖ =
√

3 and Lu and Ll are parallel. Notice that one can slide Lu downwards till it

reaches Ll. Indeed, there are infinitely many such parallel line segments. Let us denote

the set of all these parallel line segments by L. We also define L⊥ as the set of line seg-

ments perpendicular to line segments in L and have one end point on the upper side (AB

CHAPTER 3. ALGORITHMS FOR CLIQUE PARTITION ON UDGS 45

in Figure 3.3) and the other end point on the lower side (ED in Figure 3.3) of S√2. Clearly,

∀L⊥ ∈ L⊥, ‖L⊥‖ =
√

3.

For any given configuration of the points {x, y, z}, we place Ω in S√2 by positioning

the line segment qxzqyz on a line segment Lm ∈ L with the middle point of Lm match-

ing the middle point of qxzqyz such that Ω is placed entirely in S√2. In particular, when

x = y, this is possible since hz = 1 while the length of any L⊥ ∈ L⊥ is
√

3. As σ in-

creases, we gradually slide Lm towards Ll so that qxy is placed inside S√2. Notice that

one can always find a line segment Lm ∈ L satisfying the situation. This is because the

perpendicular distance of the upper side of S√2 from the center of Ll is calculated as

≈ 1.11 while the perpendicular distance of qxy from the line segment qxzqyz is at most

3‖qxyz‖/2 + ‖zqxy‖ < 3(
√

13 − 1)/8 ≈ 0.97. Therefore, Lm can be chosen such that it is

located above Ll in the drawing and hence Lm ∈ L. This brings us to the conclusion that

regardless of the position of {x, y, z}, one can ensure that Ω ⊂ S√2. Finally, knowing that

S√2 ⊂ ∪
4
i=1D(pi), we get Ω ⊂ ∪4

i=1D(pi).

We also provide an alternative proof which considers coverage of Ω by a rectangle whose

width and height change dynamically based on the shape of Ω. Initially, the four disks are

centered at the four corners of a rectangle of width w =
√

3/2 and height ~ = 1/2. Let us

denote this rectangle by Recw,~. The four disks in this configuration then cover a square

of width 2w =
√

3 and height 2~ = 1. If we assume that σ = 0, then ‖qxzqyz‖ =
√

3 and

hz = 1. Therefore Ω is easily covered by the rectangle of width 2w and height 2~. As the

position of vertices {x, y, z} changes, we move the position of disks centered at the corners

of rectangle such that the four disks cover a rectangle of longer height and shorter width. In

particular, if the width of the covered rectangle is decreased by a value ε (this happens when

the center of disks on a common horizontal side are each pushed ε/4 distance closer towards

each other), the center of disks on vertical sides can be each pulled ε′/4 units away from

each other. Therefore, the new rectangle would be Recw+ε/2,~+ε′/2. See Figure 3.4. In that

configuration, for a rectangle Rec2w+ε,2~+ε′ is covered by the four disk, one can calculate ε′

easily as:

ε′ =

√
4− (

√
3− ε)2. (3.2)

Now let us assume that σ > 0. In which case, by the proof provided in the Appendix A,

CHAPTER 3. ALGORITHMS FOR CLIQUE PARTITION ON UDGS 46

Figure 3.4: Points {p1, ..., p4} are originally placed at the four corners of an axis-aligned 1/2×√
3/2 square (drawn in dashed black). The corresponding disks cover an area including a 1×√
3 rectangle (drawn in solid blue). As |qxyqxz| decreases, the horizontally aligned pairs (also

the vertically aligned pairs) of points are shifted ε/2 units towards (respectively ε′/2 units
away from) each other horizontally (respectively vertically), such that their corresponding
disks cover an area including a (1 + 2ε′)× (

√
3 + 2ε) rectangle (drawn in solid red).

one can calculate the length of qxzqyz as

‖qxzqyz‖ <
√

3 +
σ√
3

+
σ2

24
√

3
+

5σ3

36
√

3
+

53σ4

3456
√

3
. (3.3)

If we fix ε = ‖qxzqyz‖ −
√

3, then the width of rectangle Rec2w+ε,2~+ε′ would be at least

the length of qxzqyz. Also, in this configuration, hz ≤ 2 − σ′. Finally, using the previous

equation for ε′, one can calculate ε′ as

ε′ > σ − 5σ2

8
+

3σ3

4
− 125σ4

128
. (3.4)

By comparing, 2~ + ε′, height of the new rectangle with 2− σ′, the upper bound for hz, we

conclude that 2~ + ε′ ≥ 2− σ′ when 0 < σ <
√

3/2. This completes the proof.

CHAPTER 3. ALGORITHMS FOR CLIQUE PARTITION ON UDGS 47

3.3.1 A Parameterized Algorithm

Finally, we describe how a parameterized algorithm on arbitrary UDGs can be obtained

using the tools introduced earlier. Notice that our goal here is to demonstrate a new tech-

nique and indeed the overall running-time of the algorithm can be enhanced with a more

detailed analysis of various steps of the technique that is discussed below.

Imagine an optimal solution C = {c1, ..., ck} for Clique Partition on G. By Lemma 3.3.1,

every maximal clique ci, 1 ≤ i ≤ k, can be represented by a constant number of convex

regions in RV (G). To solve Clique Partition, we run a brute-force search for a set R′

of convex regions (special cliques) that forms a clique partition of size at most k. For any

such a subset R′, then one can check in poly(n, k) if the number of cliques corresponding

to it is at most k and whether V (G) is covered by those cliques as described later. We first

maintain an inclusion matrix whose rows correspond to all convex regions in RV (G) and its

columns represent the vertices of G. For every region r ∈ RV (G), in the respective row in

the matrix, we set the value of elements at columns corresponding to vertices in XG(r) to

1 and the rest to 0. We construct this matrix only one time for the whole graph.

Definition 3.3.2. [Non-helly set]

We call a subset of 3 convex regions {r1, r2, r3} ⊆ RV (G) a non-helly set, if for all 3 per-

mutations 1 ≤ i, j, l ≤ 3 and i 6= j 6= l, we have Yl = XG(ri) ∩ XG(rj)\XG(rl) 6= ∅.

If there exists a non-helly set, then there is a clique with vertex set Y = ∪3
i=1Yi in G which

is not represented by any of the regions in RV (G). Hence, we need to manually add a new re-

gion r′ with vertex set Y to the set of regions. To take care of the non-helly sets, we perform

a pre-processing on the inclusion matrix. In particular, we check in any subset of 3 regions of

RV (G) for non-helly sets. If we find one, we add a new row corresponding to the clique that

the non-helly region represents. In particular, let ~ri denote the binary vector corresponding

to convex region ri in the matrix for 1 ≤ i ≤ 3. To check for a non-helly set in {r1, r2, r3}, we

simply check if (~ri ∧~rj ∧¬~rl) 6= ~0 for 1 ≤ i, j, l ≤ 3 and i 6= j 6= l. This can be done in O(n)

for one set of 3 regions. There are at most |RV (G)|3 − 3|RV (G)|2 + 2|RV (G)| = O(|RV (G)|3)

3-subsets. Therefore, the pre-processing phase would take n · |RV (G)|3 = O(n7) time for

the whole matrix. Notice that any time a non-helly set is detected, at most one new entry

is added to the set of regions. Therefore, after the pre-processing there can be at most

CHAPTER 3. ALGORITHMS FOR CLIQUE PARTITION ON UDGS 48

|RV (G)|3 regions.

Knowing that there are at most n2 − n + 1 regions in RV (G) (by Proposition 3.3.1), there

are at most (
(n2 − n+ 1)3

k′

)
subsets of size k′ for k′ ≤ k to be considered. Therefore, total number of subsets of size at

most k that we need to consider is:∑
k′≤k

(
(n2 − n+ 1)3

k′

)
≤ ((n2 − n+ 1)3 + 1)k ≤ n6k for n > 2. (3.5)

Given any of the above subset R′ of convex regions, we finally check if R′ corresponds to a

valid clique partition in the following way: Using the inclusion matrix, we can check if R′

includes every vertex in V (G) by simply summing up the corresponding rows in the binary

matrix. If that is the case, we answer ‘Yes’. This can be done using n · |R′| = O(kn)

binary operations. If after checking all subsets, none satisfied the criteria, we output ‘No’.

Therefore, the overall running-time of our algorithm would be:

n6k · O(kn) +O(n7) = O(kn6k+1) = O(n6k+2) for n > 2. (3.6)

Theorem 3.3.1. There is an algorithm that given any integer k, decides in O(n6k+2) time,

if there exists a clique partition of size at most k for an arbitrary UDG.

To obtain a clique partition of minimum cardinality, then it is enough to perform a binary

search over the range 1 ≤ k ≤ n. This can be done in total time O(n6n+2 log n).

Corollary 3.3.1. There is an algorithm that in O(n6n+2 log n) time constructs an optimal

solution for Minimum Clique Partition for any UDG.

Although to the best of our knowledge parameterization of the problem has not been ex-

plicitly studied with respect to UDGs, Dumitrescu & Pach, in [54, Section 2] calculate an

exact algorithm of running-time O(n80q) for the problem on UDGs whose points are lo-

cated inside a square of known length. Here, q is an upper bound on the number of cliques

in the partition and is a function of the area of distribution of points and therefore it is

not straight-forward to extend their results with the same time-complexity to the arbitrary

UDGs.

CHAPTER 3. ALGORITHMS FOR CLIQUE PARTITION ON UDGS 49

3.4 Data Reduction

We finally propose data reduction rules for Clique Partition on arbitrary UDGs. In

particular, we use the properties of UDG to get rid of some parts of the graph in a pre-

processing phase. This can later be combined with a detailed analysis and other techniques

in order to obtain fixed-parameter algorithms for the problem.

The intuition behind Rule 1 and Rule 2 is that since every vertex of the graph has to

be included in a clique of an optimal clique partition, if for a vertex v of the graph, there

is only one clique c which covers v, then c has to be in any optimal solution. Similarly in

Rule 3, for u, v ∈ V (G), if for every maximal clique c either both u and v are included in

c or both are excluded from c, every clique in an optimal solution which includes u also

includes v and vice versa. Therefore, one can safely remove v, as long as u is kept.

Rule 1. Delete an isolated vertex or a vertex adjacent only to covered vertices in G and

decrease k by 1.

Rule 2. For a vertex included in one maximal clique c in G only, mark every vertex in c as

covered and decrease k by 1.

Rule 3. For a set of maximal cliques C = {c1, · · · , cγ} in G, let I = ∩γi=1V (ci). Assume

that |I| ≥ 2 and N [I] = ∪γi=1V (ci); that is, no other maximal cliques in G intersect I.

We replace I in G with a vertex x and make x adjacent to N(I).

A data reduction rule is correct if the new instance after an application of this rule is a

yes-instance if and only if the original instance is a yes-instance.

Theorem 3.4.1. Rules 1 to 3 are correct for Clique Partition on a UDG and any of

the rules can be performed in O(n2.3727 + nm) time on any graph G with n vertices and m

edges.

Proof. Given a UDG G, in the form of an adjacency matrix, for Rule 1, finding isolated

vertices or those only adjacent to covered vertices can be done by checking every edge of G

in O(m) time for the whole graph. Let G′ be the graph obtained after applying Rule 1 to a

vertex v in G, then the fact that G is a UDG implies that G′ is a UDG. Now we prove the

correctness of Rule 1. Suppose (G, k) is a yes instance and consider an optimal solution Opt

for k-Clique Partition on G. Then G[v] ∈Opt. Given any optimal solution Opt′ for G′,

Opt′ ∪G[v] is a solution for G. If |Opt′| ≤ |Opt| − 1, then Opt′ is an optimal solution for

CHAPTER 3. ALGORITHMS FOR CLIQUE PARTITION ON UDGS 50

G and we are done. Assume |Opt′| > |Opt| − 1. However, Opt\G[v] is a solution for G′

and |Opt\G[v]| < |Opt′|, a contradiction.

For Rule 2, in order to find out whether a vertex is included in one maximal clique c

of G only, we need to check for every vertex v ∈ V (G) if G[N [v]] is a clique. This can be

done naively by checking the presence of all edges in G[N [v]] in deg2(v) time for v. In this

way, one round of application of Rule 2 to G would take O(nm) time. Notice that the ver-

tices removed according to Rule 1 and Rule 2 are simplicial vertices and hence recognizing

all such vertices can be done using fast matrix multiplication [83]. In particular, let A be

the adjacency matrix of G with 1 entries on its diagonal. To recognize all simplicial vertices,

one needs to calculate A2. This can be performed in O(n2.3727) using the algorithm of V.

Vassilevska Williams in 2012 [114]. Once a simplicial vertex x is removed from the graph,

one can recalculate A2 in O(deg2(x)) time. Therefore, exhaustive application of Rules 1

and 2 takes O(n2.3727 + nm) in total.

Rule 2 also does not change the structure of the graph. Let G′ be the graph obtained

after applying Rule 2 to G. Consider an optimal solution Opt for k-Clique Partition

on G and let cv be the clique in Opt that includes v. Let Opt′ be an optimal solution for

G′. Then Opt′ ∪ cv is a solution for G. If |Opt′ ∪ cv| ≤ |Opt|, then we are done. Assume

|Opt′ ∪ cv| > |Opt|. Since Opt\cv is a solution for G′ and |Opt′| > |Opt\cv|, we get a

contradiction.

For Rule 3, we need to construct the set I in the neighborhood of every vertex v. This

can be done by checking for a maximum subset of vertices I ⊆ N [v] such that for every

vertex x ∈ I, N [x] = N [v]. Given G in form of an adjacency matrix, one can construct

this subset in the following way. Initially, we set I = {v}. For every 1 entry in the row

corresponding to vertex v, we check if the row corresponding to that entry is exactly the

same as the one for v and if it is the case, we add the corresponding vertex to I. This can be

done in deg2(v) time for v and in O(nm) time for the entire graph. Similarly, this step can

be done using fast matrix multiplication. Let A be the adjacency matrix of G with 1 entries

on its diagonal. Notice that for every pair of vertices x, y ∈ V (G),
(
A2
)
x,y

= |N [x] ∩N [y]|.
To decide if x and y are in I, it is sufficient to check if |N [x] ∩N [y]| = |N [v]| = |N [y]|.

Vertices x and y are in I, if
(
A2
)
x,y

=
(
A2
)
x,x

=
(
A2
)
y,y

. Contracting I into a single

CHAPTER 3. ALGORITHMS FOR CLIQUE PARTITION ON UDGS 51

vertex can be done in constant time. Hence, Rule 3 takes O(n2.3727) using the matrix multi-

plication algorithm reported in [114]. Notice that if Rules 1 and 2 are applied exhaustively

to the input graph, application of Rule 3 does not generate any new reducible vertices (with

respect to any of the reduction rules) and hence only one round of the application of Rule 3

is sufficient.

It remains to show that after applying the reduction Rule 3, the graph can still be rep-

resented as a UDG. To see this, notice that G[I] is a clique and hence contracting I to

a vertex corresponds to removing all the vertices in I except for one. The UDG for the

reduced graph is then obtained after removing the respective points.

If Rule 3 is applied, then there exists a collection of maximal cliques C = {c1, ..., cγ} in

G such that N [I] = ∪γi=1V (ci). Let G′ be the graph obtained after contracting G[I] into

a vertex x and Opt be an optimal solution for Clique Partition on G. Notice that the

size of every clique in C/G[I] is at least 2. We prove that Opt′ = Opt/G[I] is an opti-

mal solution for G′. For the sake of contradiction, assume that G′ has a solution Opt∗

with |Opt∗| < |Opt′| and let C† = {cj ∈ C|cj/G[I] ∈ Opt∗}. Then one can construct a

solution Opt† = Opt∗\(C†/G[I]) ∪ C† for G such that |Opt†| = |Opt∗|. However, since

|Opt| = |Opt′|, we get |Opt†| < |Opt|, a contradiction.

Now assume that Opt′ is an optimal solution for G′ and let cx ∈ Opt′ be the clique

that includes x. Then G[(V (cx)\x)∪I] is a clique in G. We prove that Opt∗ = (Opt′\cx)∪
G[(V (cx)\x) ∪ I] is an optimal solution for G. That is, |Opt∗| ≤ |Opt|. Assume for

the contradiction that |Opt∗| > |Opt|. Then Opt‡ = Opt/G[I] is a solution for G′ and

|Opt‡| = |Opt| < |Opt′|, a contradiction to the assumption that Opt′ is an optimal

solution for G′.

Corollary 3.4.1. Let G′ be the graph obtained from G after repeated application of Rules 1-

3. Then G′ is an induced subgraph of G.

Recall that given a graph G = (V,E) and S ⊆ V , ∂G(S) is defined as the set of vertices in S

that have a neighbor in V \S. For a set S ⊆ V the neighborhood of S is NG(S) = ∂G(V \S).

Lemma 3.4.1. Let G be an arbitrary UDG, for any maximal clique c of size t > 1 in the

reduced graph G′ it holds that |NG′(V (c))| ≥
⌊√

t
⌋

Proof. First of all notice that for every vertex v ∈ V (c), there is a vertex v′ ∈ NG′(V (c))

adjacent to v. This is since, if v was not adjacent to any vertex outside c, then c would have

CHAPTER 3. ALGORITHMS FOR CLIQUE PARTITION ON UDGS 52

been the only maximal clique covering v and hence c would have been removed by Rule 2.

Since G′ is reduced with respect to Rule 3, for every pair of vertices v, w ∈ V (c), it holds

that N [v] 6= N [w]. Because otherwise, G′[{v, w}] would have been contracted to one vertex

by Rule 3. Also since v and w are vertices of the clique c, N [v] ∩ V (c) = N [w] ∩ V (c).

It follows that N [v] ∩ NG′(V (c)) 6= N [w] ∩ NG′(V (c)). Consider a set of circles of radius

1 centered at vertices of NG′(V (c)). Vertices v, w in V (c) have different neighborhood iff

the line segment vw intersects at least one of the circles. Since this holds for every pair of

vertices of c, |V (c)| ≤
∣∣RNG′ (V (c))

∣∣. Let s = |NG′(V (c))|. By Proposition 3.3.1, there can

be at most s2 − s + 1 regions created by the above circles. That is, t ≤ s2 − s + 1. Thus,

s ≥
⌊

1
2

(√
4t− 3 + 1

)⌋
≥
⌊√

t
⌋
.

CHAPTER 3. ALGORITHMS FOR CLIQUE PARTITION ON UDGS 53

3.5 Summary

We introduced a framework for parameterization of clique covering problems on unit disk

graphs (UDGs). Our exact parameterized algorithm for Clique Partition on arbitrary

UDGs relies on a novel idea and a geometric theorem that demonstrates the use of convex

regions for guessing clique partitions. This results in an algorithm of running-time O(n6k+2)

on arbitrary UDGs. The only previously known singly-exponential exact algorithm for the

problem is restricted to UDGs whose points are within a square of known length and has

the running-time of O(n80q) where q is an upper bound on the size of clique partition [54].

Finally, we came up with a first-time data reduction rules for the Clique Partition on

UDGs that shrinks the input graph in O(n2.3727 + mn) time to a reduced instance. We

further proved structural properties for the reduced graph.

Chapter 4

FPT Algorithms on Precision and

Quasi-precision UDGs

4.1 Introduction

It is known that the complexity of many graph optimization problems remains NP-hard

even when restricted to the inputs that can be realized as UDGs [26]. Similarly, many

such problems are believed not to admit polynomial-size kernelization or fixed-parameter

algorithms on UDGs. In an attempt to study the problems on more tractable classes of

UDGs, ε-precision [5] and bounded-area UDGs [78] were introduced in the literature. Yet,

in many cases such subclasses appear to be too trivial. For example, ε-precision UDGs

immediately translate to graphs of bounded degree (See the discussion in Section 4.2). On

the other hand, bounded-area UDGs are known to have bounded clique partition size [78]

and as a result, a number of problems such as k-Coloring and Hamiltonian Circuit

are easily solvable on UDGs of bounded area.

In this chapter, we describe how one can get the best of both worlds by introducing

the new class of (α, λ)-quasi-precision UDGs as UDGs which are only partially λ-precision,

yet their imprecision components have bounded area. We show that (α, λ)-quasi-precision

UDGs are ubiquitous in the UDG class in the sense that any UDG is quasi-precision for some

values of λ and α. In particular, precision UDGs and bounded-area UDGs are derived as

trivial cases of quasi-precision class. Quasi-precision UDGs are also non-trivial meaning that

in their general setting, many of the known graph parameters are proved to be unbounded

54

CHAPTER 4. FPT ALGORITHMS ON PRECISION & QUASI-PRECISION UDGS 55

on this class.

In order to demonstrate the usefulness of quasi-precision UDGs, we describe an approach

for obtaining fixed-parameter algorithms on quasi-precision UDGs. We showcase this by

studying the problem of Clique Partition. We start building up the techniques by first

devising fixed-parameter algorithms for the problem on the more restricted and well-known

class of precision UDGs. Later, we use the approach on precision UDGs as a base and extend

the techniques in order to obtain fixed-parameter results for the problem on (relaxed)-quasi-

precision UDGs. Our framework further applies when the reduced graph (rather than the

input graph) belongs to the discussed subclasses of UDGs.

We further study the structure of quasi-precision UDGs and show structural obstructions

for obtaining FPT algorithms under our framework. In particular, we prove that UDGs that

do not admit FPT under our framework, have to include as subgraph an arbitrary large

instance of the obstruction in the reduced graph.

4.2 Precision UDGs

In this section, we study the problem of Clique Partition with respect to ε-precision

UDGs. In particular, we prove that if the reduced graph is ε-precision, it is possible to

obtain fixed-parameter algorithms for the problem.

A UDG G is ε-precision if for any two vertices of G, their pairwise Euclidean distance

is at least ε. Notice that for an ε-precision UDG, the maximum degree of graph and hence

the size of any clique is upper-bounded by O(1/ε2). This leads to a trivial bound on the

size of the input graph in terms of k. However, if the input graph is used directly, since the

number of maximal cliques can be exponential in (1/ε) and k, a straight-forward algorithm

for the problem which relies on the enumeration of the cliques would require a running-time

which is doubly-exponential in k.

In our approach, on the other hand, we circumvent this issue by instead enumerating

sets of special cliques corresponding to the convex regions (generated by disks of radius

1/2 centered at vertices of the input graph). However, this leaves us with the problem of

bounding the number of convex regions by a function of the parameter k. We later show

that our approach leads to construction of a fixed-parameter algorithm of running-time

2O(k log k)n+O(mn).

Example: We give a construction with an exponential number of maximal cliques in (1/ε)

CHAPTER 4. FPT ALGORITHMS ON PRECISION & QUASI-PRECISION UDGS 56

Figure 4.1: A circle of radius 1
2 + ε and a set of points distributed inside the circle close

to its boundary. Every pair of points that form an independent set in UDG are connected
with a dashed blue line in the illustration.

for an ε-precision UDG. Assume a disk of radius 1/2 + ε and distribute d vertices evenly

around its perimeter inside the disk. If the points are distributed close enough to the

perimeter, then without loss of generality one can assume that for each point p there is at

least another point q at distance larger than 1 from p. Let Qp be the set of all such points.

In the respective UDG, p and q ∈ Qp would form an independent set. Also, ε can be

chosen such that |Qp| = 1. Therefore, the UDG on d points is d/2-partite with each of the

independent sets having cardinality 2. See Figure 4.1. Observe that choosing exactly one

vertex from each of the d/2 independent sets would result in a maximal clique. Therefore,

we get 2
d
2 different cliques for every d vertices. Set d = O(1/ε). Then the construction is

ε-precision. One can place n vertices in O(εn) disconnected copies of such constructions

each with roughly 2
1
2ε maximal cliques. Therefore, the number of maximal cliques would be

linear in n and exponential in (1/ε) for an ε-precision UDG on n points.

Precision UDGs as an interesting subclass of UDGs, were first studied by Alber et al. [5]

and are formally defined as follows:

CHAPTER 4. FPT ALGORITHMS ON PRECISION & QUASI-PRECISION UDGS 57

Figure 4.2: Dδ is depicted as a disk with red boundary in the center of the figure. The filled
ring around Dδ shows annulus Ψ. The dashed red line in Ψ is the possible location of points
for a scenario with maximum number of regions in Dδ.

Reminder: (λ-precision) [5] A UDG with disk centers P = {p1, · · · , pn} is called λ-

precision, if for every pair of distinct points pi, pj ∈ P , the Euclidean distance between the

two points dist(pi, pj) is at least λ. The class of such graphs is denoted UDGλ.

Lemma 4.2.1. Let Dδ be a disk of radius δ centered at an arbitrary point p0 in the plane.

Let ηδ denote the maximum number of convex regions in RV (G) ∩ Dδ obtained after adding

Dδ to the drawing. If δ ≤ (
√

3/4)ε, then ηδ = O(1/δ2).

Proof. Consider the annulus Ψ enclosed between the two circles D(1/2−δ) and D(1/2+δ) of

radii 1/2−δ and 1/2+δ respectively, both centered at p0. Clearly, the boundary of any disk

of radius 1/2 centered at an arbitrary point px ∈ Ψ = D(1/2+δ)\D(1/2−δ) has to cross Dδ.
Therefore, any arc intersecting Dδ has to belong to the boundary of a disk centered at some

point say px′ in Ψ. See Figure 4.2. First, we count the maximum number of possible such

CHAPTER 4. FPT ALGORITHMS ON PRECISION & QUASI-PRECISION UDGS 58

disk centers (the set of vertices) that can fall in Ψ, with the restriction that every two such

points have to be at least ε apart from each other. Let δ = (
√

3/4)ε. One can place in Ψ, at

most (1+2δ)π
arcsin ε

1+2δ
points, such that every two points are at least ε apart. Next, we count all

possible convex regions within radius of δ of p0 in RV (G) ∩Dδ. Let us denote the maximum

number of such regions by ηδ. In order to take into account the set of possible convex regions

that have points outside Dδ, we also add the imaginary disk Dδ to the drawing letting the

boundaries of Dδ contribute to possible regions. Draw an arbitrary line l through p0 as well

as its perpendicular at p0. Call it l′. Label the intersection of sectors of angle π/2 (formed

after intersecting ` and `′ with D(1/2+δ)) with Ψ, in an arbitrary circular order ψ0, ψ1, ψ2

and ψ3. Clearly, ∪3
i=0ψi = Ψ. One can place the points in Ψ such that the disks centered

at points in ψi and those in ψ(i+2) mod 4 form non-crossing convex regions in Dδ. Let us

call this set of regions <(i mod 2). In particular, one can place the points such that every

region r ∈ <0 intersects every region in <1. This forms |<1| convex regions. The dotted

arcs in Figure 4.2 shows the possible location of disk centers in Ψ for obtaining such an

arrangement of regions in Dδ. The maximum number of such regions is then obtained as

|<0| · |<1|. But since ‘ψi’s were chosen arbitrarily, the number of such convex regions can

be at most

ηδ =

(
(1 + 2δ)π

4 arcsin ε
1+2δ

)2

≤ 7/ε2. (4.1)

Clearly, if δ < (
√

3/4)ε, the argument still holds.

Definition 4.2.1. [Face distance]

Let Γ be a plane graph and F (Γ) be the set of all faces of Γ. The face distance between

two faces f, f ′ ∈ F (Γ), denoted d∗(f, f ′) is the minimum number of faces to cross to get to

f ′ from f in Γ. In other words, d∗(f, f ′) is the length of a shortest path between vertices

v∗f and v∗f ′ corresponding to faces f and f ′, in Γ∗, the planar dual of Γ. We denote by

Fm(f) ⊆ F (Γ) the set of all faces f ′ of Γ such that d∗(f, f ′) = m for an integer m ≥ 0.

Definition 4.2.2. [Clique intersection graph]

Let G be the graph obtained after applying the reduction rules and consider ~G, we construct

the clique intersection graph , H = (S, E) in the following way. The vertices in H correspond

to sink vertices (convex regions alternatively) S in ~G. Two vertices s1 and s2 are adjacent

in H iff XG(s1) ∩XG(s2) 6= ∅.

CHAPTER 4. FPT ALGORITHMS ON PRECISION & QUASI-PRECISION UDGS 59

Figure 4.3: A hexagonal mesh is placed over the plane. Hexagons with face distance 1, 2
and 3 from p0 are colored red, green and blue respectively.

Before we perform an analysis on the size of graph H, we prove an upper bound on the

maximum degree of H. To do so, we count the number of possible convex regions at most

unit distance away from a given region. This is argued in the following lemma and the proof

idea relies on the result of Lemma 4.2.1 and a packing argument.

Lemma 4.2.2. Let ∆(H) denote the maximum degree of the clique intersection graph H.

Then ∆(H) ≤ 181/ε4.

Proof. In order to upper-bound ∆(H), we need to find the maximum number of convex re-

gions in RV (G) that can share a disk with a given convex region (corresponding to a vertex

in H). We show that for a given vertex in H, all such regions can be enclosed in a disk D1+δ

and use a tiling argument to calculate an upper bound on the number of disks of radius δ

(Dδ) required to cover D1+δ. Problem of covering a circle with a smaller circles of a fixed

radius is a known problem in geometry, studied for example by Toth in [108]. In particular,

suppose the smaller circles have radii of 1, let R(n) be the radius of largest circle that n

circles of radii 1 can cover. Here we are interested in calculating the minimum integer m

CHAPTER 4. FPT ALGORITHMS ON PRECISION & QUASI-PRECISION UDGS 60

such that R(m) ≥ 1+δ
δ . There is no known equation that calculates R(n). Although R(n) is

known for small fixed values of n. For example, R(11) = 2.631 and R(12) = 2.769 according

to the work of Melissen [94]. Therefore, instead of an exact calculation, we consider approx-

imation covering using polygonal meshes. Consider a hexagonal mesh of edge length δ put

over the entire plane. Let f be any arbitrarily chosen face of the mesh, then |Fm(f)| = 6m

for any m ≥ 1. See Figure 4.3. Draw the diagonals of f and call the intersection point of

the diagonals p0. Let r(m) be the radius of the largest circle centered at p0 crossing the

faces in Fm(f) only, r(m) =
(

3
2m+ 1

2

)
· δ for m ≥ 1.

Notice that the length of diagonals of every face in the mesh is 2δ and therefore the re-

spective hexagon is inscribed in some disk Dδ. We have already calculated the maximum

number of possible convex regions in Dδ in the previous lemma. Next, we do an over-

counting in order to cover a disk of radius 1 + δ with Dδ. Let r0 be a convex region in

RV (G) and suppose p0 ∈ r0. Also let v0 be the vertex in H corresponding to r0. Then by

the definition of graph H, the regions corresponding to NH(v0) ⊆ S in RV (G) ∩ Dδ are all

enclosed in a circle of radius at most 1+δ centered at p0 in the plane. Let µr be the number

of hexagonal faces inside or crossing the boundaries of a circle of radius r centered at a point

p0 and Lr be the maximum face distance of such faces. We can obtain:

Lr =

⌈
2

3
(
r

δ
− 2)

⌉
+ 1. (4.2)

Also, since at each face distance `, there are 6` faces in the drawing, we obtain the number

of faces µr by adding up the number of faces at every possible face distance. That is,

µr =

Lr∑
`=1

6`.

Hence, we get:

µ1+δ = 3

⌈
2

3
(
1

δ
− 1) + 1

⌉⌈
2

3
(
1

δ
− 1) + 2

⌉
(4.3)

as an upper bound for the number of disks Dδ required to cover a disk of radius 1 + δ in

the plane – where regions corresponding to NH(v0) can appear. Finally, ∆(H) is obtained

after multiplying µ1+δ by the equation obtained in Lemma 4.2.1.

Lastly, we upper-bound the number of vertices of H.

CHAPTER 4. FPT ALGORITHMS ON PRECISION & QUASI-PRECISION UDGS 61

Theorem 4.2.1. Let H be the clique intersection graph as defined earlier. Then |V (H)| ≤
728k/ε4 for ε ≤ 1.

Proof. Without loss of generality, we assume that G is connected. As if it is otherwise, an

upper bound on the size of clique intersection graph for each connected component would

imply an upper bound on the size of H.

Since G is reduced, any vertex of H has a degree of at least 2. Let Opt = {c1, · · · , ck}
be a solution for Clique Partition on G such that each ci is maximal. We call a vertex

s ∈ V (H) covered by ci, if XG(s) ⊆ V (ci) for some 1 ≤ i ≤ k. For a covered vertex s, we

call all edges of H incident to s, covered. For s′ ∈ V (H), if s′ is not incident to any covered

edge, then there is a vertex in XG(s′) which is not included in any clique in Opt. Therefore,

each vertex of H is incident to at least one covered edge. By Lemma 3.3.1, for each clique

c ∈ Opt, there can be at most 4 vertices and hence at most 4∆(H) edges of H covered by

c. Therefore, in total, the number of vertices that are incident to at least one covered edge

(by any clique in Opt) is at most 4(∆(H) + 1)k and at least |V (H)|. Combining this with

Lemma 4.2.2, we get |V (H)| ≤ 4∆(H)k + 4k ≤ 728k/ε4 for ε ≤ 1.

4.2.1 An FPT Algorithm on Precision UDGs

We use a similar brute-force search algorithm as the one described in the previous chap-

ter for arbitrary UDGs to obtain a fixed-parameter tractable algorithm for the problem on

ε-precision UDGs. By Lemma 3.3.1, every clique in an optimal clique partition can be rep-

resented by at most a constant number of convex regions in RV (G). Also by Theorem 4.2.1,

after applying the reduction rule there are only O(k/ε4) convex regions left. We perform

the same process as described in the previous chapter in order to take care of non-helly sets.

Notice that, this time, we originally have only |V (H)| = 728k/ε4 rows in the binary matrix

described before. Therefore, the time required to pre-process the matrix for non-helly sets

would be O(|V (H)|3n) and after pre-processing at most |V (H)|3 regions are in the set. The

pre-processing is only performed once for the whole matrix and hence for k > 0 this factor

is dominated by the time required for guessing the subsets and checking the validity of the

clique partitions.

In order to decide whether |Opt(G)| ≤ k, we enumerate all sets of at most k regions and

for each such a set, check whether it corresponds to a clique partition. Thus the number of

CHAPTER 4. FPT ALGORITHMS ON PRECISION & QUASI-PRECISION UDGS 62

such subsets could be at most∑
k′≤k

(
|V (H)|3

k′

)
≤ (|V (H)|3 + 1)k = O(23k log |V (H)|). (4.4)

Taking into account the running-time of O(mn) for applying the reduction rules and O(kn)

time for checking the validity of each candidate clique partition, we get the overall time

complexity as:

O(23k log |V (H)|kn+ |V (H)|3n+mn) = O(2(3k+1) log k+12k log 1
ε
+30kn+mn). (4.5)

Theorem 4.2.2. For any UDG G and an integer k such that the reduced graph of G is

ε-precision, there is an algorithm that decides in O(2(3k+1) log k+12k log 1
ε
+30kn+mn) time, if

there exists a clique partition of size at most k for G.

4.3 Quasi-precision UDGs

In this section, we describe how to extend the results of previous section to the (λ, α)-

quasi-precision UDGs. In particular, we show that if the graph obtained after applying the

reduction rules is a (λ, α)-quasi-precision UDG with α ≤ 1/2, fixed-parameter algorithms

for Clique Partition are still possible. We first provide a definition of the class.

Given a graph G = (V,E) with the location of disk centers (vertices) given in the plane and

a constant λ ≤ 1, we define Vλ = {v ∈ V |∀v′ ∈ V \v, ‖vv′‖ ≥ λ}. By this definition, G[Vλ] is

then a λ-precision UDG. G[Vλ] is also called the sparse subgraph of G with respect to λ.

Let E<λ = {e ∈ E | λ > ‖e‖} be the λ-short edges and V<λ ⊆ V be the set of vertices

incident to E<λ (also referred to as λ-close vertices). Then the dense subgraph of G with

respect to λ is similarly defined as G<λ = (V<λ, E<λ). Let X1, ..., Xκ be the vertices of

connected components of G<λ. We call every component Xi a λ-dense island of G.

Definition 4.3.1. [(λ, α)-quasi-precision]

For non-negative parameters λ ≤ 1 and α, a UDG G is called (λ, α)-quasi-precision, if

there exists an integer ς and a subset S ⊂ V (G) with |S| = ς such that the connected

components of G[V<λ]\S are in a set of non-overlapping circles of radii at most α. We

denote the class of all such graphs by UDG(λ,α).

CHAPTER 4. FPT ALGORITHMS ON PRECISION & QUASI-PRECISION UDGS 63

Figure 4.4: A possible decomposition of the points of a UDG to dense islands. The respective
graph is (λ, α)-quasi-precision for some value of λ and α.

For any given UDG, one can choose the values of λ and α such that the graph is (λ, α)-

quasi-precision. For example, ε-precision UDGs are (ε, 0)-quasi-precision while the class

UDGα of bounded-area UDGs [78] are (c,O(
√
α))-quasi-precision for any c > 0.

Given a (λ, α)-quasi-precision graph G = (V,E) with α ≤ 1/2 , let X = V<λ\S and

X1, ..., Xκ be a partition of X into dense islands such that each Xi is bounded in a circle ζi

of radius αi ≤ α for 1 ≤ i ≤ κ. In other words, every Xi is the vertex set of a connected

component of G[X].

We first prove that for a (λ, 1/2)-quasi-precision UDG which is reduced according to the

reduction rules only a bounded number of vertices exist in every dense island.

CHAPTER 4. FPT ALGORITHMS ON PRECISION & QUASI-PRECISION UDGS 64

For a set of vertices Y , let us define N∩(Y) = ∩y∈YN(y)\Y and N∩(Y) = N(Y)\N∩(Y).

The basic idea in our analysis is that in the reduced graph, the number of vertices of a dense

island Xi can be bounded from above by a function of |N∩(Xi)| while, as we show in the

next lemma, N∩(Xi) is restricted to an object and hence for a quasi-precision UDG it has

a bounded number of vertices.

Lemma 4.3.1. For a connected component Xi of G[X], let ζi be a bounding circle for Xi of

radius αi. Further, let Ψi be the annulus bounded between circles of radii 1 + αi and 1− αi
concentric with ζi. Then N∩(Xi) ⊆ Ψi.

Proof. First, notice that since ζi is a bounding circle, any vertex inside a disk D1−αi of radius

1 − αi concentric with ζi is adjacent to all vertices in Xi. Therefore N∩(Xi) ∩ D1−αi = ∅.
Also for any vertex y at a distance further than 1 + αi from the center of ζi, y 6∈ N(Xi).

Hence N∩(Xi) ⊆ Ψi.

For a subset P of the plane, we define µ(P, d) as the maximum number of points that

can be placed in P with the restriction that every pair of points are at pairwise Euclidean

distance of at least d.

Observation: SinceG is (λ, α)-quasi-precision and by the result of Lemma 4.3.1, |N∩(Xi)| ≤
µ(Ψi, λ) + |S|.

Next, we show that if the reduction rule are applied to the graph, the number of vertices in

each dense island has to be bounded.

Lemma 4.3.2. For a (λ, α)-quasi-precision graph with α ≤ 1/2 which reduced with respect

to the reduction rules, |Xi| = O((µ(Ψi, λ) + |S|)2) for all 1 ≤ i ≤ κ.

Proof. Draw an imaginary circle of radius 1 at each vertex v ∈ N∩(Xi). Let C be the set

of all such circles. Notice that every such a circle intersects ζi in at least two points on

the boundary. Let Φ∗ be the union of all these circles and D(ζi) denote the disk with ζi as

its boundary. Consider the set of all regions R in D(ζi)\Φ∗ formed after intersecting the

boundary of circles with D(ζi).

We show that for any r ∈ R, if there are more than one vertices in V ∩ r, then Rule 3

is applicable to G by setting I = V ∩ r. First notice that for every vertex v 6∈ N∩(Xi),

CHAPTER 4. FPT ALGORITHMS ON PRECISION & QUASI-PRECISION UDGS 65

either I ⊆ N [v] or I ∩N [v] = ∅. Also since r is a region, for any vertex x ∈ N∩(Xi), either

I ⊆ N(x) or none of vertices in I are adjacent to x. Thus, I can be replaced by a single

vertex by Rule 3. As a result, in the reduced graph, there can be at most one vertex in each

region of R. In particular, |Xi| ≤ |R|.
To complete the proof, we upper-bound |R|. However, N∩(Xi) ⊆ Ψi by Lemma 4.3.1

and hence we can safely use an argument similar to the one in Lemma 4.2.1 to count the

number of regions in R knowing that there are at most µ(Ψi, λ) + |S| vertices in Ψi.

Consider the graph obtained from D(ζi) ∩ Φ∗ ∪ ζi. Intersection point of every two cir-

cles in C ∪ ζi forms a vertex of the graph. Two vertices are connected by an edge in this

graph if their corresponding points are on the same circle in C ∪ ζi.
Observe that the vertices which are located on the circle ζi have degree 3 and there

are at most 2(µ(Ψi, λ) + |S|) such vertices. This is while all other vertices have degree 4

because they are formed by intersecting two circle in C. Let there be n∗ such vertices. The

faces in the graph correspond to the regions R. Notice that we can get the number of edges

in the above planar graph as half of sum of the vertex degrees as 2n∗ + 3(µ(Ψi, λ) + |S|).
Using the Euler formula for planar graphs, we can find the number of faces (also |R|) as

n∗+ µ(Ψi, λ) + |S|+ 2. In the worst case when every two circles in C intersect at one point

in D(ζi), we get n∗ = O(µ(Ψi, λ) + |S|)2. Lastly, since |Xi| ≤ |R|, the statement of the

lemma holds.

Lemma 4.3.3. Let µ(Ψi, λ) be the maximum number of points in Ψi with the minimum

pairwise distance λ. Then µ(Ψi, λ) = O(αi/λ
2).

Proof. We use an approach similar to the one in Lemma 4.2.2 to bound the function. Let

Ψ(r, r′) be the annulus between two circles of radii r and r′. That is Ψ(r, r′) = Dr\Dr′ . Then

µ(Ψ(r, r′), λ) ≤ µ(Dr, λ) − µ(Dr′ , λ) + π/ arcsin λ
2r′ . This is since in the maximum packing

of Dr with Dλ/2, cutting along boundary of Dr would destroy at most π/ arcsin λ
2r′ of disks

Dλ/2. Using this argument, we get µ(Ψi, λ) ≤ µ(D1+αi , λ)− µ(D1−αi , λ) + π/ arcsin λ
2(1−αi) .

Now we use Lemma 4.2.2 to get the upper bounds on µ(D1+αi , λ) and µ(D1−αi , λ).

µ(D1+αi , λ) ≤ 3

⌈
4

3

(
1 + αi
λ
− 1

)
+ 1

⌉⌈
4

3

(
1 + αi
λ
− 1

)
+ 2

⌉
,

µ(D1−αi , λ) ≤ 3

⌈
4

3

(
1− αi
λ
− 1

)
+ 1

⌉⌈
4

3

(
1− αi
λ
− 1

)
+ 2

⌉
.

CHAPTER 4. FPT ALGORITHMS ON PRECISION & QUASI-PRECISION UDGS 66

Let x = 1+αi
λ , and y = 1−αi

λ . Then,

µ(Ψi, λ) ≤ 16

3

[(
x+

1

2

)(
x+

5

4

)
−
(
y +

1

2

)(
y +

5

4

)]
+ 2πy

≤ 22αi
λ2

+
(19− 2π)αi

λ
+

2π

λ

≤ 24αi/λ
2 = O(αi/λ

2).

In the next step, we upper-bound the number of convex regions inside an arbitrary disk of

small radius, similar to Lemma 4.2.1. To do so, we first calculate the maximum number of

vertices inside an arbitrary annulus in the plane.

Lemma 4.3.4. Let G′ be the reduced graph and Ψ be the annulus between two disks of radii

1/2+δ and 1/2−δ centered at an arbitrary point p0 in the plane then |V (G′)∩Ψ| = O(δ/λ4).

Proof. If p0 is chosen arbitrarily, then there can be many dense islands intersecting Ψ. To

get an upper bound on |V (G′)∩Ψ|, we cover Ψ with disks of radius α and consider the case

where some of the disks intersect dense islands. Since G′ is reduced, even if a disk intersects

a dense island, we have an upper bound on the number of points inside it. In particular, one

can repeat the approach of Lemma 4.3.3 to cover Ψ with at most O(δ/α2) disks of radius

α. Now for each disks Dα in Ψ, we get an upper bound on the number of points inside from

Lemma 4.3.2 as |V (G′) ∩ Dα| = O(α2/λ4 + |S|2). Therefore,

|V (G′) ∩Ψ| ≤ |V (G′) ∩ Dα| · O(δ/α2)

= O(α2/λ4 + |S|2) · O(δ/α2) = O(δ/λ4 + δ|S|2/α2).

Given that |S| = O(1), the statement of the lemma follows.

Lemma 4.3.5. Let r be a convex region in a disk Dδ of radius δ and X = V<λ\S (as defined

before). We further define YG(r) = {v ∈ V (G)|∂D(v) ∩ ∂r 6= ∅}. If YG(r) ∩ X 6= ∅ then

YG(r) ∩ X belongs to only one connected component of G[X].

Proof. Suppose for contradiction that r is a convex region and let X1 and X2 be the vertex

sets of two connected components of G[X], however YG(r) has vertices x1 ∈ X1 and x2 ∈ X2.

Since r is convex, D(x1) ∩ D(x2) 6= ∅. Therefore, dist(x1, x2) ≤ 1 and x1x2 is an edge in

G[X] contradicting the fact that x1 and x2 are in different connected components.

CHAPTER 4. FPT ALGORITHMS ON PRECISION & QUASI-PRECISION UDGS 67

Similar to previous section, we use the bound on the number of vertices in Ψ to derive an

upper bound on the number of convex regions in an arbitrary disk Dλ of radius λ.

Lemma 4.3.6. Let ηλ denote the number of convex regions in a disk Dλ of radius λ centered

at an arbitrary point p0 in the plane. Then ηλ = O(1/λ6).

Proof. For a constant δ ≤ 1/2, consider the annulus Ψ enclosed between two circles of radii

1 + δ and 1 − δ centered at p0. Since the vertices in Ψ are the only vertices in V (G′)

whose disks cross ∂Dδ, for any convex region r in Dδ, it holds that r ∈ RV (G′)∩Ψ. We

can use an idea similar to the one in Lemma 4.2.1 to upper-bound the number of convex

regions in Dδ in terms of |V (G′) ∩ Ψ|. In particular, let δ = λ. Then by Lemma 4.3.4,

|V (G′) ∩ Ψ| = O(1/λ3 + λ|S|2/α2). Therefore, the maximum number of convex regions is

upper-bounded as follows:

ηλ ≤ max
1≤i≤κ

{|V (G′i) ∩Ψ|2} = O(1/λ6 + λ2|S|4). (4.6)

Given that |S| = O(1), we get ηλ = O(1/λ6).

Lastly, we can bound the maximum degree of the clique intersection graph in a similar way

as the previous section using the results of Lemma 4.3.6 and Lemma 4.2.2.

Theorem 4.3.1. Let ∆(H) be the maximum degree of the clique intersection graph of a

(λ, α)-quasi-precision UDG reduced with respect to the Rules 1-3, with α ≤ 1/2. Then

∆(H) = O(1/λ8).

Proof. We use Lemma 4.2.2 to bound the number of possible disks of radius λ required to

cover a disk of radius 1 + λ. In particular, µ1+λ ≤ 14/λ2. After multiplying this by the

result of Lemma 4.3.6, we get:

∆(H) ≤ µ1+λ.ηλ ≤ 14/λ2.ηλ = O(1/λ8 + |S|4). (4.7)

Given that |S| = O(1), we get ∆(H) = O(1/λ8).

Corollary 4.3.1. Let H be the clique intersection graph for a (λ, α)-quasi-precision UDG

which is reduced according to our reduction rules for α ≤ 1/2. Then |V (H)| = O(k/λ8).

CHAPTER 4. FPT ALGORITHMS ON PRECISION & QUASI-PRECISION UDGS 68

4.3.1 An FPT Algorithm on Quasi-precision UDGs

In order to extend the fixed-parameter results to quasi-precision graphs, we run the same

process used for ε-precision UDGs and arbitrary UDGs as explained in the previous sections.

The algorithm is analogous to the one for the ε-precision UDGs and hence for the sake of

brevity, we avoid to repeat it here. The time complexity of the exact algorithm for Clique

Partition on quasi-precision graphs with α ≤ 1/2 would be:

O(|V (H)|3kkn+ |V (H)|3n+mn) = 2O(k log k
λ

)n+O(mn). (4.8)

Theorem 4.3.2. Given an integer k, there is an algorithm that decides in 2O(k log k
λ

)n +

O(mn) time, if there exists a clique partition of size at most k for any UDG such that its

reduced graph is (λ, α)-quasi-precision with α ≤ 1/2.

4.4 Structure of Quasi-precision UDGs

Finally, we show that if the size excluded subset S in the definitions of quasi-precision UDGs

is allowed to be O(k), the resulted graph would include a large co-bipartite graph as a sub-

graph.

We first define another general class of UDGs based on the definition of quasi-precision

UDGs.

Definition 4.4.1. [(λ, α)-relaxed-quasi-precision]

For non-negative parameters λ ≤ 1 and α, a UDG G is called (λ, α)-relaxed-quasi-precision,

if there exists a subset S ⊂ V (G) of size O(κ) such that the connected components of

G[V<λ]\S are in a set of κ non-overlapping circles of radii at most α.

Based on the above definition of relaxed-quasi-precision UDGs, it is clear that quasi-precision

UDGs are a special case of relaxed-quasi-precision UDGs. Yet, as we will show later, one

can still obtain fixed-parameter results for this class of UDGs.

Lemma 4.4.1. Let G be a (α, λ)-relaxed-quasi-precision UDG for some constants λ < 1 and

α ≤ 1/2 and let S be chosen such that there are κ vertex disjoint cliques in G[V<λ]\S. Then

κ ≤ k where k is the size of optimal clique partition on G.

CHAPTER 4. FPT ALGORITHMS ON PRECISION & QUASI-PRECISION UDGS 69

Proof. We first prove that given any induced subgraph G′′ of G, |Opt(G′′)| ≤ |Opt(G)|
where Opt(G) is the optimal clique partition on G. For a vertex v ∈ V (G)\V (G′′) if

G[N [v]] is a clique of size greater than 1, removing v does not increase the solution size.

Otherwise, let I ⊂ N(v)\v be a maximum independent set of G[N [v]]. Then |I| ≥ 2. Again

|Opt(G\v)| = |Opt(G)|. If v is an isolated vertex, then removing v decreases the size of

optimal solution by one. Therefore, |Opt(G′′)| ≤ |Opt(G)|.
Finally, since G∗ = G[V<λ]\S is obtained from G after removing vertices in S ∪ Vλ, G∗

is an induced subgraph of G and by the above argument the size of optimal solution for G∗

is at most |Opt(G)| = k. However, since α ≤ 1/2, G∗ consists of clique components only

and |Opt(G∗)| = κ. Therefore κ ≤ k.

One can use the above lemma along with Lemma 4.3.1in order to obtain similar parameter-

ization results on the class of relaxed-quasi-precision UDGs.

Corollary 4.4.1. Let H be the clique intersection graph for a (λ, α)-relaxed-quasi-precision

UDG which is reduced according to our reduction rules for α ≤ 1/2. Then |V (H)| =

O(k/λ8 + k5).

Hence, one can obtain the following result.

Theorem 4.4.1. Given an integer k, there is an algorithm that decides in 2O(k log k
λ

)n +

O(mn) time, if there exists a clique partition of size at most k for any UDG whose reduced

graph is (λ, α)-relaxed-quasi-precision with α ≤ 1/2.

Let Ki,i be a complete bipartite graph with bipartite sets each on i vertices and let M be

an arbitrary perfect matching in Ki,i. We define the dense bipartite graph as Li = Ki,i\M.

A clique-prism is then defined as Li (the complement of graph Li). See Figure 4.5 for an

example of such a construction.

Observation: Given any choice of integers i, any set of at least two maximal cliques in Li

has at most one common vertex.

Corollary 4.4.2. Let G = Li and G′ be the graph obtained from G after repeated appli-

cation of Rules 1-3 (See Section 3.4). Then G = G′.

We call Li an obstruction to the reduction Rules 1-3. Observe that the size of a minimum

clique partition on Li is 2. Removing any of edges in the matching would result in a sub-

graph of Li which is reducible with respect to Rules 1-3. Likewise, removing an edge in any

CHAPTER 4. FPT ALGORITHMS ON PRECISION & QUASI-PRECISION UDGS 70

of the two cliques would result in a subgraph for which the size of minimum clique partition

is larger (3 in this case).

Intuitively, an obstruction to a reduction rule is the structure expected to be present (as

a subgraph) in the reduced graph G′. However, to discover all such obstructions is not

straightforward. In order to illustrate the strength of our framework, we show that relaxed-

quasi-precision UDGs are indeed the largest class that admit FPT under our reduction

rules. Particularly, we prove that any UDG that is not (λ, 1/2)-relaxed-quasi-precision for

any value of λ must admit an arbitrarily large clique-prism as subgraph.

Theorem 4.4.2. Let the reduced graph G′ be an Lı-free UDG for some fixed integer ı > 1.

Then there are constants λ ≤ 1 and α ≤ 1/2 such that G′ is (λ, α)-relaxed-quasi-precision

with |S| ≤ 3(ı− 1)κ′ − 6ı+ 6.

Proof. To prove the theorem, we describe how a (λ, α)-relaxed-quasi-precision graph is con-

structed. Set λ = 1
2ı . In the first step, we check the distance between every two adjacent

vertices in the drawing against the value of λ and for every λ-short edge e = {u, v}, we

draw a bounding circle with line segment uv being the diameter. We call each such a circle

a basic circle and the edge e = {u, v} the diameter edge of the basic circle. For a circle ζ, a

basic circle ζ ′ is called an expansion candidate of ζ if ζ ′ 6= ζ and exactly one end vertex of

the diameter edge of ζ ′ is covered by ζ. In the next step, starting with an arbitrary circle

ζ, if ζ has an expansion candidate ζ ′, we grow ζ (we replace ζ and ζ ′ by a new circle of

minimum diameter) to cover all vertices previously covered by ζ as well as the end vertices

of the diameter edge of ζ ′.

At every grow step, the radius of the circle increases by at most λ while at least one

extra vertex is added to the circle. We continue this procedure until the grown circle does

not have an expansion candidate. If that is the case, we mark the circle as final and start

with another basic circle. We continue this until all circles are marked final. For any pair

of final circles if the graph induced on the vertices covered by them is a clique, we merge

them into a single circle by replacing the two circles by a new circle of minimum radius that

covers all the vertices covered by the two former circles.

Next, we bound the radius of circles obtained in the last step. Notice that since G′ is

CHAPTER 4. FPT ALGORITHMS ON PRECISION & QUASI-PRECISION UDGS 71

Lı-free, inside any circles of radius 1/2 there can be at most 2ı vertices. Because other-

wise G′ would have a subgraph isomorphic to Lı. We claim that the radius of every circle

obtained above is smaller than 1/2. Suppose for the sake of contradiction that one of the

circles has a radius of at least 1/2. Let X† be the set of vertices inside the circle. We argue

that |X†| ≥ d1/λe. In particular, we use induction to prove that at every step when we

obtain a new circle of radius r, at least 2r/λ+ 1 vertices are covered by the circle.

For the basic circles constructed in the first step, the radius is λ/2 and there are two

vertices in the circle. Therefore, the base of induction holds. Consider an intermediate step

when we grow a circle of radius r and 2r/λ + 1 vertices to include an intersecting basic

circle. The new circle would have a radius r′ < r + λ/2 and 2r/λ+ 2 vertices. Notice that

2r/λ + 2 > 2r′/λ + 1. Therefore, the axiom of induction holds and |X†| ≥ d1/λe. Hence,

|X†| ≥ 2ı and G′ has Lı as a subgraph: A contradiction. Therefore, by the approach we

have chosen the circles, the radii of all circle are smaller than 1/2.

Finally, we show that there is a vertex set S of size O(κ) in V (G′) whose removal dis-

connects G′ into κ connected components. Let κ′ be number of circles obtained in the final

step of the algorithm above. To bound the cardinality of S, we construct the following

auxiliary graph. For each circle, we place a node in the plane. The set of vertices covered by

the circle is called the associated vertex set of the node. Two nodes with associated vertex

sets X1 and X2 are connected with a link if G′[X1∪X2] is a connected graph. Observe that

the above graph is planar. This is since the circles were originally placed in the plane and

for any two circles with associated vertex sets X1 and X2, G′[X1 ∪X2] is not a clique. Let

ς = ı− 1. Next, we prove that for every link in the above graph with its end nodes having

associated vertex sets X1 and X2, at most ς vertices is enough to disconnect G′[X1 ∪X2].

If there are at most ς vertices in either of X1 or X2, then trivially the condition is true.

Therefore, we assume both X1 and X2 have at least ς + 1 vertices. For each link e in the

above graph with end links having associated vertex sets X1 and X2, we claim that there

exists a cut set of ς vertices in G′[X1 ∪ X2]. Suppose for contradiction that a minimum

vertex cut set for G′[X1 ∪ X2] has size ς + 1. Consider the sets I2 = N(X1) ∩ X2 and

I1 = N(N(X1)∩X2)∩X1. Notice that both sets are vertex cuts in G′[X1 ∪X2]. Therefore,

both have at least ς + 1 vertices. Also, since the radii of both circles are at most 1/2,

G′[I1] and G′[I2] are cliques. Also for every vertex v ∈ I1, there is a vertex in I2 which is

incident to v with an edge and vice versa (for I2). Therefore, G′ has a Lς+1 as a subgraph

CHAPTER 4. FPT ALGORITHMS ON PRECISION & QUASI-PRECISION UDGS 72

Figure 4.5: Graph Ki,i is depicted on the left side. The edges highlighted in red form a
perfect matching in Ki,i. Clique-prism Li corresponding to the selected matching in Ki,i is
pictured on the right side.

a contradiction to the fact that G′ is Lı-free. Hence, G′[X1 ∪ X2] has a vertex cut of size

at most ς. Lastly, for every edge of the above auxiliary graph, we add the minimum vertex

cut to the set S. Using the Euler formula for planar graphs, we get |S| ≤ 3ςκ′ − 6ς.

It follows that if we choose λ ≤ 1
2ı , α < 1/2 and G′ is (λ, α)-relaxed-quasi-precision.

Corollary 4.4.3. Let G′ be a UDG such that it is not (λ, α)-relaxed-quasi-precision for

any value of λ independent of n and for α ≤ 1/2. Then for any integer i independent of n,

G′ admits Li as subgraph.

Another interesting insight in this line of research comes from the work of Erdős, Lovász

and Vesztergombi [56]. Given a set S of points in the plane with the different distances

between pairs of points given as d1 > d2 > ..., they define the graph of large distances

G(S, k) as a graph on vertices S. An edge is present between a pair of points in G(S, k), if

their pairwise Euclidean distance is at least dk for k an arbitrary integer. They study the

CHAPTER 4. FPT ALGORITHMS ON PRECISION & QUASI-PRECISION UDGS 73

chromatic number of G(S, k) under different configurations of the point set S. Let G be the

UDG defined on points S. Notice that there exists an integer m such that G(S,m) = G,

where m is upper-bounded by the number of edges missing in UDG G. Similarly, for any k,

G(S, k) is the complement of a UDG defined by the set of points S′ which is obtained from

S after scaling the distances by 1/(dk − δ) for δ < dk − dk+1 a small constant. Deciding

the chromatic number of G(S, k), denoted χ(G(S, k)), is thus equivalent to deciding Clique

Partition of a UDG. In search for conditions under which χ(G(S, k)) is bounded, Erdős

et al. [56] posed the following related question:“Given t ≥ 3, what is the largest s such that

G(S, k) can contain a complete bipartite graph Kt,s?” Notice that this statement almost

translates to finding the smallest integer i such that the discussed UDG avoids obstruction

Li as subgraph.

CHAPTER 4. FPT ALGORITHMS ON PRECISION & QUASI-PRECISION UDGS 74

4.5 Summary

We proposed a novel approach for deriving FPT algorithms for Clique Partition on

precision UDGs. In particular, we used the reduction rules introduced earlier for Clique

Partition on arbitrary UDGs coupled with a detailed analysis in order to design a fixed-

parameter algorithm of running-time O(2(3k+1) log k+12k log 1
ε
+30kn + mn) for the problem

when the reduced graph is ε-precision UDG.

In an attempt to explore the boundaries of fixed-parameter tractability on UDGs, we

introduced (α, λ)-quasi-precision UDGs as UDGs which are only partially λ-precision, yet

their imprecision components have bounded area. We showed that (α, λ)-quasi-precision

UDGs are ubiquitous in the UDG class in the sense that any UDG is quasi-precision for some

values of λ and α. In particular, precision UDGs and bounded-area UDGs are derived as

trivial cases of quasi-precision class. Quasi-precision UDGs are also non-trivial meaning that

in their general setting, none of the known graph parameters are proved to be bounded when

considered on the class. Later, we demonstrated how parameterization results obtained in

our work can be extended to the case where the reduced graph is a (relaxed)-quasi-precision

UDG. In particular, we obtained fixed-parameter algorithms of running-time 2O(k log k
ε

)n+

O(mn) for the problem when the reduced graph is a (ε, α)-(relaxed)-quasi-precision UDG

for α ≤ 1/2.

In order to demonstrate the strength of our approach, we proved structural obstructions

for the parameterization of the problem under our framework. In particular, we showed

that UDGs which do not admit FPT algorithms under our framework include as subgraph

a loosely-connected co-bipartite graph. The proposed obstruction classifies the cases where

the clique removal is not feasible. Fomin et al. [SODA 2012] conjectured that the main

obstacle for obtaining subexponential algorithms on UDGs is the design of efficient “clique

cleaning” procedures [63]. Our work further affirms their conjecture for obtaining FPT

results on UDGs. To the best of our knowledge, this is the first work studying fixed-

parameter algorithms for Clique Partition on UDGs.

Chapter 5

Improved PTAS for Minimum

Clique Partition

In the light of complexity results for problems on UDGs as discussed in the previous chapters,

even on the restricted UDG classes, the most efficient exact algorithms require a running-

time which is not practical when considering the size of real-world inputs. A last resort

approach in such situations is to look for approximation algorithms which can be tuned to

be as close as possible to the exact solution. Formally, this is achieved through construction

of PTAS or efficient PTAS (EPTAS) algorithms.

Yet, as Theorem 2.1.1 states, a EPTAS result for a problem would imply fixed-parameter

tractability results for the parameterized version of that problem. This seems unlikely for

Clique Partition considering the parameterized results of the previous chapter. There-

fore, PTAS is, in a sense, the best one can hope for the problem unless Clique Partition

proves to be in Fpt in the UDG setting. In this chapter, we propose an approach for

obtaining PTAS algorithms for Minimum Clique Partition on UDGs.

5.1 Introduction

Minimum Clique Partition.

Instance: An undirected graph G = (V,E)

Question: Find a set C of cliques of minimum cardinality in G such that for every

vertex v ∈ V , there exists at least a clique c ∈ C with v ∈ c.

75

CHAPTER 5. IMPROVED PTAS FOR MINIMUM CLIQUE PARTITION 76

Let us recall that on general graphs, Minimum Clique Partition is equivalent to

Vertex Coloring of the complement graph and hence is not fixed-parameter tractable

and is inapproximable within n1−δ for any δ > 0 [54]. Yet, on the class of UDGs, there

are PTAS algorithms for the problem due to Dumitrescu & Pach in 2011 [54] and also the

work of Pirwani & Salavatipour in 2010 [102]. The best known PTAS produces a (1 + δ)-

approximate solution for the problem in O(n1/δ2) time [54] while the best approximation

ratios for practical and randomized algorithms are 3 and 2.16 due to Cerioli et al. [22] and

Dumitrescu & Pach [54] both running in O(n2) time.

Recent PTAS result of Pirwani and Salavatipour [102] for Minimum Clique Partition

on unit disk graphs relies on the separability property of an optimal clique partition. This

property was first established by Capoyleas et al. [21] over two decades ago.

Two convex polygons A and B in the plane are said to be overlapping if area(A ∩B) > 0,

and non-overlapping otherwise.

Theorem 5.1.1. [21]

Let S be a finite point set in the plane. There exists an optimal clique partition of the UDG

on points S where the convex hulls of the cliques are non-overlapping.

Dumitrescu and Pach [54], on the other hand, use a stronger variant of the above theorem

which is stated as below:

Theorem 5.1.2. [54]

Let S be a finite point set in the plane. There exists an optimal clique partition of the UDG

on points S in which the (convex hulls) of the cliques are pairwise disjoint.

The above theorems, set up a separability property for the cliques which as discussed later

is crucial for bounding the approximation ratio of the obtained solution.

5.2 Plane Decomposition

A PTAS for Minimum Clique Partition is devised in the following three general steps:

Step 1. Partition the plane using a randomly shifted grid whose cells are squares of size

l × l for l = O(1/ε).

CHAPTER 5. IMPROVED PTAS FOR MINIMUM CLIQUE PARTITION 77

Step 2. Compute an optimal clique partition for each cell of the grid and return the

union of these cliques as a solution.

Step 3. Repeat steps 1 and 2 in O
(
ln 1

δ

)
independent trials for any given 0 < δ < 1

and pick the smallest solution.

Analysis.

Dumitrescu & Pach [54] show that using this approach, in Step 3 with probability at least

1− δ, a (1 + ε) solution for Minimum Clique Partition is obtained. We provide a short

proof of the argument here.

Lemma 5.2.1. If l is large enough, then the probability of a fixed clique ci in an optimal

partition being cut by a grid chosen in Step 1 is O(1/l).

Proof. Consider a cell τ of the grid (τ is a l × l square). Notice that in the worst case the

convex hull of ci can be inscribed in a circle of radius 1/2. Let us call this circle ζi. Consider

the placement of ζi in τ . For ζi not to intersect the boundaries of τ , its center needs to be

located in a (l− 1)× (l− 1) square inside τ . Therefore the probability of ζi intersecting the

boundaries of τ (alternatively ci being cut by the grid) is at most

l2 − (l − 1)2

l2
=

2l − 1

l2
<

2

l
.

Let Opt be the size of an optimal solution. By the argument provided in Lemma 5.2.1, the

probability of a grid cutting a clique in optimal solution is at most 2/l. We consider two

different cases: A) If the clique ci only intersects with either a horizontal or a vertical line

of the grid, then in the solution we obtain, we have at most two cliques representing ci. B)

Otherwise, if ci intersects both a horizontal and a vertical line of a grid, then in the solution

obtained in Step 2, ci can be represented by at most 4 cliques. Yet the probability of this

event happening is only π/l2. This is since case B only happens if the center of ζi (in the

argument used in Lemma 5.2.1) is located in four sectors of angle π/2 inside τ each centered

at one corner of τ and have the total area of π.

CHAPTER 5. IMPROVED PTAS FOR MINIMUM CLIQUE PARTITION 78

Notice that this probability has already been included in case A while calculating the

probability of ci being cut by the grid and hence we only need to count those cliques at

most two additional times. Therefore, expected size of the solution obtained in Step 2 is

(1 + 2/l + 2π/l2) ·Opt.

Lemma 5.2.2. In Step 3, with probability at least 1 − δ, a solution of size (1 + ε) · Opt is

obtained.

Proof. Let X be a random variable indicating the size of the solution obtained in Step 2.

By Markov inequality the probability that the size of solution is larger than (1 + ε) can be

obtained as:

Pr[X > (1 + ε) ·Opt] ≤
(1 + 2

l + 2π
l2

) ·Opt
(1 + ε) ·Opt

≤ 1

1 + ε
+

2

l(1 + ε)
+

2π

l2(1 + ε)
.

For large values of l, the probability that the above holds for all of the j trials would then

be: (
1

1 + ε

)j
.

We require this value to be smaller than δ. Therefore, we obtain:

j. ln

(
1

1 + ε

)
≤ ln δ.

After multiplying both sides by −1 and dividing by ln(1 + ε), we get:

j ≥
ln 1

δ

ln 1 + ε
.

Assuming that ε < 0.1, it follows that ln(1 + ε) ≤ 0.9ε. Therefore j = O(1
ε ln 1

δ).

Lemma 5.2.3. [54]

Let τ be a UDG whose points are restricted to a l × l square. Then |Opt(τ)| ≤ 2l2 + 3l.

Proof. Place a grid with cell size 1√
2
× 1√

2
over τ . Clearly, the number of cells would be at

most
⌈√

2 l
⌉2 ≤ (

√
2 l + 1)2 = 2l2 + 2

√
2 l + 1 ≤ 2l2 + 3l for l > 5.83. Since the length of

diagonals of a square of size 1√
2
× 1√

2
is 1, any set of points inside such a square forms a

clique. This brings us to the conclusion that an optimal clique partition consists of at most

2l2 + 3l cliques.

CHAPTER 5. IMPROVED PTAS FOR MINIMUM CLIQUE PARTITION 79

5.3 Exact Solution for UDG with Restricted Geometry

5.3.1 Dumitrescu and Pach’s Approach

Knowing that there can be at most qmax = 2l2 + 3l cliques in a solution for a cell τ , the

algorithm can check for q = 1, · · · , qmax, if there exists a clique partition of size q for the

points in V ∩ τ . Now assume an unknown solution Opt(τ) = {c1, ..., cq} and let ri ∈ ci be

a representative point for clique ci and 1 ≤ i ≤ q.

One can define an auxiliary graph X on points r1, · · · , rq ∈ V ∩ τ in the following way:

rirj ∈ E(X) if and only if ‖rirj‖ ≤ 2.

Observation: [54]

If rirj 6∈ E(X), and p ∈ V ∩ τ satisfies ‖pri‖ ≤ 1, then p 6∈ cj .

Proof. Assume for the sake of contradiction that p ∈ cj . Then ‖pri‖ ≤ 1. By triangular

inequality, ‖rirj‖ ≤ ‖pri‖+ ‖prj‖ ≤ 2. This contradicts the assumption that rirj is not an

edge in X (by the definition of the graph X).

Lemma 5.3.1. ∆(X) ≤ 54.

Proof. Consider an arbitrary point ri of X. Notice that the cliques in Opt(τ) whose rep-

resentative points are in NX(ri) ∪ {ri} can be contained in a circle ζ of radius 3 centered

at ri. To bound the degree of vertex ri, partition ζ into pieces such that points within each

piece can form one clique. In particular, [54] considers the fact that ζ can be contained

in a square of length 6 aligned with τ and tiles that square with smaller rectangles of size
3
5 ×

4
5 . Clearly, the points inside each such small rectangle form a clique. There can be

at most
⌈
6.54
⌉
×
⌈
6.53
⌉

= 8 × 10 = 80. Therefore, excluding itself, ri can have at most 79

neighbors. One can however get a similar bound on the degree using a more complicated

tiling argument. Particularly, assuming circle ζ or radius 3, we can cover ζ, with regular

hexagons of diameter 1. Notice that any such a hexagon can be inscribed in a circle of radius

1/2. As Lemma 4.2.2 calculates, there can be at most 16
3 r

2 + 28
3 r+ 10

3 such hexagons inside

a circle of radius r. Hence, after replacing r by 3, it follows that 79 hexagons are enough to

cover ζ. However, a closer look reveals that there can be at most 18 + 18 + 12 + 6 + 1 = 55

such hexagon in ζ. See Figure 5.1. Therefore, ∆(X) ≤ 54.

CHAPTER 5. IMPROVED PTAS FOR MINIMUM CLIQUE PARTITION 80

Figure 5.1: A hexagonal mesh with edge length 1/2 is placed over a circle of radius 3. Every
such a hexagon can be inscribed in a circle of radius 1/2.

Dumitrescu and Pach [54] use the following known geometric fact to show how the set of

representative points along with the graph X can produce a clique partition of points in τ .

Lemma 5.3.2. [54]

Given two disjoint convex polygons P and Q in the plane, there exists a separating (tangent)

line determined by a pair of vertices in V (P) ∪ V (Q).

Notice that by the above lemma, for any pair of representative points ri and rj (of cliques ci

and cj respectively), with rirj ∈ E(X), there exists a line separating ci and cj which passes

through two points of the convex hull of ci and cj .

Now, assume that the algorithm is provided with the following inputs:

• A set of q representative points r1, · · · , rq ∈ V ∩ τ with ri ∈ ci;

• Graph X with vertex set R = {r1, · · · , rq}, and

CHAPTER 5. IMPROVED PTAS FOR MINIMUM CLIQUE PARTITION 81

• The pairs of vertices (points in V ∩ τ) incident to each of the separating lines for the

pairs rirj ∈ E(X).

Having the above information, one can verify in O(n2) if it corresponds to a valid clique

partition of V ∩ τ . An algorithm can then guess every possible combinations of input of the

above form and validate if any combination corresponds to a valid solution.

Analysis.

Next, we enumerate the number of possible solutions that one need to check.

• Representative points: There can be at most
(
n
q

)
≤ nq choices of representative points.

• Graph X: Since ∆(X) ≤ 54 and hence there are at most 54q/2 edges in a candidate

X, for any choice of q representative points, there can be at most 227q log q+O(q) graphs

to be considered.

• Separating lines: For every graph X with 27q edges, there can be at most
(
n

27q

)
≤

n54q/(54q!) choices for separating lines.

• Given a graph X with at most 27q edges and separating lines, there can be at most

27q! ≤ 227q log q+O(q) perfect matchings between them.

Knowing that q ≤ 2l2 + 3l, the overall time complexity of the algorithm for calculating a

minimum clique partition for a UDG on τ goes to:

2O(q log q) · n54q ≤ 2O(l2logl) · n108l2+O(l). (5.1)

This is a slight speed-up from the calculated running-time of Dumitrescu and Pach [54],

2O(l2 log l) · n160l2+O(l) using exactly the same technique yet a stronger packing argument1.

Finally, choosing l = O(1/ε), we obtain the overall running-time of (1 + ε)-approximation

algorithm as:

n(176/ε)2+O(1/ε). (5.2)

1The authors of [54] mention in the manuscript that the constants in the running-time can be improved
with a more detailed analysis.

CHAPTER 5. IMPROVED PTAS FOR MINIMUM CLIQUE PARTITION 82

Theorem 5.3.1. There is a randomized algorithm which runs in time n(176/ε)2+O(1/ε) and

w.h.p. obtains a (1 + ε)-approximation solution to Minimum Clique Partition on arbi-

trary UDGs.

5.3.2 Using Convex Regions

Next, we introduce a novel approach that can be used to design a PTAS with significant

running-time improvement.

Imagine an optimal solution C = {c1, ..., ck} for Minimum Clique Partition on an

l × l square τ . By Lemma 3.3.1, every maximal clique ci, 1 ≤ i ≤ k, can be represented by

at most 4 convex regions in RV ∩τ . We run a brute-force search for a set of convex regions

that can make a clique partition of size at most k. For any such a subset R′, then one can

check in poly(n, k) if the number of cliques corresponding to it is at most k and whether

V ∩ τ is covered by those cliques as described later. We first maintain an inclusion matrix

whose rows correspond to all convex regions in RV ∩τ and its columns represent the vertices

of V ∩ τ . For every region r ∈ RV ∩τ , in the respective row in the matrix, we set the value

of elements at columns corresponding to vertices in XG[V ∩τ](r) to 1 and the rest to 0. We

construct this matrix only one time for the whole graph.

Reminder: We call a subset of 3 convex regions {r1, r2, r3} ⊆ RV (G) a non-helly set, if for

all 3 permutations 1 ≤ i, j, l ≤ 3 and i 6= j 6= l, we have Yl = XG(ri) ∩XG(rj)\XG(rl) 6= ∅.
If that is the case, then there is a clique with vertex set Y = ∪3

i=1Yi in G which is not

represented by any of the regions in RV (G). Hence, we need to manually add a new region

r′ with vertex set Y to the set of regions.

Calculating Non-helly Sets

To take care of the non-helly sets, we perform a pre-processing on the inclusion matrix.

In particular, we check in any subset of 3 regions of RV ∩τ for non-helly sets. If we find

one, we add a new row corresponding to the clique that the non-helly region represents. In

particular, let ~ri denote the binary vector corresponding to convex region ri in the matrix

for 1 ≤ i ≤ 3. To check for a non-helly set in {r1, r2, r3}, we simply check if (~ri∧~rj∧¬~rl) 6= ~0

for 1 ≤ i, j, l ≤ 3 and i 6= j 6= l. This can be done in O(n) for one set of 3 regions.

There are at most |RV (G)|3 − 3|RV (G)|2 + 2|RV (G)| = O(|RV (G)|3) 3-subsets. Therefore, the

CHAPTER 5. IMPROVED PTAS FOR MINIMUM CLIQUE PARTITION 83

pre-processing phase would take n · |RV (G)|3 time for the whole matrix. Since |V ∩ τ | ≤ n,

by Proposition 3.3.1 there are at most n2 − n + 1 regions in RV (G) and hence the time

complexity of this phase would be O(n7). Observe that any time a non-helly set is detected,

at most one new entry is added to the set of regions. Therefore, after the pre-processing

there can be at most |RV (G)|3 regions.

Counting the Candidate Sets

Knowing that there are at most 2l2 + 3l cliques in RV ∩τ (by Lemma 5.2.3), there are at

most
((n2−n+1)

3

l′

)
subsets of size l′ for l′ ≤ 2l2 + 3l to be considered. Therefore, the total

number of subsets of size at most 2l2 + 3l that we need to consider is:∑
l′≤2l2+3l

((
n2 − n+ 1

)3
l′

)
≤
((
n2 − n+ 1

)3
+ 1
)2l2+3l

≤ n12l2+18l for n > 2. (5.3)

Given any of the above subset R′ of convex regions, we finally check if R′ corresponds to a

valid clique partition in the following way: Using the inclusion matrix, we can check if R′

includes every vertex in V ∩ τ by simply summing up the corresponding rows in the binary

matrix. This can be done using n · |R′| = O(nl2) binary operations. We finally find the

smallest subset that satisfied the above criteria. Therefore, the overall running-time of our

algorithm would be:

n12l2+18l · O(nl2) +O(n7) = n12l2+18l+1 · O(l2). (5.4)

This is comparable to the solution of Dumitrescu and Pach [54] which derives an exact

algorithm of running-time 2O(l2)n160l2+O(l) for Minimum Clique Partition on a UDG

restricted to τ .

Finally, after replacing l by the value of 16/ε (alternatively any O(1/ε) value), by the analy-

sis presented in the plane decomposition section, we obtain (1+ ε)-approximation algorithm

for Minimum Clique Partition of running-time

nO(1/ε2) · (1/ε2). (5.5)

Theorem 5.3.2. There is a randomized algorithm which runs in time n(64/ε)2+288/ε+1 ·
O(1/ε2) and w.h.p. produces a (1 + ε)-approximation solution to Minimum Clique Par-

tition on arbitrary UDGs.

CHAPTER 5. IMPROVED PTAS FOR MINIMUM CLIQUE PARTITION 84

5.4 Summary

We devised randomized (1+ε)-approximation algorithms for Minimum Clique Partition

on UDGs. Our first PTAS is based on the technique of [54] and a new packing argument

and has an improved running-time of n(176/ε)2+O(1/ε). Furthermore, we introduced a new

approach for deriving PTAS which still runs in time nO(1/ε2) · (1/ε2) yet the hidden constant

in bigO notation is significantly (at least 13 times) smaller than the fastest previously known

PTAS. In practice, this allows our algorithm to run in a reasonable time on instances of size

|I|13, if the previous algorithms could solve an instance I of size |I|.

Chapter 6

Parameterized Algorithms for

Other Problems

This chapter, investigates the application of the framework introduced in Chapters 3 and 4

to other related problems. We showcase this by demonstrating its use for obtaining param-

eterization results for problems of Clique Cover and Weighted Clique Partition.

6.1 Clique Cover

Apart from Clique Partition which was studied earlier, Clique Cover is probably the

most discussed variant within the literature of algorithms and complexity. The Clique

Cover problem asks for partitioning the edges of a given graph into a minimum number of

cliques C such that every edge is in at least one clique in C. Comparing to Clique Parti-

tion, Clique Cover is less studied in the literature. In terms of complexity, it is proven

that Clique Cover is NP-complete even when restricted to planar graphs [23]. In the class

of general graph, the problem is proved to be in Fpt through a data reduction resulting

in a kernel of size O(2k) [70]. The hardness of kernelization of the problem is discussed

in [31] where the authors show that indeed the problem does not admit a polynomial-size

kernel on general graphs unless the polynomial hierarchy collapses to its third level. For

any graph G, the cardinality of a minimum clique cover (clique cover number) is equivalent

to the intersection number of G which is defined as the smallest number of elements in a

representation of G as an intersection graph of finite sets [72]. Erdős, Goodman & Pósa

85

CHAPTER 6. PARAMETERIZED ALGORITHMS FOR OTHER PROBLEMS 86

[57] proved that the edges of any graph on n vertices can be partitioned into at most n2/4

cliques, all of which are either single edges or triangles showing an upper-bound of n2/4 for

the intersection number.

To the best of our knowledge there is no work discussing this problem on UDG. From

the approximation point of view, it is known that Clique Cover is inapproximable within

a ratio |V |ε of the optimal solution [89] while on planar graphs there is a PTAS for the

problem [12]. There is a ratio-preserving reduction from Clique Cover to the Clique

Partition problem due to Kou et al. [84] making the approximation of the problem as

difficult as for the Clique Partition.

Proposition 6.1.1. [84]

Let Optcp(G) and Optcc(G) denote the size of optimal solution for the Clique Partition

and Clique Cover problems on a given graph G respectively and c a non-negative constant.

There is a polynomial-time algorithm A for the Clique Cover problem such that A(G) ≤
c · Optcc(G) + d for all G if and only if there is a polynomial-time algorithm A′ for the

Clique Partition problem such that A′(G) ≤ c ·Optcp(G) + d′ for all G.

6.1.1 Data Reduction

The Clique Cover problem is similar to the Clique Partition with the difference that

the concept of coverage applies to the edges as opposed to the vertices in the former problem.

Clique Cover.

Instance: An undirected graph G = (V,E), a non-negative integer k.

Question: Is there a set C of cliques in G such that for every edge e ∈ E, there exists

at least one clique c ∈ C with e ∈ c and |C| ≤ k?

For simplicity, we first consider another version of the problem named X-Annotated

Clique Cover where a subset X of edges of the graph are already covered. The orig-

inal setting of the problem is then obtained when X = ∅.
In order to be able to design parameterized algorithms for Clique Cover, we initially

shrink the instance by applying a set of reduction rules in a pre-processing phase. The

intuition behind Rule 1 is that since every edge of the graph has to be in a clique in an

optimal clique partition, if for an edge e of the graph, there is only one clique c which covers

e, then c has to be in any optimal solution. Similarly in Rule 2, if there exists a set of

CHAPTER 6. PARAMETERIZED ALGORITHMS FOR OTHER PROBLEMS 87

edges such that for every maximal clique c, either all of the edges are included in c or all are

excluded from c, then every clique in any optimal solution that includes one of the edges

would also include the rest. Therefore, one can safely remove all these edges except for one.

Rule 1. For an edge e included in one clique c in G only, mark every edge in c as covered

and decrease k by 1.

Rule 2. For a set of maximal cliques C = {c1, · · · , cγ} in G, let I = ∩γi=1V (ci). Assume

that |I| ≥ 3 and N [I] = ∪γi=1V (ci); that is, no other maximal cliques in G intersect I.

We replace I in G with a new edge e′ = xy and make x and y adjacent to N(I) 1.

Theorem 6.1.1. Rules 1 and 2 are correct for Clique Cover on UDGs and can be

performed in O(n2.3727 + nm) time on any graph G with n vertices and m edges.

Proof. For Rule 1, in order to find out whether an edge is included in one clique c of G only,

we need to check for every edge e = (v, w) ∈ E if G[N [v]] = G[N [w]] = Kdeg(v). This can be

done by checking the presence of all edges in G[N [v, w]] in (deg(v)+deg(w))2 time for e and

in O(nm) time for the whole graph. Notice that the vertices removed according to Rule 1

are simplicial vertices and hence recognizing all such vertices can be done using fast matrix

multiplication [83]. Let A be the adjacency matrix of G with 1 entries on its diagonal.

To recognize all simplicial vertices, one need to calculate A2. This can be performed in

O(n2.3727) using the algorithm in [114]. Once a simplicial vertex x is removed from the

graph, one can recalculate A2 in O(deg2(x)) time. Therefore, exhaustive application of

Rules 1 and 2 takes O(n2.3727 + nm) in total.

Also notice that Rule 1 does not change the structure of the graph. Therefore the graph

obtained after applying the reduction rule is still realizable as a UDG. Consider an optimal

solution Opt for Clique Cover on G and let ce be the maximal clique in Opt that in-

cludes e. Notice that by the condition of the rule, there is only one such a clique. Let Opt′

be an optimal solution for G′. Then Opt′ ∪ ce is a solution for G. If |Opt′ ∪ ce| ≤ |Opt|,
then we are done. Assume, |Opt′ ∪ ce| > |Opt|. Since Opt\ce is a solution for G′ and

|Opt′| > |Opt\ce|, we get a contradiction.

For Rule 2, we need to find the common clique in neighborhood of every edge e = vw.

1A detailed analysis of Rule 2 revealed that despite the different definition, the rule is indeed similar to
the ones introduced by Gramm et al. [70].

CHAPTER 6. PARAMETERIZED ALGORITHMS FOR OTHER PROBLEMS 88

This can be done by checking if N [v] = N [w] and then looking for a maximum subset

I ⊆ N [v] of size at least 3 such that for every vertex x ∈ I, N [x] = N [v]. Given G in form

of an adjacency matrix, one can construct this subset in the following way. Initially, we set

I = {v, w}. For every 1 entry in the row corresponding to vertex v, we check if the row

corresponding to that entry is exactly the same as the one for v and if it is the case, we add

the corresponding vertex to I. This can be done in deg2(v) time for e and in O(nm) time

for the entire graph. Similarly, this step can be done using fast matrix multiplication. Let

A be the adjacency matrix of G with 1 entries on its diagonal. Notice that for every pair

of vertices x, y ∈ V (G),
(
A2
)
x,y

= |N [x] ∩N [y]|. Hence, to decide if x and y are in I, it is

sufficient to check if |N [x] ∩N [y]| = |N [v]| = |N [y]|. Using A2 matrix, vertices x and y are

in I, if
(
A2
)
x,y

=
(
A2
)
x,x

=
(
A2
)
y,y

. Contracting I into an edge can be done in constant

time. Hence, Rule 2 takes O(n2.3727) using the matrix multiplication algorithm reported in

[114]. Notice that application of Rule 2 does not generate any new reducible vertices and

hence only one round of the application of Rule 2 is sufficient.

It remains to show that after applying the reduction Rule 2, the graph can still be re-

alized as a UDG. To see this, consider a common clique I. After replacing I by an edge

e′ = xy, it holds that N(e′) = N(I). Consider ΛI = ∩v∈ID(v). By the condition of the re-

duction rule, for every vertex w ∈ N [I]\I the corresponding unit disk D(w) has to intersect

ΛI in a non-empty region. But since ΛI can be bounded in a unit disk, after replacing ΛI

with D(x) ∩ D(y), it is possible to redraw the disks such that E(G[V \I]) does not change

in the reduced graph.

Next, we show the correctness of the reduction rule. Suppose the reduction rule is ap-

plied. Then, there exists a collection of maximal cliques C = {c1, ..., cγ} such that for every

arbitrary edge vw ∈ G[I] in their intersection, N [{v, w}] = ∪γi=1V (ci). Notice that G′, the

graph obtained after applying the reduction rule can be equivalently derived from G after

contracting I ′ = G[I]\vw into a vertex. Also the size of every clique in C/I ′ is at least 3.

Let Opt be an optimal solution for Clique Cover on G. We prove that Opt′ = Opt/I ′

is an optimal solution for G′. For the sake of contradiction, assume that G′ has a solution

Opt∗ smaller than Opt/I ′ and let C† = {cj ∈ C|cj/I ′ ∈ Opt∗}. Then one can construct

a solution Opt† = Opt∗\(C†/I ′) ∪ C† for G such that |Opt†| = |Opt∗|. However, since

|Opt| = |Opt′|, we get |Opt†| < |Opt|, a contradiction.

CHAPTER 6. PARAMETERIZED ALGORITHMS FOR OTHER PROBLEMS 89

Now, assume that Opt′ is an optimal solution for G′ and let ce′ ∈ Opt′ be the clique

that includes e′. Then G[(V (ce′)\{x, y}) ∪ I] is a clique in G. We prove that Opt∗ =

(Opt′\ce′) ∪ G[(V (ce′)\{x, y}) ∪ I] is an optimal solution for G. That is, |Opt∗| ≤ |Opt|.
Assume for the contradiction that |Opt∗| > |Opt|. Then Opt‡ = Opt/I ′ is a solution

for G′ and |Opt‡| = |Opt| < |Opt′|, a contradiction to the assumption that Opt′ is an

optimal solution for G′.

6.1.2 A Parameterized Algorithm on Arbitrary UDGs

Again, we can use a similar brute-force search algorithm as the one described for Clique

Partition in order to obtain a parameterized algorithm for the problem on ε-precision

UDGs. By Proposition 3.3.1 there are at most n2 − n + 1 convex regions in RV (G). We

maintain a matrix whose rows corresponds to convex regions in RV (G) and whose columns

are marked by the edges in E(G). We perform a similar process as the one described before

in order to take care of non-helly sets (See Definition 3.3.2). Therefore, the total number of

guesses for a subset of the regions that can correspond to a clique cover remains the same

as Formula 3.5. Yet in order to check whether a subset R′ of convex regions corresponds to

a valid clique cover (That is, it includes every edge in the graph), this time we need at most

m · |R′| = O(km) = O(kn2) binary operations.

Therefore, the overall running-time of the algorithm would be:

n6k · O(kn2) +O(n7) = O(kn6k+2) = O(n6k+3) for n > 2. (6.1)

Theorem 6.1.2. There is an algorithm that given any integer k, decides in O(n6k+3) time,

if there exists a clique cover of size at most k for an arbitrary UDG.

Combining this with the kernelization result of [70], we get the following.

Corollary 6.1.1. There is an algorithm that given any integer k, decides in O(26k2+3k +

mn) time, if there exists a clique cover of size at most k for an arbitrary UDG.

6.1.3 Analysis

We use a similar approach as the one for Clique Partition in order to obtain parameter-

ization results for Clique Cover problem.

CHAPTER 6. PARAMETERIZED ALGORITHMS FOR OTHER PROBLEMS 90

Definition 6.1.1. [Clique-edge intersection graph]

Let G be the graph obtained after applying the reduction rules and consider ~G. We construct

the clique-edge intersection graph, H = (S, E) in the following way. The vertices in H
correspond to sink vertices S in ~G. Two vertices s1 and s2 are adjacent in H, if there is an

edge e = vw ∈ E(G) such that {v, w} ⊆XG(s1) ∩XG(s2).

Precision UDGs

Given two points p, q at the mutual distance d corresponding to an edge e = vw in a graph

G ∈ UDGε, we denote by Λr,d the intersection of two disks of radii r centered at p and q.

Notice that Λr,ε ⊆ Dr. In order to bound ∆(H), we count the maximum number of convex

regions in Λ1/2,ε ⊂ D1/2.

Lemma 6.1.1. Let ∆(H) denote the maximum degree of the clique-edge intersection graph

H, then ∆(H) can be bounded as follows: ∆(H) ≤ µ1/2 · ηδ ≤ 41/ε4.

Proof. First, we need to calculate the minimum number of disks Dδ required to cover Λ1/2,ε.

We use the fact that Λ1/2,ε ⊂ D1/2 and count the number of Dδ required to cover D1/2

instead. We have previously calculated this number as µr in Lemma 4.2.2 for Dr. Hence,

we get:

µ1/2 = 3

⌈
2

3
(

1

2δ
− 2) + 1

⌉⌈
2

3
(

1

2δ
− 2) + 2

⌉
≤ 6/ε2. (6.2)

After multiplying µ1/2 by ηδ, we get the upper bound on ∆(H).

Theorem 6.1.3. Let G ∈ UDGε. Then its clique-edge intersection graph H has at most

168k/ε4 vertices.

Proof. Without loss of generality, we assume that H is connected. As if it is otherwise,

the solution can be independently obtained on every connected component. Also since the

graph is reduced, every vertex has a degree of at least 2. Let Opt = {c1, · · · , ck} be a

solution for Clique Cover on G. We call a vertex s ∈ V (H) covered if XG(s) ⊆ E(ci)

for some 1 ≤ i ≤ k. For a covered vertex s, we call all edges of H incident to s, covered.

For s′ ∈ V (H), if s′ is not incident to a covered edge, then there is an edge of G[XG(s′)]

not included in any clique in Opt. Therefore, each vertex of H is incident to at least one

covered edge. By Lemma 3.3.1, each clique c ∈ Opt can be replaced by at most 4 vertices

CHAPTER 6. PARAMETERIZED ALGORITHMS FOR OTHER PROBLEMS 91

from V (H). This means that there are at most 4∆(H) vertices of H incident to a covered

edge. Therefore, k ≥ |V (H)|/4(∆(H) + 1). Combining this with Lemma 6.1.1, we get:

|V (H)| ≤ 4k(∆(H) + 1) ≤ 164k/ε4 + 4k. (6.3)

Therefore for ε ≤ 1, |V (H)| ≤ 168k/ε4.

Quasi-precision UDGs

It is easy to observe that a result parallel to Lemma 4.3.2 also holds for Clique Cover.

Lemma 6.1.2. For a (λ, α)-quasi-precision UDG with α ≤ 1/2 which is reduced with respect

to the reduction rules for Clique Cover, |Xi| = O(µ(Ψi, λ)2 + |S2|) for all 1 ≤ i ≤ κ.

Proof. Draw an imaginary circle of radius 1 at each vertex v ∈ N∩(Xi). Let C be the set

of all such circles. Notice that every such a circle intersects ζi in at least two points on

the boundary. Let Φ∗ be the union of all these circles and D(ζi) denote the disk with ζi as

its boundary. Consider the set of all regions R in D(ζi)\Φ∗ formed after intersecting the

boundary of circles with D(ζi). We show that for any r ∈ R, if there are more than two

vertices in V ∩ r, then Rule 2 is applicable to G by setting I = V ∩ r. First notice that

for every vertex v 6∈ N∩(Xi), either I ⊆ N [v] or I ∩N [v] = ∅. Also since r is a region, for

any vertex x ∈ N∩(Xi), either I ⊆ N(x) or none of vertices in I are adjacent to x. Thus,

I can be replaced by a single edge by Rule 2. As a result, in the reduced graph, there can

be at most two vertices left in each region of R. In particular, |Xi| ≤ 2|R|. To complete

the proof, we upper-bound |R|. However, N∩(Xi) ⊆ Ψi by Lemma 4.3.1 and hence we can

safely use an argument similar to the one in Lemma 4.2.1 to count the number of regions in

R knowing that there are at most µ(Ψi, λ)+ |S| vertices in Ψi. Consider the graph obtained

from D(ζi) ∩ Φ∗ ∪ ζi. Intersection point of every two circles in C ∪ ζi forms a vertex of the

graph. Two vertices are connected by an edge in this graph if their corresponding points

are on the same circle in C ∪ ζi. Observe that the vertices which are located on the circle ζi

have degree 3 and there are at most 2(µ(Ψi, λ) + |S|) such vertices. This is while all other

vertices have degree 4 because they are formed by intersecting two circle in C. Let there be

n∗ such vertices. The faces in the graph correspond to the regions R. Notice that we can

get the number of edges in the above planar graph as half of sum of the vertex degrees as

2n∗+ 3(µ(Ψi, λ) + |S|). Using the Euler formula for planar graphs, we can find the number

CHAPTER 6. PARAMETERIZED ALGORITHMS FOR OTHER PROBLEMS 92

of faces (also |R|) as:

|R| = n∗ + µ(Ψi, λ) + |S|+ 2. (6.4)

In the worst case when every two circles in C intersect at one point in D(ζi), we get n∗ =

O(µ(Ψi, λ) + |S|)2. Now since |Xi| ≤ 2|R|, the statement of the lemma holds.

Finally, using the result of Lemma 6.1.3, one can prove that the size of edge-clique inter-

section graph H is a polynomial in k even when the reduced graph is (λ, α)-quasi-precision

UDG with α ≤ 1/2. The details of the approach are very similar to the one for Clique

Partition and hence are omitted here to avoid redundancy.

Corollary 6.1.2. Let G′ ∈ UDG(λ,1/2). Then its clique-edge intersection graph H has

O(k/λ8) vertices.

6.1.4 Fixed-parameter Algorithms on Precision and Quasi-precision UDGs

Again, we can use a similar brute-force search algorithm as the one described for Clique

Partition in order to obtain a fixed-parameter tractable algorithm for the problem on ε-

precision UDGs. By Theorem 6.1.3 (respectively, Corollary 6.1.2), reduced precision (resp.

a quasi-precision) UDG only O(k/ε4) (resp. O(k/λ8)) convex regions remain. We maintain

a matrix whose rows corresponds to convex regions in RV (G) and whose columns are marked

by the edges in E(G). We perform a similar process as the one described before in order to

take care of non-helly sets. Notice that this time, we originally have only |V (H)| = O(k)

rows in the binary matrix described before. Therefore, the time required to pre-process the

matrix for non-helly sets would be O(|V (H)|3n) and after pre-processing at most |V (H)|3

regions are in the set. The pre-processing is only performed once for the whole matrix and

hence for k > 0 this factor is dominated by the time required for guessing the subsets and

checking the validity of the clique cover.

In order to decide whether |Opt(G)| ≤ k, we enumerate all sets of at most k regions

and for each such a set, check whether it corresponds to a clique cover. The number of such

subsets could hence be at most∑
k′≤k

(
|V (H)|3

k′

)
≤ (|V (H)|3 + 1)k = O(23k log |V (H)|). (6.5)

CHAPTER 6. PARAMETERIZED ALGORITHMS FOR OTHER PROBLEMS 93

Taking into account the running-time of O(mn) for applying the reduction rules and O(km)

time for checking the validity of each clique cover, we get the overall time complexity of the

algorithm on ε-precision UDGs as:

O(23k log |V (H)|km+ |V (H)|3n+mn) = O(2(3k+1) log k+12k log 1
ε
+24km+mn). (6.6)

Theorem 6.1.4. There is an algorithm that given any integer k, decides in

O(2(3k+1) log k+12k log 1
ε
+24km+mn) time, if there exists a clique cover of size at most k for

a UDG whose reduced graph is ε-precision.

Similarly, the time complexity of the exact algorithm for Clique Cover on quasi-

precision graphs with α ≤ 1/2 would be:

O(|V (H)|3kkm+ |V (H)|3n+mn) = 2O(k log k
λ

)m+O(mn). (6.7)

Theorem 6.1.5. There is an algorithm that given any integer k, decides in 2O(k log k
λ

)m+

O(mn) time, if there exists a clique cover of size at most k for any UDG whose reduced

graph is (λ, α)-(relaxed)-quasi-precision with α ≤ 1/2.

6.2 Weighted Clique Partition

Another interesting variant is the Weighted Clique Partition where given a graph with

weighted vertices, the goal is to find a partition of vertices of the graph into a set of cliques

such that the sum of minimum weights of vertices in cliques is minimized. Weighted

Clique Partition has been studied in the context of circular arc graphs [10] and interval

graphs [59, 68]. Pirwani and Salavatipour [102] study approximation algorithms for the

problem on UDGs.

Given a graph G = (V,E) with each vertex v ∈ V (G) assigned a positive integer weight

Wt(v). For every clique c of G, we define weight of c, Wt(c) = maxv∈V (c)Wt(v).

Weighted Clique Partition.

Instance: An undirected graph G = (V,E), a non-negative integer k.

Question: Is there a set C of cliques in G such that for every vertex v ∈ V , there

exists at least a clique c ∈ C with v ∈ c and
∑

c∈CWt(c) ≤ k?

CHAPTER 6. PARAMETERIZED ALGORITHMS FOR OTHER PROBLEMS 94

Figure 6.1: A weighted graph on n vertices consisting of two cliques and a perfect matching.
Choosing the two cliques of size n/2 as the partition would results in a solution of weight
2
n
2

+1 while the optimal solution for Weighted Clique Partition is the set of n/2 matchings.

Weighted Clique Partition distinguishes itself from Clique Partition in two ways.

For example, the separability property of cliques discussed in Lemmas 5.1.1 and 5.1.2 does

not hold for the problem. One immediate implication is that in an optimal solution for the

problem, there can be minimal weighted cliques such that their convex hull overlap. Sec-

ondly, the number of cliques in an optimal solution for a UDG in a bounded radius (area)

region is not bounded by the radius (area) of the region.

In particular, it is easy to construct examples for which the clique partition with mini-

mum cardinality is not a weighted clique partition with minimum weight. As an example,

the graph in Figure 6.1 consists of two cliques of n/2 vertices each as well as a perfect match-

ing between the cliques. Choosing the cliques on n/2 vertices would result in a solution of

weight 2n/2+1 while the set of matchings has a smaller weight of
∑n/2

i=1 2i = 2n/2+1 − 1.

CHAPTER 6. PARAMETERIZED ALGORITHMS FOR OTHER PROBLEMS 95

6.2.1 Data Reduction

In order to be able to devise fixed-parameter algorithms for Weighted Clique Parti-

tion, we first get rid of some parts of the graph in a pre-processing data reduction phase.

The intuition behind the reduction rules in similar to the ones for Clique Partition as

discussed in Section 3.4.

Rule 1. If v is an isolated vertex or a vertex adjacent only to covered vertices in G then

remove v from G decrease k by Wt(v).

Rule 2. For a set of vertices included in one clique c of G only, mark every vertex in c as

covered and decrease k by Wt(v).

Rule 3. For a set of maximal cliques C = {c1, · · · , cγ} in G, let I = ∩γi=1V (ci). Assume

that |I| ≥ 2 and N [I] = ∪γi=1V (ci); that is, no other maximal cliques in G intersect

I. We replace I in G with a vertex x with weight Wt(x) = maxv∈IWt(v) and make

x adjacent to N(I).

Theorem 6.2.1. The reduction rules are correct for Weighted Clique Partition UDG

and can be performed in time O(n2.3727 +mn).

Proof. Given a UDG G, in the form of an adjacency matrix, for Rule 1, finding isolated

vertices or those only adjacent to covered vertices can be done by checking every edge of G

in O(m) time for the whole graph. Let G′ be the graph obtained after applying Rule 1 to a

vertex v in G, then the fact that G is a UDG implies that G′ is a UDG. Now we prove the

correctness of Rule 1. Suppose (G, k) is a yes instance and consider an optimal solution Opt

for Weighted Clique Partition on G. Then G[v] ∈Opt. Given any optimal solution

Opt′ for G′, Opt′ ∪G[v] is a solution for G. If Wt(Opt′) ≤Wt(Opt)−Wt(v), then Opt′

is an optimal solution for G and we are done. Assume Wt(Opt′) > Wt(Opt) −Wt(v).

However, Opt\G[v] is a solution for G′ and Wt(Opt\G[v]) < Wt(Opt′), a contradiction.

For Rule 2, in order to find out whether a vertex is included in one maximal clique c

of G only, we need to check for every vertex v ∈ V (G) if G[N [v]] is a clique. This can be

done by checking the presence of all edges in G[N [v]] in deg2(v) time for v and in O(nm)

time for the whole graph. Notice that the vertices removed according to Rule 1 and Rule 2,

are simplicial vertices and hence recognizing all such vertices can be done using fast matrix

CHAPTER 6. PARAMETERIZED ALGORITHMS FOR OTHER PROBLEMS 96

multiplication [83]. Let A be the adjacency matrix of G with 1 entries on its diagonal.

To recognize all simplicial vertices, one needs to calculate A2. This can be performed in

O(n2.3727) time [114]. Once a simplicial vertex x is removed from the graph, one can re-

calculate A2 in O(deg2(x)) time. Therefore, exhaustive application of Rules 1 and 2 takes

O(n2.3727 + nm) in total.

Rule 2 also does not change the structure of the graph. Let G′ be the graph obtained

after applying Rule 2 to G. Consider an optimal solution Opt for Weighted Clique

Partition on G and let cv be the clique in Opt that includes v. Let Opt′ be an optimal

solution for G′. Then Opt′ ∪ cv is a solution for G. If Wt(Opt′ ∪ cv) ≤ Wt(Opt), then

we are done. Assume Wt(Opt′ ∪ cv) > Wt(Opt). Then Wt(Opt′) > Wt(Opt)−Wt(cv).

Yet, Opt\cv is a solution for G′ of size Wt(Opt)−Wt(cv), A contradiction.

For Rule 3, we need to construct the set I in the neighborhood of every vertex v. This

can be done by checking for a maximum subset of vertices I ⊆ N [v] such that for every

vertex x ∈ I, N [x] = N [v]. Given G in form of an adjacency matrix, one can construct

this subset in the following way. Initially, we set I = {v}. For every 1 entry in the row

corresponding to vertex v, we check if the row corresponding to that entry is exactly the

same as the one for v and if it is the case, we add the corresponding vertex to I. This

can be done in deg2(v) time for v and in O(nm) time for the entire graph. Similarly, this

step can be performed using fast matrix multiplication in time O(n2.3727) using the matrix

multiplication [114]. Replacing I with a vertex can be done in constant time.

It remains to show that after applying the reduction Rule 3, the graph can still be rep-

resented as a UDG. To see this, notice that G[I] is a clique and hence contracting I to

a vertex corresponds to removing all the vertices in I except for one. The UDG for the

reduced graph is then obtained after removing the respective points.

If Rule 3 is applied, then there exists a collection of maximal cliques C = {c1, ..., cγ} in

G such that N [I] = ∪γi=1V (ci). Let G′ be the graph obtained after contracting G[I] into a

vertex x and Opt be an optimal solution for Weighted Clique Partition on G. Notice

that the size of every clique in C/G[I] is at least 2. We prove that Opt′ = Opt/G[I] is

an optimal solution for G′. For the sake of contradiction, assume that G′ has a solution

Opt∗ with Wt(Opt∗) < Wt(Opt′) and let C† = {cj ∈ C|cj/G[I] ∈ Opt∗}. Then one can

construct a solution Opt† = Opt∗\(C†/G[I])∪C† for G such that Wt(Opt†) = Wt(Opt∗).

CHAPTER 6. PARAMETERIZED ALGORITHMS FOR OTHER PROBLEMS 97

However, since Wt(Opt) = Wt(Opt′), we get Wt(Opt†) < Wt(Opt), a contradiction.

Now assume that Opt′ is an optimal solution for G′ and let cx ∈ Opt′ be the clique that

includes x. Then G[(V (cx)\x) ∪ I] is a clique in G and Wt(G[(V (cx)\x) ∪ I]) = Wt(cx).

We prove that Opt∗ = (Opt′\cx) ∪ G[(V (cx)\x) ∪ I] is an optimal solution for G. That

is, Wt(Opt∗) ≤ Wt(Opt). Assume for the contradiction that Wt(Opt∗) > Wt(Opt).

Then Opt‡ = Opt/G[I] is a solution for G′ and Wt(Opt‡) = Wt(Opt) < Wt(Opt′), a

contradiction to the assumption that Opt′ is an optimal solution for G′.

6.2.2 Analysis

A closer look at the reduction rules introduced for Weighted Clique Partition reveals

that they are analogous to the ones introduced in Chapter 3 for Clique Partition in terms

of criteria for the application of the rules and the modification that each rule applies to the

structure of the graph with the only difference being the weight assigned to the vertices in

the reduced instance. It follows that one can use a similar analysis as the one performed

for Clique Partition to show that the size of clique intersection graph for the reduced

instance is O(k) when the input graph is provided as a precision or a quasi-precision UDG.

Lemma 6.2.1. Let Opt(G′) the optimal solution for Minimum Clique Partition on the

reduced graph G′ and k a parameter for Weighted Clique Partition such that G is a

yes-instance. Then |Opt(G′)| ≤ k.

Proof. Notice that Wt(v) ≥ 1 for every vertex v of G. Also since the reduction rules do not

create a vertex with a larger weight than the original vertices, the weight of every vertex

of G′ is at least 1. Now assume that there exists a solution C for Weighted Clique

Partition on G′of weight k. Clearly, C is also a solution for Clique Partition on G′.

Also for every clique c ∈ C, by the argument provided earlier Wt(c) ≥ 1. Therefore,

|C| ≤ Wt(C) =
∑

c∈CWt(c) = k. Finally, by the definition of Opt(G′), it follows that

|Opt(G′)| ≤ |C|. Thus |Opt(G′)| ≤ k.

Given a graph G, let Opt(G) be an optimal solution for Minimum Clique Partition.

Clearly if we set k = |Opt(G)|, then G would be a yes-instance for Clique Partition

and hence Theorems 4.3.1 and 4.2.1 hold. Therefore, as a consequence of Lemma 6.2.1, the

following corollaries hold for Weighted Clique Partition.

CHAPTER 6. PARAMETERIZED ALGORITHMS FOR OTHER PROBLEMS 98

Corollary 6.2.1. Let H be the clique intersection graph for an ε-precision UDG which is

reduced according to the reduction rules for Weighted Clique Partition. Then if G is

a yes-instance, |V (H)| ≤ 728k/ε4 for ε ≤ 1.

Corollary 6.2.2. Let H be the clique intersection graph for a (λ, α)-quasi-precision UDG

with α ≤ 1/2 which is reduced according to the reduction rules for Weighted Clique

Partition. Then if G is a yes-instance, |V (H)| = O(k/λ8).

6.2.3 Fixed-parameter Algorithms

Next we describe how to use convex regions in order to obtain an FPT for Weighted

Clique Partition on the precision and quasi-precision UDGs.

We use an approach similar to the one for Clique Partition in Section 6.2.3. The only

difference is that here for every guessed set of convex regions, we need to calculate the size

of the solution with respect to the weight of the clique that it represents. Given a subset

of convex regions R′, this can be performed in O(n). Since every vertex in G and hence

G′ has a weight larger than 1, as before, there can be at most k cliques in every feasible

solution. The overall time-complexity of the algorithm can therefore be calculated similar

to Section as:

O(2(3k+1) log k+12k log 1
ε
+30kn+mn). (6.8)

for ε-precision UDGs and as:

2O(k log k
λ

)n+O(mn) (6.9)

for (λ, α)-quasi precision UDG with α ≤ 1/2.

Theorem 6.2.2. There is an algorithm that given any integer k, decides in

O(2(3k+1) log k+12k log 1
ε
+30kn + mn) time, if there exists a clique partition of weight at most

k for a UDG whose reduced graph is ε-precision.

Theorem 6.2.3. There is an algorithm that given any integer k, decides in 2O(k log k
λ

)n +

O(mn) time, if there exists a clique partition of weight at most k for a UDG G whose reduced

graph is (λ, α)-(relaxed)-quasi-precision with α ≤ 1/2.

CHAPTER 6. PARAMETERIZED ALGORITHMS FOR OTHER PROBLEMS 99

6.3 Summary and Future Work

In an attempt to generalize the parameterization approach of Chapter 3 for Clique Parti-

tion on UDGs, to other clique covering problems, we study the problems of Clique Cover

and Weighted Clique Partition on UDGs. Despite the similarities in their definitions

to Clique Cover, the latter problems exhibit very different structural and computational

complexity behaviors. Introducing a set of reduction rules for Clique Cover, we show how

the framework in Chapter 3 can be adapted in order to obtain parameterization algorithms

for Clique Cover on UDGs. Particularly, when considering arbitrary UDGs as input,

using a similar approach as the one for Clique Partition, we construct a brute-force al-

gorithm of running-time O(n6k+3) for the problem. We further devise FPT algorithms for

Clique Cover on the classes of ε-precision and (λ, α)-(relaxed)-quasi-precision UDGs of

running-times O(2(3k+1) log k+12k log 1
ε
+24km+mn) and 2O(k log k

λ
)m+O(mn) respectively.

Our solution for the Weighted Clique Partition is more straightforward. Partic-

ularly, our introduced set of reduction rules for the problem are structurally analogous to

those of Clique Partition in Section 3.4. Therefore, using the analysis of Chapter 3, we

can first obtain parameterization results with respect to a parameter which is the size of

optimal Minimum Clique Partition of the instance. We complete the proof by proving

a reduction from Weighted Clique Partition to Minimum Clique Partition. This

leads to fixed-parameter algorithms of running-times O(2(3k+1) log k+12k log 1
ε
+30kn+mn) and

2O(k log k
λ

)n+O(mn) for Weighted Clique Partition on the classes of ε-precision UDGs

and (λ, α)-(relaxed)-quasi-precision UDGs with α ≤ 1/2, respectively. To the best of our

knowledge, this is the first parameterization results for the above problems on UDGs.

The framework introduced here might be able to be tailored to obtain parameterization

results for other related problems. For the readers’ interest, we also mention a few other

related problems below. Problems of Biclique Vertex Partition/Cover are studied in

[60] where the goal is to partition/cover the vertex set of a given graph into minimum number

of complete bipartite subgraphs (bicliques). When parameterized by the number of bicliques

in the solution, unlike Clique Partition/Cover, Biclique Vertex Partition/Cover

problems are not in Fpt even when the input graph is restricted to be bipartite.

Another version of the problems where instead of V the edge set of the graph is required

to be partitioned/covered is referred to as Biclique Partition/Cover in [60]. It is known

that Biclique Partition/Cover to admit exponential kernels of at most 3k vertices in

CHAPTER 6. PARAMETERIZED ALGORITHMS FOR OTHER PROBLEMS 100

the class of general graphs and at most 2k+1 vertices in the class of bipartite graphs and

hence is fixed-parameter tractable [60]. The vertex cover number, is a trivial upper bound

on the size of the parameters for the two latter problems.

Chapter 7

A General Kernelization

Framework on Quasi-precision

UDGs

In this chapter, we propose a general framework for polynomial-size kernelization of problems

on subclasses of UDGs.

7.1 Introduction

Definition 7.1.1. [Neighborhood equivalent]

Given a graph G and u, v ∈ V (G), u is called neighborhood equivalent of v, denoted u ≡n v,

if N [v] = N [u].

Notice that ≡n is an equivalence relation. Given a vertex v ∈ V (G), we denote by [v]n the

equivalence class representing v under the neighborhood equivalence relation.

Definition 7.1.2. [UDG edge contraction]

An edge e = xy of E(G) is UDG contractible if the graph obtained after contracting e is still

realizable as a UDG. If x ≡n y then e = xy is a UDG contractible edge of G. In particular,

G/e is a UDG obtained by removing either of the disks D(x) or D(y) from G. This is since

the graph representation of G\x (likewise G\y) is the same as the graph representation of

G/e as N [x] = N [y].

101

CHAPTER 7. KERNELIZATION FRAMEWORK ON QUASI-PRECISION UDGS 102

Definition 7.1.3. [Replicate-redundant]

A parameterized problem Π is called replicate-redundant if for every instance (G, k) ∈ Π,

any vertex v ∈ V (G) and any subset S ⊆ [v]n of neighborhood equivalent vertices it holds

that (G/G[S], k) ∈ Π. If the above condition holds for any S ⊆ [v]n, then Π is called (vertex)

replicate-redundant otherwise if the condition holds for any S ⊂ [v]n (but not for S = [v]n),

Π is called (edge) replicate-redundant.

It is easy to observe that in the above definition, (vertex) replicate-redundant is a stronger

requirement. Hence, any (vertex) replicate-redundant problem is also (edge) replicate-

redundant (yet, the converse is not true). A few examples of (vertex) replicate-redundant

problems are Dominating Set, Clique Partition, Minimum Fill-in and Independent

Set while Clique Cover is an (edge) replicate-redundant problem.

7.2 Data Reduction

We propose the following generic data reduction rule for the replicate-redundant problems.

Generic reduction rule.

Let v be a vertex in UDG G and [v]n denote the equivalence class of v under the neighbor-

hood equivalence relation. Contract G[[v]n] to Kc for c a small constant depending on the

problem (typically c = 1 or c = 2).

Observation: For an arbitrary vertex v, the set of neighborhood equivalent vertices [v]n

induces a clique in G which is not maximal unless the connected component containing v is

a clique.

Reminder: A data reduction rule is called correct if the new instance after an application

of the rule is a yes-instance if and only if the original instance is a yes-instance.

Theorem 7.2.1. The generic reduction rule is correct for a replicate-redundant problem

and can be performed in time O(n2.3727) on a UDG with n vertices.

Proof. For a replicate-redundant problem, by definition, contracting a set of neighborhood

equivalent vertices into a single vertex does not change the size of an optimal solution.

CHAPTER 7. KERNELIZATION FRAMEWORK ON QUASI-PRECISION UDGS 103

Therefore, the generic reduction rule is correct if the rule is applied with c = 1 for a (ver-

tex) replicate-redundant problem and likewise with c = 2 for an (edge) replicate-redundant

problem. Also notice that after applying the generic reduction rule, the graph is still re-

alizable as a UDG. This is since by Definition 7.1.2, contracting the set of neighborhood

equivalent vertices G[[v]n] to Kc is equivalent to removing all except for c of vertices from

[v]n. Therefore, one can equivalently obtain a disk representation of the graph by removing

all except for c of the disks for the points located in the region representing [v]n.

Next, we analyze the time complexity of the reduction for a UDG. First, we need to find

the neighborhood equivalence class of every vertex v, denoted [v]n. Given G in form of an

adjacency matrix A (with entries on the diagonal set to 1), one can construct this subset

in the following way. We maintain a set N and initially let N = {v}. For every 1 entry

(a vertex in N [v]) in the row in A corresponding to vertex v, we check if the row corre-

sponding to that entry is exactly the same as the one for v and if it is the case, we add the

corresponding vertex to N . Finally set [v]n = N . In the worst case, we should perform this

search for every vertex v ∈ V (G). This can be done in deg2(v) time for v and in O(nm)

time for a graph with m edges.

This step can alternatively be performed using fast matrix multiplication. Notice that

for every pair of vertices u, v ∈ V (G),
(
A2
)
u,v

= |N [u] ∩N [v]|. To decide if u ≡n v, it is

sufficient to check if |N [u] ∩N [v]| = |N [u]| = |N [v]|. Hence, u ≡n v, if
(
A2
)
u,v

=
(
A2
)
u,u

=(
A2
)
v,v

. To contract G[[v]n] to Kc, we remove all except for c of the points arbitrarily from

the points within the region corresponding to [v]n. This can be done in a constant time.

Therefore, application of the reduction rule to G takes O(n2.3727) time using the matrix

multiplication algorithm reported in [114].

Theorem 7.2.2. Let Π be a replicate-redundant problem such that Π admits a polynomial-

size kernel on bounded-degree UDGs. Then Π admits a polynomial-size kernel on a UDG

such that its reduced graph with respect to the generic reduction rule is (λ, α)-quasi-precision

with α ≤ 1/2.

We provide a proof for this theorem in the next section. As we shall see later, Theo-

rem 7.2.2 applies to a number of important NP-hard problem including Dominating Set,

Connected Dominating Set, Maximum Independent Set, Clique Partition and

Clique Cover.

CHAPTER 7. KERNELIZATION FRAMEWORK ON QUASI-PRECISION UDGS 104

We also obtain another interesting result as a consequence.

Cluster Vertex Deletion.

Instance: An undirected graph G = (V,E), and a non-negative integer k.

Question: Is there a vertex set S ⊆ V with |S| ≤ k such that deleting all vertices in

S from G results in a graph where every connected component is a complete graph?

Cluster vertex deletion number of a graph G is the minimum integer k for which (G, k) is a

yes-instance for Cluster Vertex Deletion

Corollary 7.2.1. Let Π be a replicate-redundant problem such that Π admits a polynomial-

size kernel on bounded-degree UDGs. Then Π admits a polynomial-size kernel on arbitrary

UDGs when parameterized by cluster vertex deletion number.

This is in accordance with the recent work of Doucha & Kratochv́ıl [52] which proposes

cluster vertex deletion number as a parameter under which many problems admit FPT.

7.3 Analysis

We recall that, given a (λ, α)-quasi-precision graph G = (V,E) with α ≤ 1/2, we define

X = V<λ\S and let X1, ..., Xκ be a partition of X into dense islands such that each Xi is

bounded in a circle ζi of radius αi ≤ α for 1 ≤ i ≤ κ. Further, Ψi is the annulus bounded

between circles of radii 1 + αi and 1 − αi concentric with ζi. Also for a subset P of the

plane, we define µ(P, d) as the maximum number of points that can be placed in P with

the restriction that every pair of points are at pairwise Euclidean distance of at least d.

The following crucial lemma is a direct result of Lemma 4.3.1 and the definition of generic

reduction rule.

Lemma 7.3.1. Let G′, the graph obtained after applying the generic reduction rule, be

(λ, α)-quasi-precision UDG with α ≤ 1/2, then |Xi| = O((µ(Ψi, λ)+ |S|)2) for all 1 ≤ i ≤ κ.

Proof. Draw an imaginary circle of radius 1 at each vertex v ∈ N∩(Xi). Let C be the set

of all such circles. Notice that every such a circle intersects ζi in at least two points on

the boundary. Let Φ∗ be the union of all these circles and D(ζi) denote the disk with ζi as

its boundary. Consider the set of all regions R in D(ζi)\Φ∗ formed after intersecting the

CHAPTER 7. KERNELIZATION FRAMEWORK ON QUASI-PRECISION UDGS 105

boundary of circles with D(ζi). We show that for any r ∈ R and a vertex w ∈ V ∩ r̄, if

|V ∩ r̄| > c, then the generic reduction rule is applicable to G′ by setting [w]n = V ∩ r̄. First,

notice that for every vertex v 6∈ N∩(Xi), either V ∩ r̄ ⊆ N [v] or V ∩ r̄∩N [v] = ∅. Also since

r is a region, for any vertex x ∈ N∩(Xi), either V ∩ r̄ ⊆ N(x) or none of vertices in V ∩ r̄ are

adjacent to x. Therefore, vertices in V ∩ r̄ are neighborhood equivalent. Thus, G′[[w]n] can

be contracted to Kc for a constant c. Therefore, after applying the generic reduction rule,

at most c vertices remain in each region in R. In other words, |Xi| ≤ c|R|. To complete

the proof, we upper-bound |R|. However, N∩(Xi) ⊆ Ψi by Lemma 4.3.1 and hence we can

safely use an argument similar to the one in Lemma 4.2.1 to count the number of regions in

R knowing that there are at most µ(Ψi, λ)+ |S| vertices in Ψi. Consider the graph obtained

from D(ζi) ∩ Φ∗ ∪ ζi. Intersection point of every two circles in C ∪ ζi forms a vertex of the

graph. Two vertices are connected by an edge in this graph if their corresponding points

are on the same circle in C ∪ ζi. Observe that the vertices which are located on the circle ζi

have degree 3 and there are at most 2(µ(Ψi, λ) + |S|) such vertices. This is while all other

vertices have degree 4 since they are formed by intersecting two circle in C. Let there be

n∗ such vertices. The faces in the graph correspond to the regions R. Notice that we can

get the number of edges in the above planar graph as half of sum of the vertex degrees as

2n∗+ 3(µ(Ψi, λ) + |S|). Using the Euler formula for planar graphs, we can find the number

of faces (also |R|) as n∗ + µ(Ψi, λ) + |S| + 2. In the worst case when every two circles in

C intersect at one point in D(ζi), we get n∗ = O(µ(Ψi, λ) + |S|2). Since |Xi| ≤ c|R|, the

statement of the lemma holds.

Corollary 7.3.1. |Xi| ≤ 576cα2
i /λ

4.

Proof. To calculate |Xi|, we simply replace the value of µ(Ψi, λ) in the result of Lemma 7.3.1.

Notice that µ(Ψi, λ) has been previously calculated in Lemma 4.3.3 as 24αi/λ
2.

Lemma 7.3.2. Let ∆(G′) be the maximum degree of the reduced graph obtained after applying

the generic reduction rule to G. Then, ∆(G′) = O(1/λ4).

Proof. We consider a disk D of radius 1 centered at an arbitrary point in the plane. To get

the bound on ∆(G′), we use an approach similar to Lemma 4.2.2. We count the maximum

number of points that can be inside or on the boundary of D. To do so, we cover D with

disks of radius α and consider the case where some of the disk contain dense islands. In this

way, one can repeat the approach of Lemma 4.3.3 to get a cover with at most µ(D, 2α) disks

CHAPTER 7. KERNELIZATION FRAMEWORK ON QUASI-PRECISION UDGS 106

of radius α. Also, assuming the worst case scenario where each disks Dα is inside dense

island, we can get the bound on the number of vertices inside the disk from Corollary 7.3.1.

Therefore,

|V ′ ∩ D| ≤ |V ′ ∩ Dα| · µ(D, 2α) ≤ 576α2

λ4
· 6

α2
≤ 3456

λ4
. (7.1)

Finally, we show a proof for Theorem 7.2.2 based on the previous lemmas.

Proof of Theorem 7.2.2.

Let G′ be the graph obtained after applying the generic reduction rule repeatedly to the

input graph. To prove the kernel bound, we show that if α ≤ 1/2 then the size of G′ can

be upper-bounded by a polynomial in (1/λ) and the parameter k. First of all notice that

by the definition of a replicate-redundant problem, the generic reduction rule is correct for

Π. Let c be the constant in the generic reduction rule. By Lemma 7.3.2, the maximum

degree of G′ is bounded by O(1/λ4). Let f(k,∆) = O(kβ∆γ) be the kernel-size for the

problem Π on any graph with maximum degree ∆. Then the size of G′ can be bounded by

O(kβ/λ4γ).

7.4 Application

Finally we demonstrate how the discussed framework on quasi-precision UDGs can be ap-

plied to a number of interesting combinatorial problems. In particular, for each problem

studied in this section, in order to show that the framework applies, its enough to prove that

the problem is replicate-redundant and admits polynomial-size kernels on bounded-degree

graphs.

7.4.1 Dominating Set

Dominating Set.

Instance: An undirected graph G = (V,E) and a non-negative integer k.

Question: Is there a subset D ⊆ V of vertices with |D| ≤ k such that every vertex

in V \D is adjacent to at least one vertex in D?

CHAPTER 7. KERNELIZATION FRAMEWORK ON QUASI-PRECISION UDGS 107

Dominating Set problem isW [2]-complete on arbitrary graphs andW [1]-hard on bounded-

area UDGs and hence is not kernelizable but admits kernels of O((j + 1)2(i+1)k2i2) vertices

on graphs excluding biclique Ki,j as a subgraph [101].

Lemma 7.4.1. Dominating Set is (vertex) replicate-redundant and admits a linear-size

kernel on bounded-degree graphs.

Proof. We first prove that the problem is (vertex) replicate-redundant, that is, given any

set N of neighborhood equivalent vertices and an input graph G, contracting G[N] to a

vertex x does not change the size of any optimal solution Opt for Dominating Set on

G. Let G′ = G/G[N]. We claim that Opt′ = Opt/G[N] is an optimal solution for G′.

Since the vertices in N are neighborhood equivalent and G[N] is a clique (by Observa-

tion 7.2), NG[N] is dominated by any vertex in N such as x. Therefore, |Opt ∩ N | ≤ 1

and |Opt| = |Opt/G[N]|. Suppose for contradiction that Opt′ is not an optimal solution

for G′ and there is a solution Opt† with |Opt†| < |Opt′|. Then Opt† ∩NG′ [x] dominates

NG[N]. Therefore Opt† is also a solution for G and |Opt†| < |Opt|. A contradiction.

Now assume an optimal solution Opt′ for G′. We claim that Opt′ is also an optimal solution

for G. Suppose for contradiction that there is a solution Opt∗ for G with |Opt∗| < |Opt′|.
Then Opt∗/G[N] is a solution for G′ and as shown before |Opt∗/G[N]| = |Opt∗|. There-

fore, |Opt∗/G[N]| < |Opt′|. A contradiction.

One can get a trivial kernel for the problem on graphs of bounded-degree in the follow-

ing way. Since the degree of every vertex in G is bounded by ∆(G), any vertex in Opt

can dominate at most ∆(G) + 1 vertices (including itself). Therefore we need at least

n/(∆(G) + 1) vertices in an optimal solution. That is, n ≤ k · (∆(G) + 1).

7.4.2 Connected Dominating Set

Connected Dominating Set.

Instance: An undirected graph G = (V,E) and a non-negative integer k.

Question: Is there a subset D ⊆ V of vertices with |D| ≤ k and G[D] connected such

that every vertex in V \D is adjacent to at least one vertex in D?

Connected Dominating Set problem is W [2]-complete on arbitrary graphs and remains

NP-complete when restricted to UDGs. However, it is known to admit PTASs on this class

CHAPTER 7. KERNELIZATION FRAMEWORK ON QUASI-PRECISION UDGS 108

of graphs [25].

Lemma 7.4.2. Connected Dominating Set is (vertex) replicate-redundant and admits

a linear-size kernel on bounded-degree graphs.

Proof. We first prove that the problem is (vertex) replicate-redundant, that is, given any set

N of neighborhood equivalent vertices and an input graph G, contracting G[N] to a vertex x

does not change the size of any optimal solution Opt for Connected Dominating Set on

G. Let G′ = G/G[N]. We claim that Opt′ = Opt/G[N] is an optimal solution for G′. Since

the vertices in N are neighborhood equivalent and G[N] is a clique (by Observation 7.2),

NG[N] is dominated by any vertex in N such as x and G[Opt′] is connected. Therefore,

|Opt∩N | ≤ 1 and |Opt| = |Opt/G[N]|. Suppose for contradiction that Opt′ is not an op-

timal solution for G′ and there is a solution Opt† with |Opt†| < |Opt′|. Then Opt†∩NG′ [x]

dominates NG[N]. Therefore Opt† is also a solution for G and |Opt†| < |Opt|. A contra-

diction.

Now assume an optimal solution Opt′ for G′. We claim that Opt′ is also an optimal solution

for G. Suppose for contradiction that there is a solution Opt∗ for G with |Opt∗| < |Opt′|.
Then Opt∗/G[N] is a solution for G′ and as shown before |Opt∗/G[N]| = |Opt∗|. There-

fore, |Opt∗/G[N]| < |Opt′|. A contradiction.

One can get a trivial kernel for the problem on graphs of bounded-degree in the follow-

ing way. Since the degree of every vertex v in G is bounded by ∆(G), any vertex in Opt

has at most ∆(G) − 1 vertices adjacent to it which are not included in Opt. This is since

G[Opt] is connected and hence at least one neighbor of v is in Opt. Therefore we need at

least n/∆(G) vertices in an optimal solution. That is, n ≤ k ·∆(G).

7.4.3 Independent Set

Independent Set.

Instance: An undirected graph G = (V,E) and a non-negative integer k.

Question: Is there a subset I ⊆ V of vertices with |I| ≤ k such that no two vertices

in I are adjacent?

The problem of Independent Set remains in W [1] even on the class of bounded-area

UDGs [78].

CHAPTER 7. KERNELIZATION FRAMEWORK ON QUASI-PRECISION UDGS 109

Lemma 7.4.3. Independent Set is (vertex) replicate-redundant and admits a linear-size

kernel on bounded-degree graphs.

Proof. We first prove that the problem is (vertex) replicate-redundant, that is, given any

set N of neighborhood equivalent vertices and an input graph G, contracting G[N] to a

vertex x does not change the size of any optimal solution Opt for Independent Set on

G. Let G′ = G/G[N]. We claim that Opt′ = Opt/G[N] is an optimal solution for G′.

Since the vertices in N are neighborhood equivalent and G[N] is a clique (by Observa-

tion 7.2), |Opt ∩ N | ≤ 1 and |Opt| = |Opt/G[N]|. Suppose for contradiction that Opt′

is not an optimal solution for G′ and there is a solution Opt† with |Opt†| > |Opt′|. Then

Opt† ∩ NG′ [x] is an independent set for NG[N]. Therefore Opt† is also a solution for G

and |Opt†| > |Opt|. A contradiction.

Now assume an optimal solution Opt′ for G′. We claim that Opt′ is also an optimal solution

for G. Suppose for contradiction that there is a solution Opt∗ for G with |Opt∗| > |Opt′|.
Then Opt∗/G[N] is a solution for G′ and as shown before |Opt∗/G[N]| = |Opt∗|. There-

fore, |Opt∗/G[N]| > |Opt′|. A contradiction.

If ∆(G) is known, one can get an easy lower bound on the size of any independent set

in G. Consider a greedy approach, where repeatedly an arbitrary vertex w is added to the

independent set while removing N [w] from G. Clearly, at each step one vertex is added to

the independent set and the graph shrinks by at most ∆(G)+1 vertices. Therefore, the size

of any independent set is larger than n/(∆(G) + 1). Therefore, n = O(k ·∆(G)).

7.4.4 Clique Cover

Clique Cover.

Instance: An undirected graph G = (V,E), a non-negative integer k.

Question: Is there a set C of cliques in G such that for every edge e ∈ E, there exists

at least one clique c ∈ C with e ∈ c and |C| ≤ k?

Clique Cover is NP-complete even when restricted to planar graphs and does not admit

a polynomial-size kernel on arbitrary graphs [31].

Lemma 7.4.4. Clique Cover is (edge) replicate-redundant and admits a linear-size kernel

on bounded-degree graphs.

CHAPTER 7. KERNELIZATION FRAMEWORK ON QUASI-PRECISION UDGS 110

Proof. We first prove that the problem is (edge) replicate-redundant. That is, given any set

N of neighborhood equivalent vertices and an input graph G, contracting G[N] to an edge

e = vw does not change the size of any optimal solution Opt for Clique Cover on G. Let

C = {c1, ..., cγ} be the set of maximal cliques in G that intersect N . That is, N ⊆ V (ci) for

1 ≤ i ≤ γ. Notice that in Rule 2 in Section 6.1.1, we defined I = ∩γi=1V (ci). Clearly, set I is

a neighborhood equivalent set in G and hence the generic reduction rule for Clique Cover

would translate to Rule 2 as discussed in Section 6.1.1. Yet for the sake of completeness,

we restate the proof here.

Let N ′ = G[N]\vw. Then G′ = G/N ′ is the graph obtained after performing the con-

traction operation. We first show that Opt′ = Opt/N ′ is an optimal solution for G′. For

the sake of contradiction, assume that G′ has a solution Opt∗ smaller than Opt/N ′ and let

C† = {cj ∈ C|cj/N ′ ∈ Opt∗}. Then one can construct a solution Opt† = Opt∗\(C†/N ′)∪C†

for G such that |Opt†| = |Opt∗|. However, since |Opt| = |Opt′|, we get |Opt†| < |Opt|,
a contradiction.

Now, assume that Opt′ is an optimal solution for G′ and let ce ∈ Opt′ be the clique

that includes e. Then G[(V (ce)\{x, y}) ∪ N] is a clique in G. We prove that Opt∗ =

(Opt′\ce) ∪ G[(V (ce)\{x, y}) ∪ N] is an optimal solution for G. That is, |Opt∗| ≤ |Opt|.
Assume for the contradiction that |Opt∗| > |Opt|. Then Opt‡ = Opt/N ′ is a solution

for G′ and |Opt‡| = |Opt| < |Opt′|, a contradiction to the assumption that Opt′ is an

optimal solution for G′. The proof of existence of polynomial-size kernel for the problem on

bounded-degree graphs is trivial and is inferred from the discussions in Chapter 6.

7.4.5 Clique Partition

Clique Partition.

Instance: An undirected graph G = (V,E), a non-negative integer k.

Question: Is there a set C of cliques in G such that for every vertex v ∈ V , there

exists at least a clique c ∈ C with v ∈ c and |C| ≤ k?

For general graphs, Clique Partition is equivalent to Vertex Coloring of the comple-

ment graph and hence is not kernelizable and is inapproximable within n1−δ for any δ > 0

[54]. It remains NP-complete even when restricted to unit coin graphs [22] – a subclass of

precision UDGs with maximum degree of 5.

CHAPTER 7. KERNELIZATION FRAMEWORK ON QUASI-PRECISION UDGS 111

Lemma 7.4.5. Clique Partition is (vertex) replicate-redundant and admits a linear-size

kernel on bounded-degree graphs.

Proof. We first prove that the problem is (vertex) replicate-redundant, that is, given any

set N of neighborhood equivalent vertices and an input graph G, contracting G[N] to a

new vertex x does not change the size of any optimal solution Opt for Clique Partition

on G. Let C = {c1, ..., cγ} be the set of maximal cliques in G that intersect N . That is,

N ⊆ V (ci) for 1 ≤ i ≤ γ. Notice that in Rule 3 in Section 3.4, we defined I = ∩γi=1V (ci).

Clearly, set I is a neighborhood equivalent set in G and hence the generic reduction rule for

Clique Partition would translate to Rule 3 as discussed in Section 3.4. Yet for the sake

of completeness, we restate the proof here.

Let G′ = G/G[N]. We claim that Opt′ = Opt/G[N] is an optimal solution for G′. For the

sake of contradiction, assume that G′ has a solution Opt∗ with Opt∗ < Opt′ and let C† =

{cj ∈ C|cj/G[N] ∈ Opt∗}. Then one can construct a solution Opt† = Opt∗\(C†/G[N])∪C†

for G such that |Opt†| = |Opt∗|. However, since |Opt| = |Opt′|, we get |Opt†| < |Opt|,
a contradiction.

Now, assume that Opt′ is an optimal solution for G′ and let cx ∈ Opt′ be the clique

that includes the new vertex x. Then G[(V (cx)\x) ∪ N] is a clique in G. We prove that

Opt∗ = (Opt′\cx)∪G[(V (cx)\x)∪N] is an optimal solution for G. That is, |Opt∗| ≤ |Opt|.
Assume for the contradiction that |Opt∗| > |Opt|. Then Opt‡ = Opt/G[N] is a solution

for G′ and |Opt‡| = |Opt| < |Opt′|, a contradiction to the assumption that Opt′ is an

optimal solution for G′.

The proof of existence of polynomial-size kernel for the problem on bounded-degree graphs

is trivial and is inferred from the discussion in Section 4.2.

Corollary 7.4.1. Dominating Set, Connected Dominating Set, Maximum Inde-

pendent Set, Clique Partition and Clique Cover admit kernels linear in the solution

size and polynomial in λ when the reduced graph with respect to the generic reduction rule

(alternatively the input graph) is (λ, α)-quasi-precision with α < 1/2.

Corollary 7.4.2. Dominating Set, Connected Dominating Set, Maximum Inde-

pendent Set, Clique Partition and Clique Cover admit polynomial-size kernels on

CHAPTER 7. KERNELIZATION FRAMEWORK ON QUASI-PRECISION UDGS 112

arbitrary UDGs when parameterized with respect to cluster vertex deletion number.

CHAPTER 7. KERNELIZATION FRAMEWORK ON QUASI-PRECISION UDGS 113

7.5 Summary

We designed a general framework for polynomial kernelization of problems on quasi-precision

unit disk graphs (UDGs) through the introduction of a simple generic data reduction rule.

Specifically, we proved that when λ is set as a parameter, polynomial-size kernels and hence

FPT results are attainable for numerous problems on a large class of (λ, α)-quasi-precision

UDGs. Our framework indeed applies in a stronger form when the reduced graph with

respect to the generic reduction rule (rather than the input instance) is (λ, α)-quasi-precision

with α ≤ 1/2.

Furthermore, we characterized the problems for which a polynomial-size kernels are

derivable through the application of this framework by providing sufficient criteria for the

correctness of the generic reduction rule. The problems covered in this framework include

many classical NP-hard problem for which no positive kernelization results were known

beforehand on any non-trivial graph class. Among those are Dominating Set, Clique

Cover, Clique Partition and Independent Set.

Chapter 8

Conclusion and Future Work

8.1 Summary of Contributions

We designed a framework obtaining parameterization and fixed-parameter tractable algo-

rithms on unit disk graphs (UDGs). Our approach is based on the novel idea of using convex

regions as a model for maximal cliques in UDGs and relies on non-trivial geometric results

that relate the convex regions to cliques in UDG. An important step in our approach is to

efficiently apply a set of data reduction rules to the input instance in a polynomial-time pre-

processing phase. Hence the design of efficient reduction rules and proving their correctness

for each problem is an essential yet significant part of our work.

Studying the problem of Clique Partition, we obtained parameterized algorithms of

running-time O(n6k+2) for the problem on arbitrary UDGs which significantly improves

the previously known algorithms. The only previously known singly-exponential algorithm

for the problem is restricted to UDGs whose points are within a square of known length

and has the running-time of O(n80q) where q is an upper bound on the size of clique

partition. On the classes of ε-precision and (λ, α)-(relaxed)-quasi-precision UDGs with

α ≤ 1/2, we were able to obtain first-time fixed-parameter algorithms of running-times

O(2(3k+1) log k+12k log 1
ε
+30kn+mn) and 2O(k log k

λ
)n+O(mn) for Clique Partition.

Later, we demonstrated the generality of our framework by showing how our technique

can be fine-tuned to apply to a number of other interesting problems. Particularly, studying

the problem of Weighted Clique Partition, we came up with a first-time set of reduc-

tion rules for the problem and followed a similar approach as before in order to construct

parameterized algorithms with the same running-time as the ones for Clique Partition

114

CHAPTER 8. CONCLUSION AND FUTURE WORK 115

for the problem of Weighted Clique Partition on the mentioned classes of UDGs.

We further considered an adaptation of our framework to the problem of Clique Cover

and obtained parameterized algorithms of running-times O(n6k+3),

O(2(3k+1) log k+12k log 1
ε
+24km + mn) and 2O(k log k

λ
)m + O(mn) on the classes of arbitrary

UDGs, ε-precision UDGs and (λ, α)-(relaxed)-quasi-precision UDGs with α ≤ 1/2, respec-

tively. To the best of our knowledge, no parameterized algorithms were previously known

for the problems of Clique Cover and Weighted Clique Partition on UDGs or any

of its subclasses. Our framework further applies in a stronger form when the graph reduced

with respect to the reduction rules (rather than input instance) belongs to the discussed

subclasses of UDGs.

Studying the optimization version of Clique Partition, we designed randomized (1 +

ε)-approximation algorithms for Minimum Clique Partition on arbitrary UDGs. Our

first PTAS adopts the approach of [54] along with a new packing argument and has an

improved running-time of n(176/ε)2+O(1/ε). Furthermore, we proposed a novel approach for

deriving PTAS which relies on the geometric theorem on coverage of cliques by convex

regions. The new PTAS still runs in time nO(1/ε2) · (1/ε2), yet the hidden constant in big O
notation, in power of n, is significantly (at least 13 times) smaller than the fastest previously

known PTAS. In practice, this allows the algorithm to run in a reasonable time on instances

that are significantly larger in size.

In an attempt to explore the boundaries of fixed-parameter tractability of problems on

UDGs, we introduced (α, λ)-quasi-precision class as unit disk graphs which are only partly

λ-precision, yet their areas of imprecision have bounded area. We showed that our definition

of (α, λ)-quasi-precision UDGs is ubiquitous in the sense that any UDG is quasi-precision

for some values of λ and α. For quasi-precision UDGs, maximum degree and the size of

clique-partitions can be unbounded.

We later demonstrated the use of (λ, α)-(relaxed)-quasi-precision UDGs by describing

how the kernelization and parameterization frameworks obtained in our work can be ex-

tended to apply to this subclass when α ≤ 1/2. We further studied the structure of quasi-

precision UDGs and proved structural obstructions for the parameterization and kernel-

ization of problems under our framework. In particular, we showed that UDGs which do

not admit FPT algorithms under our framework include as subgraph a loosely-connected

co-bipartite graph. The proposed obstruction classifies the cases where the clique removal

is not feasible. Fomin et al. [SODA 2012] conjectured that the main obstacle for obtaining

CHAPTER 8. CONCLUSION AND FUTURE WORK 116

subexponential algorithms on UDGs is the design of efficient “clique cleaning” procedures

[63]. Our work further affirms their conjecture for obtaining FPT and kernelization results

for problems on UDGs.

We also described a general framework for kernelization of problems on quasi-precision

UDGs. Through the introduction of a simple generic data reduction rule that reduces the

input instance in polynomial time to smaller instance and a detailed analysis, we proved that

when λ is set as a parameter, polynomial-size kernels are attainable for numerous problems

on a large class of (λ, α)-quasi-precision UDGs. Furthermore, we characterized the problems

for which polynomial-size kernels are derivable through the application of this framework.

In particular, we provide the sufficient criteria for the problems under which the generic

reduction rule remains as a correct reduction for the problem. Finally, we exhibited the use

of this framework by showing how it can be applied to obtain linear-size kernels for a number

of classical combinatorial problems for many of which no positive kernelization results were

known beforehand on any non-trivial UDG subclass. Among those are Dominating Set,

Connected Dominating Set, Clique Cover, Clique Partition and Independent

Set.

8.2 Future Work

It is worthwhile investigating the application of the frameworks introduced here to other

related problems on the discussed classes of UDGs. The approach presented in this work

is very general and thus for many problems the application of the frameworks might be

possible with only slight modifications.

It might also be possible to benefit from other interesting geometric properties of UDGs

in order to design frameworks for obtaining data reduction and parameterization results on

a completely different set of problems on UDGs. Yet a fundamental challenge in this line of

research would be to identify and generalize the required criteria and techniques.

Another interesting and yet challenging direction is to identify structural properties of

UDGs whose presence, or lack of which, affects the parameterized tractability or kerneliza-

tion bounds for a number of attractive problems. Such works could in turn lead to discovery

of other useful subclasses of geometric graphs under which the candidate problems exhibit

nice computational complexity behaviors.

As we showcased in Chapter 5, another avenue would be to combine the parameterization

CHAPTER 8. CONCLUSION AND FUTURE WORK 117

results on UDGs with partitioning and approximation techniques in order to obtain faster

PTAS algorithms for problems on UDGs.

Appendix A

Proofs

A.1 Proof of Formula (3.3) for calculating |qxzqyz|

Proof. Let ‖xy‖ = σ as before. Also let us denote the distance between x (respectively y)

and z, by σ′ (respectively σ′′). First we prove that σ′ has to be larger than 1− σ2. To see

the proof, notice that since the Helly property does not hold for the 3 vertices, there must

be a point inside the triangle 4xyz whose distance from all sides is at least 1/2 (e.g. the

circumcenter of 4xyz, denoted oc satisfies the above condition). Then one can obtain a

lower bound on σ′ = ‖xz‖ using easy calculations as follows:

σ′ ≥

√√√√(1

2
+

√
1− σ2

2

)2

+
σ2

4
=

√
1 +

√
1− σ2/2 > 1− σ2. (A.1)

Next, we obtain an upper bound on the size of the line segment qxzqyz as ‖qxzqyz‖ ≤√
3− 2σ + 2σ2 − 2σ3 − σ4. To see a proof, consider the intersection point of line segments

qxzx and qyzy. Call it w. Let h be the perpendicular of triangle 4qxzqxyw to the edge

qxzqxy. Also, assume that ‖qxzw‖ ≤ ‖qyzw‖ (and hence ‖xw‖ ≥ ‖yw‖).

‖qxzqyz‖ ≤
√
‖qxzw‖2 − ‖h‖2 +

√
‖qyzw‖2 − ‖h‖2. (A.2)

But ‖xw‖ + ‖yw‖ ≥ ‖xy‖ = σ. Then ‖xw‖ ≥ σ/2. Also, by definition ‖qxzx‖ = ‖qxzw‖ +

‖xw‖ = 1. Therefore, ‖qxzw‖ ≤ 1−σ/2. Also, notice that 2‖h‖+‖yw‖ ≥ σ′ and σ > ‖yw‖.
Hence, 2‖h‖ ≥ σ′ − σ ≥ 1− σ − σ2. Finally, by replacing the above two inequalities in the

former equation, we get

‖qxzqyz‖ ≤
√

3− 2σ + 2σ2 − 2σ3 − σ4. (A.3)

118

APPENDIX A. PROOFS 119

When 0 < σ < 1,

‖qxzqyz‖ <
√

3 +
σ√
3

+
σ2

24
√

3
+

5σ3

36
√

3
+

53σ4

3456
√

3
. (A.4)

Bibliography

[1] F. Abu-Khzam. Kernelization algorithms for d-hitting set problems. Algorithms and
Data Structures, pages 434–445, 2007. → pages 13

[2] J. Alber, H.L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier. Fixed parameter
algorithms for dominating set and related problems on planar graphs. Algorithmica,
33(4):461–493, 2002. → pages 13

[3] J. Alber, H. Fan, M.R. Fellows, H. Fernau, R. Niedermeier, F. Rosamond, and
U. Stege. A refined search tree technique for dominating set on planar graphs. Journal
of Computer and System Sciences, 71(4):385–405, 2005. → pages 13

[4] J. Alber, M.R. Fellows, and R. Niedermeier. Polynomial-time data reduction for
dominating set. Journal of the ACM (JACM), 51(3):363–384, 2004. → pages 13

[5] J. Alber and J. Fiala. Geometric separation and exact solutions for the parameterized
independent set problem on disk graphs. Journal of Algorithms, 52(2):134–151, 2004.
→ pages 4, 34, 54, 56, 57

[6] N. Alon and S. Gutner. Linear time algorithms for finding a dominating set of fixed
size in degenerated graphs. Algorithmica, 54(4):544–556, 2009. → pages 25

[7] S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard problems re-
stricted to partial k-trees. Discrete Applied Mathematics, 23(1):11–24, 1989. → pages
11

[8] B.S. Baker. Approximation algorithms for NP-complete problems on planar graphs.
Journal of the ACM (JACM), 41(1):153–180, 1994. → pages 16

[9] B. Balasundaram and S. Butenko. Optimization problems in unit-disk graphs. Ency-
clopedia of Optimization, pages 2832–2844, 2009. → pages 2, 29

[10] Luca Becchetti, Peter Korteweg, Alberto Marchetti-Spaccamela, Martin Skutella,
Leen Stougie, and Andrea Vitaletti. Latency constrained aggregation in sensor net-
works. Algorithms–ESA 2006, pages 88–99, 2006. → pages 93

[11] J Bhasker and Tariq Samad. The clique-partitioning problem. Computers & Mathe-
matics with Applications, 22(6):1–11, 1991. → pages 37

120

BIBLIOGRAPHY 121

[12] M. Blanchette, E. Kim, and A. Vetta. Clique cover on sparse networks. ALENEX,
pages 93–102, 2012. → pages 86

[13] H. Bodlaender. Dynamic programming on graphs with bounded treewidth. Automata,
Languages and Programming, pages 105–118, 1988. → pages 11

[14] Hans L Bodlaender. Kernelization: New upper and lower bound techniques. In
Parameterized and Exact Computation, pages 17–37. Springer, 2009. → pages 12

[15] Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket
Saurabh, and Dimitrios M. Thilikos. (meta) kernelization. In Proceedings of the 2009
50th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’09, pages
629–638, 2009. → pages 20, 21, 22

[16] Béla Bollobás. The art of mathematics: Coffee time in Memphis. Cambridge Univer-
sity Press, 2006. → pages 41

[17] H. Breu. Algorithmic aspects of constrained unit disk graphs. PhD thesis, university
of british columbia, 1996. → pages 37

[18] H. Breu and D.G. Kirkpatrick. Unit disk graph recognition is NP-hard. Computational
Geometry, 9(1-2):3–24, 1998. → pages 29

[19] L. Cai, J. Chen, R.G. Downey, and M.R. Fellows. Advice classes of parameterized
tractability. Annals of pure and applied logic, 84(1):119–138, 1997. → pages 12

[20] Liming Cai and Xiuzhen Huang. Fixed-parameter approximation: conceptual frame-
work and approximability results. Parameterized and Exact Computation, pages 96–
108, 2006. → pages 11

[21] Vasilis Capoyleas, Günter Rote, and Gerhard Woeginger. Geometric clusterings. Jour-
nal of Algorithms, 12(2):341–356, 1991. → pages 76

[22] M.R. Cerioli, L. Faria, T.O. Ferreira, and F. Protti. On minimum clique partition and
maximum independent set on unit disk graphs and penny graphs: complexity and
approximation. Electronic Notes in Discrete Mathematics, 18:73–79, 2004. → pages
37, 76, 110

[23] M.S. Chang and H. Müller. On the tree-degree of graphs. In Graph-Theoretic Concepts
in Computer Science, pages 44–54. Springer, 2001. → pages 85

[24] J. Chen, H. Fernau, I.A. Kanj, and G. Xia. Parametric duality and kernelization:
Lower bounds and upper bounds on kernel size. STACS 2005, pages 269–280, 2005.
→ pages 13

[25] Xiuzhen Cheng, Xiao Huang, Deying Li, Weili Wu, and Ding-Zhu Du. A polynomial-
time approximation scheme for the minimum-connected dominating set in ad hoc
wireless networks. Networks, 42(4):202–208, 2003. → pages 108

BIBLIOGRAPHY 122

[26] B.N. Clark, C.J. Colbourn, and D.S. Johnson. Unit disk graphs. Discrete mathematics,
86(1-3):165–177, 1990. → pages 4, 29, 30, 31, 54

[27] B. Courcelle. The monadic second-order logic of graphs. I. recognizable sets of finite
graphs. Information and computation, 85(1):12–75, 1990. → pages 21

[28] B. Courcelle. The monadic second-order logic of graphs III: tree-decompositions, minor
and complexity issues. ITA, 26:257–286, 1992. → pages

[29] B. Courcelle. The expression of graph properties and graph transformations in
monadic second-order logic. Handbook of graph grammars and computing by graph
transformations, 1:313–400, 1997. → pages

[30] B. Courcelle and M. Mosbah. Monadic second-order evaluations on tree-decomposable
graphs. Theoretical Computer Science, 109(1-2):49–82, 1993. → pages 21

[31] Marek Cygan, Stefan Kratsch, Marcin Pilipczuk, Micha l Pilipczuk, and Magnus
Wahlström. Clique cover and graph separation: new incompressibility results. In
Proceedings of the 39th international colloquium conference on Automata, Languages,
and Programming-Volume Part I, pages 254–265. Springer-Verlag, 2012. → pages 85,
109

[32] H. Dell and D. van Melkebeek. Satisfiability allows no nontrivial sparsification unless
the polynomial-time hierarchy collapses. In Proceedings of the 42nd ACM symposium
on Theory of computing, pages 251–260. ACM, 2010. → pages 12

[33] E.D. Demaine and M.T. Hajiaghayi. Equivalence of local treewidth and linear local
treewidth and its algorithmic applications. In Proceedings of the fifteenth annual ACM-
SIAM symposium on Discrete algorithms, pages 840–849. Society for Industrial and
Applied Mathematics, 2004. → pages 15

[34] E.D. Demaine and M.T. Hajiaghayi. Graphs excluding a fixed minor have grids as
large as treewidth, with combinatorial and algorithmic applications through bidimen-
sionality. In Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 682–689. Society for Industrial and Applied Mathematics, 2005. →
pages

[35] E.D. Demaine, M.T. Hajiaghayi, N. Nishimura, P. Ragde, and D.M. Thilikos. Approx-
imation algorithms for classes of graphs excluding single-crossing graphs as minors.
Journal of Computer and System Sciences, 69(2):166–195, 2004. → pages

[36] E.D. Demaine, M.T. Hajiaghayi, and D.M. Thilikos. The bidimensional theory of
bounded-genus graphs. SIAM Journal on Discrete Mathematics, 20(2):357–371, 2007.
→ pages 15

BIBLIOGRAPHY 123

[37] Erik Demaine, MohammadTaghi Hajiaghayi, and Bojan Mohar. Approximation algo-
rithms via contraction decomposition. Combinatorica, 30:533–552, 2010. → pages 17,
18

[38] Erik D. Demaine, Fedor V. Fomin, Mohammadtaghi Hajiaghayi, and Dimitrios M.
Thilikos. Fixed-parameter algorithms for the (k, r)-center in planar graphs and map
graphs. In acm transactions on algorithms, pages 829–844, 2003. → pages 15

[39] Erik D. Demaine, Fedor V. Fomin, Mohammadtaghi Hajiaghayi, and Dimitrios M.
Thilikos. Bidimensional parameters and local treewidth. SIAM Journal on Discrete
Mathematics, 18:501–511, 2004. → pages 15, 16

[40] Erik D. Demaine, Fedor V. Fomin, MohammadTaghi Hajiaghayi, and Dimitrios M.
Thilikos. Subexponential parameterized algorithms on graphs of bounded-genus and
H-minor-free graphs. In Proceedings of the fifteenth annual ACM-SIAM symposium
on Discrete algorithms, SODA ’04, pages 830–839. Society for Industrial and Applied
Mathematics, 2004. → pages

[41] Erik D. Demaine and Mohammad T. Hajiaghayi. Diameter and Treewidth in Minor-
Closed Graph Families, Revisited. Algorithmica, 40(3):211–215, 2004. → pages

[42] Erik D Demaine and MohammadTaghi Hajiaghayi. Bidimensionality, map graphs,
and grid minors. arXiv preprint cs/0502070, 2005. → pages 15

[43] Erik D. Demaine and MohammadTaghi Hajiaghayi. Bidimensionality: new connec-
tions between FPT algorithms and PTASs. In Proceedings of the sixteenth annual
ACM-SIAM symposium on Discrete algorithms, SODA ’05, pages 590–601, 2005. →
pages 15, 23

[44] Erik D Demaine and MohammadTaghi Hajiaghayi. The bidimensionality theory and
its algorithmic applications. The Computer Journal, 51(3):292–302, 2008. → pages
15, 23

[45] Erik D. Demaine, Mohammadtaghi Hajiaghayi, and Ken ichi Kawarabayashi. Algo-
rithmic Graph Minor Theory: Decomposition, Approximation, and Coloring. In 46th
Annual IEEE Symposium on Foundations of Computer Science, pages 637–646. Press,
2005. → pages 15

[46] Erik D. Demaine, MohammadTaghi Hajiaghayi, and Ken-ichi Kawarabayashi. Con-
traction decomposition in H-minor-free graphs and algorithmic applications. In Pro-
ceedings of the 43rd annual ACM symposium on Theory of computing, STOC ’11,
pages 441–450, 2011. → pages 18, 20

[47] Erik D. Demaine, Mohammadtaghi Hajiaghayi, and Dimitrios M. Thilikos. Expo-
nential speedup of fixed-parameter algorithms for classes of graphs excluding single-
crossing graphs as minors. Algorithmica, 41:245–267, 2005. → pages 15

BIBLIOGRAPHY 124

[48] M. Dom, D. Lokshtanov, and S. Saurabh. Incompressibility through colors and IDs.
Automata, Languages and Programming, pages 378–389, 2009. → pages 27, 32, 33

[49] F. Dorn. Dynamic programming and fast matrix multiplication. Algorithms–ESA
2006, pages 280–291, 2006. → pages 13

[50] F. Dorn, F.V. Fomin, and D.M. Thilikos. Catalan structures and dynamic program-
ming in h-minor-free graphs. In Proceedings of the nineteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 631–640. Society for Industrial and Applied
Mathematics, 2008. → pages 20

[51] Frederic Dorn, Eelko Penninkx, Hans L Bodlaender, and Fedor V Fomin. Efficient
exact algorithms on planar graphs: Exploiting sphere cut branch decompositions. In
Algorithms–ESA 2005, pages 95–106. Springer, 2005. → pages 14

[52] Martin Doucha and Jan Kratochv́ıl. Cluster vertex deletion: a parameterization be-
tween vertex cover and clique-width. In Mathematical Foundations of Computer Sci-
ence 2012, pages 348–359. Springer, 2012. → pages 104

[53] R.G. Downey and M.R. Fellows. Parameterized complexity, volume 5. Springer New
York, 1999. → pages 9, 10, 12, 13, 25

[54] A. Dumitrescu and J. Pach. Minimum Clique Partition in Unit Disk Graphs. Graphs
and Combinatorics, 27(3):399–411, 2011. → pages 3, 5, 37, 48, 53, 76, 77, 78, 79, 80,
81, 83, 84, 110, 115

[55] D. Eppstein. Diameter and treewidth in minor-closed graph families. Algorithmica,
27(3):275–291, 2000. → pages 17

[56] P Erdős, László Lovász, and Katalin Vesztergombi. On the graph of large distances.
Discrete & Computational Geometry, 4(1):541–549, 1989. → pages 72, 73

[57] Paul Erdős, Adolph W Goodman, and Louis Pósa. The representation of a graph by
set intersections. Canad. J. Math, 18:106–112, 1966. → pages 86

[58] M. Fellows, G. Fertin, D. Hermelin, and S. Vialette. Sharp tractability borderlines
for finding connected motifs in vertex-colored graphs. Automata, Languages and Pro-
gramming, pages 340–351, 2007. → pages 27

[59] Gerd Finke, Vincent Jost, Maurice Queyranne, and András Sebő. Batch processing
with interval graph compatibilities between tasks. Discrete Applied Mathematics,
156(5):556–568, 2008. → pages 93

[60] H. Fleischner, E. Mujuni, D. Paulusma, and S. Szeider. Covering graphs with few
complete bipartite subgraphs. Theoretical Computer Science, 410(21-23):2045–2053,
2009. → pages 99, 100

BIBLIOGRAPHY 125

[61] Jörg Flum and Martin Grohe. Parameterized complexity theory, volume 3. Springer
Heidelberg, 2006. → pages 11

[62] Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh. Bidimen-
sionality and EPTAS. In SODA, pages 748–759, 2011. → pages 15

[63] Fedor V Fomin, Daniel Lokshtanov, and Saket Saurabh. Bidimensionality and geo-
metric graphs. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1563–1575. SIAM, 2012. → pages 40, 74, 116

[64] Fedor V Fomin and Yngve Villanger. Subexponential parameterized algorithm for
minimum fill-in. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1737–1746. SIAM, 2012. → pages 29

[65] F.V. Fomin, D. Lokshtanov, S. Saurabh, and D.M. Thilikos. Bidimensionality and ker-
nels. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 503–510. Society for Industrial and Applied Mathematics, 2010. →
pages 22, 23, 24, 34

[66] F.V. Fomin, G. Philip, Y. Villanger, S. Chakraborty, and A. Kumar. Minimum Fill-in
of Sparse Graphs: Kernelization and Approximation. In IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2011), volume 13, pages 164–175. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2011. → pages 28, 29

[67] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-completeness. WH Freeman & Co., 1979. → pages 13

[68] Dion Gijswijt, Vincent Jost, and Maurice Queyranne. Clique partitioning of in-
terval graphs with submodular costs on the cliques. RAIRO-Operations Research,
41(03):275–287, 2007. → pages 93

[69] P. Golovach and Y. Villanger. Parameterized complexity for domination problems on
degenerate graphs. In Graph-Theoretic Concepts in Computer Science, pages 195–205.
Springer, 2008. → pages 25

[70] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Data reduction and exact algo-
rithms for clique cover. Journal of Experimental Algorithmics (JEA), 13:2, 2009. →
pages 85, 87, 89

[71] M. Grigni and P. Sissokho. Light spanners and approximate TSP in weighted graphs
with forbidden minors. In Proceedings of the thirteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 852–857. Society for Industrial and Applied Mathemat-
ics, 2002. → pages 20

[72] Jonathan L Gross and Jay Yellen. Graph theory and its applications. CRC press,
2006. → pages 85

BIBLIOGRAPHY 126

[73] Q. Gu and N. Imani. Connectivity is not a limit for kernelization: planar connected
dominating set. LATIN 2010: Theoretical Informatics, pages 26–37, 2010. → pages
14

[74] J. Guo and R. Niedermeier. Linear problem kernels for NP-hard problems on planar
graphs. Automata, languages and programming, pages 375–386, 2007. → pages 32

[75] Jiong Guo and Rolf Niedermeier. Invitation to data reduction and problem kerneliza-
tion. ACM SIGACT News, 38(1):31–45, 2007. → pages 12

[76] T.W. Haynes, S.M. Hedetniemi, S.T. Hedetniemi, and M.A. Henning. Domination in
graphs applied to electric power networks. SIAM Journal on Discrete Mathematics,
15(4):519–529, 2002. → pages 13

[77] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater. Fundamentals of domination in
graphs, volume 208. CRC, 1998. → pages 13

[78] H. Ito and M. Kadoshita. Tractability and intractability of problems on unit disk
graphs parameterized by domain area. In Proceedings of the 9th International Sympo-
sium on Operations Research and Its Applications (ISORA10), pages 120–127, 2010.
→ pages 4, 34, 35, 54, 63, 108

[79] B. Jansen. Polynomial kernels for hard problems on disk graphs. In Algorithm Theory-
SWAT 2010: 12th Scandinavian Workshop on Algorithm Theory, Bergen, Norway,
June 21-23, 2010. Proceedings, volume 6139, pages 310–321. Springer-Verlag New
York Inc, 2010. → pages 32, 33, 34

[80] B.M.P. Jansen and H.L. Bodlaender. Vertex cover kernelization revisited: Upper and
lower bounds for a refined parameter. In 28th International Symposium on Theoretical
Aspects of Computer Science (STACS 2011), volume 9, pages 177–188, 2011. → pages
12, 13

[81] I. Kanj and F. Zhang. 3-hitting set on bounded degree hypergraphs: upper and lower
bounds on the kernel size. Theory and Practice of Algorithms in (Computer) Systems,
pages 163–174, 2011. → pages 13

[82] Richard M Karp. Reducibility among combinatorial problems. Springer, 1972. →
pages 37

[83] Ton Kloks, Dieter Kratsch, and Haiko Müller. Finding and counting small induced
subgraphs efficiently. Information Processing Letters, 74(3):115–121, 2000. → pages
50, 87, 96

[84] L.T. Kou, L.J. Stockmeyer, and C.K. Wong. Covering edges by cliques with regard to
keyword conflicts and intersection graphs. Communications of the ACM, 21(2):135–
139, 1978. → pages 86

BIBLIOGRAPHY 127

[85] Xiang-Yang Li. Algorithmic, geometric and graphs issues in wireless networks. Wire-
less Communications and Mobile Computing, 3(2):119–140, 2003. → pages 14

[86] Kevin M Lillis, Sriram V Pemmaraju, and Imran A Pirwani. Topology control and
geographic routing in realistic wireless networks. In Ad-Hoc, Mobile, and Wireless
Networks, pages 15–31. Springer, 2007. → pages 36

[87] R.J. Lipton and R.E. Tarjan. A separator theorem for planar graphs. SIAM Journal
on Applied Mathematics, pages 177–189, 1979. → pages 16, 17

[88] Daniel Lokshtanov, Matthias Mnich, and Saket Saurabh. A linear kernel for a planar
connected dominating set. Theoretical Computer Science, 412(23):2536–2543, 2011.
→ pages 14

[89] C. Lund and M. Yannakakis. On the hardness of approximating minimization prob-
lems. Journal of the ACM (JACM), 41(5):960–981, 1994. → pages 86

[90] Weizhong Luo, Jianxin Wang, Qilong Feng, Jiong Guo, and Jianer Chen. Improved
linear problem kernel for planar connected dominating set. Theoretical Computer
Science, 2013. → pages 14

[91] M.V. Marathe, H. Breu, H.B. Hunt III, S.S. Ravi, and D.J. Rosenkrantz. Simple
heuristics for unit disk graphs. Networks, 25(2):59–68, 1995. → pages 30

[92] Michal Pilipczuk Marek Cygan, Marcin Pilipczuk and Jakub Onufry Wojtaszczyk.
Kernelization Hardness of Connectivity Problems in d-Degenerate Graphs. In WG’10,
pages 147–158, 2010. → pages 25, 26, 27, 28

[93] Dániel Marx. Parameterized complexity and approximation algorithms. The Com-
puter Journal, 51(1):60–78, 2008. → pages 11

[94] H. Melissen. Packing and Covering with Circles. PhD thesis, Universiteit Utrecht, the
Netherlands,, 1997. → pages 60

[95] H. Moser. A problem kernelization for graph packing. SOFSEM 2009: Theory and
Practice of Computer Science, pages 401–412, 2009. → pages 34

[96] E. Mujuni and F. Rosamond. Parameterized complexity of the clique partition prob-
lem. In Proceedings of the fourteenth symposium on Computing: the Australasian
theory-Volume 77, pages 75–78. Australian Computer Society, Inc., 2008. → pages 37

[97] George L Nemhauser and Leslie E Trotter Jr. Vertex packings: structural properties
and algorithms. Mathematical Programming, 8(1):232–248, 1975. → pages 12

[98] Saurav Pandit and Sriram V Pemmaraju. Finding facilities fast. In Distributed Com-
puting and Networking, pages 11–24. Springer, 2009. → pages 36

BIBLIOGRAPHY 128

[99] Sriram V Pemmaraju and Imran A Pirwani. Energy conservation via domatic par-
titions. In Proceedings of the 7th ACM international symposium on Mobile ad hoc
networking and computing, pages 143–154. ACM, 2006. → pages 36

[100] Sriram V Pemmaraju and Imran A Pirwani. Good quality virtual realization of unit
ball graphs. In Algorithms–ESA 2007, pages 311–322. Springer, 2007. → pages 36

[101] G. Philip, V. Raman, and S. Sikdar. Solving dominating set in larger classes of graphs:
FPT algorithms and polynomial kernels. Algorithms-ESA 2009, pages 694–705, 2009.
→ pages 25, 28, 107

[102] I. Pirwani and M. Salavatipour. A weakly robust PTAS for minimum clique partition
in unit disk graphs. Algorithm Theory-SWAT 2010, pages 188–199, 2010. → pages
37, 76, 93

[103] Rolf Rees. Minimal clique partitions and pairwise balanced designs. Discrete mathe-
matics, 61(2):269–280, 1986. → pages 37

[104] N. Robertson and P.D. Seymour. Graph minors. XX. Wagner’s conjecture. Journal
of Combinatorial Theory, Series B, 92(2):325–357, 2004. → pages 15

[105] Neil Robertson and Paul D Seymour. Graph minors. I. Excluding a forest. Journal
of Combinatorial Theory, Series B, 35(1):39–61, 1983. → pages 11

[106] Neil Robertson and Paul D. Seymour. Graph minors. II. Algorithmic aspects of tree-
width. Journal of algorithms, 7(3):309–322, 1986. → pages 11

[107] K.J. Supowit. Topics in computational geometry. PhD thesis, University of Illinois at
Urbana-Champaign, 1981. → pages 37

[108] G.F. Toth. Thinnest covering of a circle by eight, nine, or ten congruent circles.
Combinatorial and computational geometry, 52:361, 2005. → pages 59

[109] Vijay V Vazirani. Approximation algorithms. springer, 2004. → pages 10

[110] K. Wagner. Über eine Eigenschaft der ebenen Komplexe. Mathematische Annalen,
114(1):570–590, 1937. → pages 14

[111] P.J. Wan, K.M. Alzoubi, and O. Frieder. A simple heuristic for minimum connected
dominating set in graphs. International Journal of Foundations of Computer Science,
14(2):323–333, 2003. → pages 13

[112] Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice hall
Englewood Cliffs, 2001. → pages 8

[113] A. Wiese and E. Kranakis. Local PTAS for independent set and vertex cover in
location aware unit disk graphs. Distributed Computing in Sensor Systems, pages
415–431, 2008. → pages 32

BIBLIOGRAPHY 129

[114] Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-
Winograd. In Proceedings of the 44th symposium on Theory of Computing, pages
887–898. ACM, 2012. → pages 50, 51, 87, 88, 96, 103

Index

H-minor-free graph, 18
γ(G), 13
γc(G), 14
λ-close vertex, 62
λ-short edge, 62
p-max-CMSO problem, 21
p-min-CMSO problem, 21
(edge) replicate-redundant, 102
(vertex) replicate-redundant, 102

extended protrusion, 22

apex graph, 24

basic circle, 70
bidimensional, 16
boundary arc, 41
bounded-area UDG, 34
bounded-genus graph, 17

clique intersection graph, 58
clique-edge intersection graph, 90
clique-prism, 69
cluster vertex deletion number, 104
color class, 18
compact problem, 21
complete bipartite graph, 14
composition algorithm, 27
composition problem, 27
contraction, 9
contraction bidimensional, 16
contraction decomposition, 17
contraction-closed problem, 17
convex hull, 76
convex region, 38
correct reduction rule, 102

Counting Monadic Second Order (CMSO),
20

degenerate graph, 25
dense island, 62
dense subgraph, 62
diameter edge, 70
dominated vertex, 14
domination number, 13

edge-weighted graph, 20
efficient PTAS, 10
EPTAS, 10
especial clique, 40
Euler genus, 17
expansion candidate, 70

face distance, 58
feedback vertex set number, 12
finite integer index, 23
fixed-parameter algorithm, 9
FP-approximation, 11
Fpt, 9
Fpt-time., 9

genus, 18

hamiltonian cycle, 19
Helly property, 31
hitting set, 13

induced subgraph, 8
isomorphic graphs, 8

kernel size, 10
kernelization, 10

130

INDEX 131

minimum spanning tree, 20
minor, 9
minor bidimensional, 15
minor operation, 15
minor-closed problem, 17
minor-free, 18

neighborhood equivalent, 101
non-contractible curve, 18
non-helly set, 47, 82
non-overlapping cliques, 76

parameterized problem, 9
penny graph, 34
planar graph, 14
polynomial hierarchy, 12
polynomial parameter reducible, 25
polynomial parameter transformation, 25
polynomial time approximation scheme, 10
precision UDG, 57
problem kernel, 2, 10
Problems index:

H-Matching, 33
X-Annotated Clique Cover, 86
α-Independent Set, 35
k-Coloring, 35
k-Cut, 19
3-Hitting Set, 13
Biclique Partition/Cover, 99
Biclique Vertex Partition/Cover,

99
Chordal Graph Completion, 29
Clique Cover, 86, 109
Clique Partition, 36, 110
Cluster Vertex Deletion, 104
Colorful Graph Motif, 27
Connected Dominating Set, 14, 15,

28, 107
Connected Edge Dominating Set,

15
Connected Feedback Vertex Set

(CFVS), 26

Connected Odd Cycle Transver-
sal, 26

Connected Vertex Cover, 26, 32
Dominating Set, 13, 15, 35, 106
Edge Clique Partition, 37
Edge Dominating Set, 15
Face Cover, 15
Feedback Vertex Set, 15
Hamiltonian Circuit, 34, 35
Hitting Set, 13
Independent Set, 35, 108
Max Clique, 10
Minimum Clique Partition, 48, 75,

76
Minimum Fill-in, 28, 29
Minimum Maximal Matching, 15
Red-Blue Dominating Set, 32, 33
Steiner Tree, 26
Unweighted TSP Tour, 15
Vertex Cover, 15
Weighted Clique Partition, 93, 96
Weighted Traveling Salesman, 15
Weighted TSP, 15, 19, 20

protrusion, 22
PTAS, 18, 20, 75

quasi-compact problem, 21
quasi-precision UDG, 62, 101

radial distance, 20
reduction rule, 22
region coverage graph, 38
relaxed-quasi-precision UDG, 68
replicate-redundant, 102

separable, 23
separation, 16
separation property, 23
separator, 16
set of representatives, 23
simplicial vertex, 50, 95
sink vertex, 40
spanner, 18
spanning subgraph, 20

INDEX 132

sparse subgraph, 62
strip graph, 37
subgraph, 8

terminal, 22
terminal graph, 22
tree decomposition, 11
treewidth, 11

UDG contractible, 101
unit coin graph, 34, 37

W[1], 10
W[1]-hard, 33
W[2], 13
W[2]-hard, 25
Wagner’s theorem, 14
weighted graph, 18

XP, 10

yes-instance, 49

	Approval
	Partial Copyright License
	Abstract
	Dedication
	Acknowledgments
	Contents
	List of Figures
	1 Introduction
	1.1 Parameterized Algorithms on UDGs
	1.2 Contributions of the Thesis
	1.2.1 A Parameterization Framework for Clique Partition and Related Problems on UDGs
	1.2.2 Improved Polynomial Approximation Scheme for Minimum Clique Partition
	1.2.3 A Kernelization Framework for Problems on Quasi-precision UDGs

	1.3 Thesis Outline

	2 Background and Related Work
	2.1 Definitions and Notations
	2.2 Data Reduction
	2.2.1 Vertex Cover and Related Problems
	2.2.2 Dominating Set
	2.2.3 Connected Dominating Set

	2.3 Separators, Minors and Bidimensionality
	2.3.1 Background
	2.3.2 Bidimensionality Framework
	2.3.3 Contraction Decomposition
	2.3.4 (Meta)-Kernelization
	2.3.5 Kernels for Problems on H-Minor-Free Graphs

	2.4 Kernels for Degenerate Graphs and UDGs
	2.4.1 Background
	2.4.2 Degenerate Graphs
	2.4.3 Unit Disk Graphs

	3 Algorithms for Clique Partition on UDGs
	3.1 Introduction
	3.2 Definitions and Notations
	3.3 Arbitrary UDGs
	3.3.1 A Parameterized Algorithm

	3.4 Data Reduction
	3.5 Summary

	4 FPT Algorithms on Precision & Quasi-precision UDGs
	4.1 Introduction
	4.2 Precision UDGs
	4.2.1 An FPT Algorithm on Precision UDGs

	4.3 Quasi-precision UDGs
	4.3.1 An FPT Algorithm on Quasi-precision UDGs

	4.4 Structure of Quasi-precision UDGs
	4.5 Summary

	5 Improved PTAS for Minimum Clique Partition
	5.1 Introduction
	5.2 Plane Decomposition
	5.3 Exact Solution for UDG with Restricted Geometry
	5.3.1 Dumitrescu and Pach's Approach
	5.3.2 Using Convex Regions

	5.4 Summary

	6 Parameterized Algorithms for Other Problems
	6.1 Clique Cover
	6.1.1 Data Reduction
	6.1.2 A Parameterized Algorithm on Arbitrary UDGs
	6.1.3 Analysis
	6.1.4 Fixed-parameter Algorithms on Precision and Quasi-precision UDGs

	6.2 Weighted Clique Partition
	6.2.1 Data Reduction
	6.2.2 Analysis
	6.2.3 Fixed-parameter Algorithms

	6.3 Summary and Future Work

	7 Kernelization Framework on Quasi-precision UDGs
	7.1 Introduction
	7.2 Data Reduction
	7.3 Analysis
	7.4 Application
	7.4.1 Dominating Set
	7.4.2 Connected Dominating Set
	7.4.3 Independent Set
	7.4.4 Clique Cover
	7.4.5 Clique Partition

	7.5 Summary

	8 Conclusion and Future Work
	8.1 Summary of Contributions
	8.2 Future Work
	A.1 Proof of Formula (3.3) for calculating |qxzqyz|

	Bibliography
	Index

