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Abstract 

This thesis presents a social navigation solution for virtual game characters, capable of 

generating sensible human-like spatial behavior in social scenarios.  In a social setting 

with several groups of virtual characters, our model generates group-joining, group-

leaving and group-revisiting behaviors for an individual character.  We consider interest 

as the main motivation behind character’s interactions with the groups.  Thus, our social 

navigation model not only navigates the character toward interesting groups, but also 

continuously evaluates interestingness of groups and utilizes it to build group-leaving 

and group-revisiting mechanisms.  In an engineering approach, we use the 

psychological knowledge on social spatial behavior to produce an internal representation 

of interest; then combine it with existing social navigation models to build our solution.  

We describe the two-stage implementation of our model, consisting of planning and 

realization of social spatial behavior.  Finally we present simulation results of four 

testcase scenarios as proofs of concept for our model. 

Keywords:  Social spatial behavior generation; social navigation model; 3D human-
like virtual character simulation for games 
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1. Introduction 

1.1. Motivation 

Human-like virtual characters, shortly referred to as virtual humans, have injected 

life to the gaming and entertainment industry and turned social virtual environments into 

a widely popular reality.  A remarkable example application of these virtual humans is 

Second Life (Linden Lab, 2003) which is an online virtual world developed by Linden Lab 

in 2003.  Second Life provides its users an environment to interact with one another 

through avatars that are embodied virtual representations of the users.  These 

interactions come in a variety of forms such as exploring the virtual world, socializing 

and participating in individual or group activities.  According to an official infographic by 

Linden Lab released for the tenth anniversary of Second Life in 2013, the game now has 

36 million registered users, a million monthly active users and over 400,000 new 

accounts per month (Linden Lab, 2013). 

There is a massive research effort to augment the virtual human models with 

different levels of autonomy and turn them from fully scripted characters into virtual 

humans capable of performing complex un-authored behaviors in dynamic virtual 

environments.  The ambitious vision of such researchers is to build virtual humans that 

are capable of fully perceiving their environment, interacting in a natural way with 

humans or other virtual humans using human-like means of verbal and non-verbal 

communication, having internal models for desires and intentions and exhibiting affective 

qualities such as emotions (Swartout, 2010).  A fundamental behavior to be 

autonomously generated in this regard is spatial behavior in the social virtual 

environment which we refer to as social spatial behavior.  Social spatial behavior not 

only provides access to the environment and clusters of other individuals for the virtual 

character, it is also a way of non-verbally communicating desires and intentions through 

whole-body movements.  Related computer science and Human Computer Interaction 

(HCI) studies referred to social spatial behavior as social navigation and defined it as the 
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process in which perceived social factors and rules influence navigation and steering 

behavior (Riedl, 2001). 

Social navigation research is based on the realization that an individual 

character’s spatial behavior in a social setting is influenced by the environment 

dynamics, other individuals’ attributes and attributes of collective groups of individuals in 

the environment.  These influences are then modeled and utilized as driving forces that 

navigate the virtual character toward their source.  As an example, Pedica and 

Vilhjálmsson (2008) proposed a steering model for navigating a virtual character toward 

a conversational group in the social virtual environment.  They assumed participating in 

conversations is the motivation that attracts the virtual character to join a group.  Based 

on this motivation, they proposed a simple distance-based group selection process and 

defined three distance-based social behaviors that are the driving forces behind their 

steering model.   

There are two major limitations to these models: first, they consider an unrealistic 

motivation for group selection e.g. closer distance to groups; and second, there is little to 

no traces of a temporally large-scale social scenario present in them.  A temporally 

large-scale scenario is one that happens over a longer period of time, compared to the 

time it takes for the character to join a group.  Similar to Pedica and Vilhjálmsson (2008) 

many other researches on social navigation models focus on planning one instance of 

movement toward a single optimal position that is often selected based on closer 

distance, and then steer the character toward that position.  Whereas in real-life social 

scenarios, the motivational values for optimal position selection are more complex and 

dynamically changing; thus, humans are required to make a series of movements toward 

several locations, each of which is the optimal position at a certain point in time.   

Limitations of these social navigation models prevent them from generating 

human-like spatial behavior in temporally large scale social scenarios.  We believe that 

to be able to effectively generate human-like spatial behavior in such scenarios, a social 

navigation model should have an internal dynamic system of representing social 

motivations for group selection.  This system can be employed to plan not only the 

optimal position in a group at any time, but also the time to leave a once-optimal position 

for the next group.  This mechanism of group-leaving behavior generation makes social 
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spatial behavior more human-like in a temporally large scale social scenario.  In a social 

setting with several conversational groups, such a model needs to be capable of 

answering the following questions: What is a more realistic social motivation for a virtual 

human to join a group?  How does this motivation change over time?  How does a virtual 

human join a group?  When is the appropriate time for the virtual human to leave a 

group?  And finally, how does a virtual human revisit groups based on the changing 

motivations?   

In this thesis, we build a social navigation model that addresses the above 

questions.  In addition to group-joining behavior, our model offers mechanisms for 

generating group-leaving and group-revisiting behaviors for the virtual character.  These 

behaviors enable our model to generate human-like social spatial behavior in temporally 

large scale social scenarios and that differentiates us from other existing models in the 

literature.  Figure  1.1 gives the reader an example of the virtual social setting in which 

our model performs the social navigation, while Figure  1.2 provides a high level 

abstraction of the cycle of actions that result in human-like spatial behavior over a long 

period of time.  In the next section we provide an overview of our thesis work. 

 
Figure  1.1. An example of the virtual social setting in which our model performs 

the social navigation.  
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Figure  1.2. A high level abstract view of the cycle of actions that results in 

human-like social spatial behavior in a temporally large scale social 
scenario 

1.2. Overview of Thesis Work  

This thesis presents a social navigation solution for human-like virtual characters 

that is capable of generating human-like spatial behavior in a temporally large scale 

social scenario.  The scenario is a social setting with several groups of virtual humans, 

and our goal for the model is to generate group-joining, group-leaving and group-

revisiting behaviors for a subject character in this setting over a long period of time.  We 

consider interest as the main motivation behind a subject’s selection of groups for 

interaction and we compute interestingness based on static and dynamic properties of 

group members.  Our social navigation model is capable of not only navigating the 

subject toward interesting groups, it is also continuously evaluating interestingness of 

groups and utilizing it as a group-leaving and group revisiting mechanism.   
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We combine our psychological knowledge of spatial behavior with existing social 

navigation models to build this model.  In the limited scope of two virtual characters 

regulating their distance, we benefit from existing psychological studies and theories to 

generate human-like behavior.  However, there is a lack of psychological data on spatial 

behavior in the larger scale social settings and over longer periods of time.  Therefore, 

we employ an engineering approach to define a dynamic representation of interest and 

then use it as the non-existent psychometric function that drives human-like spatial 

behavior in large scale settings.   

Additionally, we present a two-stage implementation of our solution that plans the 

spatial behaviors using our model and then realizes it in real-time through the 

SmartBody real-time 3D animation software (Thiebaux, Marsella, Marshall & Kallmann, 

2008) developed in University of Southern California1

http://ivizlab.sfu.ca/research/SocialCharacterThesis/

.  This implementation is used to 

simulate sample testcase scenarios as a proof of concept for our model and the results 

of these simulations are also provided.  Lastly, we offer public access to all our source 

codes and resources through  so 

that further evaluations and studies can be performed on our model. 

Below is a detailed summary of my main contributions in this thesis: 

• Improvement and further development of an existing social navigation model 
so that the generated behaviors are planned rather than reactive   

• Building a social navigation model capable of generating human-like social 
grouping behavior for non-player characters in stationary to semi-stationary 
social game scenes 

• Building group-leaving and group-revisiting mechanisms into our social 
navigation model that results in more human-like behavior in temporally large 
scale social scenarios. 

• Employing interest as virtual character’s motivation for action selection 

• Providing a dynamic representation of interest based on the behavior 
regulating mechanisms of habituation and boredom in humans, using an 
engineering approach 

• Implementing our proposed social navigation model in a two-stage behavior 
generation process using SmartBody software 

 
1 Available online at: http://smartbody.ict.usc.edu/ 

http://ivizlab.sfu.ca/research/SocialCharacterThesis/�
http://smartbody.ict.usc.edu/�
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• Implementing a testcase designer tool to facilitate design and effective 
maintenance of testcases 

• Simulating several testcases as proof of concept for our model  

1.3. Thesis Organization 

In this chapter we described our motivation for addressing the social spatial 

behavior generation challenge and provided the reader with an overview of our thesis 

work.  The rest of this thesis is organized as follows: in Chapter  2 we perform a literature 

review of the relevant social psychological models of spatial behavior, as well as 

navigation and steering models available in spatial behavior generating systems.  

Chapter  3 presents a step-by-step explanation of our proposed social navigation model.  

Chapter  4 describes the details of our two-stage implementation of this model.  Chapter 

 5 demonstrates the effectiveness of our system through four testcase scenarios 

executed using our implementation and discusses the results.  Finally Chapter  6 draws 

the conclusion and suggests several areas for continuation of this work into the future. 



 

7 

2. Related Works 

2.1. Overview 

In this chapter, we provide the reader with brief literature reviews on two 

important domains which contributed to our work: psychological information on social 

spatial behavior, and existing models of generating social spatial behavior for virtual 

characters.  In the first part, we provide an overview of psychological studies and 

theories on social spatial behavior of humans.  This is essential to building our social 

navigation model because these psychological models serve as the reference 

implementation for it.  Also, there are existing social navigation models that partially 

realize our vision for this model.  We study these models in order to find a state-of-the-

art social spatial behavior generation system that can be employed as the baseline for 

our solution.   

2.2. Psychological Theories about Social Spatial Behavior 

This section presents an overview of the psychological theories about social 

spatial behavior of humans to be used as the reference implementation for us.  We start 

with the studies and theories that specify attributes of human spatial behavior in smaller 

scale of a dyadic social interaction, and then move to larger scale spatial interactions 

with one or more groups.  Lastly, we describe two behavior regulating psychological 

concepts that help us build the internal model of interest for our social navigation 

solution. 

2.2.1. Dyadic Spatial Interactions 

A large body of work on small scale spatial behaviors of humans is dedicated to 

interpersonal distance regulation between two interacting individuals.  Equilibrium theory 
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of nonverbal intimacy (Argyle & Dean, 1965) is an example of these theories.  This 

theory, as cited by Bailenson, Blascovich, Beall and Loomis (2003), describes the 

inverse relationship between mutual gaze and interpersonal distance in dyadic 

interactions.  According to the equilibrium theory, mutual gaze is a cue signaling intimacy 

between two individuals and if considered inappropriate by the individuals, they increase 

their interpersonal distance to convey less intimacy. 

A substantiation of this theory is presented in an empirical study (Patterson, 

1977).  This study shows that the level of intimacy of the two individuals interacting with 

each other is the key factor that regulates and maintains their affiliative behaviors such 

as interpersonal distance, body orientation and eye contact.  In a one to one seated 

interview scenario, Patterson manipulated the seating distance of interviewer and 

interviewee, and found out that a too close distance (relative to what interviewee 

considers comfortable distance) results in reduction of eye contact and a less direct 

body orientation. 

Proxemics theory (Hall, 1966) is another psychological theory that suggests a 

spatial structure in interactions between two participants.  Hall claims that there are four 

areas, called reaction bubbles, around each individual interacting with another individual; 

these bubbles are labeled intimate, personal, social and public areas from smallest to 

largest.  Based on the intimacy level of the two interaction partners, interaction takes 

place in one of these areas.  The radius of intimate area is from 0 to 40-50 centimeters 

and body contact is allowed here.  Normally, couples or parents and children interact in 

their intimate areas.  Personal area ranges from 40-50 centimeters to 150 centimeters 

and contains interactions of close friends.  The social area on the other hand is where 

interactions with acquaintances or strangers happen and ranges from 150 to 300 

centimeters.  Finally, any distance above 300 centimeters is considered public area, 

which is for audiences or public speaking (Was, Gudowski & Matuszyk, 2006).  Figure 

 2.1 depicts these reaction bubbles. 
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Figure  2.1. Intimate, personal, social and public areas of an individual; based 

on Proxemics theory (Hall, 1966) 

Cristani, Paggetti, Vinciarelli, Bazzani, Menegaz and Murino (2011) substantiated 

the proxemics theory by studying 13 individuals involved in casual standing 

conversations where the social relations of the participants were known prior to the 

experiment.  They video recorded unconstrained interactions of the participants and 

used computer vision techniques to measure the interpersonal distances from the 

recordings.  The result of this study showed that subjects with more intimate social 

relations tend to get closer in a casual conversation setting.  Moreover, Cristani et al.’s 

study confirmed the four areas defined in proxemics theory of Hall (1966) and reported 

that if the space available to the subjects is reduced, the size of the four areas will 

reduce as well.  

The empirical studies that substantiate proxemics theory are not limited to real-

life human-to-human interactions; even in virtual immersive environments, humans show 

distance regulating behaviors when approached.  An example is an empirical study by 

Friedman, Steed and Slater (2007) which takes place in Second Life (Linden Lab, 2003).  

In Second Life players have graphical embodied representations of themselves called 

avatars that they use for interacting with one another.  In addition to the avatars, there 

are also computer controlled autonomous virtual humans in Second Life.  Friedman et 

al. found that when approached by a virtual human, humans show distance regulating 

behaviors through their avatars.  The same phenomenon has been reported by 

Bailenson et al. (2003).  In addition to confirming the distance regulating behavior, 
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Bailenson et al. found that the direction of approach and mutual gaze can also affect the 

interpersonal distance.  Lastly, in an empirical study on human’s arousal in immersive 

virtual environments (Llobera, Spanlang, Ruffini & Slater, 2010), a similar reaction is 

reported.  Llobera et al. state that there is a direct relationship between the interpersonal 

distance and the electro-dermal activity of the human whose avatar is being approached 

by a virtual human. 

Although theories on dyadic spatial behavior are essential for understanding 

social spatial behavior of humans, they are not sufficient for describing larger scale 

spatial interactions of an individual with groups.  The next section is dedicated to 

theories about human’s spatial behavior in group dynamics. 

2.2.2. Spatial Interactions with Groups 

In an empirical study aimed at classification of non-verbal behaviors Jayagopi, 

Raducanu and Gatica-Perez (2009), state that the objective of a group directly 

influences the group dynamics.  For example, competitive groups like in a debate, 

require a different arrangement than collaborative groups.  The set of non-verbal 

behaviors used by each group type can also be differentiated.  Conversational groups 

are no exception either; there are theories that describe the spatial arrangement of 

group members in a conversational group.  One such theory is the F-formation theory 

(Kendon, 1990).   

Kendon (1990) defines a transactional space in front of every individual that they 

direct their attention into.  He claims in a conversational group, members arrange 

themselves so that their transactional spaces overlap and a joint transactional space is 

created which provides direct, equal and exclusive access to the conversation to all 

members.  This arrangement is called an F-formation and the joint transactional space is 

referred to as o-space (Kendon, 1990).  In addition to o-space, there are p-space and r-

space in an F-formation; p-space is a ring-shaped area around the o-space in which 

members of the conversation stand, and r-space refers to any place in the environment 

outside p-space and o-space.  When there are more than two members in the 

conversational group, providing direct and equal access to all members is achieved by a 

circular arrangement, which is displayed in Figure  2.2. 
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Figure  2.2. A three person F-formation with circular o-space.  Adapted from 

Kendon (1990) 

Moving forward to spatial interactions of an individual with several groups in a 

social environment, one can find a big gap in social psychological studies.  We can find 

virtually no psychological theory that explains human’s spatial behavior in interaction 

with several groups over a long period of time.  Also there is a remarkable lack of studies 

that track human’s spatial behavior in larger scale group interactions.   

The empirical study of Dong, Lepri and Pentland (2011) is one of the few studies 

concerned with social spatial behavior of humans over a long period of time.  They 

tracked a group of MIT dorm residents using their mobile phone data over nine months 

and reported that humans’ social relationships and their spatial-temporal behaviors co-

evolve.  In other words, friendship with a group of people means an individual spends 

more time with that group in a common place and vice versa.  Although providing such 

evidences for existence of a relationship between a social psychological phenomenon 

and human spatial behavior is helpful, we require a more specific explanation of how 

these relationships work.  To be precise, knowing that a relationship exists does not 

replace a psychometric function that describes the relationship.  Such a psychometric 

function for explaining larger scale human social spatial behavior is absent in 

psychological literature; but there are theories and constructs on behavior regulating 

mechanisms that can help in clarifying human’s spatial action selection in temporally 
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large scale social scenarios.  Boredom and habituation effect are examples of these 

behavior regulators that we describe in the next section. 

2.2.3. Mechanisms of Social Behavior Regulation  

Groves and Thompson (1970) defined a dual process of habituation and 

sensitization that can be used as a method of behavior regulation.  Habituation effect in 

their definition is when a subject’s response to a stimulus decreases as a result of being 

repeatedly exposed to it.  Sensitization is the opposite effect that describes an increase 

in subject’s response to a habituated stimulus, following extra or alternative stimulus.  In 

their experiments, Groves and Thompson gave trains of single-shock pulses to the skin 

of an anesthetized cat using different frequencies and studied the hindlimb flexation 

reflex of the cat as the response.  Figure  2.3 shows the occurrence of habituation in two 

frequencies of giving the stimulus. 
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Figure  2.3. Habituation effect in Groves and Thompson's experiment on a cat’s 

response to skin shocks.  Adapted from Groves and Thompson 
(1970) with permission. 

In addition to habituation, there is also the boredom mechanism for behavior 

regulation.  Boredom mediates between the psychological processes influencing social 

spatial behavior, and provides a novelty homeostasis.  Hill and Perkins in (Hill & Perkins, 

1985) claim that when an individual subjectively perceives a task as undifferentiated and 

monotonous, boredom occurs.  Personality factors and environmental stimuli can 

influence when exactly an individual gets into the boredom state; but boredom eventually 

occurs as the individual is repeatedly exposed to the same task over a period of time.  

According to Hill and Perkins, to get out of boredom state, the individual searches for 

additional or alternative stimuli in the task or from the environment.  If no such stimuli 

can be found, the individual experiencing boredom will abandon the task and leave the 

field if free to do so.  Geiwitz also confirms the effect of monotony on boredom and 

claims that boredom can be produced by increasing monotony (Geiwitz, 1966). 

Besides behavior regulating mechanisms of habituation and boredom, there is 

also an abstract process describing humans’ social behavior from an interaction point of 
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view, which can be employed as a general guideline for social behavior regulation.  This 

process is called engagement process defined by Sidner, Kidd, Lee and Lesh (2004) as: 

“the process by which two (or more) participants establish, maintain and end their 

perceived connection”.  Engagement process is motivated by an individual’s interest in 

interacting with one or more other individuals and this interest results in the subject 

making initial contact with other individual(s).  From that point forward subject constantly 

re-evaluates the motivation and checks if the other individuals are still taking part in the 

interaction.  Accordingly the subject decides on whether to stay involved in the 

interaction or end the connection.  Figure  2.4 illustrates the engagement process of a 

conversation group from Peters, Pelachaud, Bevacqua, Mancini and Poggi (2005). 

 
Figure  2.4. Interaction phases in engagement process of a conversational 

group.  Adapted from Peters et al. (2005) 

The psychological theories about social spatial behavior, along with behavior 

regulation mechanisms, form a reference for human-like social spatial behavior.  In the 

next section we continue with a review of existing models of spatial behavior generation 

as baselines for generating human-like behavior. 

2.3. Models of Spatial Behavior Generation 

In this section we provide the reader with an overview of the existing models of 

spatial behavior generation for group dynamics.  The challenging areas of spatial 

behavior generation are navigation, steering, locomotion, scenario authoring and 

visualization (Kapadia & Badler, 2013).  Navigation and steering are concerned with 

planning a collision-free global path for the virtual human and moving it along the 

planned path while avoiding both static and dynamic obstacles.  The other challenging 
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areas, locomotion, scenario authoring and visualization are focused on realizing and 

animating this movement with respect to locomotion capabilities of the virtual human as 

well as narrative constraints of the scenario.  Social spatial behavior generation imposes 

yet another challenge which is planning the timing and position of the virtual human 

according to the internal dynamic model of social motivation for movement.  In the next 

section we provide an overview of existing approaches to address navigation and 

steering challenges for group dynamics. 

2.3.1. Approaches to Navigation and Steering  

There are two main approaches to navigation and steering for generating group 

dynamics: particle-based and agent-based (Pedica & Vilhjálmsson, 2008).  These two 

approaches are differentiated by the order of magnitude of the group being simulated, as 

well as the level of complexity of each individual.   

Particle-based Navigation and Steering 

In the particle based-approach, the number of individuals, or particles, is large 

while all individuals are simple and similar.  The main focus of this approach is on the 

whole system and its global collective behavior rather than the interactions between 

particles.  Through a centralized application of physical or statistical models on all 

particles, a particle-based system generates or describes complex global crowd 

behaviors.  Particle-based approach is suitable for modeling crowd behaviors, schools of 

fish and flocks of birds, and exhibits high performance.  We can distinguish statistical 

and physics-based models in this approach. 

On one hand, there are statistical particle-based models that describe the flow of 

crowds using statistical relations.  For instance, Milazzo, Rouphail, Hummer and Allen 

(1998) employed a regression model to describe turning behaviors for a large group of 

vehicles in a congested turn.  Lovas (1994) offered a queuing model for modeling flow of 

pedestrians in a network of walkway sections.  Figure  2.5 shows two examples of their 

walkways.  Lovas used a Markov chain model to describe movements of pedestrians 

from one node of the walkway network to another.   
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Figure  2.5. Unidirectional flow of pedestrians in statistical particle-based model 

of crowd simulation by Lovas (1994).  Image from Lovas (1994): a) 
flow through a corridor; b) flow through a doorway of the same 
width 

In a similar work, Garbrecht (1973) provided a transition matrix model to predict 

distribution of pedestrians over a network of paths in a mall.  Finally, Ashford, O'Leary 

and McGinity (1976) designed a stochastic queuing model to describe passenger 

behaviors in airport terminals. 

Physics-based models on the other hand, use physical phenomena like potential 

fields or fluid dynamics to simulate the behavior of crowds.  For example, Treuille, 

Cooper and Popovic (2006) simulated flow of crowds by combining a global potential 

field navigation method with a local collision avoidance solution.  Couzin, Krause, 

James, Ruxton and Franks (2002) used three proximity forces influencing the velocity of 

particles to generate schooling behavior.  Helbing modeled the crowd as a fluid (Helbing, 

1992) and applied a Boltzmann-like gas kinetic model of fluid dynamics to describe the 

collective crowd movement through a channel.  Similarly, Heïgeas, Luciani, Thollot and 

Castagné (2010) and Henderson (1974) used fluid dynamics to model flowing and 

jamming behaviors of crowds.  Although particle-based models are highly efficient in 

macroscopic simulation of crowds, they are incapable of simulating interactions between 

individuals. 
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Agent-based Navigation and Steering 

For modelling detailed group dynamics, agent-based approaches are employed.  

In an agent-based approach, the number of individuals is smaller compared to particle-

based approaches, and each individual is equipped with simple to complex behaviors.  

Sophisticated collective group behaviors emerge from this type of model as a result of 

individual behaviors.  We continue this section with an overview of the existing agent-

based models, ranging from models for navigating larger scale groups, to smaller scale 

group navigation models emphasizing on social interactions between individuals. 

Agent-based models for navigating larger scale groups of individuals are similar 

to particle-based models in the sense of being efficient in simulation of crowd behaviors.  

However, agent-based models have a distributed architecture whereas particle-based 

ones are more centralized.  Particle-based models plans a specific type of movement for 

the crowd, and then realize it by applying forces on all particles, whereas in agent based 

models, crowd movements emerge from individual behaviors.  Examples of agent-based 

crowd and group navigation models are presented in the rest of this section.  The first 

few examples model larger scale group behaviors while the remainder of the section is 

dedicated to models of spatial interaction for smaller groups of social characters.  

Reynolds (1987) simulated the aggregate motion of a flock of birds using a 

distributed agent-based approach.  In this work, each bird is navigated according to its 

local perception of the environment as well as the rules of physics applicable to its 

motion.  There are three simple behaviors all birds follow that result in flocking behavior 

for the whole group; these behaviors are collision avoidance, velocity matching and flock 

centering that keep all the birds together while maintaining minimum distance among 

them.  In a similar distributed model, Reynolds (1999) produces path following, leader 

following, queuing and flocking behaviors for a crowd of simple vehicles.  He achieves 

these behaviors by adding a steering motor force to each vehicle that enforces seek, 

flee, arrive, avoid obstacles and wander behaviors.   

Moving to a more fine-grained structure with the focus on social interactions 

between smaller groups of individuals, there are works of Musse and Thalmann (2001) 

and Ulicny and Thalmann (2001).  Musse and Thalmann simulate crowd behavior in 

real-time using a hierarchical structure to describe the crowd members.  This structure 
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consists of individual agents, groups and crowds; among which the groups are the most 

complex entity with various degrees of autonomy.  They utilize a complex finite state 

machine to determine the behavioral rules, events and reactions that are followed by 

groups, and eventually control the crowd behavior by guiding the groups.  Using a 

similar automata model for selecting the high-level complex behavior of the individuals, 

Ulicny and Thalmann also simulated crowd behavior in an urban emergency situation.  

These hierarchically controlled models, although more focused on the details of 

interaction among smaller building blocks of the crowd, do not take into consideration 

the rules of social interaction between individuals, like the rules governing conversations. 

In a smaller scale scenario, Rehm, Andre and Nischt (2005) focus further on 

social rules of inter-personal interaction and build a model of social group dynamics 

inspired by theories from social sciences.  They use proxemics theory (Hall, 1966) along 

with theories of conversational group formation, to simulate a scenario in which a single 

character joins another character for the purpose of meeting friends or building 

relationships.  At the core of their model is how the inter-personal relationships evolve 

over time and the way this change influences the dynamic distance and relative 

orientation of pairs of agents in conversation.  Relative to the context is their approach of 

using social theories to model distance and orientation regulating behaviors between two 

participants.  In similar approaches, Rist and Schmitt (2008) employed simple liking 

relationships to emulate group dynamics in a person-to-person negotiation scenario; 

while Pynadath and Marsella (2005) simulated a bullying scenario  in which the 

character’s beliefs about other characters is the key factor in social interaction. 

Although spatial behavior generation in a dyadic scenario is essential to 

modeling social navigation, it is neither complete nor sufficient in the sense that a full 

simulation of group dynamics requires more than a pair of members in a group.  

Additionally, there are other social rules governing a conversational group of more than 

two participants that should be considered in modelling group dynamics.   

In the direction of modelling social spatial behavior of a virtual character 

interacting with a multiparty conversational group, we can find interesting models such 

as Jan and Traum (2007) and Pedica and Vilhjálmsson (2008).  Jan and Traum provide 

a social navigation model for a virtual character that joins a conversational group using 
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social force field navigation.  Positioning the character to properly join the group is 

performed in this work based on proxemics theory (Hall, 1966) as well as the F-

formation theory (Kendon, 1990).  In other words, social rules of positioning and distance 

regulation are followed not only in the smaller scope of character-to-character 

interactions, but also in the larger scope of character-to-group interactions.  This is very 

close to the approach of Rehm et al. (2005) but more complete in the sense of 

considering a multiparty conversation.   

To navigate the character toward the conversational group, Jan and Traum 

(2007) utilize a social force field model consisting of the four forces; these forces are 

applied on the character to attract it toward the speaker of the group, repel it from 

outside noise, repel it from getting too close to the group members, and force it toward 

being a part of circular formation of the group.  These forces are continuously evaluated 

to navigate the character toward a certain position in the group, relative to the position of 

the other group members.  Although this work shows a major step forward in modelling 

spatial interaction of a virtual character with a conversational group, it suffers from two 

important issues.  First, this model generates positional information for navigating the 

character, but the appropriate orientational information is missing from the model.  

Second, the forces result in reactive behavior for the virtual character; meaning that an 

undesired social situation should arise to activate the related force and no preventive 

mechanism is included.  

The most promising work in this area is by Pedica and Vilhjálmsson (2008).  The 

social navigation model introduced in this work covers generating both positional and 

orientational information for navigating the character.  Similar to Jan and Traum (2007), 

Pedica and Vilhjálmsson also benefit from a social force field model for navigating a 

virtual character toward a conversational group.  This force field is built according to 

three conversation-based behaviors that are intended to keep conversation’s cohesion 

and equality, and maintaining a minimum distance among members of the conversation.  

These behaviors are the main drivers of the three corresponding social forces which are 

cohesion, equality and repulsion forces.  Group selection is based on closest distance to 

the virtual character in this model, and cohesion force attracts the character toward the 

group while the other two adjust its position in the group. 
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The social navigation model of Pedica and Vilhjálmsson (2008) adds 

orientational information to that of Jan and Traum (2007) but it is still incapable of 

generating preventive spatial behavior in cases of undesired social situations.  

Moreover, in order for the generated behaviors to be more human-like in this model, 

group selection process needs a more realistic motivation than the closest distance 

between the character and the group.  As a result of the un-realistic group selection, this 

model falls short in simulating a temporally large scale social scenario consisting of 

several groups and a virtual character interacting with more than one of them.  Finally, 

adding a dynamic internal motivation for group selection to Pedica and Vilhjálmsson’s 

model can provide mechanisms for group-leaving and group-revisiting, which we believe 

are essential for a complete human-like social spatial interaction simulation with groups.   

Besides the different approaches to navigation and steering for virtual humans, 

there are general guidelines and frameworks in the literature for designing social 

navigation models.  In the next section we describe one of these frameworks suggested 

by Spence (1999). 

2.3.2. General Navigation Framework 

In this section we describe the general navigation framework (Spence, 1999) 

cited by Riedl (2001).  The purpose of this computational framework is to reduce 

decision making and action selection in social navigation models to the minimization of 

cognitive costs.  Riedl describes Spence’s general navigation framework as an iterative 

cognitive process consisting of four stages: browsing, modeling, interpreting and refining 

browsing strategy.  In the browsing stage, the navigator perceives the information that 

can be elicited from the environment.  In the modeling stage, the navigator builds an 

internal model of the perceived information to understand the global picture of the 

environment as well as what content is perceptually available.  In interpretation stage the 

navigator uses its internal model to decide if the goal has been reached yet, and finally if 

the goal has not been reached, the navigator refines its browsing strategy and chooses 

a new direction for movement.  Spence’s general framework of navigation only suggests 

the general outcomes of the four stages of navigation and does not provide details about 

how these stages are performed.   
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2.4. Summary 

In summary, we provided reviews on two important domains in this chapter that 

are the base to our social navigation model.  These domains are psychological 

information on social spatial behavior, and existing models of generating such behavior 

for virtual characters.  The first domain acts as the reference implementation while the 

second provides a baseline for building our model.  We reviewed psychological studies 

and theories that described social spatial behavior of human in dyadic interactions as 

well as larger groups.  We talked about the gap in psychological literature for studying 

social spatial behavior over a long period of time and how behavior regulating 

mechanisms can be employed to fill this gap for generating human-like behavior.   

Moreover, we reviewed two approaches to steering and navigation in existing 

models of generating social spatial behavior: particle-based and agent-based 

approaches.  We study these models in order to find a state-of-the-art social spatial 

behavior generation system that can be employed as the baseline for our solution.  

Lastly, we described a general framework for designing social navigation models.  In the 

next chapter, we describe how we employed the psychological information as well as 

steering and navigation solutions to build our own social navigation model. 
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3. Model 

3.1. Overview 

In this chapter we propose a social navigation solution capable of generating 

human-like spatial behavior for virtual game characters.  Our solution is based on state 

of the art models for navigation and steering while our focus is employing a more 

realistic and dynamic motivation for action selection.  Such motivation can result in the 

generation of human-like spatial behavior over a longer period of time compared to the 

currently available social navigation models.  Also, we delegate the infrastructural tasks 

of obstacle avoidance, movement realization and animation to an existing behavior 

realization framework. 

We build our social navigation solution for a social scenario that contains several 

groups of virtual characters and interacting with these groups translates to joining, 

leaving and revisiting them for a virtual character.  Thus, our social navigation solution 

provides mechanisms for generating group-joining, group-leaving and group-revisiting 

behaviors.  The core driver for these three behaviors is the virtual character’s interest in 

engaging interactions with group members.  Interest, as a wide psychological area, can 

have many manifestations within the simulation of a virtual character’s social spatial 

behaviors.  For our work, we specifically use interest to guide our social navigation 

solution.  Selection of groups to join in our model is based on the interestingness of 

groups for the virtual character; while the dynamic changes in the interestingness value 

of groups trigger the group-leaving behavior in the character.  Finally, a restoration of the 

same interestingness value makes group-revisiting behavior possible. 

Description of the scenario-specific details of our work comes next, followed by 

the abstract view of our proposed solution.  We develop our social navigation model step 

by step based on the model proposed by Pedica and Vilhjálmsson (2008).  We describe 

shortcomings of our base model and the improvements we made to fix them.  Finally, we 
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employ the psychological notion of boredom and habituation as behavior regulators in 

our model.  These regulators influence the social motivational value of groups for the 

virtual character, and lead to group-leaving and group-revisiting mechanisms in our 

social navigation model.   

3.2. Problem Specifications: The Scenario 

As noted earlier in this chapter, we are interested in providing a social navigation 

model for virtual game characters that includes group-leaving and group revisiting 

mechanisms as well as navigating the character toward groups.  To build this model we 

first need to specify our scenario consisting of the social setting and its actors.   

The scenario that we consider throughout this chapter is an abstract social 

situation that can represent a wide variety of real-life social scenarios like cocktail 

parties, job fairs or casinos.  In this scenario, we have a virtual room of size 𝑚 × 𝑛 units, 

with one or more groups of virtual characters located in it.  In addition to the groups, we 

have an individual virtual character called subject character that exhibits the social 

spatial behaviors our model generates.  The subject character moves between different 

groups and engages in interactions with them at different points in time for the virtual 

purpose of exchanging information.  The groups on the other hand, are conversational 

groups formed by three or more other virtual characters that are of social motivational 

value to the subject.  It is worth mentioning that we are only interested in generating 

social spatial behaviors that are detectable from a long-shot distance.  There are 

numerous studies on the social behavior of virtual characters in a close-up social 

situation such as gaze behavior and facial expressions, whereas from the long-shot 

perspective, studies are fewer and sparser.  

Figure  3.1 provides a visual summary of our scenario with three groups.  The rest 

of this section is dedicated to providing detailed information on the attributes of group 

members, groups and the subject character. 
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Figure  3.1. Visual summary of our scenario in a case with three groups;  group 

members are forming the groups and their attributes while the 
subject character affects these attributes by joining and leaving the 
groups      

3.2.1. Group Members 

Group members are virtual characters in our scenario that form the social setting 

by standing in our conversational groups.  In addition to having access to their real-time 

position and rotation information, each group member has two other attributes: an 

interestingness value and an activity level.  Interestingness of a group member is 

defined as a relative attribute to another virtual character, and indicates how desirable 

the character finds the member for engaging in interactions with.  In other words, this 

score shows the value that the virtual character attributes to interacting with a group that 

this member is a part of.  The source of this interestingness value can be a wide variety 

of a member’s personal or social attributes such as the member’s gender, appearance 

or relative status to the character.  Presumably, people are more interested in interacting 

with or feel the need to talk to their boss compared to a stranger.  The interestingness 

value can also come from personality factors of members; for example a high 
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interestingness value can represent a member’s sense of humor that many people find 

desirable in a conversation.  

Activity level of group members on the other hand is a representation of how 

actively they are engaged in the group conversation.  Examples are: the number of times 

the member takes on the speaker role in the group or how loud a member speaks.  We 

use the activity level of group members in order to calculate monotony score of groups 

which we will later benefit from in our model as a control parameter in the leave-group 

mechanism.  The next major element in our scenario is groups, described in the next 

section. 

3.2.2. Groups 

The groups in our scenario are formed based on common attributes of their 

members.  These common attributes do not necessarily contain the position of the 

members; meaning that members of a group can change positions for an arbitrary 

number of times during the execution of our model and still act as a united group.  The 

position of the group can be calculated from the latest position of its members at any 

point in time.  To refer to the exact position of a group we calculate its center; assuming 

the position of each group member to be a vertex of a polygon, the centroid of this 

polygon is the center of our group. 

Also, groups come with a set of attributes in our scenario.  Attributes of groups 

are derived entities from their members; meaning that the interestingness of a group is 

assumed to be the collective interestingness of its members and same pattern holds for 

the activity level (monotony score) of the group.  At time 0 of execution, our model 

calculates both the interestingness value and monotony score of all groups based on 

corresponding attributes of their members.  From this point forward the interestingness 

value of a group is an attribute of the whole group as a standalone entity that can later 

be affected by virtual characters joining and leaving it.  The next section describes 

attributes of the most important actor of our scenario: the subject character.  
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3.2.3. The Subject Character 

Subject character is the individual character that exhibits the social spatial 

behaviors our model is capable of generating in different social settings.  We apply our 

social and psychologically based model only on the subject character to avoid a complex 

scenario and be able to clearly display the behavioral capabilities of this model.  

However, the same dynamic model can be applied to all characters in the virtual room 

with no additional constraints, creating a broad variety of complex life-like social 

situations. 

Our subject character joins and leaves different groups in the virtual environment 

and interacts with them.  The social motivation of the subject for selecting groups to join 

is the value that it attributes to interacting with individuals forming that group.  In other 

words, our subject’s interest in members of a group is the main driver of the group 

selection process in our model.  We call this social motivational value the interestingness 

of the individual or group and we show how the interestingness of a group dynamically 

changes as a result of the subject joining or leaving that group. 

Additionally, we assume that our subject character has perfect knowledge about 

its surrounding virtual environment; meaning that starting from time 0 of executing our 

model, the subject has access to the following information which is continuously updated 

by our model: 

• Subject’s absolute position (three dimensional) and rotation (in degrees) in the 
virtual room at all times 

• Group members’ absolute positions (three dimensional) and rotations (in 
degrees) in the virtual room at all times 

• Access to a real-time calculation of all groups’ centers based on the real-time 
position of group members 

• Interestingness value of each group member and group relative to subject 

• Level of monotony or dynamism of each group 

Lastly, we have considered two personality-based attributes for our subject 

character which are the radiuses of personal space and social space.  These personal 

attributes are parameters to our model and play a key role in distance regulation for the 
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subject character.  Now that we described detailed specifications of our scenario, we 

continue in the next section by describing our proposed solution. 

3.3. Social Spatial Behavior Regulation Model 

There are two key aspects to our proposed solution: using interest as the main 

motivation behind human-like social spatial behavior, and generating such behavior in a 

temporally large scale scenario.  Unlike the existing approaches to social navigation, 

group selection in our model is not based on closest distance; we employ interest as a 

more realistic motivation for action selection in our model.  Interest, as a dynamically 

changing value that the subject attributes to its interactions with others, can play a key 

role in generating human-like behavior over a longer period of time compared to existing 

social navigation models.   

Moreover, our model is capable of generating the full cycle of social spatial 

behavior; this cycle starts with selecting the most interesting group for the subject 

character to join.  The cycle then continues by the subject moving toward the selected 

group and properly positioning himself/herself within that group.  In the next step, the 

subject virtually interacts with the group and constantly evaluates its interestingness.  

This evaluation leads to the final action which is leaving the current group for another 

one.  In this cycle, we not only include the joining group process for the subject, but also 

go beyond and present what happens after the subject joins a group.  We provide a 

mechanism for leaving and revisiting groups, and this is the part of scenario that we 

believe closes the social spatial behavior cycle.  The three behaviors of group-joining, 

group-leaving and group-revisiting provide the groundwork for generating human-like 

behavior in a temporally large scale social scenario. 

Based on the above requirements we start by providing an abstract state-space 

view of our proposed solution, which is depicted in Figure  3.2.  This state-space consists 

of two states for our subject character: the out_group state and the in_group or joined 

state.  In the out_group state our subject character is out of the o-space of all groups 

and the model is in continuous search for subject’s next target group to join.  Selection of 

the target group is based on real-time evaluation of interestingness value of groups.  
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While continuously updating the found target group, our model simultaneously navigates 

the subject character toward the latest target group.  As soon as the subject reaches the 

circumference of the o-space of its latest target group, the transition from out_group to 

in_group state completes and we consider the subject has entered group.   

 
Figure  3.2. State-space view of our proposed solution 

While in the in_group state, because of our long-shot perspective to social spatial 

behavior of the subject, there is no visible spatial behavior from the subject other than 

staying in group.  However, at the same time, our model is constantly re-evaluating the 

interestingness value and monotony score of the current and surrounding groups and 

the effect of the subject joining and/or leaving them.  This real-time evaluation will 

eventually reach a point we call its leaving (boredom) threshold, which causes the 

subject character to leave the group.  By leaving the group, the subject character makes 

the transition from in_group back to out_group state and this cycle continues as the 

subject character moves between different groups interacting with them.   

This abstract view of our solution is supported by social navigation and 

interaction literature.  For the rest of this section we describe how it represents a 
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complete engagement process (Sidner et al. 2004) and how our social navigation model 

sits within the general navigation framework suggested in (Spence, 1999). 

As a social navigation model, our proposed solution is in compliance with the 

general navigation framework suggested by Spence (1999).  Knowing that our subject 

has perfect knowledge of the virtual environment at all times, the browsing and modeling 

stages reduce to one step in our model.  This step is accessing the updated information 

about the position, rotation, interestingness values and monotony scores of every virtual 

character and group by the subject.  In the interpretation stage, two possible decisions 

can be made depending on the state that the subject character is in: if subject character 

is in out_group state, the model evaluates the interestingness value of groups and 

decides which one is the most interesting group to be selected as the next group for the 

subject to join.  Conversely, if the subject character is in the in_group state, our model 

evaluates interestingness value and monotony score of the current group and decides 

whether it is time for the subject character to leave the group.  According to the decision 

made in the interpretation stage, the refinement of strategy stage either moves the 

subject toward the selected group or out of its current group and consequently our model 

moves to its next iteration.   

Also from an interaction point of view, our solution represents a complete 

engagement process (Sidner et al. 2004).  To be precise, we model the spatial behavior 

of our subject character in the three phases of establishing, maintaining and closing 

interaction with the groups.  In the establishing phase, the subject character selects a 

target group to join based on its interest in interacting with members of that group.  After 

the target group is selected, our model navigates the subject character toward that 

group.  As soon as the character is positioned on the circumference of the o-space of 

the target group the maintaining phase starts.  In the maintaining phase, the character 

stays within the group and our model continuously evaluates the dynamic changes in the 

group’s interestingness value and the level of activities going on in the group.  By the 

time the interestingness of the group drops to a leaving threshold, the character leaves 

the group and that is the closing of the character’s interaction with that group.  At this 

point our subject character is back in the out_group state and another spatial 

engagement process begins.  Figure  3.3 summarizes the spatial engagement phases 
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and their corresponding subject behaviors and transitions in our model within the 

subject’s state space. 

 
Figure  3.3. Three phases of spatial engagement in groups with corresponding 

states, behaviors and transitions for the subject 

Among similar social navigation systems in the literature that generate spatial 

behavior, the best and most relevant work we found to our model is by Pedica and 

Vilhjálmsson (2008).  Even though this work only covers the behaviors included in our 

out_group state of the model, we adopt it as our base model and build our interest-

based in_group behaviors into it.  The next section provides an overview of the work by 

Pedica and Vilhjálmsson (2008) as our base model. 

3.3.1. Basic Social Navigation Model 

Pedica and Vilhjálmsson (2008) modeled spatial behavior of a single character in 

group dynamics within a shared virtual environment.  The groups they considered in 

their scenario are conversational groups and their subject’s criteria for selecting a group 

and joining the conversation is the distance between the group and the subject.  The 

closer the group is to subject, the higher the chance of being selected as next target 

group becomes.  Pedica and Vilhjálmsson then defined a set of social steering behaviors 

to navigate their subject toward a group to join the conversation.  These behaviors are 

Keep_conversation_cohesion, Keep_personal_distance and 

Keep_conversation_equality.  The steering layer they proposed for navigating the 

subject character consists of a force field of three distance-based forces, each 

corresponding to one of the steering behaviors.  These forces are: cohesion, repulsion 

Out_group State In_group State

Maintaining phase
• Staying in group
• Continuous evaluation of
group’s interestingness and 
monotony

Closing phase
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Entering 
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Leaving 
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and equality and the diagrams Pedica and Vilhjálmsson provided for each force is shown 

in Figure  3.4. 

 
Figure  3.4. Proposed social forces by Pedica and Vilhjálmsson (2008).  Adapted 

from Pedica and Vilhjálmsson (2008), used with kind permission 
from Springer Science and Business Media 

Before we further describe Pedica and Vilhjálmsson’s (2008) social steering 

behaviors, we need to briefly review the F-formation theory (Kendon, 1990).  Pedica and 

Repulsion Force Equality Force

KeepConversationCohesion
behavior
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Vilhjálmsson used this theory to define the proper position around the center of a group 

at which the subject character should be placed to join the group.  Kendon describes a 

space called transactional space in front of each individual that they direct their attention 

to.  Kendon adds that in a conversation, members arrange themselves so that their 

transactional spaces overlap and a joint transactional space is created which provides 

direct, equal and exclusive access to the conversation to each member.  This 

arrangement is called F-formation and the joint transactional space is referred to as o-

space (Kendon, 1990).  When there are more than two members in the conversational 

group, providing direct and equal access to all members is achieved by a circular 

arrangement, which is displayed in Figure  2.2. 

Based on the F-formation theory, the proper position for the subject character to 

join a group is on the circumference of the circular o-space centered at the center of the 

group.  The radius of the o-space is also calculated as the mean Cartesian distance of 

group members to the center of the group.   

Pedica and Vilhjálmsson (2008) used this theory to define their cohesion force for 

maintaining Keep_conversation_cohesion behavior.  Cohesion force is intended for 

preventing the subject from being isolated in the virtual environment and moving it 

toward a conversational group.  On the basis of F-formation theory and in the case of 

groups of more than two characters, Pedica and Vilhjálmsson defined the cohesion force 

as in equation 1. 

𝐹𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 = 𝛼 �1− 𝑠
‖𝑜−𝑟‖

� (𝑜 − 𝑟) = 𝛼(‖𝑜 − 𝑟‖ − 𝑠) 𝑜−𝑟
‖𝑜−𝑟‖

   (1) 

Where 𝑜 ∈ 𝑅3 is the center of conversational group, 𝑟 ∈ 𝑅3 is the current position 

of the subject in the virtual environment, 𝑠 is the radius of the o-space of conversational 

group and 𝛼 is the scaling factor to adjust the magnitude of cohesion force depending on 

the density of virtual characters in the environment.   

As soon as the subject joins a group, Keep_personal_distance behavior activates 

to keep a minimal distance between group members while preserving personal space of 

the subject.  The force that maintains this behavior is called repulsion force.  In order to 

define the repulsion force, Pedica and Vilhjálmsson (2008) benefited from the proxemics 
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theory (Hall, 1966).  Proxemics theory assumes four spheres around each individual 

interacting with another individual; these four spheres are labeled intimate, personal, 

social and public areas from the smallest to the largest.  Based on the level of intimacy 

of the two individuals interacting with each other, they use one of these spheres to 

regulate the distance between them.  Equations 2 and 3 define the repulsion force.  In 

these equations Np is the number of other group members in the subject’s personal area 

with 𝑟𝑖 ∈ 𝑅3 being the current position of the ith group member in the personal area, ∆𝑝 is 

the radius of subject’s personal area and 𝑑𝑚𝑖𝑛 is the distance to the closest group 

member. 

𝐹𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑜𝑛 = −�∆𝑝 − 𝑑𝑚𝑖𝑛�
2 𝑅
‖𝑅‖

  (2) 

R = ∑ (ri − r)Np
i  (3) 

Comparing the repulsion force equations with the diagram of Figure  3.4 clarifies 

that Pedica and Vilhjálmsson (2008) assume the minimal distance of subject to group 

members is equal to the personal distance of the avatar.  

The final behavior is Keep_conversation_equality, maintained by the equality 

force, which is intended for sustaining the conversation space between the virtual group 

members after the subject joins the group.  Equations 4 and 5 define the equality force 

and direction respectively while Figure  3.5 depicts how this force works. 

𝐹𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 = �1− 𝑚
|c−r|

� (𝑐 − 𝑟)  (4) 

Dequality = ∑ (ri − r)Ns
i   (5) 

Where Ns is the number of group members in the subject’s social area, c is the 

center of conversation and m is the mean distance of group members to the center of 

conversation. 
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Figure  3.5. Diagram of equality force.  Adapted from Pedica and Vilhjálmsson 

(2008) 

3.3.2. Improved Social Navigation Model 

Our first step in adapting the social force field model is to precisely redefine the 

forces using the spatial attributes of our subject and groups.  This redefinition process 

results in a force field of two forces that we call attraction and repulsion.  The redefinition 

process is described in the following sections. 

Attraction Force 

Before providing our definition of the attraction force, we need to precisely define 

two parameters used in this force.  These parameters are center of the group and proper 

distance between the subject and center of the group when the subject joins the group.  

As seen in section  3.2.2, our virtual group members are arranged in a roughly circular 

formation within groups.  Assuming each group member to represent a vertex in the 

virtual environment, we defined the center of the group to be the centroid of the polygon 

formed by these vertices.  Equation 6 shows the calculation of the group center with 𝑁𝑔 

being the number of the group members and 𝑟𝑖 the vector representing the position of 

the ith group member.  

c
m
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𝑐 =  1
𝑁𝑔
�∑ 𝑟𝑖

𝑁𝑔
𝑖 �  (6) 

Also based on Kendon’s F-formation theory (Kendon, 1990) we defined the 

proper position for the subject to join a group as the circumference of the o-space of that 

conversational group.  Similar to the work of Pedica and Vilhjálmsson (2008) we 

considered the radius of the o-space to be the average distance of current group 

members to the center of the group.  This proper distance is calculated using equation 7. 

𝑑𝑎𝑣𝑔 =  1
𝑁𝑔
�∑ 𝑟𝑖 − 𝑐𝑁𝑔

𝑖 �  (7) 

By utilizing the above mentioned definitions for 𝑐 and 𝑑𝑎𝑣𝑔 in our model, we 

factored the original equality and cohesion forces from Pedica and Vilhjálmsson (2008) 

to one force we refer to as attraction force.  Attraction force is designed not only to 

prevent the subject character from remaining isolated in the virtual environment, but also 

to navigate the subject character all the way to the proper position around the center of 

the target group.  Diagram of our attraction force is shown in Figure  3.6. 

 
Figure  3.6. Diagram of the attraction force:  

Visual representation of attraction magnitude and direction 

 Equation 8 provides the mathematical definition of attraction force based on 

equations 1, 6 and 7.   

𝐹𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝛼�‖𝑐 − 𝑟‖ − 𝑑𝑎𝑣𝑔�
𝑐−𝑟
‖𝑐−𝑟‖

  (8) 
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Repulsion Force 

The repulsion force in the original model of Pedica and Vilhjálmsson (2008) is a 

reactive force; it is only activated when the subject character’s personal distance is 

already violated.  That means either the subject moves too close to other group 

members or another moving group member steps into the personal space of the subject.  

In either case, only after the violation of personal distance takes place the repulsion 

force is activated.  This activation causes the subject character to exhibit reactive 

behavior of backing away to regulate the distance again.  We believe such reactive 

behavior is not human-like; instead, the repulsion force should contain a planning 

mechanism which activates it earlier in time before the violation of personal space 

happens.  This gives the subject character a means to predict the violation of its 

personal space and avoid moving farther ahead when the group configuration results in 

an undesirable situation. 

In order to build the planning mechanism in the repulsion force, we made use of 

proxemics theory (Hall, 1966).  As mentioned in section  3.3.1 factor R of the original 

repulsion force refers to the number of group members in the subject’s personal area; 

and if there is at least one group member in subject’s personal area, it already means 

subject’s personal space has been violated.  According to proxemics theory, the next 

communication area larger than the personal area is the social area.  If instead of 

checking for presence of group members in the personal area, our model checks for 

presence in the social area of subject, then the repulsion force can be activated earlier in 

time before the potential violation of personal space happens.  Relying on this idea we 

modified the R factor in the original repulsion force to use the number of people within 

the subject’s social area rather than its personal area.  Knowing that the radius of the 

social area is greater than that of the personal area, this means our model will recognize 

group members earlier in time while the subject moves toward the group.  Thus the 

repulsion force is activated before the personal space is violated and the resulting 

behavior looks more human-like.  Equation 9 shows the modified R with Ns being the 

number of group members within the social area of the subject character. 

R = ∑ (ri − r)Ns
i  (9) 
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Consider the subject character joining a group at time t.  Figure  3.7 compares the 

repulsion vectors activated and calculated (a) at time t by the original repulsion force 

from Pedica and Vilhjálmsson (2008) and (b) at time t −  t1 by our improved repulsion 

force.  Notice that in the modified version, the repulsion force activates at time t−  t1. 

 
Figure  3.7. (a) Original reactive repulsion vector defined using character’s 

personal area vs. (b) Improved planned repulsion vector using 
character’s social area 

Assuming that point A in Figure  3.8 is the initial position of the subject character, 

our improved repulsion vector of Figure  3.7 (b) along with the attraction vector navigate 

the subject to point B. Notice that because of the repulsion force being activated earlier 

in time, the subject is neither required to step back nor its personal space is violated at 

any point in time.  
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Figure  3.8. Position of the subject after joining the group using our improved 

repulsion force 

Pedica and Vilhjálmsson (2008) presented visual results of their work in the form 

of videos showcasing the effectiveness of their proposed framework.  However, they did 

not provide public access to sources of the framework for further testing of additional 

usecases.  Our own implementation of the repulsion force on the other hand 

demonstrated that the magnitude of the force requires adjustment as well.  The 

proposed magnitude of the original repulsion force sends the avatar far back from the 

group; thus our final improvement was to reduce the magnitude of the repulsion force.  

Equations 9 and 10 define our improved version of the repulsion force. 

𝐹𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑜𝑛 = −�∆𝑝 − 𝑑𝑚𝑖𝑛�
𝑅
‖𝑅‖

  (10) 

The repulsion force of equation 10 still suffers from lack of proper direction; that 

means if the subject character is initially positioned inside the o-space of a group, there 

are cases that the repulsion force navigates the character to cut across the group rather 

than making it step back.  Although we do not consider this a human-like behavior to cut 

across conversational groups, we made two assumptions about our force field model 

that guarantee such cases do not happen in our model at the first place: 

1. At time 0, our subject character starts in the out_group state; meaning 
that the initial position of the subject is outside the o-space of all groups 

2. The early activation of the modified repulsion force always prevents the 
subject character from entering o-space of groups. 

repulsionF


A
attractionF


B
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Therefore our subject character never enters the o-space of any group and the 

static direction of the repulsion force is always the correct direction in all testcases of our 

model. 

Although we made improvements to the original social forces by Pedica and 

Vilhjálmsson (2008) to build our own force field of attraction and repulsion forces, these 

forces are still distance-based.  In the following sections we use our psychological 

knowledge of human social spatial behavior to further improve our model and generate 

social spatial behavior closer to that of humans. 

3.3.3. Psychological Distance in Our Social Navigation Model 

Social psychological studies suggest that a human’s experience of distance is 

subjective.  In other words, the same physical distance can be perceived differently from 

one individual to another.  The greater the distance, the more abstract the perception of 

the individual becomes (Liberman, Trope & Stephan, 2007).  This subjective experience 

of distance is called psychological distance.  To account for this phenomenon, we 

included a non-linear mapping from physical distance to psychological distance 

perceived by our subject character in our model.  Therefore, for every distance-based 

calculation in our force field model, we used the distance at which a group or a group 

member is perceived rather than their relative physical position. 

In an effort to quantitatively model processes of social distance regulations, 

Gubler and Bischof (1990) proposed the Zurich model of social motivation.  In this model 

they used a two-parameter hyperbolic function to map the physical distance to 

psychological distance.  The two parameters to this mapping are maximum distance 

perceivable by the subject and mapping control parameter.  Inspired by the Zurich model 

of social motivation, we defined our mapping from physical distance to psychological 

distance as shown in equation 11. 

Dperceived�Dphysical, Dmax , r� = �
Dmax.Dphysical

r.�Dmax−Dphysical�+Dmax .Dphysical
for Dphysical < Dmax

0 otherwise
� 

 (11) 
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In this mapping, parameter Dmax shows the maximum physical distance 

perceivable by our subject character, Dphysical is the physical distance between the 

subject character and the group or a group member, and r is our control parameter 

determining the rate at which psychological distance grows with physical distance.  Both 

Dmax and r are parameters of our model which not only normalize all distances to a 

value within [0, 1] interval, but also make the virtual environment scalable as well.  No 

matter what the dimensions of the virtual room are, we can always tune the 

psychological distance parameters in a way that the whole room is perceivable by the 

character.  Figure  3.9 shows a sample plot of our psychological mapping function with 

Dmax = 200 and r = 20. 

 
Figure  3.9. Our physical distance to psychological distance mapping function 

with Dmax = 200 and r = 20 

Improvements we made to the social forces of Pedica and Vilhjálmsson (2008), 

along with introduction of psychological distance to our model, are both efforts to make 

the model capable of generating social spatial behavior closer to that of humans.  

However, the decisions our model makes based solely on these improvements are still 

distance-based.  Looking back at Figure  3.2, our model only covers the behaviors in the 
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out_group state so far.  To go beyond the distance-based model and close the cycle 

shown in Figure  3.2, we introduce interest-based social spatial navigation. 

3.4. Interest-based Social Spatial Navigation 

As mentioned earlier in this chapter, humans subjectively attribute value to their 

interactions with other individuals and this value, that we call interest, is their motivation 

for engaging in interactions with other individuals.  Moreover, interest as a dynamic 

function of time can act as the leave-group mechanism in our model.  On the basis of 

this idea we introduce interestingness score of groups that we will use to turn our 

distance-based social force field into an interest-based force field.  The details of how we 

model interest and calculate the interestingness score is described in the next section.  

For the rest of this section, we use Interestingnessg�t,∆g� to refer to our interestingness 

score of group g as a function of time (t) and level of activities (monotony score) of the 

group (∆g). 

The above definition for interest turns the interestingness score of groups to the 

main factor of group selection in our model.  At any point of time when the subject 

character is in the out_group state, our model continuously evaluates the interestingness 

scores of all groups and selects the group with the highest perceivable interestingness 

score as the target group.  Here, by perceivable interestingness score, we mean the 

interestingness score of the group scaled to the psychological distance at which the 

subject perceives that group.  The attraction force that derives this process is shown in 

equation 12.  

𝐹𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =

𝛼 �𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑖𝑛𝑔𝑛𝑒𝑠𝑠𝑔�𝑡,∆𝑔�� . �Dperceived�‖𝑐 − 𝑟‖ − 𝑑𝑎𝑣𝑔 ,𝐷𝑚𝑎𝑥 , 𝑟�� 𝑐−𝑟
‖𝑐−𝑟‖

 (12) 

It is worth emphasizing that our force field model calculations are continuous in 

terms of time.  This means that as soon as the subject character in the out_group state 

selects an initial target group, not only does it start locomoting toward that group; it also 

continues evaluating all groups’ interestingness scores in real-time while moving.  In 

case a group with a higher perceivable interestingness score is found, the subject 
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character strays from its current path and locomotes toward the new target group.  When 

the subject character reaches the distance 𝑑𝑎𝑣𝑔 from the center of the most recently 

selected target group, it has officially joined that group and the transition from the 

establishing phase of interaction to the maintaining phase is complete. 

In the maintaining phase, our model continuously re-evaluates the 

interestingness score of subject’s current group over time and monitors if this score 

drops to the leaving threshold.  The only spatial behavior observable in this phase is the 

subject character staying at the same position within the group for an arbitrary interval in 

time.  When the leaving threshold is reached, our subject character leaves the current 

group and the current engagement process moves into its closing phase.  The next 

section provides detailed information on our interest model. 

3.4.1. Interest Model and Calculation of Interestingness Score 

In the previous section we discussed the establishing phase of spatial 

engagement in our model.  We described the role of interest as the motivation of our 

subject character to engage in interactions with groups.  In this section we focus on 

developing our model for interest which is the driver of maintaining and closing phases 

of our social navigation solution.   

In order to develop our interest model, we reviewed the psychological literature 

on social spatial behavior.  We looked for a psychometric function that models human 

social spatial behavior in a social setting like a job fair.  What we recognized was a big 

gap in social psychology literature for tracking and modeling social behavior of humans 

in social settings over a long period of time.  As seen in section  2.2, the available 

psychological models of human social spatial behavior are either concerned with the 

existence of a relationship between a social phenomenon and specific spatial behaviors 

of humans, or model the social spatial behaviors of an individual in a strictly limited 

space around the individual.  As an example, a study by Dong et al. (2011) states that 

humans’ social relationships and their spatial-temporal behaviors co-evolve; but how this 

co-evolution exactly occurs remains unknown. 
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Despite the gap for modelling large scale social spatial behavior, there are 

structures defined in psychology that can be employed as behavior regulators to 

generate human-like social spatial behavior in an engineering approach.  Two examples 

of these structures are boredom and habituation.  The works of Geiwitz (1966) and Hill 

and Perkins (1985) in modeling boredom as well as Groves and Thompson’s theory of 

habituation (Groves & Thompson, 1970) came as guidelines for us to build an internal 

representation of interest for our social navigation solution.  Inspired by the behavior 

regulating effect of boredom and habituation, we took an engineering approach to model 

interest.  Assuming the individual is our subject and the task is engaging in interaction 

with a conversational group, our interest model works as follows: at the beginning, the 

collective interestingness of members of a group acts as the motivation for the subject to 

join the group.  When the subject joins the group, its interest in interacting with the 

members start to decrease as a function of time which is in compliance with the 

habituation theory.  Also, according to Hill and Perkins, boredom will eventually occur if 

the task remains unchanged.  This is where the activity level of the group comes into 

play.  We measure monotony of a group as the collective number of times the group 

members undertake an activity such as speaking.  The less monotony score of a group 

is, the more alternative stimuli our subject can find in interacting with the group, and thus 

it remains in the group longer.  However, the subject will eventually experience boredom 

in its current group at some point in time that is influenced by personality factors of the 

subject as well as interestingness and monotony scores of other groups in the 

environment.  According to Hill and Perkins, this is the leaving threshold.  The subject 

character leaves the group in order to find alternative stimuli in interacting with other 

groups in the virtual environment. 

Hence, we initially modeled interest in our solution using a decreasing function of 

time which is shown in equation 13.  At time 0 of joining a group, the interestingness 

score of that group is at its maximum value.  This value is an aggregation of 

interestingness scores of members of that group in the initial setting.  As time passes 

while the subject maintains its interactions with the group, interestingness score of the 

group decreases proportional to its monotony score.  Higher monotony scores translate 

to faster decay and similar direct relationship holds for lower monotony scores.  This 

monotony score is then used as a control parameter in our model of interest.  In 
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equation 13, t is the time elapsed after the subject character has joined group g, Tmaxg is 

the maximum time it takes the character to completely become bored of group g and mg 

is the monotony score of group g.  Figure  3.10 shows a sample interestingness plot with  

Tmaxg = 10 seconds and mg = 25. 

Ig �Tmaxg, t, mg� = � 
mg.�Tmaxg−t�

mg.�Tmaxg−t�+Tmaxg.t
for t < Tmaxg

0 otherwise

� (13) 

 
Figure  3.10. An example of interest model for group g with T-max = 10 seconds 

and m = 25 

As mentioned earlier in this section, situational and personality characteristics of 

the subject have a role in determining when the boredom occurs.  We reflect this in our 

model by incorporating a parameter called boredom threshold; that is the minimum 

interestingness score our subject experience a group at, before it leaves that group.  We 

denote boredom threshold for group g by Iming in our model.  Iming comprises a constant 

factor for personality characteristics of our subject, as well as a dynamic environmental 

factor that is a function of interestingness scores of other groups.  The more subject 
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character perceives other groups as interesting, the likelier that it leaves its current 

group.  Figure  3.11 shows the leaving threshold added to the interest model of Figure 

 3.10.  In this figure, t0g is the time at which interestingness score of group g drops to 

Iming. 

 
Figure  3.11. Leaving threshold in interest model of group g with T-max = 10 

seconds and m = 25 

When the interestingness score of a group hits the leaving threshold, transition 

from the maintaining phase to the closing phase of interaction happens.  In the closing 

phase, the subject character moves away from the current group toward another 

interesting one.  Right after leaving a group, the interestingness score of that group is 

relatively low compared to the others.  However, the distance at which subject character 

perceives that group is very short as well.  This in some cases, depending on the spatial 

distribution of groups and their interestingness scores, results in the subject returning to 

the same group while selecting the next target group.  To prevent returning to the same 

group right after leaving it, we modified our interest model and included a mechanism for 

inhibition of return (Klein, 2000).  In our mechanism resulting in inhibition of return, 
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leaving a group causes the interestingness score of that group to immediately drop to 0.  

We included this shunting effect in equation 13 by modifying the time condition from 

t < Tmaxg to t < t0g < Tmaxg, assuming t0g < 𝑇maxg
 is the time of reaching the leaving 

threshold.  Figure  3.12 shows the improved version of the interestingness function of 

Figure  3.11 with the shunting effect resulting in inhibition of return. 

 
Figure  3.12. Shunting effect added to interest model from Figure  3.11 that results 

in inhibition of return  

Finally, we claim that humans are likely to interact with a conversational group 

more than once in a social setting.  Because of this possibility, we include a recovery 

part to our model of interest so that a group once left by subject can recover its 

interestingness over time and has the chance to be revisited by the subject later.  Similar 

to our model of decay in interest, the recovery part is a non-linear function of time with a 

control parameter which again is proportional to the monotony score of the group.  The 

recovery part of our interest model starts as soon as subject character steps out of the 

group and leaves it.  Equation 14 defines our ultimate model of interest for group g. 
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I�t, TmaxB, mB, t, TmaxR, mR� = �
 mB .�TmaxB−t�
mB .�TmaxB−t�+TmaxB.t

for t < t0 < TmaxB

TmaxR.t
mR .�TmaxR−t�+TmaxR.t

for t0 < 𝑡 < TmaxR

� (14) 

Where TmaxB and TmaxR are the maximum times it takes the character to 

completely lose or gain back interest in current group respectively, 𝑚𝐵 is the monotony-

based control parameter for decay and mR is the monotony-based control parameter for 

recovery of interest.  A sample plot of our interest model based on equation 14 is shown 

in Figure  3.13 with  TmaxB = 10 seconds, mB = 25,  TmaxR = 30 seconds and mR = 90. 

 
Figure  3.13. Final interest model with inhibition of return and recovery with  

T-max-B = 10 seconds, m-B = 25, T-max-R = 30 seconds and m-R = 
90 

3.5. Summary 

In summary, we introduced our interest based social navigation model in this 

chapter.  We described our general social scenario and the specific attributes of our 

actors in this scenario which are subject, group members and groups.  Next we 
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proposed our two-state solution which not only is in charge of navigating the subject to 

join a group, but also manages what happens afterwards until the subject leaves that 

group to join another one.  We realized our two-state solution in a social navigation 

model based on the work of Pedica and Vilhjálmsson (2008).  We made improvements 

to the social force field Pedica and Vilhjálmsson proposed, in order to modify their 

reactive forces to our planned forces.  Moreover, we included the effect of human’s 

perception in our model by utilizing psychological distance instead of physical distance.  

We even went beyond the distance based navigation and introduced our interest-based 

social navigation model which considers interest as the main motivation of individuals for 

interacting with each other. 

We benefitted from Hill and Perkins’s model for boredom (Hill & Perkins, 1985) in 

defining our own interest model.  In our model, boredom is a behavior regulator that we 

use to build a mechanism for leaving groups.  In an engineering approach and using the 

model of boredom, we defined our interest function as a decreasing function of time 

which is controlled by the monotony score of the group.  We also took situational, 

environmental and personality characteristics of the subject into account for specifying 

an above zero leaving threshold in our interest model.  We prevented consecutive cycles 

of join and leave of the same group using our mechanism for inhibition of return, which 

dropped the interestingness score of the groups to 0 at the time leaving threshold is hit.  

Finally, to make it possible for our subject to visit a group more than once (but not 

consecutively) during the simulation of our model, we added the recovery part to our 

interest model.  Figure  3.14 summarizes our ultimate interest model. 
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Figure  3.14. Summary of our ultimate interest model for a group 

To be able to visually evaluate our model and compare the spatial behaviors it 

generates to those in psychological literature on social spatial behavior, we implemented 

it and ran several simulations.  In the next chapter we describe our implementation of the 

model as well as the simulation results. 
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4. Implementation 

4.1. Overview 

Chapter  3 introduced our interest-based social navigation model.  We created 

this model based on a set of available psychological theories and studies on social 

spatial behavior which we reviewed in Chapter  2.  Our ultimate goal for this model is to 

generate social spatial behavior for a 3D virtual game character, closer to that of 

humans.  Thus, the first step for evaluating our model is to implement it and run a set of 

simulations in order to actually see the behaviors it is capable of generating in diverse 

social settings.  Visual comparison of the generated behavior with what we know about 

human social spatial behavior unveils how close we reached our ultimate goal.   

When implementing a model involving embodied 3D virtual characters like our 

subject character or group members, appearance and rigs of the characters become as 

important as the behaviors they exhibit.  In this context, appearance of the 3D character 

is its visual features like skin, hair and clothing, and by rigs we refer to the basic control 

structure for moving the character, like a skeleton.  So, our implementation should cover 

3D animation and rendering as well as social spatial behavior planning and realization.  

However, the tasks of animating and rendering virtual characters are complex enough 

for a field of study to be dedicated to character engines.  These character engines can 

not only be in charge of animating and rendering the character, but also provide some 

level of autonomy in movement like path planning and obstacle avoidance mechanisms.  

In this implementation, we delegate the tasks of animation, rendering and behavior 

realization to the SmartBody platform (Thiebaux et al., 2008) and develop our own social 

spatial behavior planning module to plan the social spatial behaviors to be realized.  

Smartbody is a real-time 3D character framework developed in University of Southern 

California which we detail in section  4.3. 
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To communicate the planned social spatial behavior to SmartBody, we require a 

standard means of describing behaviors, for which we use Behavior Markup Language 

(BML) (Vilhjálmsson, Cantelmo, Cassell, Chafai, Kipp, Kopp, Mancini, Marsella, 

Marshall, Pelachaud, Ruttkay, Thórisson, Welbergen & Werf, 2007).  We start the next 

section by describing the BML language and continue by pointing out the capabilities of 

SmartBody platform that brings our testcases to life.  Then we describe the 

implementation of our model in run-time using a two-stage behavior generation process.  

In the first stage, our model is in charge of planning the social spatial behavior while in 

the second stage, SmartBody takes care of realizing the planned behavior.  The 

flowchart of the social spatial behavior planning algorithm and a block diagram of the 

architecture of the system are provided to clarify our behavior generation process.  

Finally, we describe the initialization process of our model where the social spatial 

behavior planning algorithm is initialized with the information about the social setting and 

model parameters. 

In addition to this documentation, we offer public access to our source codes, 

video results and other auxiliary resources we developed and used for the simulations 

through the iVizLab website2

4.2. Behavior Markup Language (BML)  

 for further testing and studies.   

The first step toward realizing behaviors for our virtual characters is to precisely 

describe the behaviors.  To that end, we use Behavior Markup Language or shortly BML.  

According to Vilhjálmsson et al., BML is a unified way of describing both verbal and non-

verbal behaviors of humans, and its key feature is independence from the particular 

animation method used to realize the behavior (Vilhjálmsson et al., 2007).  Although 

other application specific languages are available for describing behaviors, they have 

large overlapping concepts.  BML is the result of an effort to develop a common and 

standard specification that prevents replication of work in describing behaviors.   

 
2 http://ivizlab.sfu.ca/research/SocialCharacterThesis/ 

http://ivizlab.sfu.ca/research/SocialCharacterThesis/�
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BML 1.0 Standard (Reidsma & Welbergen) defines BML as an XML based 

language that is capable of describing a list of behaviors in a <bml> block.  This block 

can then be embedded in any larger XML code.  The behaviors currently supported by 

BML include walking, talking, gesturing, nodding, grabbing objects, looking at objects, 

etc.  A BML command describes each behavior by specifying its physical realization 

parameters as well as its synchronization constraints.  By specifying these two 

attributes, the behavior designer can focus on designing the behavior rather than its 

realization.  Figure  4.1 shows an example of a BML command. 

There are complex software modules called BML realizers that implement the 

standard BML specification.  Some examples are provided in CADIA (“The CADIA BML 

Realizer”, n.d.), GRETA (Mancini, Niewiadomski, Bevacqua & Pelachaud, 2008), 

Elckerlyc (Van Welbergen, Reidsma, Ruttkay & Zwiers, 2009) and SmartBody (Thiebaux 

et al., 2008) among which we employ SmartBody for realization of behaviors generated 

by our model as well as animation and rendering characters.  SmartBody supports the 

Vienna draft version of BML and its pluggable architecture is what makes it the best 

candidate for behavior realization in our implementation.  The next section describes the 

SmartBody platform.   

 
Figure  4.1. Example of a BML command with its physical specifications and 

synchronization constraints.  Adapted from Reidsma and Welbergen 

4.3. SmartBody as the Animation and Behavior Realization 
Engine 

SmartBody software (Thiebaux et al. 2008) is one of the best academic real-time 

character animation and behavior realization platforms available and we employ it as our 

backend engine in this implementation.  This open-source 3D character animation and 

Behavior Block BehaviorsSynchronization Constraint
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BML realization engine is developed at the Institute for Creative Technologies, part of 

University of Southern California.  Because of its academic base, Smartbody is 

commonly used in intelligent virtual agent research projects such as those of Swartout, 

Traum, Artstein, Noren, Debevec, Bronnenkant, Williams, Leuski, Narayanan, Piepol, 

Lane, Morie, Aggarwal, Liewer, Chiang, Gerten, Chu and White (2010) and Kenny, 

Parsons, Gratch, Leuski and Rizzo (2007).  Unlike similar commercially available 

character platforms, Smartbody is in a close active collaboration with research scholars 

which results in frequent and ongoing updates and contributions to its capabilities.  

SmartBody provides a set of real-time capabilities for virtual characters (Shapiro, 2011) 

which are listed below and realized using BML: 

• Locomotion: walk, jog, run, turn, strafe, jump 

• Steering: avoiding obstacles and moving objects 

• Object manipulation: reach, grasp, touch, pick up objects 

• Lip Synchronization and speech: characters can speak with lip-syncing using 
text-to-speech or pre-recorded audio 

• Gazing: robust gazing behavior that incorporates various parts of the body 

• Nonverbal behavior: gesturing, head nodding and shaking, eye saccades 

• Character physics: ragdolls, pose-based tracking, motion perturbations 

SmartBody is designed as a hierarchical controller-based architecture and 

combines 15 controllers for hierarchically controlling body parts of the virtual character.  

Animation in SmartBody is a combination of skeletal animation and per-vertex morph 

target techniques and it has a fully featured renderer for appearance of characters 

including hair and clothing. 

SmartBody is developed in C++ programming language, and distributed under 

the LGPL licence.  It can be employed as a standalone system or in combination with 

other game engines such as Unity3, Ogre4, Panda3D5, Gamebryo6 and Unreal7

 
3 Unity Game Engine: 

.  

http://unity3d.com/ 
4 OGRE – Open Source 3D Graphics Engine: http://www.ogre3d.org/ 
5 Panda3D – Free 3D Game Engine: https://www.panda3d.org/ 
6 Gamebryo Game Engine: http://www.gamebryo.com/ 
7 Unreal Engine: http://www.unrealengine.com/ 

http://unity3d.com/�
http://www.ogre3d.org/�
https://www.panda3d.org/�
http://www.gamebryo.com/�
http://www.unrealengine.com/�
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SmartBody’s built-in Python interpreter enables the users to control their simulations with 

a Python API; this API provides access to SmartBody’s internal objects for starting and 

stopping simulations, creating or removing virtual characters in the scene, configuring 

characters and the camera, etc.  

The above animation and behavior realization capabilities, along with detailed 

documentation and its academic base, made SmartBody an excellent backend engine 

for us to simulate our model with.  Our implementation of the social spatial navigation 

model involves two processes: initialization of the model and run-time planning and 

realization of social spatial behaviors.  In the next section we describe how we 

implemented our model in run-time using SmartBody, and the initialization process is 

explained afterwards. 

4.4. Implementation of Our Social Navigation Model in Run-
Time  

This section details implementation of our social spatial navigation model at run-

time.  In other words, we assume that our model is already correctly initialized with 

parameter values and the initial scene information, and ready to start simulation.  Details 

of the initialization process are explained in the next section.  

 In our implementation, we use a two-stage spatial behavior generation process 

at run-time; in the first stage, our social navigation model plans the position and rotation 

of the subject character through a social spatial behavior planning algorithm.  This plan 

is then communicated via a BML command to SmartBody.  In the second stage, by 

executing the BML command, SmartBody realizes the spatial behavior which results in 

an update in positional and rotational information of the subject.  Finally, our social 

spatial behavior planning algorithm obtains this updated information for its next iteration 

of planning.  This two-stage spatial behavior generation process is illustrated in Figure 

 4.2.   
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Figure  4.2. The run-time two-stage spatial behavior generation process in our 

implementation 

As our model continuously evaluates the interestingness and monotony scores of 

groups in the scene, this closed loop of social spatial behavior planning and realization 

continues its execution until the end of the simulation.  In the following sections we detail 

our social spatial behavior planning algorithm as well as the process of initializing 

parameters of the model and the scene. 

4.4.1. Social Spatial Behavior Planning Algorithm 

Social spatial behavior planning algorithm is the main component that realizes 

our social navigation model.  Given an initial social scene with several virtual groups, a 

subject character, and a set of parameter values to configure the model, the social 

spatial behavior planning algorithm continuously generates BML commands for 

navigating the subject in the virtual scene.  We postpone explanation of our configuration 

and initialization process to the next section and start by describing our social spatial 

behavior planning algorithm here.  It is worth mentioning that our algorithm exclusively 

plans the next position and rotation of the subject, and for path planning and obstacle 

avoidance we rely on the capabilities of SmartBody. 

We implemented our social spatial behavior planning algorithm as a Python 

module (consisting of 17 Python scripts) that uses SmartBody’s higher level Python API 

and is run by its built-in Python engine.  The Python API provides us with access to 

SmartBody’s internal objects that represent our virtual characters, events raised as a 

result of executing a BML command, and SmartBody’s internal real-time clock that we 

use for synchronization purposes.  
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 The social spatial behavior planning algorithm starts with obtaining the most 

recent position and rotation information for all virtual characters from SmartBody.  Then 

for each group the algorithm calculates the interestingness score using equation 14.  

The monotony score that we use for this calculation is the collective number of times that 

members of a group perform an activity.  Also, if the subject character has never visited 

any of the groups before, the interestingness of that group is the collective 

interestingness value of its members.  Using this interestingness scores and equation 

12, the social spatial behavior planning algorithm then calculates the attraction force 

toward each group and the group with the maximum attraction magnitude is selected as 

the target group for the subject to join.  At this point, our behavior planning algorithm 

calculates the center and radius of the o-space of the target group and prepares a BML 

locomotion command to move the subject toward it.  An example of the BML locomotion 

command is shown below: 

<locomotion facing=”90” target=”100 150” velocity=”0.5;0.5;0.5”> 

The facing attribute specifies the absolute rotation value in degrees that the 

subject should have by completion of this command, while the target attribute shows its 

absolute [𝑥,𝑦] position.  The velocity attribute defines the velocity of the subject’s 

locomotion in three directions and the manner of locomotion is walking by default.  This 

BML command is then sent to SmartBody for execution.  In SmartBody’s architecture, 

BML commands are executed as independent threads.  Because of that, on the next tick 

of the clock after sending the BML command, our social spatial behavior planning 

algorithm can check for the updated position and rotation information of the subject and 

determine if it has reached the target group.  While the subject is still on its path toward 

the target group, the behavior planning algorithm keeps calculating the attraction force 

towards all groups to make sure the selected target group is in fact the most attractive 

group for the subject.  In case another group with a stronger attraction force is found, the 

behavior planning algorithm immediately retargets the subject to the new group. 

When the subject gets close enough to the target group so that the group 

members are detectable in the subject’s social area, the repulsion force is calculated.  

From this point forward, the summation of the attraction and repulsion vectors is used to 

generate BML commands to navigate the subject for the rest of the path.  Finally, when 
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the subject reaches the circumference of the o-space of the target group, SmartBody 

raises an event to indicate the end of execution of the last BML command.  This is when 

the subject takes an idle position and stays in the group until its leaving threshold is 

reached. 

While the subject is in the group, our social spatial behavior planning algorithm 

uses interest model of equation 14 to update interestingness score of the current group.  

It also calculates the leaving threshold using a combination of the subject’s 

characteristics and the interestingness scores of other groups, as shown in equation 15.   

𝐼𝑚𝑖𝑛𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑐 + 𝛽
𝑛−1

∑ 𝐼𝑔�𝑡,𝑇𝑚𝑎𝑥𝐵,𝑚𝐵, 𝑡,𝑇𝑚𝑎𝑥𝑅 ,𝑚𝑅�𝑔≠𝑡𝑎𝑟𝑔𝑒𝑡  (15) 

In equation 15, 𝑐 is a constant value which represents the subject’s 

characteristics influencing how quickly it gets bored of interactions.  Parameter 𝛽 is the 

weight of the environment’s effect on the leaving threshold, 𝑛 is the total number of 

groups in the environment and the rest is the average interestingness score of all groups 

excluding the current group of the subject.  

As soon as the interestingness score of the current group drops to leaving 

threshold, our social spatial behavior planning algorithm starts to navigate the subject 

out of its current group and toward the most interesting group out in the environment.  

This run-time process is illustrated as a flowchart in Figure  4.3. 

We developed 17 Python scripts that together implement the flowchart of Figure 

 4.3.  These scripts include separate classes encapsulating information of the entire 

testcase, groups, subject, members, permanent properties of members (the sources of 

members’ interestingness) and temporary properties of members (i.e., activities they 

perform).  Also there are a set of scripts that manage the information flow between our 

classes.  Below is a list of major scripts and classes with their responsibilities. 

• Simulation runner script: loads the testcase, initializes the scene, runs the 
timer script, sets up SmartBody’s steering managers for characters and starts 
the simulation 

• Testcase loader script: retrieves testcase data from file and creates testcase 
instance 
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• Scene initializer script: creates subject character and group members, 
positions all virtual characters within the scene and configures the camera 

• Configuration handler script: configures parameters of our model from a 
configuration file 

• Timer script: synchronizes our simulation with internal clock of SmartBody, 
updates interestingnesses of groups (by propagating the message to 
testcase), calculates leaving threshold of subject and checks if the subject 
should join a group and continuously calls navigator script 

• Navigator script: calculates attraction force toward each group, selects target 
group, calculates repulsion force, generates BML locomotion commands and 
finally sends the BML commands to SmartBody for execution 

• Testcase: The object that acts as a container for all groups and the subject 
and propagates messages to them 

• Groups:  A set of group objects that contain group members.  A group object 
is in charge of calculating its center, propagating messages to its members, 
calculating its interestingness and monotony scores and keeping track of the 
subject leaving and joining it 

• Members: A set of member objects that have access to their interestingness 
and level of activity information.  A member object also provides access to its 
position and rotation information in real-time 

• Subject: The object that is in charge of providing state information to the 
navigator algorithm as well as partially calculating leaving threshold.  Like a 
member object, subject also provides access to its position and rotation 
information in real-time 

• Logger: The object responsible for logging the positional data and 
interestingness scores generated by the social spatial behavior planning 
algorithm, to be used for visualization purposes 

The important run-time communications between these components are 

illustrated in Figure  4.4.  For the sake of readability, Figure  4.4 does not show all 

communications between components and thus is not a complete sequence diagram of 

the system.  In the next section, we focus on the initialization phase of our 

implementation and describe parameter configuration in our system, testcase file 

structure and testcase designer apparatus. 
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Figure  4.3. The execution time flowchart of our social spatial behavior planning 

algorithm 
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Figure  4.4. Pseudo sequence diagram of communications between major 

components of our social spatial behavior planning algorithm in run-
time 
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4.5. Initialization Process of Our Social Spatial Behavior 
Planning Algorithm 

In the previous section we described our social spatial behavior planning 

algorithm in run-time.  However, none of the mentioned functionalities can be achieved if 

the model is not properly initialized with configuration parameters.  In this section we 

describe the initialization process and the data files and tools we developed to facilitate 

it. 

There are two files containing initialization information for our social spatial 

behavior planning algorithm: testcase information and parameter configuration.  

Testcase information file is an XML file which contains the initial information about the 

scene of the simulation, whereas parameter configuration file contains parameter values 

to be used in interest model and social force field calculations.  We first demonstrate the 

process in which these two files are used for initialization of our system, and then 

provide detailed explanations on their contents. 

Our simulation runner script starts by running the testcase loader which is in 

charge of loading the grouping, position, rotation and other information about the scene 

from the testcase XML file.  After reading the file, the loader uses the extracted 

information to create an internal representation of each object in the scene such as 

subject and group members.  These internal representations are later linked to their 

corresponding 3D virtual characters in SmartBody by the scene initializer script.  Using 

the internal representations of the objects, the scene initializer creates the corresponding 

virtual characters, sets the proper meshes for their appearance and positions them in the 

scene.  Each object is then responsible for calling the configuration handler to configure 

parameters of the model that it uses.  Finally, each member object uses its activity 

information to generate a set of animation BML commands and sends them to 

SmartBody for execution.  An example of the animation BML command is shown below: 

<animation name=”cross_arms” start=”10” end=”12”> 

The name attribute in this command is used to refer to one of the available 

pieces of animations in SmartBody and start and end are the synchronization 

constraints.  Start specifies the time of starting the animation in seconds, with the time of 
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starting the simulation being its origin.  In a similar manner, end shows the time of 

ending the animation.  As a result of executing this command, the corresponding 

character will start to cross its arms at the 10th second of the simulation and finishes 

crossing them at the 12th second.  Figure  4.5 summarizes the initialization process of our 

behavior planning algorithm.  The communications shown in this illustration happen 

immediately before those shown in Figure  4.4. 

 
Figure  4.5. Initialization process of social spatial behavior planning algorithm 

In the following sections we describe the structure of the testcase and 

configuration files used in the initialization process. 

4.5.1. Initial Scene Information as an XML File 

The information that specifies the initial scene in every simulation is contained in 

the testcase file.  This is an XML file having initial position and rotation information for 

each character, as well as a nested structure for elements that show their relationships; 

for example, interestingness and activity properties of a group member are listed as 
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nested elements under that member.  At the root of a testcase file is the Testcase tag 

with a name attribute.  There is also a Description tag for the Testcase that can be used 

for commenting purposes.  Nested under the Testcase are Subject and Groups tags.  

Subject has a name, locX and locY to specify its initial position in the scene, rotation for 

its initial rotation value, and finally the radiuses of its personal and social areas in 

personalAreaR and socialAreaR respectively.  Under Groups comes a set of Group tags 

with name attributes and their members.  Each Member, like the Subject, has locX, locY 

and rotation attributes as well as a set of Properties.  Properties are the sources of 

interestingness score of the member and its activity level.  A member can have any 

number of PermanetStatuses that are representations of interesting attributes of that 

member for the subject.  For example, being the subject’s boss can be represented as a 

PermanetStatus.  Each PermanetStatus has a value, a maximum value and a weight 

that help evaluating it.  To evaluate interestingness of a member we use equation16. 

𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑖𝑛𝑔𝑛𝑒𝑠𝑠𝑚 = ∑ 𝑤𝑒𝑖𝑔ℎ𝑡 × 𝑣𝑎𝑙𝑢𝑒
𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑉𝑎𝑙𝑢𝑒𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑢𝑠𝑒𝑠𝑚   (16) 

In addition to PermanentStatus, a member can also have any number of 

TemporaryProperties which are indications of activities of a group member within the 

group.  Besides the value, maximum value and weight, a TemporaryProperty also has 

temporal aspects shown in its startTime and endTime.  In our social spatial behavior 

planning algorithm, we use the number of TemporaryProperties of a member as its level 

of activity (monotony score).  Also we represent each TemporaryProperty with an 

animation that starts and ends at startTime and endTime respectively.  An example of 

the testcase XML file is shown in Figure  4.6.  After completion of scene initialization, the 

configuration handler script initializes parameters of the model from a configuration file.  

The parameters initialized in this process are explained in the next section. 
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Figure  4.6. A sample testcase xml file for initializing the scene of simulation 

4.5.2. Configuring Parameters of the Model 

Our model parameters should be set for each simulation, and this is achieved via 

a configuration file.  This file, called config.ini, contains four sections corresponding to 
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the different scopes in our behavior planning algorithm.  Under each section, related 

parameters and values are listed for the current simulation.  Notice that in this 

implementation we partitioned the space of possible monotony scores to high and low 

using a threshold value.  Depending on being low or high in monotony, groups use 

different values for calculations of interest model.  Below is the description of parameters 

of our social spatial behavior planning algorithm. 

• TestcaseFileInfo 

o  Dir: The absolute address of the directory containing testcase XML file 

o TestcaseName: Name of the file within the above directory that 
contains our initial scene information 

• Timer section 

o SimulationDuration: Specifies how long the simulation is executed and 
relevant data is collected; measured in seconds and should be an 
integer >= 0 

o SynchScale: Defines how many ticks of the internal clock of 
SmartBody should pass before subject's information about the virtual 
room is updated.  Should be an integer >= 1.  If set to 3, subject 
receives information about environment every 3 seconds. 

• Navigator 

o MaxPerceivableDistance: Same as 𝐷𝑚𝑎𝑥 in equation 11, shows the 
maximum distance perceivable by the subject in calculating 
psychological distance; measured in centimeters 

o MappingRateFromPhysicalToPerceivedDistance: Same as 𝑟 in 
equation 11, defines the control parameter for mapping physical 
distance to psychological distance 

o Velocity: Velocity of movement to be used in generating locomotion 
BML commands for the subject 

• Interestingness 

o HighToLowMonotonyThreshold: the Threshold used to partition 
monotony scores to low and high.  If the collective number of 
temporary properties of members of a group is less than this 
threshold, the group is considered high in monotony. 

o HighMonotonyR: Same as 𝑚𝐵 in equation 14 for a group with high 
monotony; this parameter shows the rate of losing interest in interest 
model 
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o LowMonotonyR: Same as 𝑚𝐵 in equation 14 for a group with low 
monotony; this parameter shows the rate of losing interest in interest 
model  

o Tmax: Same as TmaxB in equation 14; this parameter is the maximum 
time it takes the subject to completely lose interest in a group 

o RecoveryTmax: Same as TmaxR in equation 14; this parameter is the 
maximum time it takes the subject to recover interest in a group to its 
original interestingness value 

o HighMonotonyRecoveryR: Same as 𝑚𝑅 in equation 14 for a group 
with high monotony; this parameter shows the rate of recovering 
interest in interest model 

o LowMonotonyRecoveryR: Same as 𝑚𝑅 in equation 14 for a group with 
low monotony; this parameter shows the rate of recovering interest in 
interest model 

o LeaveThreshold: Same as constant 𝑐 in equation 15; this parameter is 
the personality factor in calculation of leaving threshold.  This is a 
representation of subject’s personal characteristics that influence how 
quickly it gets bored of interactions.   

o EnvironmentalEffectWeight: Same as parameter 𝛽 in equation 15; this 
parameter is the weight of environment’s effect on the leaving 
threshold 

Values provided for these parameters configure our social navigation model for 

the simulation of each testcase. 

Given the configuration and the testcase XML files, we can completely initialize 

our behavior planning algorithm as described in this chapter so far.  However, manually 

creating and maintaining an XML file containing over a few group members is an 

exhaustive task.  Thus, to facilitate the creation and maintenance of testcases, we 

developed a testcase designer apparatus which we describe in the next section. 

4.5.3. Testcase Designer Apparatus 

Our testcase designer apparatus is a helper tool that lets the user graphically 

design the initial scene for a testcase.  Figure  4.7 shows a snapshot view of the testcase 

designer.  In the left panel there are buttons for creating a new testcase, adding new 

groups to the scene and saving and loading the testcase files.  Also there is a property 

grid view in the left panel that shows the properties of the object selected in the right 
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panel.  For example, by clicking on a group member and selecting it in the right panel, 

position and rotation information for that member appear in the property grid on the left. 

By clicking on the add group button on the left, a new group can be added to the 

scene.  The name of the new group shows up in the top left corner of the right panel.  

After selecting the name of that group, the user can activate Member mode on the left 

and then click on any part of the right panel to place a new member for that group.  The 

rotation value of the new member can also be set via the property grid.  Position of 

existing members can be modified by dragging and dropping.  By adding the third 

member to each group, the center and envelope of that group are automatically 

calculated based on equation 6 and is graphically shown to the user.  

Finally, by switching to subject mode on the right, the user can place the subject 

in the scene.  There are two circular areas shown around the subject; these are the 

personal and social areas of subject and their radiuses can be edited in the property grid 

while the subject is selected. 
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Figure  4.7. A snapshot of our testcase designer apparatus 

By saving this graphical testcase, our testcase designer converts the graphical 

information to XML format and this XML result can later be used to initialize the social 

spatial behavior planning algorithm.  Figure  4.8 shows a summary of our initialization 

process. 
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Figure  4.8. An abstract view of the initialization process emphasizing on the 

roles of components 

4.6. Summary 

In this chapter we described our implementation of the social navigation model 

we proposed in chapter  3.  We used a two-stage spatial behavior generation in our 

implementation that breaks behavior generation process into planning and realization 

parts.  In the backend we employed SmartBody platform as the animation and behavior 

realization engine, while in the frontend we developed our own social spatial behavior 

planning algorithm to plan the spatial behavior.  We described how the planning 

algorithm adopts our model of interest to calculate the next position and rotation 

information for the subject in real-time.  Based on this information, the social spatial 

behavior planning algorithm then generates locomotion BML commands and sends them 

to SmartBody for execution. 

We also presented the initialization process of our behavior planning algorithm in 

which the initial scene information and model parameters are set.  To initialize the scene 

we designed an XML structure containing position, rotation and object relationship 

information, and through an XML file, sent this information to the behavior planning 

algorithm.  Also to configure model parameters for each simulation, we created a 

configuration file that contains parameters for the interest model as well as psychological 



 

70 

distance calculations and simulation synchronization.  Lastly, in order to facilitate the 

generation and maintenance of our XML files, we developed a testcase designer 

apparatus.  This tool provides the users with a graphical means of designing the initial 

scene for their simulations using our social spatial behavior planning algorithm.  Users 

can graphically create groups, add members to the groups, add subject to the scene, 

edit position and rotation of both subject and members and save this information as an 

XML file through our testcase designer.  In the next chapter, we describe four testcases 

we simulated using this implementation of our model. 
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5. Testcases  

5.1. Overview 

To demonstrate the social spatial behavior generation capabilities of our model, 

we simulated a series of testcases using the behavior generator system we developed in 

chapter  4.  These simulations included different arrangements of the social scene and 

through each simulation we studied the actual effect of the forces and parameters of the 

system, as listed in section  4.5, on the generated spatial behavior.   

In all the presented testcases we use the appearance of the group members as 

an indication of their initial interestingness score.  Also to visualize the monotony scores 

of members, we employ a set of animation snippets showing different activities.  In the 

initialization process and right before creating the virtual character for each member, our 

scene initializer script performs an initial evaluation of the permanent statuses of the 

member.  Based on the value of the result, it selects a different character type (with a 

different mesh) to create the member.  At the time of writing this thesis, SmartBody 

contains six default character types, two of which are introduced just recently.  These 

characters are shown in Figure  5.1 (From left to right: Rachel, Billford (recently added 

characters), Utah, Elder, Doctor and Brad). 



 

72 

 
Figure  5.1. Six default character types of SmartBody. (a) recently introduced 

characters: Rachel and Billford, (b) initial characters: Utah, Elder, 
Doctor and Brad from left ro right 

To display activities of each character, we used an animation snippet for each 

temporary property it has.  The animation snippet starts and ends at the start and end 

times of the corresponding temporary property. 

Assuming that Doctor, Brad and Utah represent members of high, medium and 

low interestingness to our subject, one can observe four types of groups in Figure  5.2.  

Active members show groups of low monotony that we refer to as dynamic groups, while 

groups with more Doctors are our more interesting groups.  Therefore, from top to 

bottom and left to right there are the following types of groups in Figure  5.2: boring-

dynamic, interesting-monotonous, interesting-dynamic and boring-monotonous.  The 

differentiation between monotonous and dynamic groups is because each type uses a 

different set of interest model parameters in our implementation.   
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Figure  5.2. Example of a scene with four types of groups 

In the upcoming sections we describe four testcases we simulated from simple to 

complex scenarios.  The first two testcases are about the subject joining a group 

whereas testcases 3 and 4 show the spatial behavior our model generates in more 

complex scenarios including four groups.  In testcases 1 and 2, we show the 

effectiveness of attraction and repulsion forces in navigating the subject toward a group 

and properly positioning it within the group.  Testcase 3 looks at the influence of 

parameters of our interest model on the pattern of trajectory of subject and finally in 

testcase 4 we show how different values of personality factor of leaving threshold can 

regulate the time that the subject spends in each group.  For all these testcases, the xml 

scene information, configuration file and video recording of the resulting behavior are 

available online at http://ivizlab.sfu.ca/research/SocialCharacterThesis/.   

5.2. Testcase 1: Attraction Force 

The goal of this testcase is to demonstrate the functionality of the attraction force 

in our social force field.  In this simulation, the subject’s trajectory shows the path in 

http://ivizlab.sfu.ca/research/SocialCharacterThesis/�
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which the attraction force navigates the subject.  According to F-formation theory 

(Kendon, 1990) this path ends on the circumference of the o-space of the group.  Figure 

 5.3 (a) illustrates the arrangement of the initial scene used for this simulation and 

designed by our testcase designer tool.  Figure  5.3 (b) shows a top-view snapshot of the 

simulation result after the subject completely joined the group and took an idle position.  

Note that the solid yellow line shows the trajectory of the subject and the red line-

segment at its end is the last attraction vector generated by our navigator.  Also, the 

orange dashed line is added after the snapshot is taken, to approximately show the o-

space of the group.  The green arrows, like the trajectory line and the red vector, are 

parts of the original snapshot to visualize the direction of group members.  Visualizing 

trajectories and directions is a feature of the sbm-fltk viewer of the SmartBody that we 

use for the simulations of this chapter. 
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Figure  5.3. Attraction force testcase: (a) the initial scene of the testcase;  

(b) snapshot of the simulation result right after the subject joins the 
group 

Looking at Figure  5.3 (b) one can tell that the attraction force navigates the 

subject in a smooth path toward the group and the last attraction vector points to the 

proper position on the o-space of the group.  The subject’s final direction is correctly set 

toward the center of the group and finally, the subject has ended up in a position that 

gives the whole group a roughly circular shape, providing direct, equal and exclusive 

access to conversation for all group members.  According to the F-formation theory, we 

believe this generated behavior is a valid human-like behavior.  In the next testcase, we 

look at the effect of our repulsion force in the subject’s navigation. 

5.3. Testcase 2: Repulsion Force 

In this simulation we show the functionality of our repulsion force.  Unlike the 

previous testcase, arrangement of the group members in this testcase does not allow for 
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the subject to be positioned on the circumference of the o-space of the group without its 

personal space being violated.  Remember that the o-space of the group, according to 

F-formation theory (Kendon, 1990), is the circular area defined by the group members 

which provides direct, equal and exclusive access to conversation for all members.  For 

this simulation, radiuses of social and personal areas of the subject are set to 150 and 

200 centimeters.  It is worth mentioning that the height of the subject character is 204 

centimeters, so that the reader can use it as a rough visual measure of distances.  

 
Figure  5.4. Repulsion force testcase: (a) the initial scene of the testcase;  

(b) snapshot of the simulation result early after subject starts to 
move; (c) snapshot of the simulation result right after the subject 
joins the group.  Point X is where the repulsion force gets activated 

Figure  5.4 (a) shows the initial design of the scene for this simulation.  In Figure 

 5.4 (b), the subject has just started to move toward the group and all members of the 

group are located outside its social area.  The red line-segment illustrates the attraction 

vector that is used in this stage of movement to navigate the subject toward the group.  

One can tell that the destination chosen by the attraction vector, although on the 

circumference of o-space, is too close to the Doctor on the right.  Unless the repulsion 

force adjusts this vector, the situation will result in the violation of the subject’s personal 



 

77 

space.  Lastly, Figure  5.4 (c) shows the snapshot of the simulation, immediately after the 

subject joins the group and takes on an idle position.  Point X on the trajectory shows the 

point at which group members start to appear in the subject’s social area and as a result, 

the repulsion force gets activated.  The reader can observe that from point X forward, 

not only does the repulsion vector deviate the subject to the right to keep proper 

distance from the Doctor, it also causes the subject to stop earlier, so that its personal 

distance is not violated.  This happens in real-life cases with humans as well; when there 

is not enough space around a group for a person to join, the person tends to stay back 

until other group members expand the o-space of the group by adjusting their positions.  

Testcases 1 and 2 presented the primitive functionalities of our social force field 

model.  In the next section we provide a complex testcase scenario where we show the 

effect of parameters of the interest model on the generated spatial behavior. 

5.4. Testcase 3: Interest Model 

Our goal in this testcase is to demonstrate the effect of parameters of interest 

model on the subject’s trajectory and visualize if the result is human-like.  The initial 

scene of the testcase consists of four groups that are boring-dynamic, interesting-

monotonous, interesting-dynamic and boring-monotonous as shown in Figure  5.2.  We 

use two different sets of configurations of interest model for our dynamic groups in this 

testcase and show the resulting trajectories.  The initial scene of the testcase is 

illustrated in Figure  5.5. 
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Figure  5.5. Initial scene of the interest model testcase 

The testcase includes two simulations; in the first one, parameters of interest 

model are configured similarly for both dynamic and monotonous groups.  In the second 

simulation though, we set a slower decay and faster recovery rate of interest for dynamic 

groups and visualize how this modification influences the pattern of the trajectory of the 

subject.  Figure  5.6 illustrates the configurations used in the first simulation.  For 

dynamic groups, we set TmaxB = 10, mB = 20, TmaxR = 150 and mR = 320 and for the 

monotonous groups  TmaxB = 10, mB = 1, TmaxR = 150 and mR = 480 in equation 14. 
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Figure  5.6. Interest model testcase: Simulation 1: similar interest model 

parameter configurations for dynamic and monotonous groups 

After 220 seconds of running the simulation, the subject’s pattern of trajectory is 

illustrated in Figure  5.7 (a) and Figure  5.7 (b) shows a heat map view of the subject’s 

positions during the simulation.  Using the trajectory view, one can observe that the 

subject has visited and interacted with all four groups in a roughly uniform pattern.  In 

addition, the heat map view shows that the subject has spent the lowest amount of time 
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with the boring-monotonous group.  Finally, the path between the two interesting groups 

has been walked the most according to the heat map view.  This result makes sense as 

a human-like behavior; in a social setting, when every interaction is uniformly boring to a 

person, they tend to interact with every group roughly equally. 

 
Figure  5.7. Interest model testcase: Simulation 1: (a) Pattern of trajectory of 

subject after 220 seconds of running simulation; (b) Heat map view 
of the subject’s positions during simulation 

The dynamically changing interestingness scores of all four groups in this 

simulation are plotted in Figure  5.8.  Each peak in this plot shows the event of subject 

joining the corresponding group and the order of peaks show the order in which subject 

has interacted with the groups.   

(b)(a)
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Figure  5.8. Interest model testcase: Simulation 1: Interestingness scores of all 

four groups plotted during simulation; similar decay and recovery of 
interest for all groups. 

In the second simulation of the interest model testcase, we use slower decay and 

faster recovery parameters for the dynamic groups.  Parameter configuration is as 

follows: TmaxB = 10, mB = 13, TmaxR = 100 and mR = 20 for dynamic groups and 

TmaxB = 10, mB = 1, TmaxR = 100 and mR = 320 for the monotonous groups.  This 

configuration is illustrated in Figure  5.9. 
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Figure  5.9. Interest model testcase: Simulation 2: slower decay and faster 

recovery for dynamic groups 

As a result of this configuration, the subject’s trajectory changes to Figure  5.10 

(a).  Notice that the pattern of movement is no longer uniform.  Instead, the subject 

spends considerable amount of time going back and forth to visit dynamic groups on the 

left side of the scene.  The interesting-monotonous group is also visited intermittently but 
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on a lower frequency.  The heat map of subject’s positions shown in Figure  5.10 (b) also 

confirms that the major part of subject’s movements happened between the two dynamic 

groups on the left. 

 
Figure  5.10. Interest model testcase: Simulation 2: (a) Pattern of trajectory of 

subject after 210 seconds of running simulation; (b) Heat map view 
of the subject’s positions during simulation 

Both of the monotonous groups on the right side of the scene use the same 

parameters of the interest model; but because of having a high initial interestingness 

score, the interesting-monotonous group is visited a few times during simulation, 

whereas the boring-monotonous group is left isolated.  The interestingness plot of Figure 

 5.11 shows the reason why the boring-monotonous group is never visited by the subject; 

because of the fast rate of recovery for dynamic groups, at all times during the 

simulation, there is a group with higher interestingness score than the boring-

monotonous group; thus it can never compete with other groups to attract the subject.  

On the other hand the interesting-monotonous group gains the interest back in a slow 

rate but to a higher value than the dynamic groups and that is why approximately every 

50 seconds the subject is attracted to the interesting-monotonous group.   

In a real-life social situation, having a preference for interacting with more active 

people can result in a similar spatial behavior; the person with such preference hangs 

out with the active groups more and spends no time with a boring inactive group.  In the 

(b)(a)
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next section we look at the leaving threshold of our interest model and demonstrate the 

effect of personal characteristics of the subject on leaving threshold. 

 
Figure  5.11. Interest model testcase: Simulation 2: Interestingness scores of all 

four groups plotted during simulation; slower decay and faster 
recovery of interest for dynamic groups 

5.5. Testcase 4: Leaving Threshold 

In this testcase, the effect of personality factor of the subject (parameter 𝑐 in 

equation 15) on the leaving threshold is demonstrated.  The initial scene arrangement is 

the same as Figure  5.5 and we ran three simulations for this testcase with 𝑐 ranging 

from 0 to mid and maximum values; these values are set relative to the maximum initial 

interestingness of the groups.  Knowing that the maximum initial interestingness score of 

groups is 2.4 and 𝛽 = 0 in all three simulations, we set 𝑐1 = 0.0, 𝑐2 = 1.2 and 𝑐3 = 2.4 for 

the three simulations respectively. 
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In the first simulation we have 𝑐1 = 0.0 which reflects a subject that never gets 

bored of the groups.  Figure  5.12 and Figure  5.13 show the result of this simulation; in 

Figure  5.12 the distance of the subject to the centers of all groups is plotted during the 

100 second simulation while in Figure  5.13 a heat map view of the subject positions is 

illustrated.  At any time during the simulation, the lowest line in the distances plot of 

Figure  5.12 corresponds to the group that the subject has been a part of, and one can 

see that there is no more than one such group in this simulation.  That means at the 

beginning the subject joins the interesting-monotonous group and never leaves it 

afterwards.  Also in the heat map view of Figure  5.13, there is no trace of the subject 

switching groups.  A subject that never gets bored of an activity or group can possibly be 

an autistic person and hence, not leaving the activity can be a valid human-like behavior. 

 
Figure  5.12. Leaving threshold testcase: Simulation 1: c = 0.0.  Distance between 

subject and center of all groups plotted during simulation. 
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Figure  5.13. Leaving threshold testcase: Simulation 1: c = 0.0.  Heat map view of 

the subject’s positions during simulation 

In the second simulation shown in Figure  5.14 and Figure  5.15, we set 𝑐 = 1.2 

which is equal to a mid-range value in initial interestingness scores of groups.  This 

configuration causes the subject to visit more than one group and this is shown in Figure 

 5.14.  Notice that when the subject joins a group, its distance to the center of that group 

is minimum and lower than all other groups.  Thus, the lowest segment of every line in 

Figure  5.14 displays the time that the subject spends in the corresponding group.  The 

heat map view in Figure  5.15 also shows traces of the subject switching groups in this 

simulation.  This case shows a regular human behavior in a social setting: staying for 

some time with each group and then switching groups.  
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Figure  5.14. Leaving threshold testcase: Simulation 2: c = 1.2.  Distance between 

subject and center of all groups plotted during simulation. 

 
Figure  5.15. Leaving threshold testcase: Simulation 2: c = 1.2.  Heat map view of 

the subject’s positions during simulation 

Finally, in the third simulation we set 𝑐 = 2.4 which is the maximum value in the 

range of initial interestingness score of groups.  As a result of this simulation, the subject 

leaves the groups faster; meaning that it spends less time in groups and more time 
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moving from one group to another.  This result is shown in Figure  5.16 and Figure  5.17.  

Comparing the heat map of Figure  5.15 to that of Figure  5.17 shows the heavier traffic 

between groups in the third simulation.  Also, by comparing Figure  5.14 to Figure  5.16, 

one can see the lowest line segments are shorter in Figure  5.16, meaning that the 

subject has spent less time in each group in the third simulation.   

A real-life case of a similar subject can be someone interested in interacting with 

a specific person in a social setting.  Looking for that specific person, the subject 

switches groups very fast and spends little to no time in groups where the interesting 

person is not present. 

 
Figure  5.16. Leaving threshold testcase: Simulation 3: c = 2.4.  Distance between 

subject and center of all groups plotted during simulation. 
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Figure  5.17. Leaving threshold testcase: Simulation 3: c = 2.4.  Heat map view of 

the subject’s positions during simulation 

5.6. Summary 

In this chapter we provided four testcases demonstrating the functionality of our 

social navigation system.  The first two testcases are concerning the effectiveness of our 

social forces in navigating the subject to join a group and properly positioning it within 

the group.  We demonstrated that the attraction force correctly navigates the subject to 

the circumference of the o-space of the target group while the repulsion force deviates 

and stops the subject in a distance from the group members so that its personal space 

does not get violated.   

The third testcase show the effect of the interest model parameters on the 

pattern of the subject’s trajectory.  We demonstrated that by adjusting the rate at which 

the subject loses or recovers interest in dynamic or monotonous groups, we can control 

the pattern of its trajectory.  The second simulation in this testcase confirmed that by 

setting slower decay and faster recovery rates for interestingness of dynamic groups, we 

can turn the uniform pattern of the trajectory to one with heavier traffic between the 

dynamic groups.  Also this adjustment can be made in a way that the high frequency of 

having highly interesting dynamic groups prevents the monotonous groups from being 

visited at all. 
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Finally, in the fourth testcase we set a range of values for the personality factor of 

our leaving threshold to show how it influences the time our subject spends in each 

group.  Simulation results for this testcase show that the subject with a lower personal 

threshold for leaving stays for a longer period in groups.  In its most extreme case of the 

threshold 0 for leaving groups, the subject joins the group with highest interestingness 

score at the beginning and never leaves that group during the simulation. 

Note that the testcase simulations in this chapter are provided as a proof of 

concept; we demonstrate that a subject more interested in dynamic groups visits them 

more often and a subject with no sensitivity to monotony of groups, like an autistic 

person, can stay in a group forever without getting bored.  We believe these are 

examples of human-like behavior generated by our model.  However, to prove that these 

behaviors are in fact human-like and our model exclusively generates human-like 

behavior, systematic evaluations are required.  These systematic evaluations and 

studies are out of the scope of this thesis, as our main contribution is the development of 

the social navigation model as well as its implementation.  Such studies are within the 

future works and will be presented by our research group in the future. 
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6. Conclusion 

In this thesis we developed a social navigation model that generates human-like 

spatial behavior for a virtual human in a social setting with group dynamics.  Our main 

scenario consists of a virtual environment with several groups of virtual characters, and 

a single character called the “subject” that exhibits social spatial behavior by joining and 

leaving groups and engaging in interactions with them.  

There are similar spatial behavior generating models capable of navigating the 

subject toward and positioning it in the group, however, these models are limited to 

distance based group selection and they do not provide group-leaving behavior.  In this 

work, we went beyond these models by contributing our group-leaving and group-

revisiting mechanisms to the social navigation model.  Due to this contribution, our 

model is capable of generating more human-like behavior in temporally large scale 

social scenarios.  In an engineering approach, we employed behavior regulating 

mechanisms in humans to build a more realistic motivation for action selection and 

introduced a dynamic interest function representing our subject’s interest in interacting 

with different groups.  We use the interest function not only as the main factor for group 

selection in our model, but also as a mechanism for generating the group-leaving and 

group-revisiting behaviors.  Hence our model is capable of generating a full cycle spatial 

behavior for a virtual human consisting of interest-based group selection, moving toward 

the group, positioning in the group, continuously evaluating  group’s interestingness and 

finally leaving the group to interact with another group. 

Our ultimate goal in developing this model was to generate human-like social 

spatial behavior which matches the reference implementation provided by psychological 

literature.  Thus, when the model is developed, the next step was to implement it and run 

several simulations of different social scenarios.  We contributed our two-stage behavior 

generation implementation; in the first stage, our social spatial behavior planning 

algorithm plans the behavior using our social navigation model and in the second stage, 
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the planned behavior is realized.  The communication of the planned behavior is via 

BML commands between the two stages.  We employed SmartBody software as our 

backend engine for animation and behavior realization tasks and implemented our social 

spatial behavior planning algorithm as a python module which is executed inside 

SmartBody’s python engine.  As a critical evaluation, it is worth mentioning that the 

architecture of the SmartBody platform does not allow external python modules such as 

ours to perform multithreading.  This architecture limits the external modules to using its 

internal finite state machine for synchronization purposes.  

The social spatial behavior planning algorithm is initialized using an XML file 

containing the initial scene data, as well as a configuration file that provides values for 

the parameters of the model.  We simulated our model in several different social 

testcases and visually evaluated how human-like the behavior that our subject exhibited 

was.  Also, in order to facilitate building and maintaining our testcases, we have 

designed and implemented an apparatus for visually creating the initial social setting.  

This testcase creating apparatus outputs an XML formatted file containing position, 

orientation and other information on group members and our subject, which is the input 

to our python module.  

The social scenarios we simulated, covered a range of low to high initial 

interestingness and different monotony levels for groups, and demonstrated the 

effectiveness of our model in generating human-like social spatial behavior.  All our 

visual results in the form of videos as well as our testcase creating apparatus and the 

source code is available to the reader through the iVizLab website for further studies 

(http://ivizlab.sfu.ca/research/SocialCharacterThesis/). 

6.1. Summary of Main Contributions 

Below is a detailed summary of our main contributions in this thesis, through 

which we built and implemented a social navigation model capable of generating human-

like spatial behavior in temporally large scale social scenarios.     

http://ivizlab.sfu.ca/research/SocialCharacterThesis/�
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• We improved and further developed social forces from Pedica and 
Vilhjálmsson’s model (2008), so that the generated social behavior is planned 
rather than reactive.  

• We built a social navigation model that is capable of generating human-like 
social grouping behavior for non-player characters in stationary to semi-
stationary social game scenes.  Here, by semi-stationary scenes we refer to 
social scenes in which if group members are moving, they closely move with 
other group members so that the group is still detectable by an observer after 
the movement 

• We went beyond group-joining and built group-leaving and group-revisiting 
behaviors into our social navigation model.  Together, these three behaviors 
generated a full cycle of social spatial behavior for our subject character, 
which is closer to that of humans in temporally large scale social scenarios. 

• We employed the concept of interest as the virtual character’s motivation for 
action selection.  This motivation is more realistic compared to distance-based 
group selection, in the sense that interest is a dynamic function.  Because of 
its dynamism, interest can decrease over time and result in group-leaving 
behavior, whereas distance remains static as soon as the character joins a 
group.  

• We provided a dynamic representation of interest based on the behavior 
regulating mechanisms of habituation and boredom in humans, using an 
engineering approach. 

• We implemented our proposed social navigation model in a two-stage 
behavior generation process.  In the first stage, our social spatial behavior 
planning component plans the behavior while in the second stage, the planned 
behavior is realized using the SmartBody software. 

• We created a process for initializing our social navigation model with 
information about the initial scene, and implemented a testcase designer tool 
to facilitate design and effective maintenance of testcases. 

• We simulated several social testcases using our system as proof of concept 
for our model. 

• Finally, we offer public access to all our source codes and other resources 
through http://ivizlab.sfu.ca/research/SocialCharacterThesis/ for further testing 
and evaluations of our model. 

6.2. Future Works 

Our social navigation model and the behavior planning algorithm are the 

outcomes of the first steps in a larger project aimed at building a social and affective 

character framework.  There are improvements from both modeling and implementation 

perspectives that can be performed on this work and the results should be systematically 

http://ivizlab.sfu.ca/research/SocialCharacterThesis/�
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evaluated as well.  In this section, we provide an outlook of the possible improvements 

within each scope.    

Our main contribution of this thesis is the development of our social navigation 

model as well as the social spatial behavior planning algorithm that realizes it.  The 

testcase simulations we presented in chapter  5 are proofs of concept and supposed to 

provide the reader with examples of the behaviors generated by our model, which we 

visually evaluated as human-like.  To confirm that these generated behaviors are 

actually human-like, systematic quantitative and qualitative studies are required to be 

run on the model, with real humans observing and evaluating the subject’s behavior in 

different settings.  Model intrinsic testing can also be performed on our social navigation 

model to confirm its convergence and consistency of the behaviors generated in all 

testcases.  These testing and evaluation processes are our main future work to be 

present by our research group. 

From the model’s point of view, our current social navigation model plans 

position, rotation and timing information for navigating the subject.  However, spatial 

behavior can also be expressive behavior and be utilized for communicating affective 

information and social relationships (Inderbitzin, Valjamae, Calvo, Verschure & 

Bernardet, 2011).  We believe an interesting augmentation to our model would be 

planning the expressive factors of spatial behavior.  In particular, interestingness of the 

groups can be utilized as a source that influences the pace, style and manner of the 

subject’s locomotion toward them.  

Integration of the close-up behavior planning is also another possible 

improvement to our model.  Here, by close-up behaviors we refer to the non-verbal 

behaviors that the subject uses while in a group, to communicate cues and intentions.  

Such behaviors include gaze, facial expressions and stance.  Currently our subject does 

not exhibit any such behaviors to reflect its interest in a group while in the in_group state 

and that is not considered human-like.  There are models available in the literature, 

which use interest and attention information to generate proper close up behaviors.  One 

example of these models is presented by Peters et al. (2005) which generates interest 

based gaze behavior.  Integration of similar models to our social navigation system can 

result in generation of more human-like behaviors. 
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On the other hand from the implementation perspective, an area of improvement 

is the real-time visualization of the interestingness score of groups.  In our current 

implementation, the monotony score of groups is visualized using animation snippets 

that are executed on group members in real-time.  But for the interestingness scores, we 

only provide initial value visualization through the appearance of members and no other 

real-time visualization is available for the interestingness of the groups.  Having a visual 

presentation of this information is important because as an observer, one needs to be 

aware of the environmental information in order to fully comprehend the behavior of our 

subject.  Our suggested solution for this problem is to create over-head bar charts for 

our groups similar to the one shown in Figure  6.1 from Defense of the Ancients (DotA) 

game8

 

.  These bar charts can be color coded and contain two or more bars, 

representing initial and real-time interestingness scores of each group.  

Figure  6.1. Example of an over-head information bar chart used to display extra 
information for the game character (from DotA game).  Adapted from 
http://www.starcraft-esp.com/foros/dota2-t9572-330.html 

Finally, we are interested in decoupling our social spatial behavior planning 

algorithm from SmartBody and turning it to a standalone planning application that can 

communicate to other behavior realization platforms as well.  Currently, because of high 
 
8 Official DotA website: http://www.playdota.com/ 

http://www.starcraft-esp.com/foros/dota2-t9572-330.html�
http://www.playdota.com/�
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cohesion between our behavior planning module and SmartBody, there is no explicit line 

for the observer to differentiate between the planned behavior and its realization.  For 

instance, a glitch observed in the subject’s trajectory can either be caused by the 

behavior planning algorithm or the path planner component of the SmartBody and that 

makes it more difficult to evaluate the model independent of its realization.  However, a 

standalone planning application can be utilized in combination with different behavior 

realization frameworks and by comparing the generated results, we can better evaluate 

the effectiveness of our social navigation model.   
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Appendix A.  
 
Supplementary Materials 
All supplementary materials to this thesis are accessible online through the iVizLab website via 
http://ivizlab.sfu.ca/research/SocialCharacterThesis/.  Below we provide a short description and 
usage guideline for each file. 

Source Code 
The SourceCode.zip file contains the Python scripts implementing our social navigation model 
explained in the thesis.  To run this module you will need the SmartBody source code available 
for download at: http://smartbody.ict.usc.edu/download.  After downloading the SmartBody’s 
source code please follow the steps below: 

• Unzip the contents of this zip file into \data\sbm-common\scripts 
• Point to your testcase.xml file in the config.ini at \data\sbm-

common\scripts\SocialCharacterProject 
• Run sbm-fltk.exe from \bin\smartbody\sbm\bin  
• Load run-simulation.py from \data\sbm-common\scripts\SocialCharacterProject 

 

Testcase Designer Apparatus 
The TestcaseTool.zip file contains the Testcase designer apparatus describes in section  4.5.3 of 
the thesis.  To use this tool, download and unzip the contents of this file in your location of 
preference and then run TestCaseDesigner.exe.  For more information on how to use this tool 
please refer to section  4.5.3 of the thesis.  

Testcases 
This folder contains additional resources for the testcases mentioned in chapter  5 of this thesis.  
Each inner folder represents a testcase mentioned in chapter 5.  For every simulation the reader 
can find the following files in the corresponding folder: 

• The XML file used to create the initial scene 
• The configuration file used for that simulation 
• The video recording of the simulation 
• A description.txt file describing what happens in the simulation 

Also available for “Interest Model” and “Leaving threshold” testcases are: 

• Log.dat: containing the subject character’s distance to the center of all groups during 
simulation.  Employed for creating plots of figures 41, 43 and 45 in the thesis 

• heatmap.dat: containing the subject character’s position information during simulation.  
Employed for creating the heatmaps of figures 36, 39, 42, 44 and 46 in the thesis. 

• interestingness.dat: containing the interestingness scores of all groups during simulation.  
Employed for creating plots of figures 37 and 40 in the thesis. 

• Subject’s positions heatmap.bmp: the heatmap view of the subject character’s positions 
during simulation. 

http://ivizlab.sfu.ca/research/SocialCharacterThesis/�
http://smartbody.ict.usc.edu/download�
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Each testcase folder is describes separately below. 

Attraction Force Testcase 
The goal of this testcase is to demonstrate functionality of the attraction force for group-joining 
behavior in our social force field.  In this simulation, subject starts moving from a point outside the 
group and walks toward the group till it completely joins the group.  Here, subject's trajectory 
shows the path in which the attraction force navigates the subject.  At the end of the video one 
can observe that subject's final direction is correctly set toward the center of the group and finally, 
the subject has ended up in a position that gives the whole group a roughly circular shape, 
providing direct, equal and exclusive access to conversation for all group members. 

• Video file: Attraction force.avi 
• Testcase xml file: AttractionTest.xml 
• Configuration file: config.ini 

Repulsion Force Testcase 
In this testcase we show the functionality of our repulsion force for group-joining behavior in our 
social force field.  In this simulation, subject starts moving from a point outside the group and 
walks toward the group till it completely joins the group.  Unlike the attraction testcase, 
arrangement of the group members in this testcase does not allow for the subject to be positioned 
on the circumference of the o-space of the group without its personal space being violated.  The 
reader can observe that from 3rd second forward in the video, not only the repulsion vector 
deviates the subject to the right to keep proper distance from the Doctor, but also causes the 
subject to stop earlier, so that its personal distance is not violated. 

• Video file: Repulsion force.avi 
• Testcase xml file: RepulsionTest.xml 
• Configuration file: config.ini 

Interest Model testcase 
Our goal in this testcase is to demonstrate the effect of parameters of interest model on the 
subject's trajectory and visualize if the result is human-like.  The initial scene of the testcase 
consists of four groups that are boring-dynamic, interesting-monotonous, interesting-dynamic and 
boring monotonous as shown in Figure  5.2 of the thesis.  We use two different sets of 
configurations of interest model for our dynamic groups in this testcase and show the resulting 
trajectories.  The testcase includes two simulations; in the first one, parameters of interest model 
are configured similarly for both dynamic and monotonous groups.  In the second simulation 
though, we set a slower decay and faster recovery rate of interest for dynamic groups and 
visualize how this modification influences the pattern of the trajectory of the subject. 

In simulation 1, using the trajectory view, one can observe that the subject has visited and 
interacted with all four groups in a roughly uniform pattern.  In addition, the heat map view shows 
that the subject has spent the lowest amount of time with the boring-monotonous group.  Finally, 
the path between the two interesting groups has been walked the most according to the heat map 
view. 

In simulation 2 the pattern of movement is no longer uniform compared to simulation 1.  Instead, 
the subject spends considerable amount of time going back and forth to visit dynamic groups on 
the left side of the scene.  The interesting-monotonous group is also visited intermittently but on a 
lower frequency. 

• Video file 1: Similar decays and recoveries.avi 
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• Video file 2: Slow decay faster recovery for dynamic groups.avi 
• Testcase xml file: InterestModelTest.xml 
• Configuration file: config.ini 
• Subject's positions heatmap.bmp: Heatmap view of the subject's positions during 

simulation 
• heatmap.dat: contains subject's position data during simulation.  Used to create the 

heatmap view 
• interestingness.dat: contains interestingness values of all groups during simulation.  Used 

to draw interestingness plots 
• Log.dat: contains distance between subject and center of all groups during simulation. 

Leaving Threshold Testcase 
In this testcase the effect of personality factor of subject (parameter c in equation 15) on the 
leaving threshold is demonstrated.  The initial scene arrangement is the same scene as interest 
model and we ran three simulations for this testcase with c ranging from 0 to mid and maximum 
values; these values are set relative to the maximum initial interestingness of groups. 

In simulation 1 we have c=0, meaning that the subject never gets bored of any task.  One can 
observe that at the beginning of video the subject joins the interesting-monotonous group and 
never leaves it afterwards.  In the second simulation we set c=1.2 which is equal to a mid range 
value in initial interestingness scores of groups.  This configuration causes the subject to visit 
more than one group.  In the third simulation we set c=2.4 which is the maximum value in the 
range of initial interestingness score of groups.  As a result of this simulation the subject leaves 
the groups faster; meaning that it spends less time in groups and more time moving from one 
group to another. 

• Video file 1: zero c.avi 
• Video file 2: medium c.avi 
• Video file 3: max c.avi 
• Testcase xml file: InterestModelTest.xml 
• Configuration file: config.ini 
• Subject's positions heatmap.bmp: Heatmap view of the subject's positions during 

simulation 
• heatmap.dat: contains subject's position data during simulation. Used to create the 

heatmap view 
• interestingness.dat: contains interestingness values of all groups during simulation.  Used 

to draw interestingness plots 
• Log.dat: contains distance between subject and center of all groups during simulation.  

Used to plot distances. 
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