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Abstract

The AGM paradigm of belief change studies the dynamics of belief states in light

of new information. For theoretical simplification, AGM idealizes a belief state as

a belief set : a set of logical formulas that is closed under implication. A variant

to the original AGM approach generalizes belief sets into belief bases which are not

necessarily deductively closed. Many authors have argued that, compared to belief

sets, belief bases are easier to represent in computers, more expressive and more

inconsistency-tolerant.

A strong intuition for belief change operations, Gärdenfors suggests, is that formu-

las that are independent of a change should remain intact. Linking belief change and

dependence is significant because, for example, it can narrow the number of formulas

considered during a belief change operation. Then, based on Gärdenfors’ intuition,

Fariñas and Herzig axiomatize a dependence relation, and formalize the connection

between dependence and belief change.

The work in this thesis is also based on Gärdenfors’ intuition. We first introduce

the notion of base dependence as a relation between formulas with respect to some

belief base (instead of a belief set). After an axiomatization of base dependence, we

present a formalization of the connection between base dependence and a particular

belief base change operation, saturated kernel contraction.

We also prove that base dependence is a reversible generalization of Fariñas and

Herzig’s dependence. That is, in the special case when the underlying belief base is

deductively closed (i.e., it is a belief set), base dependence reduces to dependence.

iii



Finally, an intriguing feature of Fariñas and Herzig’s formalism is that it meets

other criteria for dependence, namely, Keynes’ conjunction criterion for dependence

(CCD) and Gärdenfors’ conjunction criterion for independence (CCI). We show that

our base dependence formalism also meets these criteria. More interestingly, we offer

a new and more specific conjunction criterion for dependence that implies both CCD

and CCI, and show our base dependence formalism also meets this new criterion.

Keywords: Belief change; belief revision; contraction; belief base; dependence;

relevance
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Chapter 1

Introduction

1.1 General Setting

“Philippa, a Greek nineteen year old student at Patras University, has

just discovered that Nikos and Angela are not her true parents; she was

adopted when she was six months old from an orphanage in Sao Paulo.

The news really shook Philippa. Much of what she used to believe all

her life about herself and her family was wrong. After recovering from

the initial shock she started putting her thoughts back in order: so that

means that Alexandros is not really her cousin, and she did not take her

brown eyes from (who she used to believe was) her grandmother, and she

no longer needs to worry about developing high blood pressure because of

the bad family history from both Nikos’ and Angela’s side. Moreover, she

probably has siblings somewhere in Brazil, and if she really looked into

it, she might be entitled to a Brazilian citizenship which could come in

handy for that long trip she always wanted to make to Latin America.”

The above scenario offered by Peppas [Pep08], despite being dramatic, provides a

simple and comprehensible real life example of belief change. Belief change is con-

cerned with the dynamics of an agent changing its beliefs in light of new information

becoming available, or in other words it attempts to model the dynamics of epistemic

1



CHAPTER 1. INTRODUCTION 2

states of an intelligent agent.1 The challenge is on how to incorporate a new belief

into a set of beliefs to create a new consistent set of beliefs containing the new belief,

and as many from the old beliefs as possible. To consider some of the different aspects

involved in belief change, let us take a closer look at the Philippa example:

• Initially, she has a set of beliefs about “her life about herself and her family.”

• Once she receives the rather shocking news that she has been adopted, she has

to revise much of her beliefs. That is, she has to abandon (contract) some

of her old beliefs in order to consistently accept (expand) some new facts and

their implications about her life.

– For example, she has to give up or contract her deeply entrenched belief

that Nikos and Angela were her biological parents.

∗ This means that she should also contract beliefs which were justified

solely based on the old contracted beliefs; e.g. “she no longer needs to

worry about developing high blood pressure because of the bad family

history from both Nikos’ and Angela’s side.”

∗ This, in turn, means she no longer needs to be extraordinarily conscious

about her salt consumption. That is, many of her implied beliefs,

which were based on contracted beliefs, may also need to be contracted.

– Philippa also has to expand her beliefs, adopting some new beliefs alongside

their implications ; e.g. perhaps she has some family members in Brazil,

and she quite possibly is entitled to a Brazilian citizenship.

• While revising her beliefs, Philippa always has a good intuition about depen-

dence and independence of her beliefs upon one another. That is, during the

revision of her beliefs, she only considers relevant facts, and does not bother

with anything irrelevant to the change.

– For example, being more susceptible to developing high blood pressure

depends on who her biological parents are.

1As a research area, Belief Change is also known as Belief Revision. However, in the approach
adopted in this work, the term “belief revision” only refers to a particular operation of belief change
and not the whole research area.
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– Yet, the politics in Greece or the geographical location of Brazil are inde-

pendent and irrelevant to who her parents are. She can leave unchanged

all of her previous beliefs which were independent of the revision.

This seemingly simple example helps to illustrate and highlight many of the important

aspects of belief change and closely related research areas that we will look into more

deeply in this work.

Modeling Belief Change

Belief change scenarios, like the above, happen naturally and frequently in vastly

diverse contexts from trivial day-to-day experiences to advanced research areas. If

the size and complexity of the problem is not overwhelming, belief change can come

very naturally to human beings. It would be quite desirable to be able to mimic belief

change in an automated system that can deal with a large and complex set of facts.

That is because “[a]part from being of interest in themselves,” Gärdenfors states, the

“solutions to these problems will be crucial for any attempt to use computers to handle

changes of knowledge systems.” [Gä05]

To achieve this, one may first wish to capture what constitutes belief, or what it

means for human beings to believe something. Yet, this remains a colossal task having

attracted many renowned scholars to this day. Similarly, how human beings review

their beliefs or revise them are deep matters that merit studies in their own right.

However, this is not exactly the focus of this work.

Here, instead of attempting to capture the meaning of beliefs as held by human

beings, we turn our focus to the representation of beliefs and useful ways to manipulate

this representation of beliefs that resemble belief change.

For many practical applications, it suffices to work with representation of beliefs.

Quite commonly, for example, beliefs are represented using written natural languages,

which undoubtedly have proven to be greatly useful throughout human history. More-

over, making use of some appropriate formal language to represent beliefs, instead

of informal natural languages, paves the way for the employment of state-of-the-art
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Figure 1.1: “The role of representations in solving problems” (adapted from [PM10])

methods from other well-established research areas such as automated reasoning. Au-

tomated reasoning can be of significant value to help with manipulation of sets of

beliefs in a rationally acceptable manner, or in other words in ways that mimic nat-

ural belief change as much as possible. To this end, the sets of beliefs should be

represented in some form of formal language that is suitable for the input to auto-

mated reasoners. Potentially this makes it possible to achieve, although partially2,

automated belief change at the representation level.

Indeed, this approach falls under a general framework, depicted in Figure 1.1, for

solving problems by computer as stated by David Poole and Alan Mackworth [PM10]:

“To solve a problem, the designer of a system must

• flesh out the task and determine what constitutes a solution;

• represent the problem in a language with which a computer can reason;

• use the computer to compute an output, which is an answer presented to a user

or a sequence of actions to be carried out in the environment;

• and interpret the output as a solution to the problem.”

2At least currently, there is no generally accepted framework to achieve automated belief change
that closely mimics natural, rational belief change. As we will see in upcoming sections, in current
models of belief change (e.g. AGM), there is always some extra-logical factors which are assumed to
be provided to the system, for example, by some domain experts. While these extra-logical factors
are not formally modeled and are merely assumed to be given, they significantly affect the final
choices made by a belief change system. Therefore, any model that relies on receiving such extra-
logical factors may not be considered to have achieved full automated belief change. That said, what
can be achieved automatically is still quite helpful and desirable for many different theoretical and
practical purposes.
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There have been attempts throughout the last few decades to formalize belief change,

with the most widely accepted theoretical framework being the AGM model. This

model of belief change was developed by Peter Gärdenfors in collaboration3 with

Carlos Alchourrón and David Makinson – hence the acronym AGM [Gä84, AGM85,

Gä88, GM88]. In AGM, a belief is simply represented using a logical formula from a

given formal language (typically propositional logic), and a belief state is represented

as a belief set, which is a set of formulas that is closed under logical implication. As

usual, logical closure means that, for example, if K is a belief set and it logically

entails the formula α, then α is an element in K. Being deductively closed, a belief

set is sometimes also called a theory.

Belief sets model the statics of epistemic states. AGM next goes on to model the

dynamics of epistemic states (i.e., belief change) by providing theoretically justified

and constructive means of modifying belief sets. More specifically, to model rational

belief change, AGM attempts both to describe what constitute operators for belief

change and to specify how to construct such operators modifying belief sets. It is

noteworthy though that, in a given situation, different intelligent agents could change

their beliefs differently. Thus, it is not always possible to uniquely define belief change

operators. Instead, AGM introduces some constraints on belief change operators that

distinguish between operators that result in some rational changes to belief sets as

opposed to the ones making invalid or unnecessary changes, which are rationally

unacceptable.

Example 1.1. Bob and his wife Amy live in Vancouver (v). Bob knows that if it is

raining (r), Amy always takes an umbrella (u). In an evening that was reportedly

rainy (r), Amy comes back home, but, to Bob’s surprise, not having her umbrella

(¬u).

In other words, Bob initially believes v, r → u and r, and by implication he also

believes u. Nevertheless, he later observes that ¬u. There are a few different ways

that Bob can deal with his initial beliefs in order to accommodate his new observation:

3According to Gärdenfors [Gä05], the main references for the AGM model were published by
Gärdenfors in 1984 [Gä84], Alchourrón, Gärdenfors, and Makinson in 1985 [AGM85], Gärdenfors in
1988 [Gä88], and Gärdenfors and Makinson in 1988 [GM88].
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Some reasonable modifications:

1. Stop believing r → u.

Maybe she does not always take an

umbrella when it is raining.

2. Stop believing r.

Or maybe it is not raining despite

the report on weather conditions.

3. Stop believing r → u and r.

Although stretching it a bit too

far, Bob doubts them both.

And some unreasonable modifications to

Bob’s beliefs:

4. Keep all his old beliefs alongside

with the added new observation

¬u even though it contradicts r →

u and r.

5. Abandon all of his beliefs alto-

gether!

The AGM constraints are meant to reject any candidate belief change operator that

make changes such as 4 or 5, which are normally considered unreasonable. On the

other hand, these constraints would accept belief change operators that bring about

any of the changes 1, 2 or 3 above.

In other words, the AGM constraints narrow down the set of acceptable operators

that can bring about rational belief change. In AGM, they are represented in the

form of logical postulates or axioms, and are sometimes called rationality postulates.

Also, this example shows that from a purely logical point of view, there cannot be a

uniquely defined belief change operator because a rational agent may see fit to make

any of the changes 1, 2 or 3 depending on other factors. Such factors are not formally

represented and are sometimes referred to as extra-logical factors. The AGM model,

including its rationality postulates, will be studied in some depth later in Chapter 2.

Belief Bases and Belief Change

The original AGM model of belief change only deals with belief sets. As discussed

earlier, a belief set is a set of formulas which is logically closed, containing all im-

plications of its formulas. The deductive closure property of belief sets is merely an

idealization assumption for theoretical simplification. This simplification comes with
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a price, making belief sets infinite in size, which negatively affects applicability of the

AGM model in practice.

An important variant of the original AGM approach, instead of using belief sets,

uses belief bases that are not necessarily deductively closed. A belief base can be

understood as a set of formulas, which is usually finite because belief bases are not

required to contain all of their logical consequences, and thus are more practical and

suitable to be represented in finite machines.

Moreover, because of logical closure, belief sets are syntax independent, which

makes them easier to work with in a formal setting. However, syntax independence

also makes all logically equivalent formulas to have equal status. This can be prob-

lematic because no distinction is made between pieces of knowledge that are self-

sustained, and pieces of knowledge that are merely consequences of them and have no

independent standing. In contrast, a belief change model using belief bases is “based

on the intuition that some of our beliefs have no independent standing but arise only

as inferences from our more basic beliefs,” Hansson explains [Han03]. That is, a belief

base can contain the more basic beliefs that are held to be true regardless of the truth

of other beliefs. Derived beliefs, on the other hand, are mere consequences of the

basic beliefs and depend on them. In contrast, belief sets contain both basic beliefs

and derived beliefs side by side, making the two indistinguishable.

Therefore, belief bases are more expressive compared to belief sets in the sense

that they allow to distinguish between explicit and implicit beliefs. That is, beliefs

that are explicitly stated in a belief base can be treated differently from those that

are only implicitly derived from the explicit beliefs.

Example 1.2 ([Han03]). I believe that Paris is the capital of France (a). I also

believe that there is milk in my fridge (b). As a consequence of this, I believe that

Paris is the capital of France if and only if there is milk in my fridge (a ↔ b). This is,

however, a merely derivative belief. Its derivative character will be clearly seen when

I find reasons to replace my belief in b with belief in ¬b. I cannot then, on pain of

inconsistency, retain both my belief in a and my belief in a ↔ b. To retain the derived

belief a ↔ b and reject the basic belief a is not, however, a serious possibility.
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Another important feature of belief bases is their tolerance for inconsistency [HW02].

While belief sets explode to include everything in the language in the presence of an

inconsistency, belief bases give more room to try to handle inconsistencies, for exam-

ple, by allowing for techniques to isolate an inconsistency in a belief base and still use

the rest of the base.

Another shortcoming of the AGM model, some researchers have asserted [FPA05],

is that, contrary to some models using belief bases, AGM cannot be applied to some

practically important logics such as SHIF and SHOIN which are the underlying formal

framework for OWL-Lite and OWL-DL of the Semantic Web [BLHL01].4

In summary, using belief bases for belief change have some important advantages

over belief sets, namely: they are typically finite in size, more expressive, more tolerant

of inconsistency, and potentially applicable to some more important practical logics.

Therefore, belief bases can be more useful in practice than belief sets.

Belief Change and Dependence

A long standing intuition concerning belief change is that formulas independent of a

change should remain intact [Gä90]. Gärdenfors states this intuition in the form of

the following preservation criterion:

Gärdenfors’ Preservation Criterion

“If a belief state is revised by a sentence A, then all sentences in K

that are independent of the validity of A should be retained in the

revised state of belief.” [Gä90]

Fariñas and Herzig in Belief Change and Dependence [FdCH96] attempt to ground

this intuition by defining a particular dependence relation in a close relationship to

belief change or more specifically belief contraction (or theory contraction). They

4Although this does not directly affect our research (as we will use propositional logic throughout
this work which is discussed in §1.4 on page 12), our results are potentially more applicable for the
above-mentioned logics because we focus on belief bases instead of belief sets.
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show that, for closed belief sets, dependence is a “natural counterpart” for AGM

postulates. That is, they specify how to define a dependence relation among formulas

of a belief set, given a theory contraction operator, and vice versa.

To this end, they first assemble a collection of nine postulates that they say any

dependence relation on formulas of a theory should always satisfy. Next, they state

how to construct such a dependence relation given an AGM contraction operator, and

they show that it indeed satisfies the nine dependence postulates. Conversely, they

show that if a dependence relation, satisfying the nine postulates, is used to construct

a theory contraction operator, it will indeed be a valid AGM contraction.

One interesting aspect of their work is that some of the important postulates

that they use to capture the concept of dependence come from intuitions put forward

previously. For example, Keynes in [Key21] (cited in [Gä78]) holds that there is

an intuitive relationship between relevance (dependence) and logical conjunction that

should stay valid for any reasonable definition of relevance. Fariñas and Herzig, calling

it the Conjunction Criterion for Dependence, CCD, formulate it as follows:

If δ depends on α and δ depends on β then δ depends on α ∧ β. (CCD)

Moreover, Gärdenfors in [Gä78] puts forward another principle that he believes

should hold for relevance/dependence relations, the Conjunction Criterion for Inde-

pendence, CCI:

If δ is independent of α and δ is independent of β

then δ is independent of α ∧ β.
(CCI)

A more in depth study of CCD and CCI can be found in §3.2.2 on page 38. Here

it suffices to emphasize that Fariñas and Herzig manage to successfully capture these

appealing intuitions in their formalism. We will also see in Chapter 3 that what

Fariñas and Herzig achieved in their work is an elegant addition to the theory of

belief change that falls into place quite nicely with everything else in the AGM model.

This deep integration into the AGM model sets apart their work from other works on

relevance or dependence in the context of belief change.
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1.2 Motivation and Main Ideas

Knowledge bases and ontologies (as in the Semantic Web [W3C01], for example)

may be utilized to tackle many real life problems. Usually though, they need to be

constantly updated and evolved to remain applicable to their respective problems.

This process can be very labour intensive and error prone if carried out manually.

This is an example where belief change using belief bases is expected to help. Belief

base change can be used to incorporate a new piece of information (a new belief) into

the knowledge base maintaining its consistency. This allows the initial knowledge

base to evolve as more information becomes accessible.

Even though belief base change is expected to have a wide range of uses in diverse

areas, there still remain some practical obstacles preventing its widespread use. At

least, one important barrier to deploy belief base change operations for use in real life

applications may be linked to the fact that the knowledge bases for such applications

tend to be large and computationally too demanding to manipulate.

Example 1.3. In the morning, John realizes that he was wrong to think that he had

some eggs in the fridge. As a result, the list of possibilities of what he might have for

breakfast also changes, but this is unlikely to change his beliefs about how the sun

works.

Indeed, a vast portion of John’s beliefs need not change at all. Putting aside all

the irrelevant information should be very helpful to John to quickly revise his beliefs,

focusing only on the parts that could potentially change.

One natural way to tackle this problem is to find ways to localize changes in a

large belief base. Given the high computational complexity of reasoning and belief

change operations, it would be of great help to be able to put aside all unrelated parts

of a belief base and have the computationally demanding algorithms work locally only

on the related parts. Finding intuitive and practical ways to formalize dependencies

between formulas (or beliefs) can help to localize changes only to related formulas, as

opposed to all of them.

Fariñas and Herzig’s work is one helpful step forward, although their work is based
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on belief sets. Therefore, generalizing their work using belief bases is expected to be

of significant practical value.

1.3 Belief Change and Base Dependence

As we saw in the previous sections, exploring the connection between belief change

and dependence can be of great value because, for example, it can narrow the number

of formulas that need to be considered during a belief change operation. Also as

already discussed, one successful first step is the work of Fariñas and Herzig that

focused on the relationship between dependence and AGM theory contraction.

A natural next step is to find a similar connection between dependence and belief

base contraction that can have important practical consequences. We call such a

dependence (or relevance) relation base dependence (or base relevance). In this work,

we establish such a connection between belief base contraction and base dependence.

That is, we provide an axiomatization of base dependence, and establish its relation

to belief base contraction. Similar to the set of axioms suggested by Fariñas and

Herzig, the base dependence axioms are also meant to capture the dependence among

formulas, but base dependence involves formulas of belief bases as opposed to belief

sets.

Since belief bases are a generalization of belief sets, their corresponding dependence

relation, i.e. base dependence, can also be expected to be a generalization of Fariñas

and Herzig’s dependence relation. More interestingly, base dependence turns out to

be a reversible generalization of dependence. That is, we prove that in the special case

that a belief base is deductively closed (i.e., it is a belief set), the base dependence

relation reduces to the original Fariñas and Herzig’s dependence relation.

Quite notably, in this generalization, the formalism preserves some intriguing prop-

erties of Fariñas and Herzig’s formalism, viz., the above-mentioned Keynes’ conjunc-

tion criterion for dependence (CCD) and Gärdenfors’ conjunction criterion for inde-

pendence (CCI).

Furthermore, in Chapter 4, we offer a new and more specific criterion for depen-

dence, which we call Conjunction Criterion of Dependence Factoring, CCDF. We next
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show that CCDF implies both Keynes’ CCD and Gärdenfors’ CCI, and that our base

dependence formalism meets the three criteria: CCDF and so CCD and CCI.

Therefore, the contributions in this work include:

• An axiomatization of base dependence relation for belief base formulas.

• Characterization theorems relating base dependence to belief base contraction

(similar to epistemic entrenchment in AGM).

• A result showing that the new base dependence relation is a reversible general-

ization of Fariñas and Herzig’s dependence relation.

• A further result showing that, while generalizing the dependence relation, base

dependence preserves some of the most interesting properties of dependence,

particularly, Keynes’ conjunction criterion of dependence, CCD, and Gärdenfors’

conjunction criterion of independence, CCI.

• A new and more specific conjunction criterion of dependence, CCDF, that implies

both Keynes’ CCD and Gärdenfors’ CCI, and show that this new criterion is also

met by base dependence.

1.4 Preliminaries and Notation

We assume L to be a propositional language defined on a finite set of propositional

variables or atoms V with the usual Boolean operators negation ¬, conjunction ∧,

disjunction ∨, and implication →. We will use lower case Greek letters α, β, δ, etc.

as meta variables over sentences in L. For convenience, we introduce the sentential

constants ' and ⊥ representing truth and falsity respectively.

A logical consequence α of a set of formulas B is represented by B ) α. Also Cn

is a consequence operator, a total function taking sets of formulas to sets of formulas,

which can be defined as Cn(B) = {α | B ) α}. Also Cn is a Tarskian [Tar56]

consequence operator satisfying:

B ⊆ Cn(B) (inclusion)

If A ⊆ B then Cn(A) ⊆ Cn(B) (monotony)

Cn(B) = Cn(Cn(B)). (iteration)
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The iteration axiom is also known as idempotency.

Furthermore, the Cn operator is assumed here to satisfy the following standard

properties:

Ifα can be derived fromB by classical truth-functional

logic then α ∈ Cn(B)
(supraclassicality)

β ∈ Cn(B ∪ {α}) iff (α → β) ∈ Cn(B) (deduction)

If α ∈ Cn(B) then α ∈ Cn(B′) for some finite subset B′ ⊆ B. (compactness)

Throughout the document, B denotes a usually finite set of formulas or a belief base,

and K denotes a logically closed set of formulas or a belief set. A set K is said to

be logically closed or to be closed under logical consequence if and only if it contains

all its own logical consequences, Cn(K) ⊆ K. We also know that K ⊆ Cn(K) by

inclusion above. Therefore, the conventional formulation for the criterion for K to be

closed under logical consequence is: K = Cn(K) [Han99].

Finally, for the sake of simplicity, we may drop the curly brackets in some cases

of using the consequence operator, e.g., Cn(α, β) instead of Cn({α, β}).

1.5 Structure of This Thesis

After the introduction in this chapter, we will discuss in Chapter 2 the AGM frame-

work of belief change and some of its important extensions that are relevant to this

research. Chapter 3 will be an elaborate review of the most related work to this re-

search: Belief Change and Dependence by Fariñas and Herzig [FdCH96]. Chapter 4

will constitute the main body of this thesis which will extend and generalize Fariñas

and Herzig’s work. A summary of contributions in this thesis will be given in Chap-

ter 5, which will also include an analysis of and comparison to some related work. We

will also disscus in Chapter 5 some open problems regarding base dependence and

some future research possibilities to extend the work in this thesis. Finally, all the

proofs are moved to Appendix A.



Chapter 2

Belief Change

A brief introduction to belief change was provided in §1.1. To lay the foundation for

the upcoming chapters, we now study belief change in more depth and offer several

examples on the topic. Let us start off by assuming that there is an intelligent agent

possessing a consistent set of beliefs about some domain. One interesting question

is how this set of beliefs can be changed if needed. For example, say some credible

new information about the domain becomes available. How should the agent change

or revise its old beliefs to incorporate the new information, and end up with a new,

consistent body of beliefs? Reconsidering old beliefs is not always easy, nor necessarily

wise, thus the change should be as little as possible, and only as much as required to

avoid any conflict between the new information and the old.

If the new piece of information happens to be consistent with the current set

of beliefs, then it can simply be added to the set along with any implications this

addition may have. A more challenging case, however, is when this credible new piece

of information is in conflict with the current beliefs the agent holds. In this case, it

first needs to dismiss some of its old beliefs, albeit as few as possible, to resolve any

conflicts with the new information. In other words, it needs to give up on some of

the old beliefs such that the remaining beliefs or their consequences do not include

the negation of the new information. Then, the problem reduces to the previous case,

and it can add the new information and accept any implications this addition may

have.

14
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Before getting into technical details of formalisms that attempt to address belief

change, we consider another example below that should help to both further clarify

and motivate the problem.

Example 2.1 ([Gä03]). Let us assume that an agent believes the following statements:

α: All European swans are white.

β: The bird caught in the trap is a swan.

γ: The bird caught in the trap comes from Sweden.

δ: Sweden is part of Europe.

Given the above statements {α, β, γ, δ}, the following statement ε can also be

derived :

ε: The bird caught in the trap is white.

Thus, the agent should also believe, by implication, that ε holds. Nevertheless,

the agent is later assured of the following new fact:

ε′: The bird caught in the trap is not white (e.g. is black).

Clearly, ε and ε′ are inconsistent. Hence, the only way to keep ε′ and maintain

the consistency of the whole set of beliefs here is to retract at least one of the facts

from {α, β, γ, δ}. That will ensure that ε is not derived anymore, and thus ε′ can

consistently be added to what remains. For example, assume the agent starts to

doubt that the bird caught in the trap is a swan, and ceases to believe β. Then the

remaining facts, {α, γ, δ}, no longer imply ε, allowing it to believe ε′ without being

contradictory, with the new set of facts being {α, γ, δ, ε′}.

Note that it is possible to drop more than one of {α, β, γ, δ}. That too will allow

ε′ to be added to the remaining facts without causing inconsistency. However, in this

case more information than necessary will be lost. Intuitively, we want to maintain

Minimal Change as a guiding principle, requiring that in the process of changing a

set of beliefs, the change should be as small as possible.

Also note that from a logical point of view, it does not make a difference which one

of α, β, γ and δ is dropped. Intuitively, however, we know that giving up on beliefs

β or γ is much easier than on α or δ. Yet, this idea is not easy to capture without
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counting on extra-logical considerations – something which we will explore in detail

in the subsequent chapters.

2.1 AGM Paradigm

As mentioned in the previous chapter, the AGM theory has been the most influential

work to formalize the dynamics of belief states of an intelligent agent. According to

Peter Gärdenfors [Gä05], the AGM framework was developed by him in collaboration

with Carlos E. Alchourrón and David Makinson [Gä84, AGM85, Gä88, GM88]. In

AGM, logical sentences from a (propositional) language L are used to represent beliefs

about a static and unchanging world or situation.1 The belief state of an idealized

intelligent agent, who knows all the consequences of its beliefs, is then represented

using a formal theory, called a belief set – a set of beliefs alongside all its logical

consequences, K = Cn(K).

For instance, let K be the set of all logical consequences of {p, p → q}, or in other

words K = Cn({p, p → q}). Then, for example, p, p → q, q, p ∧ q, p ∨ q, p ∨ ¬q are

some statements or sentences in K. Sentences that are not entailed by {p, p → q} and

thus are not in K include ¬q, p → ¬q, ¬p ∧ q. The logical closure property of belief

sets is a simplifying assumption which may potentially be removed in later works (see

§2.7 on page 25).

Belief Change Operators

After representing a belief state using a belief set K, it is useful to know what are

reasonable operations on K that can resemble change of beliefs in rational agents.

Example 2.1 above is an instance of belief revision, which is one of the three important

ways in which a set of beliefs can change. The following lists three operations on K

alongside some simple examples for each.

1Changing beliefs because of changes in the situation is called belief update [KM92], which is
outside the scope of this document.
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Starting with the same K as above, K = Cn(p, p → q), we have:

Contraction, K ÷α: Retract α and other sentences in K that imply α.

Ex. K ÷ p = Cn(p → q) (so p /∈ K÷ p, while p ∈ K)

Ex.







K÷ q = Cn(p)

K÷ q = Cn(p → q)

(alternative 1)

(alternative 2)

i.e., it is not possible to uniquely determine K÷ q, and it may take on

different reasonable values

Expansion, K +α: Add α to K together with the logical consequences of its addi-

tion. The resulting belief set, K +α, may or may not remain consistent.

Ex. K + r = Cn(p, p → q, r)

Ex. K + q = Cn(p, p → q) (q is redundant, making no difference)

Ex. K +¬q = Cn(p, p → q, ¬q) (inconsistent result, implying both q and ¬q)

Revision, K ∗α: Add α to K, but if α is inconsistent with K, drop some subset of

K before adding α to ensure consistency.

Ex. K ∗ r = Cn(p, p → q, r)

Ex. K ∗ q = Cn(p, p → q) (q is redundant but acceptable)

Ex.







K ∗¬q = Cn(p, ¬q)

K ∗¬q = Cn(p → q, ¬q)

(alternative 1)

(alternative 2)

Out of the three operations above, expansion is the simplest one and can be uniquely

defined as follows

K +α = Cn(K ∪ {α}).

It is quite apparent that expansion can bring about inconsistent results. On the

other hand, revision and contraction (by a consistent formula) guarantee consistent
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results, but not unique results. Let us elaborate on the contraction example above,

K÷ q, to see why unique results are not always possible for these operations. Starting

with K = Cn(p, p → q), we know that q ∈ K, as it is a logical consequence of

{p, p → q}, but we are interested in another belief set that does not imply/contain

q: q /∈ K ÷ q. There is more than one way to obtain this: K ÷ q = Cn(p) or

K÷ q = Cn(p → q). Therefore, in the general case, given a theory K and a formula

α, we cannot expect to uniquely define a contraction operation K÷α, nor is it possible

to uniquely define a revision operation K ∗α for similar reasons.

Instead, the AGM framework introduces sets of constraints to determine classes of

reasonable belief change (revision and contraction) operators. These constraints are

presented in the form of logical axioms or postulates which are introduced in Sections

2.2 and 2.3.

Interconnection between Belief Change Operators

Via the following two important identities, belief revision and contraction operators

are related to each other in the sense that one can be obtained from the other.

Levi Identity [AM82] defines revision in terms of contraction:

K ∗α = (K÷¬α) +α

Harper Identity also known as ‘Gärdenfors Identity’ [Mak85], defines contraction

in terms of revision:

K÷α = K
⋂

(K ∗¬α)

These identities are important because they show that if we find a way to construct

a contraction operator, we can also easily extend it to construct a revision operator

via the Levi identity, and the other way around via the Harper identity.
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2.2 Belief Revision

The AGM paradigm models belief revision for a theory K as a function ∗ that given

a sentence α produces a new theory K ∗α. As we saw above, since there could be

many rationally acceptable revision functions, to make sure that the change from K

to K ∗α resembles rational belief revision as closely as possible, certain constraints

are imposed on the revision operator in the form of rationality postulates.

The following are the rationality postulates for revision in the AGM paradigm,

which any AGM revision operation ∗ needs to satisfy.

(K∗ 1) K ∗α is a belief set (closure)

(K∗ 2) α ∈ K ∗α (success)

(K∗ 3) K ∗α ⊆ K +α (inclusion)

(K∗ 4) If ¬α /∈ K then K +α ⊆ K ∗α (preservation)

(K∗ 5) If α is consistent then K ∗α is consistent (consistency)

(K∗ 6) If α ↔ β then K ∗α = K ∗ β (extensionality)

(K∗ 7) K ∗ (α ∧ β) ⊆ (K ∗α) +β (subexpansion)

(K∗ 8) If ¬β /∈ K ∗α then (K ∗α) +β ⊆ K ∗ (α ∧ β) (superexpansion)

The axiom K∗ 1 ensures that when a belief set is revised by some new piece of

information the result is also a belief set. K∗ 2 requires that the revision operation be

successful in the sense that the revised belief set should contain the new information.

K∗ 3 limits what can be added to the revised belief set by requiring that revision

never introduces anything that expansion does not. K∗ 4 ensures that nothing is

unnecessarily omitted from the revised belief set; i.e., revision is the same as expansion

if new information is consistent with the original belief set. Indeed, K∗ 3 and K∗ 4

together mean that K ∗α = K +α when ¬α /∈ K. K∗ 5 is self-explanatory. K∗ 6

means that a revision operation is syntax independent.

Any operator ∗ satisfying postulates K∗ 1 through K∗ 6 is called a basic AGM re-

vision operator. Also, the supplementary postulates K∗ 7 and K∗ 8 specify properties

of composite belief revision, which involve revision by conjunction of sentences.
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2.3 Belief Contraction

Similarly, the AGM paradigm models belief contraction for theory K as a function ÷

that given a sentence α produces a new theory K ÷α. As in the case of revision, a

contraction operator needs to satisfy a set of constraints or postulates.

The set of rationality postulates for contraction in the AGM paradigm are as

follows:

(K÷ 1) K ÷α is a belief set (closure)

(K÷ 2) K ÷α ⊆ K (inclusion)

(K÷ 3) If α /∈ K then K÷α = K (vacuity)

(K÷ 4) If ! α then α /∈ K÷α (success)

(K÷ 5) If α ∈ K then K ⊆ (K÷α) +α (recovery)

(K÷ 6) If ) α ↔ β then K ÷α = K÷ β (extensionality)

(K÷ 7) K ÷α ∩K ÷ β ⊆ K÷α ∧ β (conjunctive overlap)

(K÷ 8) If α /∈ K ÷α ∧ β then K ÷α ∧ β ⊆ K ÷α (conjunctive inclusion)

Similar to revision, the first axiom K÷ 1 states the closure property of contraction

operation – contracting a belief set always results in a belief set. K÷ 2 ensures that

contraction does not introduce any new formula, and it may only take away some of

the existing ones. By K÷ 3, if a formula is not already in a belief set, contraction

leaves the belief set unchanged. No change should be made when not necessary. K÷ 4

guarantees the resulting belief set from a contraction does not contain the contracted

formula, given it is not a tautology. In other words, α ∈ K ÷α can happen only for

a tautological α. By K÷ 5, the original belief set can be recovered after contraction

by re-expanding the result by the original contracted formula.2 K÷ 6 states that

contraction is syntax independent.

Any operator ÷ on K satisfying all these postulates is called a basic AGM contrac-

tion operator. Similar to belief revision, the supplementary postulates K÷ 7 and K÷ 8

2The recovery postulate has turned out to be the most controversial AGM contraction postulate
[Mak87, Fer01].
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specify properties of composite belief contraction by conjunction of formulas. Indeed,

the AGM model provides a third postulate regarding contraction of conjunctions:

EitherB÷α ∧ β = B÷α, or

B÷α ∧ β = B÷ β, or

B÷α ∧ β = B÷α ∩ B÷ β.

(conjunctive factoring)

This axiom is closely related to AGM supplementary postulates K÷ 7 and K÷ 8.

A basic AGM contraction operator that satisfies conjunctive factoring, also satisfies

both K÷ 7 and K÷ 8, and vice versa. The relationship between these three axioms

is formally stated in the following theorem.

Theorem 2.2 ([AGM85]). Let ÷ be an operation on belief set K that satisfies K÷ 1 –

K÷ 6, then conjunctive factoring is satisfied if and only if both conjunctive overlap

(K÷ 7) and conjunctive inclusion (K÷ 8) are satisfied.

2.4 Constructing Belief Change Operators

So far we have seen postulates that in a way describe what can be considered an AGM

revision or contraction operator. Such postulates provide a set of formal conditions

that a belief change operator must satisfy. On the other hand, there may be differ-

ent ways to construct belief change operators in a way that the AGM postulates are

satisfied. Then we need to show that these two orthogonal approaches match each

other. That is we need a representation theorem to prove that the construction of a

belief change operator does indeed represent the axioms specified for it. Such a theo-

rem may also be alternatively called an axiomatic characterization, since it provides

a characterization of an operation in the form of postulates.

In the subsequent sections, we briefly introduce some construction methods for

belief change operators which are in some way relevant to the present work. Our

focus, however, will largely be on belief contraction as opposed to belief change. That

is because, first, contraction is used in the upcoming chapters; second, as we saw

in §2.1 on page 18, belief contraction and revision are interconnected via the Levi
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and Harper identities. The following theorems show that having either a contraction

operator or a revision operator suffices to get the other one, using one of these two

identities.

Theorem 2.3 ([Gä88]). If ÷ is a construction function satisfying K÷ 1 –K÷ 4 and

K÷ 6, then its associated revision function via the Levi identity satisfies K∗ 1 –K∗ 6.

Theorem 2.4 ([Gä88]). If ∗ is a revision function satisfying K∗ 1 –K∗ 6, then its

associated contraction function via the Harper identity satisfies K÷ 1 –K÷ 6.

The following theorems also use the Levi and Harper identities but they take into

account the supplementary postulates as well.

Theorem 2.5 ([AGM85, Fer01]). If ÷ is a construction function satisfying K÷ 1 –K÷ 4

and K÷ 6, then its associated revision function via the Levi identity satisfies:

K∗ 7 if K÷ 5 and K÷ 7 are also satisfied, and

K∗ 8 if K÷ 8 is also satisfied.

Theorem 2.6 ([Gä88]). If ∗ is a revision function satisfying K∗ 1 –K∗ 6, then its

associated contraction function via the Harper identity satisfies:

K÷ 7 if K∗ 7 is also satisfied, and

K÷ 8 if K∗ 8 is also satisfied.

2.5 Partial Meet Contraction

Remainder Sets

For constructing both revision and contraction operators it is useful to determine

maximal subsets of a theory K that do not entail a given sentence α. Such a maximal

non-implying subset of K is called a remainder. Typically, for a given K and α, there

is more than one remainder, and the collection of all such remainders, denoted by

K⊥α, is called a remainder set.
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Definition 2.7 ([AM82]). Let K be a set of formulas and α a formula. A set X ∈

K⊥α is a remainder of K and α if and only if:

1. X ⊆ K

2. X ! α

3. for all X ′ such that X ⊂ X ′ ⊆ K, X ′ ) α.

Since usually there is more than one remainder, a selection function is employed

to choose between them.

Definition 2.8 ([AGM85]). A selection function for K is a function γ such that for

all sentences α:

1. if K ⊥α is non-empty then γ(K ⊥α) is a non-empty subset of K ⊥α, and

2. if K ⊥α is empty then γ(K ⊥α) = {K}.

Partial Meet Contraction and Its Special Cases

The following are examples for contraction constructors using remainder sets. Given

a remainder set K⊥α:

Partial Meet is obtained with the intersection of some of the remainders picked by

a selection function
⋂

γ(K ⊥α)

Full Meet is obtained by the intersection of all of the remainders
⋂

(K ⊥α)

Maxichoice is obtained when γ(K ⊥α) selects one remainder from K⊥α

Note that full meet and maxichoice are two special cases for partial meet because if

a selection function γ selects only one remainder then the constructed partial meet

contraction is indeed a maxichoice contraction. Also, if γ selects all the remainders

then the produced contraction is full meet.

Here, we only give a formal definition for partial meet contraction, and mention

the important results regarding this contraction.

Definition 2.9 ([AGM85]). For any sentence α, the operation of partial meet con-

traction over a belief set K determined by the selection function γ is given by:

K÷γ α =
⋂

γ(K ⊥α).
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Alchourrón, Gärdenfors and Makinson [AGM85] show the following representation

results, connecting the above construction to the AGM contraction postulates.

Theorem 2.10 ([AGM85]). Let ÷ be a function taking a belief set K and a sentence

α and returning a new belief set K÷α. For every theory K, ÷ is a partial meet con-

traction operation over K if and only if ÷ satisfies the basic postulates for contraction,

K÷ 1 –K÷ 6.

Partial Meet Revision via the Levi Identity

As discussed before, it is possible to construct a revision operator using a given con-

traction operator via the Levi identity:

K ∗α = (K÷¬α) +α.

The following definition combines the Levi identity with the construction for par-

tial meet contraction to obtain a new construction for partial meet revision.

Definition 2.11 ([AGM85]). Let K be a belief set and γ a selection function. For

any sentence α, the operation of partial meet revision over a belief set K determined

by γ is given by:

K ∗γ α = Cn(
⋂

γ(K⊥α) ∪ {α}).

2.6 Epistemic Entrenchment

Some of our beliefs about the world are more important than others for being more

informational and offering more explanatory power. Such beliefs are more epistemi-

cally entrenched than others, making them harder to give in a contraction or revision.

Based on this intuition, Gärdenfors introduced epistemic entrenchment, and defined
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the properties of an order relation, ≤, between sentences as follows [Gä88]:

(EE1) If α ≤ β and β ≤ δ then α ≤ δ (transitivity)

(EE2) If α ) β then α ≤ β (dominance)

(EE3) α ≤ (α ∧ β) or β ≤ (α ∧ β) (conjunctiveness)

(EE4) If K ! ⊥ then α /∈ K iff α ≤ β for all β (minimality)

(EE5) If β ≤ α for all β then ) α (maximality)

Gärdenfors and Makinson [GM88] then studied the relation between epistemic en-

trenchment ordering and belief contraction, and showed that the two are connected:

α ≤ β iff α /∈ K ÷(α ∧ β) or ) (α ∧ β) (C≤)

β ∈ K ÷α iff β ∈ K and either ) α or α < (α ∨ β). (C÷G)

As expected, the symbol < denotes that α ≤ β but β " α. Based on their

results, for a belief set K, given an epistemic entrenchment relation ≤ that sat-

isfies postulates EE1–EE5, a contraction operator ÷ can be constructed, via C÷G,

that satisfies K÷ 1 –K÷ 8. Conversely, given a contraction operator ÷ satisfying

K÷ 1 –K÷ 8, an epistemic entrenchment relation ≤ can be constructed, via C≤, that

satisfies EE1–EE5. Figure 2.1 on the next page schematically demonstrates these

results.

After establishing the connection between epistemic entrenchment and belief con-

traction, a similar connection between epistemic entrenchment and belief revision can

be obtained using the Levi identity, just as in the case of partial meet revision in the

previous section.

2.7 Changing Belief Bases: A Generalization of AGM

The original AGM paradigm of belief change studies the dynamics of belief states

using belief sets. Requiring belief sets to be deductively closed, which makes them

infinite in size, is a simplifying assumption of great theoretical value. However, it

comes at the cost of reducing the practicality of the AGM model.
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Epistemic Entrenchment
EE1, . . . ,EE5

AGM Contraction
K÷ 1, . . . , K÷ 8

C≤ C÷G

Figure 2.1: Gärdenfors and Makinson show that “the problem of constructing appro-
priate contraction and revision functions can be reduced to the problem of providing
an appropriate ordering of epistemic entrenchment” [GM88].

As was discussed in Chapter 1, to address this shortcoming of AGM, belief bases

are introduced which generalize belief sets by removing the deductive closure require-

ment. This means that for practical applications belief bases are typically finite in

size and hence computationally more representable.

Belief sets and belief bases are closely related though. Given a belief base B, it

is always possible to obtain the corresponding belief set K using the consequence

operator: K = Cn(B). Also, there can be many different belief bases whose logical

closure is the same belief set. This makes belief bases more expressive compared to

belief sets. Belief bases can distinguish between explicit, or more basic beliefs, B, and

implicit beliefs, Cn(B) \B, which depend on the basic beliefs [Han03].

Belief bases also allow for the handling of inconsistencies [HW02]. For example, let

A = {p, ¬p, q} and B = {p, ¬p, ¬q}. Because both A and B are inconsistent, their

corresponding belief set is the same: Cn(A) = Cn(B) = L. Yet, A÷ p = {¬p, q} and

B÷ p = {¬p, ¬q} are different and so are their closures, Cn(A÷ p) /= Cn(B÷ p).
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2.8 Belief Base Contraction

The connection between contraction on belief bases and contraction on belief sets is

well established. A contraction operator − on a belief base B gives rise to a base-

generated operation ÷ on the belief set K = Cn(B), such that K ÷ p = Cn(A − p)

for all sentences p [Han93, Han11].

Just as in the case of the AGM operators for belief sets, belief change operators

for belief bases are also constrained by a set of postulates. Some examples of such

postulates are listed below.

If ! α then α /∈ Cn(B÷α) (success)

B÷α ⊆ B (inclusion)

If Cn(B) ⊆ B then Cn(B÷α) ⊆ B÷α (closure)

B ∩ Cn(B÷α) ⊆ B÷α (relative closure)

If α /∈ Cn(B) then B÷α = B (vacuity)

If ) α then B÷α = B (failure)

If α ↔ β then B÷α = B÷ β (extensionality)

If α ∈ Cn(B′) iff β ∈ Cn(B′) for all B′ ⊆ B then B÷α = B÷ β

(uniformity)

If β ∈ B and β /∈ B÷α then

α /∈ Cn(B÷α) and α ∈ Cn((B÷α) ∪ {β})
(fullness)

If β ∈ B and β /∈ B÷α then there is some B′ s. t.

B÷α ⊆ B′ ⊆ B and α /∈ Cn(B′) and α ∈ Cn(B′ ∪ {β})
(relevance)

If β ∈ B and β /∈ B÷α then there is some B′ s. t.

B′ ⊆ B and α /∈ Cn(B′) and α ∈ Cn(B′ ∪ {β})
(core-retainment)

β ∈ B÷α iff β ∈ B and there is no B′ s. t.

B′ ⊆ B and α /∈ Cn(B′) and α ∈ Cn(B′ ∪ {β})
(core identity)

These postulates will be used for different base contractions in the subsequent

sections. Let us start by identifying the bare minimum axioms that need to be satisfied
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for base contraction. A contraction operation needs to at least satisfy success and

inclusion. That is, the result of a contraction operation should be a subset of the

original belief base that does not imply the sentence to be contracted if it is not a

tautology.

Definition 2.12 ([Han99]). An operator ÷ for a set B is an operator of contraction

if and only if it satisfies success and inclusion.

Partial Meet Base Contraction

Partial meet contraction is very well applicable to both belief bases and belief sets.

Also for belief bases, just as it was the case for belief sets, maxichoice base contraction

and full meet base contraction are special cases of the more general partial meet base

contraction. Here are the axioms that each of these base contractions satisfy [Han99]:

Partial Meet Base Contraction: success, inclusion, uniformity and relevance.

Maxichoice Base Contraction: success, inclusion, uniformity and fullness.

Full Meet Base Contraction: core identity.

The core identity axiom alone suffices to guarantee full meet contraction.

Notice that with the above belief base version of the postulates, these operations are

applicable to both belief bases and belief sets. This fact is implicitly reflected in the

statement of the following theorem:

Theorem 2.13 ([Han03]). The operator ÷ is an operator of partial meet contraction

for a set B if and only if it satisfies the postulates of success, inclusion, relevance and

uniformity.

2.9 Kernel Contraction

Kernels

We saw in §2.5 on page 22 that remainders are maximal subsets of a set of beliefs that

do not entail a given formula α. Here we introduce another tool similar to remainders,
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namely kernels, which prove to be very useful in constructing belief change operators

for belief bases. A kernel is a minimal subset of a base that implies a given formula.

An α-kernel is a minimal subset of a belief base that entails α. A kernel set B⊥⊥α

is the set of all possible α-kernels for a belief base B, so a kernel set is a set of some

subsets (i.e. kernels) of a base.

Definition 2.14 ([Han95]). Let B be a belief base and α a formula. A set B⊥⊥α is

such that X ∈ B⊥⊥α if and only if:

1. X ⊆ B

2. X ) α

3. if X ′ ⊂ X, then X ′ ! α.

Again, in the general case, there can be more than one minimal implying subset of

B. Thus, an incision function σ can be employed to make a decision when there are

multiple options to choose from. The incision function σ picks at least one element

from each kernel.

Definition 2.15 ([Han95]). An incision function σ for B is a function such that for

all α:

1. σ(B⊥⊥α) ⊆
⋃

(B⊥⊥α), and

2. if ∅ /= X ∈ B⊥⊥α, then X ∩ σ(B⊥⊥α) /= ∅

Building Kernel Contraction Operators

Let us assume that base B implies formula α, B ) α. Then, by definition, the kernel

set B⊥⊥α contains all α-kernels, minimal subsets X ⊆ B each of which implies α,

X ) α. Also, let σ be an incision function such that σ(B⊥⊥α) will pick at least one

formula from each kernel X. Now, if we remove all the formulas in σ(B⊥⊥α) from

B, the remaining set will no longer imply α, [B \ σ(B⊥⊥α)] ! α. Therefore, given an

incision function σ, a kernel contraction operator ÷σ may be defined as follows:

Definition 2.16 ([Han95]). Let σ be an incision function for B. The kernel contrac-

tion ÷σ for B is defined as follows:

B÷σ α = B \ σ(B⊥⊥α)
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Kernel contraction satisfies success, inclusion, core-retainment and uniformity. It is

more general than base partial meet contraction [Han99]. This is because partial meet

contraction satisfies relevance while kernel contraction satisfies only core-retainment

which is a much looser constraint, making kernel contraction more general than partial

meet contraction.

Theorem 2.17 ([Han95]). The operator ÷ for B is a kernel contraction if and only

if it satisfies success, inclusion, core-retainment and uniformity.

Saturated Kernel Contraction

Indeed kernel contraction constitutes a very general class of belief contraction opera-

tions [Han99], and there are some subsets of this class of contraction operations that

exhibit some rather interesting properties. In particular, let us consider saturated

kernel contraction which is basically a kernel contraction that additionally satisfies

relative closure.

Theorem 2.18 ([Han95]). The operator ÷ for B is a saturated kernel contraction3 if

and only if it satisfies success, inclusion, core-retainment, uniformity and relative closure.

Saturated kernel contraction is an “interesting generalization” [Han99] of partial

meet contraction for belief bases because, in the special case where a belief base is

closed (i.e. is a belief set), saturated kernel contraction is equivalent to partial meet

contraction.

Theorem 2.19 ([Han95]). Let B be a belief set. Then an operation is a saturated

kernel contraction for B if and only if it is a partial meet contraction for B.

2.10 Conclusion

We introduced in some detail the AGM paradigm of belief change [AGM85] repre-

senting belief states as logically closed belief sets. We also reviewed a variant to the

3The original theorem in [Han95] actually mentions “smooth kernel contraction” which is equiv-
alent to saturated kernel contraction [Han99].
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original AGM approach that instead uses belief bases which generalize belief sets and

are not necessarily deductively closed. Furthermore, we saw that many authors have

argued that, compared to belief sets, belief bases are more practical as they are easier

to represent in computers, more expressive and more inconsistency-tolerant.



Chapter 3

Belief Change and Dependence

3.1 Overview

A long standing intuition concerning belief change is that formulas independent of a

change should remain intact [Gä90]. Fariñas and Herzig in Belief Change and Depen-

dence [FdCH96] attempt to ground this intuition by defining a particular dependence

relation in a close relationship to belief change, or more specifically, contraction. Since

the present thesis is rooted in their work, this chapter is dedicated to a discussion and

analysis of it.

3.1.1 Minimal Change: Crucial to Belief Change

As seen in Chapter 2, minimality of change is a guiding principle in the theory of belief

change: a change in a belief state should preserve as many of the old beliefs as possible.

As such, “what is meant by a minimal change of a state of belief,” Gärdenfors asserts,

is a “central problem for the theory of belief revision” [Gä90]. To partially address this

problem, the AGM model uses a set of constraints, called rationality postulates, that

any valid belief change operator is required to satisfy. However, by satisfying these

postulates, it is only possible to prohibit operators that make unreasonable changes

that rational agents would not make. Yet, there may still remain more than one

reasonable change to choose from.

32



CHAPTER 3. BELIEF CHANGE AND DEPENDENCE 33

Example 3.1. Assume Mary believes that p, q and q → r are true; i.e., K =

Cn({p, q, q → r}). Thus, she implicitly believes that r is also true, as it is en-

tailed by q and q → r. Now, say, for some reason, she starts to doubt that r is true,

so she wants to contract her beliefs by r. Consequently, this leads her to also cease

believing either q, or q → r, or even both. The rationality postulates allow her to

make any such possible change as she sees fit. However, these postulates disallow

some other changes that seem to be irrational. For example, it does not make sense

that just because she stops believing r, she also forsakes all her (non-tautological)

beliefs, with her new belief set shrinking to K ′ = Cn(∅).

As this example illustrates, although the rationality postulates logically limit what

changes to a set of beliefs are considered “rational,” there can still remain multiple

reasonable changes in a given situation. As far as the AGM model is concerned, it

makes no difference what choice Mary makes. Yet, there might be some domain-

specific or case-dependent considerations to make her prefer one over another. Such

considerations are clearly absent from this logical model of her belief state, namely

K. Thus, to make a decision, she needs some extra-logical information.

3.1.2 Dependence: Crucial to Minimal Change

The criterion of minimality used in the AGM model has been “based on almost ex-

clusively logical considerations. However, there are a number of non-logical factors

that should be important when characterizing a process of belief revision,” Gärdenfors

confirms [Gä90]. He, thus, focuses on the notion of relevance and its relationship to

belief change, introducing the following preservation criterion.

Gärdenfors’ Preservation Criterion

“If a belief state is revised by a sentence A, then all sentences in K

that are independent of the validity of A should be retained in the

revised state of belief.” [Gä90]
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In other words, full capture of minimal change requires focusing only on the related

statements and leaving out any independent statements from the change.

Here we use relevance as synonymous to dependence: “α is relevant to β” is equiv-

alent to “β depends on α.”

Example 3.2. Assume as in Example 3.1, Mary believes the same K = Cn({p, q, q →

r}), but this time she also knows that if she ever doubts r, then she would prefer

doubting q, but not q → r. Thus, for her, believing q depends on r, but believing

q → r does not. In other words, her belief r is relevant to her belief q but it is not

relevant to her belief q → r.

Knowing the dependencies between these statements allows full modeling of the

dynamics of Mary’s belief state in the event that she stops believing r. That is, in

that case, she would also stop believing q, and according to Gärdenfors’ preservation

criterion above, she would retain the rest of her beliefs: K ′ = Cn({p, q → r}).

Note that, with the help of the extra-logical information available in this example,

the outcome here is the only acceptable resulting belief state for Mary. This is in

contrast with the situation in Example 3.1 where the outcome, K ′, could be one of

many different possibilities.

Nevertheless, the challenge to formulate extra-logical factors still remains. The

preservation criterion only shifts the problem to that of determining the dependencies

between statements (or equivalently the relevance amongst them). As Gärdenfors

puts it “a criterion of this kind cannot be given a technical formulation in a model

based on belief sets.” Instead, to decide about the preference over different beliefs,

belief change operators resort to exploiting some form of exogenous factors such as

epistemic entrenchment ordering1 ≤, selection function2 γ, or incision function3 σ.

Gärdenfors’ preservation criterion, however, highlights the importance of the de-

pendencies between statements to uphold the minimal change principle in belief

change. This importance has also been recognized by many other researchers studying

1See §2.6 on page 24
2See Definition 2.8 on page 23
3See Definition 2.15 on page 29
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relevance/dependence in the context of belief change, which we will discuss in more

detail in the Related Work section on page 95.

3.1.3 Belief Change and Dependence

So far, we have seen that on the one hand belief change and minimal change are

strongly related, and on the other hand minimal change and dependence are strongly

related. Thus, it is only natural to expect that belief change and dependence are

strongly connected as well.

Fariñas and Herzig explore this connection in Belief Change and Dependence

[FdCH96]. Their work is particularly interesting and unique in the sense that it fits

the original AGM model of belief change, adding a theoretical foundation for depen-

dence. Their stated aim is both “to give a formal account of the notion of dependence,

and to employ it in belief change.”

As for the formal account, they offer an axiomatization of dependence, assembling

a collection of nine postulates that a dependence relation should satisfy. Some of

these postulates are from different authors working on the notion of relevance and

dependence such as Keynes [Key21] and Gärdenfors [Gä78, Gä90]. We will study

these postulates in §3.2.2 on page 38.

Next they employ their formal account of dependence into the AGM model of be-

lief change. That is, they specify how to define a dependence relation with respect to

formulas of a belief set given a contraction operator, and vice versa. More specifically,

they show that a dependence relation, obtained from an AGM contraction opera-

tor, indeed satisfies the nine dependence postulates. Conversely, they show that if a

dependence relation, satisfying the nine postulates, is used to obtain a contraction

operator, it will be a valid AGM operator. They also point out that analogous results

for belief revision can easily be achieved via the Levi identity. We will come back to

this in more detail in §3.2.3 on page 42.

Using the above two stages, they basically provide an axiomatization of the in-

tuitions behind the notion of dependence that interestingly corresponds directly to
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AGM postulates. Apparently, Gärdenfors expected such a result before it was ac-

tually developed by Fariñas and Herzig. He states that he looks for a version of the

preservation criterion above as an addition to the theory of belief change [Gä90]. He

even lays out a plan for how to achieve this by providing two subgoals: first analyzing

the concept of relevance and then incorporating the results of this analysis into belief

change.

Moreover, as Fariñas and Herzig acknowledge [FdCH96], Gärdenfors provides some

properties for relevance relations and he further shows that these properties hold for

all contraction operations.

3.2 Formalization of Belief Change and Dependence

To formalize the relationship between belief change and dependence, Fariñas and

Herzig establish a logic-based account of dependence, and show that it fits the original

AGM model. One side note here is that Fariñas and Herzig first start by an attempt

to give a formal account of (in)dependence from a probability theory perspective,

a.k.a. probabilistic independence. However, they then argue that that approach is

unsatisfactory, and turn their focus on the logic-based account of dependence, which

is the account we consider here.

3.2.1 Approach: Resembling Epistemic Entrenchment

We saw in §2.6 on page 24 that epistemic entrenchment as a binary relation between

sentences of a given belief set K was studied by Gärdenfors and Makinson [Gä84,

GM88, Gä88]. As depicted in Figure 2.1 on page 26, they show that for a belief set

K, given an epistemic entrenchment relation ≤ that satisfies postulates EE1 -EE5, a

contraction operator ÷ can be constructed via C÷G that satisfies K÷ 1–K÷ 8. Also,

given a contraction operator ÷ satisfying K÷ 1–K÷ 8, an epistemic entrenchment

relation ≤ can be constructed via C≤ that satisfies EE1 -EE5.
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Epistemic Entrenchment
EE1, . . . ,EE5

AGM Contraction
K÷ 1, . . . , K÷ 8

C≤ C÷G

(a) Gärdenfors and Makinson show that
“the problem of constructing appropriate
contraction and revision functions can be
reduced to the problem of providing an ap-
propriate ordering of epistemic entrench-
ment” [GM88].

Dependence
Def-K, Cond-ID, Disj,

LEl, LEr, CCIl, CCIr, CCDl
0, CCD

r
0

AGM Contraction
K÷ 1, . . . , K÷ 8

Cond! Cond÷

(b) Fariñas and Herzig also demonstrate
that “the AGM-postulates have a natural
counterpart in terms of dependence (just
as they have one in terms of epistemic en-
trenchment)” [FdCH96].

Figure 3.1: The relationship between Dependence and AGM contraction is similar to
the relationship between Epistemic Entrenchment and AGM contraction.

Gärdenfors and Makinson conclude:

“From an epistemological point of view, these results suggest that the

problem of constructing appropriate contraction and revision functions

can be reduced to the problem of providing an appropriate ordering of

epistemic entrenchment.” [GM88]

Indeed, Fariñas and Herzig formalized the notion of dependence and its connection

with belief change, “[p]roceeding exactly in the same way as Gärdenfors [and Makin-

son] (1988) did in the case of epistemic entrenchment” [FdCH96]. Figure 3.1 is a

schematic illustration of the parallelism between these two works.

We now proceed to show in more detail how Fariñas and Herzig axiomatize the

dependence relation in §3.2.2, and how they employ this dependence relation in belief

change in §3.2.3.
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3.2.2 A Formalization of Dependence

To formalize dependence, Fariñas and Herzig investigate a binary relation ! on for-

mulas. α!β reads as “β depends on α” (or synonymously “α is relevant to β”).

Independence, then, is denoted by /!, which is the complement of !, so α /! β reads

as “β is independent of α” (or “α is irrelevant to β”).

Example 3.3. In Example 3.2 on page 34, Mary is starting to doubt r while her

current belief state is modeled as K = Cn({p, q, q → r}). The additional pieces of

information that her belief q depends on her belief r and that her belief q → r is

independent from r are respectively denoted by r! q and r /! q → r.

Fariñas and Herzig did not provide a precise definition for dependence relations.

Instead, much like how the AGM model constrains what can be considered as a

belief change operator, Fariñas and Herzig put forward a framework for what can be

considered as a dependence relation by providing a set of postulates that any such

relation should satisfy. Some of these postulates are based on ideas explored in much

earlier works of other authors, notably Keynes (1921) and Gärdenfors (1978).

Keynes in [Key21] holds that there is an intuitive relationship between relevance

(dependence) and logical conjunction that should be valid for any reasonable definition

of relevance. Fariñas and Herzig, calling it the Conjunction Criterion for Dependence,

CCD, express it as follows:

If δ depends on α and δ depends on β then δ depends on α ∧ β. (CCD)

Using the ! notation, they formalize CCD as follows:

If α! δ and β! δ then α ∧ β! δ. (CCDl)

They use superscript l for expanding from left, allowing them to use superscript r

for right to name another closely related axiom:

If δ!α and δ!β then δ!α ∧ β. (CCDr)

Fariñas and Herzig explain that because ! is not necessarily symmetric, CCDl and

its symmetric counterpart CCDr are both needed.
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Moreover, Gärdenfors in [Gä78] puts forward another principle that he believes

should hold for any relevance relation, the Conjunction Criterion for Independence,

CCI:

If δ is independent of α and δ is independent of β

then δ is independent of α ∧ β.
(CCI)

Gärdenfors’ CCI maintains its intuitive appeal in its contrapositive form:

If δ depends on α ∧ β then δ depends on α or δ depends on β.

Once again, using the ! notation, and expanding from both left and right, Fariñas

and Herzig give the CCIl and CCIr postulates based on CCI:

If α ∧ β! δ then α! δ or β! δ. (CCIl)

If δ!α ∧ β then δ!α or δ!β. (CCIr)

Interestingly, looking a bit further ahead, Fariñas and Herzig eventually come up with

a formalism of dependence in relation to contraction that adheres to both Keynes’ CCD

and Gärdenfors’ CCI, or all four of CCDl, CCDr, CCIl and CCIr. While their formalism

does not directly use CCDl and CCDr as postulates, they nonetheless remain valid as

derivable principles.

Going back to describing the rest of Fariñas and Herzig’s postulates for depen-

dence, the following postulates LEl and LEr are also symmetric counterparts, which

are standard postulates for syntax independence:

If α ↔ β and α! δ then β! δ. (LEl)

If α ↔ β and δ!α then δ!β. (LEr)

A more intuitive equivalent form of these postulates is as follows:

If α ↔ β then α! δ iff β! δ.

If α ↔ β then δ!α iff δ! β.
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The next postulate Def-K is the only one that involves K. This is important for

providing the link between dependence and belief change, which was the second stated

goal of Fariñas and Herzig’s formalism as discussed above. Just as an AGM belief

contraction operator ÷ is with regards to some belief set K, a Fariñas and Herzig’s

dependence relation ! is also with regards to some K (more details in §3.2.3 below).

α ∈ K iff either ) α or α!β for some β. (Def-K)

Since K is deductively closed, it contains all tautologies, so if ) α then obviously

α ∈ K. The more interesting case is when ! α and α ∈ K which means α is a

contingent truth in K. Then K is contractable by α; i.e., K ÷α is smaller than K.

That is, there is some β such that β ∈ K but β /∈ K ÷α. A trivial case for that is

when β is α itself, so α ∈ K but α /∈ K ÷α, which is guaranteed by the success [p. 27]

postulate of AGM contraction.

The next postulate in the Fariñas and Herzig’s list is Cond-ID:

If α!β then α!α. (Cond-ID)

This means that α depends on itself if there is anything depending on it. If any

formula β depends on α, it means that α ∈ K, and it also means that ! α. So, α is

a contingent truth and it is contractable, thus α!α.

Their next postulate is Disj:

If ) α ∨ β then α /!β. (Disj)

This ensures that a formula and its negation are always independent. That is, α /!¬α.

Also, for α!β, the postulate Disj does not allow α or β to be a tautology.

As it was mentioned earlier, Fariñas and Herzig’s formalism of dependence does

not use Keynes’ CCD directly as postulates because both CCDl and CCDr are derivable.

They instead use CCDl
0 which is similar to but stronger than Keynes’ CCD. Finally,

CCDr
0 is the counterpart of the conjunctive inclusion [p. 20] postulate, K÷ 8.

If α! δ and α ∧ β!α then α ∧ β! δ. (CCDl
0)

If δ!α and β!β then δ!α ∧ β. (CCDr
0)
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In summary, the following is the final set of postulates that Fariñas and Herzig

provide for the axiomatization of dependence.

If α ↔ β and α! δ then β! δ (LEl)

If α ↔ β and δ!α then δ!β (LEr)

If α ∧ β! δ then α! δ or β! δ (CCIl)

If δ!α ∧ β then δ!α or δ!β (CCIr)

α ∈ K iff either ) α or α! β for some β (Def-K)

If α!β then α!α (Cond-ID)

If ) α ∨ β then α /! β (Disj)

If α! δ and α ∧ β!α then α ∧ β! δ (CCDl
0)

If δ!α and β!β then δ!α ∧ β (CCDr
0)

The following are also derivable principles in their framework:

If α! δ and β! δ then α ∧ β! δ (CCDl)

If δ!α and δ!β then δ!α ∧ β (CCDr)

Thus, using the axioms above, Fariñas and Herzig’s dependence relation is defined

as follows:

Definition 3.4. A relation ! is a dependence relation if and only if it satisfies the

axioms LEl, LEr, CCIl, CCIr, Def-K, Cond-ID, Disj, CCDl
0 and CCDr

0.

The above definition is their main definition of dependence, which they show, using

a characterization theorem, to correspond to AGM contraction satisfying K÷ 1–K÷ 8

(see Theorem 3.8 on page 44). They also use some subsets of these axioms for depen-

dence relation. In particular, they show that a dependence relation that only satisfies

LEl, LEr, CCIr, Def-K, Cond-ID, Disj and CCDr
0 corresponds to basic AGM contraction

satisfying K÷ 1–K÷ 6 (see Theorem 3.9 on page 44).
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3.2.3 Employment of Dependence in Belief Change

After axiomatizing dependence relations, Fariñas and Herzig study dependence in

relationship to belief change. As their guiding principle, they use Gärdenfors’ preser-

vation criterion (see page 33) which basically requires that independent beliefs from a

belief change should remain intact in the revised state of belief. For example, if β ∈ K

to begin with, but β /∈ K÷α, then we can say that β depends on α, or α!β. They

then proceed to show how to define a contraction operation from a given dependence

relation, and, vice versa, how to obtain a dependence relation using a contraction

operation. Finally, they complete the link between AGM contraction and dependence

for closed belief sets through establishing characterization theorems.

To provide this connection between dependence and AGM contraction, Fariñas and

Herzig introduce the following two conditions Cond! and Cond÷ whose roles closely

resemble those of C≤ and C÷G for epistemic entrenchment (see §2.6 on page 24).

α!β iff β ∈ K and β /∈ K ÷α. (Cond!)

This condition allows one to define ! based on a given AGM contraction operation

÷ for belief set K. On the other hand, the next condition, Cond÷, allows the defining

an AGM contraction operation ÷, given a dependence relation !.

β ∈ K ÷α iff either ) β or β!β and α /! β. (Cond÷)

One important note here is that an AGM contraction operation ÷ is defined with

respect to some belief set K. Thus, the contraction operation ÷ obtained via condition

Cond÷ also requires an associated belief set K to be specified. Fariñas and Herzig

provide the following definition for the belief set K! associated with a given !

relation:

K!

def
= {α | ) α or α!β for some β}.

That is, if α is a tautology, it is trivially part of K!. On the other hand, α is

a contingent truth if there is a sentence β in K! such that it is removed once α is

contracted. This is because contraction of α will have no effect if α is a tautology, by
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failure [p. 27], nor if α is not in the theory, by vacuity [p. 27]. Note that one special

case for β is that it be equal to α in which case we have α!α. This just means that

α is contingent, as seen earlier in this chapter. For the sake of brevity, they simply

use K to refer to K! afterwards.

They also remark that in the presence of Def-K [p. 40], Cond÷ can be re-written

as the following equivalent form:

β ∈ K ÷α iff β ∈ K and α /!β.

It is noteworthy that this variant of Cond÷ is a formal expression of Gärdenfors’

preservation criterion (on page 33) which requires a belief change operation to let

beliefs that are independent of a change remain intact.

With all the building blocks in place, finally, Fariñas and Herzig provide formal

results to actually show how dependence is a natural counterpart of AGM contraction.

The following theorem defines a dependence relation using a contraction operation.

Theorem 3.5 ([FdCH96]). Given two relations ! and ÷ such that Cond! holds, if

÷ is an AGM contraction, then ! is a dependence relation.

The next theorem expresses the converse. It defines a contraction operation, given

a dependence relation.

Theorem 3.6 ([FdCH96]). Given two relations ! and ÷ such that Cond÷ holds, if

! is a dependence relation then ÷ is an AGM contraction.

Once again as in the case of epistemic entrenchment, through establishing a charac-

terization theorem, they complete the link between AGM contraction and dependence

for closed belief sets. Such a characterization theorem would be expected to state that

for any two arbitrary relations ! and ÷ on formulas that satisfy Cond! (or equiva-

lently Cond÷), ÷ is an AGM contraction iff ! is a dependence relation. To achieve

this, however, it turns out that they first have to make the following assumption:

Remark 3.7 ([FdCH96, page 158]). In order to establish an axiomatic characteriza-

tion based on Cond!, it is assumed that the relation ÷ satisfies inclusion, K ÷α ⊆ K.
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Fariñas and Herzig briefly explain the rationale behind making this assumption,

which we expand on as follows. In constructing the ! relation using a contraction

operation via the condition Cond!, the set of all β such that α!β is equal to those

β ∈ K and β /∈ K ÷α, or in set difference notation β ∈ K \ (K ÷α). We know

as a matter of fact that K÷α ⊆ K because an AGM contraction ÷ is required to

satisfy inclusion. However, for the sake of argument, let us assume that there could

be some statements in K ÷α that are not in K. In that case, such statements would

have been lost in the set difference β ∈ K \ (K ÷α). What that means is that while

constructing a contraction ÷ via Cond!, we do not have enough information to prove

that inclusion holds. Instead, we have to assume that ÷ already satisfies inclusion.

The assumption stated in Remark 3.7 may be perceived by some to have a neg-

ative impact on the simplicity and elegance of Fariñas and Herzig’s characterization

theorem. Yet, since by Definition 2.12 on page 28 [Han99] all contraction operations

satisfy inclusion, this assumption is not a serious loss of generality.

Theorem 3.8 ([FdCH96]). Let two relations ! and ÷ be such that ÷ satisfies

inclusion, K ÷α ⊆ K, and that Cond! holds: α! β iff β ∈ K and β /∈ K ÷α.

Then ÷ is an AGM contraction if and only if ! is a dependence relation.

This completes their work on providing the correspondence between AGM contrac-

tion and dependence as shown in Figure 3.1b on page 37. In addition, they provide

two more weaker dependence relations which are characterized by a subset of their

axioms. One particularly interesting weaker dependence corresponds to the basic

postulates for AGM contraction: K÷ 1–K÷ 6, as stated in the following theorem.

Theorem 3.9 ([FdCH96]). Let two relations ! and ÷ be such that ÷ satisfies

inclusion, K ÷α ⊆ K, and that Cond! holds: α! β iff β ∈ K and β /∈ K ÷α.

Then ÷ is a basic AGM contraction satisfying K÷ 1–K÷ 6 if and only if ! is a

dependence relation satisfying LEl, LEr, CCIr, Def-K, Cond-ID, Disj and CCDr
0.
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3.3 Conclusion

We saw that Gärdenfors [Gä90] offered a strong intuition for belief change operations:

formulas that are independent of a change should remain intact. We then discussed

how Fariñas and Herzig [FdCH96] formalized Gärdenfors’ intuition, offering an ax-

iomatization of the dependence relation, and establishing the connection between

dependence and belief change. All in all, Fariñas and Herzig’s work is an elegant

addition to the theory of belief change that falls into place with everything else in the

AGM model. This deep integration into the AGM model is what sets apart Fariñas

and Herzig’s work from other works on relevance and dependence in the context of

belief change. Their work is further analyzed in the Related Work section on page 95.



Chapter 4

Belief Change and Base Dependence

4.1 Overview

As discussed in Chapter 3 (particularly in §3.1.2), Gärdenfors states the intuition that

while revising beliefs, formulas independent of a change should remain intact. As this

intuition lays the foundation of the present thesis, once again we quote his statement

below:

Gärdenfors’ Preservation Criterion

“If a belief state is revised by a sentence A, then all sentences in K

that are independent of the validity of A should be retained in the

revised state of belief.” [Gä90]

We also discussed in Chapter 3 that a few years later in order to ground this

intuition, Fariñas and Herzig, in Belief Change and Dependence [FdCH96], define

a dependence relation in a close relationship to belief contraction. More specifically,

they put forward an axiomatization for a dependence relation between logical formulas

with respect to a belief set. Then, based on Gärdenfors’ preservation criterion, they

show how to construct such a dependence relation that satisfies all of their axioms for

dependence, given an AGM contraction operator. Conversely, they show how to use

46



CHAPTER 4. BELIEF CHANGE AND BASE DEPENDENCE 47

a dependence relation that satisfies all their axioms in order to construct an AGM

contraction operator.

Finally it was noted that some of Fariñas and Herzig’s axioms for dependence are

based on intuitions stated by previous authors working on the notion of relevance and

dependence such as Keynes [Key21] and Gärdenfors [Gä78, Gä90]. More specifically,

their dependence axiomatization satisfies both Keynes’ conjunction criterion for de-

pendence, CCD [p. 38], and Gärdenfors’ conjunction criterion for independence, CCI

[p. 39].

4.1.1 Problem Definition: Belief Change and Base Depen-

dence

Similar to Fariñas and Herzig’s work, our work is another attempt to connect notions

of dependence and belief change, but using belief bases instead of belief sets. In

a sense, a dependence relation specifies what formulas are relevant to the formulas

of a belief set, but a base dependence relation specifies what formulas are relevant

to the formulas of a belief base. As discussed in Chapters 1 and 2, belief bases are

advantageous over belief sets in a number of important ways such as being finite in

size, more expressive, and more tolerant of inconsistency. Therefore, using belief bases

can be much more desirable in practice than using belief sets.

As discussed, belief bases are a generalization of belief sets. Hence, it seems natural

to anticipate that base dependence also be a generalization of Fariñas and Herzig’s

dependence relation. Furthermore, base dependence should ideally be a reversible

generalization of dependence. That is, where a base dependence relation corresponds

to a belief set, the base dependence relation should reduce to Fariñas and Herzig’s

dependence. This in turn means that, for closed sets, base dependence corresponds

to AGM belief change because dependence corresponds to AGM belief change.

Finally, one significant achievement in Fariñas and Herzig’s work is in how their

axiomatic characterization of dependence accounts for conjunctions. Notably, their

formalism, either in the form of axioms or derivable statements, adheres to principles

put forward by earlier authors, namely, the conjunction criterion for dependence (CCD
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Base Dependence

〈axioms〉 ?○

〈some base contraction〉 ?○

〈axioms〉 ?○

〈Cond!̄〉 ?○ 〈Cond÷̄〉 ?○

Dependence
Def-K, Cond-ID, Disj,

LEl, LEr, CCIl, CCIr, CCDl
0, CCD

r
0

AGM Contraction
K÷ 1, . . . , K÷ 8

Cond! Cond÷

Figure 4.1: Schematic depiction of the anticipated results: Belief Change and Base
Dependence as a reversible generalization of Belief Change and Dependence, which
was shown in Figure 3.1b on page 37. The unknowns that need to be investigated,
marked with ?○ above, include: axioms of base dependence, conditions Cond!̄ and
Cond÷̄, and an appropriate corresponding base contraction along with its axioms.

[p. 38]) by Keynes [Key21] and the conjunction criterion for independence (CCI [p. 39])

by Gärdenfors [Gä78, Gä90]. Clearly, it is desirable to preserve this property of

dependence while generalizing it to base dependence.

4.1.2 Characteristics of an Anticipated Solution

It is apparent from the outset that a formalization of Gärdenfors’ preservation criterion

that involves belief bases instead of belief sets should still retain the general scheme of

Fariñas and Herzig’s work. That is, we still need an axiomatization of dependence that

is bidirectionally connected to an axiomatization of belief change; the only difference

is that both of these axiomatizations need to be generalized to account for belief bases.

An anticipated generalization of Fariñas and Herzig’s work to account for belief

bases is given in Figure 4.1. The unknowns or the missing building blocks that need

to be investigated to complete the picture are indicated with a circled question mark

?○, which include:
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Base Dependence: the intuition that base dependence is intended to capture; ax-

iomatization of base dependence; it should be a reversible generalization of

dependence.

Base Contraction: some appropriate base contraction to correspond to base de-

pendence; axiomatization of the base contraction used; it should be a reversible

generalization of AGM contraction.

Cond!̄: allowing to construct a base dependence relation, given a base contraction

operator (corresponding to Fariñas and Herzig’s Cond! [p. 57]).

Cond÷̄: allowing to construct a base contraction operator, given a base dependence

relation. (corresponding to Fariñas and Herzig’s Cond÷ [p. 68]).

4.1.3 Organization of the Chapter

As usual, after axiomatization of base dependence, the obtained axioms will collec-

tively define or describe what base dependence is. On the other hand, Cond!̄ will

specify how to construct a base dependence relation by utilizing a given base contrac-

tion operator. Therefore, although it is not set in stone, it seems more natural to first

define base dependence by putting forward an axiomatization for it, and then provide

a method for constructing it. This is exactly how Fariñas and Herzig proceed in their

work.

However, for the case of belief bases, we find it more suitable to start from con-

struction of base dependence and then move on to its axiomatization. On the one

hand, to come up with the right Cond!̄ condition, Gärdenfors’ preservation criterion

serves as the guiding principle. On the other hand, Gärdenfors’ preservation crite-

rion has originally been stated for belief sets. This has made Fariñas and Herzig’s

formalization of it for belief sets, Cond! [p. 57], relatively straightforward; there is

no obvious way to offer an alternative formalization of it other than what they have

suggested. However, when applying Gärdenfors’ preservation criterion for the case

of belief bases, there is more than one way to construct base dependence via base

contraction. As it will be discussed in detail in §4.4 on page 54, one particular kind of
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base dependence constructed in this way is what we call weak base dependence, which

we argue is implausible or of little use in practice. As such, we state the conditions

under which weak base dependence may be avoided, and in order to manage the scope

of research we focus on situations where there exist no weak base dependence. This in

turn affects the axiomatization of base dependence. The set of axioms offered should

be such that they disallow weak base dependence to occur. (Indeed, this turns out to

be achievable by means of one axiom, redundancy [p. 74].)

There appears to be a natural flow for the other notions discussed in the chapter

which more or less predetermines its organization. We start by stating the intuition

behind dependence of logical formulas with respect to a base in §4.2. Next, as dis-

cussed in the previous subsection, there needs to be some appropriate base contraction

to correspond to base dependence. In §4.3, we argue that a suitable candidate for this

purpose can be saturated kernel contraction1.

In §4.4, we put forward ways to construct base dependences using contraction. As

discussed above, we also show how such construction can lead to weak base depen-

dence, which we argue to be undesirable, state how it can be avoided, and assume its

absence for the rest of the chapter. In §4.5, the opposite direction is studied: how to

construct contraction using base dependence. Next, we move on to axiomatization of

base dependence in §4.6, and give a characterization theorem showing the parallelism

of base dependence and base contraction in §4.7. An enhanced version of the char-

acterization theorem is presented in §4.8 that also accounts for conjunctions in base

dependence. Finally, in §4.9, we show that base dependence is a reversible generaliza-

tion of dependence. The last section, §4.10, contains closing and concluding remarks.

All the proofs are moved to Appendix A starting on page 101.

4.2 Base Dependence

Keeping in mind our high-level goal, demonstrated in Figure 4.1, we first aim to

refine our intuitive understanding of what base dependence is meant to represent.

1See §2.9 on page 30 for an introduction to saturated kernel contraction.
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The meaning of “dependence” in base dependence is the same as what Fariñas and

Herzig (and Gärdenfors) studied, which refers to the dependence or relevance of logical

statements towards one another. Using their notation, we read α!β as “β depends

on α”. With more elaboration, we can also read it as “doubting in α leads to doubting

in β.” Syntactically, α and β can be any grammatically correct logical statements:

α, β ∈ L. However, Fariñas and Herzig’s dependence relation ! is associated with

some belief set K ⊆ L, and the interesting cases arise when both formulas are from

the belief set, α, β ∈ K. If either of α or β is not in K, then automatically α /! β.

It is also possible that α, β ∈ K but still α /! β. For example, if either of α or β is

a tautology, then β is independent of α, α /! β. Of course, even if both α and β are

contingent but are simply irrelevant to each other, still we have α /!β. The important

point here is that, in Fariñas and Herzig’s study, dependence can only happen between

(contingent) sentences from K:

If α!β then α ∈ K and β ∈ K.

Using belief base notation, if B is a base for K, K = Cn(B), then we have:

If α!β then α ∈ Cn(B) and β ∈ Cn(B). (4.1)

One way to generalize the dependence relation ! above is to make α or β be

from B instead of Cn(B). Therefore, our sought-for base dependence should somehow

involve formulas explicitly mentioned in a belief base, thus the name.

Using !̄ to denote base dependence, we read α !̄β as “β base-depends on α,”

which is the same as α!β except that α !̄β also implies that α or β or both are

formulas in the base. Now, we need to decide which one of these three alternatives

should be the case.

If α !̄β then α ∈ B and β ∈ Cn(B) (4.2a)

If α !̄β then α ∈ Cn(B) and β ∈ B (4.2b)

If α !̄β then α ∈ B and β ∈ B. (4.2c)

Note that regardless of which alternative we eventually choose to proceed with, all

of them are compatible with our goal that base dependence !̄ should be a reversible
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generalization of dependence !, meaning that the !̄ relation should reduce to ! in

the special case where B = Cn(B). In other words, none of the alternatives (4.2a,b,c)

is inconsistent with (4.1) when B = Cn(B).

The meaning of the base dependence relation !̄ will slightly differ depending on

which alternative we adopt, or which one of α or β we require to be in B:

α ∈ B Requiring that α be in the base in which case α !̄ β means “doubting in

α from the base leads to doubting in β.” That is, if B is contracted by α

which is already in B, then α !̄β holds for all β that are also retracted

as a result of α’s contraction. See also (4.4a).

β ∈ B Requiring that β be in the base in which case α !̄β means “doubting in

α leads to doubting in β from the base.” That is, if B is contracted by

α, then α !̄ β holds for all β that are in B but are retracted from it as a

result of α’s contraction. See also (4.4b).

α, β ∈ B Requiring that both α and β be in the base in which case α !̄ β means

“doubting in α from the base leads to doubting in β also from the base.”

That is, if B is contracted by α which is already in B, then α !̄ β holds

for all β that are in B but are retracted from it as a result of contracting

α. See also (4.4c).

To help make our final choice, we rewrite these options more formally. First, let

us reconsider the dependence relation here. By (4.1), if α!β then β ∈ Cn(B).

However, α! β can only hold for a β that is retracted as a result of α’s contraction.

Thus, instead of just stating that β ∈ Cn(B), we can state more precisely that

β ∈ [Cn(B)\Cn(B÷α)]. That is, we can make (4.1) slightly more specific as follows:

If α!β then α ∈ Cn(B) and β ∈ [Cn(B) \ Cn(B÷α)]. (4.3)

By the same line of argument, and using the meanings of these options as listed
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above, we can also make each of the alternatives (4.2a,b,c) more precise as follows:

If α !̄β then α ∈ B and β ∈ [Cn(B) \ Cn(B÷α)] (if requiring α ∈ B) (4.4a)

If α !̄β then α ∈ Cn(B) and β ∈ [B \B÷α] (if requiring β ∈ B) (4.4b)

If α !̄β then α ∈ B and β ∈ [B \B÷α]. (if requiring α, β ∈ B) (4.4c)

We believe the third alternative (4.4c), requiring both α and β to be in B, appears

to be too strong to try first. The second alternative (4.4b) offers a more interesting

semantics, compared to the first alternative (4.4a). As stated above, the second

alternative means that “doubting in α leads to doubting in β from the base.” It

allows us to study how the statements in the base depend on, or are susceptive to,

changes of other statements. Stated in terms of belief change, it means contracting

B by any formula α from the infinite set Cn(B) can result in removal of β from the

finite set B \B÷α. On the other hand, the first alternative (4.4a) means contracting

B by any formula α from the usually finite set B can result in removal of β from the

infinite set Cn(B) \ Cn(B÷α).

Therefore, we proceed with the second alternative; hence from now on, we assume

α !̄β requires that β ∈ B:

If α !̄β then β ∈ B. (4.5)

It turns out that statement (4.5) does not need to be explicitly specified as an axiom

for base dependence. Rather, it will be implied by other axioms and conditions for

base dependence which will be put forward in the upcoming sections (e.g., Def-B

[p. 73] and Cond!̄ [p. 57]).

It goes without saying that the other two alternatives remain open for further

exploration in future studies. (See open problem in §5.3.1 on page 98.)

4.3 A Candidate for Base Contraction: Saturated

Kernel Contraction

Let us consider Figure 4.1 again to investigate one more of its building blocks. On

the one hand, we need to come up with a generalization of Fariñas and Herzig’s
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dependence relation, which we have called base dependence. On the other hand, this

new base dependence relation needs to correspond to some kind of belief contraction

in a way that fulfills Gärdenfors’ preservation criterion. In this section, we come up

with a candidate to fill this role.

As a starting point, let us consider the well known kernel contraction (see §2.9 on

page 28) devised by Hansson [Han95] because it consists of a very general class of base

contraction operations [Han99, p. 90]. Next, since we would like base dependence to be

a reversible generalization of dependence, its corresponding base contraction should

also be a reversible generalization of AGM contraction. However, kernel contraction

does not meet this criterion. That is, for closed belief bases (i.e., belief sets), kernel

contraction does not reduce to AGM contraction. Nevertheless, this is a property

that a subclass of kernel contraction satisfies, viz., saturated kernel contraction. In

other words, saturated kernel contraction is an interesting generalization of AGM

contraction that also coincides with AGM contraction for belief sets [Han99, p. 92].

Thus, these three classes of contraction operations are subsets of one another:

{AGM Contractions} ⊆ {Saturated Kernel Contractions} ⊆ {Kernel Contractions}.

Therefore, saturated kernel contraction is an interesting candidate to serve as the

base contraction for our formalization of belief change and base dependence. The

next steps are taken in §4.7 on page 79 and §4.8 on page 84 to actually prove that

saturated kernel contraction and base dependence correspond to each other, fulfilling

Gärdenfors’ preservation criterion.

4.4 Constructing Base Dependences Using Contrac-

tion

Once again let us consider Figure 4.1 on page 48. Fariñas and Herzig connect the

notions of dependence and belief contraction using Gärdenfors’ preservation criterion

as a guideline for their formalism. Similarly here, we aim to use the same guideline to

connect base dependence and base contraction while adhering to Fariñas and Herzig’s

work as a special case.
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(a) Closed belief set K with some
of its sentences: α, β, ω, δ, ι and ε.
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(b) Contracting K by α leads to re-
moval of β and δ: α!β and α! δ.
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(e) Intermediary step: contracting B
by α leads to removal of β and ω
from B: α !̄β and α !̄ω.
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(c) Base-generated contraction with
K = Cn(B) produces same results:
α!β and α! δ.
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(f) But ω is still implied by the re-
mainder of B, ω ∈ Cn(B÷α), so it
only weakly depends on α: α !̌ω.

By Cond! [p. 57]: α!α α!β α /!ω α! δ α /! ι α /! ε
By Cond!̄ [p. 57]: α /!̄α α !̄β α !̄ω α /!̄ δ α /!̄ ι α /!̄ ε
By Cond!̂ [p. 58]: α /!̂α α !̂β α /!̂ω α /!̂ δ α /!̂ ι α /!̂ ε
By Cond!̌ [p. 59]: α /!̌α α /!̌β α !̌ω α /!̌ δ α /!̌ ι α /!̌ ε

Figure 4.2: Comparing Dependence and various Base Dependence relations.



CHAPTER 4. BELIEF CHANGE AND BASE DEPENDENCE 56

However, one challenge is that Gärdenfors’ preservation criterion was originally

stated for belief sets, and applying it to belief bases can bring about some complex-

ities which need to be addressed. In particular, we will show in this section that

there is more than one way to construct base dependence via base contraction. One

such construction of base dependence leads to a situation where the dependence of

formulas on one another is in a sense ambiguous: From one perspective there can

exist base dependence between two formulas, but from another perspective there is

no base dependence between the same two formulas. As such, we consider this kind

of dependence to be weak base dependence. We also argue that weak base dependence

is not as practically useful as the other kind of base dependence that persists irrespec-

tive of different perspectives, which we call strong base dependence. Next, in §4.4.2,

we specify the conditions under which weak base dependence may be avoided. By

guaranteeing that such conditions hold, we can focus on situations where there exist

no weak base dependence in order to limit the scope of our research.

Throughout this section, Figure 4.2 will provide a running example to help illus-

trate different existing or new concepts discussed or introduced.

As discussed in Chapter 3, inspired by Gärdenfors’ preservation criterion, Fariñas

and Herzig use the following condition to construct a dependence relation ! via a

given AGM contraction ÷:

α!β iff β ∈ K and β /∈ K ÷α. (Cond! [p. 42])

An example application of Cond! is depicted in Figures 4.2a and 4.2b. Figure

4.2a shows a belief set K along with some arbitrary formulas: α, β, ω, δ, ι and ε. (As

we proceed in this section and different kinds of dependence are differentiated, each of

these formulas will fall into a different subarea.) Figure 4.2b shows how contracting

K by α also results in retraction of some other formulas, namely, β and δ. That is, β

and δ are in K but are not in K ÷α anymore, so we conclude by Cond! that they

depend on α: α!β and α! δ. By the same token, we conclude that the other

named formulas from K do not depend on α: α /!ω, α /! ι and α /! ε. These results

are summarized on the first row of the table at the bottom of Figure 4.2.
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One last comment on Cond! is regarding its representation which can be straight-

forwardly transformed to an equivalent base-generated representation. If B is a base

for K and ÷ is a base-generated contraction, which exists for any given AGM con-

traction [Han93], then Cond! has the following representation:

α!β iff β ∈ Cn(B) and β /∈ Cn(B÷α). (Cond!)

Note that the same name “Cond!” has been reused here since this is only a

notational change. As an example on how this new representation preserves the

original meaning of Cond!, compare Figure 4.2b, depicting the old representation,

with Figure 4.2c, depicting the new one. In both figures the actual dependency

between formulas is the same. As such, from now on, we use this new, base-generated

representation because it makes it easier to compare and contrast Cond! with the

corresponding conditions for belief bases that will be introduced shortly.

4.4.1 Different Kinds of Base Dependence

Base Dependence

As we saw before, particularly in §4.2, we say that if β depends on α, α!β, then β is

retracted as a result of α’s contraction, so β ∈ [Cn(B) \Cn(B÷α)]. For a belief base

oriented formalism of the same concept, we start by a decision we made in §4.2 that

(4.5) should hold: if α !̄β then β ∈ B. Then, it is intuitively appealing to say that

if β base-depends on α, α !̄ β, then β, originally from the base, has been retracted as

a result of α’s contraction, so β ∈ [B \ B÷α]. With this intuition in mind, we offer

the following as a condition to correspond to Fariñas and Herzig’s Cond!:

α !̄β iff β ∈ B and β /∈ B÷α. (Cond!̄)

This basically allows for a straightforward construction of base dependence via a

given base contraction. For example, Figure 4.2d shows a belief base B and its logical

closure Cn(B), and in Figure 4.2e some formulas from base B have been retracted,

namely, β and ω, so that the remaining set, B÷α, does not imply α anymore. By

Cond!̄, then, we conclude that β and ω base-depend on α: α !̄β and α !̄ω. No
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other named formula in these figures have base dependence on α: α /!̄α, α /!̄ δ,

α /!̄ ι and α /!̄ ε. For α, δ and ι, this is because they are not originally in the base

B (even though they are implied by it). The reason for α /!̄ ε is that even though

ε ∈ B, it is not retracted as a result of B’s contraction by α. In all these instances,

Cond!̄ maintains its intuitive appeal as a reasonable formalization of Gärdenfors’

preservation criterion. Nevertheless, as we will see next, this is not the only possible

way to formulate this criterion for belief bases.

Strong Base Dependence

Let us reconsider Cond!̄ to see if we can find any sensible variations of it. Indeed,

another possible formalization of Gärdenfors’ preservation criterion for belief bases

can be proposed as follows:

α !̂β iff β ∈ B and β /∈ Cn(B÷α). (Cond!̂)

This provides a stronger condition for base dependence in the following sense.

Cond!̂ implies that β has strong base dependence on α, α !̂β, when β is originally

in B, but it is not only retracted as a result of contraction by α, β /∈ B÷α, but also

guaranteed not to be implied by the remaining set, β /∈ Cn(B÷α). Note that Cond!̂

does not need to explicitly mention that β /∈ B÷α as it is implied by β /∈ Cn(B÷α),

given that B÷α ⊆ Cn(B÷α) by inclusion property of the Cn operator.

As seen above, in the example illustrated in Figure 4.2e, both β and ω base-depend

on α by Cond!̄: α !̄β and α !̄ω. There remains, however, a subtle difference

between base dependence of β on α and that of ω on α. According to Cond!̂, β has

strong base dependence on α, α !̂ β, and ω does not, α /!̂ω. The difference between β

and ω becomes more evident in Figure 4.2f. When contracting B by α, β is retracted

whether we consider the contraction remaining set, B÷α, or its closure, Cn(B÷α).

This is not the case for ω, which we will study next.

Weak Base Dependence

In the example above, based on Figure 4.2f, we saw that α !̄β and α !̄ω by Cond!̄,

but α !̂β and α /!̂ω by Cond!̂. The base dependence of β on α is persistent, but
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that of ω is not. To further investigate the difference between Cond!̄ and Cond!̂,

observe that ω ∈ B and ω /∈ B÷α, but ω ∈ Cn(B÷α). In other words, ω is originally

in B, and it is then retracted as a result of contracting B by α, ω /∈ B÷α, but later it

is reintroduced as a logical implication of the contracted set, ω ∈ Cn(B÷α). We refer

to this non-persistent base dependence of ω on α as weak base dependence, denoted

by α !̌ω. On the one hand, α !̌ω refers to a kind of base dependence in the sense

that ω is removed from the base as a result of contracting by α. On the other hand, it

does not fully capture the concept of dependence because ω is still implicitly present

in the consequences of the contracted set. Thus even though it is a kind of base

dependence, it is a weak dependence. Basically a base dependence which is not a

strong base dependence is a weak base dependence. The following condition Cond!̌

specifies how to construct weak base dependence via base contraction:

α !̌β iff β ∈ B and β /∈ B÷α and β ∈ Cn(B÷α). (Cond!̌)

4.4.2 Avoiding Weak Base Dependence

Even though such a contraction operation ÷ as in the above example that fulfills

Cond!̌ can theoretically exist, it is intuitively implausible. That is because if ω has

been given up and is not in B÷α while it is still implied by B÷α, why should it

have been excluded in the first place? This exclusion is “unnecessary, and violates the

basic principle of minimality of belief change: nothing should be given up without

reason.” [Han99, p. 90]

Therefore, we aim to find ways to avoid weak base dependence in order to further

narrow the scope of our research here. That is, we focus on the situation where there

is no weak base dependence, α /!̌β, between any given pair of formulas α and β.

Formally, we define absence of weak base dependence as follows.

Definition 4.1 (Absence of Weak Base Dependence). Given relations !̌ and ÷ for

base B such that Cond!̌ holds, we say that:

there is no weak base dependence if and only if α /!̌β for all formulas α and β.
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Redundancy Gives Rise to Weak Base Dependence

In this section we show that there is a powerful correspondence between two seem-

ingly different concepts: weak base dependence and redundancy of belief bases. More

specifically, we will show that weak base dependence can only exist when its corre-

sponding belief base contains some redundant formulas.

To this end, we start by clarifying what redundancy in a base means. For example,

consider the base B = {p, q, p → q}, and a subset of it B′ = {p, p → q}. It is clear

that q /∈ B′, yet it is also easy to see that q ∈ Cn(B′). This happens because indeed

q is redundant in B with respect to B′. The following provides a formal definition to

capture this intuition regarding redundancy.

Definition 4.2 (Redundancy). β is redundant in B with respect to B′ if and only if

B′ ⊆ B and β ∈ B and β /∈ B′ and β ∈ Cn(B′).

As intuitively expected, we then say a base B has redundancy if and only if it

contains at least one redundant formula with respect to some B′ ⊆ B.

As we will see in Corollary 4.4, if B contains no redundancy, then there can be

no weak base dependence for any of its formulas. However, the converse does not

necessarily hold. It is possible for a base B to have redundant statements, but none

of its formulas has weak base dependence on any other formulas.

Indeed, we will show that weak base dependence !̌ is characterized by its cor-

responding base B and its corresponding contraction operator ÷: there needs to be

some redundancy in base B and the corresponding ÷ does not avoid the redundant

statements.

The following theorem shows that weak base dependence exists if and only if some

of the contracted statements, B\B÷α, were redundant with respect to the remaining

statements, B÷α. This means the redundant contracted statements are still implied

by the remaining statements.

Theorem 4.3. Given relations !̌ and ÷ for base B, where inclusion holds, Cond!̌

is equivalent to the following:

α !̌β iff β is redundant in B with respect to B÷α. (4.6)
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[Proof on page 101.]

One immediate and interesting implication of this theorem is that weak base de-

pendence cannot occur in a belief base that contains no redundancy.

Corollary 4.4. Given relations !̌ and ÷ for base B such that Cond!̌ and inclusion

hold, the following also holds:

if there is no redundancy in B, then B contains no weak base dependence.

The proof for this corollary is not provided here as it trivially follows from Theo-

rem 4.3.

To summarize the results so far, let us consider Definition 4.1 for Absence of Weak

Base Dependence. Note that for any β /∈ B, it trivially holds by Cond!̌ [p. 59] that

α /!̌β for all α. More interesting instances of absence of weak base dependence can

occur when β ∈ B. It is a property of the belief base B and/or the contraction

operator ÷ used that determines whether any weak base dependence can exist. By

Corollary 4.4, if base B does not contain any redundancy, then there will be no weak

base dependence involving any of its formulas. Also by Theorem 4.3, neither will

there be any weak base dependence via a contraction operation ÷ using Cond!̌ that

can properly handle any redundancy that may exist in the base B. Next, we will

determine what is the exact contraction property that needs to hold to avoid weak

base dependence.

How To Avoid Weak Base Dependence

So far we have seen that avoiding weak base dependence may be achieved through

utilizing some properties of the contraction operator ÷ used to construct it. Here we

further explore to identify such property(ies).

As it was demonstrated in Theorem 4.3, weak base dependence can occur only

when there is redundancy in a base with respect to the remaining formulas of a

contraction:

α !̌β iff β is redundant in B with respect to B÷α. (4.6)
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Thus in order for β not to have weak base dependence on α, α /!̌β, we can simply

negate both sides of (4.6):

α /!̌β iff β is not redundant in B with respect to B÷α.

Replacing the right hand side using Definition 4.2 for redundancy, we get:

α /!̌β iff ¬ [B÷α ⊆ B and β ∈ B and β /∈ B÷α and β ∈ Cn(B÷α)],

or

α /!̌β iff [B÷α # B or β /∈ B or β ∈ B÷α or β /∈ Cn(B÷α)].

The first disjunct B÷α # B should be ignored as it violates inclusion, B÷α ⊆ B,

which is an indispensable property of any contraction operation. When the second

disjunct, β /∈ B, holds, no kind of base dependence can occur, including weak base

dependence α /!̌β. A much more interesting scenario is when β ∈ B. This leaves

only the last two disjuncts to determine whether α /!̌β, namely, β ∈ B÷α or β /∈

Cn(B÷α). To summarize, the sufficient and necessary condition for β not to have

weak base dependence on α, α /!̌β, is as follows:

If β ∈ B then β ∈ B÷α or β /∈ Cn(B÷α),

or

If β ∈ B and β ∈ Cn(B÷α) then β ∈ B÷α.

Using set notation to represent this requirement for α /!̌β reveals that it can be

guaranteed to hold for any contraction operator that satisfies relative closure:

B ∩ Cn(B÷α) ⊆ B÷α. (relative closure [p. 27])

The following theorem formally identifies relative closure as the condition under

which there does not exist weak base dependence between any given pair of sentences.

Theorem 4.5. Given relations !̌ and ÷ for base B such that Cond!̌ holds,

there is no weak base dependence if and only if relative closure holds for ÷.

[Proof on page 102.]

Thus, avoidance of weak base dependence can be achieved solely based on the

properties of the corresponding contraction operation. A base dependence constructed
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using a contraction operator that satisfies relative closure is guaranteed to avoid weak

base dependence altogether.

Interestingly, this result further supports that saturated kernel contraction is a

suitable candidate as base contraction to correspond to base dependence, as it was

suggested in §4.3 on page 53. A saturated kernel contraction is a kernel contraction

that satisfies relative closure.

4.4.3 Connections Among (Base) Dependence Constructions

The fact that we can avoid weak base dependence turns out to be quite helpful

in our formalization of base dependence. That is because, as we will show in this

section, after guaranteeing to avoid weak base dependence, base dependence and

strong base dependence become equivalent: α !̄β iff α !̂ β for all formulas α and β

by Theorem 4.7. This allows us not to worry about weak and strong base dependence,

and we can consider only base dependence in our formalism.

We start by showing that a base dependence between two formulas, α !̄β, either

is a strong base dependence, α !̂β, or is a weak base dependence, α !̌ β.

Theorem 4.6. Given relations !̄, !̂, !̌ and ÷ for base B such that Cond!̄, Cond!̂

and Cond!̌ hold, the following also holds:

α !̄β iff α !̂ β or α !̌β

[Proof on page 103.]

On a side note, it is easy enough to show that, by conditions Cond!̂ and Cond!̌,

strong and weak base dependence are mutually exclusive:

¬[α !̂ β and α !̌β].

Thus, the right hand side of the equivalence in Theorem 4.6 above can be shown

to involve an exclusive-or operation (instead of its current inclusive-or):

α !̄β iff ([α !̂β or α !̌β] and ¬[α !̂β and α !̌β]).
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However, it turns out that for our purposes here, it suffices to go with the sim-

pler equivalence: α !̄β iff α !̂β or α !̌β, which was already established in Theo-

rem 4.6.

Next, we show that base dependence and strong base dependence become equiv-

alent when there is no weak base dependence, which is guaranteed in the following

theorem by requiring that relative closure be satisfied. (See Theorem 4.5.)

Theorem 4.7. Given relations !̄, !̂, !̌ and ÷ for base B such that Cond!̄, Cond!̂

and Cond!̌ hold and relative closure is satisfied, the base dependence relation !̄ and

the strong base dependence relation !̂ are equivalent:

α !̄β iff α !̂ β.

[Proof on page 104.]

Therefore, from now on, we focus on base dependence and put aside the concepts

of weak and strong base dependence altogether. All that is required is that when using

a contraction operator ÷ to construct a base dependence relation, ÷ should satisfy

relative closure. Then, no weak base dependence can exist by Theorem 4.5, and base

dependence and strong base dependence become identical by Theorem 4.7.

Dependence and Base Dependence

The final theorems in this section establish the connection between dependence and

base dependence. We start with a lemma which offers a useful equivalent form for

relative closure.

Lemma 4.8. An operator ÷ on base B satisfies relative closure if and only if it satisfies

the following:

If β ∈ B then β ∈ B÷α iff β ∈ Cn(B÷α). (4.7)

[Proof on page 104.]

The following theorem shows that, in the presence of relative closure or equivalently

in the absence of weak base dependence, base dependence is equivalent to dependence

for the formulas in the base.
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Theorem 4.9. Given relations !̄, ! and ÷ for base B such that Cond!̄ and Cond!

hold and relative closure is satisfied, the following also holds:

α !̄β iff β ∈ B and α! β.

[Proof on page 105.]

This result makes it clear that when B is logically closed, B = Cn(B), base

dependence and dependence become equivalent. That is because, as given in the

following theorem, B being closed means that β ∈ B in the expression above can be

replaced with β ∈ Cn(B): α !̄β iff β ∈ Cn(B) and α!β. Then, as β ∈ Cn(B) is

already implied by α!β, it may be omitted to obtain: α !̄β iff α!β.

Theorem 4.10. Given relations !̄, ! and ÷ for base B such that Cond!̄ and

Cond! hold and closure is satisfied, in the special case where B is logically closed, !̄

reduces to !:

α !̄β iff α! β.

[Proof on page 106.]

Another way to demonstrate the fact that, for logically closed sets, base depen-

dence and dependence become identical relations is to show that the conditions that

make their construction possible, namely, Cond!̄ and Cond!, become identical. This

is depicted in Figure 4.3 on the following page.

4.5 Constructing Contraction UsingBase Dependence

We first provide a simplifying notation )̄ to help represent tautologies present in the

base. Although it is not necessary to introduce this notation, it will prove to be quite

effective in simplifying representation of the axioms and shortening some of the proofs

(by quite a few steps at times).

Definition 4.11. Given a base B and an entailment relation ), the base entailment

relation )̄ is defined as follows: A )̄ β if and only if β ∈ B and A ) β.



CHAPTER 4. BELIEF CHANGE AND BASE DEPENDENCE 66

B

C
n
(B

)

B÷α

Cn(B÷α)

α

β

(a) Base dependence for base B,
which is generally not closed

if B = Cn(B)
−−−−−−−−−−→

B
=

C
n
(B

)

B÷α

α

β

(b) When B is closed though, base
dependence reduces to dependence

Figure 4.3: Dependence is a special case of base dependence

A useful special case is when A = ∅. For example, )̄ β means β is a tautology

in the base: β ∈ B and ) β. One important usage is to help handling tautologies

in base dependence axioms. Such axioms are primarily concerned with contingencies,

but they have to also deal with tautologies, usually as exceptional cases.

As a side note, a more general usage of Definition 4.11 could be in a study of

redundancy in belief bases: A )̄ β signifies that β is both derived and already present

in the base. One special case of such a situation is when A is the empty set ∅, so

we have )̄ β which we saw above. From this perspective, β is a tautology, which is

redundantly in the base too. However, since we are deliberately avoiding weak base

dependence, which is closely related to redundancy in the base (see §4.4.2 on page 59),

the general form of base entailment, A )̄ β, is not as useful as the special case, )̄ β,

for our work here.

4.5.1 Using Base Dependence to Reconstruct Belief Bases

As we saw in Chapter 3, there is a belief set K associated with a dependence relation

!. Fariñas and Herzig provide the following definition to recreate a belief set K!

given a dependence ! relation:

K!

def
= {α | ) α or α!β for some β}.
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That is, if α is a tautology, it is trivially part of K!. On the other hand, α is

a contingent truth if there is a sentence β in K! such that it is removed once α is

contracted.

One small note is that for their work we could swap the role of α and β in the

definition and obtain the same results (but this will be important in the case of base

dependence):

K!

def
= {β | ) β or α!β for some α}.

Similarly, a base dependence relation !̄ is associated with a belief base B. Thus,

it should be possible to recreate the associated belief base B via a given !̄ relation:

B!̄ = {β | α !̄ β for some α} .

Note, however, that one caveat is that B!̄ will not contain any tautologies that may

be in B. Still, we can say that B and B!̄ are equivalent for most practical purposes.

Also, their closure is obviously equivalent:

Cn(B!̄) = Cn(B).

If in addition to the base dependence relation !̄, we are also given )̄ that identifies

tautologies in the base, then we can have the following, which guarantees that B!̄ =

B:

B!̄ =
{

β | )̄ β or α !̄ β for some α
}

To summarize, when B is not given and it needs to be created, the following

scenarios are possible:

• Only the base dependence relation is given !̄. This is the worst case scenario in

which B!̄ will not contain any tautologies that might have been in B. However,

if there were no tautologies in B to begin with, then B!̄ = B.

• In addition to !̄, the set of tautologies in the base {β | )̄ β} is also given. In

this scenario, it is possible to find the exact original base; i.e., B!̄ = B.

In the rest of this work, we assume B!̄ = B. In the worst case scenario, there are

tautologies in B and only !̄ is given, so the tautologies in B are not present in B!̄.
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4.5.2 Using Base Dependence to Construct Contraction Op-

erators

Now for Cond÷̄, again we start with Fariñas and Herzig’s Cond÷:

β ∈ K ÷α iff either ) β or β! β and α /!β. (Cond÷ [p. 42])

As in the case of Cond!, we present a straightforward transformation to the

equivalent base-generated operation. Again, we reuse the equation’s name, “Cond÷”:

β ∈ Cn(B÷α) iff either ) β or β!β and α /! β. (Cond÷)

Cond÷ says β ∈ Cn(B÷α) means either that β is a tautology, or that β is

a contingent truth, β!β, but contraction by α does not lead to retraction of β,

meaning α /!β.

To adapt this for belief bases, we need something along the line of the following:

β ∈ B÷α means either that β is a tautology in B, )̄ β, or that β is a contingent

truth in B, β !̄β, but contraction by α does not lead to retraction of β from B,

α /!̄ β:

β ∈ B÷α iff either [β ∈ B and ) β] or [β !̄β and α /!̄ β]. (4.8)

Here, Definition 4.11 for )̄ helps to simplify the condition 4.8 into the following

form (which resembles the original condition Cond÷ for closed sets more closely):

β ∈ B÷α iff either )̄ β or β !̄β and α /!̄ β. (Cond÷̄)

As it is apparent and will be discussed in depth in the upcoming sections, condition

Cond÷̄ is a natural counterpart of the condition Cond!̄ [p. 57]. The former allows

for the construction of a contraction operator given a base dependence relation, and

the latter allows for the opposite, construction of a base dependence relation given a

contraction operator.

Now, given that Cond÷̄ corresponds to Cond!̄, two other variations of it come to

mind: one to correspond to Cond!̂ for strong base dependence !̂, and another to

correspond to Cond!̌ for weak base dependence !̌. Fortunately, however, neither of
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these two conditions would be necessary here as we are avoiding weak base dependence

in our study, as discussed in §4.4.2 on page 59. Also base dependence and strong base

dependence become equivalent as a consequence of avoiding weak base dependence

by Theorem 4.7. This means that we can content ourselves with Cond÷̄ as the only

condition needed in our formalism, and we need not investigate further to come up

with conditions that could be labeled as Cond÷̂ and Cond÷̌ to correspond to conditions

Cond!̂ and Cond!̌, respectively.

Thus, to construct contractions using base dependence we only need Cond÷̄, just

as to construct base dependence using contraction we will only need Cond!̄.

4.6 Base Dependence Postulates

A goal of this work is to provide an axiomatization of base dependence. As illustrated

in our guiding Figure 4.1 on page 48, we also expect it to be a generalization of

Fariñas and Herzig’s axiomatization of dependence. A summary of their axioms and

derivable principles is provided on page 41. It turns out that some of base dependence

axioms closely resemble dependence axioms (e.g. Cond-IDB), and some remain valid

and derivable but are no longer needed as axioms (e.g. DisjB). Yet, there are also some

other axioms offered for base dependence (e.g. redundancy [p. 74]) that are not similar

to any of the dependence axioms. The relationship between Fariñas and Herzig’s

axioms of dependence and the axioms of base dependence offered here is studied in

§4.9 on page 87.

4.6.1 Basic Postulates

We start this section by offering a basic set of axioms for base dependence that does not

make any explicit reference to base dependence on conjunctive statements. Next we

enhance this axiomatization by further specifying characteristics of base dependence

on conjunctions.

We begin with base dependence axioms closely resembling Fariñas and Herzig’s

dependence axioms. Let us consider dependence axiom Cond-ID [p. 40]:
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If α!β then α!α (Cond-ID [p. 40])

If there is any formula β that depends on α then α depends on itself. Interpreting

this axiom in light of Gärdenfors’ preservation criterion, it means that the fact that

removal of α results in removal of any formula is sufficient to show that it is possible to

remove α. Notice that there are two scenarios where it is not possible to contract by

α. One is when α is not in the belief set to begin with, α /∈ Cn(B). Then retracting α

is impossible or even meaningless and no formula can depend on it, α /! β for all β,

including itself α /!α. The second scenario is when α is in the belief set but it is a

tautology. Then it cannot be contracted from the belief set, and again no formula

can depend on it, α /! β for all β, not even itself α /!α. The contrapositive reading

of Cond-ID could be helpful here. If α is not contractable at all α /!α, then no β is

removed as a result of its (impossible) contraction, α /!β.

One observation here is that for dependence, which focuses only on the closed

belief sets and both α, β ∈ Cn(B), we can offer a dual axiom for Cond-ID that talks

about self-dependence of β instead of α:

If α!β then β!β (Cond-IDl)

Let us consider the contrapositive: if β /!β then α /!β. Again β /!β means that

it is impossible to contract β either because it is not in the belief set β /∈ Cn(B) to

begin with or because β is a tautology. In that case, contracting by any α will never

result in retraction of β, α /!β for all α.

Because for dependence both α, β ∈ Cn(B), it should be hypothetically possible to

put forward other alternatives to Fariñas and Herzig’s axiomatization of dependence

where Cond-ID is substituted with Cond-IDl. In the case of base dependence, though,

this symmetry is absent because α !̄β means that α ∈ Cn(B) but β ∈ B. As such,

there is no straightforward counterpart to Cond-ID for base dependence. In particular,

the following is wrong :

If α !̄β then α !̄α.
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This is incorrect simply because α !̄α requires that α ∈ B, but what α !̄ β guaran-

tees is only α ∈ Cn(B). All that we could conclude from α !̄β for α is α!α:

If α !̄β then α!α.

On the contrary, it is quite straightforward to suggest a base dependence counter-

part to Cond-IDl:

If α !̄β then β !̄β. (Cond-IDB)

This can be interpreted as follows. If retraction of some formula α results in

retraction of β from the base B, then first obviously β must be originally in B and

second it cannot be a tautology. If β is a contingent formula in the base B, then it

can in principle be contracted from the base, so β !̄β. This confirms the expected

result that a formula in a base is either tautological or contingent: for all β ∈ B either

)̄ β or β !̄β. Cond-IDB is boxed above to indicate that it turns out to be one of

the axioms that we put forward for base dependence.

Let us now consider another one of Fariñas and Herzig’s axioms of dependence:

If ) α ∨ β then α /! β. (Disj [p. 40])

The base dependence counterpart of the above axiom is as follows:

If ) α ∨ β then α /!̄β. (DisjB)

For an interpretation of DisjB (or Disj), let us consider Gärdenfors’ preservation

criterion once more. No set can be contracted by tautologies, and thus no formulas

are retracted because of contraction by tautologies. Therefore, β cannot base-depend

on α, α /!̄β, if either one of them is a tautology. Tautologies are always independent

of other formulas and no other formulas depend on them. Furthermore, contraction

of a formula α does not retract its negation ¬α, if present. Thus, a formula and its

negation are always independent. This is also captured by DisjB (and Disj): since

) α ∨ ¬α, we have α /!̄¬α.

It turns out that we do not need DisjB as an axiom because it will be derivable, as

demonstrated in Theorem 4.13 on page 74, from another axiom that we will introduce

shortly, viz., contribution [p. 74].
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We now consider Def-K as the next Fariñas and Herzig’s axiom of dependence:

α ∈ K iff either ) α or α! β for some β. (Def-K [p. 40])

We start with a straightforward notational change for Def-K using belief base

notation, α ∈ Cn(B), instead of belief set notation, α ∈ K. Because this is only a

change in notation, we reuse the same name, Def-K:

α ∈ Cn(B) iff either ) α or α!β for some β (Def-K)

The base dependence counterpart of Def-K closely resembles it:

α ∈ Cn(B) iff either ) α or α !̄β for some β. (Def-BCn)

If α is a tautology, then it should be in the consequences of B, α ∈ Cn(B). Also, if

contracting by α leads to retracting some β from the base, α !̄β, then α ∈ Cn(B)

again. Otherwise its contraction would have no affect on B. Conversely, if α ∈ Cn(B),

then either α is a tautology or it is a contingency which can be contracted and its

contraction will retract some formula from B.

However, even though Def-BCn may be a sensible axiom, it does not turn out to

be a sufficiently informative one. In this study, which focuses on belief bases, we are

interested in the membership in the base, β ∈ B, more than the membership in the

closure of the base, α ∈ Cn(B). Thus, we would like to come up with an axiom in

terms of β ∈ B to correspond to Def-K which is stated in terms of α ∈ K.

In order to achieve this, the first observation is that there is a symmetry issue

here resembling the case of Cond-ID and Cond-IDl above. Similarly, here we start by

offering a symmetrical counterpart to Def-K for belief sets:

β ∈ K iff either ) β or α! β for some α (Def-K l)

A formula β ∈ K means that β is either a tautology or a contingency, in which

case it could be retracted as a result of contraction of K by some α (where α could

be β). It is now much easier to offer a base dependence axiom as a counterpart to

Def-K l:

β ∈ B iff either [β ∈ B and ) β] or α !̄β for some α. (4.9)
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To say that β is in the base, β ∈ B, is equivalent to saying either that β is a

tautology in the base, )̄ β, or that it is a contingency in the base, which would be

retracted as a result of contraction of B by some α (where α could be β). As one

last notational simplification step, we substitute [β ∈ B and ) β] with )̄ β using

Definition 4.11 to obtain the following:

β ∈ B iff either )̄ β or α !̄ β for some α. (Def-B)

Before carrying on, one last note about Def-B is that it makes the important

connection between the base B and the base dependence relation !̄. As we will see

later on in this section, there are other axioms making reference to B or a subset

B′ ⊆ B, but every reference to B in those axioms could be substituted using Def-B.

Thus, Def-B can be thought of as the only axiom containing irreplaceable explicit

reference to the base B.

The next dependence axiom by Fariñas and Herzig we consider is LEl:

If α ↔ β and α! δ then β! δ. (LEl [p. 39])

The base dependence counterpart of this axiom is as follows:

If α ↔ β and α !̄ δ then β !̄ δ. (LEB)

Notice that, similar to LEl, LEB has the following equivalent form:

If α ↔ β then α !̄ δ iff β !̄ δ.

When α and β are equivalent, α ↔ β, whenever contracting by α leads to retrac-

tion of δ from the base, we can also say that contracting by β also leads to retraction

of δ from the base, and vice versa. This makes sense not only for α and β, but also for

the formulas that are true just because α or β are true. For example, assume that α∨θ

holds just because α holds. Then we can say: If α ↔ β then (α∨ θ) !̄ δ iff β !̄ δ. To

capture all such cases we propose the following:

If α ∈ Cn(B′) iff β ∈ Cn(B′) for all B′ ⊆ B then α !̄ δ iff β !̄ δ

(conjugation)

The following theorem shows that conjugation implies LEB.
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Theorem 4.12. If a relation !̄ satisfies conjugation, then it also satisfies LEB.

[Proof on page 107.]

The next base dependence axiom we offer, contribution, is not inspired by axioms

of dependence, so it does not directly correspond to any of them.

If α !̄β then α /∈ Cn(B′) and α ∈ Cn(B′ ∪ {β}) for some B′ ⊆ B

(contribution)

This axiom says that β must somehow contribute to the justification of α if β

base-depends on α, or, in other words, if contracting B by α requires retracting β

from the base. When discussing DisjB [p. 71] earlier in this section, we said that it is

possible to show that contribution implies DisjB. The following theorem does exactly

that.

Theorem 4.13. If a relation !̄ satisfies contribution, then it also satisfies DisjB.

[Proof on page 108.]

The following is the next base dependence axiom we study:

If α ∈ Cn(B′) and B′ ⊆ B then either ) α or α !̄β for some β ∈ B′

(modularity)

Consider a subset B′ ⊆ B that implies α, α ∈ Cn(B′). This could be because

α is a tautology, but when /) α, there is some β from the same subset B′ that base-

depends on α. Thus, this axiom allows considering base dependence of formulas in

specific modules or compartments in B.

The last basic axiom for base dependence is redundancy:

If β ∈ Cn(B′) and B′ ⊆ B then either α /!̄β or α !̄ δ for some δ ∈ B′

(redundancy)

We have seen earlier that by Theorem 4.3 on page 60, the undesired weak base

dependence can only arise from a redundant base B. This axiom ensures a proper
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handling of any redundancy that might exist in B. First notice that redundancy

holds vacuously when α /!̄β. This may be easier to see if we consider the following

equivalent form of it:

If β ∈ Cn(B′) and B′ ⊆ B and α !̄ β then α !̄ δ for some δ ∈ B′.

To consider the principal case of redundancy, assume that: β ∈ Cn(B′) and B′ ⊆ B

and α !̄ β. When β ∈ B′, α !̄ δ for some δ ∈ B′ trivially holds because then δ could

be β which means α !̄ β, which is assumed. When β /∈ B′, there is some redundancy

in the base B because on the one hand β ∈ B (as α !̄β), and on the other hand

there is B′ ⊆ B such that β /∈ B′ but β ∈ Cn(B′). Thus, in order for α !̄β to hold,

α !̄ δ should also hold at least for one formula δ ∈ B′.

Example 4.14. The following are two examples of !̄ violating redundancy:

• Assume B = {p, q, p∨q}, p !̄ p, p /!̄ q and p !̄(p∨q). Letting B′ = {q}, we have

p∨q ∈ Cn(B′) and B′ ⊆ B. Since p !̄(p∨q) by assumption, p !̄ δ for some δ ∈

B′ by redundancy. Yet, there is no δ ∈ B′ such that p !̄ δ.

• Assume B = {p p ↔ q, p ∨ q}, (p ∧ q) !̄(p ∨ q) and (p ∧ q) /!̄ p. Let B′ = {p}.

Thus, p ∨ q ∈ Cn(B′) and B′ ⊆ B hold. Again, given that (p ∧ q) !̄(p ∨ q),

(p ∧ q) !̄ δ for some δ ∈ B′ by redundancy, but no such δ ∈ B′ exists.

Summary

We have put forward a collection of basic properties for base dependence in this

section. The definition below states that any relation that satisfies the following six

basic axioms is a base dependence relation.

Definition 4.15. A relation !̄ is a base dependence if and only if it satisfies the

axioms Def-B, Cond-IDB, conjugation, contribution, modularity and redundancy.

Notice that so far we have not specified any criteria on how to handle conjunctions,

which we will do next.
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4.6.2 Conjunction Criterion of Dependence Factoring

As we have seen in §3.2.2 on page 38, Keynes in [Key21] holds that there is an intuitive

relationship between relevance (dependence) and logical conjunction that should stay

valid for any reasonable definition of relevance. Fariñas and Herzig, calling it the

Conjunction Criterion for Dependence, CCD, formulate it as follows:

If δ depends on α and δ depends on β then δ depends on α ∧ β. (CCD)

Using the ! notation, they then formalize CCD as:

If α! δ and β! δ then α ∧ β! δ (CCDl [p. 38])

Likewise, using the base dependence !̄ notation, we have:

If α !̄ δ and β !̄ δ then α ∧ β !̄ δ. (CCDB)

Moreover, Gärdenfors in [Gä78] puts forward another principle that he believes

should hold for any relevance relation, the Conjunction Criterion for Independence,

CCI:

If δ is independent of α and δ is independent of β

then δ is independent of α ∧ β.
(CCI)

As discussed, Fariñas and Herzig formalize CCI as follows:

If α ∧ β! δ then α! δ or β! δ (CCIl [p. 39])

Likewise, we have:

If α ∧ β !̄ δ then α !̄ δ or β !̄ δ. (CCIB)

CCD and CCI state intuitions regarding dependence on conjunctions in the form of

conditional statements. One wonders whether it is possible to capture such intuitions

regarding dependence on conjunctions using equivalences. Such a statement would

have to capture different cases. That is, for any reasonable dependence relation, at

least one of the following statements hold:
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Case 1: The set of formulas that depend on α ∧ β is the same as the set of those

that depend on α

Case 2: The set of formulas that depend on α ∧ β is the same as the set of those

that depend on β

Case 3: The set of formulas that depend on α ∧ β is the same as the set of those

that depend on α or depend on β

Using set notation, these cases can be stated as follows:

Either {δ | α ∧ β !̄ δ} = {δ | α !̄ δ}, or

{δ | α ∧ β !̄ δ} = {δ | β !̄ δ}, or

{δ | α ∧ β !̄ δ} = {δ | α !̄ δ} ∪ {δ | β !̄ δ}

(4.10)

or equivalently,

Either [α ∧ β !̄ δ1 iff α !̄ δ1], or

[α ∧ β !̄ δ2 iff β !̄ δ2], or

[α ∧ β !̄ δ3 iff α !̄ δ3 or β !̄ δ3].

(CCDFB)

Each line of CCDFB needs to use a unique variable name δ1, δ2 and δ3 because, in

each line of (4.10), {δ | α ∧ β !̄ δ} refers to a different set.

CCDFB is a formalization of the intuition expressed in the three cases above,

which we restate more concisely as follows, calling it the Conjunction Criterion of

Dependence Factoring, CCDF:

The set of all formulas that depend on α ∧ β

is the same as the set of all formulas that

depend on α, or on β, or on either of them.

(CCDF)

Indeed, CCDF may be considered as a third maxim for dependence of conjunctions in

addition to Keynes’ CCD and Gärdenfors’ CCI.

As a side note, although it seems that the third clause of CCDFB should be redun-

dant, in light of the first two, in fact it isn’t.
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Example 4.16. Assume α, β, θ1, θ2 and θ3 are formulas and !̄ is a relation such

that

α ∧ β !̄ θ1 α !̄ θ1 β /!̄ θ1

α ∧ β !̄ θ2 α /!̄ θ2 β !̄ θ2

α ∧ β !̄ θ3 α !̄ θ3 β !̄ θ3.

Clearly, !̄ violates the first two clauses of CCDFB , but not the third one. This may

be easier to see using (4.10). Note that {δ | α ∧ β !̄ δ} = {θ1, θ2, θ3}, {δ | α !̄ δ} =

{θ1, θ3} and {δ | β !̄ δ} = {θ2, θ3}, which satisfy the third clause of (4.10) but not

the first two.

As a second note, CCDFB is only one way of formalizing CCDF, using base de-

pendence relation; of course, it can also be formalized using Fariñas and Herzig’s

dependence relation as shown below, which we call CCDFl:

Either [α ∧ β! δ1 iff α! δ1], or

[α ∧ β! δ2 iff β! δ2], or

[α ∧ β! δ3 iff α! δ3 or β! δ3].

(CCDFl)

Finally, an important observation here is that CCDFB is a more specific criterion

than CCDB and CCIB, and it implies both of them, as stated in the following theorem.

Theorem 4.17. If a relation !̄ satisfies CCDFB, then it also satisfies both CCDB

and CCIB:

If α !̄ δ and β !̄ δ then α ∧ β !̄ δ (CCDB)

If α ∧ β !̄ δ then α !̄ δ or β !̄ δ (CCIB)

[Proof on page 109.]

Notice that although Theorem 4.17 is stated in terms of base dependence !̄, it

does not have to be. Indeed, the theorem (and its proof) may straightforwardly be

restated in terms of CCDF that implies both CCD and CCI. As such, the dependence

version of CCDF, i.e. CCDFl, also implies both Fariñas and Herzig’s CCDl and CCIl.

The following are all the conjunction criteria and related axioms we have discussed:
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Conjunction Criterion Dependence Axioms Base Dependence Axioms

CCD (Keynes) CCDl (Fariñas and Herzig) CCDB

CCI (Gärdenfors) CCIl (Fariñas and Herzig) CCIB

CCDF CCDFl CCDFB

Also, please see §5.1 on page 93 for a listing of all base dependence axioms and

related conditions.

4.7 Saturated Kernel Contraction and Base Depen-

dence

4.7.1 Overview

Given our high-level goal depicted in Figure 4.1 on page 48, we need a suitable base

contraction that corresponds to our base dependence relation, for which saturated

kernel contraction was proposed as a candidate in §4.3. One interesting property

of saturated kernel contraction is that it is a reversible generalization of AGM con-

traction: it can handle closed and non-closed belief bases, and it reduces to AGM

contraction in the special case when the belief base is closed. Moreover, it satisfies

relative closure which is important to avoid weak base dependence. (See Theorem 4.5

on page 62.)

Now, we need to actually prove the correspondence between saturated kernel con-

traction and base dependence. One note, however, is that standard saturated kernel

contraction has no axioms for conjunctions, and such axioms need to be added as

necessary. To make this task more manageable, we aim to achieve our final goal in

two steps. In this section, we prove the correspondence between saturated kernel

contraction and base dependence without considering any axioms for conjunctions.

This step is illustrated in Figure 4.4a on page 83. In contrast, Figure 4.4b shows

the next step explored in §4.8 where conjunction axioms are augmented both to base

dependence and to saturated kernel contraction.

Thus, for this section, to prove the correspondence between base dependence and
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saturated kernel contraction with no axioms for conjunctions, we need to show that un-

der the right conditions (viz., Cond!̄ and inclusion by Characterization Theorem 4.23

on page 83) the following two sets of axioms are equivalent:

Saturated Kernel Contraction Axioms:

success, inclusion, core-retainment, uniformity and relative closure. (See §2.9.)

Base Dependence Axioms:

Def-B, Cond-IDB, conjugation, contribution, modularity and redundancy. (See §4.6.)

4.7.2 From Base Dependence to Contraction

To construct a contraction operator ÷, assume all the following are present:

• A base dependence relation !̄ (Definition 4.15).

• A list of tautologies present in the base T ⊆ B where T = {β | )̄ β}.

• The Cond÷̄:

β ∈ B÷α iff either )̄ β or β !̄β and α /!̄ β. (Cond÷̄ [p. 68])

We do not need to assume that B is provided because it can be obtained using !̄

and )̄ , as discussed in §4.5.1 on page 66.

To show that the obtained contraction operator ÷ is indeed a saturated kernel

contraction, in Theorem 4.19, we show that all of the axioms of saturated kernel

contraction hold.

Before that though we need one small and handy lemma, basically showing that

α /!̄ β for all β ∈ B÷α.

This can equivalently be expressed as, if β ∈ B÷α then α /!̄β, meaning that if

β is not affected by the contraction of α then it does not depend on it. Indeed, it is

a rather trivial principle, specially in the presence of Cond!̄ [p. 57]. However, it may

be less obvious to see how this also holds when Cond÷̄ is given instead of Cond!̄,

which will be the case in Theorem 4.19. The following lemma is meant to help with

that.
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Lemma 4.18. Given relations !̄ and ÷ for base B such that Cond÷̄ holds and

contribution is satisfied, it also holds that α /!̄ β for all β ∈ B÷α.

[Proof on page 110.]

Theorem 4.19 (Base Dependence to Contraction). Given relations !̄ and ÷ for base

B such that Cond÷̄ holds, if !̄ is a base dependence, then ÷ is a saturated kernel

contraction.

[Proof on page 110.]

4.7.3 From Contraction to Base Dependence

This section shows how to obtain a base dependence !̄ relation given a saturated

kernel contraction operator ÷. We assume all the following are present:

• A saturated kernel contraction operator ÷.

• The Cond!̄:

α !̄β iff β ∈ B and β /∈ B÷α. (Cond!̄ [p. 57])

Theorem 4.20 states that, given the above assumptions, all axioms of base depen-

dence !̄ relation are satisfied.

Theorem 4.20 (Contraction to Base Dependence). Given relations !̄ and ÷ for

base B such that Cond!̄ holds, if ÷ is a saturated kernel contraction, then !̄ is a

base dependence.

[Proof on page 115.]

4.7.4 Axiomatic Characterization

We now need an axiomatic characterization theorem to establish that there is a mutual

relationship between base dependence and belief contraction. We would like our

characterization theorem to state something along the line of the following:

Let the relations !̄ and ÷ for base B be such that Cond!̄ holds. Then,

÷ is a saturated kernel contraction if and only if !̄ is a base dependence.
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Unfortunately, just as it was the case for Fariñas and Herzig (see Remark 3.7 on

page 43), there remains one obstacle to establish an axiomatic characterization in the

above-mentioned simple form. The left to right direction has already been established

in Theorem 4.20. The problem surfaces when attempting to achieve the right to left

direction. That is, it is not possible to say that ÷ is a saturated kernel contraction

if !̄ is a base dependence where ÷ and !̄ are such that Cond!̄ holds. To be able

to say this we need to also assume that ÷ satisfies inclusion, B÷α ⊆ B. Thus, in

the following, we adopt the Fariñas and Herzig assumption in Remark 3.7 on page 43

with slight modifications to make it suitable for base dependence:

Remark 4.21. In order to establish an axiomatic characterization based on Cond!̄,

it is assumed that the relation ÷ satisfies inclusion, B÷α ⊆ B.

The rationale for this assumption is as follows. When constructing the !̄ relation

using a contraction operation via Cond!̄, the set of all β such that α !̄β is equal to

those β ∈ B and β /∈ B÷α, or using set difference notation β ∈ B \ (B÷α). We

know as a matter of fact that B÷α ⊆ B holds because, by Definition 2.12 on page 28,

any contraction operator satisfies inclusion. However, even if, for the sake of argument,

÷ did not satisfy inclusion and there were some statements in B÷α that were not in

B, such statements would have been lost in the set difference β ∈ B \ (B÷α). That,

in turn, means that to use !̄ to construct a contraction ÷ via Cond!̄, we do not

have enough information to prove or disprove inclusion. Instead, we have to assume

that ÷ already satisfies inclusion. Since all contraction operations satisfy inclusion,

this assumption is not a serious loss of generality.

In summary, the characterization theorem needs to assume inclusion. Before the

characterization theorem though, we offer the following lemma that simplifies its proof:

Lemma 4.22. In the presence of Def-B, Cond-IDB and contribution, the following is

equivalent to Cond÷̄:

β ∈ B÷α iff β ∈ B and α /!̄β.

[Proof on page 120.]



CHAPTER 4. BELIEF CHANGE AND BASE DEPENDENCE 83

Base Dependence

Def-B, Cond-IDB, conjugation,
contribution, modularity, redundancy

Saturated Kernel Contraction

success, inclusion, uniformity,
core-retainment, relative closure

Cond!̄ Cond÷̄

(a) Correspondence between Saturated Kernel
Contraction and Base Dependence (without any
specific criterion for conjunction).

Base Dependence
Def-B, Cond-IDB, conjugation,

contribution, modularity, redundancy
and

CCDFB

Saturated Kernel Contraction
success, inclusion, uniformity,
core-retainment, relative closure

and
conjunctive factoring

Cond!̄ Cond÷̄

(b) Adding Conjunction Criterion for Depen-
dence Factoring, CCDFB , which also implies
CCDB and CCIB. Added axioms are underlined.

Figure 4.4: Belief Change and Base Dependence (a) without or (b) with conjunction.

Theorem 4.23 (Characterization). Let the relations !̄ and ÷ for base B be such that

÷ satisfies inclusion, B÷α ⊆ B, and that Cond!̄ holds: α !̄ β iff β ∈ B and β /∈

B÷α. Then,

÷ is a saturated kernel contraction if and only if !̄ is a base dependence.

[Proof on page 121.]

The completion of the parallelism between belief change and base dependence,

depicted in Figure 4.4a, concludes this section. In the next section, this parallelism is

further enhanced by also considering conjunctions, as shown in Figure 4.4b.
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4.8 Enhancements for Handling Conjunctions

4.8.1 Overview

Comparing Figure 4.1 on page 48 as a guide for our final goal with Figure 4.4a, which

summarizes what has been achieved so far, helps to show how much progress we have

made and what needs our attention now. In §4.7, we established the correspondence

between saturated kernel contraction and base dependence. However, neither sat-

urated kernel contraction nor base dependence specify how to appropriately handle

conjunctions. In this section, we set to enhance the model developed so far by adding

conjunction axioms both to base dependence and to saturated kernel contraction.

The results of this enhancement is schematically depicted in Figure 4.4b, which

basically shows that the base dependence axioms are augmented by CCDFB [p. 77]

and the saturated kernel contraction axioms by conjunctive factoring [p. 21]. These

supplementary axioms are selected considering a set of guiding criteria that more

or less dictate what the supplementary axioms can be or at least narrow down the

set of possibilities significantly. The following is a list of such criteria along with

explanations why CCDFB and/or conjunctive factoring axioms can fulfill each criterion.

Criterion 1: As stated in the problem definition in §4.1.1 on page 47, while base

dependence generalizes Fariñas and Herzig’s dependence, it is desirable that base

dependence preserves this interesting characteristic of dependence in that it satis-

fies both Keynes’ conjunction criterion for dependence, CCD [p. 38], and Gärdenfors’

conjunction criterion for independence, CCI [p. 39].

Fulfillment: For a base dependence relation !̄, CCDB [p. 76] represents CCD,

and CCIB [p. 76] represents CCI. Theorem 4.17 on page 78 shows that if !̄ satisfies

CCDFB , then it also satisfies both CCDB and CCIB.

Criterion 2: Based on Figure 4.1 on page 48, there needs to be a mutual corre-

spondence between the two sets of supplementary axioms for base dependence and

for saturated kernel contraction.
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Fulfillment: Theorems 4.24 and 4.26 on the following page establish the mutual

correspondence between CCDFB [p. 77] and conjunctive factoring [p. 21].

Criterion 3: As seen in §4.3, saturated kernel contraction is a reversible gener-

alization of the basic AGM contraction (satisfying K÷ 1 –K÷ 6) and they coincide

with each other in the special case of closed belief bases (belief sets). This should

continue to be the case for the augmented contractions. That is, that augmented

saturated kernel contraction (with the new conjunction axioms) should also coincide

with the full AGM contraction satisfying all K÷ 1 –K÷ 6, K÷ 7 and K÷ 8. After all,

Fariñas and Herzig’s main characterization theorem uses the full AGM contraction,

K÷ 1 –K÷ 8.

Fulfillment: Indeed by Theorem 2.2 on page 21 [AGM85], in the presence of

K÷ 1 –K÷ 6 and for logically closed sets, the two axioms K÷ 7 and K÷ 8 (also

known as conjunctive overlap and conjunctive inclusion, respectively) hold if and only

if conjunctive factoring holds. Based on this theorem, for logically closed sets, a full

AGM contraction satisfying K÷ 1 –K÷ 8 is equivalent to a saturated kernel contrac-

tion that satisfies conjunctive factoring (see Lemma 4.30).

Therefore, CCDFB and conjunctive factoring meet all our major criteria for enhanc-

ing the basic model achieved in the previous section. As such, this section establishes

the correspondence between base dependence and saturated kernel contraction both

augmented with conjunction axioms. More specifically, we show that under the right

conditions the following two sets of axioms are equivalent:

Saturated Kernel Contraction Axioms, Augmented for Conjunction:

success, inclusion, core-retainment, uniformity, relative closure and conjunctive factoring.

Base Dependence Axioms, Augmented for Conjunction:

Def-B, Cond-IDB, conjugation, contribution, modularity redundancy and CCDFB .
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4.8.2 From Base Dependence to Contraction

We start by showing that when Cond÷̄ holds, CCDFB for base dependence leads to

conjunctive factoring for base contraction. This paves the way for Theorem 4.25 which

is the main theorem for this subsection.

Theorem 4.24. Given relations !̄ and ÷ for base B such that Cond÷̄ holds, if !̄

satisfies CCDFB then ÷ satisfies conjunctive factoring.

[Proof on page 122.]

Theorem 4.25 (Base Dependence to Contraction). Given relations !̄ and ÷ for

base B such that Cond÷̄ holds, if !̄ is a base dependence that satisfies CCDFB, then

÷ is a saturated kernel contraction that satisfies conjunctive factoring.

[Proof on page 123.]

4.8.3 From Contraction to Base Dependence

For the opposite direction, we show that when Cond!̄ holds, conjunctive factoring for

base contraction implies CCDFB for base dependence. Again, this paves the way for

Theorem 4.27 which is the main theorem for this subsection.

Theorem 4.26. Given relations !̄ and ÷ for base B such that Cond!̄ holds, if ÷

satisfies conjunctive factoring then !̄ satisfies CCDFB.

[Proof on page 124.]

Theorem 4.27 (Contraction to Base Dependence). Given relations !̄ and ÷ for

base B such that Cond!̄ holds, if ÷ is a saturated kernel contraction that satisfies

conjunctive factoring, then !̄ is a base dependence that satisfies CCDFB.

[Proof on page 125.]

As it was discussed at the beginning of the section, it is noteworthy here that,

for logically closed sets, conjunctive factoring holds if and only if conjunctive overlap

(K÷ 7) and conjunctive inclusion (K÷ 8) hold, by Theorem 2.2 on page 21 [AGM85].
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4.8.4 The Main Characterization Theorem

Finally, we can present the main characterization theorem here. The introduction of

axioms for conjunctions is the only difference between this theorem and the previous

Characterization Theorem 4.23 in §4.7.4. Figure 4.4 highlights this difference, making

a side by side comparison.

One note is that Remark 4.21 on page 82 for Characterization Theorem 4.23 is

also applicable here. That is, for the same reasons elaborated in §4.7.4, and just as it

was the case for Fariñas and Herzig (see Remark 3.7 on page 43), we have to assume

that the ÷ relation satisfies inclusion, B÷α ⊆ B, in order to state a characterization

theorem based on Cond!̄.

Theorem 4.28 (Main Characterization). Let the relations !̄ and ÷ for base B be

such that ÷ satisfies inclusion, B÷α ⊆ B, and that Cond!̄ holds: α !̄β iff β ∈

B and β /∈ B÷α. Then,

÷ is a saturated kernel contraction that satisfies conjunctive factoring if and only

if !̄ is a base dependence that satisfies CCDFB.

[Proof on page 125.]

4.9 Base Dependence as a Reversible Generalization

of Dependence

Our final goal is to generalize Fariñas and Herzig’s dependence relation for closed sets

into a new relation, base dependence, for both closed and non-closed sets. More specif-

ically, we would like base dependence to be a reversible generalization of dependence.

This generalization happens simultaneously from both descriptive and constructive

perspectives. The former means that the set of axioms for base dependence is a re-

versible generalization of the set of axioms for dependence. The latter means that

the construction method of base dependence is also a reversible generalization of the

construction of dependence. In other words, in the special case when a belief base

is logically closed, two things will happen: the set of axioms for base dependence is
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Base Dependence

Def-B, Cond-IDB, conjugation,
contribution, modularity, redundancy

Saturated Kernel Contraction

success, inclusion, uniformity,
core-retainment, relative closure

Cond!̄ Cond÷̄

Dependence

Def-K, Cond-ID, Disj,
LEl, LEr, CCIr, CCDr

0

AGM Contraction

K÷ 1, . . . , K÷ 6

Cond! Cond÷

(a) Generalization with no specific criterion for conjunctions.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Base Dependence

Def-B, Cond-IDB, conjugation,
contribution, modularity, redundancy

and
CCDFB

Saturated Kernel Contraction

success, inclusion, uniformity,
core-retainment, relative closure

and
conjunctive factoring

Cond!̄ Cond÷̄

Dependence
Def-K, Cond-ID, Disj,

LEl, LEr, CCIl, CCIr, CCDl
0, CCD

r
0

AGM Contraction
K÷ 1, . . . , K÷ 6,

K÷ 7, K÷ 8

Cond! Cond÷

(b) Generalization satisfying Conjunction Criterion for Dependence Factoring, CCDFB (which
also implies CCDB and CCIB). The added axioms are underlined.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 4.5: Belief Change and Base Dependence: A Generalization of the relationship
between Belief Change and Dependence, (a) without or (b) with conjunction criteria.
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equivalent to the set of axioms for dependence, and also the construction method for

base dependence produces the same relation as the construction method for depen-

dence.

Let us for one last time go back to our guiding Figure 4.1 on page 48, as well as

what has been achieved so far demonstrated in Figure 4.4 on page 83. Using Figure

4.4b to fill in all the blanks in the guiding Figure 4.1, it is not hard to come up

with Figure 4.5b. Indeed, Figure 4.5b summarizes what we are after, which was just

reviewed above, and if hypothetically it turns out to be accurate, then it will conclude

our search for a generalization solution. Figure 4.5a represents another hypothetical

solution similar to Figure 4.5b but without considering conjunctions.

To show that both of the hypothetical solutions represented in Figure 4.5 are

actually true, we need to show for each one that for logically closed belief bases the

outer boxes coincide with the inner boxes. For instance, in Figure 4.5a, for closed sets,

saturated kernel contraction needs to be equivalent to basic AGM contraction, and

base dependence needs to be equivalent to dependence. On the other hand, one of

the characterization theorems offered by Fariñas and Herzig, Theorem 3.9 on page 44,

specifies the conditions under which basic AGM contraction is logically equivalent

to dependence. Similarly, a corresponding characterization theorem studied earlier

in this chapter, Theorem 4.23, specifies the conditions under which saturated kernel

contraction is logically equivalent to base dependence.

To summarize, in order to prove that what is represented in Figure 4.5a is a solu-

tion for our generalization problem, we need to show that for closed sets and under

the right conditions all the following are logically equivalent: saturated kernel con-

traction, basic AGM contraction, base dependence and dependence. The following

Theorem 4.29 establishes this without any specific criterion for conjunction. Gener-

alization satisfying criteria for conjunctions is proved next by Theorem 4.31.

One last note is that, interestingly, all the building blocks necessary for these

theorems and lemma are already provided either by other authors or in this work.

In particular, we make heavy use of the valuable contributions in other works, viz.,

Theorems 2.2 ([AGM85]), 2.19 ([Han95]), 3.8 and 3.9 ([FdCH96]).
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Theorem 4.29 (Dependence Generalization). Let relations !̄, ! and ÷ for base B

be such that Cond!̄ and Cond! hold and inclusion is satisfied. In the special case

where B is logically closed,

(1) the following are logically equivalent:

a) !̄ is a base dependence, which satisfies Def-B, Cond-IDB, conjugation,

contribution, modularity and redundancy

b) ! is a dependence that satisfies Def-K, Cond-ID, Disj, LEl, LEr, CCIr and CCDr
0

c) ÷ is a saturated kernel contraction, which satisfies success, inclusion,

core-retainment, uniformity and relative closure

d) ÷ is a basic AGM contraction, which satisfies K÷ 1 –K÷ 6

(2) if any one of 1.a–1.d above hold, then !̄ reduces to !:

α !̄β iff α! β.

[Proof on page 126.]

In the theorem above, the given list of axioms for the dependence relation ! does

not include all the 9 axioms that Fariñas and Herzig have put forward for dependence.

Rather, it is a subset of their axioms that corresponds to basic AGM contraction

satisfying K÷ 1 –K÷ 6 (see Theorem 3.9). To be able to account for K÷ 7 and K÷ 8

as well, we need to use all of their 9 axioms that correspond to full AGM contraction,

K÷ 1 –K÷ 8. This in turn means that we also need a base contraction that, for closed

sets, is equivalent to full AGM contraction. This is shown to be the case, in the

following lemma, for saturated kernel contraction that satisfies conjunctive factoring.

Lemma 4.30. In the special case where base B is logically closed, an operator ÷ on

B is an AGM contraction satisfying K÷ 1 –K÷ 6, K÷ 7 and K÷ 8 if and only if ÷

is a saturated kernel contraction that satisfies conjunctive factoring.

[Proof on page 127.]

Now everything is in place to extend the formalism for a base dependence relation

!̄ that satisfies CCDFB . This is significant because, as it was shown in Theorem 4.17,

satisfying CCDFB allows !̄ to meet both Keynes’ conjunction criterion for dependence
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(CCD) and Gärdenfors’ conjunction criterion for independence (CCI) just it was the

case for Fariñas and Herzig’s dependence relation !.

Theorem 4.31 (Dependence Generalization with Conjunction). Let relations !̄, !

and ÷ for base B be such that Cond!̄ and Cond! hold and inclusion is satisfied. In

the special case where B is logically closed,

(1) the following are logically equivalent:

a) !̄ is a base dependence that satisfies Def-B, Cond-IDB, conjugation,

contribution, modularity, redundancy and CCDFB

b) ! is a dependence that satisfies Def-K, Cond-ID, Disj, LEl, LEr, CCIl, CCIr,

CCDl
0 and CCDr

0

c) ÷ is a saturated kernel contraction that satisfies success, inclusion,

core-retainment, uniformity, relative closure and conjunctive factoring

d) ÷ is an AGM contraction, which satisfies K÷ 1 –K÷ 6, K÷ 7 and K÷ 8

(2) if any one of 1.a–1.d above hold, then !̄ reduces to !:

α !̄β iff α! β.

[Proof on page 128.]

4.10 Conclusion

In this chapter we have achieved our general aim for this work: To provide a formalism

of Gärdenfors’ preservation criterion such that it generalizes the dependence formalism

studied by Fariñas and Herzig so that

• it works for belief bases (and belief sets), and

• in the special case when a belief base is closed, the generalized dependence is

equivalent to the original Fariñas and Herzig dependence relation, and

• while generalizing Fariñas and Herzig’s work, it preserves some of the important

characteristics of their study such as Keynes’ conjunction criterion for depen-

dence (CCD) and Gärdenfors’ conjunction criterion for independence (CCI).

In the next chapter, we provide a more elaborate summary of the work and a listing

of new contributions of this research.



Chapter 5

Conclusion and Future Work

5.1 Summary

Linking belief change and dependence can be of great value because, for example, it

can narrow the number of formulas that need to be considered during a belief change

operation. This, in turn, can greatly improve the performance of the operation. Gär-

denfors’ preservation criterion suggests a particularly interesting way of establishing

this link. One successful work of great theoretical value based on Gärdenfors’ preser-

vation criterion is that of Fariñas and Herzig that focuses on the relationship between

dependence and AGM theory contraction.

In the present work, we take a natural next step of finding a similar connection

between dependence and belief base contraction that can have important practical

consequences. We call such a dependence relation base dependence. Since, belief

bases, which can be closed or non-closed, are a generalization of belief sets, it would

be nice if their corresponding dependence relation, base dependence, also turns out

to be a generalization of Fariñas and Herzig’s dependence relation.

In this work, we establish such a connection between belief base contraction and

base dependence. That is, we provide an axiomatization of base dependence, and

establish its relation to belief base contraction. Similar to the set of axioms suggested

by Fariñas and Herzig, the base dependence axioms are also meant to capture the

dependence among formulas, only for base dependence the formulas are from the base,

92
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which may or may not be closed. Thus base dependence generalizes dependence.

More interestingly, base dependence turns out to be a reversible generalization of

dependence. That is, we prove that in the special case that a belief base is deductively

closed (i.e., it is a belief set), the base dependence relation reduces to the original

Fariñas and Herzig’s dependence relation.

What sets apart Fariñas and Herzig’s approach from that of other authors (see the

Related Work below) is its integration into the AGM model, being closely intertwined

with AGM contraction. This in turn means that their work provides a theoretical

limit for other approaches trying to capture or approximate concepts of relevance and

dependence in the context of belief change. By generalizing their work, our approach

inherits this useful property for both belief bases and belief sets.

On a separate note, another interesting characteristic of Fariñas and Herzig’s ax-

ioms for dependence is that some of them are based on intuitions stated by previous

authors working on the notion of relevance and dependence such as Keynes [Key21]

and Gärdenfors [Gä78, Gä90]. More specifically, their dependence axiomatization

meets both Keynes’ conjunction criterion for dependence, CCD [p. 38], and Gärden-

fors’ conjunction criterion for independence, CCI [p. 39].

Not only does our base dependence generalization preserves this characteristic of

dependence, but we also go one step further and provide a more specific intuition

called conjunction criterion of dependence factoring, CCDF, that encompasses both

Keynes’ CCD and Gärdenfors’ CCI intuitions.

List of Postulates and Conditions

The following are axioms of base dependence and conditionals for mutual construction

of base dependence and base contraction.

Base Dependence:

α !̄ β iff β ∈ B and β /∈ B÷α (Cond!̄)
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Strong Base Dependence:

α !̂ β iff β ∈ B and β /∈ Cn(B÷α) (Cond!̂)

Weak Base Dependence:

α !̌ β iff β ∈ B and β /∈ B÷α and β ∈ Cn(B÷α) (Cond!̌)

Contraction using Base Dependence:

β ∈ B÷α iff either )̄ β or β !̄β and α /!̄β (Cond÷̄)

Base Dependence Axioms:

β ∈ B iff either )̄ β or α !̄β for some α (Def-B)

If α !̄β then β !̄β (Cond-IDB)

If α ∈ Cn(B′) iff β ∈ Cn(B′) for all B′ ⊆ B then α !̄ δ iff β !̄ δ (conjugation)

If α !̄β then α /∈ Cn(B′) and α ∈ Cn(B′ ∪ {β}) for some B′ ⊆ B (contribution)

If α ∈ Cn(B′) and B′ ⊆ B then

either ) α or α !̄β for some β ∈ B′
(modularity)

If β ∈ Cn(B′) and B′ ⊆ B then

either α /!̄ β or α !̄ δ for some δ ∈ B′
(redundancy)

Base Dependence Axioms with Conjunctions:

If α !̄ δ and β !̄ δ then α ∧ β !̄ δ (CCDB)

If α ∧ β !̄ δ then α !̄ δ or β !̄ δ (CCIB)

Either [α ∧ β !̄ δ1 iff α !̄ δ1], or

[α ∧ β !̄ δ2 iff β !̄ δ2], or

[α ∧ β !̄ δ3 iff α !̄ δ3 or β !̄ δ3]

(CCDFB)
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Contributions

In summary, the new contributions in this work include:

• Provided an axiomatization of base dependence relation for belief base formulas.

• Provided representation theorems to construct base dependence via belief base

contraction and vice versa, similar to epistemic entrenchment in AGM.

• Proved that the new base dependence relation is a reversible generalization of

Fariñas and Herzig’s dependence relation.

• Shown, while generalizing the dependence relation, how base dependence pre-

serves some of the most interesting properties of dependence, particularly, Keynes’

conjunction criterion of dependence, CCD, and Gärdenfors’ conjunction criterion

of independence, CCI.

• Introduced conjunction criterion of dependence factoring, CCDF, which is more

specific than CCD and CCI, and entails both of them.

5.2 Related Work

There are several works that define the concepts of relevance and dependence of

formulas. Hansson and Wassermann propose that these can be classified into two

groups [HW02]. Some authors capture relevance/dependence of formulas through

syntactical means such as variable sharing and language splitting, including [Par99,

CP00, MK06, KM07, Mak07, JQH08, SQJH08, WZZ11, PMZ11, FGKIS11]. Other

authors have focused on inferential dependency of formulas, or, in other words, how

some formulas deductively contribute to inference of other formulas. Examples of

this approach include [FdCH96, HW02, CGHWK07], as well as the work reported in

the present thesis. Typically, syntactical approaches are simpler and computationally

more efficient compared to inferential approaches. However, the latter usually provide

a more accurate and tighter definition of relevance and dependence than syntactical

approaches. We now analyze a selection of these studies and discuss how they relate

and differ from our research here.

The most related work to our study is that of Fariñas and Herzig in Belief Change
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and Dependence [FdCH96]. As such, we reviewed this work in some detail in Chap-

ter 3. Here, we provide more analysis of some high-level properties that set their work

apart form other studies, which are also inherited in our generalization of their work.

There is one comment that some may want to make on Fariñas and Herzig’s

approach in studying the notion of dependence in the context of belief change. An

expected high level goal of such a study is to use dependence or relevance to reduce the

number of candidate belief statements that can potentially be affected by a particular

change. This should significantly improve tractability of belief change operations.

Therefore, quite naturally, Fariñas and Herzig expect that dependence “will be a

useful tool in the practical implementation of contraction and revision operations.”

On the other hand, the dependence relation in their work is constructed using a

given AGM contraction operator. Thus, this way of constructing the dependence

relation may seem to some as a deviation from that original goal. There appears

to be a circularity: dependence was meant to help with the process of belief change

operations, but now its construction is based on such operations.

Nevertheless, there are quite a few important and sometimes unique benefits to

their approach. First, even though their dependence relation is constructed based

on AGM contraction, their axiomatization of dependence is mostly separate from the

AGM concepts. Indeed, as seen in §3.1 and §3.2.2, many of the postulates in Fariñas

and Herzig’s axiomatization are based on concepts introduced long before the AGM

model was developed, for example CCD [p. 38] [Key21] and CCI [p. 39] [Gä78].

Moreover, construction of a dependence relation based on AGM contraction has

an important implication: it provides the most theoretically accurate definition of de-

pendence in the context of belief change. This is because Fariñas and Herzig construct

their dependence relation using AGM contraction. Therefore, any other definition of

dependence that is put forward to be used in relation to AGM contraction is either

as good as Fariñas and Herzig’s dependence relation or less accurate in capturing

dependence of formulas compared to their dependence relation. To help clarify this

point, in the following we look at another similar relationship for comparison.

As an example, consider the relevance relation provided by Riani and Wassermann

in [RW04]. They define a kind of syntactical relevance R such that, given two formulas
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α and β, R(α, β) if and only if the formulas α and β share an atom. Simply put, they

consider formulas that share atoms as related (a.k.a. variable sharing). Computational

tractability is one appealing benefit of such an approach in defining relevance. Also,

this definition is clearly not constructed based on belief change operations in any way.

Thus, it does not suffer from circularity if it is used in the context of belief change.

However, they also acknowledge that it “can be argued that this notion [of relevance]

is very simplistic” and an approximation that “gives us a ‘quick and dirty’ method for

retrieving the most relevant elements of a set of formulas.”

This is to be put in contrast with Fariñas and Herzig’s dependence in belief change,

which is completely precise in the sense that for every contraction operator there is

one dependence relation and vice versa. That is because this dependence relation has

been constructed using AGM contraction. This is merely a (desirable) implication

of the above mentioned circularity in this definition. As discussed before, our base

dependence formalism preserves all these benefits of Fariñas and Herzig’s dependence,

and additionally it can handle belief bases.

An example of studies considering inferential dependency (as opposed to consider-

ing syntactical means) is that of Hansson and Wassermann in Local Change [HW02].

They “consider relevant to a formula α the formulas that appear in a minimal deriva-

tion of α or its negation.” They use belief bases and interestingly they also use kernels

to come up with minimal derivations for formulas. Thus, there is a significant amount

of common ground between their study and base dependence which corresponds to

saturated kernel contraction (which is also based on kernels). Nevertheless, their for-

malism and concept of dependence (relevance) differs from that of Fariñas and Herzig’s

and from ours in some important ways. First, for them, anything that depends on

α also depends on ¬α. In contrast, α and ¬α can never depend nor base-depend on

each other: α /!¬α and α /!̄¬α by Disj [p. 40] and DisjB [p. 71], respectively. This

turns out to be important for mutuality of dependence and belief change or similarly

base dependence and belief change. More specifically, they can construct contraction

operators from given dependence relations (similar to Cond÷ [p. 68] or Cond÷̄ [p. 68]),

but they cannot construct dependence relations if given contraction operators (lacking

anything similar to Cond! [p. 57] or Cond!̄ [p. 57]).
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5.3 Future Work

There are a number of future research paths from this study. Here we provide some

examples of open questions and possible research directions.

5.3.1 Base Dependence and Formulas of the Base

In §4.2, we made the decision to axiomatize base dependence relation !̄ in a way to

guarantee statement (4.5) on page 53:

If α !̄β then β ∈ B.

This was not needed to be explicitly stated as an axiom because it is implied by

the set of axioms offered in our study for base dependence.

There remain two other alternative approaches which could be explored in other

studies. First, instead of requiring β ∈ B as above, require that α ∈ B.

If α !̄β then α ∈ B.

This alternative can be useful when we are interested on the effect of changing the

base on other statements. The next alternative requires both α, β ∈ B.

If α !̄β then α ∈ B and β ∈ B.

This alternative may be particularly useful in a study of redundancy in the base.

That is, exploring how removal of statements from the base requires removal of other

statements in the base which can happen in the presence of redundant statements.

5.3.2 Direct Proof of Base Dependence Generalizing Depen-

dence

In §4.9 on page 87, we showed indirectly that the set of base dependence relations is a

superset of the set of dependence relations. In principle, this could be shown directly

using the axioms of base dependence and dependence.
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For some of the base dependence axioms it is straightforward to see their con-

nection with their counterpart dependence axioms; e.g. DisjB, Cond-IDB and Def-B.

Also Theorem 4.12 on page 74 supports this conjecture by showing that conjugation

implies LEB.

5.3.3 Weak Base Dependence

In this work we have argued that weak base dependence is generally not desirable and

have focused on ways to avoid it throughout the work (see §4.4.2 on page 59). One

could, however, come up with cases to study where weak base dependence may be

beneficial.

Weak Base Dependence and Redundancy

As shown in Theorem 4.3 on page 60, there is a strong relationship between weak

base dependence and redundancy.

Therefore, the fact that weak base dependence captures redundancy may be ex-

ploited for various purposes. For example, one may use weak base dependence to

distinguish between redundant and informative formulas in a belief base.

Axiomatization of Weak Base Dependence

Our axiomatization of base dependence here intentionally avoided weak base depen-

dence. Thus, providing an alternative axiomatization that embraces weak base de-

pendence could be beneficial to a study which involves this kind of dependence.

5.3.4 Dependence and Epistemic Entrenchment

As illustrated in Figure 3.1 on page 37, both dependence and epistemic entrenchment

are counterparts of AGM contraction. Thus, it is only natural to expect to find a

strong and more direct connection between them. Interestingly, Gärdenfors [Gä03]

states that the condition C÷G [p. 25] “gives an explicit answer to which sentences are

included in the contracted belief set, given the initial belief set and an ordering of
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Epistemic Entrenchment
EE1, . . . ,EE5

C≤ C÷G

Dependence
Def-K, Cond-ID, Disj,

LEl, LEr, CCIl, CCIr, CCDl
0, CCD

r
0

Cond!
Cond÷

Cond!EE

Cond≤Dep

?

?

AGM Contraction
K÷ 1, . . . , K÷ 8

Figure 5.1: Open Problem: Provide the conditions Cond!EE and Cond≤Dep and
representation theorems to directly connect Dependence to Epistemic Entrenchment.

epistemic entrenchment.” As we saw earlier in Chapter 3 indeed dependence is also

concerned with specifying which sentences stay in the contracted belief set and which

ones do not.

This hypothetical relation is shown in Figure 5.1. The unknown conditions Cond!EE

and Cond≤Dep can help to provide a more direct connection between dependence and

epistemic entrenchment.

5.3.5 Base Dependence and Ensconcement

On the one hand, there is a potential relationship between dependence and epistemic

entrenchment as shown in Figure 5.1. On the other hand, it is known that an epis-

temic entrenchment formalism for belief bases is not possible. “Probably the most

successful application to belief bases of the ideas behind entrenchment is the theory

of ensconcement relations that has been developed by Mary-Anne Williams [Wil94],”

Hansson states in [Han99].

Therefore, one interesting hypothesis to explore is to find the relationship between

base dependence and ensconcement.



Appendix A

Proofs
All theorems and their proofs are gathered in this appendix so that it is easier to

review them, and to help avoid clutter.

A.1 Proofs for §4.4.2: Avoiding Weak Base Depen-

dence

Theorem 4.3. Given relations !̌ and ÷ for base B, where inclusion holds, Cond!̌

is equivalent to the following:

α !̌β iff β is redundant in B with respect to B÷α. (4.6)

Proof (theorem originally on page 60).

1 B÷α ⊆ B inclusion [p. 27]

2 α !̌β iff Assume (4.6) holds

β is redundant in B with respect to B÷α

3 α !̌β iff 2 and Definition 4.2 [p. 60]

B÷α ⊆ B and β ∈ B and (letting B′ = B÷α)

β /∈ B÷α and β ∈ Cn(B÷α)

4 α !̌β iff 1, 3 (replacing B÷α ⊆ B

' and β ∈B and β /∈B÷α and β ∈Cn(B÷α) with ' as it is true by 1)

5 α !̌β iff 4 (removing conjunct ');

β ∈ B and β /∈ B÷α and β ∈ Cn(B÷α) Cond!̌ [p. 59] derived

6 Since lines 2 through 5 are logically equivalent, the reverse order also holds

101
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Theorem 4.5. Given relations !̌ and ÷ for base B such that Cond!̌ holds,

there is no weak base dependence if and only if relative closure holds for ÷.

Proof (theorem originally on page 62).

Based on Definition 4.1 on page 59, we know that there is no weak base dependence

if and only if α /!̌β for all formulas α and β. In the following, we show that indeed

relative closure holds if and only if α /!̌β for all α and β.

1 α !̌β iff Cond!̌ [p. 59]

β ∈ B and β /∈ B÷α and β ∈ Cn(B÷α)

2 α /!̌β iff 1 (negating both sides)

β /∈ B or β ∈ B÷α or β /∈ Cn(B÷α)

3 B ∩ Cn(B÷α) ⊆ B÷α Assume relative closure [p. 27]

4 If β ∈ B and β ∈ Cn(B÷α) then β ∈ B÷α 3 (by the set theory)

5 ¬ [β ∈ B and β ∈ Cn(B÷α)] or β ∈ B÷α 4

6 β /∈ B or β /∈ Cn(B÷α) or β ∈ B÷α 5

7 α /!̌β 2, 6; so no weak base dep. exists

8 Since lines 3 through 7 are logically equivalent, the reverse order also holds
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A.2 Proofs for §4.4.3: Connections Among (Base)

Dependence Constructions

Theorem 4.6. Given relations !̄, !̂, !̌ and ÷ for base B such that Cond!̄, Cond!̂

and Cond!̌ hold, the following also holds:

α !̄β iff α !̂ β or α !̌β

Proof (theorem originally on page 63).

1 B÷α ⊆ Cn(B÷α) By inclusion [p. 12] for Cn

2 If β /∈ Cn(B÷α) then β /∈ B÷α 1 (by the set theory)

3 α !̄β iff β ∈ B and β /∈ B÷α Cond!̄ [p. 57]

4 α !̂β iff β ∈ B and β /∈ Cn(B÷α) Cond!̂ [p. 58]

5 α !̌β iff Cond!̌ [p. 59]

β ∈ B and β /∈ B÷α and β ∈ Cn(B÷α)

6 α !̄β iff α !̂ β or α !̌β Assumed to be verified

7 [β ∈ B and β /∈ B÷α] iff 3, 4, 5, 6 (substituting

[β ∈ B and β /∈ Cn(B÷α)] or each term in 6 with

[β ∈ B and β /∈ B÷α and β ∈ Cn(B÷α)] its equivalent)

8 [β ∈ B and β /∈ B÷α] iff 2, 7 (adding redundant

[β ∈ B and [β /∈ B÷α and β /∈ Cn(B÷α)]] or conjunct β /∈ B÷α)

[β ∈ B and β /∈ B÷α and β ∈ Cn(B÷α)]

9 [β ∈ B and β /∈ B÷α] iff 8 (regrouping conjuncts)

[[β ∈ B and β /∈ B÷α] and β /∈ Cn(B÷α)] or

[[β ∈ B and β /∈ B÷α] and β ∈ Cn(B÷α)]

10 [β ∈ B and β /∈ B÷α] iff 9 (factoring out the

[β ∈ B and β /∈ B÷α] and common term)

[β /∈ Cn(B÷α) or β ∈ Cn(B÷α)]

11 [β ∈ B and β /∈ B÷α] iff 10 (omitting tautological

[β ∈ B and β /∈ B÷α] conjunct)

12 ' (i.e., reached a tautology) 11; assumption 6 verified
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Theorem 4.7. Given relations !̄, !̂, !̌ and ÷ for base B such that Cond!̄, Cond!̂

and Cond!̌ hold and relative closure is satisfied, the base dependence relation !̄ and

the strong base dependence relation !̂ are equivalent:

α !̄β iff α !̂ β.

Proof (theorem originally on page 64).

By Theorem 4.5 (proof on page 102), when relative closure holds, there is no weak

base dependence, meaning that α /!̌β for all α and β by Definition 4.1 on page 59.

Thus the proof straightforwardly follows from Theorem 4.6:

1 B ∩ Cn(B÷α) ⊆ B÷α relative closure [p. 27]

2 α /!̌β for all α and β 1 and Thm. 4.5

3 α !̄β iff α !̂β or α !̌β By Thm. 4.6

4 α !̄β iff α !̂β 2, 3

Dependence and Base Dependence

Lemma 4.8. An operator ÷ on base B satisfies relative closure if and only if it satisfies

the following:

If β ∈ B then β ∈ B÷α iff β ∈ Cn(B÷α). (4.7)

Proof (lemma originally on page 64).

1 B÷α ⊆ Cn(B÷α) By inclusion [p. 12] for Cn

2 If β ∈ B÷α then β ∈ Cn(B÷α) 1

3 B ∩ Cn(B÷α) ⊆ B÷α Assume relative closure [p. 27]

4 If β ∈ B and β ∈ Cn(B÷α) then β ∈ B÷α 3

5 If β ∈ B then [β /∈ Cn(B÷α) or β ∈ B÷α] 4

6 If β ∈ B then [ if β ∈ Cn(B÷α) then β ∈ B÷α] 5

7 If β ∈ B then [β ∈ Cn(B÷α) iff β ∈ B÷α] 2, 6; so (4.7) is derived

8 Since lines 3 through 7 are logically equivalent, the reverse order also holds
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Theorem 4.9. Given relations !̄, ! and ÷ for base B such that Cond!̄ and Cond!

hold and relative closure is satisfied, the following also holds:

α !̄β iff β ∈ B and α! β.

Proof (theorem originally on page 65).

1 If β ∈ B then β ∈ Cn(B) By inclusion [p. 12] for Cn

2 α !̄β iff β ∈ B and β /∈ B÷α Cond!̄ [p. 57]

3 α!β iff β ∈ Cn(B) and β /∈ Cn(B÷α) Cond! [p. 57]

4 B ∩ Cn(B÷α) ⊆ B÷α relative closure [p. 27]

5 If β ∈B then [β ∈B÷α iff β ∈Cn(B÷α)] 4 and Lemma 4.8

6 If β ∈B then [β /∈B÷α iff β /∈Cn(B÷α)] 5 (negating both sides of iff)

7 α !̄β Assumption

8 β ∈ B and β /∈ B÷α 2, 7

9 β ∈ B and β /∈ Cn(B÷α) 6, 8

10 [β ∈ B and β ∈ Cn(B)] andβ /∈ Cn(B÷α) 1, 9 (adding redundant

conjunct β ∈ Cn(B))

11 β ∈ B and [β ∈ Cn(B) andβ /∈ Cn(B÷α)] 10

12 β ∈ B and α!β 3, 11

13 If α !̄β then β ∈ B and α! β 7, 12

14 Since lines 7 through 12 are logically equivalent, the reverse order also holds

15 α !̄β iff β ∈ B and α!β 13, 14
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Theorem 4.10. Given relations !̄, ! and ÷ for base B such that Cond!̄ and

Cond! hold and closure is satisfied, in the special case where B is logically closed, !̄

reduces to !:

α !̄β iff α! β.

Proof (theorem originally on page 65).

1 B÷α ⊆ Cn(B÷α) By inclusion [p. 12] for Cn

2 α !̄β iff β ∈ B and β /∈ B÷α Cond!̄ [p. 57]

3 α!β iff β ∈ Cn(B) and β /∈ Cn(B÷α) Cond! [p. 57]

4 If Cn(B) ⊆ B then Cn(B÷α) ⊆ B÷α closure [p. 27]

5 B = Cn(B) Logical Closure

6 Cn(B÷α) ⊆ B÷α 4, 5

7 β ∈ B÷α iff β ∈ Cn(B÷α) 1, 6

8 α !̄β Assumption

9 β ∈ B and β /∈ B÷α 2, 8

10 β ∈ Cn(B) and β /∈ B÷α 5, 9

11 β ∈ Cn(B) and β /∈ Cn(B÷α) 7, 10

12 α!β 3, 11

13 If α !̄β then α! β 8, 12

14 Since lines 8 through 12 are logically equivalent, the reverse order also holds

15 α !̄β iff α! β 13, 14
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A.3 Proofs for §4.6: Base Dependence Postulates

Theorem 4.12. If a relation !̄ satisfies conjugation, then it also satisfies LEB.

Proof (theorem originally on page 74).

1 If α ∈ Cn(B′) iff β ∈ Cn(B′) for all B′ ⊆ B conjugation [p. 73]

then α !̄ δ iff β !̄ δ

2 α ↔ β Assumption

3 α → β 2

4 β → α 2

5 If α ∈ Cn(C) then β ∈ Cn(C) for all C 3, supraclassicality [p. 13] for Cn

6 If β ∈ Cn(C) then α ∈ Cn(C) for all C 4, supraclassicality for Cn

7 α ∈ Cn(C) iff β ∈ Cn(C) for all C 5, 6

8 α !̄ δ iff β !̄ δ 1, 7

9 If α ↔ β then α !̄ δ iff β !̄ δ 2, 8

10 If α ↔ β and α !̄ δ then β !̄ δ 9; LEB [p. 73] derived
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Theorem 4.13. If a relation !̄ satisfies contribution, then it also satisfies DisjB.

Proof (theorem originally on page 74).

1 If α !̄β then contribution [p. 74]

α /∈ Cn(B′) and α ∈ Cn(B′ ∪ {β})

for some B′ ⊆ B

2 If α ∈ Cn(B′) or α /∈ Cn(B′ ∪ {β}) 1 (contrapositive)

for all B′ ⊆ B then α /!̄ β

3 ) α ∨ β Assumption

4 α ∨ β ∈ Cn(∅) 3

5 α ∨ β ∈ Cn(C) (for all ∅ ⊆ C) 4, monotony [p. 12] for Cn

6 α ∈ Cn(C ∪ {β}) Assumption

7 (β → α) ∈ Cn(C) 6, deduction [p. 13] for Cn

8 (α ∨ ¬β) ∈ Cn(C) 7, supraclassicality [p. 13] for Cn

9 ((α ∨ β) ∧ (α ∨ ¬β)) ∈ Cn(C) 5, 8, supraclassicality for Cn

10 α ∈ Cn(C) 9, supraclassicality for Cn

(using the resolution rule)

11 If α ∈ Cn(C ∪ {β}) then α ∈ Cn(C) 6, 10

12 [α ∈ Cn(B′ ∪ {β}) or α /∈ Cn(B′ ∪ {β})] Tautological truth

for all B′ ⊆ B

13 [α ∈ Cn(B′) or α /∈ Cn(B′ ∪ {β})] 11, 12

for all B′ ⊆ B

14 α /!̄β 2, 13

15 If ) α ∨ β then α /!̄ β 3, 14; DisjB [p. 71] derived
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Theorem 4.17. If a relation !̄ satisfies CCDFB, then it also satisfies both CCDB

and CCIB:

If α !̄ δ and β !̄ δ then α ∧ β !̄ δ (CCDB)

If α ∧ β !̄ δ then α !̄ δ or β !̄ δ (CCIB)

Proof (theorem originally on page 78).

From CCDFB to CCDB:

1 Either [α ∧ β !̄ δ1 iff α !̄ δ1], or CCDFB [p. 77]

[α ∧ β !̄ δ2 iff β !̄ δ2], or

[α ∧ β !̄ δ3 iff α !̄ δ3 or β !̄ δ3]

2 α !̄ δ and β !̄ δ Assumption

3 α !̄ δ 2

4 β !̄ δ 2

5 α !̄ δ or β !̄ δ 3, 4

6 α ∧ β !̄ δ 1, 3, 4, 5

7 If α !̄ δ and β !̄ δ then α ∧ β !̄ δ 2, 6; CCDB [p. 76] derived

From CCDFB to CCIB:

1 Either [α ∧ β !̄ δ1 iff α !̄ δ1], or CCDFB [p. 77]

[α ∧ β !̄ δ2 iff β !̄ δ2], or

[α ∧ β !̄ δ3 iff α !̄ δ3 or β !̄ δ3]

2 α ∧ β !̄ δ Assumption

3 [α !̄ δ] or [β !̄ δ] or [α !̄ δ or β !̄ δ] 1, 2

4 α !̄ δ or β !̄ δ 3

5 If α ∧ β !̄ δ then α !̄ δ or β !̄ δ 2, 4; CCIB [p. 76] derived
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A.4 Proofs for §4.7: Saturated Kernel Contraction

and Base Dependence

Lemma 4.18. Given relations !̄ and ÷ for base B such that Cond÷̄ holds and

contribution is satisfied, it also holds that α /!̄ β for all β ∈ B÷α.

Proof (lemma originally on page 81).

1 If ) α ∨ β then α /!̄ β By Thm. 4.13 and contribution

2 β ∈ B÷α iff either )̄ β or β !̄β and α /!̄β Cond÷̄ [p. 68]

3 β ∈ B÷α Assumption

4 )̄ β or [β !̄β and α /!̄ β] 2, 3

5 ¯/)β Case1 Assumption

6 β !̄β and α /!̄ β 4, 5

7 α /!̄ β 6

8 )̄ β Case2 Assumption

9 ) β 8 and Definition 4.11 [p. 65]

10 α /!̄ β 1, 9

11 α /!̄ β By Case1 and Case2

12 If β ∈ B÷α then α /!̄ β 3, 11

13 α /!̄ β for all β ∈ B÷α 12

Theorem 4.19 (Base Dependence to Contraction). Given relations !̄ and ÷ for base

B such that Cond÷̄ holds, if !̄ is a base dependence, then ÷ is a saturated kernel

contraction.

Proof (theorem originally on page 81).

Assume all the following hold: Cond÷̄ and postulates of base dependence, namely,

Def-B, Cond-IDB, conjugation, contribution, modularity and redundancy (see Defini-

tion 4.15 on page 75). We show that then the postulates of saturated kernel contrac-

tion, viz., inclusion, success, uniformity, core-retainment and relative closure (see §2.9 on

page 30) also hold:
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B÷α ⊆ B (inclusion [p. 27])

1 β ∈ B÷α iff either )̄ β or β !̄β and α /!̄ β Cond÷̄ [p. 68]

2 β ∈ B iff either )̄ β or α !̄β for some α Def-B [p. 73]

3 β ∈ B÷α Assumption

4 )̄ β or [β !̄β and α /!̄ β] 1, 3

5 ¯/)β Case1 Assumption

6 [β !̄β and α /!̄ β] 4, 5

7 β !̄β 6 (letting α be β)

8 β ∈ B 2, 7

9 )̄ β Case2 Assumption

10 β ∈ B and ) β 9 and Definition 4.11 [p. 65]

11 β ∈ B 10

12 β ∈ B By Case1 and Case2

13 If β ∈ B÷α then β ∈ B 3, 12

14 B÷α ⊆ B 13; inclusion derived

If ! α then α /∈ Cn(B÷α) (success [p. 27])

1 α /!̄β for all β ∈ B÷α By Lemma 4.18, contribution and

Cond÷̄

2 B÷α ⊆ B inclusion [p. 27] (proved above)

3 If α ∈ Cn(B′) and B′ ⊆ B then modularity [p. 74]

either ) α or α !̄β for some β ∈ B′

4 α ∈ Cn(B÷α) Assumption

5 α ∈ Cn(B÷α) and B÷α ⊆ B 2, 4

6 ) α or α !̄β for some β ∈ B÷α 3, 5 (letting B′ = B÷α)

7 ) α 1, 6

8 If α ∈ Cn(B÷α) then ) α 4, 7

9 If ! α then α /∈ Cn(B÷α) 8; success derived
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If α ∈ Cn(B′) iff β ∈ Cn(B′) for all B′ ⊆ B then B÷α = B÷ β

(uniformity [p. 27])

1 δ ∈ B÷ θ iff either )̄ δ or δ !̄ δ and θ /!̄ δ Cond÷̄ [p. 68]

2 If α ∈ Cn(B′) iff β ∈ Cn(B′) for all B′ ⊆ B conjugation [p. 73]

then α !̄ δ iff β !̄ δ

3 α ∈ Cn(B′) iff β ∈ Cn(B′) for all B′ ⊆ B Assumption

4 α !̄ δ iff β !̄ δ 2, 3

5 δ ∈ B÷α Assumption

6 )̄ δ or [δ !̄ δ and α /!̄ δ] 1, 5

7 ¯/) δ Case1 Assumption

8 [δ !̄ δ and α /!̄ δ] 6, 7

9 δ !̄ δ 8

10 α /!̄ δ 8

11 β /!̄ δ 4, 10

12 δ !̄ δ and β /!̄ δ 9, 11

13 δ ∈ B÷ β 1, 12

14 )̄ δ Case2 Assumption

15 δ ∈ B÷ β 1, 14

16 δ ∈ B÷ β By Case1 and Case2

17 If δ ∈ B÷α then δ ∈ B÷ β 5, 16

18 B÷α ⊆ B÷ β 17

19 B÷ β ⊆ B÷α Also by symmetry (steps 5-18)

20 B÷α = B÷ β 18, 19

21 If α ∈ Cn(B′) iff β ∈ Cn(B′) for all B′ ⊆ B 3, 20; uniformity derived

then B÷α = B÷ β
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If β ∈ B and β /∈ B÷α then there is some B′ s. t.

B′ ⊆ B and α /∈ Cn(B′) and α ∈ Cn(B′ ∪ {β})
(core-retainment [p. 27])

1 β ∈ B÷α iff either )̄ β or β !̄β and α /!̄ β Cond÷̄ [p. 68]

2 β /∈ B÷α iff ¯/)β and [β /!̄ β or α !̄β] 1 (contrapositive)

3 β ∈ B iff either )̄ β or α !̄β for some α Def-B [p. 73]

4 If α !̄β then β !̄ β Cond-IDB [p. 71]

5 If α !̄β then contribution [p. 74]

α /∈ Cn(B′) and α ∈ Cn(B′ ∪ {β}) for some B′ ⊆ B

6 β ∈ B Assumption

7 β /∈ B÷α Assumption

8 )̄ β or α !̄β for some α 3, 6

9 ¯/)β and [β /!̄ β or α !̄β] 2, 7

10 ¯/)β 9

11 α !̄β for some α 8, 10

12 β !̄β 4, 11

13 [β /!̄β or α !̄ β] 9

14 α !̄β 12, 13

15 α /∈ Cn(B′) and α ∈ Cn(B′ ∪ {β}) for some B′ ⊆ B 5, 14

16 If β ∈ B and β /∈ B÷α then 6, 7, 15; core-retainment

α /∈ Cn(B′) and α ∈ Cn(B′ ∪ {β}) for some B′ ⊆ B derived
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B ∩ Cn(B÷α) ⊆ B÷α (relative closure [p. 27])

1 α /!̄ δ for all δ ∈ B÷α By Lemma 4.18, contribution

and Cond÷̄

2 B÷α ⊆ B inclusion [p. 27] (proved above)

3 β ∈ B÷α iff either )̄ β or β !̄β and α /!̄ β Cond÷̄ [p. 68]

4 β ∈ B iff either )̄ β or α !̄β for some α Def-B [p. 73]

5 If α !̄β then β !̄β Cond-IDB [p. 71]

6 If β ∈ Cn(B′) and B′ ⊆ B then redundancy [p. 74]

either α /!̄ β or α !̄ δ for some δ ∈ B′

7 If ) α ∨ β then α /!̄ β By Thm. 4.13 and contribution

8 If ) β then α /!̄ β 7

9 If ) β and β ∈ B then α /!̄ β 8 (introducing extra conjunct

β ∈ B to antecedent)

10 If )̄ β then α /!̄ β 9 and Definition 4.11 [p. 65]

11 β ∈ B Assumption

12 )̄ β or α !̄β for some α 4, 11

13 )̄ β or β !̄β 5, 12

14 β ∈ Cn(B÷α) Assumption

15 β ∈ Cn(B÷α) and B÷α ⊆ B 2, 14

16 α /!̄β or α !̄ δ for some δ ∈ B÷α 6, 15 (letting B′ = B÷α)

17 α /!̄β 1, 16

18 [ )̄ β or β !̄ β] and [α /!̄ β] 13, 17

19 [ )̄ β and α /!̄ β] or [β !̄β and α /!̄ β] 18 (distributing conjunction)

20 [ )̄ β] or [β !̄β and α /!̄ β] 10, 19 (omitting redundant

conjunct α /!̄ β)

21 β ∈ B÷α 3, 20

22 If β ∈ B and β ∈ Cn(B÷α) then β ∈ B÷α 11, 14, 21

23 B ∩ Cn(B÷α) ⊆ B÷α 22; relative closure derived
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Theorem 4.20 (Contraction to Base Dependence). Given relations !̄ and ÷ for

base B such that Cond!̄ holds, if ÷ is a saturated kernel contraction, then !̄ is a

base dependence.

Proof (theorem originally on page 81).

Assume all the following hold: Cond!̄ and the postulates for saturated kernel con-

traction, namely, inclusion, success, uniformity, core-retainment and relative closure (see

§2.9 on page 30). We show that then the postulates of base dependence, viz., Def-B,

Cond-IDB, conjugation, contribution, modularity and redundancy (see Definition 4.15 on

page 75) also hold:

If α !̄β then β !̄β (Cond-IDB [p. 71])

1 α !̄β iff β ∈ B and β /∈ B÷α Cond!̄

2 α /!̄β iff β /∈ B or β ∈ B÷α 1 (negating both sides)

3 If β ∈ Cn(B÷ β) then β ∈ Cn(∅) success [p. 27] (contrapositive)

4 B ∩ Cn(B÷α) ⊆ B÷α relative closure [p. 27]

5 β /!̄ β Assumption

6 β /∈ B or β ∈ B÷ β 2, 5

7 β ∈ B Case1 Assumption

8 β ∈ B÷ β 6, 7

9 β ∈ Cn(B÷ β) 8, inclusion [p. 12] for Cn

10 β ∈ Cn(∅) 3, 9

11 β ∈ Cn(B÷α) 10, monotony [p. 12] for Cn

12 β ∈ B÷α 4, 7, 11

13 α /!̄β 2, 12

14 β /∈ B Case2 Assumption

15 α /!̄β 2, 14

16 α /!̄β By Case1 and Case2

17 If β /!̄β then α /!̄β 5, 16

18 If α !̄β then β !̄β 17; Cond-IDB derived
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β ∈ B iff either )̄ β or α !̄β for some α (Def-B [p. 73])

1 B÷α ⊆ Cn(B÷α) By inclusion [p. 12] for Cn

2 If β /∈ Cn(B÷α) then β /∈ B÷α 1

3 α !̄β iff β ∈ B and β /∈ B÷α Cond!̄ [p. 57]

4 If ! β then β /∈ Cn(B÷ β) success [p. 27]

5 β ∈ B Assumption, for left to right

6 ) β ∨ ! β Tautological truth

7 ) β Case1 Assumption

8 β ∈ B and ) β 5, 7

9 )̄ β 8 and Definition 4.11 [p. 65]

10 ! β Case2 Assumption

11 β /∈ Cn(B÷ β) 4, 10

12 β /∈ B÷ β 2, 11

13 β ∈ B and β /∈ B÷ β 5, 12

14 β !̄β 3, 13

15 α !̄β for some α 14 (e.g., let α be equal to β)

16 )̄ β or α !̄β for some α By 6, Case1 and Case2

17 If β ∈ B then [ )̄ β or α !̄β for some α] 5, 16

18 β /∈ B Assumption, for right to left

19 ¯/)β 18 and Definition 4.11 [p. 65]

20 α /!̄β for all α 3, 18

21 ¯/)β and α /!̄ β for all α 19, 20

22 If β /∈ B then [ ¯/)β and α /!̄ β for all α] 18, 21

23 If [ )̄ β or α !̄β for some α] then β ∈ B 22 (contrapositive)

24 β ∈ B iff either )̄ β or α !̄β for some α 17, 23; Def-B derived
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If α ∈ Cn(B′) iff β ∈ Cn(B′) for all B′ ⊆ B then α !̄ δ iff β !̄ δ

(conjugation [p. 73])

1 θ !̄ δ iff δ ∈ B and δ /∈ B÷ θ Cond!̄ [p. 57]

2 If α ∈ Cn(B′) iff β ∈ Cn(B′) for all B′ ⊆ B uniformity [p. 27]

then B÷α = B÷ β

3 α ∈ Cn(B′) iff β ∈ Cn(B′) for all B′ ⊆ B Assumption

4 B÷α = B÷ β 2, 3

5 δ ∈ B÷α iff δ ∈ B÷ β 4

6 δ /∈ B÷α iff δ /∈ B÷ β 5

7 [δ ∈ B and δ /∈ B÷α] iff [δ ∈ B and δ /∈ B÷ β] 6 (adding conjunct δ ∈ B

to both sides)

8 α !̄ δ iff β !̄ δ 1, 7

9 If α ∈ Cn(B′) iff β ∈ Cn(B′) for all B′ ⊆ B 3, 8; conjugation derived

then α !̄ δ iff β !̄ δ

If α !̄β then α /∈ Cn(B′) and α ∈ Cn(B′ ∪ {β}) for some B′ ⊆ B

(contribution [p. 74])

1 α !̄β iff β ∈ B and β /∈ B÷α Cond!̄ [p. 57]

2 If β ∈ B and β /∈ B÷α then core-retainment [p. 27]

α /∈ Cn(B′) and α ∈ Cn(B′ ∪ {β}) for some B′ ⊆ B

3 α !̄β Assumption

4 β ∈ B and β /∈ B÷α 1, 3

5 α /∈ Cn(B′) and α ∈ Cn(B′ ∪ {β}) for some B′ ⊆ B 2, 4

6 If α !̄ β then 3, 5; contribution derived

α /∈ Cn(B′) and α ∈ Cn(B′ ∪ {β}) for some B′ ⊆ B
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If α ∈ Cn(B′) and B′ ⊆ B then

either ) α or α !̄ β for some β ∈ B′
(modularity [p. 74])

1 α !̄β iff β ∈ B and β /∈ B÷α Cond!̄ [p. 57]

2 α /!̄β iff β /∈ B or β ∈ B÷α 1

3 If ! α then α /∈ Cn(B÷α) success [p. 27]

4 If α ∈ Cn(B÷α) then ) α 3

5 α ∈ Cn(B′) Assumption

6 B′ ⊆ B Assumption

7 β ∈ B for all β ∈ B′ 6 (by the set theory)

8 ¬ [) α or α !̄β for some β ∈ B′] Assume for the sake of contradiction

9 /) α and α /!̄ β for all β ∈ B′ 8

10 /) α 9

11 α /!̄β for all β ∈ B′ 9

12 [β /∈ B or β ∈ B÷α] for all β ∈ B′ 2, 11

13 [β ∈ B÷α] for all β ∈ B′ 7, 12 (i.e., β /∈ B is false by 7)

14 B′ ⊆ B÷α 13 (by the set theory)

15 Cn(B′) ⊆ Cn(B÷α) 14, monotony [p. 12] for Cn

16 α ∈ Cn(B÷α) 5, 15

17 ) α 3, 14

18 /) α and ) α 10, 17

19 ⊥ (i.e., reached a contradiction) 18

20 ) α or α !̄ β for some β ∈ B′ 8, 19

21 If α ∈ Cn(B′) and B′ ⊆ B then 5, 6, 20; modularity derived

either ) α or α !̄β for some β ∈ B′
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If β ∈ Cn(B′) and B′ ⊆ B then

either α /!̄ β or α !̄ δ for some δ ∈ B′
(redundancy [p. 74])

1 α !̄β iff β ∈ B and β /∈ B÷α Cond!̄ [p. 57]

2 α /!̄β iff β /∈ B or β ∈ B÷α 1

3 B ∩ Cn(B÷α) ⊆ B÷α relative closure [p. 27]

4 β ∈ Cn(B′) Assumption

5 B′ ⊆ B Assumption

6 δ ∈ B for all δ ∈ B′ 5 (by the set theory)

7 ¬ [α !̄ δ for some δ ∈ B′] Assumption

8 α /!̄ δ for all δ ∈ B′ 7

9 [δ /∈ B or δ ∈ B÷α] for all δ ∈ B′ 2, 8

10 [δ ∈ B÷α] for all δ ∈ B′ 6, 9

11 B′ ⊆ B÷α 10 (by the set theory)

12 Cn(B′) ⊆ Cn(B÷α) 11, monotony [p. 12] for Cn

13 β ∈ Cn(B÷α) 4, 12

14 β ∈ B Case1 Assumption

15 β ∈ B÷α 3, 13, 14

16 α /!̄β 2, 15

17 β /∈ B Case2 Assumption

18 α /!̄β 2, 17

19 α /!̄β By Case1 and Case2

20 If β ∈ Cn(B′) and B′ ⊆ B and 4, 5, 7, 19

¬ [α !̄ δ for some δ ∈ B′] then α /!̄ β

21 If β ∈ Cn(B′) and B′ ⊆ B then 20; redundancy derived

α /!̄ β or α !̄ δ for some δ ∈ B′
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Lemma 4.22. In the presence of Def-B, Cond-IDB and contribution, the following is

equivalent to Cond÷̄:

β ∈ B÷α iff β ∈ B and α /!̄β.

Proof (lemma originally on page 82).

1 If β !̄β then δ !̄β for some δ Trivially holds: e.g., let δ be β

2 If δ !̄ β then β !̄β Cond-IDB [p. 71]

3 β !̄β iff δ !̄β for some δ 1, 2

4 β ∈ B iff either )̄ β or δ !̄β for some δ Def-B [p. 73]

5 If ) α ∨ β then α /!̄ β By Thm. 4.13 and contribution

6 If ) β then α /!̄ β 5

7 β ∈ B÷α iff Assume Cond÷̄ [p. 68]

either )̄ β or β !̄ β and α /!̄β

8 β ∈ B÷α iff 7 and Definition 4.11 [p. 65]

[β ∈ B and ) β] or [β !̄β and α /!̄ β]

9 β ∈ B÷α iff 3, 8 (replacing β !̄β with its

[β ∈ B and ) β] or equivalent δ !̄ β for some δ)

[[δ !̄β for some δ] and α /!̄β]

10 β ∈ B÷α iff 6, 9 (adding redundant

[[β ∈ B and ) β] and α /!̄ β] or conjunct α /!̄β since ) β)

[[δ !̄β for some δ] and α /!̄β]

11 β ∈ B÷α iff 10

[[β ∈ B and ) β] or [δ !̄β for some δ]]

and α /!̄ β

12 β ∈ B÷α iff 11 and Definition 4.11 [p. 65]

[ )̄ β or [δ !̄β for some δ]] and α /!̄ β

13 β ∈ B÷α iff β ∈ B and α /!̄ β 4, 12

14 Since lines 7 through 13 are logically equivalent, the reverse order also holds
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Theorem 4.23 (Characterization). Let the relations !̄ and ÷ for base B be such that

÷ satisfies inclusion, B÷α ⊆ B, and that Cond!̄ holds: α !̄ β iff β ∈ B and β /∈

B÷α. Then,

÷ is a saturated kernel contraction if and only if !̄ is a base dependence.

Proof (theorem originally on page 83).

Given that Cond!̄ [p. 57] holds by assumption, the left to right direction is already

proved in theorem 4.20 (proof on page 115).

Similarly, for the right to left direction, theorem 4.19 (proof on page 110) can

be used, provided that Cond÷̄ [p. 68] holds. That is, to construct a saturated kernel

contraction relation ÷, given a base dependence relation !̄, it suffices to show that

Cond÷̄ holds. This is achieved below after first assuming all the following hold:

• three of the base dependence postulates (see Definition 4.15 on page 75), namely,

Def-B, Cond-IDB and contribution,

• Cond!̄, and

• inclusion (see Remark 4.21 on page 82).

1 B÷α ⊆ B inclusion [p. 27]

2 α !̄β iff β ∈ B and β /∈ B÷α Cond!̄ [p. 57]

3 β ∈ B÷α Assumption

4 β ∈ B 1, 3

5 α /!̄β 2, 3

6 If β ∈ B÷α then β ∈ B and α /!̄β 3, 4, 5

7 If β ∈ B and β /∈ B÷α then α !̄β 2 (using right to left)

8 If β /∈ B÷α then β /∈ B or α !̄β 7

9 If β ∈ B and α /!̄β then β ∈ B÷α 8 (contrapositive)

10 β ∈ B÷α iff β ∈ B and α /!̄ β 6, 9

11 β ∈ B÷α iff 10 and Lemma 4.22, applicable as

either )̄ β or β !̄ β and α /!̄β Def-B, Cond-IDB and contribution hold
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A.5 Proofs for §4.8: Enhancements for Handling Con-

junctions

Theorem 4.24. Given relations !̄ and ÷ for base B such that Cond÷̄ holds, if !̄

satisfies CCDFB then ÷ satisfies conjunctive factoring.

Proof (theorem originally on page 86).

1 δ ∈ B÷ θ iff either )̄ δ or δ !̄ δ and θ /!̄ δ Cond÷̄ [p. 68]

2 [α ∧ β !̄ δ1 iff α !̄ δ1], or Assume CCDFB [p. 77]

[α ∧ β !̄ δ2 iff β !̄ δ2], or (The word “Either” is

[α ∧ β !̄ δ3 iff α !̄ δ3 or β !̄ δ3] omitted to save space)

3 [α ∧ β /!̄ δ1 iff α /!̄ δ1], or 2 (negating both sides of

[α ∧ β /!̄ δ2 iff β /!̄ δ2], or each iff statement)

[α ∧ β /!̄ δ3 iff α /!̄ δ3 and β /!̄ δ3]

4 [[δ1 !̄ δ1 and α ∧ β /!̄ δ1] iff [δ1 !̄ δ1 and α /!̄ δ1]], or 3 (adding the conjunct

[[δ2 !̄ δ2 and α ∧ β /!̄ δ2] iff [δ2 !̄ δ2 and β /!̄ δ2]], or δi !̄ δi to both sides of

[[δ3 !̄ δ3 and α ∧ β /!̄ δ3] iff each iff statement)

[δ3 !̄ δ3 and α /!̄ δ3] and [δ3 !̄ δ3 and β /!̄ δ3]]

5 [()̄ δ1 or [δ1 !̄ δ1 and α ∧ β /!̄ δ1]) iff 4 (adding the disjunct

()̄ δ1 or [δ1 !̄ δ1 and α /!̄ δ1])], or )̄ δi to both sides of

[()̄ δ2 or [δ2 !̄ δ2 and α ∧ β /!̄ δ]) iff each iff statement)

()̄ δ2 or [δ2 !̄ δ2 and β /!̄ δ2])], or

[()̄ δ3 or [δ3 !̄ δ3 and α ∧ β /!̄ δ3]) iff

()̄ δ3 or [δ3 !̄ δ3 and α /!̄ δ3]), and

()̄ δ3 or [δ3 !̄ δ3 and β /!̄ δ3])]

6 [δ1 ∈ B÷α ∧ β iff δ1 ∈ B÷α], or 1, 5

[δ2 ∈ B÷α ∧ β iff δ2 ∈ B÷ β], or

[δ3 ∈ B÷α ∧ β iff δ3 ∈ B÷α and δ3 ∈ B÷ β]
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7 B÷α ∧ β = B÷α, or 6 (by the set theory);

B÷α ∧ β = B÷ β, or conjunctive factoring

B÷α ∧ β = B÷α ∩ B÷ β derived

Theorem 4.25 (Base Dependence to Contraction). Given relations !̄ and ÷ for

base B such that Cond÷̄ holds, if !̄ is a base dependence that satisfies CCDFB, then

÷ is a saturated kernel contraction that satisfies conjunctive factoring.

Proof (theorem originally on page 86).

Assume that the relations !̄ and ÷ for base B are such that Cond÷̄ holds and that !̄

is a base dependence relation also satisfying CCDFB . Then, by Theorem 4.19 (proof on

page 110), ÷ is a saturated kernel contraction since !̄ is a base dependence relation.

Moreover, because !̄ also satisfies CCDFB , ÷ further satisfies conjunctive factoring by

Theorem 4.24.
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Theorem 4.26. Given relations !̄ and ÷ for base B such that Cond!̄ holds, if ÷

satisfies conjunctive factoring then !̄ satisfies CCDFB.

Proof (theorem originally on page 86).

1 θ !̄ δ iff δ ∈ B and δ /∈ B÷ θ Cond!̄ [p. 57]

2 B÷α ∧ β = B÷α, or Assume conjunctive factoring

B÷α ∧ β = B÷ β, or (The word “Either” is

B÷α ∧ β = B÷α ∩B÷ β omitted to save space)

3 [δ1 ∈ B÷α ∧ β iff δ1 ∈ B÷α], or 2 (by the set theory)

[δ2 ∈ B÷α ∧ β iff δ2 ∈ B÷ β], or

[δ3 ∈ B÷α ∧ β iff δ3 ∈ B÷α and δ3 ∈ B÷ β]

4 [δ1 /∈ B÷α ∧ β iff δ1 /∈ B÷α], or 3 (negating both sides of

[δ2 /∈ B÷α ∧ β iff δ2 /∈ B÷ β], or each iff statement)

[δ3 /∈ B÷α ∧ β iff δ3 /∈ B÷α or δ3 /∈ B÷ β]

5 [[δ1 ∈ B and δ1 /∈ B÷α ∧ β] iff 4 (adding the conjunct

[δ1 ∈ B and δ1 /∈ B÷α]], or δi ∈ B to both sides of

[[δ2 ∈ B and δ2 /∈ B÷α ∧ β] iff each iff statement)

[δ2 ∈ B and δ2 /∈ B÷ β]], or

[[δ3 ∈ B and δ3 /∈ B÷α ∧ β] iff

[δ3 ∈ B and δ3 /∈ B÷α] or

[δ3 ∈ B and δ3 /∈ B÷ β]]

6 [α ∧ β !̄ δ1 iff α !̄ δ1], or 1, 5; CCDFB derived

[α ∧ β !̄ δ2 iff β !̄ δ2], or

[α ∧ β !̄ δ3 iff α !̄ δ3 or β !̄ δ3]
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Theorem 4.27 (Contraction to Base Dependence). Given relations !̄ and ÷ for

base B such that Cond!̄ holds, if ÷ is a saturated kernel contraction that satisfies

conjunctive factoring, then !̄ is a base dependence that satisfies CCDFB.

Proof (theorem originally on page 86).

Assume that the relations !̄ and ÷ for base B are such that Cond!̄ holds and that

÷ is a saturated kernel contraction also satisfying conjunctive factoring. Then, by

Theorem 4.20 (proof on page 115), !̄ is a base dependence since ÷ is a saturated

kernel contraction. Moreover, because ÷ also satisfies conjunctive factoring, !̄ further

satisfies CCDFB by Theorem 4.26.

Theorem 4.28 (Main Characterization). Let the relations !̄ and ÷ for base B be

such that ÷ satisfies inclusion, B÷α ⊆ B, and that Cond!̄ holds: α !̄β iff β ∈

B and β /∈ B÷α. Then,

÷ is a saturated kernel contraction that satisfies conjunctive factoring if and only

if !̄ is a base dependence that satisfies CCDFB.

Proof (theorem originally on page 87).

This representation theorem proof closely resembles (with only a few changes) the

proof of the Representation Theorem 4.23 (proof on page 121) which did not have any

criteria for conjunctions (whereas here conjunctive factoring and CCDFB are present).

Given that Cond!̄ [p. 57] holds by assumption, the left to right direction is already

proved in Theorem 4.27.

For the right to left direction, Theorem 4.25 (proof on page 123) can be used,

provided that Cond÷̄ [p. 68] holds. That is, it suffices to show that Cond÷̄ holds

in order to construct a saturated kernel contraction relation ÷ that also satisfies

conjunctive factoring, using a base dependence relation !̄ that also satisfies CCDFB .

Therefore, the last step needed for this proof is to show that Cond÷̄ holds, which can

be achieved exactly in the same way as in Representation Theorem 4.23 (proof on

page 121). Thus, it is omitted for brevity here.
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A.6 Proofs for §4.9: Base Dependence as a Reversible

Generalization of Dependence

Theorem 4.29 (Dependence Generalization). Let relations !̄, ! and ÷ for base B

be such that Cond!̄ and Cond! hold and inclusion is satisfied. In the special case

where B is logically closed,

(1) the following are logically equivalent:

a) !̄ is a base dependence, which satisfies Def-B, Cond-IDB, conjugation,

contribution, modularity and redundancy

b) ! is a dependence that satisfies Def-K, Cond-ID, Disj, LEl, LEr, CCIr and CCDr
0

c) ÷ is a saturated kernel contraction, which satisfies success, inclusion,

core-retainment, uniformity and relative closure

d) ÷ is a basic AGM contraction, which satisfies K÷ 1 –K÷ 6

(2) if any one of 1.a–1.d above hold, then !̄ reduces to !:

α !̄β iff α! β.

Proof (theorem originally on page 89).

Part (1): We show 1.a–1.d are logically equivalent using Theorems 2.19, 3.9 and 4.23.

1 B = Cn(B) Logical Closure

2 B÷α ⊆ B inclusion [p. 27]

3 α!β iff β ∈ Cn(B) and β /∈ Cn(B÷α) Cond! [p. 57]

4 α !̄β iff β ∈ B and β /∈ B÷α Cond!̄ [p. 57]

5 !̄ is a base dependence relation (1.a) Assumption

6 ÷ is a saturated kernel contraction (1.c) 2, 4, 5 and Thm. 4.23

7 ÷ is a basic AGM contraction which 1, 6 and Thm. 2.19 ([Han95])

satisfies K÷ 1 –K÷ 6 (1.d)

8 ! is a dependence relation (1.b) 1, 2, 3, 7 and Thm. 3.9 ([FdCH96])

9 Lines 5 through 8 (corresponding to 1.a–1.d) are logically equivalent as all

Theorems 2.19, 3.9 and 4.23 connecting these lines use logical equivalence
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Part (2): We start by assuming one of 1.a–1.d holds, and by part (1) it means

all of them hold. Thus, K÷ 1 holds and by Thm. 4.10 !̄ and ! are equivalent.

10 One of the lines 5 to 8 (or 1.a–1.d) holds Assumption for part (2)

11 Line 7 holds (so K÷ 1 –K÷ 6 hold) 9, 10 (because all lines 5 to 8 hold)

12 ÷ satisfies K÷ 1 (a.k.a. closure) 11

13 α !̄β iff α! β 1, 3, 4, 12 and Thm. 4.10

Lemma 4.30. In the special case where base B is logically closed, an operator ÷ on

B is an AGM contraction satisfying K÷ 1 –K÷ 6, K÷ 7 and K÷ 8 if and only if ÷

is a saturated kernel contraction that satisfies conjunctive factoring.

Proof (lemma originally on page 90).

1 B = Cn(B) Logical Closure

2 Let ÷ be a saturated kernel contraction Assumption

3 Let ÷ also satisfy conjunctive factoring Assumption

4 ÷ satisfies K÷ 1 –K÷ 6 1, 2 and Thm. 2.19 ([Han95])

5 ÷ satisfies K÷ 7 and K÷ 8 1, 3, 4 and Thm. 2.2 ([AGM85])

6 ÷ satisfies K÷ 1 –K÷ 8 4, 5

7 Let ÷ satisfy K÷ 1 –K÷ 6 Assumption

8 Let ÷ also satisfy K÷ 7 and K÷ 8 Assumption

9 ÷ is a saturated kernel contraction 1, 7 and Thm. 2.19 ([Han95])

10 ÷ satisfies conjunctive factoring 1, 7, 8 and Thm. 2.2 ([AGM85])

11 ÷ satisfies K÷ 1 –K÷ 8 if and only if 2-6, 7-10

÷ is a saturated kernel contraction that

also satisfies conjunctive factoring
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Theorem 4.31 (Dependence Generalization with Conjunction). Let relations !̄, !

and ÷ for base B be such that Cond!̄ and Cond! hold and inclusion is satisfied. In

the special case where B is logically closed,

(1) the following are logically equivalent:

a) !̄ is a base dependence that satisfies Def-B, Cond-IDB, conjugation,

contribution, modularity, redundancy and CCDFB

b) ! is a dependence that satisfies Def-K, Cond-ID, Disj, LEl, LEr, CCIl, CCIr,

CCDl
0 and CCDr

0

c) ÷ is a saturated kernel contraction that satisfies success, inclusion,

core-retainment, uniformity, relative closure and conjunctive factoring

d) ÷ is an AGM contraction, which satisfies K÷ 1 –K÷ 6, K÷ 7 and K÷ 8

(2) if any one of 1.a–1.d above hold, then !̄ reduces to !:

α !̄β iff α! β.

Proof (theorem originally on page 91).

Part (1): We show 1.a–1.d are logically equivalent using Theorems 3.8, 4.28 and 4.30.

1 B = Cn(B) Logical Closure

2 B÷α ⊆ B inclusion [p. 27]

3 α!β iff β ∈ Cn(B) and β /∈ Cn(B÷α) Cond! [p. 57]

4 α !̄β iff β ∈ B and β /∈ B÷α Cond!̄ [p. 57]

5 !̄ is a base dependence relation that Assumption

also satisfies CCDFB (1.a)

6 ÷ is a saturated kernel contraction that 2, 4, 5 and Thm. 4.28

also satisfies conjunctive factoring (1.c)

7 ÷ is an AGM contraction which 1, 6 and Lemma 4.30

satisfies K÷ 1 –K÷ 8 (1.d)

8 ! is a dependence relation (1.b) 1, 2, 3, 7 and Thm. 3.8 ([FdCH96])

9 Lines 5 through 8 (corresponding to 1.a–1.d) are logically equivalent as all

Theorems 3.8, 4.28 and 4.30 connecting these lines use logical equivalence
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Part (2): We start by assuming one of 1.a–1.d holds, and by part (1) it means

all of them hold. Thus, K÷ 1 holds and by Thm. 4.10 !̄ and ! are equivalent.

10 One of the lines 5 to 8 (or 1.a–1.d) holds Assumption for part (2)

11 Line 7 holds (so K÷ 1 –K÷ 8 hold) 9, 10 (because all lines 5 to 8 hold)

12 ÷ satisfies K÷ 1 (a.k.a. closure) 11

13 α !̄β iff α! β 1, 3, 4, 12 and Thm. 4.10
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