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Abstract

Chapter 1 studies the role of investment-related emissions for the efficient distribution of

investment among dirty and clean technologies. Dirty technology is not used depending

on technology parameters, though clean technology may be relatively more expensive on

all scales, and the societal effect of the first pollution unit may be small. In plausible

cases there is a unique stationary point. Disregarding emissions from investment in dirty

technology biases the stationary cost of polluting downward if dirty technology is used

and the time discount factor is not too small. An inverse relationship between the cost

of polluting and the marginal rate of intertemporal substitution of consumption on an

optimal path is established.

Chapter 2 examines the retirement of pre-existing capital and irreversible investment

in dirty and clean technologies in Pareto optimum and competitive equilibrium. Dirty

capacity is optimally underutilized in equilibrium if government policy internalizes the

pollution externality after such policy is sufficiently long delayed. Dirty technology capi-

tal, for example, fossil-fuel using engines and plants, should be underutilized if pollution,

such as atmospheric carbon dioxide, is below its long-term level. Underutilization of the

pre-installed dirty technology capital diminishes it optimally because it is not needed in

the long-term or smooths it through postponing its use until investment becomes worth-

while in dirty technology. Clean technology capital, for example, solar panels or wind

turbines, are efficiently underutilized to save emissions from investment or because cre-

ating new units is more costly than forwarding existing units.

Chapter 3 considers production using a dirty and reliable technology, for example, coal-

using electricity generation, versus production using a clean and unreliable technology, for

example, solar energy conversion into electricity, in a dynamic economy. Consumption can

be equalized across states because investment absorbs the fluctuation in clean technology

productivity in days in which consumption is maximized. Clean output subsidies such as

feed-in premiums for grid-distributed electricity can implement a Pareto optimum. For

example, the subsidy rebates a uniform energy tax or a uniform tax on investment goods.

In a further example the subsidy is funded by price surcharges that are differentiated

between households.
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Introduction

In this thesis heterogeneous capital is considered from a welfare point of view and in

competitive equilibrium. The use of dirty technology creates emissions. The use of clean

technology does not create emissions. At each date society can build assets in different

technologies that have a fixed emission intensity of output by using these assets in future

periods. Building new capital units in clean technology may increase pollution of the

same kind that production of a general factor using dirty technology creates. Climate

change is the leading example. Primary steel, cement, and mineral processiong gener-

ate carbon dioxide and methane emissions for the construction of both physical capital

that converts fossil fuels coal, petroleum, or natural gas into useful energy, and physi-

cal capital that harnesses so-called renewable energy—solar, wind, geothermal, biomass,

hydro, tidal and wave energy. The extraction of fossil fuels creates carbon dioxide and

methane emissions. Fossil-fuel use in producing ‘useful energy’ generates carbon dioxide

emissions. This energy can be used for producing consumption or investment goods. The

use encompasses services generated from space or water cooling and heating, lighting, and

motion. Renewable energy conversion does not create such emissions. Carbon dioxide

and methane (and some other) emissions alter the climate with adverse effects by current

scientific knowledge. These effects are modeled through direct impact of the pollution

stock on the period-utility function. The following relates the assumption of irreversibility

of technology-specific capital to the central contributions of the thesis, explains their rel-

evance to controlling the climate, and contrasts inefficient investment under externalities

and cyclical inefficient investment.

(i) Outlook. Introducing emissions of investment in clean technology, as Chapter 1

shows, enlarges the set of qualitatively different stationary points. These emissions do not

affect the nature of the controlled dynamical system in optimum which generates unique
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paths of the environmental stock, human-made capital, and their marginal contributions

to welfare, the so-called shadow prices. Exclusive use of clean technology, joint use of dirty

and clean technology, versus exclusive use of dirty technology, in the long-term depend on

technology parameters including their productivity, emission intensities, and individual

maximum scale in terms of output. The emissions in building clean technology assets are

responsible for a time-invariant allocation in which only clean technology is used. This

insight gains some weight in the climate problem, because there is capital in energy use

besides capital in energy production. The emissions in creating energy-use capital, that

is, buildings including equipment and furniture, roads, and vehicle shells, can motivate

such a point in the future if the construction of renewable energy technology capital

becomes clean. These conclusions hold because consumption goods that spend utility,

consistent with the real world, use energy that is produced by dirty or clean technologies,

and utilize capital that uses such energy. The emissions in producing dirty technology

assets add to the emissions of using these assets without qualitative effect for the use

of dirty versus clean technologies. However, the emissions in building dirty technology

capital affect the long-term cost of polluting if dirty technology is used in the long-term.

Chapter 1 analyses the distribution of investment in dirty versus clean technologies when

capital in each technology is fully utilized. Chapters 2 and 3 posit variable utilization

of capital that leads to the efficient temporary pausing or permanent abandoning of the

production using specific capital because of concerns about the environment.

Chapter 2 examines underutilizing pre-existing capital to preserve the environment

building on Chapter 1. Emissions of clean technology investment can rationalize the

immediate retirement of dirty technology capital. Only clean technology produces energy

for consumption and investment in the long-term on such a path, on paths with initially

partially utilized and successively idle dirty technology capital, and on paths in which

dirty technology capital is used up in finite time and is not rebuilt. All these paths

require that large renewable energy capital can be built at sufficiently low cost. This

cost does not need to be lower than the cost of building fossil-fuel engines and plants.

Empirical examinations have to determine if technological improvement in recent years

has been sufficient for this. The former two paths apply now in this situation and in the

near future if technological improvements lead to this situation within the next 50 years

which is the usable time of a newly built coal power plant. Pre-existing fossil-fuel engines

and power plants for cooling and heating, light, stationary drive, or mobility (dirty energy

2



production capital) are stranded—in the former two paths—because the endogenous cost

of polluting in growing the economy with energy production using solar panels, wind

turbines, geothermal heat pumps, and hydroelectric dams for stationary energy use and

transportation, and energy conversion from sugarcane or algae for mobility (clean energy

production capital), is greater than the cost of reducing pollution by not using the dirty

energy production capital.

Decommissioning productive dirty technology capital can be also optimal if the harm

of affecting the environment is sufficiently large. The latter, for example, can motivate a

phase-out of nuclear power with underutilization or a ban of using pre-existing genetically

modified seeds, pesticides, or derivatives of fossil fuels in contact with food. In these cases

the basic model may benefit from an extension to uncertain effects of pollution. The model

applies to the underlying environmental concerns of practiced public policy on local air

pollutants, lead pipes, acid rain, ozone-depleting substances, or ocean fish that aims at

retiring specific automobiles, water pipes, refrigerants, or fishing vessels, respectively,

under a strong environmental feedback. In these cases seemingly in the allocation that

the policy targets, that might be an optimum, investment is banned by governments in

some technologies whose (1) capital in place is used up or (2) capital is underutilized and

unutilized capital becomes unproductive.

Determining an optimal climate policy taking into account the emissions of invest-

ment and locational technology scale for given productivity requires empirical modeling

in further research. Postponing the use of dirty technology capital early in the planning

horizon optimally smooths both the sequences of pollution and dirty technology capital if

there is efficient use of such pre-installed capital. A simulation shows that this occurs for

initial pollution levels in the optimization that are smaller than its long-term level given

a strictly convex utility function in pollution on a competitive equilibrium path that has

started without government policy and with a pollution level that does not marginally

affect utility. This result is in contrast to a model in the literature with chosen under-

utilization of fishing vessels that fosters the regeneration of fish stock, where capital is

optimally underutilized only if the biomass is smaller than its long-term level. This seems

to be the only model in the literature with optimized utilization of a variable capital stock

and a replenishable environmental stock. In Chapter 2 and in this fishery example there is

a trade-off between consuming output and an environmental impact of production. Here

3



production enhances pollution which adversely affects utility. There production reduces

the fish stock and the fish stock positively affects productivity. Here lack of government

policy leads to a large dirty technology capital stock that is efficiently underutilized be-

cause in any period the absorption of pollution in the environment is lower than pollution

which thus can be persistent. There the economy escapes an open-access regime with

full utilization toward the efficient long-term allocation because the open-access regime is

located for steady biomass levels derived from an inverted U-shaped regeneration function

of biomass. The long-term steady state of the competitive equilibrium without taxes or

subsidies is in the subregion of underutilized dirty technology capital in the state plane

of pollution and dirty technology capital. The difference with the level comparison of the

environmental stock arises because here the marginal utility of consumption is an oppor-

tunity cost of investment and there the cost of investing is exogenous. This is important

for climate policy as the current atmospheric carbon dioxide content may be below its

efficient long-term level in a model in which it has deterministic effects on society.

In Chapter 3 the dispatch of dirty and clean production capacity responds to the

fluctuation of clean technology inputs, in particular of renewable energy for electricity

production. This contingency is considered in a structure of uncertainty and embedded

in an extension to the economy of Chapter 2. As in reality, uncertainty about solar or

wind energy technology productivity resolves after its investment. The result of Chapter

1 about exclusive use of clean renewable energy technology is modified in a given pe-

riod that consists of multiple days with fluctuating renewable energy supply. Fossil fuels

are efficiently deployed to back up clean solar or wind energy conversion when the solar

radiation is sufficiently weak or the wind speed is sufficiently low in some day within a

period, to smooth consumption. Chapter 3 shows that certain technology-specific gov-

ernment policy internalizes the pollution externality. One example is a uniform tax on

energy and a clean energy subsidy that rebates the tax amount. A further example is

a discriminatory surcharge between households on the uniform price of dirty and clean

technology output that funds a clean output subsidy.

(ii) Efficiency. In Chapter 2 the underutilization of capital is optimal because the

investment is inefficient prior to optimization. This leads to overcapitalization in dirty

technology relative to an optimum. In regard to climate change this can be explained by

the lack of knowledge about the dirtiness of production at the time of investment. As
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time goes on and the dirty character of production is known, one may argue that the

political process fails to develop policies that internalize the external effect. Similarly,

research may show that some reason is majourly responsible for the cyclical inefficient

investment in low-productivity projects. As bubbles recur one might argue that the

political process is inapt to provide a legal framework in which private agents make

efficient decisions. In contrast, the overinvestment regarding the environment does not

fundamentally self-correct while each cyclical bubble succeeds a correction of prices on

markets. The overinvestment regarding the environment may be corrected incompletely

in competitive equilibrium without taxes or subsidies when pollution affects output.

Deterministic effects of emissions on society facilitate discussion of results prone to

technological explicitness. There is uncertainty about the effects of human activities on

climate change, and the latter’s effects on society. Understanding the implications of this

uncertainty for optimal and market equilibrium allocations given heterogeneous capital

is the subject of future research.
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1

Capacity choice in dirty technology and

clean technology

This chapter examines the efficient use of dirty and clean technologies when their in-

vestment creates emissions of the same kind that the use of dirty technology generates.

Clean technology use does not create emissions. Full utilization of capital is assumed to

focus on the role of investment-related emissions for the efficient long-term distribution

of investment among dirty and clean technologies. Then dirty technology capital is used

up in finite time if there is no dirty technology capital in the long-term. In Chapter 2

the utilization of capital is optimized so that pre-installed dirty technology capital can

be optimally idle.

A novelty is the classification of efficient dirty and clean technology use given a dirty

character of clean technology. Climate change is an example, because building capital

in renewable energy technologies creates carbon dioxide and methane emissions. Opti-

mal greenhouse gas emissions plans should take into account the optimal deployment of

technologies that are responsible for the emissions. This chapter concludes that clean

technology may be exclusively used in optimum though its investment is polluting—

replacing emissions of dirty technology use. Clean technology may be used exclusively in

the long-term, even if it is less productive than dirty technology on all scales of invest-

ment. Renewable energy technologies are less productive than fossil-fuel technologies on

large scale. A necessary condition for the exclusive long-term use of clean technology is

that the stationary technology-specific cost of pollution reduction is weakly smaller for

6



dirty technology. This may well be true for renewable energy versus fossil-fuel technolo-

gies on small scale of aggregate investment. Future work may determine if or under what

pace of technical progress the scale of high-productivity renewable energy technologies

is large enough to support such a long-term optimum. Three known reasons why clean

technology should be used exclusively in the long-term are (1) pollution harms society

strongly, (2) abandoning the use of an input in dirty technology is optimal, because its

extraction is too expensive or its stock is depleted, for example in Tahvonen (1997) de-

pending on the extraction cost function, and (3) clean renewable energy technology takes

over dirty fossil-fuel energy technology in terms of productivity, for example, through a

learning effect in Hartley et al. (2010) when pollution is not controlled. In a study of

directed technical change, Acemoglu et al. (2012) assume imperfect substitution of the

output of clean and dirty technology types, so that optimal technological progress involves

a switch in research effort toward clean technology but prevents its optimal exclusive use.

In contrast to Acemoglu et al. (2012), emissions in renewable energy technology invest-

ment suggest that a carbon tax or another instrument to internalize a carbon emissions

externality should be applied permanently.

The second point of interest of emissions in investment is its effect on the long-term

cost of polluting if dirty technology is used in the long-term. The cost of polluting is the

marginal rate of substitution of pollution reduction and consumption increase. This cost

equals the relative price of pollution reduction corresponding to the dirty technology if

dirty technology is used. Society is willing to pay more consumption units to preserve

the environment if it has less polluting technology. Accounting a greater portion of

emissions in investment lowers the complete emission intensity of dirty technology if the

time discount factor is not too small. Then disregarding emissions from investment in

dirty technology biases the stationary cost of polluting downward.

I use heterogeneous capital to study effects of the technology-specific rate of emissions

in investment. Optimal minimum pollution can be ruled out by assuming small societal

impacts by small pollution, there is no nonreproducible factor or cumulative cost for us-

ing dirty technology, and no technological progress, so that only the emissions remain as

an incentive for exclusive stationary use of clean technology. The emissions from using

dirty technology are proportional to valuable output. Finite resources can be consumed

or invested. Dirty and clean technologies produce perfectly substitutable output. There-

7



fore, the model differs from those used in the literature with technology choice and the

environment even if technology-specific investment does not control emissions. In Ace-

moglu et al. (2012) finite resources can be distributed to dirty and clean production in

each period. They stress an imperfect substitution of dirty and clean inputs that suits an

energy-using good and a non-energy using good. In Fischer, Withagen & Toman (2004)

investible resources are finite and there is no trade-off between consumption of capital

services and investment. But optimal investment is unconstrained so it could be un-

bounded. These papers assume complementary services and emissions.1 Keeler, Spence

& Zeckhauser (1971), Brock (1977), Tahvonen & Kuuluvainen (1993), Stokey (1998), and

Brock & Taylor (2010) assume that output is produced using the substitutable factors

capital and emissions. This substitutability can be interpreted as technology choice in

controlling the emission intensity of gross output (Stokey 1998, Copeland & Taylor 2004).

Luptačik & Schubert (1982), van der Ploeg & Withagen (1991), and Ayong Le Kama

(2001) assume one technology with a specific emission intensity of output, to focus on

the respective purpose of their papers. I extend their modeling approach to multiple

technologies and emissions of investment. Aggregate investment in clean technologies

and the cost of polluting in the following period relate weakly positively if emission in-

tensities of investment in dirty and clean technologies are equal. This follows from the

scale-dependent relative cost of dirty and clean technologies. In a study of nonrenew-

able resource depletion, Tahvonen & Salo (2001) formulate a scale-dependent relative

advantage of a nonrenewable resource technology and an alternative renewable resource

technology. Pollution is not controlled, whereas this paper has an environmental motive.

The next section characterizes stationary points and studies the dynamic behaviour

of optimal plans. The section shows how the accounting of emissions in producing a

factor versus proportionally to investing the factor biases the stationary cost of polluting.

Section 1.2 examines optimal clean technology investment when there are multiple dirty

technologies versus one dirty technology, and characterizes investment in multiple dirty

technologies. Section 1.3 views delayed effects of emissions on society, and Section 1.4

concludes with a discussion of results.

1Tsur & Zemel (2009) make the size of the economy responsible for technology adoption in producing
a factor that is used with a reproducible factor in a substitutable manner. The economy switches from a
flow-cost technology to a capital-based technology when this becomes affordable starting at low amounts
of the reproducible factor.
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1.1 The economy

Consider a discrete-time economy with heterogeneous reproducible assets. A planner

chooses a policy that internalizes feedbacks from the environment on society. For example,

carbon dioxide in the atmosphere reduces the utility of consuming following floods or

droughts, or diminishes health through climatic effects.

Preferences.—There is a unit mass of infinitely-lived households with identical prefer-

ences regarding consumption c ∈ R+ and pollution Z ∈ R represented by

J =
∞
∑

t=0

βtU(c(t), Z(t))

where β ∈ (0, 1) is the discount factor and time is t. The period-utility function U(c, Z) ∈

R is twice-differentiable for positive consumption, increasing in consumption c ∈ R+,

∂U/∂c > 0, and decreasing in pollution, ∂U/∂Z < 0, for c > 0. The utility func-

tion is strictly concave in consumption and concave in pollution, ∂2U/∂c2 < 0 and

∂2U/∂Z2 ≤ 0 for c > 0. Both pollution reduction and consumption are noninferior

goods.2 The marginal utility of consumption ∂U/∂c approaches a large positive value

M as consumption tends to zero, limc→0 ∂U/∂c = M ≤ ∞, for all Z. Then at least

one household consumes a positive amount in any period t ∈ {0, 1, 2, . . .} in a Pareto

optimum.

Technology.—Each technology indexed j ∈ {B,C} uses capital Kj to produce a factor

that is input in producing consumption and investment goods. The input amount xj

produces additions to the capital stock of technology j. The resource constraint of the

factor is

c(t)/B + xB(t) + xC(t) ≤ KB(t) +KC(t) (1.1)

all t ≥ 0. A change in the productivity B > 0 in the consumption sector has real effects.3

2Noninferiority, min[(∂2U/∂c2)(∂U/∂Z)/(∂U/∂c), (∂2U/∂Z2)(∂U/∂c)/(∂U/∂Z)] ≥ ∂2U/∂c∂Z such
that at least one inequality is strict, is a reasonable assumption. If there were markets for consumption
and environmental quality then a household with greater income acquired weakly more consumption and
reduction of pollution, and more of one of them. Keeler et al. (1971) assume noninferiority.

3A greater B makes both pollution reduction and consumption more affordable yet polluting relatively
more expensive in terms of welfare. Thus it increases long-term consumption while its effect on long-
term pollution is ambiguous. One may rewrite the inputs in the investment sector and capital amounts
in terms of the consumption good and rescale both the productivity in the investment sector and the
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The capital stock equals production capacity. The law of motion of capacity is

Kj(t+ 1) = Qjxj(t) (1.2)

where Qj > 0. Thus capital is useful once. Multiple use-periods of capital would yield

the same timing of investment. Importantly, capital of some technology is scrapped

rather than used when investment in this technology is not worthwhile for a long time.

The perpetual inventory method, which the law of motion (1.2) is consistent with at full

depreciation of capital, would imply that a technology is used forever when there is capital

in this technology at some date at less than full depreciation. I assume the following.

Assumption 1.1 QB > β−1.

Then growth of consumption and output is feasible and optimal absent environmental

cost. I do not substitute the new capital units into the resource constraint to analyse the

stability of fixed points locally using a dynamical system with shadow prices of capital.

Capacity of technology j ∈ {B,C} is bounded,

K̄j ≥ Kj(t+ 1), (1.3)

all t ≥ 0 because of limited recyclable material to create capital or finite space to put cap-

ital, whichever yields the lower bound. This constraint is plausible for energy-producing

capital and different for each technology j ∈ {B,C} for simplicity. At least one capacity

level is positive among the given Kj(0) ∈ [0, K̄j] for j ∈ {B,C}.

Environment.—Production of one unit of the good using dirty technology B, for exam-

ple, fossil-fuel based production of useful energy for consumption or investment, creates

dB > 0 units of emissions. The use of clean technology C, for example, solar or wind

energy conversion, does not create emissions, dC = 0. Investment-related emissions are

proportional to the input in investment at rate ρj. Aggregate emissions are

E =
∑

j

(djKj + ρjxj)

where ρj ≥ 0 to visit the case of emission-free investment, ρj = 0. Emissions specific to

emission intensity of processes, which are described below, without affecting results.
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investment occur in the production of copper, aluminum, and primary steel using coking

coal in smelters and foundries, cement production using limestone, and land-use change in

mining. Some emissions from agriculture and deforestation may be specifically attributed

to investment. I posit the law of motion of pollution

Z(t+ 1) = Z(t) + E(t)− A(Z(t)) (1.4)

all t ≥ 0 to analyse a stable environmental state. The absorption A(Z) < Z of pollution

is a twice differentiable nondecreasing concave function, ∂2A/∂Z2 ≤ 0 ≤ ∂A/∂Z. I make

one assumption about the parameters.

Assumption 1.2 (ρC − ρB)QC < dBQB.

Then there is stationary clean technology investment if its productivity is relatively

greater, QB < QC , and it is more emission-intensive, ρB < ρC . The relationship holds

trivially if ρB ≥ ρC , and is plausible else, if there is a technical upper bound on QC .

Let the utility function U satisfy essential independence of the distribution of consump-

tion among households and the Pareto optimal level of pollution. Then any redistribution

of consumption yields the same Pareto optimal path of pollution. Bergstrom & Cornes

(1983) define essential independence of the distribution of a private good and the level of a

public good or bad.4 For simplicity I focus on an allocation with equal consumption of all

households. A Pareto optimal policy of consumption and input in investment (c, x) ∈ R
3
+

maximizes welfare J subject to the resource constraint (1.1), the laws of motion (1.2) and

(1.4) and capacity constraints (1.3) for j ∈ {B,C} all t ≥ 0. Lagranges’ function

L =
∞
∑

t=0

βt
{

U(c(t), Z(t)) + ǫ(t)
[

Z(t+ 1)−
∑

j

(djKj(t) + ρjxj(t))

− Z(t) + A(Z(t))
]

+
∑

j

(qj(t)[Qjxj(t)−Kj(t+ 1)] + λKj
(t+ 1)Kj(t+ 1)

+ βwj(t+ 1)[K̄j −Kj(t+ 1)] + λxj(t)xj(t)) + λ(t)
[

∑

j

(Kj(t)− xj(t))− c(t)/B
]}

contains the multipliers ǫ of the transition law of pollution and qj of the law of motion of

4Kreps (1990, 161) shows that a set of nonnegative welfare weights of households exists such that each
Pareto optimal allocation maximizes the weighted sum of utilities of all households.
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capital in technology j, λ of the resource constraint, and wj of the capacity constraint in

technology j. These multipliers can be interpreted as the shadow prices of the respective

constraints in an optimum, for example, ǫ(t) of the constraint with leading pollution

Z(t + 1), and qj(t) of the constraint with leading capital Kj(t + 1). One may call these

multipliers shadow prices of the respective states, and refer to λ and wj as the shadow price

of contemporaneous output and of the contemporaneous capacity bound, respectively.

Maximizing L yields the following first-order necessary conditions. They are written

as inequalities when any of the nonnegative multipliers λKj
or λxj is positive and the

respective capacity Kj or input amount xj is zero. The first-order necessary condition of

pollution in period t ∈ {1, 2, . . .},

ǫ(t) = β(−∂U/∂Z(t+ 1)) + β(1− ∂A/∂Z(t+ 1))ǫ(t+ 1), t ≥ 0, (1.5)

is a difference equation of the shadow price ǫ. This standard condition tells that ǫ(t) is

a weighted sum of future marginal disutility of pollution, the weights being the marginal

contributions of current emissions to future pollution.5 The shadow price of pollution

enters the unit value {λ − dBǫ} of dirty technology capacity as a cost. The discounted

marginal benefit from additional capital in period (t + 1) balances the shadow cost of

holding capital,

β{λ(t+ 1)− djǫ(t+ 1)} − βwj(t+ 1) ≤ qj(t), = if Kj(t+ 1) > 0, (1.6)

all j ∈ {B,C} and t ≥ 0. The shadow rental value of space, wj(t), is zero if Kj(t) < K̄j.

The marginal utility of consumption ∂U/∂c equals the shadow price of output divided by

the productivity in the consumption sector, λ/B, since ∂U/∂c is large as consumption

tends to zero. The marginal benefit of investing xj units at most equals its marginal cost,

Qjqj(t) ≤ λ(t) + ρjǫ(t), = if xj(t) > 0, j ∈ {B,C} (1.7)

all t ≥ 0. The marginal cost comprises the cost of reduced current output and envi-

5The law of motion (1.4) of pollution specifies Z(t) = Φ(E(0), E(1), . . . , E(t − 1), t) all t ≥
1. Let Φ(·, t) be differentiable with respect to emissions amounts. The weighted sum ǫ(t) =
∑∞

j=1 β
j(−∂U/∂Z(t+ j))(∂Φ(·, t+ j)/∂E(t)) is the forward solution of (1.5) at ∂Φ(·, t+ 1)/∂E(t) = 1

and ∂Φ(·, t+ j)/∂E(t) =
∏j−1

s=1(1− ∂A/∂Z(t+ s)) for j ≥ 2.
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ronmental cost by the investment sector. The next proposition states an existence and

uniqueness result regarding an optimal plan, that is defined as an allocation of policy

variables and the states pollution and capital.

Proposition 1.1 There is a unique optimal plan.

Thus, the planner’s objective is well-defined. A proof of Proposition 1.1 is in the appendix.

The following examines efficient investment.

1.1.1 Investment in dirty versus clean technology

Technology switching.—The optimal technology choice depends on the value of the (marginal)

cost of polluting, or benefit of pollution reduction, defined as

θ = ǫ/(∂U/∂c)

which hinges on its numerator, the shadow price ǫ of pollution in terms of utils, and

its denominator, the marginal utility of consumption. Precisely, θ is the relative will-

ingness to pay for pollution reduction versus consumption increase. Furthermore define

the marginal rate of substitution of consumption in periods t and (t + 1), R(t + 1) =

(∂U/∂c)(t)/β(∂U/∂c)(t+ 1). Then the conditions (1.6) and (1.7) imply that

Qj{B − djθ(t+ 1)}

B + ρjθ(t)











>

=

<











R(t+ 1) =⇒ Kj(t+ 1)











= K̄j

∈ [0, K̄j]

= 0

, (1.8)

all j ∈ {B,C}. There is investment Qjxj(t) > 0 only if the marginal rate of return on

investment, the left side in (1.8), is weakly greater than the shadow return R(t + 1).

The costs of polluting θ(t) and θ(t + 1) suppress the rate of return on investment below

the marginal product Qj. Investing in a given technology costs more if building new

capital units or using these capital units creates more emissions. Thus, the rate of return

Qj{B − djθ(t + 1)}/{B + ρjθ(t)} on investment decreases in the emission intensities dj

and ρj. The condition (1.8) confirms the intuition that if the return on investment in

some technology exceeds the return on investment in another technology, then there is

investment in the latter technology only if the former technology exhausts its capacity
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Figure 1.1: Investment if QB > QC .

bound. The following analyses dirty versus clean technology investment using the critical

curve that equates their rates of return. This helps finding an optimal path knowing the

long-term cost of polluting, which is examined below. One particular sequence of θ is

optimal. I distinguish three cases with different qualities.

(a) Case QB > QC . A relatively small productivity of clean technology makes investing

in clean technology particularly dependent on the relative emission intensity in producing

capital. Figure 1.1 shows the regions of investment in the dirty and clean technology in

(θ(t), θ(t + 1)) space. In each of the panels there is a different relationship of ρB and

ρC . In the shaded region IC investing in clean technology has priority, xC ∈ (0, K̄C/QC)

and xB = 0, or xC = K̄C/QC and xB ≥ 0. The region IB below the critical curve then

designates allocations with favoured dirty technology investment, xB ∈ (0, K̄B/QB) and

xC = 0, or xB = K̄B/QB and xC ≥ 0. Clean technology is relatively more attractive for a

large current cost of polluting θ(t) if building dirty technology capital is relatively more

emission-intensive, ρB > ρC . The incentives to invest in dirty versus clean technology do

not depend on the concurrent θ if the input use for these investment is equally polluting,

ρB = ρC , since then the input use in either technology has the same environmental

effect. These incentives still depend on the cost of polluting in the period in which the

investment good is used. Clean technology must overcompensate its relatively greater

emission intensity in creating new capital, ρB < ρC , through a greater cost of polluting

θ(t+ 1) in the period following investment given θ(t), because θ(t+ 1) negatively affects

the net benefit of using the dirty technology.

(b) QB ≤ QC and ρB < ρC . A weakly greater productivity of clean technology than the
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Figure 1.2: Investment if ρB < ρC .

productivity of the dirty technology, QB ≤ QC , induces clean technology investment in a

stationary allocation in which consumption, technology-specific investment, and pollution

are constant (stationary point). This can be seen in Figure 1.2. The intercept of the

critical curve in θ(t)-θ(t+ 1) is nonpositive. Assumption 1.2 guarantees that the slope of

this curve is less than one, so that the dashed 45-degree line that includes any stationary

cost of polluting lies in the space of investment in clean technology.6 As will become

clear below, dirty technology investment then requires a current high cost of polluting

and decreasing shadow cost of pollution ǫ, or small scale of clean technology. The first

situation requires strictly concave utility in pollution and therefore seemingly arises only

if pollution Z is greater and aggregate capacity KB + KC is smaller than their long-

term levels, respectively. This situation is unlikely the outcome of an economy subject

to no taxes and subsidies in which pollution is accumulated by emissions proportional to

capital.7

(c) QB ≤ QC and ρC ≤ ρB. A relatively large productivity and small environmental

cost of clean technology make clean technology investment optimal at any date t ≥ 0. The

critical curve has a nonpositive intercept and is nonincreasing in θ(t). Thus investment

in technology C is worthwhile in the entire space R
2
+ of nonnegative costs of polluting.

Dirty technology investment may be efficient—as in case (b)—if the scale K̄C of clean

6The general condition required for the slope is (ρC−ρB)(dB−dC)QCQB < (dBQB−dCQC)
2. Assume

that dBQB > dCQC ≥ 0. Then (dθ(t+1)/dθ(t))|θ(t)=0 < 1 if and only if the symmetric condition holds.
7Capital destruction can lead to low capital and high pollution. This means that dirty technology

investment efficiently recovers an economy after the unanticipated capital destruction before a switch to
clean technology.
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technology is small relative to desired output.

Investment switches between technologies if their scale K̄j is large and the pair of the

costs of polluting crosses the critical curve. I examine this switching after showing the

uniqueness of certain types of stationary points and their stability.

Stationary points.—A stationary point is a set of values of policy variables and pollution

which are constant in a dynamic plan.8 The following two lemmata provide results that

are helpful in proving the uniqueness of certain stationary points.

Lemma 1.1 The cost of polluting is bounded above, θ ≤ θj = B(βQj − 1)/(ρj + βdjQj),

at a stationary point with investment, xj > 0, in technology j ∈ {B,C}—dirty technology

B or emission-intensive clean technology C, that is, ρC > 0.

Proof. Either capital is interior, Kj ∈ (0, K̄j), or at the upper bound, Kj = K̄j. Then

condition (1.8) at R(t+ 1) = β−1 implies that θ = θj or θ ≤ θj, respectively. Q.E.D.

The relative price of pollution reduction versus consumption increase is θj, with price of

pollution reduction in the numerator. The marginal rate of substitution of consumption

and pollution, θ, equals θj if the use of technology j is scaled to optimize pollution and

weakly undermines θj if society uses technology j to its full extent K̄j. The stationary

level θ depends on tastes only through the discount factor when investment is interior,

Kj ∈ (0, K̄j), for some technology j, because the technologies are linear.9

Lemma 1.2 There is constant consumption or an inverse continuous relationship be-

tween consumption and pollution on a curve φ(c, Z) = β[(−∂U/∂Z)/(∂U/∂c)]/(1−β(1−

∂A/∂Z)) equal to the stationary cost of polluting θ.

This result follows from the noninferiority of pollution reduction and consumption. A

proof is in the appendix. Consumption is constant for pollution levels at which both

8Idling capital may depreciate so that capital does not need to be constant if the utilization of capital
can be chosen. At any stationary point capital is fully utilized if investment occurs, since investment has
occured in the preceding period and ongoing underutilization is wasteful. Investment in clean technology
is zero if and only if clean technology capacity is zero, because there is no cost of using clean technology
capital.

9The stationary level of θ may depend on preferences of consumption and pollution if the factor was
substitutable for another factor, for example, labour in producing consumption goods and investment
goods. In models with production using substitutable factors capital and emissions preferences are needed
to find the levels of capital and emissions, which are necessary to compute the stationary cost of polluting.
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the utility and the absorption is a linear function of pollution. The stationary cost of

polluting is positive. The shadow return equals β−1 in a stationary allocation. Thus there

is no stationary investment in the clean technology, if its marginal product is smaller than

the inverse of the discount factor, QC ≤ β−1 and ρC > 0, or QC < β−1 and ρC = 0. The

next two propositions consider this.

The following lemma helps proving the next proposition and the type of an optimal

stationary point when there is a continuum of stationary points.

Lemma 1.3 Consumption increases more relative to pollution when expanding clean ca-

pacity than when increasing dirty capacity, (QC − 1)/ρC > (QB − 1)/(ρB + dBQB), if

the cost of pollution reduction is weakly greater for the clean technology with emissions of

investment, θB ≤ θC and ρC > 0.

Proof. The result is immediate from (QC − 1)/(QB − 1) > (βQC − 1)/(βQB − 1) ≥

ρC/(ρB+βdBQB) > ρC/(ρB+dBQB) using the definition of θj and discounting, β < 1, if

QB > QC . Assumption 1.2 implies that (ρB − ρC + dBQB)(QC − 1) > 0 ≥ ρC(QB −QC)

since 0 ≤ ρC and 1 < QB, if QB ≤ QC and ρB < ρC . Rearranging the outer relations

implies the result. The same applies to QB ≤ QC and ρB ≥ ρC , alternatively then

(QC − 1)/(QB − 1) ≥ 1 > ρC/(ρB + dBQB) for dB > 0. Q.E.D.

The previous lemma does not require Assumption 1.2 if the emission intensities in

investment are equal, ρB = ρC . The next proposition reports different stationary points.

Proposition 1.2 Let investment in the clean technology create emissions, ρC > 0. There

is a unique stationary point with exclusive clean technology use (CU), xB = 0 < xC, or

joint dirty and clean technology use (JU), xB > 0 and xC > 0, if the cost of pollution

reduction in terms of consumption decrease is smaller for the dirty technology, θB < θC.

There is a continuum of stationary points, that includes a unique optimal point, which

is either of type CU or JU, if θB = θC and K̄B + K̄C is sufficiently large. There is a

unique stationary point JU, or a unique stationary point with exclusive dirty technology

use (BU), xB > 0 = xC, if θC < θB.

Proof. Lemma 1.2 implies a horizontal or downward-sloping curve φ in the pollution-

consumption space. Consumption may be constant for some or all pollution levels. (I) If

θB < θC then let xB = 0 and vary xC ∈ (0, K̄C/QC ]. The laws of motion at stationary
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levels, Z(t) = Z(t+1) andKj(t) = Kj(t+1) all j ∈ {B,C}, read c/B =
∑

j(Qj−1)xj and

A(Z) =
∑

j(djQj + ρj)xj. These equations are differentiable with respect to consumption

c, input amounts xB and xC in investment, and pollution Z. The resulting curve χ(c, Z)

from these laws slopes upward and is depicted in Figure 1.3. Clean capacity is below the

maximum amount K̄C if the intersection with the curve θC = φ(c, Z) is Southwest to the

point on χ for KC = K̄C . Clean capacity is constrained if this intersection is Northeast.

There is no investment in dirty technology, xB = 0, if the point is on the thick section in

Figure 1.3. Depending on the location of the point on χ relative to θB = φ for small K̄C

there is investment in dirty technology, xB > 0. Dirty capacity is constrained so that θ ≤

θB if K̄B is small. (II) If θB = θC then there is a continuum of stationary points provided

that there is an intersection of χ on {xB = 0, xC ∈ (0, x̄C ]} ∪ {xB ∈ (0, x̄B], xC = x̄C}

and θC = φ, that is, given sufficiently large x̄j = K̄j/Qj some j ∈ {B,C}. The optimal

stationary point is unique, because by Lemma 1.3 investing in clean technology yields

relatively greater consumption for given pollution increase—(i) xC ≤ x̄C and xB = 0,

or (ii) xC = x̄C and xB > 0 depending on where φ intersects χ with hypothetical large

K̄C . Figure 1.3 shows these two points for different bounds K̄C as the two leftmost dots.

(III) The case θC < θB is reversed to (I). The slope on χ may be relatively smaller

or equal for the dirty technology, which cannot occur for the clean technology in (I)

given the assumption (ρC − ρB)QC < dBQB. There is relatively more consumption

through expanding dirty capacity if QC < βQ = ((dBQB + ρB − ρC)/(ρB + dBQB)) +

(ρC/(ρB+dBQB))βQB. In this case and for equal consumption increase for given pollution

among the dirty and clean technologies QC ∈ [βQ,Q). Clean technology productivity

is QC ∈ [βQ,Q) if there is relatively less consumption from investing more in dirty

technology despite θC < θB. Q.E.D.

The unique stationary point has either exclusive use of clean technology, simultaneous

deployment of dirty technology and clean technology, or exclusive use of dirty technology,

in contrast to dichotomy between the latter two (called Golden Age and Murky Age)

in Keeler et al. (1971) in terms of emission prevention in producing output. Multiple

stationary points exist only if the perpetual relative price of pollution reduction through

dirty technology and clean technology is equalized, θB = θC .

Only clean technology is used if the cost of pollution reduction in terms of consumption

decrease is smaller for the dirty technology, θB < θC , and the scale of the clean technology
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Figure 1.3: Stationary points for θB ≤ θC .

is sufficiently large. This requires sufficiently productive clean technology, QC > β−1.

Only dirty technology is used when the pollution reduction cost of the dirty technology

is relatively high, θC < θB, unless the scale of the dirty technology is too small. Table

1.1 shows the stationary points dependent on the emission intensity of clean technology

holding all other parameters constant. Here QC > β−1 is assumed in three cases of

different scale of clean technology, K̄C . Define φC as the level φ in Lemma 1.2 evaluated

at c = B(1 − 1/QC)K̄C and Z = A−1((ρC/QC)K̄C). Let ρ∗ be the level ρC at which

φC = θC and define ρ∗∗ as such level that solves θB = θC .
10 A type CU stationary point

with interior clean capacity requires a large scale of clean technology, that is, θB < φC ,

since only then θB < θC < φC , or equivalently, ρ∗ < ρC < ρ∗∗, is feasible. In the cases

denoted by asterisk clean capacity is constrained, KC = K̄C , because the cost of polluting

θ is high relative to the clean technology scale K̄C so that ρC ≤ min[ρ∗, ρ∗∗].

An exclusive use of clean technology arises because its investment carries an environ-

mental cost. Such an allocation can be optimal if dirty technology has a relative advantage

to clean technology at all scales of clean technology, QB > QC , and for utility functions

with small marginal utility of small pollution.11 This result can be extended to include

multiple clean technologies when there are multiple technologies. Capacity in both the

10There is a unique level ρ∗ because φC weakly increases in ρC and θC decreases in ρC such that
θC → 0 as ρC → ∞ and θC → ∞ as ρC → 0.

11Stationary clean technology investment follows from Lemma 1.1 if QB ≤ QC . The Case ρB < ρC
yields θB < θC , because (ρC − ρB)QC < dBQB implies that ρC < ρB + β(ρC − ρB)QC < ρB + βdBQB .
The Case ρC ≤ ρB directly shows that θB < θC .
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Large scale of clean technology, θB < φC
0 < ρC < ρ∗ CU, θ ∈ (θB, θC) (*)
ρC = ρ∗ CU, θ = θC (*)
ρ∗ < ρC < ρ∗∗ CU, θ = θC
ρC = ρ∗∗ optimum stationary point JU, θ = θB = θC
ρ∗∗ < ρC BU, θ = θB, if K̄B is large, otherwise JU, θ ≤ θB
Medium scale of clean technology, θB = φC
0 < ρC < ρ∗ CU, θ = θB (*)
ρC = ρ∗ optimum stationary point JU, θ = θB = θC (*)
ρ∗ < ρC BU, θ = θB, if K̄B is large, otherwise JU, θ ≤ θB
Small scale of clean technology, θB > φC
0 < ρC < ρ∗∗ JU, θ = θB (*)
ρC = ρ∗∗ optimum stationary point JU, θ = θB = θC (*)
ρ∗∗ < ρC BU, if K̄B is large, otherwise JU, θ ≤ θB

Note: CU=exclusive clean technology use, JU=joint use of dirty and clean technol-
ogy, BU=exclusive dirty technology use.

Table 1.1: Stationary points.

dirty and clean technology is constrained in the unique stationary point if the capacity

bounds are too small. Dirty technology may only have a small scale if it is endogenous.

The scale of dirty energy technology may be endogenous through nonrenewable fossil

fuel supply, which is the subject of further research. Dwindling fossil fuel supply and

limited technical progress in converting its energy may lead to exclusive long-term use of

renewable energy technologies for a wide array of energy services.

A stationary point is generally unique because goods are noninferior and the utility

function is concave. These assumptions imply uniqueness if substitutable capital and

emissions produce net output, for any returns to scale and proven in notes available upon

request. The literature has not made this clear. Contrary to a supposition of Keeler et al.

(1971) multiple stationary points do not exist in their model. The reason is that the

noninferiority ensures that (−∂U/∂Z)/(∂U/∂c) equal to a constant relates pollution and

consumption negatively or holds one of them constant. Tahvonen & Kuuluvainen (1993)

prove uniqueness under the more restrictive assumptions (1) nonincreasing marginal util-

ity of consumption in pollution, ∂2U/(∂c∂Z) ≤ 0, compared to noninferiority, and (2)

strict concavity of utility in pollution compared to concavity.

Multiple stationary points arise from production technology—at locally constant re-
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turns to scale of dirty and clean technology. The wealth effect of the environmental asset

on utility is special in assuming noninferior goods. Multiplicity in Tahvonen & Kuulu-

vainen (1993) using two assets pollution and a production factor can occur because of the

unspecified wealth effect for the same reason as in a model with one asset in Kurz (1968).

A decreasing absorption motivates multiple stationary points in Tahvonen & Withagen

(1996) and Tahvonen & Salo (1996).

Without emissions from investment in clean technology, ρC = 0, dirty rechnology

use is the only source of pollution inflow. There must be dirty technology capital in a

stationary point unless the scale of clean technology is sufficiently large and the marginal

utility of pollution at minimum feasible pollution Zmin is sufficiently large. The exclusive

investment in clean technology in Proposition 1.2 does not rest on the latter condition.

The following proposition shows the stationary level of clean capacity and when it is the

only provider of output.

Proposition 1.3 Let investment in the clean technology be emission-free, ρC = 0. There

is a unique stationary point with KC = K̄C (KC = 0) if the clean technology productivity

QC is greater (smaller) than β−1. There is a continuum of stationary points, and clean

capacity is at its upper bound, KC = K̄C, at the unique optimal point if QC = β−1. Clean

technology is exclusively used, xC > 0 = xB, in the unique stationary point if and only if

QC > β−1 and the cost of polluting φ evaluated at c = (1 − 1/QC)K̄C and Z = Zmin is

weakly greater than the cost of pollution reduction of the dirty technology, θB, and in the

unique optimal stationary point if and only if QC = β−1 and φ ≥ θB.

Proof. (i) The result follows for QC 6= β−1 since R(t + 1) = β−1 in a stationary point.

Expanding clean capacity KC on [0, K̄C) for QC = β−1 weakly increases consumption and

strictly reduces pollution through substitution for KB on the given curve χ(c, Z) = θB.

Then KC = K̄C is the preferred clean capacity level. (ii) “if.” Dirty technology use would

raise θ above φ evaluated at mB = 0 and thereby contradict that investment in dirty

technology is worthwhile. “only if.” The relation of the marginal product QC of clean

technology and the time discount factor β follows from (i). The cost of polluting is φ

evaluated at c = (1−1/QC)K̄C and Z = Zmin if there is exclusive use of clean technology.

At φ = θ < θB investing in dirty technology is efficient. Q.E.D.

A constant level of investment in clean technology is not sustainable because investing in

clean technology is too costly relative to time preference if clean technology productivity is
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smaller than the inverse of the discount factor, QC < β−1. This holds with or without the

emissions in building new capital, ρC ≥ 0. The upper bound on clean capacity guarantees

that there is a stationary point when QC > β−1 and investment does not create emissions,

ρC = 0. This bound implies finite clean capacity at all points of a continuum of stationary

points if QC = β−1. As with dirty investment multiple stationary points exist only under

a special parameter constellation. The most plausible case when ρC = 0 is when the

creation of dirty technology capital lacks emissions too, ρj = 0 all j ∈ {B,C}, though

the results in Proposition 1.3 do not depend on ρB. Next I examine if a Pareto optimal

plan converges to a unique stationary point as time tends to infinity.

Convergence of an optimal plan.—The following proposition shows that an optimal

plan may converge to a unique stationary point with an interior capital stock starting at

a nearby state (Z,KB, KC) if θB 6= θC .

Proposition 1.4 A stationary point with interior capacity Kj ∈ (0, K̄j) of technology j

and boundary value Kj′ ∈ {0, K̄j′} of technology j′ 6= j, can be locally a saddle point.

A proof in the appendix shows that the decisive matrix of the linearized dynamical

system of necessary optimality conditions and laws of motion around such a stationary

point has reciprocal characteristic values. The saddle point property (of existence of a

stable and unstable manifold) does not follow from linearization even if the discount factor

β is not too small. In examples I found exactly one pair of complex characteristic values,

which by the property that its modulus must be greater than one, precludes convergence

of the linearized system. Then nevertheless the optimal policy converged in numerical

simulations using grid search. A saddle point is reached asymptotically in infinite time.

Unique stationary capital levels of both the dirty and clean technology equal to their

maximum levels or one of them at its maximum level and the other equal to zero should

be reached in finite time. In such a case the cost of polluting and the shadow return need

to reach critical levels rather than be at their long-term levels to sustain the appropriate

investment.12 Any state of pollution, dirty capacity, and clean capacity, that belongs

12The saddle point property, if it can be proven, or a finite-time approach path of capital stocks, if
it can be constructed, implies that there is access to the stationary point. Then the sufficiency of the
necessary optimality condition shows that a path on the stable manifold of the stationary point or with
finite-time approach of capacities, respectively, is optimal. Claim. A convergent plan that satisfies the
necessary optimality conditions (1.5)-(1.7) is optimal if utility U or absorption A is strictly concave at
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to a nonoptimal stationary point and is given at the initial date is a trap. None of

the stationary points in a continuum can be a saddle point. The policy of staying at

any of them satisfies the necessary optimality conditions including the transversality

conditions, so that if these are sufficient (see the previous footnote for a condition that

ensures sufficiency) then by the uniqueness of an optimal plan convergence to the optimum

stationary point is not optimal. The following presents optimal plans that converge to a

unique stationary point.

Optimal plans.—Time paths of the cost of polluting and the shadow return can be

characterized depending on the relation of the technology-specific cost of pollution reduc-

tion θB and θC . The most obvious candidates are paths with one switch in investment

between technologies and paths with investment in a sole technology at all dates. To get

a clear idea about the roles of productivity and emission intensities let the scale K̄j be

large for j ∈ {B,C}. I focus on polluting clean technology, ρC > 0, with productivity

QC > β−1 so that clean technology may be exclusively used at θC ∈ (0,∞).

Proposition 1.5 Let θB 6= θC ∈ (0,∞). On optimal paths with a single switch of invest-

ment from dirty technology B (C) to clean technology C (B) the cost of polluting increases

(decreases) and the shadow return decreases (increases) from the date of switching to the

long-term if the dirty technology is relatively more productive, QB > QC. There is only

investment in clean technology, xB(t) = 0 < xC(t) all t ≥ 0 close to the stationary point

if the clean technology is relatively weakly more productive, QB ≤ QC.

Proof. (i) QB > QC . The rates of return on investment in the dirty technology B and

the clean technology C in (1.8) equal β−1 for different levels θB and θC . These rates are

equal at the same level θ(t) = θ(t + 1) = θ∗ either less than or greater than θB and θC

since each stationary rate of return decreases in θ. The level θ∗ cannot be greater than

θC if θB < θC because then the critical curve for technology switching in θ(t)-θ(t + 1)

space would imply dirty technology investment at θ∗ = θC , which lies in the space of clean

technology investment given θB < θC . Then θ
∗ < θB < θC and analogously θC < θB < θ∗.

any Z. Proof. Convergence satisfies the transversality conditions limt→∞ βtǫ(t) and limt→∞ βt[qj(t) −
βwj(t+ 1)]Kj(t) = 0 all j ∈ {B,C}. Then a version of Arrows’ Theorem, Proposition II.6.8 of Arrow &
Kurz (1970b), implies that a plan that satisfies the necessary conditions (1.5)-(1.7) and the transversality
conditions is optimal if utility U or absorption A is strictly concave at any Z. Q.E.D.
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Interior investment, xj(t) ∈ (0, K̄j/Qj), satisfies the difference equation

1

θ(t+ 1)
=

(

1

θ(t)
+
ρj
B

)

1

ε(t+ 1)Qj

+
dj
B

for j ∈ {B,C} where ε(t + 1) = βǫ(t + 1)/ǫ(t) using (1.8) and the identity θ(t + 1) =

R(t+1)ε(t+1)θ(t). Investment is optimal in the technology with greatest θ(t+1) given

θ(t) on these curves. There is an intersection of the curves for B and C at long-term

value ε(t + 1) = β and positive θ(t + 1) if ρB ≥ ρC and QB > QC > β−1 by Assumption

1.2. Figure 1.4 draws these long-term curves. At the intersection of these curves the

slope dθ(t+1)/dθ(t) = (θ(t+1)/θ(t))2/ε(t+ 1)Qj is greater for the C-curve than for the

B-curve since QB > QC . In the left panel θB < θC and thus the intersection of these

curves is to the left of θB. In the right panel θB > θC and thus the intersection is to the

right of θB. Figure 1.4 illustrates these two cases for ρB = ρC . The relation of ρB and ρC

does not affect the conclusions The long-term C-curve lies below the long-term B-curve if

there is no intersection for ε(t+1) = β at θ(t+1) > 0. This can occur only if ρB < ρC by

Assumption 1.2. Then the curves intersect for some ǫ(t) < ǫ(t+1). The given curves yield

the indicated flow of θ. For θB < θC in the left panel R(t+ 1) is greater than β−1 at the

intersection of the curves of B and C. The cost of polluting θ(t) and the shadow return

R(t + 1) relate negatively on the C-curve. Thus R(t + 1) is greater at the intersection

of the B-curve and the C-curve than for θ(t) = θ(t + 1) on the indifference curve. The

relation θ∗ < θC implies that R(t + 1) that equates the rates of return on investment is

greater than β−1. Analogously, for θB > θC in the right panel R(t + 1) is smaller than

β−1 at the intersection of the B-curve and the C-curve. The shadow return tends to

β−1 in the long-term. (ii) QB ≤ QC . There is no intersection of the long-term difference

equations of the cost of polluting for B and C for positive θ(t + 1) by Assumption 1.2.

The latter is above the former for all θ(t) > 0. Q.E.D.

The left (right) panel in Figure 1.4 designates low (high) environmental cost ρB =

ρC of investment. A small environmental cost of building capital advantages the clean

technology. The sequence of difference equations yields the same direction in the path of

the cost of polluting as the drawn curves when ǫ changes little over time. Thus there may

be exclusive investment in dirty technology B or clean technology C, or a single switch in

investment between these technologies. As indicated earlier, the cost of polluting and the

shadow price of pollution must decrease initially, θ(0) > θ(1) and ǫ(0) > ǫ(1), for optimal
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Figure 1.4: Technology switching.

dirty technology investment at the initial date if QB ≤ QC at large scale K̄C . The B-

curve coincides with the C-curve at the unique ε(1) of indifference between investing in

the dirty and clean technology when QB = QC that corresponds to the left panel in Figure

1.2. The B-curve is steeper than the C-curve at their intersection when QB < QC in a

graph that corresponds to the right panel in Figure 1.2 so that the C-curve lies above the

B-curve to the left of the intersection. Dampened oscillations of θ for particular changes

in ǫ cannot be excluded in general.13 Therefore, a reversal of investment in clean and

dirty technologies cannot be excluded. But a monotone motion of the cost of polluting

implies a monotone path of the shadow return in the opposite direction.

Proposition 1.6 The shadow return decreases, R(t) > R(t+1), on {t′+1, t′+2, . . . , t′′}

if the cost of polluting increases, θ(t) < θ(t+1), on {t′, t′+1, . . . , t′′} in plans with interior

investment in the dirty technology, xB(t) ∈ (0, K̄B/QB), on {t′, t′ + 1, . . . , t′′ − 1}. The

shadow return increases, R(t) < R(t+1), if the cost of polluting decreases, θ(t) > θ(t+1),

on the given time intervals. The shadow return R(t + 1) and the cost of polluting θ(t)

are negatively related on {t′, t′ + 1, . . . , t′′} with interior investment in clean technology,

xC(t) ∈ (0, K̄C/QC).

Proof. The necessary optimality condition QB(B − dBθ(t+ 1))/(B + ρBθ(t)) = R(t+ 1)

and the level R(t) can be compared if xB(t) > 0 and (1.3) is nonbinding for technology

13The drawn curves are valid at all dates, because ǫ is constant, if the marginal utility of pollution is
constant and absorption is a linear function of pollution.
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B. If θ(t − 1) < θ(t) < θ(t + 1) then R(t) > R(t + 1). If θ(t − 1) > θ(t) > θ(t + 1) then

R(t) < R(t+1). The necessary optimality condition QC/(B+ρCθ(t)) = R(t+1) delivers

the result if xC(t) > 0 and (1.3) is nonbinding for technology C. Q.E.D.

The shadow return R(t+1) depends positively on consumption at (t+1) and negatively

on consumption at t. Consumption growth is lower to accommodate pollution reduction at

the margin if the willingness to pay for pollution reduction, θ, in terms of the consumption

good is greater. Thus the cost of polluting reflects the willingness to shift consumption

over time in order to preserve the environment, which is costly in terms of consumption.

This argument holds pollution at optimal values if pollution affects the marginal utility

of consumption.

The shadow return tells the consumption growth rate if the effect of consumption

dominates the effect of pollution on the marginal utility of consumption. Consumption

should positively relate to output which positively relates to capital. I conclude that a

single switch from dirty to clean (clean to dirty) technology occurs if the initial aggregate

capital is sufficiently smaller (greater) than the long-term aggregate capital and θB 6= θC .

Emissions paths.—Emissions relate positively to capital. Thus the emissions path is

indicated by Figure 1.4. Increasing (decreasing) cost of polluting is consistent with in-

creasing (decreasing) emissions.

The next section turns to the role of emissions from investment in generating differences

to the cost of polluting.

1.1.2 Comparative analysis of emissions from using and investing in dirty

technology

The emission intensity of output of used dirty technology may be inferred by observing

the ratio of emissions dBKB(t) + (ρB/QB)KB(t+ 1) and output KB(t) on a time path.

What difference does it make to attribute some emissions to investments for the long-term

cost of polluting?

Proposition 1.7 The cost of polluting θ at a stationary point with investment in dirty

technology, xB > 0, increases (decreases) in the emission intensity of dirty technology

investment, ρB, if the observed gross rate of change KB(t + 1)/KB(t) of dirty output is

greater (smaller) than the inverse of the discount factor, β−1.
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Proof. Let gB = KB(t+ 1)/KB(t). Then d(dB) + (gB/QB)dρB = 0 and differentiation of

(ρB/β +QBdB)θ = B(QB − β−1) imply that dθ/dρB = θ2B(gB − β−1)/(QB − β−1). The

result follows from there since the denominator is positive. Q.E.D.

The greater the emission intensity the smaller is the cost of polluting (equal to the

marginal benefit of emission reduction) because under more polluting technology con-

sumption is smaller.14 Disregarding the emissions from investment, which occur currently,

puts too much weight on dB, which is discounted at the rate of time preference in the

cost of polluting. This explains why the discount factor plays a role. The greater the

ratio [KB(t+ 1)/KB(t)]/QB of growth rate to productivity the greater is the derived dB

for given ρB. Assuming KB(t+ 1)/KB(t) > β−1 this shifting increases ρB + βdBQB and

thus decreases θ, and is more pronounced the greater the level ρB. Conversely, inclusion

of emissions from investment then increases θ, by more the greater the level ρB. If the

discounted growth rate of capacity is too low, βKB(t+ 1)/KB(t) < 1, then the effects

are reversed. The observed growth rate of dirty output depends on the preferences. With

additively separable utility U = c1−ψ/(1− ψ)−Ψ(Z) and constant index of relative risk

aversion ψ regarding consumption the growth rate of consumption is (βQB)
1/ψ which

exceeds β−1 for QB > (1/β)1+ψ and may be similar to the growth rate of output. Then

for sufficiently large QB relative to the inverse of the discount factor the inclusion of

emissions raises the long-term cost of polluting.

1.2 Multiple dirty and clean technology types

This section explains why a unique technology is chosen in the theory of substitutable

capital and emissions yet there is investment in multiple clean technologies in the theory

here in evaluating climate change, examines the incentives to invest in clean technology

under one assumed dirty technology versus multiple dirty technologies, and discusses

time paths with unconstrained dirty capacity choice. First I show that there is a unique

stationary point generally, and how the local stability analysis for two technologies applies

to more than two technologies.

14The feasibility frontier χ in pollution-consumption space tilts down and the preference curve φ shifts
in so that at the new intersection consumption is smaller than before and pollution is smaller than at
the intersection of the old φ and the new χ.
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Proposition 1.8 There is a unique stationary point, if the cost of pollution reduction

in terms of consumption units θj differs over all dirty technologies j ∈ J , and all clean

technologies j ∈ J with emissions of investment, ρj > 0.

Proof. The distinct relative cost θj and Lemma 1.1 imply that capital can be interior,

Kj ∈ (0, K̄j) only for one technology j ∈ J . There is a unique intersection of the curves

χ(c, Z) formed by c/B =
∑

j(1 − 1/Qj)Kj and A(Z) =
∑

j(dj + ρj/Qj)Kj, and φ(c, Z)

given (1.5), at Kj = K̄j all j with θj < θ varying one other technology’s investment.

Else consumption and emissions are unique if Kj = K̄j all j in which investment occurs,

Kj > 0. There are no two clean technologies C ′ and C ′′ with ρC′ = ρC′′ = 0 and

QC′ = QC′′ = β−1. Q.E.D.

Proposition 1.4 applies consequently to a continuum or a discrete set of dirty or clean

technologies holding a mass or sum of input in investment constant. The sums of constant

capital amounts must be replaced by integrals for a continuum of technologies.15

Clean technology frontier versus dirty technology frontier.—In the theory without com-

mitment Stokey (1998) interprets the unique intratemporal emission control as a unique

technology chosen at the date of production. The choice set can be thought of as a dirty

technology frontier, where there is a trade-off between the productivity of capital and

labour and the emission intensity of output. Nordhaus (2009) views emission control in

this theory as a mix of clean and dirty technologies and energy efficiency choices that

can be adjusted in each period.16 With commitment there is no unique technology choice

if the marginal product QC of clean technologies ranges from QB to below one on small

individual scales K̄C , consistent with data on the dollar cost of avoiding emissions that

Nordhaus (2009) uses to calibrate the mapping between productivity and emission inten-

sity in his model DICE. Given this wide range, and roughly equal emission intensity ρj of

the input in investment for all technologies j ∈ {B,C1, C2, . . .} the condition (1.8) implies

that investment in some types of clean technology is worthwhile if there was investment

in a dirty technology.

One dirty technology versus multiple dirty technologies.—I consider clean technology

investment when the capacity choice of multiple dirty technologies is unconstrained. The

15In the canonical system Z(t+1) = (d+ρ)K(t)+
∑

j ρ(Kj−c(t)/B)+
∑

j(ρj−ρ)Kj/Qj+Z(t)−A(Z(t))
extends (A-1) in the appendix, and K(t + 1) = Q(K(t) +

∑

j(1 − 1/Qj)Kj − c(t)/B) is the resource
constraint for multiple technologies, holding constant each Kj .

16The factor efficiency choice seems a viable interpretation.
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incentives to invest in a given clean technology may become greater or smaller from

introducing multiple dirty technologies. As will be shown below the effect depends on

the clean technology productivity relative to the discount factor and the cost of polluting

relative to its stationary level.

Let fix the ratio 4α = QB/dB of the productivity in creating dirty technology capital

and the emission intensity in using this capital for some productivity levels QB ∈ [Q′′, Q′]

subject to large scale K̄B all B. The optimal interior choice Q = 2Bα/θ on a continuum

of technologies inversely relates to the cost of polluting so that Q = 2β−1 in a stationary

point if ρB = 0 all B. I disregard the emissions from investment here to focus on tech-

nology choice per se. Suppose that this technology was the only dirty technology and

2β−1 ∈ (Q′′, Q′). This enables comparison of clean technology investment for a narrow

choice set with one dirty technology and a wider choice set with more and less productive

dirty technologies. The critical level for technology switching is θ∗ = θ(2−βQC) given the

stationary level θ = Bαβ if there is one dirty technology. Indifference levels of the cost of

polluting between investing in dirty technologies versus a given clean technology are de-

rived as follows. The level γ∗ = Bα/QC of the cost of polluting equates the rates of return

on investing in any of the dirty technologies with productivity QB ∈ [Q′′, Q′] as an un-

constrained choice and in the clean technology with productivity QC below its maximum

scale. A clean technology does not have an environmental cost here, ρC = 0 all C. The

optimal dirty technology choice for θ(t+1) ≤ θ′ = 2Bα/Q′ and θ(t+1) ≥ θ′′ = 2Bα/Q′′ is

investing in Q′ and Q′′ at t, respectively. If γ∗ < θ′ then clean technology investment oc-

curs for θ(t+1) > θ′. If γ∗ > θ′′ then clean technology investment occurs for θ(t+1) > θ′′.

Else it occurs for θ(t+ 1) > γ∗.

(i) QC < β−1. There can be investment in a clean technology, though it would not

be optimal if only one dirty technology was available, at θ greater than its stationary

level. Then the switching level if there is only one dirty technology is greater than θ′′.

In other cases the incentives to invest in the given clean technology are smaller in an

extended choice set for θ ∈ (θ∗,min[γ∗, θ′′]) than under one dirty technology, because a

dirty technology with smaller emission intensity than of this technology is feasible.

(ii) QC = β−1. The switching level equals the stationary level when there is one

dirty technology. Thus the incentives to invest in clean technology are weaker for θ ∈

(θ∗,min[γ∗, θ′′]) because investing in a dirty technology with productivity smaller than
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Figure 1.5: Shadow return and cost of polluting given investment in coal, oil, and gas technolo-
gies.

the stationary level is optimal in this range.

(iii) QC > β−1. The hurdle to invest in a given clean technology is greater for low θ

relative to its stationary level when a dirty technology with a large emission intensity is

feasible, because its investment is optimal for low θ ∈ (θ∗,max[γ∗, θ′]).

Unconstrained dirty investment options.—Investment switches between technologies

over time when the pair (θ(t), θ(t+1)) leaves the region of investment in some technology

if there is a continuum or discrete array of more than two technologies characterized by

(Qj, dj , ρj) each on a large scale. The rationale is the same as with two technologies.

Among coal, petroleum, and natural gas energy conversions in an economy with the

relative importance of their prime uses for the single factor in the model and emission

intensity in the same order (trivially) a more dirty technology is more productive so that

dB and QB relate positively all B.17 Then intersections of the curves QB/R(t + 1) −

1 = (ρB + ε(t + 1)dBQB)θ(t)/B in R(t + 1)-θ(t) space are indifference points regarding

investment at date t. This equation results from combining (1.8) and θ(t + 1) = R(t +

1)ε(t + 1)θ(t). Figure 1.5 plots it for three technologies. Investment in a technology

17The prime uses are stationary motor drive and light using electricity for coal, mobile energy for
petroleum, and space and water heating for natural gas. There is scientific research in reversing this
relationship for fossil fuels, for example, producing clean coal.
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with maximum R(t + 1) given θ(t) is optimal. Let ρB be equal all B and suppose that

the long-term allocation is based on oil. Then it is optimal to move from a coal-based

economy (high dB andQB) to an oil-based economy (medium dB andQB) when θ increases

toward its long-term level—the initial energy production capacity is small relative to its

long-term capacity. In contrast, investment switches from natural gas technologies (low

dB and QB) to oil technologies, when θ decreases toward its long-term level—the initial

energy production capacity is greater than its long-term capacity. I have used the term

energy-carrier based economy. Multiple energy services may be served by different energy

carriers in a given period.

1.3 Delay in societal impacts of emissions

Some scientists argue that carbon emissions from 2010 until about 2100 do not affect

major measures of climate change in 2100. This suggests some inertia in the accumula-

tion of pollutants. This section shows that under preferences that admit an additively

separable utility function delay preserves the monotone or oscillatory type of convergence

of an optimal plan to a unique stationary point. Winkler (2011) compares monotone

approach paths with such separable objective and dampened oscillations with interaction

effects in the objective in a one-state delay problem. There the approach is monotonic in

the undelayed version. My first result applies.18 Moreover I show that then a solution is

readily available from the solution of a problem without such inertia. Let

Z(t+ 1) = E(t− τ) + Z(t)− A(Z(t)) (1.9)

be pollution at the beginning of period (t + 1), where the emissions amount is de-

fined as before. The planner knows the pollution Z(−τ) for τ ≥ 0, and the sequence

{E(−τ), E(−τ + 1), . . . , E(−1)} of emissions if τ ≥ 1. The greater τ the greater is the

inertia in the response of pollution to emissions.19

18Winkler (2011) views the time structure of differential equations that implies the preserved type of
convergence albeit concludes only preserved monotonicity in a model without oscillations in the separable
form in the undelayed version.

19Here pollution measures an environmental state that has contemporaneous adverse impacts on soci-
ety. Claim. Delay between emissions and impacts yields the same results as any additive delays between
emissions and accumulation of pollutants, and the latter and impacts on society, given absorption of
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Optimal choice of pollution in periods τ + 1, τ + 2, . . . satisfies the difference equation

ǫ∗(t) = β(−∂U/∂Z(t+ 1)) + β(1− ∂A/∂Z(t+ 1))ǫ∗(t+ 1), t ≥ τ , (1.10)

of the current value shadow price ǫ∗ of pollution. Define the discounted shadow price

ǫ(t) = βτ ǫ∗(t + τ). Then the conditions (1.6) and (1.7) are necessary for an optimum.

Predetermined pollution has no effect on the cost of polluting θ(t) = ǫ(t)/(∂U/∂c)(t) at

any date except through the effect on ∂U/∂c(t) for t ∈ {0, 1, . . . , τ}. This identifies the

additively separable specification U(c, Z) = U0(c)−Ψ(Z) whose optimal plan subject to

arbitrary delay solves the problem of welfare maximization for a similarly defined utility

function and a one-period lagged effect of emissions on pollution, and vice versa.

Proposition 1.9 The optimal policy for utility function U(c, Z) = U0(c)−β
τΨ(Z∗) given

pollution Z∗(t) = Z(t + τ) in (1.9) all t ≥ 0 with one-period lagged effect of emissions

on society and the optimal policy for utility U(c, Z) = U0(c) − Ψ(Z) subject to (1.9) all

t ≥ τ ≥ 1 with delayed effect of emissions on society coincide.

Proof. All necessary optimality conditions are equivalent. In particular, substituting

Z∗(t) = Z(t+ τ) into

ǫ(t) = β(βτ∂Ψ/∂Z∗(t+ 1)) + β(1− ∂A/∂Z∗(t+ 1)ǫ(t+ 1)

for t ≥ 0 yields (1.10). These necessary conditions are sufficient for a maximum of J

because there is a unique optimal plan by Proposition 1.1. Q.E.D.

Thus for additively separable utility function the stability properties are the same and

given there is a unique stationary point locally consumption, investment, pollution, and

capital are on saddle paths toward this steady state.

The following representation of the shadow price ǫ∗(t) helps interpretating the cost of

polluting θ(t) = βτ ǫ∗(t + τ)/(∂U/∂c)(t). The forward solution to (1.10), provided that

pollutants depends on contemporaneous pollutants. Proof. Let pollution Z(t) in period t depend on the
stock of a pollutant P in period (t − j), and P (t + 1) = E(t + j − τ) + P (t) − A(P (t)), τ ≥ j ≥ 0.
Substitution of Z(t+ 1) = P (t− j + 1) and Z(t) = P (t− j) yields (1.9). Q.E.D.
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the transversality condition with respect to pollution holds,

ǫ∗(t) =

(

1−
∂A

∂Z(t)

)−1 ∞
∑

j=1

[

βj
j−1
∏

s=0

(

1−
∂A

∂Z(t+ s)

)

]

(

−
∂U

∂Z(t+ j)

)

,

reveals that the marginal willingness to pay for pollution reduction in terms of utils is

positive, ǫ∗(t′) > 0, if pollution has a nonzero effect on welfare at some period t ≥ t′ + 1.

Thus, the cost of polluting is a weighted sum of future marginal disutility of pollution

starting at the first date when current emissions affect pollution divided by the current

marginal utility of consumption.

1.4 Conclusion

This chapter draws conclusions about the motions of investment in dirty versus clean

technologies. Clean technology is used if the cost of polluting is sufficiently high. The

relative emission intensity in investment of dirty and clean technology is less decisive

for dirty versus clean technology investment for greater clean technology productivity.

Clean technology is exclusively used only if the cost of reducing pollution relative to

increasing consumption is weakly smaller for dirty technology than for clean technology.

A sustained controlled pollution inflow from building capital enables a long-term steady

state with exclusively producing clean technology. This can prevail if clean technology is

less productive than dirty technology at all scales of aggregate investment.

There is investment in only one technology at a given date when all technologies can

produce large output. The reason is the linear technology in the investment sector and in

the production of the factor. Then on paths with roughly constant discounted marginal

effects of pollution on society there is investment in one technology at all dates or switches

occur in investment such that investment in any technology is optimal on a closed time

interval or from some date onward infinitely. Multiple use-periods of capital will retain

this switching in investment. Decreasing returns to scale in using capital may lead to

simultaneous investment of multiple technologies that I relegate to further research.

A rationale for the exclusive conversion of renewable energy such as wind and solar

energy into useful energy for consumption and investment is the carbon dioxide and

methane emissions that occur in the manufacturing of wind turbines and solar panels,
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when these emissions may alter the climate. The production of capital that uses energy

such as buildings, roads, and other structures currently creates these emissions too, for

example, in steel and cement production, and mineral processing, and the use of wood

with the effect of deforestation. The exclusive use of renewable energy technologies thus

can follow if their investment does not create emissions.

A carbon tax that internalizes a carbon externality may be applied permanently if

the carbon emissions in building capital of alternative non-carbon emitting technologies

cannot be avoided. This likely holds when clean technology productivity increases over

time. In contrast, Acemoglu, Aghion, Bursztyn & Hemous (2012) derive that decreasing

use of dirty technology lowers the atmospheric carbon stock such that marginal effects of

pollution on utility become zero because they disregard the emissions of investment. A

topic for further research may be directing resources toward technical change in improving

the emission intensity versus the productivity of such technologies.

The chapter refines a set of assumptions (noninferior goods and concave utility in pol-

lution) that implies the uniqueness of stationary points when there is a wealth effect. The

noninferiority of pollution reduction and consumption specifies the wealth effect. Multi-

ple stationary points reside in a continuum and exist only if the relative cost of pollution

reduction is equal among two technologies (and necessarily occurs if there are only two

technologies that satisfy this condition). Expanding capacity of clean technology max-

imizes consumption and minimizes pollution so that the optimal stationary point in a

continuum is unique and exhibits clean capacity if the emission intensity of investment is

equal in the technologies. In an optimal stationary point either dirty and clean technolo-

gies are simultaneously used or dirty technology is exclusively used if emissions only occur

in using dirty technology given that small pollution has small marginal effects on utility.

The economy possesses a reciprocal root property that allows saddle-path stability and

is known in the literature.

Attribution of emissions to investment versus use of dirty technology generally alters

the stationary cost of polluting when dirty technology is used in the long-term. Disregard-

ing emissions from investment in dirty technology biases the stationary cost of polluting

downward if the discount factor is not too small. The reason is that the willingness to pay

for pollution reduction relative to consumption increase is greater when production is less

emission-intensive. This holds if the discount factor is not too small and with account-
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ing of emissions in investmen rather than without it given an observational equivalence

condition when dirty capacity grows.

Under preferences that admit an additively separable utility function in consumption

and pollution delay in the impact of emissions on society preserves the monotone or

oscillatory type of convergence of an optimal plan to a unique stationary point. Moreover,

then a solution is available from a problem with adjusted utility function by discounting

and without delay in the impact of emissions on pollution.

1.5 Appendix: Uniqueness of optimal plan, noninferiority, saddle

point

Proof of Proposition 1.1. (i) Existence. A plan satisfies feasibility conditions and yields

finite welfare J . The policy c(t) = B(1 − 1/QB)min(KB(0) + KC(0), K̄B), xB(t) =

(1/QB)min(KB(0) + KC(0), K̄B), xC(t) = 0, is an example. Thus J is bounded from

below, J > −∞, for some feasible plan(s). What remains to be shown is that there is a

plan that cannot be improved upon. Welfare J is bounded from above because the state

space is closed and bounded and given the admissable compact set of consumption and

investment and discounting. Moreover the utility function U is continuous in consumption

c and pollution Z. (ii) Uniqueness. Suppose that two policies maximize J . This is to

be contradicted. The vectorized average capital Kε = εK1 + (1 − ε)K2, 0 < ε < 1,

produces weakly more output than the weighted output εG(K1, L) + (1 − ε)G(K2, L)

because G is concave. Then εG(K1, L) + (1 − ε)G(K2, L) ≤ G(Kε, L). The law of

motion Kj(t+ 1) = Qjxj(t) implies that the policy (c, x) yields the same level of capital

in technology j ∈ {B,C} as the average capital εK1
j + (1 − ε)K2

j at t ∈ {1, 2, . . .}.

Thus c + B(xB + xC) ≤ G(Kε, L) ≤ G(K,L) shows that the policy (c, x) = (εc1 +

(1 − ε)c2, εx1 + (1 − ε)x2) is feasible. The emissions under the policy (c, x) are equal

to the ε-weighted average emissions resulting from the proposed policies, since the size

of dirty technology capital is its average size, KB(t) = Kε
B(t), all t ≥ τ ≥ 0. The law

of motion of pollution and the emissions sequence imply that pollution Z(t) is weakly

smaller than the average pollution Zε = εZ1 + (1 − ε)Z2 in periods t ≥ t′ + 1 if the

absorption A(Z) is strictly concave in at least one period t′ ≥ 1. Then J(c, Zε) < J(c, Z).

Else J(c, Zε) = J(c, Z). The utility function U is strictly concave in consumption and
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concave in pollution. Therefore, εJ(c1, Z1) + (1− ε)J(c2, Z2) < J(c, Zε) ≤ J(c, Z). This

contradicts that the two proposed policies maximize welfare. Q.E.D.

The proof extends the method of using concave production functions and utility func-

tion in consumption, as outlined in Becker & Boyd III (1997), to a stock that is an

argument in the welfare function such as the environment. The proof applies in the case

of a lagged effect of emissions on society, τ ≥ 1. Furthermore, there is a unique optimum

if U is concave in consumption and U or A is strictly concave in pollution at some t ≥ 1.

The constant returns to scale in producing dirty technology capital are needed in this

proof, because this capital enhances pollution of which more is worse, or equivalently,

reduces environmental quality of which more is better. An average policy would produce

more than the average capital and thus more emissions than the average emissions under

decreasing returns to scale in dirty technology investment. In economies without such

an environmental asset, production of capital goods at nonincreasing returns to scale is

sufficient for the uniqueness of an optimal plan.20 Arrow’s sufficiency theorem is applica-

ble so that the same results hold at nonincreasing returns to scale in the production of

investment goods of dirty technology.

Proof of Lemma 1.2. In any stationary point the conditions (1.5) and (1.8) imply that

θ[β−1 − (1− ∂A/∂Z)] = βτ (−∂U/∂Z)/(∂U/∂c)

at given value of θ. In the undelayed version τ = 1. (i) ∂2U/∂c∂Z 6= 0, ∂2U/∂Z2 6= 0,

or ∂2A/∂Z2 < 0 for a closed interval of Z. The ratio r = (−∂U/∂Z)/(∂U/∂c) implicitly

defines a function c = ϕ(Z, θ) with slope

∂ϕ/∂Z = −r

(

∂2U

∂Z2

[

∂U/∂c

∂U/∂Z

]

−
∂2U

∂c∂Z

)/(

∂2U

∂c2

[

∂U/∂Z

∂U/∂c

]

−
∂2U

∂c∂Z

)

,

that is negative given noninferiority, ∂U/∂c > 0, and ∂U/∂Z < 0. The terms in

parentheses are positive since both pollution reduction and consumption are noninfe-

rior goods and utility is strictly concave in consumption. The concave shape of absorp-

tion preserves this sign or yields it if marginal absorption ∂A/∂Z depends on pollu-

20One may show uniqueness of a plan with exclusive investment in clean technology using the proof
of Proposition 1.1 and verifying this exclusive investment subject to decreasing returns to scale in clean
technology investment.
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tion locally, ∂2A/∂Z2 ≤ 0. Marginal utility of pollution, marginal utility of consump-

tion, and absorption are continuous since these are differentiable by assumption. (ii)

∂2U/∂c∂Z = ∂2U/∂Z2 = ∂2A/∂Z2 = 0 for a closed interval of Z. Consumption is

constant. Q.E.D.

Proof of Proposition 1.4. There is a canonical system of the four equations (i) (1.5), (ii)

βQq(t+ 1)− β(d+ ρ)ǫ(t+ 1) = q(t) from (1.6) and (1.7), (iii) (1.4), and (iv) K(t+ 1) =

Q(K(t)+(1−1/Qj)Kj−c(t)/B) inX = [Z K −ǫ q]′ holding constantKj of one technology.

Consumption c is an implicit function of Z, ǫ, and q from Qq = B∂U/∂c + ρǫ. A first-

order Taylor series expansion around a stationary point with interior capital K ∈ (0, K̄)

yields the linearized system A1X(t + 1) − A0X(t) = ω, where A1 = [βP βS; I 0] and

A0 = [0 I; S ′R]. The matrices P and

R =
(−1)

B2∂2U/∂c2

[

ρ2 ρQ

ρQ Q2

]

, S =

[

(1− ∂A/∂Z + ρr) rQ

(d+ ρ) Q

]

,

are evaluated at the stationary point given r = [(∂2U/∂c∂Z)/(B∂2U/∂c2)]. The matrix

P has [∂2U/∂Z2 + (∂2A/∂Z2)ǫ − B(∂2U/∂c∂Z)r] in the upper left position and zeros

elsewhere. S is nonsingular, in general, and in particular if ∂2U/∂c∂Z = 0 or d = 0. The

matrix

A = A1
−1A0 =

[

0 I

(βS)−1 −S−1P

]

A0 =

[

S ′ R

(−S)−1PS ′ (βS)−1 − S−1PR

]

determines the stability of the linear map. Define J = [0 (−S ′)−1;S−1 0]. Then

βAJA′ =

[

S ′ R

(−S)−1PS ′ (βS)−1 − S−1PR

][

0 β(−S ′)−1

βS−1 0

]

A′

=

[

βRS−1 −βI

(S−1 − βS ′PR)S−1 βS−1P

]

A′ = βAJ

[

S SP (−S ′)−1

R (βS ′)−1 −RP (S ′)−1

]

= J

follows exploiting the symmetry of P and R. By definition β1/2A is symplectic because of

this result and the skew-symmetry of J . Symplectic matrices have a reciproal polynomial.
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For any nonzero characteristic value ψ then

0 = det(A− ψI) = det(−βψA) det((βA)−1 − (1/βψ)I)

= det(JA′J−1 − (1/βψ)JJ−1) = det(J) det(A′ − (1/βψ)I) det(J−1)

= det(A′ − (1/βψ)I)

using det(−βψA) 6= 0, det(J) det(J−1) = 1, and (β1/2A)′ = J−1(β1/2A)−1J . A matrix

A and its transpose A′ have the same characteristic values. Therefore, if ψ 6= 0 is

a characteristic value then 1/βψ is too. In fact, the determinant of A, which is the

product of all characteristic values, is positive at β−2, so that all characteristic values are

nonzero. Boyd III (1989) shows that the characteristic values ψ and 1/βψ have the same

multiplicity. Q.E.D.

The reciprocity of characteristic values is obtained using a skew-symmetric matrix J

different from J∗ = [0−I; I 0]. The continuous-time analog of the property that leads to

this result is that the Jacobian A of the modified Hamiltonian system with time discount

rate ρ satisfies J−1AJ = −A′ + ρI for some skew-symmetric matrix J . For a canonical

system in continuous time J∗ is useful. For example, van der Ploeg & Withagen (1991)

use this in an economy without emissions of investment.

The emissions from investment conform to saddle-path stability. Substitution of the

resource constraint into the law of motion of pollution yields

Z(t+ 1) = (d+ ρ)K(t) + ρ(Kj − c(t)/B) + (ρj − ρ)Kj/Qj + Z(t)− A(Z(t)) (A-1)

so that the next period’s capital stock K(t + 1) is purged. The leading capital stock

of the other technology j is constant. Therefore, limit cycles, which can appear when

consumption is proportional to emissions (Ryder & Heal 1973), are not expected. The

resource constraint c(t)/B + K(t + 1)/Q = K(t) and the law of motion Z(t + 1) =

ρc(t) + Z(t) − A(Z(t)) imply a difference equation that contains Z(t + 1) and K(t + 1)

as substitutes. Heal (1982) interprets Ryder & Heal (1973) in terms of the environment.
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2

The timing of capital retirement in

pollution control

Underutilizing pre-existing dirty technology capital prevents current emissions. With this

policy the capital use can be postponed and thus emissions of investing can be avoided

when delayed capital use replaces investment. Underutilization of pre-installed clean

technology capital can indirectly save emissions if building it creates emissions. The

leading example is climate change. Fossil-fuel technologies produce energy and carbon

dioxide emissions proportionally using long-lasting capital, and their current capacity has

been built irreversibly and without regard to a negative externality. This capacity may be

greater than the optimum long-term energy yield of fossil fuels. Both building fossil-fuel

assets and clean renewable energy technology capital creates carbon dioxide and methane

emissions. I use a dynamic model with heterogeneous capital to show how allocations in

optimum and in a decentralized economy without government policy differ, simulate their

trajectories of pollution and capital, and characterize government policy that implements

an optimum.

There are four major findings. (i) Dirty technology capital is optimally underutilized

when pollution is smaller or greater than its long-term level to rapidly approach long-term

levels, because consumption and investment use the same resource. (ii) Only capital that

is installed at the initial date of optimization is underutilized in the deterministic setting,

possibly over multiple periods. All or a portion of pre-existing dirty technology capital

is idle forever, it is underutilized until it is used up or investment becomes worthwhile,
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or such capital is fully utilized. Investment in the dirty technology is followed by fully

utilized dirty technology capital. (iii) The Pigouvian emissions tax, which is proportional

to the cost of polluting, is lower in the early periods in which dirty technology use is

postponed in the optimum than the tax that implements full utilization at each date

by assumption in the constrained optimum, because underutilization mitigates societal

effects of pollution. (iv) Clean technology capital can be optimally underutilized if the

scale of other, more productive, clean technology types is large because of the environ-

mental impact of creating new capital or because capital that is expensive to construct

is pre-installed.

Emissions predictions and optimal emissions plans for climate control have focused on

the investment in dirty versus clean technologies, change in energy efficiency through

new equipment and retrofits, and removal of carbon from the atmosphere. Studies in

the Energy Modeling Forum (EMF) 22 assume fully utilized capital stocks in testing

the hypotheses of staying below given carbon levels formulated as a constraint (Clark

et al., 2009). Some of these models predict that currently installed and long-lasting

capital leads to atmospheric greenhouse gases in excess of 450 ppmv CO2 equivalent

units in 2100. Recent attempts to determine the social cost of carbon using continuous

feedback of carbon on output, for example, Nordhaus (2009) and Golosev et al. (2011), or

Barrage (2012) with output and utility feedback and distortionary fiscal policy, presume

fully utilized capital. In their framework capital can be substituted for emissions (see

more detailed comments below) so that a commitment to technology stock at the date

of investment is lacking. In reality capital utilization can be varied beside directing

investment toward technologies with fixed emission intensity of output.1 Second these

studies do not differentiate between the emissions in producing energy that is useful for

consuming or investing and emissions solely for investment.

I build a model with heterogeneous capital to show the optimal timing of abandon-

ing the use of dirty technology or postponing the use and investing in dirty and clean

technologies when there are these two sources of emissions. The use of dirty technol-

ogy creates emissions while the use of clean technology does not create emissions. The

1Utilization balances time-varying demand and supply in peak-load theories of electricity that Crew,
Fernando & Kleindorfer (1995) review, and that models in the EMF may account for. The government
of Mexico City has recognized that limiting the time of use of polluting technology below full capacity
may save emissions. However the policy of precluding about a fifth of automobiles each weekday from
driving (Hoy No Circula since 1989) may be ineffective because of double car-ownership (Davis 2008).
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optimum consumption approaches a steady level in the long-term in contrast to Ace-

moglu et al. (2012) because I assume constant technology to focus on the retirement of

capital in different technology states. The model in the present paper (given multiple

clean technology types) can explain current clean technology investment by its relatively

greater productivity on small scale. In a study of directed technical change, Acemoglu

et al. (2012) assume nondepreciating heterogeneous capital types that produce imperfect

substitutes, and cannot explain current clean production because of its relatively lower

cost as the high-cost technology produces the low portion of output.2 In a study of non-

renwable resource depletion, Tahvonen & Salo (2001) assume scale-dependent relative

advantage of a nonrenewable resource technology and an alternative renewable resource

technology, analogously to the dirty and clean technology types here. Pollution is not

controlled, whereas this chapter has an environmental motive.

The opportunity cost of using output to invest is a consumption benefit and resources

are finite in a given period as one would presume in the world economy, in contrast to

literature with variable utilization and an environmental motive. Van Long (2006) allows

underutilizing an endowment of time-invariant size to control pollution. The model of the

sole owner fishery of Clark, Clarke & Munro (1979) and Boyce (1995) with chosen utiliza-

tion of fishing vessels does not suit climate control, because it lacks a trade-off between

consumption and investment. Second, the depreciation of capacity (or the productivity of

capital) and utilization are linked. The finite usable time of capital with storage of unused

capital contrasts the perpetual inventory method used in the fishery models, to suit the

energy-climate context. A finite usable time of capital allows a sensible comparison to the

constrained optimum with full utilization, because some technology may become obsolete

in the long-term. Given infinite lifespan optimal and constrained optimal capital stocks

would differ in the long-term if initially there was capital in a technology that is optimally

unused in the long-term. Halting capital use increases the lifespan of capital. In Puu’s

(1977) resource extraction and in some business cycle research greater utilization raises

depreciation. In contrast to my model, there fully utilized capital leaves some capital in

infinite time under no investment.3 In particular, electric power plants, heating machines,

2They can explain the major share of clean energy in the late 19th century, and contradict the
increased share of dirty energy that is observed until the late 20th century. According to their model the
research should have efficiently focused on clean technology without government incentives.

3In the real business cycle literature homogeneous intensity of capital use, for example Greenwood,
Hercowitz & Huffman (1988), or heterogeneous intensity, for example Cooley, Hansen & Prescott (1995),
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and automobile engines, that produce energy and greenhouse gas emissions are long-lived

and can produce currently, or pause and produce later, and are scrapped in finite time.

The production at any given productivity is bounded from above, to be consistent with

renewable energy production. For example, given solar modules are more productive in

California than in Washington State. The number of times in which capital is useful is

exogenous as in Buhl et al. (1982). The basic model has an underpinning from vintage

capital with invariable emission intensity. There capital is useful once so that a period is

long. An extension exhibits vintage-dependent emission intensity and multiple times of

use. Since capital is useful for an exogenous finite number of periods, no second factor

is necessary for the efficient scrapping of capital in contrast to vintage capital models of

Johansen (1959) or Solow et al. (1966).

Stokey (1998) argues that several technologies can be lumped into a single variable

that expresses the overall emission intensity of output. This approach prevents con-

clusions about technology-specific capacity utilization. In the present approach instead

emissions are controlled intratemporally through utilization and intertemporally through

technology-specific investment which allows distinct capital to idle, or to not exist, when

consumption is positive. Capital services and emissions are complementary in any period.

Keeler et al. (1971), Brock (1977), Tahvonen & Kuuluvainen (1993), and Stokey (1998)

assume that capital and emissions produce output at a positive substitution elasticity in

the context of a pollution stock. This substitution can be interpreted as choosing the

emission intensity of gross product below or at an exogenous upper bound—in Nord-

haus’ Dynamic Integrated Climate Economy (DICE), and by Hassler et al. (2011), given

calibration of emission prevention to a mix of dirty and clean technologies and energy

efficiency (Nordhaus 2009). An alternative view is controlling the emission intensity of

gross output through expending resources on abatement (for example, carbon seques-

tration).4 Interpreting emission control in this paradigm as utilization of capital seems

troublesome. This implies underutilization at all levels of the cost of polluting given a

strictly increasing emission intensity in the utilization rate, contradicting previously and

responds to changing aggregate or plant-level productivity, respectively. Lower depreciation of capital
for lower utilization or the clearing of an economy-wide labour market motivate the response.

4An intratemporal trade-off between this emission intensity and technology choice or real emission
prevention flow-expenditure, for example in model I of Keeler et al. (1971), can be rewritten in terms of
net production with substitutable factors capital and emissions.
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presently planned efficient plant scales in reality.5

Luptačik & Schubert (1982) and van der Ploeg & Withagen (1991) fix the emission in-

tensity of output permanently. Variable utilization may improve their plans. Acemoglu et

al. (2012) posit emissions and specific output in fixed proportion and distribute resources

among production technologies in each period. While there is commitment to produc-

tivity, underutilization would not be optimal because of the intratemporal adjustment.

Studies in the EMF 22 use heterogeneous capital to exploit data on mitigation options.

Given a planner maximizes welfare subject to constraints on environmental quality in

these models underutilization through postponement of using or early retirement of some

technology stock will bring about a solution when the problem has no solution at full

utilization.

The model includes emissions from investment, for example, in the production of steel

and concrete, and mining of minerals, for fossil-fuel and renewable energy technologies.

This realistic assumption can make a portion or all of the pre-installed dirty technology

capital obsolete. The use of pre-installed clean technology capital that is expensive to

create may be postponed because more productive types of clean technology at a large

scale can sustain high consumption. This incentive for underutilization is stronger, if

investment creates emissions, since then investing bears an environmental cost. (Dirty

technology capital may then not be used.) This may be relevant in the future if govern-

ments continue to push expensive clean technologies by subsidies.

The next section examines the Pareto optimal retirement of capital. Section 2.2 charac-

terizes competitive equilibrium allocations in a decentralized economy and shows how an

optimum can be implemented. Section 2.3 provides results of numerical simulations. Sec-

tion 2.4 presents production using bounds on physical capital, fuel that serves as an input

in the dirty technology, energy-use capital and variable energy efficiency, and time-variant

emission intensity of output and depreciation. Section 2.5 concludes with a discussion of

results. The appendix sections contain technical results.

5Joskow (2010) finds that lower utilization of existing coal power plants weakly raises their emission
intensity of electricity output in response to greater supply of intermittent renewable-based electricity.
Underutilization of capital in DICE only at sufficiently high cost of polluting can be optimal upon in-
troduction of complementarity. Kolstad (1996) constrains future control by current control such that a
planner temporarily cannot adjust the emission intensity of gross output upward, yet does not enable un-
derutilization. In a plan with decreasing emission intensity over time Kolstad (1996) requires uncertainty
to make this constraint ever binding.
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2.1 The economy

Consider a discrete-time economy with heterogeneous capital.6 Feasibility conditions are

introduced with each one dirty and clean technology. The use of dirty technology only is

polluting. The investment is polluting in both these technologies. A dirty technology or

clean technology may be a composite of any fossil-fuel using technologies or any renewable

energy technologies, respectively, that produce energy that can be consumed or invested.

2.1.1 One dirty technology and one clean technology

Preferences.—A unit mass of infinitely-lived households populates the economy. They

have an identical preference ordering represented by a period-utility function U(c, Z) :

R+ × R → R of consumption c and pollution Z that is twice-differentiable for positive

consumption, increasing in consumption, ∂U/∂c > 0 for c > 0, and decreasing in pollu-

tion, ∂U/∂Z < 0 for c > 0. Marginal utility of consumption ∂U/∂c approaches a large

positive value M as consumption tends to zero, limc→0 ∂U/∂c =M ≤ ∞, for all Z. Then

consumption cℓ of at least one household ℓ is positive in any period t ∈ {0, 1, 2, . . .} in

a Pareto optimum. Households have equal endowments of financial capital in the de-

centralized economy in Section 2.2 so that uniform transfers of government revenue to

households implement uniform consumption. The utility function is strictly concave in

consumption and, for small pollution levels or all pollution levels, concave in pollution.

Thus ∂2U/∂c2 < 0 for c > 0 and ∂2U/∂Z2 ≤ 0 for c > 0 and Z ≤ Z∗. A household

discounts utility in the welfare function

J =
∞
∑

t=0

βtU(c(t), Z(t))

by a factor β ∈ (0, 1).

Technology.—In each period society allocates perfectly substitutable output mB from

dirty technology B and mC from clean technology C between the use for consumption

c =
∫ 1

0
cℓdℓ, and as an input xj in investment of technology j ∈ {B,C} = J . Using

6An exogenous finite usable time of capital in continuous time seems to demand vintages whose
productivity depreciates. Burmeister & Dobell (1970, 377) argue that exogenous full depreciation of
capital in an instant requires an infinite outflow which is infeasible when (dis)investible resources are
finite.
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dirty technology creates emissions in proportion to output. Clean technology use does

not create emissions. The emission intensities are defined below. One unit of the good

yields B > 0 units of service that households consume. Thus,

c/B + xB + xC ≤ mB +mC (2.1)

is the resource constraint all t ≥ 0. The productivity in the consumption sector is not

normalized to one to point to a difference between the cost of pollution in terms of the

consumption good and the willingness to pay for pollution reduction in terms of output.

Production using technology j ∈ J yields mj = ujKj units of output given chosen

utilization rate uj ∈ [0, 1] of capital Kj > 0. This measure of capital is production

capacity since there is no substitutable factor in production. Limited recyclability of the

earth’s material or finite geographical space lead to the capacity constraint

K̄j ≥ Kj(t+ 1) (2.2)

all t ≥ 0. This constraint is different for each technology j ∈ J for simplicity. At least

one capital stock is positive among the given Kj(0) ∈ [0, K̄j ] for j ∈ J . The number

γj ∈ (0, 1] is one minus the depreciation rate of unused capital and thus represents its

portion that is useful in the next period. Investment, xj(t) > 0, is not necessary to

generate capital Kj(t + 1) > 0. A positive γj is plausible for energy-producing capital.

Incomplete depreciation refers to mothballing boilers, motors, or turbines and can be

incentivized through government policy in the decentralized economy in Section 2.2. New

capital of technology j ∈ J is built at the constant marginal product Qj > 0. Then

Kj(t+ 1) = γj(1− uj(t))Kj(t) +Qjxj(t) (2.3)

is capital at the beginning of period (t+1). Investment is irreversible, because the input

in investment is nonnegative, xj ≥ 0. The constraint (2.2) may be binding for clean tech-

nology at an optimum and in equilibrium. Observed current clean technology investment

on small scale K̄C is explained in the decentralized economy absent government policy

that corrects the pollution externality by QC ≥ QB. I make the following assumption.

Assumption 2.1 QB > β−1.
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Then sustained growth of consumption and output is feasible in the absence of environ-

mental cost. Fully utilized capital Kj(t) > 0, that is, if uj(t) = 1, completely depreciates

within one period. An interpretation is that a period is long. Grubb (1997) and Naki-

cenovic & Grübler (2000) point to long lifespans of currently existing capital in energy

production as a reason of inertia that could impede stabilizing the atmospheric content

of carbon dioxide soon at a non-hazardous rate.7 Clean capacity is underutilized only

if dirty capacity is idle or absent when postponing consumption by underutilizing clean

capacity yields a smaller rate of change in consumption than by using dirty capacity to

invest in dirty technology. This appears if unused capital of dirty technology depreci-

ates at a relatively weakly smaller rate, γC ≤ γB. I assume this, which helps a clear

characterization of an optimal allocation.

Assumption 2.2 0 < γC ≤ γB.

This assumption—that the unused clean technology capital depreciates at a weakly greater

rate—is plausible if dirty technology capital can be literally wrapped and clean technol-

ogy capital is exposed to natural hazards, for example, in fossil-fuel using and renewable

energy technologies, respectively.

Environment.—Production of one unit of output using technology j generates dj emis-

sion units where dB > 0 = dC .
8 The emissions specific to building capital occur at

rate ρj ≥ 0 per unit of the quantity xj of the input in investment. Emissions of in-

vesting in dirty technology affect both the critical cost of polluting at which full uti-

lization and investment in dirty technology becomes optimal, and that may be reached

at some date if dirty technology capital is used in the long-term, and the long-term

7Given this inertia in calendar time vintages that are useful once or more than once regarding model
periods yields the same results on the timing of utilization and identity of underutilized units, that is,
pre-installed units. The scrapping after one period of use implies that there are at most two vintages given
the timing of investment and utilization that is optimal. This is formalized in Section 2.4.1. If capital
vintages are useful multiple times, then underutilization distributes output over vintages and extends
their lifespan early in the planning horizon. This yields the same conclusions regarding the timing of
utilization and investment as one-period use if technology does not change and depreciation between
ages is constant. Section 2.4.4 assumes multi-period use to examine the roles of technology improvement
in regard to the emission intensity, and depreciation of capital over the lifespan, for underutilizing old
versus young vintages.

8The optimal utilization rate of aggregate dirty technology capital is weakly greater given any pollution
and capital amounts compared to the assumed no response if some dirty technology capital exhibited
a greater emission intensity of output for lower utilization. The response may be relevant for current
baseload coal electricity, if its underutilized plants are not wholly mothballed.
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cost of polluting. The environmental cost of investing in clean technology can lead to

idle dirty technology capital and to underutilized clean technology capital.9 Emissions

E(t) =
∑

j∈J (djmj(t) + ρjxj(t)) accumulate to the stock of pollutants

Z(t+ 1) = Z(t) + E(t)− A(Z(t)) (2.4)

at the beginning of period (t+ 1), for example, carbon dioxide in the atmosphere, which

is equal to pollution.10 This helps characterizing long-term allocations. The absorptive

capacity of the environment may vary with pollution. The absorption A is a twice dif-

ferentiable nondecreasing function, which is concave, ∂2A/∂Z2 ≤ 0 ≤ ∂A/∂Z, and less

than or equal to pollution, A ≤ Z. A plan is defined as an allocation of controls and

state variables pollution and capital. Strictly concave absorption at given Z guarantees

a unique optimal plan when utility is not strictly concave in pollution for such a Z. The

pollution level Z(0) is given.

Necessary conditions for Pareto optimal investment and utilization.—A Pareto opti-

mum with equal consumption of all households may not be implementable in a decentral-

ized economy with nonnegative transfers from the government to households if government

revenue is small and households have unequal endowments. Other Pareto optima may

then be implementable. However, the distribution of consumption does not affect the

Pareto optimal allocation of pollution, if these are essentially independent, which I as-

sume for the utility function U .11 Then uniform consumption is without loss of generality

for pollution. There are τ(t) positive capacity levels at date t which helps to define the

control space. Only τ(t) ≥ 1 enables consumption at date t.

The planner chooses a policy of consumption, input in investment, and capital utiliza-

tion (c, x, u) ∈ R
3
+ × [0, 1]τ(t) on {0, 1, . . .} to maximize welfare J subject to the resource

constraint (2.1), the upper bound on capital (2.2), and the laws of motion (2.3)-(2.4)

9The quantity xj may be the sum of direct input in investment goods and inputs in material produc-
tion, which generates emissions specific to investment.

10In general there is some mapping of past emissions onto current pollution.
11Following Bergstrom & Cornes (1983) a utility function satisfies essential independence of the public

good or bad and the distribution of a private good if for all interior Pareto optimal allocations every other
distribution of interior private goods amounts is Pareto optimal holding constant the public good or bad
and the aggregate private goods amount. For example, the utility function U(cℓ, Z) = U ′(Z)U0(cℓ) +
U ′′(Z) where U0 is a power function, satisfies essential independence, because there is a unique Pareto

optimal (
∫ 1

0
cℓdℓ, Z), and it is interior given the assumed feasibility set.

47



in the form Kj(t + 1) − Kj(t) = rKj
(t) for j ∈ J and Z(t + 1) − Z(t) = rZ(t) all

t ≥ 0. Let ǫ and qj for j ∈ {B,C} be the Lagrangean multipliers of the laws of mo-

tion of pollution and capital. The inclusion of the endogenous terms rZ(t) and rKj
(t)

all j ∈ J is helpful to prove the uniqueness of an optimal plan. A vector G ≥ 0 de-

scribes the admissable set of investment and utilization and the resource constraint and

contains the nonnegativity constraints of capital. Then maximization of Lagranges’ func-

tion L =
∑∞

t=0 β
t[U(c(t), Z(t)) − ǫ(t)rZ(t) +

∑

j qj(t)rKj
(t) − ǫ(t)(Z(t) − Z(t + 1)) +

∑

j qj(t)(Kj(t)−Kj(t+1))+
∑

j βwj(t+ 1)(K̄j −Kj(t+ 1))+w(t)G(t)], where (wB wC)

and w are nonnegative vectors, gives rise to the following necessary optimality conditions.

The present values of the Lagrangean multipliers ǫ(t) and qj(t) are the marginal valu-

ations ∂J/∂Z(t+ 1) and ∂J/∂Kj(t+ 1) of the state variables at an optimum, and thus

ǫ(t) and qj(t) are called their (current value) shadow prices.12 Optimal interior values of

pollution Z(t+ 1) satisfy the difference equation

ǫ(t) = β(−∂U/∂Z(t+ 1)) + β(1− ∂A/∂Z(t+ 1))ǫ(t+ 1), t ≥ 0, (2.5)

of the shadow price ǫ of pollution. The marginal benefit from additional capital is the

marginal net benefit of utilized capital plus the marginal value of nonutilized capital. The

sum of these benefits discounted from (t+1) at most equals the marginal cost of building

capacity in period t,

βuj(t+ 1){B(∂U/∂c)(t+ 1)− djǫ(t+ 1)}

+ βγj(1− uj(t+ 1))qj(t+ 1)− βwj(t+ 1) ≤ qj(t), = if Kj(t+ 1) > 0,
(2.6)

for j ∈ J all t ≥ 0. Greater environmental cost measured by the shadow price of pollution

ǫ reduces the benefit of using dirty technology capital but has no effect on the benefit of

using clean technology capital since dB = b > 0 = dC. The shadow rental value of space,

wj(t), is zero if K̄j > Kj(t). The marginal benefit of using an output unit for investment

is Qjqj in terms of utils. This benefit cannot exceed the marginal cost of investing output,

Qjqj(t) ≤ B(∂U/∂c)(t) + ρjǫ(t), = if xj(t) > 0, (2.7)

12The present value of the costate multiplier at t is the shadow price of the law of motion that has the
state variable at its leading value at (t+ 1) which can be taken as a parameter locally in optimum.
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all j ∈ J , because the input in investment is finite. The latter marginal cost comprises the

cost of reduced current output and environmental cost by the investment sector. Partial

capacity utilization in period (t+ 1) ≥ 0 balances the values of idle and utilized units of

capital on the left side in (2.6). Else all capital in a given technology j ∈ J is either idle

or fully utilized. Therefore

uj(t+ 1)











= 1

∈ (0, 1)

= 0











=⇒ β{B(∂U/∂c)(t+ 1)− djǫ(t+ 1)}











=

=

≤











qj(t)











≥

=

=











βγjqj(t+ 1)

(2.8)

given Kj(t+ 1) ∈ (0, K̄j) for t ≥ 0. The outer relations at weak inequalities are relevant

regarding utilization in period t = 0.13 Before analysing these conditions an existence and

uniqueness result on an optimal plan is stated—of which a proof appears in the appendix.

Proposition 2.1 There is a unique optimal plan if utility U or absorption A is strictly

concave in pollution at any pollution Z.

Hence the welfare function is well-defined. There is a unique optimal plan because

there is a unique optimal policy and the laws of motion map the current policy and states

uniquely into future states.

The (marginal) cost of polluting, or equivalently, the (marginal) benefit of pollution

reduction, is defined as

θ = ǫ/(∂U/∂c)

and thus hinges on the motion of its numerator, the shadow price ǫ of pollution measured

in utils, and that of its denominator, marginal utility of consumption. This cost may be

referred to as a social cost because ǫ measures the effect of pollution on all households

13The outer relations in the condition (2.8) follow from differentiation of the Lagrangean function with
respect to the utilization rate. The relations to the lagged shadow price of capital result presuming that
Kj(t + 1) > 0 and examining (2.6). For Kj(t + 1) = K̄j the discounted land rent βwj(t+ 1) must be
subtracted on the left and on the right sides.
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who are identical and have a unit mass for simplicity.14

Critical level of cost of polluting.—The next lemma reports bounds of the cost of pol-

luting for utilization and underutilization, which help to characterize and solve for an

optimum. There is a cost of pollution reduction θj = (Qj − γj)/(γjρj + djQj) of any

technology j ∈ {B,C} that allows saving emissions by storing capital as an alternative

to using output for its investment, dj > 0 or ρj > 0.

Lemma 2.1 The cost of polluting is bounded above, θ(t) ≤ B/dB, if dirty technology

capital KB(t) > 0 is utilized, uB(t) > 0. Capital Kj(t) > 0 is underutilized, uj(t) < 1,

only if θB ≤ θ(t) for dirty technology B, and θC ≤ θ(t) for clean technology C with

ρC > 0. The cost of polluting is bounded above for dirty technology, θ(t) ≤ θB, and for

clean technology, θ(t) ≤ θC, if ρC > 0, given investment occurs, xj(t) > 0, and capital

Kj(t) > 0 is utilized, uj(t) > 0.

Proof. Define λ as the marginal product of consumption goods, B, times the marginal

utility of consumption, ∂U/∂c. The first result follows from the condition λ − bǫ ≥

γBqB ≥ 0 noting that ǫ/λ = θ/B. The second result is immediate from Qj(λ − djǫ) ≤

Qjγjqj ≤ γj(λ+ ρjǫ) given underutilization, uj < 1. For the upper bound of θ given

investment, xj > 0, and utilization, uj > 0, the condition (2.7) holds at equality, and the

inequality in (2.8) is reversed. Q.E.D.

The upper bound for utilizing dirty technology capital results because this capital

has a nonnegative shadow price, unlike in the constrained optimum in which utilization

cannot be chosen. Clean capacity use is consistent with arbitrarily high θ because it does

not affect the environment. There is a lower bound θj for underutilization of capacity

Kj(t) > 0 for j ∈ {B,C} because society forgives current capital services to save rather

than invests in new units only if pollution reduction costs large consumption amounts.

The level θj decreases in both the storage return γj and the emission intensity ρj of

investment inputs because unused capital is worth more for smaller depreciation rate (1−

14Recall that γB > 0 and γC > 0. Dirty capacity KB(t) > 0 is underutilized only in the initial period
t = 0 because of concerns about the environment that the planner internalizes if γB = 0. Investment in
period t is necessary for KB(t+1) > 0 if unused dirty capacity becomes unproductive. Then QBqB(t) =
B(∂U/∂c)(t) + ρBǫ(t) > 0 from (2.7). The condition (2.8) contradicts qB(t) > 0 if KB(t + 1) > 0
is underutilized, uB(t + 1) < 1. Investment that precedes underutilization would be wasteful. Clean
technology capital KC(t) > 0 is fully utilized all time if γC = 0. The marginal net benefit of utilizing
clean capacity, B∂U/∂c, is strictly positive all t ≥ 0.
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γj), and investing bears a greater environmental cost for greater ρj. The range between

the critical technology-specific cost of pollution reduction at which both investment and

underutilization are optimal and the upper bound for utilization narrows, θj → B/dB,

as unused capacity becomes less productive, γj → 0. Second, θj is greater than the

stationary level of the cost of polluting if there is investment in technology j, since the

discounted retained fraction of unused capital, βγj, is less than one. Perpetual investment

and underutilization would be wasteful. Therefore a capacity is fully utilized if there is

investment in the associated technology in a plan that converges to a stationary point.

The bounds of the cost of polluting can be found through the policy (c, x, u) if capital

is used at decreasing returns to scale. To simplify the exposition I chose the convex

production technology. Some dynamic programming results are helpful to characterize

an optimum. The next Lemma presents one result.

Lemma 2.2 There is a continuously differentiable value function v(Z,KB, KC) = max J

given the initial state (Z,KB, KC).

Proof. Standard arguments in Stokey & Lucas (1989) or Acemoglu (2009) can be used

because the planner controls pollution. In particular, the welfare function J , which is to

be maximized, is bounded from above, J ≤ U(c̄, Z)/(1− β) < ∞, for all feasible plans

since output and pollution are bounded from above and below, respectively. Maximum

consumption is c̄ = B(K̄B + K̄C). Minimum pollution is Z = φ(. . . φ(φ(Z(0)))) given

φ(Z) = Z − A(Z). Q.E.D.

Welfare J can be defined recursively for any initial state. Lemma 2.2 can be used to

show that the Lagrangean multipliers of the states are the slopes of the value function,

ǫ(t) = −β∂v/∂Z(t+ 1) and qj(t) = β∂v/∂Kj(t+ 1). In the following roman numeral I

denotes paths with exclusive long-term use of clean technology, and those with II have

long-term use of dirty technology.

Timing of investment and utilization in dirty technology.—Investment in the dirty tech-

nology may never occur (in I-1 to I-3). Its capital may be always underutilized, being idle

at all dates but the initial date. This policy (I-2) in the next proposition is optimal only

if the cost of polluting exceeds B/dB at dates t ≥ 1 by the arguments above, and clean

technology has a sufficiently large productivity QC , a sufficiently small positive emission

intensity ρC , and a sufficiently large scale K̄C as seen as follows.15 Chapter 1 has shown

15Large marginal disutility of pollution at minimum feasible pollution can lead to exclusive use of clean
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that clean technology is exclusively used in the long-term at θ ≤ B(βQC − 1)/ρC .
16 This

implies large QC or small ρC > 0. A large scale K̄C makes the exclusive use of clean

technology feasible at θ > B/dB.

Proposition 2.2 Dirty technology capital KB(t) > 0 is partially utilized at t = 0,

uB(0) ∈ (0, 1), and idle, uB(t) = 0, at dates t ∈ {1, 2, . . .}, and there is no investment in

dirty technology, xB(t) = 0 all t ≥ 0, if dirty capacity KB(0) is large and clean capacity

KC(0) is small, and clean technology is exclusively used in the long-term at θ > B/dB.

Proof. There is a curve τ(Z,KC) such that θ = B/dB when holding xB = uB = 0. This

follows from QCqC(t) = (B/θ(t))ǫ(t) + ρCǫ(t) if xC(t) > 0 that utilizes (2.7) for j = C

and the definition of θ. Then the ratio qC(t)/ǫ(t) of shadow prices implies a continuous

θ-isoquant in the space of Z and KC because these shadow prices measure the marginal

valuation of those state variables. Let KB(0) +KC(0) > K > KC(0) for (Z(0), K) ∈ τ .

If θ(0) < B/dB then dirty technology capital was used up in finite time, yet the output

that this generates exceeds the output at which such low θ(0) is optimal. If θ(0) > B/dB

then dirty technology capital was idle at all dates, yet initial clean capacity insufficient

to afford the jump on the optimal path. Q.E.D.

The requirement 1/dB < (βQC − 1)/ρC , sufficiently large clean technology scale K̄C ,

and the relation of initial capacity levels that induces B/dB = θ(0), are sufficient for an

immediately retired portion of dirty capacity. The initial dirty capacity helps growing

the economy with clean technology investment. Dirty capacity is idle at all dates t ≥ 1

because the cost of pollution reduction by not using dirty capacity is smaller than the

cost of polluting. Dirty capacity is never used (I-1) if the economy has the sufficient clean

capacity initially for the same reason. A rationale to idle a capital stock in the literature

is production cost. Some portion of a resource is efficiently unused after the marginal

cost of using it has increased to the constant marginal cost of an alternative technology

in Herfindahl & Kneese (1974, Chapter 4.5) and Heal (1976) or the marginal cost of a

technology. Ruling out this possibility for the climate ρC > 0 remains as a reason for exclusive use of
clean technology.

16The stationary level θ is less than or equal to the right side of the cost of pollution reduction θj
when replacing γj by β−1 given investment in technology j, equal at Kj ∈ (0, K̄j). There is a unique
stationary point if the stationary level differs between the technologies, and one imposes noninferior
pollution reduction and consumption through the utility function, see Chapter 1. The optimal allocation
converges to a unique stationary point, if such exists.

52



technology with diminishing returns in Tahvonen & Salo (2001). Too large pre-installed

clean capacity induces underutilization of clean capacity as seen below given the same

parameter values.

The following proposition shows the timing of investment and utilization in dirty tech-

nology on some paths with θ(t) > θ(t + 1) given underutilized dirty capacity at (t + 1).

In the first case (I-3) initial dirty capacity is used up without investment because θ con-

verges to a level above the cost of pollution reduction using reproduced capital in dirty

technology, θ∗ = B(βQB − 1)/(ρB + βdBQB), and below the cost of pollution reduction

by not using its installed capital, B/dB, so that investing in dirty technology is ineffi-

cient but using dirty capacity is worthwhile. In this case the clean technology marginal

product is large, QC > β−1, and the clean technology scale K̄C is large, which sustains

such θ at exclusive clean output. In the second case (II-1) there is investment in dirty

technology in the long-term because θ converges to a level less than or equal to θ∗, which

is smaller than the cost of pollution reduction θB. In this case the stationary cost of

pollution reduction is relatively smaller for the clean technology, B(βQC − 1)/ρC < θ∗,

or the clean technology scale K̄C is small. In the third case of the next proposition dirty

technology capital is fully utilized at all dates. This can be on a path leading to exclusive

clean technology investment under the parameters that yield Proposition 2.2, because the

initial aggregate capacity (KB(0)+KC(0)) is smaller than the level required for the path

in this proposition (I-4), or on a path with long-term use of the dirty technology under

the parameters of the second case (II-4). In the latter case the initial aggregate capacity

is not sufficiently greater than the long-term aggregate capacity and the stationary clean

technology cost of pollution reduction or the clean technology scale is small.

Proposition 2.3 Dirty technology capital KB(t) > 0 is either partially utilized, uB(t) ∈

(0, 1), in an early time interval {0, 1, . . . , t′} and ceases to exist, uB(t
′ + 1) = 1 and

KB(t) = 0 all t > t′ + 1, or is fully utilized later, uB(t) = 1 all t > t′, or this capacity is

fully utilized, uB(t) = 1, all t ≥ 0, in an optimal plan in which (i) dirty technology capital

KB(t) > 0 is not idle, uB(t) > 0, and either is zero after it is positive, KB(t) > 0 all

0 ≤ t ≤ t′′ and KB(t) = 0 all t > t′′, or always positive, KB(t) > 0 all t ≥ 0, and (ii) the

cost of polluting decreases, θ(t) > θ(t+1), if dirty capacity KB(t+1) > 0 is underutilized,

uB(t+ 1) < 1. There is no investment in dirty technology, xB(t) = 0, all 0 ≤ t < t′.

Proof. Suppose that KB(t) > 0 is fully utilized, uB(t) = 1. Then either xB(t) = 0 or
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xB(t) > 0. Dirty capacity KB(t+1) is zero by assumption all t ≥ 0 if xB(t) = 0. Lemma

2.1 implies that θ(t) ≤ θB ≤ θ(t+1) if investment in the dirty technology, xB(t) > 0, and

utilized dirty capacity, uB(t) > 0, precede underutilized dirty capacity, uB(t + 1) < 1,

which contradicts θ(t) > θ(t + 1). After capital is fully utilized either capital ceases

to exist or is fully utilized. Thus partial utilization occurs early. Following investment

in dirty technology, xB(t
′) > 0, and utilized dirty technology capital KB(t

′) > 0, dirty

technology capital KB(t
′ + 1) > 0 is fully utilized, or dirty technology capital does not

exist in all following periods. Then xB(t− 1) = 0 if xB(t) = 0 all t < t′. Q.E.D.

Investment and partial utilization occur only once simultaneously, given investment

occurs in the long-term. There may be no such date after underutilization (II-2)—which

depends on the productivity of clean technology as will be shown below. There may

be earlier dates with underutilization and without investment, and later dates with full

utilization and investment. Dirty technology capital may be underutilized initially, be

used up in finite time and become zero, and be built up later, in allocations without

the joint investment and underutilization (II-2) and yet other allocations with it (II-3)—

which depends on the effect of the pollution level on utility. The type of path depends on

where the initial state is relative to the long-term state. I discuss these incentives after

stating conditions that replace a statement on the endogenous θ in Proposition 2.3 in the

following.

(i) Depreciation and clean technology productivity. Let the marginal rate of substitu-

tion of consumption in periods t and (t+1) be R(t+1) = (∂U/∂c)(t)/β(∂U/∂c)(t+1). In

an optimum the foregone benefit of consuming dirty technology capital services, uB(t) < 1

and KB(t) > 0, and the benefit of consuming them one period later, uB(t + 1) > 0, are

necessarily balanced by

βγB(1− (b/B)θ(t+ 1))∂U/∂c(t+ 1) = (1− (b/B)θ(t))∂U/∂c(t), (2.9)

given KB(t+1) ∈ (0, K̄B).
17 Then R(t+1) exceeds γB if and only if θ(t) > θ(t+1). The

“only if” statement given underutilization at (t+1) cannot be inferred if dirty technology

capital KB(t) > 0 is fully utilized, or there is no dirty technology capital, KB(t) = 0. In

Proposition 2.3 there is utilized capital at some date, because this can be used to preclude

17Equalities in (2.6) and (2.8) imply that βγj{λ(t+1)−djǫ(t+1)−wj(t+1)} = γjqj(t) = λ(t)−djǫ(t).
If (2.2) is slack then wj(t+ 1) = 0. The condition (2.9) follows by rearranging for j = B.
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underutilization immediately following investment at this date given the assumed decrease

in the cost of polluting. The latter presumption can be replaced by (i) a condition on

depreciation if investing in dirty technology does not create emissions, ρB = 0, or (ii)

sufficient productivity and scale of clean technology, to attain the same results.

Condition 2.1 Pollution depreciates at smaller rate than unused dirty capacity, ∂A/∂Z <

1− γB all Z.

The Intergovernmental Panel on Climate Change (2007) reports that atmospheric carbon

and other so-called greenhouse gases are persistent, which suggests that Condition 2.1

holds. This condition is formulated for all Z and thus is an exogenous object. The

simulation in Section 2.3 satisfies it.

Condition 2.2 QC > γB(1 + (ρC/B)θB) if ρC ≥ ρB and QC > QB(1− (b/B)θB) if ρC ≤

ρB. K̄C is large.

Under these parameters investment in clean technology is preferred to investing in dirty

technology and underutilizing dirty technology capital in the next period. The simulations

in Section 2.3 do not meet the large scale in Condition 2.2. Empirical work is needed to

uncover the relations in the first part and the necessary scale for different pollution and

dirty capacity levels. The first two conditions amount to greater productivity of clean

technology investment than the preserved portion of unused dirty capacity, QC > γB, if

investment in both the dirty and the clean technology is emission-free, ρB = ρC = 0.

This case may be relevant only in the future, for example, if all steel is produced from

scrap steel using the electric arc furnace rather than some steel is produced with coking

coal that creates carbon dioxide emissions.18 Condition 2.1 and ρB = 0, or Condition 2.2,

rule out investment and succeeding underutilization for decreased or increased θ. The

following two lemmata summarize results that lead to this conclusion. The first lemma

uses results from the appendix. The second lemma exploits that the discounted marginal

net benefit equals the marginal cost of investing xB(t) > 0 in dirty technology,

QB(1− (b/B)θ(t+ 1))/R(t+ 1) = (1 + (ρB/B)θ(t)), (2.10)

18Interestingly, cement that uses limestone, a source of CO2 emissions in investment, can be replaced
increasingly by flyash of coal power plants or slag from coking coal of primary steel mills, in producing
concrete.
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if its capital KB(t+ 1) ∈ (0, K̄B) is utilized, uB(t+ 1) > 0.

Lemma 2.3 Dirty technology capital KB(t+1) ∈ (0, K̄B) is fully utilized, uB(t+1) = 1,

if there is emission-free investment in dirty technology, xB(t) > 0 and ρB = 0, dirty

technology capital KB(t) > 0 is utilized, uB(t) > 0, and Condition 2.1 holds.

Proof. Evaluating the result of Lemma 2.9 in the appendix when xB(t) > 0, ρB = 0, and

uB(t + 1) < 1, shows that R(t + 1) ≤ γB. This contradicts Lemma 2.8 in the appendix

when uB(t) > 0 and KB(t+ 1) < K̄B, which yields R(t+ 1) > γB. Q.E.D.

Lemma 2.4 Dirty technology capital KB(t + 1) > 0 that is utilized, uB(t + 1) > 0, is

fully utilized, uB(t + 1) = 1, if there is investment in dirty technology, xB(t) > 0, and

Condition 2.2 holds.

Proof. (i) θ(t) ≥ θ(t + 1). For xB(t) > 0 and uB(t + 1) < 1 Lemma 2.9 in the

appendix implies that R(t + 1) ≤ γB. Clean technology investment satisfies BQC ≤

R(t+ 1)(B + ρCθ(t)) ≤ γB(B + ρCθB) at θ(t) ≤ θB and KC(t+ 1) < K̄C . Either

(1) ρCγB/(ρBγB +QBb) < (QC − γB)/(QB − γB) ⇐⇒ BQC > γB(B + ρCθB) or

(2) (ρB + b)γB/(ρBγB +QBb) < QC/QB ⇐⇒ BQC > QB(B − bθB)

for (1) ρC ≥ ρB or (2) ρC ≤ ρB, respectively, imply that BQC > γB(B+ ρCθB), a contra-

diction to the weak inequality in the reverse direction. (ii) θ(t) < θ(t+1). Equation (2.10)

holds for xB(t) > 0 and uB(t+1) > 0. ThusQB(B−bθB) ≥ QC(B + ρBθ(t))/(B + ρCθ(t)).

In case (1) ρC [θB − θ(t)] ≥ ρB[θB − θ(t)] yields (B + ρBθ(t))/(B + ρCθ(t)) ≥ (B +

ρBθB)/(B + ρCθB) so that BQC ≤ γB(B + ρCθB). In case (2) the contradiction follows

directly. Therefore capital KB(t+ 1) > 0 is fully utilized. Q.E.D.

One may be cautious that clean technology is not sufficiently productive at large scale

when ρB > 0. The cost of polluting may turn to θB from lower values after investment and

full utilization in the dirty technology, because high-productivity clean technology has a

small scale. Then the state moves from the region R1 = {(Z,KB, KC) | xB > 0, uB = 1}

to the region R2 = {(Z,KB, KC) | xB > 0, uB ∈ (0, 1)}, if this exists, or to the region

R3 = {(Z,KB, KC) | xB = 0, uB ∈ (0, 1)}, if R2 does not exist. I have found dampened

oscillations in the cost of polluting in a LQ problem without such a return. In the model
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of a fishery in Clark et al. (1979) underutilization succeeds full utilization because capital

does not vanish after it is fully utilized and investment lacks. This incentive does not

exist here.

(ii) Clean technology productivity and disutility of pollution. Lemma 2.4 does not

require dirty capacity KB(t) > 0. Thus under Condition 2.2 the early underutilization

in Proposition 2.3 extends to allocations (II-2 and II-3) with reinvestment in the dirty

technology at a date at which θ(t) ≤ θB when there is temporarily no dirty technology

capital, KB(t) = 0.

Proposition 2.4 Dirty technology capital KB(t) > 0 is partially utilized, uB(t) ∈ (0, 1),

only in an early time interval {0, 1, . . . , t′ − 1} and fully utilized later, uB(t) = 1 all

t > t′ − 1, in an optimal plan in which (i) dirty technology capital KB(t) > 0 is not

idle, uB(t) > 0, and is zero after and before it is positive, KB(t) = 0 all t′ < t ≤ t′′,

and KB(t) > 0 all 0 ≤ t ≤ t′ and t > t′′, (ii) θ(t′′) ≤ θB, and (iii) Condition 2.2 holds.

There is no investment in dirty technology, xB(t) = 0, all 0 ≤ t < t′′ on the path with

underutilization.

A proof is straightforward and thus omitted. The following discusses the allocations of

Propositions 2.3 and 2.4 and how either one depends on the productivity of clean technol-

ogy and the disutility of pollution. Allocations (II-1) that pass through or start in R2 are

examples of Proposition 2.3. The economy may lack dirty technology capital following

a period with fully utilized dirty technology capital, possibly after underutilization (in

II-2), before the economy enters R1, as examples of paths in Proposition 2.4, if there is

no such R2. To examine when there is a region R2, rewriting equation (2.5) as

R(t+ 1)θ(t) = [(−∂U/∂Z)/(∂U/∂c)](t+ 1) + a(t+ 1)θ(t+ 1) (2.11)

is useful where a(t+1) = 1− ∂A/∂Z(t+1). For any state in period t at which investing

and underutilizing is optimal in the dirty technology, the equation

QB

R(t+ 1)

[

1 +

(

−∂U/∂Z

∂U/∂c

)

(t+ 1)
dB

a(t+ 1)

]

= 1 +

(

ρB +
dBQB

a(t+ 1)

)

θB

from (2.9) and (2.11) at θ(t) = θB gives the shadow return R(t+ 1). This shadow return

depends only on the successor state (Z,KB, KC)(t + 1). R2 is empty if the marginal
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return QC/(1 + (ρC/B)θ(t)) of investing in clean technology at θ(t) = θB exceeds the

level of R(t + 1) just identified when omitting clean technology from the model, though

the optimal clean technology stock KC(t + 1) is less than K̄C (II-2). Sufficiently large

productivity and scale of clean technology prohibit R2 so that there is no dirty capacity

temporarily. For parameters that yield R2 dirty capacity may still vanish temporarily

(II-3). R2 is characterized as follows, provided that it exists.

Proposition 2.5 A region R2 in the state space with the policy of investment in dirty

technology and partially utilized dirty technology capital KB(t) > 0, that is, xB(t) > 0

and uB(t) ∈ (0, 1), satisfies (dB − B/θB)∂v/∂Z(t+ 1) = γB∂v/∂KB(t+ 1). R2 extends

to K̄B as γB is small.

Proof. The conditions ǫ = θB∂U/∂c and B∂U/∂c − dBǫ = γBqB hold in R2. The

shadow prices of states are the differentials of the value function with respect to the state,

ǫ(t) = −β∂v/∂Z(t+ 1) and qB(t) = β∂v/∂KB(t+ 1). See, for example, Sargent (1987).

Then (dB −B/θB)∂v/∂Z(Z
′, K ′

B, K
′
C) = γB∂v/∂KB(Z

′, K ′
B, K

′
C) describes a hyperplane

in the state space that is reached from any state in R2, letting prime denote next period

values. The utilization rate is uB(t) ∈ [u∗, 1] for some u∗ ∈ (0, 1) at which the utilization

rate uB(t) is minimized in R2. Since K ′
C = QCxC there is a system of four equations—the

relationship of c and Z from ǫ = θB(∂U/∂c)(c, Z) at ǫ that satisfies (2.5), which depends

on the policy c′ given (Z ′, K ′
B, K

′
C) and on Z ′ in general, the resource constraint, and

the laws of motion—in the five unkowns consumption c, input xB in investment and the

utilization rate uB in the dirty technology, pollution Z, and dirty capacity KB, given

clean capacity KC . The input xC ∈ (0, K̄C/QC) has to be determined through equating

QC/(1 + (ρC/B)θB) to the shadow return R(t + 1) or xC = {0, K̄C/QC}. In special

cases the choice of xC may be obvious. The system determines a state manifold, which

is the boundary of R1 and R2, for uB = 1, and yields a state manifold, which forms

the boundary of R2 and R3, for xB = 0. As γB shrinks the dirty capacity KB becomes

arbitrarily large when xB = 0. Q.E.D.

Clean technology capital may be installed exclusively when dirty technology capital is

used up following an interval of fully utilized dirty technology capital, because of high

disutility from pollution at large pollution levels (II-3). This incentive prevails too in the

constrained optimum in which capital is assumed to be fully utilized.19 Other allocations

19The incentive does not prevail if the sequence of ǫ is roughly constant, for example, if the marginal
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Exclusive long-term use of clean technology

I-1 (0, 0), (0, 0), . . .
I-2 (0, u), (0, 0), (0, 0), . . .
I-3 (0, u), . . . , (0, u), (0, 1), (0,−), (0,−), . . .
I-4 (x, 1), . . . , (x, 1), (0, 1), (0,−), (0,−), . . .

Long-term use of dirty technology

II-1 (0, u), . . . , (0, u), (x, u), (x, 1), (x, 1), . . .
II-2 (0, u), . . . , (0, u), (0, 1), (0,−), . . . , (0,−), (x,−), (x, 1), (x, 1), . . .
II-3 early interval as in II-1 until some (x, 1) succeeded by

(0, 1), (0,−), . . . , (0,−), (x,−), (x, 1), (x, 1), . . .
II-4 (x, 1), (x, 1), . . .

Note: Here KB(0) > 0, KB(t) = 0 for t ≥ 1 is indicated by “−”, and x and u stand
for interior values, xB > 0 and uB ∈ (0, 1), respectively.

Table 2.1: Sequences of investment and utilization (xB, uB) in dirty technology on {t, t+
1, . . .}.

may pass through R2 and remain in R1 for the same parameter values. Low levels of

pollution may be on such paths. Table 2.1 summarizes possible sequences of dirty tech-

nology investment and utilization, which themselves or of which terminal subsequences

may characterize an optimal plan.

Timing of investment and utilization in clean technology.—The analogue to the bal-

ancing condition (2.9) for dirty technology is

γC = R(t+ 1) (2.12)

for clean technology, if uC(t) < 1 and uC(t+1) > 0, because using clean technology capital

KC(t) > 0 or KC(t+1) ∈ (0, K̄C) is not environmentally costly. I argue with Assumption

2.2 that clean technology capital may only be underutilized if dirty technology capital

is idle or is not installed. The second result in the following lemma is useful for this.

The first result shows that the environmental cost is necessary for underutilizing clean

capacity that can be created at a productivity that is greater than γC .

utility of pollution ∂U/∂Z and the marginal absorption ∂A/∂Z are nearly constant. In optimum with
underutilized dirty technology capital in (II-3) xB(t) = 0 all t < t′ − 1 and t∗ ≤ t < t′′, xB(t) > 0 all
t′ − 1 ≤ t < t∗ and t ≥ t′′, uB(t) ∈ (0, 1) all t < t′ and uB(t) = 1 all t ≥ t′ when KB(t) > 0. Dirty
technology capital is zero from t∗ + 1 to t′′.
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Lemma 2.5 Clean technology capital KC(t) > 0 is fully utilized, uC(t) = 1, if (i) the

return on emission-free investment in clean technology exceeds the return from storing

its unused capital, QC > γC and ρC = 0, or (ii) the marginal rate of intertemporal

substitution of consumption R(t+ 1) is greater than γC.

Proof. (i) The condition (2.8) reads λ(t) − djǫ(t) ≤ γjqj(t) if uj(t) < 1. Combination

with the necessary condition (2.7) of investment yields Qj(λ(t) − djǫ(t)) ≤ γjQjqj(t) ≤

γj(λ(t) + ρjǫ(t)) where γj > 0. The first result follows from there by contradiction for

dC = ρC = 0. (ii) Since idling and storing capital forever cannot be optimal some

t exists such that uC(t) > 0. Utilization of capital KC(t) > 0 at period t, that is,

uj(t) > 0, requires that β{λ(t)−djǫ(t)−wj(t)} = qj(t−1). Analogous reasoning to (i) for

underutilization in the preceding period, uj(t−1) < 1, implies that λ(t−1)−djǫ(t−1) ≤

γjqj(t). Therefore βγj(λ(t)− djǫ(t)) ≥ λ(t− 1)− djǫ(t− 1) yields the result. Q.E.D.

Using output to create new capital units without emissions, ρC = 0, is superior to

forwarding unused capital if QC exceeds the storage return γC . Consuming the capital

services at t is preferred to such storage if the shadow return R(t+1) is greater than the

return γC from storing the capital. The proof of Lemma 2.5 hints that clean technology

capital may be mothballed if the creation of new capital units stresses the environment,

ρC > 0, or its intrinsic return on investment, QC , is low so that the discounted return

QC/(1 + (ρC/B)θ(t)) from investing does not exceed the rate of return γC from storage,

and in addition the shadow return R(t+ 1) is not greater than γC .
20 The shadow return

is greater than γB if Condition 2.1 holds and dirty technology capital is utilized. This

leads to the following proposition.

Proposition 2.6 Clean technology capital KC(t) > 0 is underutilized, uC(t) < 1, only

if dirty technology capital KB(t) > 0 is idle, uB(t) = 0, or there is no dirty technology

capital, KB(t) = 0, if Condition 2.1 holds.

Proof. The shadow return R(t + 1) exceeds γB if dirty capacity KB(t) > 0 is utilized,

uB(t) > 0, and Condition 2.1 holds. Clean capacity KC(t) > 0 is fully utilized, uC(t) = 1,

because γC ≤ γB < R(t+1) using Lemma 2.5. A contrapositive yields the result. Q.E.D.

20Reducing dirty output below dirty capacity to store capital is not preferred to spending output to
invest in dirty technology if the marginal utility of pollution was zero in all future periods, since the
return rate γB to storage is less than the marginal product QB of investment in technology B.
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Long-term use of clean technology

III-1 (0, u), . . . , (0, u), (x, u), (x, 1), (x, 1), . . .
III-2 (0, 1), (0,−), (0,−), . . . , (0,−), (x,−), (x, 1), (x, 1), . . .
III-3 (x, 1), (x, 1), . . .
Exclusive long-term use of dirty technology

IV-1 (0, 1), (0,−), . . . , (x,−), (x, 1), . . . , (x, 1), (0, 1), (0,−), (0,−), . . .
IV-2 (0, 1), (0,−), (0,−), . . .

Note: Here KC(0) > 0, KC(t) = 0 for t ≥ 1 is indicated by “−”, and x and u stand
for interior values, xC > 0 and uC ∈ (0, 1), respectively.

Table 2.2: Sequences of investment and utilization (xC , uC) in clean technology on {t, t+
1, . . .}.

The shadow return may exceed γB if Condition 2.1 does not hold, and dirty technology

capital is utilized, leading to the same result as in Proposition 2.6.

Clean technology capital may be mothballed if dirty technology use is abandoned at

t = 0. The only case in Table 2.2 that agrees to this is (I-1). The low shadow return

from the Hotelling rule (2.12) means that then initial clean capacity is large relative to

its long-term level. Table 2.2 summarizes the tiandng of investment and utilization in a

clean technology. (III-1) matches (I-1). (III-2) agrees to (I-4). (III-3) matches (I-1 to I-3)

for large scale K̄C and (II-1 to II-4) for small scale K̄C . (IV-1) is consistent with (II-2)

and (II-3). (IV-2) matches (II-1 and II-4). I refer to the discussion of dirty technology

investment and utilization for the sets of the parameters beside K̄C in each case.

Exclusive clean technology use in the long-term requires that QC > β−1 > γC . Thus

the environmental cost in the construction of solar panels or wind turbines induces under-

utilization in the clean technology that is used in the long-term. In Fischer et al. (2004)

clean technology capital is built more than one period before it is used when pollution is

below its long-term level because of diminishing returns to scale in its investment and a

user flow cost. Renewable energy technologies do not seem to have significant operation

and maintenance cost. Dirty technology does not use capital in their model. Diminishing

returns of renewable energy may result from manufacturing and locating capital in geo-

graphic sites of different productivity, which can be summarized in the notion of multiple

clean technology types.
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2.1.2 Multiple clean technology types

The section discusses the utilization of multiple clean technology types, implications of

underutilized dirty technology capital for the types of invested clean technologies, and a

sufficient condition on the productivity of multiple clean technologies for the timing of

the utilization of dirty technology capital.

Exclusive long-term use of clean technology.—Decreasing returns in building aggregate

capital induce postponing the use of low marginal product capital. For example, each

renewable energy technology is widely applicable in the world, yet at different real cost

across locations of finite size. A similar effect is waiting until the marginal product of

using installed capital has increased in Arrow & Kurz (1970a) because capital depreciates.

A difference to this phenomenon in the one-sector growth model here is that investment

occurs—in sites or engineering systems with high marginal product.21 This incentive

exists if investing has no environmental cost and is strengthened by the environmental

cost.

The shadow return lies between the marginal returns on investment in technologies C ′

and C such that QC′/(1 + (ρC′/B)θ(t)) ≥ R(t+ 1) = γC > QC/(1 + (ρC/B)θ(t)) if there

is clean technology capital in low-productivity sites or of expensive make to begin with,

KC(0) > 0. Then it is optimal to not invest, and to store capital, xC(0) = uC(0) = 0, in

low-productivity sites or technologies and simultaneously invest and fully utilize existing

capital in high-productivity sites or technologies, xC′(0) > 0 and uC′(t) = 1. In such a plan

dirty capacity is idle initially and possibly infinitely. Highly productive clean technology,

that is, QC > β−1 at sufficiently large scale K̄C , is necessary to sustain consumption that

keeps θ ≥ B/b all time, which prevents the utilization of dirty technology capital KB(0).
22

21The incentive to save much is met by investment in high-productivity types and postponing the use
of low-productivity types. The usefulness of capital only in one period rules out that investment lacks
because past investments have been irreversible. Thus the environmental motive is solely responsible for
zero investment in any technology.

22A growing literature considers making cleaner technology more productive, potentially reversing the
relationship between minimum QC and maximum QB . Chakravorty, Roumasset & Tse (1997), in a
partial equilibrium model in the spirit of Nordhaus (1973), have been overly optimistic in assuming
functional forms about deterministic and exclusive progress in clean technology that predicted counter-
factual reduction in greenhouse gas emissions. Edenhofer et al. (2005) posit learning-by-doing for clean
technology only. Hartley et al. (2010) devise a learning effect to make a renewable resource technology
more productive over time. Van Zon and Lontzek (2006) find that a carbon tax diverts research effort
from clean renewables to a polluting technology through directed technical change, if there is no research
funding policy that favours clean technology. Acemoglu et al. (2012) document the optimal paths of
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(2.9)

(2.10)

B/dB

R(t+ 1)

θ(t)
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b

O

Figure 2.1: Shadow return and cost of polluting with underutilization in case (II-1).

There is capacity KC(0) such that QB > QC at the initial date zero of optimization if

governments have pushed expensive clean technologies prior to this date. It would be

fully utilized in a laissez-faire equilibrium with QB = R(t+ 1) > γC .

Long-term use of dirty technology.—The shadow return R follows a V-shaped sequence

on a path beginning with partially utilized dirty technology capital and with long-term

use of this technology, for example, when the environmental disutility (−∂U/∂Z) and

marginal absorption ∂A/∂Z are constant or if Condition 2.1 holds. In this specification

the shadow cost of polluting is constant. Under this condition ǫ(t + 1)/ǫ(t) < (βγB)
−1,

which is sufficient for the trough of the shadow return. Figure 2.1 plots the equations (2.9)

and (2.10) using the identity R(t+ 1)(βǫ(t+1)/ǫ(t))θ(t) = θ(t+1) subject to ǫ(t) = ǫ(t+

1).23 The shadow return varies positively with the marginal return QC/(1 + (ρC/B)θ(t))

of the marginal clean technology in which investment occurs since

QC/R(t+ 1) ≥ (1 + (ρC/B)θ(t)) if KC(t+ 1) > 0, (2.13)

at equality for KC(t + 1) ∈ (0, K̄C). The time path of R(t + 1) and θ(t) in an optimal

plan (II-1) follows the indicated flow if capacity of clean technology types is bounded by

sufficiently low K̄C . Capacity in sufficiently productive clean technologies expands to their

bounds in any given period. Then investment in increasingly costly clean technologies

(low QC , high ρC) is efficient when dirty technology capital is underutilized, followed by

an energy tax rate and a non-energy good research subsidy in a calibrated model of directed technical
change with an exogenous rate of progress.

23In other specifications the change in the shadow price of pollution affects the curves.
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backing investment out of expensive clean technologies, when dirty technology capital is

fully utilized. The time path of R(t+1) and θ(t) would follow the downward-sloping curve

if dirty capacity was assumed to be fully utilized. Thus the possibility of underutilization

of dirty technology capital lowers the incentives to invest in expensive clean technologies

if the marginal QC for large aggregate scale in clean techology types is low, which seems

currently plausible in the climate problem. The intersection of the curves in Figure 2.1

marks the turning point of R(t + 1) when the economy is in R2 at date t. The shadow

return R is bounded from below at a level greater than this turning level if the clean

technologies’ minimum QC and its associated scale K̄C are sufficiently large. Then dirty

technology capital is temporarily absent after the economy was in R3 (II-2).

Suppose that ρC is equal all C ∈ {j | dj = 0} and let Q′′ be the minimum QC . Propo-

sition 2.3 follows given Q′′ > γB(1 + (ρC/B)θB) if ρC ≥ ρB and Q′′ > QB(1− (dB/B)θB)

if ρC ≤ ρB all B ∈ {j | dj > 0}, and given large aggregate capacity of clean technologies.

The next section turns to decision-making private agents and a government. Before I

collect the optimal policies in a given period.

Consumption.—Postponing the use of capital or investing each maximizes the shadow

return. In view of (2.9) and (2.10) some dirty technology capital is forwarded rather than

used to produce new capital when this offers the greater shadow return, and vice versa.

At a state in R2 reached in period t both the conditions (2.9) and (2.10) hold, which solve

for θ(t) = θB.
24 Investment in clean technology may offer an even greater return. Dirty

technology capital is idle, if this greater return prevails at large scale of clean technology

and clean technology types are exclusively used in the long-term at sufficiently large

θ. As a fourth option, postponing the use of clean technology capital is optimal if this

maximizes the shadow return. Investing in high-productivity clean technology types and

mothballing low-productivity clean technology types can be optimal. The shadow return

R(t+1) depends positively on c(t+1) and negatively on c(t). Thus any policy maximizes

consumption growth, given pollution at t and (t+ 1) at optimal values.

24The shadow price of capital is negative at states in R3 with large dirty technology capital if capital
is constrained to be fully utilized. The constraint KB(t+ 1) ≤ QBxB(t) is binding in R1 and qB(t) ≥ 0.
The constraint KB(t+ 1) ≥ QBxB(t) would be binding at states in R3 and qB(t) ≤ 0.
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2.2 Decentralized decision-making

In each period there is a government that announces a tax and transfer policy for the

current and all future periods. Emissions are taxed and the proceeds returned lump-sum

to households. Actual policy may be delayed such that the announcement comprises

zero tax and transfer rates before an exogenous date t∗.25 Firms own productive capital,

and households own claims to profits of firms. In an equilibrium in which firms make

zero economic profit using asset-market decentralization all agents may trade a single

asset. However, firms earn a differential (Ricardian) rent if the aggregate production is

constrained by (2.2) because, for simplicity, there is no resource ownership that could

absorb the rent.26 Firms may use capital in dirty and clean technologies at different

proportions. Thus there are financial assets specific to firms.27 With reference to energy

production the general factor is net energy or useful energy as, for example, defined in

Erdmann & Zweifel (2008) and Bhattacharyya (2011), respectively.

Households.—All households have an equal endowment αi(0) of tradable equity of firm

i for simplicity. This assumption and equal preferences imply that each household is

representative of all households. The price of the claim to firm i’s profits is qi, and the

dividend it pays is di. One unit of the consumption good costs p̂ units of account. The

representative household receives a nonnegative transfer tr from the government. The

household chooses consumption c(t) and number αi(t+1) of claims all t ≥ τ to maximize

Jτ =
∞
∑

t=τ

βt−τU(c(t), Z(t))

subject to the sequence of budget constraints

p̂(t)c(t) +
∑

i

qi(t)αi(t+ 1) ≤
∑

i

(qi(t) + di(t))αi(t) + tr(t)

on {τ, τ + 1, . . .} taking all prices, dividends, the transfer, and pollution as given. The

25Acemoglu et al. (2012) assume an exogenous delay and do not formalize the announcement.
26There is a similar rent when fossil fuel deposits are simultaneously extracted at different marginal

costs which forms the basis for Harstad’s (2012) proposal to acquire coal deposits to implement an
optimum under spillovers.

27An alternative would be distinct dirty and clean technology producers and two types of assets, private
equity of dirty technology users, and public equity of clean technology producers, without affecting results.

65



analysis of delayed government policy requires a belief of private agents. Let τ̂ be the

emissions tax rate in the set of policy instruments π = (τ̂ , tr). For simplicity households

and firms do not anticipate any change in the government’s policy function {0} ∪ N →

{π(t), π(t+1) . . .} before the date at which this policy function changes. Given a change

occurs once at t∗ ∈ [0,∞) the representative household (and any firm) either makes one

plan, if t∗ = 0, or reoptimizes at date t∗ > 0, so that τ ∈ {0, t∗}.28

Firms.—The number α̂i of equity of firm i is variable throughout the planning horizon.

Firms can pay out and issue shares. Otherwise firms could not pause producing and own

capital between any two periods t < t′−1 and t′ in an equilibrium with nonnegative profit

of all firms in every period. This would be an unnecessarily strong assumption. All firms

have access to the same technologies J to produce energy mj ∈ [0, Kj ], technologies to

convert xj energy units intoQjxj investment goods, and one technology that uses x energy

units to produce consumption goods amount Bx. Firms may utilize assets differently in

equilibrium. Firm i may be a representative firm that is active in all sectors without

change in notation. Then in an equilibrium all firms utilize capital at the same rate.

Firm i’s available capital in technology j follows the law of motion

Kij(t+ 1) = γj(1− uij(t))Kij(t) + Iij(t) (2.14)

given chosen utilization rate uij(t) ∈ [0, 1]. Firm i demands Iij new capital units, xi

energy units, and sells Îij = Qjxij new capital units using the proportion ηij = xij/xi

of its factor demand. It sells the energy amount mij = uijKij, and consumption goods

amount ci = B(1−
∑

j ηij)xi. The industry capacity constraint is

K̄j ≥
∑

i

Kij(t+ 1) (2.15)

all t ≥ 0 for technology j ∈ J . Equipment of technology j trades at unit price pj.

The price per unit of energy is p. Any firm is obliged to pay τ̂ units of account per

emission unit that the firms’ processes have created. Profit from using and investing in

28Firms may still build capital that is efficiently underutilized if private agents rationally expect a
change in the course of government policy toward implementation of a Pareto optimum. This belief
would require an equilibrium that connects necessary equilibrium conditions of different regimes through
shadow prices of these regimes, because the allocation prior to t∗ generally differs over t∗ for the same
initial conditions.
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the dirty and clean technologies is Πij = (p− dj τ̂)mij − pjIij in period t ≥ 0. Production

of the consumption good, and of investment goods, using energy creates profit Π̂i =

(p̂B − p)(1−
∑

j ηij)xi +
∑

j(pjQj − (p+ ρj τ̂))xij. Firm i’s profit net of equity trade

Πi(t) =
∑

j∈J

Πij(t) + Π̂i(t) + qi(t)[α̂i(t+ 1)− α̂i(t)] (2.16)

in period t ≥ 0 sums profits from the sectors for the factor energy, consumption goods,

and investment goods, and the trade surplus. Each firm i chooses input demands and

output supplies, and number α̂i(t+1) of equity, on {τ, τ +1, . . .} to maximize the present

discounted value of ex-dividend profits

viτ =
∞
∑

t=τ

1
∏t

v=τ R̂(v)
{Πi(t)− α̂i(t)di(t)}

subject to (2.14) and (2.15) all t ≥ τ taking prices, government policy rates, and the

endogenous nominal interest rate sequence {R̂(1), R̂(2), . . .} as given, where R̂(0) is some

given positive number, and τ ∈ {0, t∗}.29 Any household or firm may offer an asset that

promises R̂ units of account return, and there is no trade of this asset in equilibrium.

Government.—A government in period t ≥ 0 sets tax rates and lump-sum transfers

{τ̂(t′), tr(t′)} for all dates t′ ≥ t before private agents make decisions about demands and

supplies at date t. The taxes and subsidies appear in a government’s budget constraint

tr ≤ τ̂
∑

i

∑

j∈J

(djmij + ρjxij) (2.17)

all t ≥ 0. The exogenous nature of government policy is helpful in motivating delayed

policy. The tax on polluting activities in all periods that implements a Pareto optimal

allocation is time-consistent. Thus if the government (or successive governments) would

maximize welfare J using taxes on polluting activities and lump-sum transfers and no

other instruments then equilibrium government policy was not delayed.

29Total dividends is Πi(t) = α̂i(t)di(t) equal to total profit all t ≥ 0 given outstanding equity α̂i(t).
For example, a firm using clean technology j makes zero total profit from buying equipment at cost
pj(t)Iij(t) = qi(t)α̂i(t + 1) in period t, and pays out dividend di(t + 1)α̂i(t + 1) and ‘buyback’ qi(t +
1)α̂i(t + 1) in period (t + 1), in sum equal to revenue p(t + 1)Iij(t). The equity of this firm in period
(t+2) may be zero, if the firm does not reinvest. Firms may maximize the discounted value of dividends
taking as given α̂i(t+ 1) all t ≥ 0 without change in results.
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Equilibrium.—Markets sequentially open and close over time so that households and

firms can revise decisions when government policy begins. Demand equals supply on the

goods markets in a given period, if

∑

i

xi =
∑

i

∑

j∈J

mij,
∑

i

Iij =
∑

i

Îij, j ∈ J , c =
∑

i

ci,

for the general factor, investment goods, and the consumption good, respectively. An

equilibrium is a system of prices (p, p̂, pB, pC , R̂) and {qi}∀ i, quantities of demands and

supplies, and equity αi and α̂i, and government policy π on {0, 1, . . .} such that (i) the

representative household and all firms solve their problems taking prices and government

policy variables as given, (ii) the government satisfies its budget constraint all t ≥ 0, (iii)

the law of motion of pollution is Z(t+1) = Z(t)+
∑

i

∑

j∈J (djmij + ρjxij)−A(Z(t)) all

t ≥ 0, and (iv) demand equals supply on the goods markets and securities holdings αi(t)

of households equals issued equity α̂i(t) all i, all t ≥ 0. The following conditions are useful

to characterize an equilibrium without taxes or subsidies and to determine government

policy that implements a Pareto optimum.

A necessary condition for the profit-maximizing choice of capacity Kij(t + 1) of tech-

nology j ∈ J is

(1/R̂(t+ 1))(uij(t+ 1) {p(t+ 1)− dj τ̂(t+ 1)}

+ γj(1− uij(t+ 1))υij(t+ 1)− ŵj(t+ 1)) ≤ υij(t)
(2.18)

at shadow prices υij of (2.14) and ŵj of (2.15). The condition holds at equality if the

respective capacity is positive. The shadow price ŵj(t) is zero if capacity Kj(t) is less

than the bound K̄j. Then utilization of the capacities at (t+ 1) of firm i satisfies

uij(t+ 1)











= 1

∈ (0, 1)

= 0











=⇒
1

R̂(t+ 1)
{p(t+ 1)− dj τ̂(t+ 1)}











=

=
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1

R̂(t+ 1)
γjυij(t+ 1)

(2.19)
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given Kij(t+ 1) ∈ (0, K̄j) for t ≥ 0. The outer relations at weak inequalities are relevant

regarding utilization at period t = 0. The price-taking assumption should only hold if

individual capacity is smaller than maximum capacity. Equilibrium investment Iij(t) ≥ 0

in technology j ∈ J satisfies υij(t) ≤ pj(t) at equality if Iij(t) > 0 for some firm i. The

shadow prices υij are identical for all firms i that use the technology j ∈ J . Choices of the

consumption goods supply and the energy input demand in producing the consumption

good imply that p̂(t)B = p(t) since consumption goods are produced in equilibrium. The

necessary equilibrium condition Qjpj(t) ≤ p(t) + ρj τ̂(t) holds at equality if at least one

firm i produces a positive quantity Qjxij of the investment good of technology j ∈ J .

The next section contrasts the allocation in a competitive equilibrium without taxes or

subsidies (laissez-faire equilibrium) to a Pareto optimal outcome.

2.2.1 Laissez-faire equilibrium

The policy announcements are tr(t) = τ̂(t) = 0 and t ≥ 0. Firm i fully utilizes capacity

Kij(t) > 0 all j ∈ J since marginal profit per unit of output, p(t), is greater than γjυij(t)

all t ≥ 0.

Proposition 2.7 Capacity Kij(t) > 0 is fully utilized, uij(t) = 1, in each firm i and all

technologies j ∈ J in a laissez-faire equilibrium.

Proof. The result follows from p ≥ Qjpj ≥ Qjυij > γjυij if Qj > γj. This is true for

the dirty technology. Suppose that clean technology capital is underutilized at the initial

date. First p(1)/R̂(1) ≤ υiC(0). Any available capital cannot be unused forever since

the market price of output is positive. Then γC
t−1

∏t
v=1 p(v)/R̂(v)p(v− 1) = υiC(0)/p(0)

given date t of utilization for a clean technology with QC ≤ γC . Underutilization at date

zero cannot occur if each real interest rate p(v)/R̂(v)p(v − 1) exceeds one. In the long-

term, the real rate of interest approaches β−1 because both consumption and pollution

converge. Consumption may temporarily decrease if the marginal rate of substitution of

consumption depends on pollution. But the product of interest rate factors approaches a

value greater than one. Thus clean technology capital is fully utilized all time. Q.E.D.

Aggregate dirty capacity
∑

iKiB reaches its upper bound K̄B in finite time. Without

emissions pricing investment occurs in the most productive technology until its capacity

bound is reached. Then investment starts in the second most productive technology

69



until exhaustion, and so on.30 Investment in a clean technology with marginal product

QC slightly smaller than β−1 or QC ∈ [β−1, QB) may occur while the dirty technology

exhausts its capacity constraint. Investment at such productivity level depends on how

pollution affects the marginal utility of consumption.31

Pollution is greater in some period t′ than in period (t′ − 1) if emissions E(t) = Z(t+

1) − Z(t) + A(Z(t)) have increased long enough. The concave regeneration capacity A

implies that if emissions are sufficient to generate an increase in pollution, and emissions

do not decrease, then pollution increases, which Lemma 2.10 in the appendix summarizes.

This lemma is useful to characterize pollution in the long-term if emissions increase.

Lemma 2.6 Pollution approaches the level Z that solves A(Z) = (b + ρB/QB)K̄B +

(ρC/QC)KC if ∂2U/∂c∂Z ≥ 0, or ∂2U/∂c∂Z < 0 and the effect of consumption dom-

inates the effect of pollution on the marginal utility of consumption, in a laissez-faire

equilibrium. In particular, limt→∞

∑

iKiC(t) = KC equals K̄C if QC > β−1, or QC = β−1

and ∂2U/∂c∂Z ≥ 0, and zero else.

Proof. (i) QC ≥ QB. Investment in dirty technology occurs in any period t only if clean

capacity is at its upper bound in period (t+ 1). On an interval with investment in dirty

technology below maximum amount K̄B/QB the real rate of return equals QB. Then dirty

capacity increases because consumption growth is only sustainable with growth in dirty

output. Growth leads to an increasing emissions sequence, E(0) < E(1) < . . . < E(t′′),

and continues until the capacity constraint (2.2) binds for the dirty technology. After-

wards emission is constant, E(t′′) = E(t′′ + s), s ≥ 1. Induction implies that pollution

increases if ∂U2/∂c∂Z ≥ 0. If pollution raises the marginal utility of consumption,

∂2U/∂c∂Z > 0, then greater uncontrolled increase in pollution accelerates growth of

consumption and dirty technology capital. If pollution lowers the marginal utility of

consumption, ∂2U/∂c∂Z < 0, then seemingly greater uncontrolled increase in pollution

may eventually halt growth before KB exhausts the carrying capacity K̄B of the econ-

omy, respectively. The domination rules this out. (ii) QC ∈ [β−1, QB). Suppose that

30Given full utilization the condition (2.18) becomes (1/R̂(t+1))p(t+1)Qj ≥ p(t) if
∑

i Kij(t+1) = K̄j ,
and equality if aggregate capacity is interior,

∑

i Kij(t+ 1) ∈ (0, K̄j).
31The value of the real interest rate at which consumption stays constant is greater than (equals, is

smaller than) β−1 given pollution increases, if pollution lowers (does not affect, raises) the marginal
utility of consumption. This suggests that if ∂U2/∂c∂Z > 0 and QC is slightly smaller than β−1 then
investment in clean technology occurs one period before the exhaustion date of dirty capacity, and
consumption decreases later to its long-term level when the real interest rate becomes greater than QC .
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limt→∞KC(t) < K̄C . Then as t tends to infinity (1/R̂(t + 1))p(t + 1)QC > p(t) since

(∂U/∂c)(t)/β(∂U/∂c)(t+ 1) = 1/β = R̂(t+ 1)p(t)/p(t+ 1). This contradicts investment

below maximum level. In the case QC = β−1 at constant consumption and increasing

pollution ∂2U/∂c∂Z ≥ 0 is required to make investment in clean technology worthwhile.

Otherwise, ∂2U/∂c∂Z < 0, the real interest rate exceeds the reciprocal of the discount

factor and thereby (1/R̂(t + 1))p(t + 1)QC < p(t) implies that KC = 0. (iii) QC < β−1.

The previous arguments lead to the result. Q.E.D.

Government policy is infinitely delayed, t∗ → ∞, in a laissez-faire equilibrium. This

equilibrium is not optimal because producers not do internalize the effect of pollution on

society in their decisions.

Let the limit value of pollution in a laissez-faire equilibrium be Z̄. Underutilization of

dirty technology capital can prevent a catastrophe, U → −∞ for Z → Ẑ < Z̄, when full

utilization would lead to it. The following proposition summarizes this.

Proposition 2.8 A catastrophe occurs in finite time, at date (t + 1) if Z(t) < Ẑ <

dBKB(t) + Z(t) − A(Z(t)), in a laissez-faire equilibrium and can be prevented by un-

derutilizing dirty capacity KB(t) > 0, that is, uB(t) < 1, and investing a small amount

xB(t) > 0 or xC(t) > 0.

Proof. There is dirty technology capital KB(t) > 0 which is fully utilized, uB(t) = 1, in

the laissez-faire equilibrium. The condition Ẑ < dBKB(t)+Z(t)−A(Z(t)) holds at some

t since Z(t) approaches Z̄ by Lemma 2.6 and this level is greater than Ẑ. The catastrophe

has not occured yet. Thus Ẑ > Z(t) > Z(t) − A(Z(t)). The assumption Z − A(Z) ≤ Z

implies that a small utilization rate uB(t) ≥ 0 and investing a small amount xB(t) > 0 or

xC(t) > 0 creates emissions such that Ẑ > Z(t+ 1) = Z(t) + E(t)− A(Z(t)). Q.E.D.

2.2.2 Implementation of Pareto optimum

A Pigouvian tax internalizes the pollution externality when underutilization is optimal.

Proposition 2.9 An emissions tax equal to the product of the unit price of the consump-

tion good and the cost of polluting, τ̂ = p̂ × θ, and transfer tr for all households that

satisfy (2.17) at equality, all t ≥ 0, evaluated at a Pareto optimal allocation, implement

this optimum.
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Proof. Let the marginal utility of income be ψ. The households’ choice of consumption

yields ∂U/∂c = ψp̂. Its asset holdings α̂i(t + 1) > 0 satisfy β(ψ(t+ 1)/p̂(t+ 1)){(qi(t +

1)+di(t+1))/qi(t)} = ψ(t)/p̂(t). Choice of equity issue by firms implies that the term in

braces is the nominal rate of return R̂(t+ 1). The necessary optimality conditions (2.18)

for firms’ profit maximization recover the necessary conditions (2.6) for a Pareto optimum,

upon substitution of υij/p̂ = qj/(∂U/∂c), ŵj/p̂ = wj/(∂U/∂c), p/p̂ = λ/(∂U/∂c) = B,

and τ̂ /p̂ = ǫ/(∂U/∂c) = θ. The corresponding necessary conditions (2.19) for utilization

in an equilibrium and (2.8) for utilization in a Pareto optimum coincide. The necessary

equilibrium conditions υij(t) ≤ pj(t) regarding investment goods purchases and Qjpj(t) ≤

p(t) + ρj τ̂(t) with respect to production of investment goods become the necessary social

optimality condition (2.7) for investment. Q.E.D.

A firm and thus its owners do not receive a compensation for foregone revenue when

some of its pre-installed dirty technology capital at date t∗ is idle forever (I-1, I-2). Firms

issue new equity to postpone the repayment of equity issued before the date t∗ (buyback

of equity consolidated with equity supply) when initial dirty capacity is underutilized

initially and used in the long-term (I-3, II-1 to II-3). The same policy function as in

Proposition 2.9 implements a constrained optimum with full utilization of capital of any

type—with θ in this allocation.

Normalizing any one price in any period is possible.32 However, the price of consump-

tion goods may be calibrated or estimated in empirical work. Given constant price p̂

greater income induces to trade greater consumption for additional pollution in form of

the tax rate τ̂ , if the marginal utility of consumption decreases in consumption and con-

sumption relates positively to income. This explains why Golosov et al. (2011) observe

that the Pigouvian carbon tax relates positively to income using special preferences and

negative effects of pollution on output.

Government policy rates equal to zero at 0 ≤ t ≤ t∗ − 1 do not implement a Pareto

optimum if equilibrium production creates emissions at a date t prior to (t∗ − 1), and

pollution affects utility in any of the succeeding periods, ∂U/∂Z(t) < 0 for some 1 ≤ t <

t∗, independent on the optimal utilization rates.

32Consumption is measured in dollars so that the price p̂ is set to one in both the approach with carbon
constraint and the approach with continuous effect of carbon on production, for example, in Nordhaus
(2009), on utility, for example, in Acemoglu et al. (2012), or on both production and utility, for example,
in Barrage (2012) in the literature. In a summary of studies Aldy et al. (2010) refer to the imputed
emissions price in models with carbon constraint as least-cost price.
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2.3 Numerical examples

Some questions remain. Does delayed government policy lead to underutilized capital?

Where are the regions of underutilized capacities in the state space? Is dirty technology

capital underutilized when pollution is smaller than its long-term level and the economy

starts with minimum pollution? What is the timing of emissions if dirty capacity is

underutilized? How do the cost of polluting and the level of clean technology investment

compare between the constrained optimum with fully utilized capacity and the optimum?

I find answers in simulations and use two specifications for computational convenience.

The focus of this section is on incentives. An empirical examination of the climate problem

is relegated to future work. The appendix describes the algorithms that delivered the

results. Throughout absorption is proportional to the quantitity of pollutants, A(Z) =

ϕZ, and the portion of preserved capacity of unused dirty technology capital is γB = 0.72.

Pollution is persistent, as only fraction ϕ = 0.1 of current pollution is absorbed.

2.3.1 Strictly concave utility in pollution and one clean technology

Clean capacity is constant at K̄C = QC × 1000 all time because investment in clean

technology has a greater marginal product than investment in dirty technology, QC =

1.1 × QB > QB = (1.02)20, and this is affordable, KC(0) = K̄C . There is one clean

technology, or equivalently other clean technologies have a low rate of return on investment

that does not make investment worthwhile, and have zero stock at the initial date. This

leads to a problem with two state variables. The utility function is

U(c, Z) = [((1 + ξZ) exp(−ξZ)c)1−ψ]/(1− ψ)

with constant index ψ = 2 of relative risk aversion and parameter ξ = 1/442.5. Marginal

utility of pollution is finite for all pollution levels so there is no catastrophe level of

pollution.33 The values of other parameters are β = 0.9675, B = 1, b = 1/30, and

ρB = ρC = 0. This example abstracts from emissions in the investment sector.

The economy subject to no government policy experiences increases in pollution and

33The utility function U is strictly concave in Z ∈ (0, ξ−1) and yields the simple expression
(−∂U/∂Z)/(∂U/∂c) = (ξc)(ξZ)/(1 + ξZ). Acemoglu et al. (2012) use a similar function whose dif-
ferential with respect to pollution becomes −∞ for some finite pollution level.
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Figure 2.2: Trajectories of optimal (solid) and constrained optimal or laissez-faire (dotted)
pollution Z and dirty capacity KB (squares on curves show values in successive periods).

dirty capacity along the dotted upward-sloping trajectory in Figure 2.2 for the initial state

(Z,KB, KC) = (0, 0, K̄C). The squares on curves starting on this laissez-faire curve for

different delay dates t∗ depict optimized values of state variables in six successive periods.

A date t∗ corresponds to some initial date that is indexed zero in the planner problem

subject to initial values of pollution and capital stocks equal to the date t∗ values. Such

states on solid curves arise in the global optimum with chosen utilization. These states on

dotted curves are solutions to the planner problem that sets the utilization rate of capital

to one, uB(t) = uC(t) = 1 all t ≥ t∗ in the constrained optimum. States in further periods

lie on the respective trajectory. All optimized trajectories converge to the same steady

state (448, 0.82K̄C , K̄C) as time goes to infinity. The constrained optimal trajectories

starting at points in the designated region R1 in which dirty capacity is optimally fully

utilized, such as path A, are globally optimal because these trajectories remain in this

region. Underutilization of dirty capacity is efficient to smooth dirty capacity early on.
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Figure 2.3: Time paths of optimal (solid) and constrained optimal (dotted) utilization rate
uB of dirty technology, emissions buBKB and pollution Z.

This underutilization occurs when the pollution stock is below or above its long-term

level. Capital of the dirty technology in the laissez-faire equilibrium becomes so high that

optimization at date t∗ > 0 calls for its underutilization. The simulation shows that given

large upper bound K̄B there may be a minimum delay date t′ such that for all t∗ ≥ t′

underutilization is optimal for any initial state at date zero.34

The cost of polluting is θB = 15.46 in all states (Z,KB, K̄C) in region R2 of joint

investment and underutilized capital. The appendix shows how this parametric value

was useful in finding the region R2 and the region R3 without investment and with

underutilized capital in the dirty technology. For sufficiently large scale K̄B of the dirty

technology a region R3 exists.

The optimal plans B to E with initial states in R2 and R3 in Figure 2.2 obtain lower

emissions in early periods and lower pollution in all periods relative to the constrained

optimal plans B’ to E’ with same initial states. The underutilization of dirty capacity

avoids current emissions that occur given assumed full utilization of capital. Figure

34This may not be true in a model in which the laissez-faire economy converges to a state with
KB < K̄B .
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Figure 2.4: Time paths of consumption c and cost of polluting θ in optimal (solid) and
constrained optimal (dotted) plans.

2.3 shows the time paths of utilization rate, emissions, and pollution for the two initial

states (Z,KB) = (176, 5130) in the plans C and C’ in the upper graphs, and (Z,KB) =

(331, 8180) in the plans D and D’ in the lower graphs, rounded. The utilization rate in

the initial period can be read off from the time series plots of emissions by dividing the

optimal emissions amount by the constrained optimal emissions amount. These rates are

roughly 0.21 and 0.14 for the paths in the upper panel and lower panel, respectively. The

utilization rate increases over time until it reaches one. The utilization rate uB in the

simulation of C is not one after it has been one. The utilization rate in the simulation of

D is not one in the fourth period. However from the states I know that this is not optimal.

The method used approximates the solution. Comparison of 0.21 and 0.14 suggests that

the utilization rate is expected to be smaller in the first period of an optimal allocation the

longer the delay beyond the smallest delay level at which dirty capacity is underutilized.

Consumption decreases initially in all optimal and constrained optimal plans that start

at states in the regions R2 and R3. Plans with uB(t) = uC(t) = 1 all t ≥ t∗ by assumption

are constrained optimal. This is not surprising because these plans involve a decrease

in output, and the savings rate moves monotonously, so that consumption and output

comove. The consumption in Figure 2.4 corresponds to the plans C, C’, D, and D’ for two
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initial states with greater capital of dirty technology than its long-term level. Apparently

underutilization lowers the rate of decrease in consumption relative to a constrained

optimum. Figure 2.4 presents time paths of θ, that the summary after the next example

interprets. The value of θ(0) in constrained optimum, 142.6 and 492.6, respectively, is so

large that it is outside the picture at the given scale.

2.3.2 Constant marginal utility of pollution and multiple clean technolo-

gies

This example shows how the incentives to invest in dirty versus clean technologies are

influenced by the possibility of underutilization. This issue was left out in the first

specification for computational simplicity. The utility function

U = c1−ψ/(1− ψ)− dZ

has the constant marginal disutility of pollution d to obtain a two-state problem. There

is a continuum of clean technologies C on [0, C̄] with aggregate capital
∫

C
KCdC. The

marginal product function

Q(x) = Q′′ + (Q′ −Q′′)(1 + vx) exp(−vx), 0 ≤ Q′′ < Q′,

decreases in the aggregate input x in clean technology investment. Along this frontier

there are decreasing returns to scale in using aggregate clean technology capital in loca-

tions of varying productivity. These locations can be occupied with capital. In general,

the new aggregate clean technology capital here is a function of x on geographic sites

with distributed marginal product.35 The equilibrium and efficient motion of aggregate

capital in clean technologies is
∫

C
KC(t+ 1)dC =

∫

∫
C
xC(t)dC

0
Q(z)dz if all capital units of

clean technologies are fully utilized.36 In addition, then there is a value function in the

35Physical capital is chosen in Section 2.4.1.
36One may define the mass S ⊆ J ′ of a continuum J ′ of technologies with capital in the current

period, S = {j |Kj > 0}, whose utilization rate is optimally either zero or one, with proper subsets
S \ S− = {j | uj = 1} and S− = {j | uj = 0}. The law of motion of this set is S(t + 1) = S−(t) ∪ S+(t)
when investment occurs in technologies S+ ⊆ J ′ \ S−. The law of motion of aggregate capital in these
technologies is

∫

j
Kj(t + 1)dj = [

∫

j∈S(t)
γj(1 − uj(t))dj/

∫

j∈S(t)
dj]

∫

j
Kj(t)dj +

∫

j∈S+(t)
Qjdj. Let J ′ =

{j | dj = 0} and j = C. Upon change of variable the new capital stock is
∫

C∈S+ QCdC =
∫ x+(t)

0
Q+(x)dx.
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Figure 2.5: Trajectories of optimal (solid) and constrained optimal or laissez-faire (dotted)
pollution Z, dirty capacity KB, and clean capacity

∫

C
KCdC (squares on curves show

values in successive periods).

states dirty technology capital and aggregate clean technology capital, (KB,
∫

C
KCdC),

since both utility U and absorption A are linear in pollution. I assume scale-dependent

relative advantage of dirty and clean technologies, Q′ = 1.1×QB = 20×Q′′, and emissions

from investment, ρB = ρC = (βQB)
−1/ψQB(1/20)(1/30) all C. Further parameters are

d = 7.4 × 10−7, v that solves
∫

C
KC(0)dC = 1000/2.4, B = 1.2, and b = (19/20)(1/30).

The horizontal dashed line runs at θB.

The trajectories in Figure 2.5 emanate from states in the laissez-faire equilibrium that

is initialized at Z = KB = 0,
∫

C
xC(0)dC = y, and

∫

C
KC(0)dC =

∫ y

0
Q(x)dx such that

Q(y) = QB. In the laissez-faire equilibrium aggregate clean capacity is
∫

C
KC(0)dC if

dirty technology investment is below K̄B = 14442 in the preceding period. The laissez-

faire economy does not generate sufficient output for optimal underutilization of dirty

technology capital when the pollution stock is below its long-term level. In the first

example, underutilization occurs at such states.
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Figure 2.6: Shadow return and cost of polluting, and time paths of dirty and clean tech-
nology savings.

The policy of underutilization diminishes the incentives to invest in expensive clean

technologies. The right panel in Figure 2.6 shows the time paths of savings. Unused dirty

technology capital (1−uB)KB contributes to the savings ((1−γB/QB)(1−uB(t))KB(t)+

KB(t+ 1)/QB) out of capacity. Clean technology investment
∫

C
xCdC equals its savings

because clean technology capital is fully utilized following Proposition 2.6. In the con-

strained optimum the incentives to invest are aligned in both dirty and clean technologies.

In optimum with underutilized dirty technology capital the incentives to invest in clean

technologies are relatively lower early than in the constrained optimum because underuti-

lization helps mitigating pollution effects on society. Clean technology investment peaks

in the period in which both investment and underutilization in the dirty technology are

optimal, when the state is in R2, below the initial level in the constrained optimum at the

same initial state. This explains the V-shaped path of the shadow return. The shadow

return and the cost of polluting are positively related on intervals with underutilized

dirty technology capital, and negatively related on intervals with full utilization, which

the curve in the upper left panel of Figure 2.6 depicts. The dotted trajectory shows a con-

strained optimal path. The initial values of pollution and dirty capacity are (876, 7790)
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and (1500, 12254) in this Figure. The former values initialize the constrained optimal

path in the upper left panel. The cost of polluting is plotted over time in the lower left

panel. The dashed lines are at the levels (B/dB) and θB.

2.3.3 Summary

The simulation yields the following five insights. (i) Delay of government policy. Emis-

sions are an externality. The longer emissions are unpriced the greater dirty technology

capacity is built relative to the efficient long-term dirty technology output. This means

that delayed government policy leads to efficient underutilization of dirty capacity. (ii)

Location of regions of underutilization of dirty capacity in the state space. Intuitively, the

society can afford underutilization well when capital is large given pollution and desires

it when pollution is large given capital. In fact in the first example pollution Z and dirty

capacity KB relate negatively on the boundary of R1 and R2. In the example with con-

stant marginal utility of pollution a constant KB given the optimal choice KC forms the

boundary of R1 and R2. Then affordability is the dominant force behind underutilization.

The slope of this boundary in the state plane (Z,KB) is minus one (not shown) if utility

is quadratic in both consumption and pollution and absorption is linear in pollution. In

these examples thus underutilization of capital can be optimal when current pollution

is smaller (environmental quality is greater) than its long-term stabilization level. The

Propositions 2.3 and 2.4 do not tell for what initial levels of pollution dirty capacity use

is postponed. (iii) Timing of emissions. The optimal and constrained optimal emissions

on optimal paths that start at the same state in R2 or R3 differ substantially early. Vari-

able utilization allows to start with low emissions followed by greater emissions. Fixed

full utilization necessitates emissions decreases early on in the constrained optimum to

approach lower capital values. (iv) Cost of polluting. The cost of polluting can differ

substantially between an optimal plan with chosen utilization and a constrained optimal

plan with assumed fully utilized capital subject to the same initial condition. The sub-

stantive difference lies in the early periods with optimal underutilization in the Figures

2.4 and 2.6. Underutilization mitigates societal effects of pollution and thus achieves a

lower cost. (v) Clean technology investment. Expensive clean technologies are not needed

when dirty technology capital utilization can be varied.
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2.4 Extensions

Extensions to physical capital and a fuel technology check the robustness of results. The

third extension warrants that a high portion of wealth may be affected by underutilized

dirty technology assets. The fourth aspect examines if distributional effects between asset

owners that have differently aged dirty technology capital are expected from underuti-

lization, if these are efficiently fully utilized at some date.

2.4.1 Physical capital

In this section the productivity of stored unused capital vintages decreases to postulate

bounds on capital rather than capacity. The boundedness of capital is more restrictive

for investment than bounded capacity in Section 2.1.1. However there is an equivalence

in optimum, which is to be shown. Capital aj(t, v) > 0 of vintage v is utilized at chosen

rate uj(t, v) ∈ [0, 1] for j ∈ J . Output

mj(t) =
t−1
∑

v=−1

χj(t− v − 1)uj(t, v)aj(t, v)

in period t sums production over vintages v, given productivity χj(t−v−1). Productivity

can be interpreted as the available time of capital or net of maintenance expenditures.

A widely held view among professionals is that machines, automobile engines or power

plants, produce at rates independent on age yet incur increased downtime or expenditures

for maintenance when becoming older. This should apply to used and unused capital.

Productivity in the period after creation of capital is χj(0) > 0. Site-specific factors

relative to norm conditions and the average availability in a period may prescribe χC(0).

Capital at the beginning of period (t+ 1) is

aj(t+ 1, v) =

{

σj(1− uj(t, v))aj(t, v)

εjxj(t)
if

{

t > v

t = v
(2.20)

where εjxj(t) is new capital that arrives in period t and is productive with a lag of one

period, and σj ∈ {0, 1} as explained below. For simplicity, χj(t− v − 1) = γj
t−v−1χj(0).

Then productivity of stored capital units depreciates at rate γj ∈ (0, 1], or productivity

81



of age greater than or equal to one is zero, γj = 0. Capital is automatically scrapped,

so that σj equals zero if and only if unused capital became unproductive, γj = 0. Then

unproductive capital does not block investment, as in the reduced form in Section 2.1.1.

Finite recyclable supply of minerals for producing capital or finite amount of land and

water for installing capital, whichever is the tight constraint, give rise to the exogenous

upper bound āj on capital of technology j. Then

āj ≥
t

∑

v=−1

aj(t+ 1, v) (2.21)

all t ≥ 0. A discussion of the relationship between welfare-maximizing choices here and

in Section 2.1.1 follows after stating the planner problem.

There are τ(t) vintages with positive capital at t. A planner chooses a policy (c, x, u) ∈

R
3
+ × [0, 1]τ(t) on {0, 1, . . .} to maximize Lagrange’s function

L =
∞
∑

t=0

βt
{

U(c(t), Z(t)) + ǫ(t)

[

Z(t+ 1)−
∑

j

(

dj

t−1
∑

v=−1

χj(t− v − 1)uj(t, v)aj(t, v)

+ ρjxj(t)

)

− φ(Z(t))

]

+
∑

j

( t−1
∑

v=−1

ϕj(t, v)[σj(1− uj(t, v))aj(t, v)− aj(t+ 1, v)]

+ ϕj(t, t)[εjxj(t)− aj(t+ 1, t)] + βwj(t+ 1)

[

āj −
t

∑

v=−1

aj(t+ 1, v)

])

+ w(t)G(t)

}

given φ(Z) = Z − A(Z), and G ≥ 0 that collects the resource constraint (2.1), non-

negativity constraints of investment inputs, feasibility constraints of utilization rates in

technologies with positive capital, and nonnegativity constraints of capital. At least one

initial stock is assumed positive among the given aB(0,−1) ≥ 0 and aC(0,−1) ≥ 0.

The constraint (2.2) allows greater investment yj(t) = εjxj(t) than the constraint (2.21)

allows if vintage capital units created more than two periods ago are around and quality

depreciates (0 < γj < 1). Capacity equals

Kj(t) =
t−1
∑

v=−1

χj(t− v − 1)aj(t, v)
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for technology j ∈ J . The bound āj on capital translates into the upper bound K̄j =

χj(0)āj of production capacity measured in output units. The definition of capacity and

the aggregate utilization rate

uj(t) =

[

t−1
∑

v=−1

γj
t−v−1uj(t, v)aj(t, v)

/ t−1
∑

v=−1

γj
t−v−1aj(t, v)

]

∈ [0, 1]

specific to technology j lead to the transition law (2.3) of capacity. The marginal product

of investing a unit of the final good is

Qj = εjχj(0)

for technology j ∈ J in Section 2.1.1. The following proposition concludes from solutions

here to solutions of the planner problem in this section.

Proposition 2.10 The solutions to the planner problem here and in Section 2.1.1 co-

incide if the productivity of unused capital does not depreciate, γj = 1 all j ∈ J . An

optimal policy such that (i) capital aj(t, v) > 0 of vintage v < t − 1 is fully utilized,

uj(t, v) = 1, or (ii) the constraint (2.21) in the period (t+1) is not binding, if investment

occurs one period before, xj(t) > 0, j ∈ J , solves the planner’s problem in Section 2.1.1,

for γj ∈ (0, 1).

Proof. The motions (2.20) of vintage capital and (2.3) of capacity are equivalent because

Kj(t+ 1) =
t

∑

v=−1

χj(t− v)aj(t+ 1, v)

= γj

t−1
∑

t=−v

χj(t− v − 1)[1− uj(t, v)]aj(t, v) + χj(0)aj(t+ 1, t)

= γj

{

Kj(t)−
t−1
∑

t=−v

χj(t− v − 1)uj(t, v)aj(t, v)

}

+Qjxj(t)

given the capacity Kj(t) and utilization rate uj(t) as defined above. In view of the

constraints (2.21) and (2.2) then the conditions in the Proposition deliver the result. The

constraints are identical if γj = 1 or (i) holds. Q.E.D.
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Suppose that the productivity of unused capital incompletely depreciates, 0 < γj < 1.

Then (ii) does not hold only if the economy both builds new capital and stores existing

capital in some technology at the same date. Either the return from storing capital

is greater than, equal to, or smaller than the return from investing. In the first case

no investment occurs, and in the latter case investing the output from utilized capital

is better than not utilizing capital. Hence the only case in question is indifference. The

first-order necessary optimality conditions do not depend on the investment level and thus

do not help to rule out investing up to the capacity bound and storing other capital.37

But it is conceivable that either all vintages, v < t − 1, are fully utilized latest at t, or

if not then capital is not at its upper bound at (t + 1), in an optimal plan. This yields

a further insight. The same allocations would be optimal if the planner had the option

to scrap unutilized capital units. The planner would not do so if investment does not

exhaust space when capital is underutilized.

2.4.2 Intermediate good in dirty production

This section examines the optimal utilization of capital in converting refined fossil fuel into

energy that is useful for consumption and investment and capital in producing fossil fuels.

Optimal policies map one-to-one to optimal policies in the basic model with underutilized

dirty technology capital if the depreciation rate of unused capital in fuel-based energy

production and in producing fuel are equal and the emission intensities in investing in

these technologies are equal.

Technology and environment.—Production of one unit of good using technology B, for

example, conversion of energy from fossil fuel, requires αB units of an intermediate good

that technology R produces. Fuel input cannot exceed fuel output,

αBmB ≤ mR (2.22)

37One can rule out that old units are underutilized and young units are utilized, because the space
requirement of output is weakly smaller for younger units. Claim. Underutilization of capital aj(t, v

′) > 0
of old vintages, that is, uj(t, v

′) < 1, of technology j ∈ J is Pareto optimal only if capital aj(t, v) > 0 of
young vintages is idle, uj(t, v) = 0 and v′ < v < t. Proof. If uj(t, v) > 0 and uj(t, v

′) < 1, v′ < v < t,
then lowering uj(t, v) and raising uj(t, v

′) until (1−uj(t, v
′))uj(t, v) = 0, achieves the same consumption

and emissions and (i) keeps aggregate capital of technology j in period (t+1) at same level if γj = 1, or
(ii) lowers capital and thereby relaxes the constraint (2.21) at (t+ 1) if 0 < γj < 1. Q.E.D. Thus young
units are not utilized if old units are not utilized. But young and old units may only coexist when all
units are fully utilized.
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all t ≥ 0. The commitment of resources for fuel production takes the form of investment.

The capital cost of fossil fuel production originates in the extraction of raw fuels, their

transportation, and refinement. Accordingly,

c/B + xB + xC + xR ≤ mB +mC (2.23)

is the resource constraint of energy, and mj = ujKj equals output at chosen utilization

rate uj ∈ [0, 1] of technology j ∈ J = {B,R,C}.

Production of one unit of fuel creates dR emission units (notably from flaring of natural

gas at extraction sites of petroleum, by ventilation of underground coal mines, at transport

of raw fuel, and in refining petroleum). One unit of output of technology B produces

dB emission units (in combustion engines and power plants). Necessary conditions for a

Pareto optimum follow after stating the planner’s problem.

The planner chooses a policy (c, x, u) ∈ R
4
+ × [0, 1]τ(t) on {0, 1, . . .} to maximize J

subject to the resource constraints (2.22) and (2.23), the upper bound on capacity (2.2),

and the laws of motion (2.3) and (2.4) for j ∈ J all t ≥ 0. The triple of initial capacity

satisfies 0 ≤ αBKB(0) = KR(0) < K̄R and 0 ≤ KC(0) < K̄C , and contains at least one

positive level.

The following conditions hold in an optimal plan. Let λ∗ be the multiplier on the

constraint (2.22). The discounted marginal benefit of using capital and storing unused

capital at most equals the marginal cost of holding capital at the end of period t,

βuB(t+ 1){λ(t+ 1)− αBλ
∗(t+ 1)− dBǫ(t+ 1)}

+ βγB(1− uB(t+ 1))qB(t+ 1)− βwB(t+ 1) ≤ qB(t), = if KB(t+ 1) > 0,

(2.24)

and

βuR(t+ 1){λ∗(t+ 1)− dRǫ(t+ 1)}

+ βγR(1− uR(t+ 1))qR(t+ 1)− βwR(t+ 1) ≤ qR(t), = if KR(t+ 1) > 0,

(2.25)

all t ≥ 0. The use of fuel is costly for technology B and beneficial for technology R. This

explains the sign of λ∗ in the net benefits. These conditions demand to balance the values
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of idle and utilized capacity units in the same way as in Section 2.1.1. Therefore

uB(t+ 1)











= 1

∈ (0, 1)

= 0











=⇒ β{λ(t+ 1)− αBλ
∗(t+ 1)− dBǫ(t+ 1)}











=

=

≤











qB(t)











≥

=

=











βγBqB(t+ 1)

(2.26)

given KB(t+ 1) ∈ (0, K̄B), and

uR(t+ 1)











= 1

∈ (0, 1)

= 0











=⇒ β{λ∗(t+ 1)− dRǫ(t+ 1)}











=

=

≤











qR(t)











≥

=

=











βγRqR(t+ 1)

(2.27)

given KR(t + 1) ∈ (0, K̄R), for t ≥ 0. Only the outer relations at weak inequalities are

relevant regarding utilization in period t = 0. The following discusses the incentives to

utilize installed dirty and fuel technology capital and to invest in these technologies.

Proposition 2.11 The statements in Propositions 2.2 and 2.3 on the timing of invest-

ment and utilization in the dirty technology hold for both the dirty technology B and

the fuel technology R if these technologies have equal emission intensities of investment,

ρB = ρR, and depreciation rates of unused capital, γB = γR, and the assumptions of

Proposition 2.3 hold for both these technologies.

Proof. The fuel constraint (2.23) is binding all t ≥ 0 so that uR(t) = uB(t), if KR(t) =

αBKB(t) all t ≥ 0, which is to be confirmed. The statements in Proposition 2.2 hold

since KR(0) = αBKB(0). Consider Proposition 2.3. (i) Let uj(t) = 1 some j ∈ {B,R}.

Capital of technology j stays zero from (t+ 1) onward by assumption if xj(t) = 0. Then

xj′(t) = 0, j′ 6= j, since investment in the other technology j′ ∈ {B,R} would be wasteful.
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In the alternative, xj(t) > 0 implies that xj′(t) > 0, so that investment occurs in both

technologies. (ii) In case xB(t) > 0 and xR(t) > 0 the utilization of capital implies that

θ(t) ≤ θ∗ defining θ∗ = (υQB − [υγB + (1− υ)γR])/([υγBρB + (1− υ)γRρR] + [υdBQB +

(1 − υ)dRQR]) for some υ ∈ (0, 1]. Suppose that uj(t + 1) < 1 all j ∈ {B,R}. Then

θ∗ ≤ θ(t + 1). Thus the necessary optimality conditions contradict that θ(t) > θ(t + 1).

Therefore uB(t + 1) = 1 or uR(t + 1) = 1. Suppose that uj(t + 1) = 1 some j ∈ {B,R}.

The reverse inequality to that in Lemma 2.9 results if xj(t+ 1) > 0 and uj(t+ 1) > 0, as

βγj(λ(t+ 1) + ρjǫ(t+ 1)) = βγjQjqj(t+ 1) ≤ Qjqj(t) ≤ λ(t) + ρjǫ(t). Thus uj(t+ 1) = 1

all j ∈ {B,R} by contradiction given ρB = ρR and γB = γR if one of these inequalities

is strict. This choice is optimal if both these inequalities hold at equality. This shows

that following utilization and investment capital of both technologies B and R is fully

utilized or ceases to exist simultaneously. Then underutilization occurs early and capital

is proportional as claimed, because there is at most one period with underutilization and

investment in both these technologies and KR(0) = αBKB(0). Q.E.D.

The timing of investment and utilization is as in Section 2.1.1 if ρB = ρR and γB = γR

because of symmetric incentives. The marginal products determine the ratio of inestment

inputs.

Proposition 2.12 Investment is proportional, xR(t) = ((1 − υ)/υ)xB(t) given constant

υ = QR/(QR + αBQB) ∈ (0, 1], and the utilization rates are equal, uR(t) = uB(t), in the

dirty and fuel technology all t ≥ 0, if the assumptions of Proposition 2.11 hold.

Proof. The proportionality of capital, KR(t) = αBKB(t), and equal utilization rates,

uR(t) = uB(t), all t ≥ 0, in proving Proposition 2.11 deliver the result. Q.E.D.

Aligning the investment expenditures and utilization rates of the dirty and the fuel

technology is optimal if they have same environmental cost of investment inputs and de-

preciation rates of unused capital. This is one case in which redefining the dirty technology

productivity to υQB, and writing the emission intensities b = dB+αBdR of dirty technol-

ogy output and ρ = υρB+(1−υ)ρR of dirty technology investment input xB+xR = xB/υ

allow solving for an optimum without explicit use of the fuel technology.

Investing in the technology with smaller depreciation rate may be relatively delayed

early in an optimal plan with underutilized dirty and fuel technology capital if the de-

preciation rates of unused capital are different for the dirty and the fuel technology. This
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follows from the law of motion (2.3) of capital. The timing of underutilization and invest-

ment in each of these technologies may still be the timing regarding the dirty technology

in the model without a fuel technology. However, the necessary optimality conditions do

not seem to rule out underutilization after full utilization in the technology with smaller

depreciation rate of unused capital or smaller emission intensity of the input in building

new capital.38

In practice γB and γR, and ρB and ρR, likely differ. Empirical studies have to determine

yet how big the discrepancy is and the direction. The distinction between capital in fuel

extraction, transport, and refinement, and of capital in energy conversion, in data will

produce large portions of each of these. Fuel use in automobiles and power plants accounts

for about half of the expenditure on the mobility service from vehicles and electricity

generation, respectively.

2.4.3 Energy-use capital and energy efficiency

The basic model lacks explicit capital that uses energy. Each capital Kj can be written

as a composite of technology-specific energy-production capital (for example, engines,

turbines, and photovoltaic cells) and energy-use capital (for example, building shells,

equipment, roads, and vehicle shells) leading to the same results. For empirical work

it is desirable to account for the fact that the depreciation rates of major portions of

energy-conversion capital and energy-use capital differ. In terms of dollar value the latter

comprises mainly buildings. A building has typically a longer lifespan than solar modules

mounted on its roof. Simultaneous scrapping of energy-production capital and energy-use

capital is limited to bundles such as automobile engine and shell. This section accounts

for different depreciation rates such that energy-use capital is perpetually inventoried and

may use energy produced from dirty and clean technologies. I combine a continuum of

capital types for energy use inspired by Atkeson & Kehoe (1999) with energy production

using capital and an environmental motive to examine utilization of energy-use capital.

Atkeson & Kehoe (1999) posit an exogenous resource cost of energy without environmental

consideration to determine the response of energy efficiency to fuel price movements.

38On a path with some dirty output in every period full utilization of dirty or fuel technology capital
Kj(t) > 0, uj(t) = 1, coincides with investment, xj(t) > 0. Then arguments used in proving Proposition
2.11 show that there is no investment, xj(t+1) = 0, if capital Kj(t+1) > 0 is underutilized, uj(t+1) < 1.
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Capital is putty-clay in terms of its energy intensity v̄ ∈ V = (0, v∗) for some supremum

v∗ ∈ (0,∞). The resource constraint

∫

v̄

e(v̄, t)dv̄ ≤
∑

j∈J

mj (2.28)

of energy replaces (2.1). Energy use e(v̄, t) ∈ [0, K(v̄, t)/v̄] all v̄ ∈ V may be below

the energy requirement of fully utilized capital. This requirement equals capital K(v̄, t)

divided by the energy intensity v̄ that fixes at the date of investment. Capital of each

type v̄ follows the difference equation

K(v̄, t+ 1) = ((1− δ)u(v̄, t) + γ(1− u(v̄, t)))K(v̄, t) + ε(v̄)x(v̄, t) (2.29)

where δ ∈ [1 − γ, 1] and ε(v̄) > 0, and u(v̄, t) ∈ [0, 1] is the utilization rate of K(v̄, t).

Capital depreciates at rate δ = 1 − γ ≥ 0 regardless of its utilization, or utilized units

depreciate at greater rate than nonutilized units, 1− δ < γ. Capital services are defined

as

z(t) =

∫

v̄

min[K(v̄, t)/v̄, e(v̄, t)]f(v̄)dv̄

in period t given increasing and strictly concave function f . Aggregate demand for services

at most equals its supply,

c(t)/B +
∑

j∈J

xj(t) +

∫

v̄

x(v̄, t)dv̄ ≤

∫

v̄

e(v̄, t)f(v̄)dv̄ (2.30)

given e(v̄, t) = u(v̄, t)K(v̄, t)/v̄ all t ≥ 0. Aggregate emissions

E(t) =
∑

j∈J

(djmj(t) + ρjxj(t)) +

∫

v̄

ρ(v̄)x(v̄, t)dv̄ (2.31)

contain the emissions from producing energy-use capital all t ≥ 0. The pollution stock

Z(0) is given. Fully utilized energy-use capital exhausts maximum energy supply in the

initial period,
∫

v̄
[K(v̄, 0)/v̄]dv̄ = KB(0)+KC(0) > 0, because capital units are endowed in

the initial period. A Pareto optimal policy (c, x, u) and (x(v̄, t), u(v̄, t)) : V → R+ × [0, 1]

on {0, 1, . . .} maximizes welfare J subject to (2.2)-(2.4) and (2.28)-(2.31). The following

result about the utilization of energy-use capital in the initial period is immediate.
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Proposition 2.13 Some capital K(v̄, 0) > 0 that uses energy is underutilized, u(v̄, 0) <

1 for at least one v̄ with K(v̄, 0) > 0, if capacity Kj(0) > 0 in energy production is

underutilized, uj(0) < 1, for some j ∈ J .

Proof. The initial condition implies that
∫

v̄
e(v̄, 0)dv̄ =

∑

j uj(0)Kj(0) is smaller than
∫

v̄
[K(v̄, 0)/v̄]dv̄ at uj(0) < 1 some j ∈ J . Then e(v̄, 0) < K(v̄, 0)/v̄ for at least one v̄.

Q.E.D.

From the viewpoint of stochastic energy prices Atkeson & Kehoe (1999) find that energy

prices in the US 1960-1994 have not varied so much to induce optimal underutilization.

This analysis has excluded emissions from energy production. Given long delay in opti-

mizing pollution some units may be efficiently underutilized. It will be the least-energy

efficient buildings and ports and heaviest automobiles in a class of same use value that

should be permanently or temporarily retired. The retirement is thus not limited to 1/6

of dollar wealth in fuel production and energy conversion but extends to 5/6 of such assets

that use energy.39

2.4.4 Improvement in emission intensity and time-variant return to stor-

age

In practice plants and engines of different age that possess a vintage-dependent emission

intensity of output coexist. An autonomous improvement in the emissions per kilometre

driven should favour underutilization of old vehicles. Capital is useful more than once

albeit it may depreciate over time. The productivity of unused capital diminishes more

rapidly for older plants and engines, because more screws get loose in machines that have

been used more often. The same relationship should hold for temporarily retired capital.

This should instead give incentives to underutilize young vintage capital. This section

studies the roles of vintage-dependent emission intensity and use-dependent depreciation

for the age of underutilized plants, because renewable energy technologies may be insuf-

ficiently productive at large scale or investment in renewable energy technologies may be

carbon-free in the future, both which prevents their exclusive long-term use in energy

production in the realm here. I show the opposite effects as outlined above. Therefore

39Edenhofer et al. (2005) assume 49.2 trillion USD capital stock that produces output, and 5 and 6
trillion USD fossil-fuel extraction and conversion stock, respectively, that produce intermediate goods.
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they may roughly cancel out considering both. Then the underutilization has likely mild

distributional effects among owners of old versus young capital given fossil-fuel using cap-

ital is only temporarily retired. For example, old cars and young cars alike should be

driven less than previously planned.

The following is a representation with capacity. Writing out productivity and physical

capital gives the same results. The vintage capacity K(t, s, v) originates from capital

created in period v that has been utilized in s ≤ S − 1 prior periods. Output is

m(t) =
t−1
∑

v=−S

min[S−1,t−v−1]
∑

s=0

u(t, s, v)K(t, s, v)

all t ≥ 0. Capital is useful in S ≥ 2 periods. For notational convenience investment

inputs, utilization rates, capacity levels, and emission intensities of multiple technologies

are appropriately stacked in vectors. The constraint of the upper bound on vintage- and

use-dependent capacity,

K̄ ≥
t

∑

v=−S

min[S−1,t−v]
∑

s=0

K(t+ 1, s, v) (2.32)

extends (2.2). Let γ(t−v, s, v) ∈ [0, 1] be the retained fraction of productivity of unutilized

capital constructed in period v conditional on age (t− v) and use s. The first line in

K(t+ 1, 0, v) =

{

γ(t− v, 0, v)(1− u(t, 0, v))K(t, 0, v)

Qx(t)

if v

{

∈ {−S,−S + 1, . . . , t− 1}

= t

(2.33)

accounts for capacity from unused capital constructed before t. Addition of t-vintages

enhances aggregate (t+1)-capacity by Qx(t). Capital at (t+1) that has been used at least

one period and built before (t− s) consists of pausing capital and used capital in period

t. The pausing capital carried over from period t is used s ∈ {1, . . . ,min[S− 1, t− v− 1]}

times prior to t. The capital used in period t is used (s−1) times prior to t. Used capital
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retains fraction π(t− v, s, v) of productivity. This yields capacity

K(t+ 1, s, v) = γ(t− v, s, v)(1− u(t, s, v))K(t, s, v)

+ π(t− v, s− 1, v)u(t, s− 1, v)K(t, s− 1, v),

v ∈ {−S,−S + 1, . . . , t− s− 1}

(2.34)

all t ≥ 0. For simplicity the history of utilization does not matter for the productivity

of a given vintage capital.40 The production capacity of capital used in all periods from

(v + 1) to t is

K(t+ 1, s, v) = π(t− v, s− 1, v)u(t, s− 1, v)K(t, s− 1, v), v = t− s, (2.35)

one period later all t ≥ 0. The equations (2.33)-(2.35) replace the inventory constraint

(2.3) of Section 2.1.1 for all technologies j = 1, . . . ,M . The law of motion of pollution is

Z(t+ 1) = Z(t) +
t−1
∑

v=−S

min[S−1,t−v−1]
∑

s=0

E(t, s, v) + ρx(t)− A(Z(t) (2.36)

given emissions E(t, s, v) = d(t − v, s, v)u(t, s, v)K(t, s, v) of using capital all t ≥ 0.

There are τ(t) positive capacity levels at date t. An optimum maximizes J with respect

to (c, x, u) ∈ R
1+M
+ × [0, 1]τ(t) subject to c(t)/B + x(t) ≤ m(t) and (2.32)-(2.36) all t ≥ 0

given initial pollution Z(0) and capacity levels, that is, maximizes Lagrange’s function

L =
∞
∑

t=0

βt
{

U(c(t), Z(t)) + ǫ(t)

[

Z(t+ 1)−

( t−1
∑

v=−S

min[S−1,t−v−1]
∑

s=0

E(t, s, v) + ρx(t)

)

− φ(Z(t))

]

+
t−s−1
∑

v=−S

min[S−1,t−v]
∑

s=0

q(t, s, v)[r̄(t, s, v)−K(t+ 1, s, v)] + λ(t)[m(t)

− x(t)− c(t)/B] + βw(t+ 1)

(

K̄ −
t−1
∑

v=−S

min[S−1,t−v]
∑

s=0

K(t+ 1, s, v)

)]

+ λ(t)Ḡ(t)

}

where Ḡ collects the inequality constraints of input amounts x(t), utilization rates u(t, s, v),

40The accounting equations of capacity hold for capital with γ and π replaced by unity. Capacity
K(t, s, v) = χ(t−v−1, s, v)a(t, s, v) depends on productivity χ(t−v−1, s, v) and physical capital a(t, s, v)
such that χ(t−v, s, v) = γ(t−v, s, v)χ(t−v−1, s, v) and χ(t−v, s, v) = π(t−v, s−1, v)χ(t−v−1, s−1, v).
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and capital K(t + 1, s, v), that form the admissable set. The term r̄(t, s, v) is the right

side of (2.33) for s = 0, (2.34) for 1 ≤ s ≤ min[S − 1, t − v] and −S ≤ v ≤ t− s− 1,

and (2.35) for 1 ≤ s ≤ min[S − 1, t − v] and v = t − s. The endowment of capacity at

date zero consists of nonnegative stocks {K(0, S − 1,−S), . . . , K(0, 0,−1)}. At least one

of the elements of these vectors of length M is greater than zero. Consider a particular

dirty technology with dropped index.

Improvement in the emission intensity of machine output in the vintage, d(t−v, s, v) >

d(t − v − 1, s, v + 1), is observed in reality. Machines of a given vintage v may become

dirtier when they deteriorate, d(t − v, s − 1, v) < d(t − v, s, v) if γ(t − v, s, v) < 1,

because the use intervals become shorter within a period and fuel is wasted, for example,

during unscheduled ramp-down intervals and following ramp-up intervals in electricity

production. Intuitively, a decrease of the emission intensity d(t − v, s, v) of output in

the vintage v or an increase of d(t − v, s, v) in the number s of periods of past use

yield an incentive to underutilize old plants, which have been used more often than

young plants, to maximize output per unit of emission. Weakly increasing depreciation

in the age (t − v) or the number s of periods used, γ(t − v, s, v) ≥ γ(t + 1 − v, s, v) or

γ(t − v, s − 1, v) ≥ γ(t − v, s, v), seems plausible because scheduled maintenance time

may increase but not decrease in age or use. Increasing depreciation in the age (t − v)

or in the number s of periods used intuitively favours young plants for underutilization,

in order to postpone the use of capital with relatively low depreciation. Convexity or

concavity of the dependencies of d or γ on vintage, use, or age does not matter for these

arguments. The next proposition confirms the above intuition. For simplicity let there

be vintage-dependent emission intensity d(v) and use-dependent depreciation of capital,

γ(s), and durability S = 2. Used capital depreciates at weakly greater rate than unused

capital, π(s) ≤ γ(s).

Proposition 2.14 There is a range of the cost of polluting θ(t) such that (i) vintage

capacities K(t, 0, t − 1) > 0 and K(t + 1, 1, t − 1) > 0, are fully utilized, u(t, 0, t − 1) =

u(t + 1, 1, t − 1) = 1, and (ii) underutilization of vintage capacity K(t, 1, t − 2) > 0,

that is, u(t, 1, t − 2) < 1, can be optimal, and there is no range of θ(t) for the ‘reverse’

statement u(t + j, j, t − 1) < 1 for j ∈ {0, 1} can be optimal when u(t, 1, t − 2) = 1 is

optimal, if the emission intensity of output improves over vintages, d(v − 1) > d(v), and

unused capacity depreciates at constant rate, γ(0) = γ(1). The situation is reversed if
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the emission intensity stays constant, d(v − 1) = d(v), and unused capacity depreciates

at greater rate when used more often, γ(0) > γ(1).

Proof. There is a critical level of θ(t) for underutilization of each vintage v ∈ {t−1, . . . , t−

S} in all periods in which it would be fully utilized without environmental effect and for

utilization of younger vintages for all but the youngest vintage. Comparison of these

critical values yields the results. Nonnegative input in investment at t satisfies

Qq(t, 0, t) ≤ λ(t) + ρǫ(t) (2.37)

and builds capital with emission intensity d(t). A unit of capacity with a lower emission

intensity is worth more, q(t, 0, t − 1) ≤ q(t, 0, t) if d(t − 1) ≥ d(t). Underutilization of

the youngest capital in pristine condition at t, that is, u(t, 0, t − 1) < 1, requires that

λ(t)− d(t− 1)ǫ(t) + π(0)q(t, 1, t− 1) ≤ γ(0)q(t, 0, t− 1) all t ≥ 0. Combination of these

three results leads to θ(t) ≥ θ∗(0, t− 1) given the critical level

θ∗(s, v) = B (Q− γ(s) +Qπ(0)q(v + 1, 1, v)/λ(t)) /(ργ(s) + d(v)Q)

all t ≥ 0. There is capacity K(t+1, 0, t−1) > 0 and K(t+1, 1, t−1) > 0 if K(t, 0, t−1) >

is partially utilized, u(t, 0, t− 1) ∈ (0, 1). Utilization of capacity K(t + 1, 0, t− 1) of yet

unused (t−1)-vintage capital, u(t+1, 0, t−1) > 0, requires that β{λ(t+1)−d(t−1)ǫ(t+

1) + π(0)q(t+ 1, 1, t− 1)} = q(t, 0, t− 1). The utilization of capacity K(t+ 1, 1, t− 1) of

the same vintage regarding the portion of capital used at t, that is, u(t+ 1, 1, t− 1) > 0,

satisfies β{λ(t+ 1)− d(t− 1)ǫ(t+ 1)} = q(t, 1, t− 1). Then

q(t, 1, t− 1) + βπ(0)q(t+ 1, 1, t− 1) = q(t, 0, t− 1)

all t ≥ 0. The valuation principle implies that q(t, 1, t − 2) ≤ q(t, 1, t− 1) if d(t − 2) ≥

d(t− 1). Underutilization of capacity K(t, 1, t−2) > 0, that is, u(t, 1, t−2) < 1, requires

that λ(t) − d(t − 2)ǫ(t) ≤ γ(1)q(t, 1, t − 2) since π(1) = 0. Combination of (2.37), the

comparison q(t, 0, t− 1) ≤ q(t, 0, t) of shadow prices of different vintages, the comparison

q(t, 1, t − 2) ≤ q(t, 1, t− 1) of shadow prices of different vintages, and the necessary

condition for u(t, 1, t−2) < 1, yield θ(t) ≥ θ∗(1, t−2) with βγ(1)q(t+ 1, 1, t− 1) in place

of q(t, 1, t− 1) all t ≥ 0. The necessary condition q(t, 1, t− 1) = βγ(1)q(t+ 1, 1, t− 1) for
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u(t + 1, 1, t− 1) < 1 implies that θ(t) ≥ θ∗(1, t− 2). For θ(t) ∈ [θ∗(1, t− 2), θ∗(0, t− 1))

underutilization of vintage (t − 1) at t and (t + 1) is not optimal while the necessary

conditions for optimal utilization of these vintages at (t+1) and underutilization of vintage

(t− 2) at t hold if d(v − 1) > d(v) and γ(0) = γ(1). For θ(t) ∈ [θ∗(0, t− 1), θ∗(1, t− 2))

the necessary conditions for optimal underutilization of vintage (t − 1) at t and (t + 1)

hold and utilization of those vintages at (t+ 1) and underutilization of vintage (t− 2) at

t is not optimal if d(v − 1) = d(v) and γ(0) > γ(1). Q.E.D.

The improvement in the emission intensity of output favours underutilizing old vin-

tages to use relatively unpolluting technology—in the first case in the proposition. The

increasing depreciation of unused capacity in the number of periods used yields incentives

to underutilize young vintages to forward capital with relatively large productivity—in

the second case in the proposition. At the initial date use and vintage are negatively

correlated, and age and use are positively correlated, if capital was fully utilized before

optimization of pollution. The effects of use or vintage on the emission intensity of output

and of age or use on the retained fraction of productivity of unused capacity thus have

counterveiling effects on the age of underutilized plants.

2.5 Conclusion

This chapter examined the optimal and competitive equilibrium retirement of capital

in controlling an environmental stock. Underutilization that postpones the capital use

widens the policy space compared to previous literature in managing an environmental

stock that causes an externality, for example accumulated carbon dioxide that affects the

climate. Pre-installed dirty technology capital, such as fossil-fuel using plants and engines,

may be efficiently underutilized. (i) All or some of it is idle forever because capital in clean

technology, for example, renewable energy technologies, should be growing to increase the

cost of polluting through investment-related emissions, or (ii) the dirty technology capital

is underutilized early until investment in dirty technology becomes worthwhile and both

dirty and clean technology are used in the long-term. The emissions from investing

in clean renewable energy technologies, for example, in steel and cement production,

rationalize the former path in controlling climate change. This path requires that large

renewable energy capacities can be constructed at sufficiently low cost. Technological
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improvement in recent years may have made this feasible or technological progress in

the near future may make it feasible. Otherwise, when clean technology is insufficiently

productive at large scale, the latter path seems relevant from today’s perspective. On

this path at some date the dirty technology capital stock is run down sufficiently so that

its investment becomes worthwhile given the technology is used in the long-term. Dirty

technology capital is idle on a path when clean technology capital decreases toward its

long-term level. This path arises given the same parameters as in (i) and sufficiently large

initial clean technology capacity. Some low-productivity clean technology capital, such as

solar panels and wind turbines in low-harvest areas, are optimally underutilized if there

is much capital in more productive clean technology types, such as high-yield renewable

energy harvests. The reasons are the environmental impact of replacing pre-installed

low-productivity capital and the high cost to construct it relative to its depreciation

when stored unused. The underutilization of clean technology capital is temporary and

occurs only if all pre-existing dirty technology capital is idle forever given the plausible

assumption that unused solar panels and wind turbines depreciate relatively faster than

mothballed coal power plants. This points to the future if governments continue to

push expensive renewable energy technologies and there is sufficient capacity of least-cost

renewable energy technologies. All capital is fully utilized in an equilibrium subject to

no taxes or subsidies. Delayed government policy leads to underutilized dirty technology

capital in an optimal policy because too much of it is built when emissions pricing is

absent. A Pigouvian tax implements an optimum.

Underutilization of fossil-fuel using capital prevents a climate catastrophe when full

utilization would lead to it. This occurs when atmospheric carbon, pollution in the terms

here, is greater than its efficient long-term level. Dirty capacity is optimally underutilized

when pollution is below or above this level. The atmospheric carbon stock may be below

its optimized long-term level. However room for additional emissions may be limited by

past emissions that accumulate with a lag. I refer to an extension in Chapter 1.

Optimal utilization heavily depends on the current capital stock, rather than on the

current environmental stock as found in a fishery model in Clark et al. (1979) and Boyce

(1995). Here storage of unused capital smooths the capital sequence toward its long-

term level since the benefit of consuming is the opportunity cost of investing output or

storing capacity. The fishing vessels are underutilized only if the fish stock is smaller
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than its optimum long-term level because the marginal cost of investment is exogenous.

At sufficiently large installed dirty technology capital no investment in dirty technology

is warranted. Investment in dirty technology is lacking for small and large levels of

environmental quality unlike in the partial equilibrium fishery where investment is efficient

only if the fish stock is greater than or equal to its long-term level, again because here the

marginal cost of investment depends on the intertemporal marginal rate of substitution

of consumption and there the marginal cost of investment is constant or depends only

on the level of investment. The present study and their model differ in the regeneration

function of the environment. An analogue to an equilibrium with uncompensated adverse

impacts of pollution is the open-access situation in a fishery. A difference lies in the

motion from such a situation to an optimum. Here underutilization becomes necessary

to attain a social optimum after sufficiently long absence of emissions pricing (delayed

government policy) in the decentralized economy. In contrast, the regeneration function of

biomass usually leads to a rest point in the open-access regime that is efficiently escapable

with full utilization. Optimal underutilization of dirty technology capital is restricted to

a closed early time interval of the planning horizon if this technology is used in the

long-term whereas underutilization can be optimal after full utilization in Clark et al.

(1979). This difference emerges because here storage and utilization are linked so that

capital tomorrow given full utilization today requires investment today while there capital

depreciates less than fully regardless of utilization, and the utilization critically depends

on the environmental stock, so the use of capital given no investment can deplete the fish

stock and underutilization can follow full utilization.

The growth effects of delayed government policy on dirty output before a regime change

to an optimal plan may lend controversy to the debate on climate change. In simulations

I find that (1) emissions first increase from a low level when dirty technology capital

is underutilized and then decrease when dirty technology capital is fully utilized in the

optimum whereas emissions decrease from a high level in the constrained optimum with

assumed full utilization starting at the same pollution and capital stock amounts, (2) the

Pigouvian tax, which is proportional to the cost of polluting, is lower in these early periods

in the optimum than in the constrained optimum, because underutilization mitigates

societal effects of pollution, and (3) expensive clean technologies are not needed when the

utilization of dirty technology capital can be chosen compared to when it is fully utilized

by assumption, because of the mitigation.
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The model has two limitations. The linear production functions that convert a common

factor into new capital units and that use this capital to produce the factor absent effects

of pollution on output lend the closed form solution to a critical level of the cost of pollut-

ing at which both investment and underutilization in the dirty technology are optimal and

its critical level at which dirty technology capital should not be used. These parametric

levels are helpful in proving results about the timing of utilization of dirty technology

capital and finding different regions of underutilized and utilized (dirty or clean) tech-

nology capital in the state space. As a result of the linearity, dirty technology capital is

efficiently underutilized when government policy is sufficiently long delayed given dirty

technology capacity can become sufficiently large. One question for further research is un-

der what conditions does a laissez-faire economy converge in the long-term to a state that

is characterized by efficient underutilization when there are decreasing returns to scale in

using the factor in producing consumption goods and investment goods. In addition this

analysis may be useful to determine if the environmental regeneration function alone is

responsible for the difference to the fishery example regarding the optimal utilization in

a laissez-faire steady state. In the model pollution affects utility. The level of the cost

of polluting for optimal joint investment and underutilization in the dirty technology is

smaller for greater pollution if pollution affects output. This effect retains the importance

of the dirty technology capital stock for its underutilization when pollution is below its

optimal long-term level, when the pollution effect on output is limited from above for

small pollution. Implications of this effect for optimal utilization in a laissez-faire state

in the long-term may be researched in further work.

There is an equivalence in the model between all machines being utilized at some

fraction and this fraction of all machines producing and the remainder of machines being

idle. The latter makes recycling possible. Unused capital may be saved for later use

rather than being decommissioned assuming that pausing is less costly than recycling, for

example from dirty technology to clean technology. Further research may find the margins

of optimal pausing and recycling. Idle dirty technology capital could be recycled.

The analysis assumed equally endowed households. The postponement of use of dirty

technology capital has likely only mild distributional effects in reality, because its im-

provement in the emission intensity over vintages and its greater depreciation of unused

units that are older because they have been used more often have opposite effects on
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the optimal age of underutilized plants and engines. The idling of pre-installed capital

has relative wealth effects between households in reality depending on the endowments of

idle and utilized units if policy that implements the underutilization is not accompanied

by compensating asset owners for foregone revenue. This might be important, because

energy-use capital, such as buildings, equipment, and roads, is underutilized when en-

ergy production capital is underutilized in the initial period in a model with energy-use

capital that is putty-clay in terms of its energy efficiency. Thus a considerable portion

of aggregate wealth may be affected. Further research should examine if some types of

energy-use capital are optimally idle forever if some fossil-fuel using capital is optimally

idle forever.

The efficient stranding of assets suggests a political economy dimension to the climate

problem worth studying. In some environmental problems capital can be modified at low

cost to reduce negative environmental effects of capital use—through catalyst in vehicles

whose use pollutes air locally, scrubbers in coal power plants that emit sulfur dioxide,

and equipment in plants that produce refrigerants responsible for ozone depletion in the

atmosphere, or replaced at low cost—lead-containing water pipes. In a fishery capital

that is efficiently underutilized may have little value if it was fully utilized—old fishing

boats. In contrast, fossil-fuel using plants and engines likely cannot be converted into

zero-emissions capital at low cost (but there is a call for research on determining the

cost), alternative renewable energy technology is more expensive at large scale, and re-

cently constructed buildings, coal power plants and vehicles have a high market use value.

While ownership and use of capital span globally, the stranding of installed capital is ef-

ficient with or without effects of carbon on households in different regions that have own

governments. Because of these characteristics an international agreement among the main

emitters on emissions plans may be slower for climate change than for the transboundary

problem of acid rain and global problem of ozone-depleting substances. Compensation of

foregone revenue to implement an optimum is an avenue for future research to explain

the lack of government policy that excludes it and improve upon it. Second government

policy that implements underutilization of fossil-fuel capital may motivate the observed

lobbying interest in carbon storage and air capturing. The efficiency of investment in

such technologies to prolong the use of pre-installed capital or perpetuate investment in

fossil-fuel technology in the realm presented here is a topic for further research.
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There are two cases of stranded assets though the environment can fully revert to

non-hazardous levels. In the first case, capital of dirty technology is underutilized at all

dates and does not receive additions through investment. The same rationale may hold

given uncertain clean technology improvements as a topic for future research. In the

second case capital depreciates regardless of its utilization and is efficiently underutilized

in the initial period. In contrast, some climate-policy discussants argue in favour of

retiring (expected future) rents from extracting fossil fuels to prepare for uncompensated

Pigouvian climate policy because more carbon may be valued in assets today than should

be used in the future since the effects of carbon may become irreversible beyond some

carbon level (Carbon Tracker & Grantham Research Institute on Climate Change and the

Environment 2013), or to make efficient climate policy with compensation under spillovers

(Böhm 1993, Hoel 1994, Harstad 2012).

Empirical work is needed to find if underutilization of capital in energy production

or energy use is currently optimal, or when it will be optimal under given courses of

government policy. Such work may use several extensions of the present chapter.

2.6 Appendix A: Properties of Pareto optimal allocation

Multiple technologies. The following provides a composition of the vector G of in-

equality constraints and derives the transversality conditions which are helpful in prov-

ing the uniqueness of an optimal plan. Let u be the matrix with utilization rates

of technologies with positive capital on the main diagonal and zeros elsewhere, de-

note e as the column vector of ones, and let I be the identity matrix. Then G =

[
∑

j(ujKj−xj)−c/B; x; ue; (I−u)e;K] using vectorsK of capital and x of input in invest-

ment. A planner chooses a sequence of control variables to maximize J = limT→∞ J(T )

given values of inherited pollution and capital stocks at date zero, where

J(T ) =
T−1
∑

t=0

βt{H (t)− ǫ(t)[Z(t)− Z(t+ 1)] +
∑

j

qj(t)[Kj(t)−Kj(t+ 1)]

+ βwj(t+ 1)[K̄j −Kj(t+ 1)] + w(t)G(t)}+ βT [v(T ) + w(T )G(T )]

contains the current value Hamiltonian function H (t) = U(c(t), Z(t)) − ǫ(t)rZ(t) +
∑

j qj(t)rKj
(t), all 0 ≤ t ≤ T − 1. Here v(T ) is some function of (Z(T ), K(T )). Then an
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optimal plan satisfies the transversality conditions limt→∞ βtǫ(t) = 0 and

lim
t→∞

βt[qj(t) + βwj(t+ 1)] ≥ 0, lim
t→∞

βt[qj(t) + βwj(t+ 1)]Kj(t+ 1) = 0 (A-3)

based on the following arguments. 1. Pollution. Define λZ and λKj
as the multipliers on

the nonnegativity constraints Z ≥ 0 (if one imposes it, to show that it does not matter)

andKj ≥ 0, respectively. The differential of the limit of the present value function βTv(T )

as T tends to infinity with respect to economic state variables Z(T ) and Kj(T ) is zero if

β < 1. Then λZ ≥ 0, ǫ ≥ 0, and the differential

∂

∂Z(T )
lim
T→∞

J(T ) = lim
T→∞

βT−1{βλZ(T ) + ǫ(T − 1)} = 0,

imply that the present value shadow price of pollution is zero in the long-term. 2. Avail-

able capital. The nonnegativity of λKj
, the differential

∂

∂Kj(T )
lim
T→∞

J(T ) = lim
T→∞

βT−1{βλKj
(T )− qj(T − 1)− βwj(T )} = 0,

and the nonnegativity constraints on capital, imply (A-3). The sum of the discounted

shadow price of capital and discounted land rental rate is nonnegative.

In the Section 2.4.2 the constraint uRKR − αBuBKB ≥ 0 is added to G all t ≥ 0.

The following lemma establishes the sufficiency of necessary optimality conditions, and

conditions for uniqueness of an optimal plan. This lemma was written earlier for a

version with delay τ of emissions on pollution. (i)-(iv) refers to the necessary optimality

conditions (2.6)-(2.8).

Lemma 2.7 A plan that satisfies the necessary conditions (i)-(iv) and the transversality

conditions (A-3) maximizes J . A unique plan maximizes J if U or A is strictly concave

in Z at any Z.

Proof. Any feasible control v(t) = (c(t), x(t), u(t)) uniquely maps feasible (Z(t+τ), K(t))

into feasible (Z(t+ τ + 1), K(t+ 1)). Thus an admissable sequence {v(t)}∞t=0 determines

a unique sequence of state variables, in each period on R× [0, K̄B]× [0, K̄C], given initial
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values (Z(τ), K(0)). The choice ṽ(0) maximizes

L (0) = U(c(0), Z(0))− ǫ(0)rZ(Z(0), K(0), v(0))

+ q(0)rK(K(0), v(0)) + w(0)G(K(0), v(0))

at given costate variable values ǫ(0) and q(0) and Lagrange multpliers w(0) if ṽ(0) satisfies

(i) of the maximum principle for t = 0. Thus

U(c(0), Z(0))− U(c̃(0), Z(0)) ≤ ǫ(0)[Z(1)− Z̃(1)]− q(0)[K(1)− K̃(1)]

follows from definition of rZ , rK , and ǫ(0) = βτ ǫ∗(τ). Let the state variables Zτ (t) =

(Z(t), Z(t+1), . . . , Z(t+ τ)) and Kτ (t) = (K(t− τ), K(t− τ +1), . . . , K(t)) for t ≥ τ + 1

arise from a particular choice (v(0), v(1), . . .). The function

Lτ (t) =
t+τ
∑

s=t

βs−t
{

U(c(s), Z(s))− ǫ∗(s)rZ(Z(s), K(s− τ), v(s− τ))

+ β−τq(s− τ)rK(K(s− τ), v(s− τ)) + β−τw(s− τ)G(K(s− τ), v(s− τ))
}

is jointly concave with respect to all state variables that are its arguments in (Z̃τ (t), K̃τ (t))

if one of these state variable values is interior because U and A are concave in Z. Thus

interior pollution all t ≥ τ + 1 implies concavity. Furthermore strict concavity follows if

U or A is strictly concave in Z. The function Lτ (t) is differentiable with respect to state

variables since U and A are differentiable with respect to pollution. Then

Lτ (Zτ (t), Kτ (t), . . .) ≤ Lτ (Z̃τ (t), K̃τ (t), . . .)

+
t+τ
∑

s=t

∂L

∂Z(s)
(Z̃τ (t), K̃τ (t), . . .)[Z(s)− Z̃(s)]

+
∂L

∂K(s− τ)
(Z̃τ (t), K̃τ (t), . . .)[K(s− τ)− K̃(s− τ)]

given (ǫ∗(t), ǫ∗(t + 1), . . . , ǫ∗(t + τ), q(t − τ), q(t − τ + 1), . . . , q(t)), holds at strict in-

equality if U or A is strictly concave in Z. The classic proof of Arrow’s Theorem in a

(continuous time) setting without delay defines L0(t) as a Lagrange function that con-

temporaneous control variables maximize, and invokes an envelope condition to show

102



that the partial differential of L0(t) with respect to a contemporaneous state variable

involves a necessary adjoint equation from the maximum principle. The necessary con-

dition with respect to v(t) does not seem to be a prerequisite for construction of some

function that is concave in state variables and whose differential with respect to any such

state variable involves a necessary condition at given values of control variables. Here

consumption (c(t), c(t + 1), . . . , c(t + τ)) does not maximize Lτ (t) if τ ≥ 1, so that the

necessary condition of maximization of some function with respect to v(t) is not used,

except at t = 0. The differentials ∂Lτ (Z̃τ (t), K̃τ (t), . . .)/∂Z(s) = ǫ∗(s) − β−1ǫ∗(s − 1)

and ∂Lτ (Z̃τ (t), K̃τ (t), . . .)/∂K(s− τ) = β−τ [β−1q(s− τ − 1)− q(s− τ)] for t ≤ s ≤ t+ τ

evaluated at (Z̃τ (t), K̃τ (t)) represent conditions (ii) of the maximum principle. (If U is

additively separable in functions of each c and Z then a function Lτ (t) of (Z(t+τ), K(t))

is definable that v(t) maximizes). Rearranging and simplifying terms yields

t+τ
∑

s=t

βs−t[U(c(s), Z(s))− U(c̃(s), Z̃(s))]

≤ ǫ(t)[Z(t+ τ + 1)− Z̃(t+ τ + 1)]− β−1ǫ∗(t− 1)[Z(t)− Z̃(t)]

−q(t)[K(t+ 1)− K̃(t+ 1)] + β−τ−1q(t− τ − 1)[K(t− τ)− K̃(t− τ)]

for t = τ +1, 2τ +2, 3τ +3, . . .. Then summation of these discounted terms over t implies

that

∞
∑

t=τ+1

βt[U(c̃(t), Z̃(t))− U(c(t), Z(t))]

≥ lim
t→∞

βt{−ǫ(t)[Z(t+ τ + 1)− Z̃(t+ τ + 1)] + q(t)[K(t+ 1)− K̃(t+ 1)]}

+βτ ǫ∗(τ)[Z(τ + 1)− Z̃(τ + 1)]− q(0)[K(1)− K̃(1)]

where ǫ(t) = βtǫ∗(t + τ). The limit of the product of the respective discounted shadow

price ǫ(t) and pollution Z̃(t+ τ + 1) vanishes if the transversality condition with respect

to pollution holds given policy indexed by tilde. The limit term limt→∞[−βtq(t)K̃(t+1)]

can be replaced by limt→∞ βt+1w(t+ 1)K̃(t+1) ≥ 0 if the transversality conditions (A-3)

hold for the policy ṽ(t), t = 0, 1, . . .. Then addition to the difference of utility at t = 0
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yields

U(c̃(0), Z̃(0))− U(c(0), Z(0)) +
∞
∑

t=τ+1

βt[U(c̃(t), Z̃(t))− U(c(t), Z(t))]

≥ lim
t→∞

βt{−ǫ(t)Z(t+ τ + 1) + q(t)K(t+ 1) + βw(t+ 1)K̃(t+ 1)}

at strict inequality if U or A is strictly concave in Z. The results follow if the limit of the

discounted value of pollution is zero, because then the latter line is nonnegative. The limit

is nonnegative if Z is bounded from above since the limit of the shadow price of pollution

is zero. Now Z is bounded from above on any feasible plan because the capacities to

produce output are bounded from above. Q.E.D.

Proof of Proposition 2.1. (i) Existence. A plan satisfies feasibility conditions and

yields finite welfare J . The policy c(t) = B(1− 1/QB)min(KB(0)+KC(0), K̄B), xB(t) =

(1/QB)min(KB(0) + KC(0), K̄B), xC(t) = 0, uB(t) = 1 for t ≥ 0, and uC(0) = 1 if

KC(0) > 0, is feasible, and yields finite J . Thus not all policies yield welfare −∞. There

is at least one plan that cannot be improved upon because the compact state space,

feasible choices of control variables (c, x, u) in closed and bounded sets, and discounting

imply that J is bounded from above, the utility function U is continuous in c and Z. (ii)

Uniqueness. By Lemma 2.7 a plan that satisfies the necessary conditions (i)-(iv) and the

transversality conditions maximizes J , and uniquely so if U or A is strictly concave in Z

at any Z. This follows because emissions have immediate impacts on pollution. For any

state (Z,KB, KC)(t) a policy at t maps one-to-one into the state (Z,KB, KC) at (t+ 1).

Thus, the optimal state trajectory is unique. Q.E.D.

The convexity of the correspondence of current states that describes the feasible set of

successor states, and the strict concavity of utility in consumption, are not sufficient for

a unique optimal plan with an interval of underutilization, when proposing two policies

and examining a convex combination. The reason is that technology j’s output in period

(t + 1) is proportional to uj(t + 1)(1 − uj(t)). Chow (1997) uses a perturbation of J

evaluated at a given policy that satisfies necessary optimality conditions to argue that

the optimal plan is unique given convex transition laws and concave return function both

in controls and states. This method does not apply at corner solutions, for example, with

idle capital, fully utilized capital, or no investment.

Depreciation and clean technology productivity. Condition 2.1 or 2.2 can be
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used to prove full utilization of dirty technology capital after investment in the dirty

technology. The next lemma shows the result R(t+1) > γB that is useful given emission-

free investment.

Lemma 2.8 The shadow return exceeds the retained portion of unused dirty capacity,

R(t + 1) > γB, if Condition 2.1 holds, dirty capacity KB(t) > 0 is utilized, uB(t) > 0,

and dirty capacity KB(t+ 1) is smaller than its upper bound K̄B.

Proof. Pollution Z(t+1) is free. Thus (2.5) and Condition 2.1 imply that ǫ(t) > βγBǫ(t+

1). Then uB(t) > 0 in (2.8) shows that βγB(λ(t+1)−bǫ(t+1))−βwB(t+ 1) ≤ γBqB(t) ≤

λ(t)−bǫ(t) given wB(t+1) = 0. Thus (B/b)(R(t+1)−γB) ≥ (ǫ(t)/βǫ(t+ 1)− γB)θ(t+ 1)

implies the result. Q.E.D.

This lemma implies an upper bound on the growth of the cost of polluting, that the

path in Proposition 2.2 with increasing cost of polluting satisfies. The inverse of the

growth rate of the discounted willingness to pay to reduce pollution, (βǫ(t+1)/ǫ(t))−1, is

bounded from below by a greater amount γB, provided that pollution is persistent relative

to capital, if postponing the use of capital is more attractive to mitigate this cost, γB is

greater.

Lemma 2.9 The relation γj(B+ ρjθ(t+1)) ≥ R(t+ 1)(B + ρjθ(t)) holds if investment,

xj(t) > 0, preceded underutilization of capital Kj(t+ 1) > 0, uj(t+ 1) < 1.

Proof. Investment in period t implies that Kj(t + 1) > 0. Underutilizing Kj(t + 1) > 0

requires that βγjqj(t + 1) = qj(t) from (2.8). Then investment satisfies βγj(λ(t + 1) +

ρjǫ(t+ 1)) ≥ βγjQjqj(t+ 1) = Qjqj(t) = λ(t) + ρjǫ(t) by (2.7). Q.E.D.

Then Condition 2.1 can be used in an economy without emissions from investment in

the dirty technology to derive full utilization after investment in the dirty technology.

The following interprets Condition 2.2 and examines its plausibility within the model.

This assumption means that large investment in clean technology is feasible at suffi-

ciently large productivity so that the return on investment in clean technology, QC/(1 +

(ρC/B)θ(t)) does not exceed the marginal rate of substitution of consumption R(t + 1).

The first inequality in Condition 2.2 tells that this rate of return on investing in clean

technology at t is greater than the rate of return from storing dirty technology capi-

tal, γB, when θ(t) ≤ θB. This relation is needed if dirty technology is relatively less
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emission-intensive in investment. The second inequality in Condition 2.2 implies that

investing in clean technology is preferable to investing in dirty technology at a date

(t− 1), QC/(1 + (ρC/B)θ(t− 1)) > QB(1− (b/B)θ(t))/(1 + (ρB/B)θ(t− 1)), if θ(t) ≥ θB

and dirty technology is relatively more emission-intensive in investment. These condi-

tions coincide if ρC = ρB by definition of θB. If QC < QB then the first inequality

QC > γB(1 + (ρC/B)θB) requires that γB(ρC − ρB) < QBdB, which is consistent with

ρC − ρB < βdBQB. This plausible relation means that clean technology is less polluting

than dirty technology. The second inequality QC > QB(1− (dB/B)θB) is consistent with

ρB ≥ 0 and QB > γB.

Lemma 2.10 Pollution increases on {t′, t′ + 1, . . . , t′′} if Z(t′ − 1) < Z(t′), and (i)

emissions strictly increase, E(t − 1) < E(t), and A(Z) = Z or (ii) emissions weakly

increase, E(t− 1) ≤ E(t), and A(Z) < Z.

Proof. (i) A(Z) = Z. The result is obvious. (ii) A(Z) < Z. Then (Z − A(Z)) strictly

increases in Z. Thus Z(t′) − A(Z(t′)) > Z(t′ − 1) − A(Z(t′ − 1)). Put this to use in

Z(t′) + [E(t′ − 1) − A(Z(t′))] > E(t′ − 1) + Z(t′ − 1) − A(Z(t′ − 1)) = Z(t′) so that

A(Z(t′)) < E(t′ − 1) ≤ E(t′) yields that Z(t′) < Z(t′ + 1). Induction implies the result.

Q.E.D.

2.7 Appendix B: Algorithms

(i) Strictly concave utility in pollution and one clean technology. Values for θB range from

about 10 to 30 for γB ∈ [0, 1]. The number 15.46 results from the assumed γB = 0.72.

States with the cost of polluting θ(t) ≤ θB in constrained optimum are those in the region

R1 of investment and full utilization in the dirty technology in Figure 2.2. The stationary

point to which the trajectories converge is in this region because the cost of polluting at

a stationary point with investment in the dirty technology is less than θB. A corollary to

the first result in Lemma 2.1 is that dirty technology capital KB > 0 is fully utilized if

θ(t) < θB.

Now consider states with greater dirty capacity than in R1. A contraposition to the

second result in Lemma 2.1 is that either investment occurs and capital is idle, or no
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investment occurs, if θ(t) > θB.
41 Investment and idle capital, xB > 0 and uB = 0, for

KB close to its long-term level would yield a large change in the savings rate between

states that are close to each other—states for which full utilization is optimal and states

debated here, since clean technology capital is small in the example. This cannot be

optimal. One can disregard no investment and full utilization, xB = 0 and uB = 1,

because lower positive available investment levels were not chosen by the program in

solving the constrained problem. Then for θ(0) > θB at the solution to the constrained

problem capital is underutilized, uB(0) ∈ [0, 1), in the Pareto optimum. Thus the curve

for θB forms the boundary of the regions R1 of full utilization and investment (that

includes this curve) and R2 of partial utilization and investment.

Let S be a set of triples of pollution, dirty capacity, and clean capacity numbered

i = 1, 2, . . . ,M , and denote by Si the feasible subset of states immediately following

state (Z(i), KB(i), KC(i)) ∈ S. The set of Si all i is a state correspondence. This set is

found by first computing emission levels from transitions Z = E(i)+(1−ϕ)Z(i) between

levels of pollution in a given set, building the corresponding set of dirty capacity levels

at full utilization, E(i) = buBKB(i) at uB = 1, and by blocking all transitions subject

to the resource constraint c/B + xB + xC = uBKB(i) + uCKC(i), and the transition law

Kj = γj(1− uj)Kj(i) +Qjxj for j ∈ J , but those with uB ∈ [0, 1], uC ∈ [0, 1], xB ≥ 0,

xC ≥ 0, and c > 0. Let v0 be some initial function of states. The algorithm for finding

an optimum is iterating on the problem

vs+1(Z(i), KB(i), KC(i))

= max
c,xB ,xC ,uB ,uC

{U(c, Z(i)) + βvs(Z,KB, KC)}

for (Z,KB, KC) ∈ Si all i increasing s ∈ N until the norm {
∑M

i=1(vs+1(i) − vs(i))
2}1/2

is smaller than the tolerance level 10−7. The constrained optimum results by setting

uB = uC = 1 to attain the state correspondence.

The optimum level θ(t) at a date before joint underutilization and investment results

from backward calculation using (2.9), while the optimum level θ(t) afterwards comes

from forward solving (2.10). The constrained optimal θ(t) for t ≥ 1 is the series that

solves (2.10) forward. The backward calculation using (2.11) yields very similar values.

41Closed orbits of pollution and capital with such idleness may satisfy some necessary optimality
conditions but violate the transversality condition of the shadow price of pollution.
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In the constrained optimum the initial level is unknown, so that comes from backward

solving (2.11) using a terminal date after plans have converged on the grid. The boundary

curves are obtained using the results in proving Proposition 2.5 by fitting state values to

the function KB = r1+(r2−Z)/(r3 +Z) with the Gauss-Newton method. This function

yields a high coefficient of determination 0.90 (R1-R2) and 0.72 (R2-R3).

1. Compute θ(0) for all states and minimize the distance to θB for given Z to find states

with θ close to θB from constrained optimization.

2. Estimate the boundary of R1 and R2 using these states.

3. Find their successors. Set xB = 0 to compute the predecessors and use them to

estimate the boundary of R2 and R3.

Zero investment, xB = 0, is not feasible on the grid in the unconstrained optimization.

Inclusion of this value would increase the grid space enormously because only one control

governs the transitions of two states Z and KB when xB = 0 and uB ∈ (0, 1), so it is

better avoided. Instead the solution with xB = 0 is approximated by small positive xB.

The same problem with the grid space would arise if capital is fully utilized and there are

emissions of investment. This problem can be circumvented by the second specification.

(ii) Constant marginal utility of pollution and multiple clean technologies. Both utility

U and absorption A are linear in pollution. The environmental shadow cost ǫ(t) =

βd/(1 − β(1 − ϕ)) all t ≥ 0 uniquely solves the unstable difference equation (2.5) and

satisfies both ǫ(t) ≥ 0 and the transversality condition limt→∞ βt−1ǫ̃(t) = 0 given ǫ = βǫ̃.

Let K = (KB,
∫

C
KCdC) collect the states dirty technology capital and aggregate clean

technology capital. The value function has the form v(Z,K) = ṽ(K) − ǫ̃Z and satisfies

the Bellman equation

ṽ(K) = max
c,x,u

{c1−ψ/(1− ψ)− ǫE + βṽ(K ′)}

subject to utility function c1−ψ/(1 − ψ) − ǫE and the same laws of motion of the states

where prime denotes next period. In this reduced problem the current utility depends on

consumption c and emissions E.

The laissez-faire trajectories solve the necessary equilibrium conditions. I deploy the

following method given the sum of the equation c/B + xB +
∫

C
xCdC = mB +

∫

C
mCdC
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from t = 0 to t = tB − 1 weighted by σt = (1/QB)
t.

1. Choose the least tB such that c(tB) = (βQB)
tB/ψc(0), using c(0) from

tB−1
∑

t=0

σtc(t) + σtBK̄B = KB(0) +

tB−1
∑

t=0

σt[KC(0)− xC(0)] + σtB−1i(tB − 1)

at i(tB − 1) =
∫

C
(xC(tB − 1)− xC(0))dC = 0, is greater than c(tB) from the policy

on {tB, tB + 1, . . .} given i(tB − 1) = 0 that grid search yields. Then increase tB to

the greatest number that satisfies KB(tB − 1) ≤ K̄B. The resulting consumption

amount exceeds c(tB) in the future-looking policy.

2. Find
∫

C
xC(tB − 1)dC and the future-looking policy including some grid points

∫

C
xCdC ∈ [xℓ, xh]. Iterate on xℓ and xh until c(tB) = (βQB)

(tB−1)/ψ(βR(tB))
1/ψ

and c(tB) from the policy on {tB, tB+1, . . .} have sufficiently converged. The shadow

return R(tB) = Q(
∫

C
xC(tB − 1)dC)/(1+ (ρC/B)θ(tB)) is evaluated at the updated

policy
∫

C
xC(tB − 1)dC.

The constrained optimal resource policies result from a grid search as described in the

previous example to find ṽ. The grid contains dirty capacity and aggregate clean ca-

pacity levels. Optimal policies that involve underutilization are computed using first-

order optimality conditions. The value of θB = ǫ/B(∂U/∂c) yields consumption c∗ in

R2. Then consumption, input in investment of clean technologies, and the cost of pol-

luting can be solved backwards, for paths starting in R2 or R3, using the condition

βγB(B∂U/∂c(t + 1) − bǫ) = B∂U/∂c(t) − bǫ that is equivalent to (2.9). They can be

solved forward in R1 on these paths using (2.10). The boundary of R1 and R2 approxi-

mates grid points with consumption policy c∗ in the constrained optimization. Here states

with θ(0) close to θB are those with squared distance up to 0.1. The boundary of R2 and

R3 is found using the method in proving Proposition 2.5 given the successors KB(t + 1)

and
∫

C
KC(t+ 1)dC to the grid points with consumption policy c∗. The utilization rates

on paths that start in R3 follow by examining the time span τ to the date of R2 and

successively raising τ until xB(τ) > 0 knowing the backward solution of consumption c

and input
∫

C
xCdC in clean technology investment, and the state

∫

C
KCdC.
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3

Capacity planning with supply uncertainty

of clean technology

This chapter examines implications of daily average fluctuation of clean production for

the Pareto optimal distribution of consumption and investment and analyses government

policies that may or may not implement a Pareto optimum. The productivity of wind

and solar energy conversion into electricity varies over the course of a day, on average

daily within a season, and across seasons of the year. This production does not create

carbon dioxide emissions or fuel waste. Electricity production using fossil fuel or nuclear

material can be stable yet polluting. Using fossil fuels creates carbon dioxide emissions.

The use of nuclear fission technologies leaves radioactive spent fuel.

There are five major findings. (i) Consumption can be equalized across days because

investment absorbs the fluctuation in clean technology productivity in days in which con-

sumption is maximized. Dirty technology backs up production in days when the produc-

tivity of clean technology is low which leads to low consumption, yet the underutilization

of dirty technology capital in days when the clean technology’s productivity is high re-

quires optimally dissipating profit that implies maximum consumption and thus may not

smooth consumption across all days with different wind strengths in a long period in which

capital is built. (ii) I show the need of an excise tax or a contingent ad valorem tax rather

than a noncontingent ad valorem tax to implement contingent underutilization through

indirect taxes. These tax rates can be expressed in terms of the Pigouvian emissions

tax. (iii) A clean output subsidy can implement a Pareto optimum. This subsidy may
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rebate a uniform output tax or equipment tax, or be funded by a discriminatory surcharge

between households. In the former two systems a tax on capital purchases accounts for

the societal effects of emissions in building capital. Differentiating the surcharge between

households moves clean technology unit revenue closer to the price of its output than

under a uniform surcharge and does not affect the relative price of consumption goods

and investment goods. The system with output tax is preferred among these variants of

a tax-rebate system if dirty technology capital is unequally utilized across states of clean

technology productivity in optimum, because it induces the efficient utilization of capital.

The system with taxed investment to internalize both the marginal effects of emissions

in using and building capital does not induce underutilized capital. The system with sur-

charge and emissions tax that internalizes the externality in the investment sector does

not induce underutilized capital. (iv) Clean technology users may not know the state,

for example, cannot access wind forecasts, and clean output buyers that use equipment

may direct their demand to contingent prices. This information asymmetry does not

substantiate government intervention. Competitive distributors can stream contingent

payments into a stable price. (v) A clean technology output subsidy fully-funded with

uniform surcharges leads to overinvestment in both dirty and clean technology relative to

an optimum when the optimal marginal real rate of return on investment and a weakly

smaller portion of clean technology output relative to its optimal level are implemented.

Clean technology earnings are too large relative to the price of output, so that there is an

overinvestment in clean technologies. Then dirty technology output is too large given the

relation of relative output of dirty and clean technologies. Exempting investment goods

producers from the surcharge as practiced in Germany cannot implement the optimal real

rate of return on investment unless emissions in the investment sector are priced.

The desirable scale of clean energy depends on the relative cost of installing dirty and

clean technology capital and their available production capacities (Heal 2009). In partic-

ular, electricity can provide heating and cooling, light, and mechanical energy. Energy

from fluctuating renewables supply can be stored only expensively for later transforma-

tion into electrical energy. I do not consider storage (for example, in pumped water,

battery, or hydrogen) because it is currently expensive over many days independent on

the location. Therefore, the availability of clean energy harvests affects optimal policy.

I use an extension of Chapter 2’s model to multiple subperiods to analyse technology-
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specific investment and dispatch of capital use. The sequence of states is uncertain. A

given period is segmented into subperiods of which each exhibits a particular productivity

of clean technology capital. Users of dirty or clean technology output learn the clean

technology productivity before the capital utilization can be chosen.

Relation to literature. The paper relates to previous studies of the capacity uti-

lization of electricity generators, indirect taxation to internalize an externality, and fully-

funded subsidies to clean technology. The peak-load pricing literature reviewed by Crew

et al. (1995) uses models with efficient underutilization of capital motivated by time-

varying demand. This variation may be within each day. Capital is underutilized when

consumption is small. In Ambec & Crampes (2012) and the present paper varying success

of one technology, for example, across days, induces underutilization of capital of another

technology. Then capital is underutilized when consumption is large. Ambec & Crampes

(2012) view a technology with constant flow cost and fixed productivity and a technol-

ogy without flow cost and with uncertain productivity.1 There output is only consumed.

Here the use of output for consumption and investment implies that investment using

dirty technology output caps consumption in states in which otherwise dirty technology

capital was idle to smooth consumption across all states. Capital is underutilized in Am-

bec & Crampes (2012) because the flow cost (price of an input fuel) does not change in

response to a change in the price of the output. The latter change is induced by a change

in marginal utility of consumption when the productivity of installed clean technology

capital changes. In the present paper the general equilibrium relaxes the price rigidity so

that the environmental motive is the unique reason for underutilization.2 The necessary

equilibrium conditions provide a similar mechanism for underutilization to that under

constant input price. Marginal utility of consumption induces a price change while the

environmental cost is constant in a given period.

Garcia, Alzate & Barrera (2012) analyse capacity planning with uncertain positively

correlated supply in locations. A subsidy to clean technology output such as a feed-in tar-

1The flow cost of the reliable technology can be interpreted as the sum of fuel cost and environmental
cost. The competetive equilibrium allocation subject to no taxes and subsidies is not Pareto optimal if
there is an environmental cost. An earlier version of this paper extended Ambec & Crampes (2012) to
general convex environmental cost and analysed the planner problem.

2Capital is fully utilized if the environmental effect is not priced and dirty production uses comple-
mentary fuel, as in Ambec & Crampes (2012). I consider a fuel technology in an extension to make this
point.
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iff for grid-distributed electricity does not induce efficient investment in low-quality sites

because of rationing of the sites and variable capital per site.3 I find that a feed-in tariff

leads to investment in low-quality sites which is not efficient given production capacity

in high-quality sites is limited, which is plausible. In addition there is greater invest-

ment in dirty technology than in an optimum when trivially there is overinvestment in

clean technology and clean technology does not provide too much output relative to dirty

technology compared to an optimum. Garcia et al. (2012) conclude that a renewable

portfolio standard induces underinvestment in the constant-available technology disre-

garding the funding through government policy, whereas I find overinvestment because I

show that renewable portfolio standards with levies comprise a form of feed-in premiums

with equivalent effects as feed-in tariffs.

In the literature on tax-subsidy schemes to indirectly internalize an externality, a gen-

eral input or a specific output is taxed, which differs from how we shall see it done here.

A general output is taxed and a subsidy accrues to specific clean output generating an

offset because of the perfect substitutability of dirty and clean output. The dirty and

clean outputs can be viewed as specific inputs which are perfect substitutes in producing

the general output. In the model with a dirty and a clean good in Fullerton & Wolverton

(1999, 2000) the provision of the general factor is taxed and the clean good purchase

is subsidized. Curiously, Fullerton & Wolverton (2000) call this tax an output tax. In

the model with production externality in Fullerton & Wolverton (1999) there is a sales

tax of the good and a subsidy of the general (so-called clean) input that is an imperfect

substitute for waste in production.4 Walls & Palmer (2002) use a tax-subsidy system

to implement an optimum. Eskeland (1994) proposes combining a dirty goods tax and

a standard in controlling pollution. The tax literature lacks capital utilization which I

introduce to tax-rebate systems. This literature is informally motivated by costly moni-

toring of emissions when invoives for goods exist. The motivation here is an interest in

efficient tax-rebate systems with multiple technologies whose use requires an investment.

3A feed-in tariff is a price that a producer receives, for example, from a government, per unit of output
that is fed to a physical network, for example, an electricity grid.

4In their first model Fullerton & Wolverton (1999) assume equal productivities and thus miss that
the clean good may be taxed if clean technology is more productive than dirty technology provided
that the dirty and the clean good are imperfect substitutes in the utility function. The general results
of Wijkander (1985) apply using substitutability and complementarity defined in terms of cross price
elasticities of demand, which depend on the relative productivity.
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Böhringer, Hoffmann & Rutherford (2007) document the effectiveness of feed-in tar-

iffs and renewable energy certificates in promoting renewable energy investments in the

European Union (EU). The present paper sheds light on the efficiency of these output

subsidies in a dynamic general equilibrium. In contrast to previous literature, a subsidy

can implement an optimum: coupled with a general output tax, or through discrimination

of the surcharge used to fund the subsidy. Canton & Johannesson Lindén (2010) acknowl-

edge that a fully-funded feed-in tariff (FIT) distorts the price of renewable electricity, yet

do not derive outcomes. I characterize the distorted investment in a fully-funded system.

Canton & Johannesson Lindén (2010) assert that premia and tariffs affect wholesale mar-

ket liquidity differently. Though this appears by definition I find that premia and tariffs

lead to the same outcomes, because they attain the same balancing rule of unit earnings

of the dirty and clean technology users. While I do not analyse tradeable emission per-

mits, the renewable portfolio standard motivates trade in renewable production credits.

In line with Böhringer & Rosendahl (2010), these certificates and a uniform FIT financed

by consumer tax are equally effective in targeting a renewable energy output share.

Wind and solar power fluctuation. MacKay (2008) shows that wind turbines’

output in Ireland varies up to a factor of seven from one day to the next, which is

to say greatly. Availability of wind energy and solar energy is roughly certain in the

aggregate over many days. This motivates the following structure of uncertainty. A

given period t ∈ {0, 1, 2, . . .} has a constant number of subperiods equal to the positive

integer W . A state measures wind speed or solar radiation and maps one-to-one to the

set of productivity of technologies. Dirty technology productivity depends on the state

for notational convenience. Let s = {s1, s2, . . . , sW} be a sequence of states s ∈ S. The

union of all sequences s is ŝ = ∪isi. The order of states is uncertain yet there is certainty

regarding the frequency of states. Different sequences of the list S of all states with their

multiplicity can occur. Any state s appears at the same number in all s.

The next section characterizes planning of capacity and its utilization in dirty and clean

technologies subject to tax policy, presents government policy that implements a Pareto

optimum, and discusses the potential of feed-in premiums and feed-in tariffs to attain

an optimum. Section 3.2 extends the basic model to extraction costs, before Section 3.3

concludes with a discussion of results and usefulness of several government policies.
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3.1 The economy

Firms own productive capital, and households own claims to the profits of firms. There

are financial assets specific to firms, because firms may use capital in dirty and clean

technologies at different proportions, so that a differential rent of clean production can

create unequal profit across firms. Clean technology requires land which is not owned

and thus creates a rent. This land is a complementary production factor to capital that

is implicit through an upper bound on capital. Such land is not divisible by a large

number of firms. In particular, this is relevant when there are multiple clean technology

types, which I assume in discussing fully-funded subsidies to clean output. Consumption

goods that are produced in one subperiod cannot be stored. To begin with each one dirty

technology and one clean technology produce a good that is input in consumption and

investment. Definition of an equilibrium follows the description of the agents’ objectives

and constraints.

Households.—A unit mass of infinitely-lived households populates the economy. Let

c(t) = {c(s1, t), c(s2, t), . . . , c(sW , t)}∀s be the list of consumption of one household in

subperiods 1, 2, . . . ,W for all sequences s of states in period t. The welfare function

J =
∞
∑

t=0

βtE

[

W
∑

w=1

U(c(sw, t))−Ψ(Z(t))

]

represents preferences of each household over c(t) and pollution Z(t) for all periods t. The

period-utility function is an expected utility given beliefs over ŝ that the mathematical

expectation operator E expresses. There is no discounting across subperiods within a

given period. The discount factor regarding the periods is β ∈ (0, 1). The function U

is twice-differentiable, strictly increasing, and strictly concave for positive consumption

c ∈ R+, ∂U/∂c > 0 > ∂2U/∂c2 for c > 0. The function Ψ is twice-differentiable, strictly

increasing, and convex in pollution Z ∈ R+, thus ∂U/∂Z > 0 and ∂2U/∂Z2 ≥ 0. Marginal

utility of consumption ∂U/∂c approaches a large positive value M as consumption tends

to zero, limc→0 ∂U/∂c = M ≤ ∞. Then consumption c of at least one household is

positive in a Pareto optimum in all periods.

All households have an equal endowment αi(0) of equity of each firm i for simplicity.

The ex-dividend price of firm i’s tradeable claim is qi(t) in period t. One claim pays di(t)
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units of account in period t. The contingent price of the consumption good is p̂(sw, t).

The household chooses consumption {c(sw, t)}w=1,2,...,W and asset holdings αi(t + 1) all

t ≥ 0 to maximize welfare J subject to the sequence of budget constraints

W
∑

w=1

p̂(sw, t)c(sw, t) +
∑

i

qi(t)αi(t+ 1) ≤
∑

i

(qi(t) + di(t))αi(t) + tr(t) (3.1)

all s on {0, 1, . . .}, taking all prices, dividends, the government transfer tr, and pollution

as given. A household first learns the state. Then contracts about delivery of consumption

goods in each subperiod can be made contingent on the state. I assume markets in each

subperiod, and later use a contract to discuss an information asymmetry. Distributors

receive contingent payments and make contingent deliveries in such a contract.

Energy sector.—All firms have access to the same technologies J = {B,C} to produce

the factor energy, technologies to create investment goods for these technologies, and

one technology to produce consumption goods. First I describe the profits from using

the technologies to produce energy. Firm i demands yij(t) new equipment units at unit

cost pj(t) in period t. Production capacity of energy using technology j ∈ J is the

productivity χj(sw) times capital amount aij(t) ≥ 0 in subperiod w of period t. Energy

output mij(sw, t) ∈ [0, χj(sw)aij(t)] is lower than this capacity if the utilization rate

uij(sw, t) = mij(sw, t)/χj(sw)aij(t) ∈ [0, 1] is less than one.5 Firm i’s physical capital in

technology j ∈ J follows the law of motion

aij(t+ 1) = γj(1−max
sw

uij(sw, t))aij(t) + yij(t) (3.2)

that depends on the maximum utilization rate maxw uij(sw, t) ∈ [0, 1] given that capital

is storable, γj > 0, which is assumed in the following. The capacity χj(sw)aij(t) was de-

noted capital Kij(t) in Chapter 2 where χj is constant. A firm can shift capital across its

own plants to accommodate any interior firm-wide utilization rate for simplicity.6 Some

5The United States Department of Energy (2010) uses a capacity factor in calculations of the levelized
cost of electricity. The technology-specific capacity factor here is χj(sw)/△ if the length of each subperiod
is △ and technology-specific capacity equals △aij(t). Such a factor is founded by the convention of
measuring capital under some technology-specific norm conditions of (fossil fuel or renewable energy)
input.

6The planner problem would be representable at the firm level rather than at the aggregate level
though all plants are built under constant returns to scale if capital in a firm was storable only if it was
idle, aij(t+ 1) = Iij(t)γjaij(t) + (1− Iij(t))yij(t) where Iij ∈ {0, 1} equals zero if and only if uij(t) > 0.
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production capacity is forwarded if capital aij(t) > 0 is underutilized in all subperiods,

uij(sw, t) < 1 all sw. In an equilibrium dirty technology capital may be efficiently un-

derutilized if its current level is larger than its long-term level, see Chapter 2. This is

expressed as a maximum utilization rate of dirty technology capital less than unity. There

is an additional incentive to underutilize dirty technology capital—to utilize it below the

maximum utilization rate, from the fluctuation of clean technology productivity, which

the present chapter addresses. In an equilibrium with constant investment over time only

the fluctuation of clean technology output yields incentives to underutilize dirty technol-

ogy capital. I focus on allocations in which dirty capacity is used in at least some state

in any period or or in the long-term. This rules out that some preinstalled dirty technol-

ogy capital is permanently idle and there is no investment in dirty technology such as in

Chapter 2. Dirty technology investment can be motivated as an insurance by sufficiently

low productivity of clean technology in some state. The industry capital constraint is

∞ > āj ≥
∑

i

aij(t+ 1) (3.3)

all t ≥ 0 for technology j ∈ J . The bound yields simultaneous use of multiple clean

technologies when otherwise investment in one clean technology would be preferred. Dirty

capacity utilization can be characterized assuming one clean technology. Analysis of fully-

funded subsidies to clean technology is conveniently done with multiple clean technology

types. The economy starts with positive capital,
∑

j

∑

i aij(0) > 0.

After accounting for taxes and subsidies the sale of an energy unit produced with tech-

nology j earns πj(sw, t). The composition of this unit net revenue depends on thegovern-

ment policy regime. Profit from using and investing in the dirty and clean technologies

is

Πij(t) =
W
∑

w=1

πj(sw, t)mij(sw, t)− pj(t)yij(t), j ∈ J , (3.4)

for any realized sequence {s1, s2, . . . , sW} of states in period t ≥ 0.

Investment and consumption sectors.—Firm i demands xi(sw, t) ≥ 0 energy units,

chooses the proportion ηij(sw, t) ∈ [0, 1] of its use in the production of capital of technology

j, and produces consumption goods and investment goods under constant returns to scale.

The firm sells the consumption goods amount ci(sw, t) = B(1 −
∑

j ηij(sw, t))xi(sw, t)
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in subperiod w when the state is s and sells the investment goods amount ŷij(t) =

εj
∑W

w=1 ηij(sw, t)xi(sw, t) in period t. Then the consumption sector and the investment

sector yield profit

Π̂i(t) =
W
∑

w=1

(p̂(sw, t)ci(sw, t)− p(sw, t)xi(sw, t)) +
∑

j

ϕj(t)ŷij(t) (3.5)

for firm i in period t ≥ 0 given the unit price of energy p(sw, t) and the net revenue

for technology-specific capital units ϕj(t). There is no adjustment cost for varying the

input amounts in producing investment goods across subperiods. Such cost seems to

make optimal allocations dependent on the sequence of productivity, that is, the history

of states.

Problem of firms.—Firm i’s expected profit gross of equity trade

Πi(t) = E

[

∑

j∈J

Πij(t) + Π̂i(t)

]

(3.6)

in any period t ≥ 0 sums profits from the sectors for energy, consumption, and investment

goods. Decision-making by firms is subject to the same belief that households have about

the distribution of states. The number of equity that firm i has issued is α̂i. Firm i

chooses input demands and output supplies, and issued equity α̂i(t+1), all t ∈ {0, 1, . . .},

to maximize the present discounted value of expected ex-dividend profits

vi =
∞
∑

t=0

1
∏t

v=0 R̂(v)
{Πi(t) + qi(t)α̂i(t+ 1)− (qi(t) + di(t))α̂i(t)}

subject to (3.2) and (3.3) all t ≥ 0 taking prices, dividends, governmnent policy rates,

and the endogenous nominal interest rate sequence {R̂(1), R̂(2), . . .} as given, where R̂(0)

is some given positive number.

Emissions and pollution.—The emissions in the use of technology B are proportional

to output at rate dB > 0. The use of technology C does not create emissions, dC = 0.

The production of capital may create emissions, which are proportional to the input

use xij(sw, t) = ηij(sw, t)xi(sw, t) in investment at rate ρj. This saves introducing another
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sector that produces material or uses capital.7 Let Z be pollution and A(Z) ≤ Z measure

absorption of pollution by the natural environment. Then the pollution stock Z evolves

according to

Z(t+ 1) = Z(t) + E(t)− A(Z(t)) (3.7)

all t ≥ 0 given Z(0). Aggregate emissions E(sw, t) =
∑

i

∑

j [djmij(sw, t) + ρjxij(sw, t)]

occur in state s in subperiod w. Following the definition of emissions E(t) =
∑W

w=1E(sw, t)

government policy can be described that implies certain net revenue streams. The role of

government policy is to internalize the production externality.

Government.—There are three regimes of government policy. (i) Producers of energy

using dirty technology and producers of investment goods pay the dollar tax τ̂ per unit of

emissions. Then the net revenue of energy producers and investment goods producers is

πj(sw, t) = p(sw, t)−dj τ̂(t) and ϕj(t) = pj(t)−(ρj/εj)τ̂(t), respectively. An emissions tax

at the source is based on the principles of Pigou (1920). In the other two regimes I examine

the role of subsidies to clean technology output. (ii) Energy producers retain (p(sw, t)−

τ(t)) per unit of energy sold to users. Setting a dollar goods tax τ may be compared to

setting an ad valorem tax rate ν given by (1+ν(sw, t))(p(sw, t)− τ(t)) = p(sw, t). Energy

producers collect the unit dollar subsidy τ ∗j (t). Then πj(sw, t) = p(sw, t)/(1 + ν(sw, t)) +

τ ∗j (t). In contrast to Fullerton & Wolverton (1999) output that is produced using clean

and dirty inputs is taxed. There a good that is input in producing the dirty and the

clean good is taxed.8 Investment goods producers bill pj(t) = (1 + ν̂j(t))ϕj(t) to energy

producers. The role of the dollar tax τ̂j or ad valorem tax rate ν̂j = τ̂j/ϕj is to internalize

the externality from emissions in the investment sector. (iii) In the system with a tax

on investment goods and output subsidy the unit net revenue in energy production is

πj(sw, t) = p(sw, t) + τ ∗j (t) and the unit cost of investment is pj(t) = (1 + ν̂j(t))ϕj(t).

The output subsidy τ ∗j provides a rebate to users of clean technology for tax they have

paid when buying newly produced capital. The role of the ad valorem tax rate ν̂j for

7Such material or capital may motivate a material goods tax or a tax on investment goods that are
used in the investment sector, respectively, to implement an optimum.

8Eskeland & Devarajan (1996) implement a social optimum through a dirty goods tax and no subsidies.
Extending their argument to multiple goods buyers pay a differentiated tax rate νj per portion of the
retained revenue of sellers. To have differentiated prices for perfect substitutes I would need to make the
assumption that buyers can distinguish perfectly substitutable goods by their production method. This
assumption is not necessary to implement an optimum through a tax collected from buyers if there is
one dirty good, because an equal tax rate for dirty and clean goods implements an optimum, and needed
if there are multiple dirty goods.

119



investment goods is to internalize the externality of both emissions from using capital

and building capital.

The government sets tax rates and lump-sum transfers on {0, 1, . . .} before private

agents make decisions about demands and supplies. Policy satisfies the budget constraint

(i) tr(t) ≤
∑

w

τ̂(t)E(sw, t), (ii) tr(t) ≤
∑

j

τ̂j(t)
∑

i

ŷij(t)

+
∑

j

(τ(t)− τ ∗j (t))
∑

w

∑

i

mij(sw, t) or

(iii) tr(t) +
∑

j

τ ∗j (t)
∑

w

∑

i

mij(sw, t) ≤
∑

j

τ̂j(t)
∑

i

ŷij(t)

in the corresponding case all t ≥ 0. The dollar tax and subsidy rates vary only with

time t. The assumption of aggregate certainty implies that these government policy

variables, when implementing a Pareto optimum, are deterministic rather than a complete

contingent plan of policy rates.

Equilibrium.—Allocations are feasible if aggregate demand for each good at most equals

aggregate supply of each good, and securities holdings αi(t) of households equals the

number α̂i(t) of outstanding shares of firm i, all t ≥ 0. The feasibility conditions for

goods quantities are
∑

i

xi(sw, t) ≤
∑

i

∑

j∈J

mij(sw, t) ∀sw, (3.8)

for energy, and

∑

i

yij(t) ≤
∑

i

ŷij(t), j ∈ J , c(sw, t) ≤
∑

i

ci(sw, t) ∀sw, (3.9)

for the investment goods and the consumption good. An equilibrium is a system of prices

(p(sw, t), p̂(sw, t), pB(t), pC(t), {qi(t)}∀ i, R̂) and quantities of goods demands and supplies,

and financial assets αi and α̂i, on {1, 2, . . . , N} × {0, 1, . . .} such that (i) the representa-

tive household and all firms solve their problems taking prices, dividends, interest rate,

government policy variables, and pollution as given, (ii) the government makes policy as

described above and satisfies the budget constraint at equality all ≥ 0, (iii) the law of

motion of pollution is (3.7), and (iv) demand equals supply on the goods markets and

αi(t) = α̂i(t) all i, all t ≥ 0. The remainder of this section is devoted to characterizing
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the distribution of consumption, investment, and capital utilization in an equilibrium,

and finding government policy that implements a Pareto optimum.

3.1.1 Equilibrium allocation

The subperiod in which a state occurs is irrelevant for decisions of households and firms.

Hence the index of the subperiod can be omitted when writing prices and quantities as

functions of the state. The second insight is the following. An equilibrium allocation can

be characterized in terms of utilized aggregate capital if all firms simultaneously maximize

the utilization rate of capital in at least one state. Then the firms do not necessarily fully

utilize capital in any subperiod. Let the set of states at t in which firm i’s utilization

is maximized be Sij(t) and the set of their occurrences be Sij(t). Firms may choose a

different maximum rate so that aggregate output is optimal given individual capital is

indeterminate. The necessary condition for profit-maximizing choice of capital aij(t+ 1)

of technology j ∈ J is

(1/R̂(t+ 1))

[

∑

s∈S

χj(s)uij(s, t+ 1)πj(s, t+ 1)

+ γj(1−max
s

uij(s, t+ 1))υij(t+ 1)− ŵj(t+ 1)

]

≤ υij(t)

(3.10)

at shadow prices υij(t) of (3.2) and ŵj(t + 1) of (3.3). The marginal net benefit from

utilizing capital and forwarding unutilized capital at most equals the marginal cost of

holding capital. Using this the following lemma assures that firms maximize individual

output of any given technology in at least one common state. This may occur in multiple

states, for example, if capital is fully utilized in all states.

Lemma 3.1 Suppose that there is output, uij(s, t) > 0 some i with aij(t) > 0 and some

s, in technology j ∈ J . Each firm i maximizes the utilization rate of capital aij(t) > 0

in at least one common state, that is, ∩iSij(t) 6= ∅ where Sij(t) = {s∗ ∈ S : uij(s
∗, t) ≥

uij(s, t), ∀s ∈ S}.
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Proof. The condition (3.10) holds at equality if the respective capital is positive. The

utilization of firm i’s capital in state s satisfies

uij(s, t)











= 1

∈ (0, 1)

= 0











=⇒ χj(s)πj(s, t)











≥

≥

T











0, s ∈ Sij(t);

χj(s)πj(s, t)











not defined

=

≤











0, s ∈ S \ Sij(t),

(3.11)

at date t ≥ 0. In addition,

max
s

uij(s, t)











= 1

∈ (0, 1)

= 0











=⇒
∑

s∈Sij(t)

χj(s)πj(s, t)











≥

=

≤











γjυij(t), (3.12)

holds in an equilibrium. Hence in at least one state s ∈ Sij(t) the net benefit wj(s, t) ≡

χj(s)πj(s, t) is strictly positive if some i’s maximum utilization rate at t is positive.

Suppose that maxs ukj(s, t) > 0 some k. Then wj(s, t) > 0 in at least some state s ∈ Skj(t)

implies that Akj = {wj(s, t) ≤ 0 ∀s ∈ Skj(t)} does not hold. However Akj is necessary if

any firm i with positive capital in technology j does not maximize its utilization rate in

any of the states in set Skj(t). Q.E.D.

The proof used vij(t) > 0. Thus I have ignored tax policy which makes utilization

unprofitable all time, implicitly by abstracting from such allocations in optimum. The

shadow price vij(t) of capital in technology j is identical for all producers i in equilibrium.9

The following lemma helps to find the states in which investment occurs. The input

choice xij(s, t) in investment of technology j satisfies

εjϕj(t) ≤ p(s, t), (3.13)

9Equilibrium investment yij(t) ≥ 0 in technology j ∈ J satisfies υij(t) ≤ pj(t) at equality if yij(t) > 0
for some firm i. Thus the shadow prices υij(t) are identical for all firms i that use the technology
j ∈ J , if investment occurs at t. The choice of capital in period t ≥ 1, and the result that periods of
underutilization precede periods with full utilization, imply that the shadow prices υij(t) are idential if
no investment in technology j occurs at t.
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at equality if xij(s, t) > 0, all j ∈ J . Thus the unit price p(s, t) of energy must be

minimized in a state when investment occurs. Let ψ(t) be the marginal utility of income,

the Lagrangean multiplier of the budget constraint (3.1). The household equates marginal

utility of consumption and the marginal utility cost of spending income on an additional

unit of consumption,

∂U/∂c(s, t) = p̂(s, t)ψ(t), (3.14)

all t ≥ 0. The firms’ choice of producing the consumption good implies that Bp̂(s, t) =

p(s, t) because consumption is positive in each state. This leads to the following lemma

that the proof of the next proposition uses.

Lemma 3.2 Investment occurs in any technology, xij(s, t) > 0 some i and j ∈ J , only

in a state s in which consumption is maximized, c(s, t) ≥ c(t, s′), s 6= s′.

Proof. Combining the latter two results implies that B∂U/∂c(s, t) = p(s, t)ψ(t) all s ∈

S. Then the equilibrium condition (3.13) delivers the result since marginal utility of

consumption ∂U/∂c(s, t) strictly decreases in consumption. Q.E.D.

The household weighs utility from consuming in subperiods of the same period equally.

This yields a state-invariant relationship between the marginal utility of consumption and

the price of the consumption good. The opportunity cost of investment is minimized only

if consumption is maximized given adjustment costs are lacking. Thus investment occurs

only in states in which consumption is at its maximum level. I conjecture that investment

requires sufficiently large consumption if adjusting production inputs in investment across

subperiods is costly.

The previous lemmata on utilization and on investment, and the next proposition on

the utilization of capital, help to determine when consumption fluctuates. The maximum

utilization rate maxs uij(s, t) is less than one in some firm i only if the distributions of

consumption and investment over states are not constant over time t. Clearly, perma-

nent underutilization would mean excess investment which is not profit-maximizing if

consumption and investment did not vary across periods. The next proposition focuses

on the long-term as it is valid in an equilibrium with constant distribution of consump-

tion and investment, and possibly on other trajectories. Full utilization of capital
∑

i aiC

in some state rules out underutilization of clean technology capital in any state because

it was emission-intensive or currently installed with an average productivity less than

123



γC ≤ γB, see Chapter 2. Let aggregate capital in technology j be aj =
∑

i aij and

consider regime (i) in which πj(s, t) = p(s, t)− dj τ̂(t).

Proposition 3.1 Suppose that each firm i fully utilizes capital aij(t) > 0 in some state,

maxs uij(s, t) = 1 all i and j ∈ {B,C}. Capital aj(t) > 0 is fully utilized in all states,

uij(s, t) = 1 all i and s ∈ S, j ∈ {B,C}, if the emissions tax rate is zero, τ̂(t) = 0.

Either (I) capital aj(t) > 0 is fully utilized in each state s all j ∈ {B,C}, or (II) this

holds for clean technology j = C, and dirty technology capital aB(t) > 0 is fully utilized,

uiB(s, t) = 1, all i for χC(s) ≤ χ∗, and is underutilized, uiB(s, t) < 1, some i only if

χC(s) > χ∗, for some χ∗ > 0, if the emssions tax rate is positive, τ̂(t) > 0.

Proof. Condition (3.11) implies that in absence of emissions pricing all firms fully utilize

capital, and under emissions pricing they fully utilize clean technology capital in all states.

Given full utilization in some state, the set S\SC(t) is empty since production using clean

technology does not create emissions, dC = 0. A utilization rate may be defined as unity,

uij(s, t) = 1, if capital is unproductive, χj(s) = 0. By Lemma 3.1 all firms fully utilize

capital in at least one common state. Then either (I) they do this in all states regarding

dirty technology so that its aggregate capital is fully utilized in all states and the first

result follows, or (II) in some states some firms underutilize dirty technology capital so

that its aggregate capital is underutilized. What remains to be shown is the nature of

the states with underutilization in (II). The individual utilization rate satisfies (3.11) and

(3.12) given wj(s, t) = χj(s) {B∂U/∂c(s, t)/ψ(t)− dj τ̂(t)} all j ∈ {B,C} for t ≥ 0 using

the firms’ optimality condition Bp̂ = p and the households’ optimality condition (3.14).

The net benefit of dirty technology use is positive, wB(s, t) > 0, for at least one s ∈ SiB(t)

if dirty technology capital aiB(t) > 0 is fully utilized in some state—in all states in SiB(t).

Thus wB(s
′′, t) ≤ 0 for some s′′, and thereby c(s, t) < c(s′′, t) if dirty technology capital

is underutilized in state s′′. By Lemma 3.2 investment does not occur in state s, that

is, xij(s, t) = 0 all i and j. Investment input xij(s, t) remains zero and consumption

c(s, t) = χBaB(t) + χC(s)aC(t) increases if χC(s) increases by a small amount. A unique

consumption amount c(s′, t) = ϕ(τ̂(t)) solves w(s′, t) = 0. The productivity χC(s) takes

the critical level such that the consumption amount in the state s is c(s′, t). Q.E.D.

Consumption may be the same in all subperiods (I-1) or fluctuate (I-2) when capital

is fully utilized in all states. In the subcase (I-1) investment may or may not occur
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Note: Capacity χ(s)a is depicted by points on solid curve, consumption c(s) is
minimum distance between dashed line and solid curve, and investment x(s) is
measured by length of dotted line.

Figure 3.1: Allocations with some variation in consumption.

in all states. In (I-2) investment does not occur in all states. Investment absorbs the

fluctuation in clean technology output in states in which consumption is equal.10 The left

panel in Figure 3.1 shows the pattern of consumption and investment in the case (I-2)

when consumption varies over states. Let χ(s) = (χB(s)χC(s)) and a = (aB; aC). The

aggregate capacity χ(s)a connected by the solid lines increases in the productivity of clean

technology capital. Consumption is the minimum distance between the horizontal axis

and the dashed line and the aggregate capacity. The dashed line designates maximum

consumption. The dotted lines measure investment x = xB+xC . Firms earn a positive net

revenue from using dirty technology in each state. Note that states can occur in any order

and multiplicity over time. Consumption is low in states with low productivity of clean

technology. This follows from the fact that investment does not occur if consumption is

not maximized and the property that dirty technology capital is fully utilized in all states.

In the right panel in Figure 3.1 dirty technology use earns its normal profit only in states

10Instead, consumption cannot be equal across subperiods if capital is fully utilized in all subperiods,
storage of output is infeasible, and output were only used for consumption, for example, in a partial
equilibrium setup with environmental motive, that abstracts from the source of new capital, or in a
general equilibrium model in which output cannot be feasibly used for investment. Firms only invest in
dirty technology if utilization of dirty technology capital is profitable in at least one state. Thus in such
an economy either dirty technology capital is fully utilized in all states so that consumption comoves with
clean technology output, or dirty technology capital is underutilized in some states and consumption is
not maximized when dirty technology capital is fully utilized.
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when there is no investment, because dirty technology capital is underutilized in some

states. This is an example of case (II) of Proposition 3.1. Insurance through excess supply

of dirty capacity in a state of high productivity of clean technology can be desirable if

clean technology is risky in terms of productivity. The right panel in Figure 3.1 shows

such a case. Consumption c(s, t) varies positively with clean technology productivity

χC(s) ≤ χ∗. Output is not used for investment in these states. Consumption is at unique

maximum level in the other states. The input use for investment is arbitrarily distributed

over the subperiods of these states. In two states dirty technology capital is underutilized.

Dirty technology capital could be underutilized in all of the states in which capacity is

greater than maximum consumption, because the profit of using dirty technology capital is

zero in all these states. In Figure 3.1 investment absorbs the fluctuation in all subperiods

with maximum consumption except if this consumption level equals aggregate capacity,

because investment occurs when the opportunity cost of investing, which is proportional

to ∂U/∂c(s, t), is smallest.

One may ask whether consumption varies discontinuously with the state when there is

a continuous time span in each period. Suppose that consumption is maximized at the

smallest productivity χ∗ such that the net benefit is zero. If there was a continuum of

states then the net benefit does not need to jump to a strictly positive level as χC(s)

and consumption decrease. Condition (3.11) tells that the sum of net benefits in states

of maximized utilization, yet not the net benefit in all of these states, is strictly positive.

Consumption would vary continuously with clean technology productivity. If there is a

discrete number of states, then there may be only one state with positive net benefit.

The following section shows that contingent utilization can be optimal, and derives

the emissions price that implements a Pareto optimum with contingent or noncontingent

utilization, and policies in the other regimes that implement Pareto optimal allocations

in which dirty technology capital is equally utilized in all states. One further equilibrium

condition is useful for this. The household sets the intertemporal rate of substitution

equal to the marginal rate of return on investment, expressed in nominal terms as

ψ(t) = βψ(t+ 1)R̂(t+ 1), (3.15)

where R̂(t + 1) = (qi(t + 1) + di(t + 1))/qi(t) is the nominal gross return to savings in

period (t+ 1) all i of which households hold positive assets, αi(t+ 1) > 0.
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3.1.2 Welfare

A planner maximizes J =
∑∞

t=0 β
t[
∑

s∈S U(c(s, t)) − Ψ(Z(t))] subject to feasibility con-

straints. By Lemma 3.1 the planner can view the aggregation of the law of motion (3.2)

of capital over firms. Then the feasibility constraints are the laws of motion

aj(t+ 1) = γj(1−max
s

uj(s, t))aj(t) + εj
∑

s∈S

xj(s, t) (3.16)

of aggregate capital all j ∈ J and (3.7) of pollution subject to emissions amount E(t) =
∑

j

∑

s∈S(djχj(s)uj(s, t)aj(t) + ρjxj(s, t)) all t ≥ 0, the constraint

āj ≥ aj(t+ 1) (3.17)

all t ≥ 0, and the resource constraint

c(s, t)/B +
∑

j

xj(s, t) ≤
∑

j

χj(s)uj(s, t)aj(t) ∀s ∈ S (3.18)

all t ≥ 0. The planner selects a policy of consumption, investment, and utilization rates

(c(s, t), x(s, t), u(s, t)) ∈ R
3
+ × [0, 1]v all s ∈ S and t ≥ 0, where v is the number of

positive capital values at t. At least one of the stocks aB(0) and aC(0) in the given triple

(aB(0), aC(0), Z(0)) is positive. In a Pareto optimum the shadow price ǫ of the constraint

(3.7), the marginal welfare benefit of pollution reduction, takes a specific value in each

period that follows the difference equation ǫ(t) = β∂Ψ/∂Z(t + 1) + β(1 − ∂A/∂Z(t +

1))ǫ(t+1) all t ≥ 0.11 The necessary optimality condition with respect to capital aj(t+1)

is

β

[

∑

s∈S

χj(s)uj(t+ 1) {B∂U/∂c(s, t+ 1)− djǫ(t+ 1)}

+ γj(1−max
s

uj(s, t+ 1))φj(t+ 1)− wj(t+ 1)

]

≤ φj(t),

(3.19)

11The term ∂Ψ/∂Z(t + 1) is replaced by the sum of marginal utility effects in these subperiods and
the shadow price ǫ is noncontingent if the period-utility function specified utility effects of pollution in
multiple subperiods of given productivity.
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at equality if aj(t + 1) > 0, given shadow prices φj(t) of (3.16) and wj(t + 1) of (3.17).

Let Ŝj(t) be the set of states in which the utilization of capital aj(t) > 0 is maximized.

Denote by Ŝj(t) the corresponding list of occurrences. Then capital utilization satisfies

uj(s, t)











= 1

∈ (0, 1)

= 0











=⇒ χj(s){B∂U/∂c(s, t)− djǫ(t)}











≥

≥

T











0, s ∈ Ŝj(t);

χj(s){B∂U/∂c(s, t)− djǫ(t)}











not defined

=

≤











0, s ∈ S \ Ŝj(t),

(3.20)

at date t ≥ 0. In addition,

max
s

uij(s, t)











= 1

∈ (0, 1)

= 0











=⇒
∑

s∈Ŝj(t)

χj(s){B∂U/∂c(s, t)− djǫ(t)}











≥

=

≤











γjφj(t),

(3.21)

holds in a Pareto optimum. The investment satisfies

εjφj(t) ≤ B∂U/∂c(s, t) + ρjǫ(t), (3.22)

at equality if xj(s, t) > 0. The types (I-1), (I-2), and (II) of equilibrium allocations

in Section 2.1 characterize an optimal allocation if the emissions tax internalizes the

externality.

Noncontingent policy.—Consumption and the utilization rates of capital are equal in

each state, c(s, t) = c(s′, t) and uj(s, t) = uj(s
′, t) all s 6= s′, as a constraint. There

may be no contingent markets or contracts because electricity use is metered only once

per period.12 Clean technology capital aC(t) > 0 is fully utilized in all states in period

t. Capital aB(t) > 0 is fully utilized for t ≥ 0 if dirty capacity χBaB(t) is not too

large. Otherwise a Pareto improvement is possible through less investment. Thus a

12Consistently, government policy cannot be contingent. Then only allocations with equal utilization
rates in a given period are implementable. The planner finds these allocations in constrained optimum.
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noncontingent policy maximizes welfare in the case when (I-1) describes an optimum,

and the constrained optimal noncontingent policy does not maximize welfare in the cases

when (I-2) or (II) characterize an optimum.

The next section shows that a uniform emissions tax for all sources implements a Pareto

optimum.

3.1.3 Emissions tax

A government policy implements a Pareto optimum if equilibrium conditions subject to

this policy satisfy all necessary optimality conditions of the planner problem.

Proposition 3.2 The emissions tax τ̂ = ǫ/ψ and lump-sum transfer tr equal for all

households implement a Pareto optimum.

Proof. The marginal welfare of the industry constraint (3.3) is its dollar value mul-

tiplied by the marginal value of income: wj(t) = ψ(t)ŵj(t). This value wj(t) equals

the shadow price of the planner’s constraint (3.17) at a solution to the planner’s prob-

lem when the equilibrium allocation is Pareto optimal. The marginal welfare of ag-

gregate capital, φj(t) = ψ(t)υij(t), is the marginal value of income multiplied by the

dollar value of individual capital. An additional unit capital is worth φj(t) to the plan-

ner in current terms at a maximum of J when the equilibrium allocation is Pareto

optimal. Let λ(s, t) be the shadow price of constraint (3.18). In a Pareto optimum

B∂U/∂c(s, t) = λ(s, t). The firms’ condition Bp̂(s, t) = p(s, t) and the households’ condi-

tion (3.14) yield B∂U/∂c(s, t)/ψ(t) = p(s, t) all s ∈ S. To obtain (3.19) substitute qj(t),

qj(t+ 1), wj(t+ 1), and ǫ(t+ 1) into (3.10). Then

1

R̂(t+ 1)

[

∑

s∈S

χ(s)uij(s, t+ 1)

{

B
∂U/∂c(s, t+ 1)

ψ(t+ 1)
− dj

ǫ(t+ 1)

ψ(t+ 1)

}

+
∑

s∈Ŝj(t+1)

γj(1− uij(s, t+ 1))
qj(t+ 1)

ψ(t+ 1)
−
wj(t+ 1)

ψ(t+ 1)

]

≤
qj(t)

ψ(t)

(3.23)

at equality if aij(t + 1) > 0 some i all j ∈ J . Utilization of (3.15) and τ̂ = ǫ/ψ delivers

(3.19). Conditions (3.20)-(3.22) follow analogously. Q.E.D.
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The marginal welfare of pollution, ψ(t)τ̂(t), that society incurs is the marginal value

of income multiplied by the dollar value of emissions, because emissions are measured

in the same units as pollution. Thus, avoiding an additional pollution unit is worth

ǫ(t) = ψ(t)τ̂(t) to the planner in current terms at a maximum of J when the equilibrium

allocation subject to the dollar price τ̂(t) of emissions is Pareto optimal. The emissions

tax rate τ̂(t) is the product of the contingent price p̂(s, t) of the consumption good and

the cost of polluting θ(s, t) = ǫ(t)/(∂U/∂c(s, t)). The marginal value of income ψ(t)

is determined by normalizing the contingent price p(s′, t) in some state s′. All other

prices p(s, t), s 6= s′, are then determined through the allocation. The assumption of

aggregate certainty implies that the emissions tax rate that implements a Pareto optimum

is deterministic.

The following section examines noncontingent subsidies.

3.1.4 A role of clean output subsidy?

The price of energy fluctuates in allocations of the types (I-2) and (II) because consump-

tion fluctuates. Proponents of a subsidy to clean renewable electricity production reason

the usefulness of this policy instrument in stabilizing the price and thereby inducing in-

vestment that is efficient yet would otherwise not occur. This section shows that there is a

contract with a stable price given an information asymmetry but government intervention

is not needed to stabilize the price. The asymmetry is between clean energy producers

that do not know the state and clean energy users that know the state. For example, en-

ergy producers do not have access to techniques that predict wind speed or solar radiation

while energy users have equipment that responds to the price of energy in each subperiod.

The role of the government is to internalize the externality. Second the government can

internalize the externality through a subsidy to clean energy output (for example, in the

form of a feed-in premium for grid-distributed electricity) in combination with an energy

tax at the date of energy sale or in combination with a tax on the purchase of capital

that in the future produces energy. Then clean technology users receive a rebate through

the subsidy that compensates the increase in the cost of energy related to using capital,

which dirty technology users fully bear. The tax on investment goods accounts for the

emissions in the investment sector. Thus, a system with an energy tax has an investment

goods tax given that there are emissions in the production of investment goods.
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Price stabilization.—The marginal real rate of return on investment is equal for all

agents in the economy and agents are not credit-constrained. Thus it makes no difference

if a user of physical capital buys or leases this capital. I assume that users buy capital.

In an equilibrium in which producers know the state and acquisition of investment goods

is not taxed, the necessary conditions (3.10)-(3.13) imply that

1

R̂(t+ 1)
εC

∑

s∈S

χC(s)πC(s, t+ 1)

{

≥

=

}

min
s
p(s, t) + ρC τ̂(t)

if
∑

i

aiC(t+ 1)

{

= āC

∈ (0, āC)

(3.24)

for t ≥ 0. A competitive industry can develop contracts that yield a certain rate of

return from renewable energy investments when their productivity fluctuates. There

are competitive distributors that buy energy from energy producers and sell energy to

energy users. Clean technology users fully utilize capital, uiC(s, t + 1) = 1 all s. Define

Qj = εj
∑

s∈S χj(s). an equilibrium in which users of technology C do not know the state

the term εC
∑

s∈S χC(s)πC(s, t+1) is replaced by QCπC(s, t+1) where πC(s, t+1) is the

same in all states. For example, in policy regime (i) distributors make zero profit paying

πC(s, t) =

[

∑

s∈S

p(s, t)χC(s)

]

/

∑

s∈S

χC(s)

per unit of output all s agreed upon in a contract with each energy producer using

technology C. Distributors may pay a stable price to any producer i that utilizes capital

aij(t) > 0 of technology j ∈ J equally in all states in t. This holds in an equilibrium

with a Pareto optimal allocation. There is a stable price that meets expectations of

private agents and induces investment in clean technology, in the same vein as here under

aggregate certainty, if the states differed over the possible sequences of productivity in

a given period. The information symmetry does not bring about a role of stable clean

technology subsidies. A prerequisite for Pareto optimal investment in clean technologies

is that the government sets incentives for private agents to internalize the externality.

In the regimes (ii) and (iii) clean technology subsidies implement Pareto efficient in-

vestment. Policy instruments not mentioned are zero in what follows.

131



Energy tax and subsidy.—The excise subsidy may be interpreted as a premium that

makes it viable for producers to invest in clean technology and then feed its output to the

market. The following proposition shows the energy tax and subsidy rates in the regime

(ii) that do this efficiently.

Proposition 3.3 The dirty and clean energy tax τ = dB τ̂ , investment goods tax τ̂j =

(ρj/εj)τ̂ all j ∈ J , and clean energy subsidy τ ∗C = τ implement a Pareto optimum.

Proof. The net revenue πj(t, s) = p(s, t)− τ(t)+ τ ∗j for an energy producer equals πj(t, s)

under the emissions tax for τ(t)−τ ∗j = dj τ̂(t) all t ≥ 0. The investment goods tax follows

analogously. Q.E.D.

The energy tax and subsidy correct the externality associated with using capital that

produces energy. The investment goods tax internalizes the externality of emissions in

producing such capital. The excise taxes in Proposition 3.3 can be written in terms of

ad valorem rates. These rates are contingent regarding energy. Clearly, a noncontingent

ad valorem rate cannot induce underutilized capital below the maximum utilization rate

in a given period, because such a tax rate cannot vanish the earnings on energy in some

state and retain a profit from the energy sale in another state. The rate ν(t) that satisfies

1

1 + ν(t)

∑

s∈S

χj(s){p(s, t) + (1 + ν(t))τ ∗j (t)} =
∑

s∈S

χj(s){p(s, t)− dj τ̂(t)} (3.25)

equalizes the equilibrium and optimal sum of net benefits for energy producers for a

constant utilization of capital aj(t) > 0. The next proposition shows how ad valorem

goods taxes implement optimal allocations.

Proposition 3.4 (a) The ad valorem rates ν(s, t) = τ(t)/(p(s, t) − τ(t)) and ν̂j(t) =

τ̂j(t)/(pj(t) − τ̂j(t)) for the goods taxes in Proposition 3.3, all j ∈ {B,C}, and clean

energy subsidy in Proposition 3.3 implement a Pareto optimum. (b) The noncontingent

ad valorem rate ν(t) for energy that solves (3.25) for j = B, and ν̂j(t) all j ∈ {B,C}

for investment goods from (a), and clean energy subsidy τ ∗C that solves (3.25) given ν(t)

implement a Pareto optimum in which dirty technology capital aB(t) > 0 is equally utilized,

uB(s, t) = uB(s
′, t) all s, s′ ∈ S.

Proof. The contingent rates follow from their definition using the excise taxes in Propo-

sition 3.3. The noncontingent rates follow from the fact that S comprises the set of all
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states with equal utilization of dirty technology capital. Q.E.D.

Allocations with underutilized dirty technology capital in all states complete the cat-

alogue of allocations. Proposition 3.1 ruled these out by assumption. In a type (III)

allocation dirty technology capital aB(t) > 0 is underutilized at the same rate in all

states, uB(s, t) = maxs′ uB(s
′, t) < 1 all s ∈ S, and in a type (IV) allocation dirty tech-

nology capital aB(t) > 0 is underutilized in all states and utilized at different rates in at

least two states, uB(s, t) < maxs′ uB(s
′, t) < 1 for some s ∈ S. The contingent energy

tax rates equal ∞ in states s in which dirty technology capital aB(t) > 0 is underutilized

below the maximum utilization rate, uB(s, t) < maxs′ uB(s
′, t), to implement a type (II)

or (IV) allocation. In these states the government efficiently takes away all revenue from

the sale of energy using dirty technology, and rebates the revenue to clean technology

users. Type (II) allocations can be optimal in the long-term. Type (IV) allocations can

be optimal in early periods if there is sufficiently large dirty capital in the initial pe-

riod. Allocations of type (I-1), (I-2) or (III) are implementable through noncontingent

ad valorem goods taxes.

There are both a tax of clean output and a subsidy of clean output. This makes

sense, even if both their rates were dollar amounts or ad valorem rates, for two practical

reasons. In the model producers pay the output tax and all energy is traded on a market.

To attain an optimal allocation users of clean technology should need to claim the subsidy.

A producer would not be able to claim the subsidy for the self-consumed amount of its

energy output. Second, the output tax can be administered as a tax that consumers

(firms in the model, and firms and households in practice) pay. Then the price of energy

is p − τ . One goods tax rate is sufficient because there is one dirty technology. The

effciently set energy tax rate would vary among these technologies if there were multiple

dirty technologies.

Capital gains tax and capital tax.—Emissions that the use of dirty technology creates

are a function of capital use. The dirty goods tax thus can be written as a capital gains

tax of financial investments in dirty production that Sinn (2008) proposes to internalize

greenhouse gas pollution.13 Analogously to the goods tax and subsidy system then a gen-

eral capital gains tax coupled with a clean capital gains subsidy implements an optimum.

In line with the vehicle tax in Fullerton & West (2002) it is easy to see that a tax τ(t)

13Sinn (2008) uses a model with substitutable capital and emissions to support such a tax, which might
not implement an optimum there despite claiming it on p. 384.
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per unit of capital implements an optimum with noncontingent utilization and noncon-

tingent dirty technology productivity. The unit net revenue on the energy market is then

πj(s, t) = p(s, t)− τ(t)/χj(s)uj(s, t). A noncontingent capital tax cannot internalize the

externality from using contingent underutilized dirty technology capital. The reason is

that the unit net earnings from the energy market depend on the utilization rate.

I pause to note that the stable unit revenue πj for j ∈ {B,C} and price p of energy

across states satisfy

ηπC + (1− η)πB = p− (1− η)(dB/B)τ̂

in all previous efficient regulations, where η is the output share of the clean technology

given noncontingent utilization, uj(s, t) = uj(s
′, t) all j ∈ {B,C}. The weighted earnings

of dirty and clean technology is smaller than the average price of energy—except if the

clean technology is exclusively used, η = 1.14

Investment tax and output subsidy.—Energy producers efficiently invest indirty technol-

ogy only if the investment goods are immediately—in the period succeeding the period of

investment—fully utilized in at least one state. This can be shown using the arguments in

Chapter 2 on capital utilization with one subperiod. Then type (III) and (IV) allocations

do not follow investment in optimum. Such allocations or type (II) allocations in which

capital is underutilized until the date of investment cannot be implemented by taxing

investment or subsidizing output. Underutilization is optimal because of environmental

cost which is not internalized. The following holds.

Proposition 3.5 The investment goods tax τ̂j = (ρB/εB)τ̂(t)+(dBQB/εB)τ̂(t+1)/R̂(t+

1) all j ∈ {B,C} and clean output subsidy τ ∗C = (dBQB/QC)ǫ(t + 1)/ψ(t + 1) + R̂(t +

1)(ρBεC − ρCεB)/QC implement a Pareto optimum in which dirty technology capital

aB(t) > 0 is fully utilized in all states, uB(s, t) = 1 all s ∈ S, all t ≥ 0.

Proof. In an equilibrium the conditions (3.10)-(3.13) and υij(t) ≤ pj(t), and the conditions

14The average unit revenue is πj(t) =
∑

s∈S
χj(s)πj(s, t)/

∑

s∈S
χj(s). Competitive distributors

would compute the average price p(t) = (
∑

s∈S
p(s, t)

∑

j mj(s, t))/
∑

s∈S

∑

j mj(s, t) = (1− η)(πB(t) +
(dB/B)τ̂) + ηπC(t) given utilization uj(s, t) = uj(s

′, t). This formula holds if there are multiple clean
technologies in set C letting ηj =

∑

s∈S
mj(s, t)/

∑

j

∑

s∈S
mj(s, t) all technologies j and η =

∑

j∈C
ηj .

The algebra simplifies for noncontingent production, mj(s, t) = mj(s
′, t). Then ηπC + (1 − η)πB =

p− (1− η)(dB/B)τ̂ holds at arbitrary η ∈ [0, 1] because consumption is noncontingent.
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(3.14) and Bp̂(s, t) = p(s, t), imply that

1

R̂(t+ 1)

∑

s∈S

χj(s)

{

B(∂U/∂c)(s, t+ 1)

ψ(t+ 1)
+ τ ∗j (t+ 1)− ŵij(t+ 1)

}

≤ pj(t) ≤
B∂U/∂c(s, t)

εjψ(t)
+ (ρj/εj)τ̂(t) + (τ̂j(t)− (ρj/εj)τ̂(t)),

at equalities if aj(t + 1) > 0 and xj(t) > 0, all t ≥ 0. The optimality condition (3.19)

implies that

1

R̂(t+ 1)

∑

s∈S

χj(s){τ
∗
j (t+ 1) + dj τ̂(t+ 1)} = τ̂j(t)− (ρj/εj)τ̂(t)

which delivers τ̂B for j = B. Substituting τ̂B and premultiplying by εBεC yields the clean

technology subsidy. Q.E.D.

The investment goods tax has two components. The first part internalizes the environ-

mental cost from using the investment good. The second part internalizes the externality

from building capital. The payment of the investment goods tax by both dirty and clean

technology investors motivates the clean technology subsidy. The internalization of the en-

vironmental cost of investment explains the second term in the clean technology subsidy if

the emission intensity relative to the productivity in manufacturing differs, ρBεC 6= ρCεB.

A differentiated investment tax and no subsidy to clean output can implement the same

type of allocation. The tax rate on investment in multiple dirty technologies would vary

among these technologies.

The next section examines a form of clean output subsidy that the German government

practices since 1991, which is fully-funded.15 The volume of this so-called feed-in tariff

was roughly 12 billion EUR in 2012. Other regional and federal governments use similar

policies.

3.1.5 Fully-funded feed-in premium or feed-in tariff

Producers of consumption goods and investment goods buy energy at unit price p(s, t).

I assume that consumption is constant in all states, albeit it takes away the price stabi-

15Stromeinspeisungsgesetz since 1991, Erneuerbare-Energien-Gesetz since 2000 translated as Renew-
able Resources Act.
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lization aspect to proponents of subsidies, to simplify the algebra. Constant consumption

is optimal in (I-1), which is likely when the environmental shadow cost is sufficiently low

so that dirty capacity is sufficiently high or when the variance of clean technology pro-

ductivity is sufficiently low. Then p(s, t) is the same in all states, so that p(t) = p(s, t).

The distributors pay πB dollars for one unit of dirty output and πC dollars per unit of

clean output using revenue from the sale of energy to users. Producers and distributors

take the feed-in tariff πC and the surcharge rate τ ∗ as given.16 The legal requirement

ηπC = τ ∗ of the fully-funded system leads to (p − τ ∗) dollars unit net revenue where p

is the average price.17 Distributors make zero profit if the proceeds of dirty technology

users equal the funds net of the surcharge, (1−η)πB = p−τ ∗. Then the weighted average

of unit revenue

ηπC + (1− η)πB = p (3.26)

is the price in equilibrium. The unit earnings πj(s, t) is the same in all states in a given

period t. To suit the discussion of supporting renewables there are multiple clean tech-

nologies, for example, through locational differences in productivity χj(s). The emission

intensity in creating capital is equal for all technologies at ρ = ρj all j ∈ J for simplicity.

The return on investment is the discounted net earnings divided by the current cost of

investment, the left side divided by the right side in the following weak inequality. The

necessary equilibrium condition

1

R̂(t+ 1)
εj
∑

s∈S

χj(s)πj(s, t+ 1)

{

≥

=

}

min
s
p(s, t) + ρτ̂(t)

if
∑

i

aij(t+ 1)

{

= āj

∈ (0, āj)

all j ∈ J is analogous to (3.24) for t ≥ 0 and implies that QBπB = QjπC , assuming that

some clean technology j ∈ J , with dj = 0, equilibriates the return on investment to that

of dirty technology. See above for the definitions of the marginal product Qj all dj ≥ 0.

16The German feed-in tariffs weakly diminish over time for a given machine—for example be fixed for
the first five years since installation and then decrease to a lower level. An argument for this might be
the term structure of the repayment of debt that finances the investment.

17Transmission cost is excluded here for simplicity. This cost can drive a wedge between dirty and
clean technology output prices when dirty technology output requires transmission to users and clean
technology output is produced at the location of use.
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The marginal rate of substitution of consumption is R(t+1) = ∂U/∂c(t)/(β∂U/∂c(t+ 1))

if consumption does not vary with the state. This equals the real marginal gross return to

holding assets. The latter condition and (3.26) yield, under the assumption of constant

consumption, the real marginal benefit of energy production one period after investment

QBQj

ηQB + (1− η)Qj

= R(1 + ρ(τ̂ /p)′)

which the left panel in Figure 3.2 plots as a function of the marginal product Qj of clean

technology for two values of the portion η of clean technology output.18 Here prime

denotes previous period’s values and MC′ = 1 + ρ(τ̂ /p)′ is the real marginal cost of

investment. The curves merge at QB. The dashed line depicts the optimal minimum rate

of return on investment in clean technologies because

Qj ≥ R(1 + ρ(τ̂ /p)′)

all j with xij > 0 some i given τ̂(t) = p̂(t)ǫ(t)/(∂U/∂c(t)) holds in a Pareto optimum.

Investment in clean technology types with lower marginal product than its optimal mini-

mum level is worthwhile to private agents in equilibrium, if dirty technology investment is

optimal, η < 1. Thus there is an overinvestment in clean technologies relative to a Pareto

optimum if clean technologies exist with QC between the equilibrium level Qj and the

minimum optimal level Qj. The distortion is smaller the greater the portion η of clean

technology output holding it at the same level in an optimal allocation and an equilibrium

allocation. As η increases the unit earnings πC of clean technology users and the price

p come closer so that the rate of return on investment better reflects its optimal level

BQj/(B + ρj τ̂), given τ̂ is set efficiently to internalize the marginal effect of emissions of

investment on society. Dirty technology investment and output are greater than in opti-

mum if the portion η of clean technology output is not too large relative to its optimal

level, and there is overinvestment in clean technologies. Output exceeds its optimal level,

and the excess output is distributed over both dirty and clean technologies. This implies

excess emissions and long-term pollution. The fully-funded feed-in tariff that implements

the optimal share of clean technology output η and the optimal marginal real rate of

18The earnings are generally weighted by output. Equal consumption implies that the sum of pro-
ductivities can be factored out. The real marginal rate of return R(s, s′, t + 1) is the inverse of
β∂U/∂c(s′, t+ 1)/(∂U/∂c(s, t)).
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Note: The marginal product Qj for clean technologies, dj = 0, is on the x-axis, the
marginal benefit QBQj/((η/(1 − v))QB + (1 − η)Qj) is on the y-axis, at v = 0 in
the left panel.

Figure 3.2: Marginal product of clean technologies.

return R in an economy with a dense set of return rates of a set of clean technologies (for

example, in different locations or engineering systems) leads to greater output of both

dirty and clean technologies and greater emissions than in optimum. Implementation of

the efficient scale of clean technology, through the efficient Qj, induces a greater marginal

rate of return on investment than in optimum. Thus savings is greater, and thereby

investment in dirty technology is greater than optimally.

These results seem to hold in case (II) when consumption is not equalized. The algebra

is more complicated than above because the price is not constant.

Feed-in premium.—The following describes three schemes used to support renewable

energy investment in practice such that producers sell at the market price p and receive

a premium to show that these schemes have in common the condition (3.26) and thus

premium and tariff induce the same allocations. How the premium emerges depends

on the regime. (i) Suppose that the government sets the premium. Since the 2012

amendment the German law allows clean technology producers that sell their electricity

on the wholesale market to receive a premium rate that is determined monthly. A portion

of the difference between the unit revenues equals the surcharge, η(πC − πB) = τ ∗, and

the unit net revenue of dirty technology equals the net market price, πB = p−τ ∗, if a unit

premium (πC − πB) is paid to clean energy producers in addition to the net market price

p − τ ∗. (ii) In a second regime, practiced in Italy and Sweden, τ ∗ is the market price of
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a credit. The unit net revenue of a dirty technology producer is πB = p− α(η/(1− η)τ ∗.

Each dirty technology producer must hold credits equal to the proportion αη/(1− η) of

dirty technology output. A producer satisfies this requirement through purchasing credits

on a market or using clean technology. The regulator endogenously distributes credits to

each clean technology producer proportional to output that the latter does not consume.

Let there be α credit per clean output unit. Then πC = p+ατ ∗ is the net revenue of a unit

of clean output. (iii) Another renewable energy support scheme is the procurement of

power purchasing agreements through auctions and levy of the incremental cost of energy

on all consumers to induce a renewable portfolio standard η > 0 that the regulator sets.

The policy satisfies η(πC − p) = τ ∗ and (1− η)(p− πB) = τ ∗ in equilibrium in which the

auction winners supply renewable energy offering the lowest surcharge τ ∗ or the lowest

offer price πC . According to Wiser et al. (2003, p. 37) the states California, Pennsylvania,

and New York, have used the former and Northern Ireland, the UK, and France, have

used the latter.

The outcomes are the same in each variant as for the fully-funded tariff since (3.26)

holds and all users pay the same price p. Böhringer & Rosendahl (2010) find that a feed-

in tariff and tradeable green certificates lead to same outcomes.19 Novelties here are the

universal balancing condition (3.26) and the characterization of output in an equilibrium

with optimal output portions in dirty and clean technologies. Uniform surcharges that

fund the clean output subsidy induce overinvestment when R and η are at optimal levels.

Price discrimination.—In the following I examine exempting some agents from paying

the surcharge. There is an unequal treatment of energy buyers in Germany. For example,

large (export-oriented) investment goods producers do not pay the surcharge, and thus

spend (p−τ ∗) per unit of energy. The clean output subsidy is the portion ηπC = (1−v)τ ∗

of price times energy output if the fraction v of energy users is exempted from paying

the surcharge τ ∗. This implies that the marked-up feed-in tariff πC/(1 − v) is weighted

in the average price, ηπC/(1 − v) + (1 − η)πB = p. In a stationary equilibrium so that

p(t) = p(t+ 1) the marginal cost of investment (1 + (p/(p− τ ∗))ρ(τ̂ /p)) = QB/R(1− η)

is greater than the dirty technology marginal product discounted by R if all investment

19Böhringer & Rosendahl (2010) include an “end-user” tax τ in their feed-in tariff. This tax reduces
the unit earnings of both dirty and clean technology use. The feed-in tariff is thus greater than πC by
this tax. Then πB = p − τ so that the budget is balanced if τ = η(τ∗ + τ) which solves for the tax
τ = βτ∗ defining β = η/(1− η) and letting α = 1 in the certificate system.
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goods producers are exempted and if there is some dirty technology investment, η < 1.

The optimal level of the marginal real rate of return cannot be implemented, if optimal

dirty technology investment is unconstrained—(3.3) is slack—and there are no emissions

of investment. A comparison of the equilibrium condition under exempted investment

goods producers to the equilibrium condition (1 + ρ(τ̂ /p)) = ((p − τ ∗)/p)QB/R(1 − η)

under uniform surcharges for all energy users shows that the investment in dirty and

clean technologies is greater given the exempted investment goods producers compared

to the latter if the optimal rate of return on investment and the optimal portion of clean

technology output are implemented. Under the implementation of the efficient scale of

clean technology the exemption of investment goods producers exacerbates the distortion

in terms of savings used to invest in dirty technology.

Exempting some households from paying the surcharge reversely affects the efficiency.

Let consumption goods producers discriminate buyers in charging B(p− τ ∗) from house-

holds that comprise the fraction α in the population, and Bp from other households.

If households bought energy, then the sellers of energy would discriminate. Given con-

sumption c′ and c′′ of these groups, respectively, assume appropriate endowments and

define welfare αJ ′ + (1 − α)J ′′, because consumption amounts are heterogeneous. The

fraction of exempted agents is v = α(1− ŝ) given the savings rate ŝ when there is a unit

mass of identical energy users. Equation (3.15) that governs savings remains valid so

that R(1 + ρ(τ̂ /p)′) = QBπB/p = QjπC/p. As a result greater exemption mitigates the

distorting effect of the policy on the marginal real rate of return on investment R. The

real marginal benefit of energy production

QBQj
η

1−v
QB + (1− η)Qj

= R(1 + ρ(τ̂ /p)′) (3.27)

is strictly smaller when more households are exempted, v ∈ (0, 1) increases. There is a

critical level vj(η) < 1− η that satisfies the efficiency condition Qj = R(1 + ρ(τ̂ /p)′) for

the marginal clean technology j whose investment is optimal, depicted through the curve

in the right panel of Figure 3.2. When exempting a fraction of households α = vj/(1− ŝ)

from paying the surcharge such that vj is smaller than the output share of dirty technology

the policy implements an optimum with fully utilized capital.20 The intensity vj(η) of

20This level is vj(η) = (1− η)(QB −Qj)/(QB − (1− η)Qj).
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the discrimination changes over time if the Pareto optimal levels Qj and η vary over

time, which they generally do. The intensity vj(η) depends positively on Qj/QB and

negatively on η. Thus vj(η) decreases on a path with increasing absolute and relative

output from clean technology. I discuss in Section 3.3 if discriminating the surcharge

between households is politically feasible.

Another possibility to implement an optimum might be a uniform surcharge and a

greater tax rate τ̂ than p̂ǫ/(∂U/∂c) for emissions in the production of investment goods.

3.2 Extraction cost

This extension relaxes a price rigidity that appears in partial equilibrium in Ambec &

Crampes (2012). Dirty technology capital that is used with fuel in fixed proportion is

fully utilized absent emissions pricing, in contrast to Ambec & Crampes (2012). The

production of

miB(s, t) = min[χBuiB(s, t)aiB(t), riB(s, t)/α]

units of energy in firm i uses the complementary factors physical capital aB and fuel rB at

some efficiency α > 0. Capital is produced one period before its use. The fuel technology

is not analogous to the dirty technology because then fuel would need to be produced and

delivered within a day. There are two interpretations of the model. (i) Fuel is produced

and purchased in the period of use. The law of motion of each firm i’s capital in fuel

production is

aiR(t+ 1) = γR(1− uiR(t))aiR + yiR(t)

all t ≥ 0 given chosen utilization rate uiR(t) ∈ [0, 1] and new capital units yiR(t) ≥ 0. Then

emissions in fuel production occur at rate dR per fuel amount miR(t) = χRuiR(t)aiR(t)

produced in period t. (ii) Fuel is produced directly using inputs and forwarded into the

next period in which it can be used. The fuel stock evolves according to

Si(t+ 1) = γR(Si(t)−miR(t)) + χRyiR(t)

in each firm i defining Si(t) = χRaiR(t). Old stock net of use, the term in parentheses, is

nonnegative and depreciates at rate (1 − γR). Then the emission intensity ρR of energy

input in fuel production accounts for emissions of fuel production, for example, in natural
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gas flaring at extraction sites of petroleum, petroleum refining, underground ventilation

of coal mines, and transportation of raw fuel. The endowment of capital in the initial

period satisfies W
∑

iB χBaiB(0) =
∑

iR χRaiR(0) > 0 so that the maximum fuel demand

equals the maximum (unproduced or existing) fuel supply. Dirty technology capital is

useful in W subperiods. Thus, in (i) underutilized capital in the fuel technology avoids

production of fuel that is not demanded, and in (ii) storing fuel balances fuel supply and

fuel demand. I abstract from other variable cost than the input cost x that yields εRx

units of new capital or χRεRx units of fuel.

Consider an emissions tax τ̂ . Fuel use creates emissions at ratio dB/α per unit of the

fuel input. Then the unit revenue in the profit function (3.6) of dirty energy is πB(s, t) =

p(s, t) − dB τ̂(t) − αp∗(s, t) given efficient fuel demand riB(s, t) = αχBuiB(s, t)aiB(t) at

unit price p∗(s, t) of fuel. The unit net revenue of fuel is πR(s, t) = p∗(s, t)− dRτ̂(t). One

unit of clean energy earns πC(s, t) = p(s, t) dollars. The market clearing conditions (3.8)

and (3.9) remain letting J = {B,C,R}. In addition, fuel demand cannot exceed fuel

supply,
∑

s∈S

∑

i riB(s, t) ≤
∑

imiR(t) all t ≥ 0. The government budget constraint is

τ̂(t)

(

∑

i

dRmiR(t) +
∑

s∈S

∑

i

[

(dB/α)riB(s, t) +
∑

j∈J

ρjxij(s, t)

])

≤ tr(t)

all t ≥ 0. The left side in the government budget constraint divided by the tax rate τ̂ is

the emissions amount in period t.

In the regime (i) with emissions tax the utilization of fuel technology capital satisfies

the necessary equilibrium condition

uiR(t)











= 1

∈ (0, 1)

= 0











=⇒ χR{p
∗(s, t)− dRτ̂(t)}











≥

=

≤











γRυiR(t) all s ∈ S (3.28)

all t ≥ 0. The result in the next proposition holds in equilibria in which the fuel price

is constant or varies over states. The productivities χB and χR in the dirty and the

fuel technology are constant. Define their marginal products QB = WεBχB and QR =

εRχR in converting energy input into energy output and energy input into fuel output,

respectively. Furthermore let the rate of fuel per energy attributable to the fuel technology

be υ = QR/(QR + αBQB) as in Chapter 2. Here αB = α(χB/χR). I assume that growth
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of consumption is optimal using the dirty technology output until the land required for

it is exhausted if there is no environmental cost.

Assumption 3.1 υQB > β−1. QR > α if χR > χB.

The second condition ensures that in an optimum subject to no environmental cost

there is investment in the fuel technology when consumption fluctuates.21

The following proposition shows the irrelevance of the fuel technology for utilization of

capital in the dirty technology.

Proposition 3.6 Capital aiB(t) > 0 in the dirty technology is fully utilized, uiB(s, t) = 1,

in each firm i in all states s ∈ S all t ≥ 0, and capital aiR(t) > 0 in the fuel technology is

fully utilized, uiR(t) = 1, in each firm i all t ≥ 0 so that SiR(t) = miR(t) if the emissions

tax is zero, τ̂(t) = 0 all t ≥ 0.

Proof. Assumption 3.1 is equivalent to QB(QR−αB) > QR. Therefore QR > αB ≥ αBγR.

The gross return on using fuel to produce future capacity to produce fuel, QR/αB, is

greater than the gross return on storing fuel, γR. Thus, the stocks
∑

i aiB(t) and
∑

i aiR(t)

have the same ratio at t and (t+1), and all capital is fully utilized at (t+1) if all capital

is fully utilized at t. The induction starts in the period t = 0, in which the stocks match

full utilization. Underutilization of capital aiB(t) > 0 in the dirty energy technology in

some firm i, uiB(s, t) < 1 in some state s, requires that capital akR(t) > 0 in the fuel

technology is underutilized in some firm k, ukR(t) < 1, given that the maximum fuel

21Consumption can be increased by lowering the utilization of dirty technology capital and the in-
vestment in the fuel technology in any state s′ when consumption is maximized holding the input
in investment in the fuel technology in all other states and next period’s maximum fuel supply con-
stant without affecting aggregate dirty technology investment and the next period’s aggregate dirty
technology capital stock if QR < αγR. Formally, dc(s′, t) = χBduB(s

′, t)aB(t) − dxR(s
′, t) > 0 at

αχB(duB(s
′, t))aB(t) = χR(duR(t))aR(t) < 0 and γR(duR(t))aR(t) = εRdxR(s

′, t). The first condition
implies the second necessary condition in Assumption 3.1 if χR ≤ χB .
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demand matches the aggregate fuel capacity. (i) maxs uiB(s, t) < 1 some i and s. Then

υQB(υB(t) +WαBυR(t))

≤ (υχB + (1− υ)χB)
∑

s∈S

p(s, t) (εjυj(t) ≤ p(s, t) ∀s ∈ S, υj ≤ pj = φj, (3.13))

≤ χB

[

∑

s∈SiB

p(s, t) +
∑

s∈S\SiB

αp∗(s, t)

]

(p(s, t) ≤ αp∗(s, t) ∀s ∈ S \ SiB, (3.11), j = B)

= χB
∑

s∈SiB

{p(s, t)− αp∗(s, t)}+ χB
∑

s∈S

αp∗(s, t)

≤ γBυB(t) + χB
∑

s∈S

αp∗(s, t) (max
s

uiB(s, t) < 1, (3.12), j = B)

≤ γBυB(t) + γRWαBυR(t) (ukR(t) < 1, χRp
∗(s, t) ≤ γRυR(t) ∀s ∈ S, (3.28))

for some i and k. This contradicts Assumption 3.1. (ii) maxs uiB(s, t) = 1 all i. Then

underutilized dirty technology capital implies that uiB(s
′, t) is below the maximum uti-

lization rate for some i, that is, S \ SiB is nonempty. Then

εRυR(t) ≤ p(s′, t) (υR ≤ pR = φR, (3.13), j = R)

≤ αp∗(s′, t) (uiB(s
′, t) < 1, s′ ∈ S \ SiB, (3.11), j = B)

≤ (α/χR)γRυR(t) (ukR(t) < 1, χRp
∗(s, t) ≤ γRυR(t) ∀s ∈ S, (3.28))

all s ∈ S and γR ≤ 1 imply that QR ≤ α. Assumption 3.1 and QB > 0 and QR = εRχR >

0 contradict this. Q.E.D.

The extraction of fuel using energy in the technology R is more productive than the

conversion of fuel into energy in the technology B, that is, QR > αB, if the combined

marginal product of energy-to-energy exceeds one, υQB > 1. Then investing in energy

technology that uses fuel and in fuel technology is more profitable than postponing the

use of capital or fuel when emissions pricing is absent.

3.3 Conclusion

This chapter has characterized efficient allocations when clean technology productivity

fluctuates and there is irreversible investment in dirty and clean technologies. Consump-

144



tion and investment are distributed such that investment occurs only in subperiods when

consumption is maximized. In these subperiods the opportunity cost of investing is mini-

mized. Adjustment costs likely yield investment only in subperiods in which consumption

is sufficiently large. In some of these subperiods dirty technology capital may be underuti-

lized because clean technology is very productive. Thus contingent investment efficiently

absorbs the fluctuation in clean technology output in states in which consumption is max-

imized, and investment does not occur in other states so that consumption absorbs it in

the subperiods of these states in which dirty technology capital is fully utilized.

Chapter 3 modifies the view of exclusive investment in clean technology in the long-

term. Dirty fossil fuel technology is used to back up clean renewable energy production

to smooth consumption across subperiods when the renewable energy supply fluctuates

because of weather and produced energy cannot be stored at low cost.

The underutilization of dirty technology capital, such as coal power plants, in the long-

term is motivated by the fluctucation of clean technology productivity and the disutility

of emissions expressed as the environmental shadow cost. Fuel cost does not play a role

because the price of dirty output adjusts to the price of fuel.

The environmental shadow cost is constant over subperiods in a given period, because

emissions in all subperiods have the same marginal effect on pollution and pollution is

the same in each subperiod. For this noncontingency it is irrelevant whether the marginal

effect of the environment on society occurs in each subperiod or once in any period. The

reason for the state history independence of the environmental shadow cost over periods

is that the frequency of states is certain.

The results on government policy can be summarized in four points. (i) A clean output

subsidy can be combined with a tax on output or equipment purchases to implement an

optimum. In the former system a tax on capital purchases accounts for the emissions in

building capital. The system with output tax is preferred among these variants of a tax-

rebate system if dirty technology capital is unequally utilized across states in optimum,

because it induces the efficient utilization of capital. The system with taxed investment

to internalize both the marginal effects of emissions in using and building capital does not

induce underutilized capital. (ii) An excise tax or a contingent ad valorem tax is needed

rather than a noncontingent ad valorem tax to implement contingent underutilization

through indirect taxes. These tax rates can be expressed in terms of the Pigouvian emis-
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sions tax. (iii) Agents that use wind turbines or solar panels to produce electricity may

not have access to techniques that forecast wind speed or solar radiation and machines

that use electricity can be pregrogrammed conditional on the state. A contract that

yields a constant revenue across states in which consumption optimally fluctuates does

not hamper efficiency if capital is equally utilized in all states in optimum. Government

intervention is not needed to stabilize the price, because distributors offer a stable price.

These distributors can be seemingly risk-averse because all states occur with certainty in

some subperiod. The role of the government is to internalize the externality. (iv) A clean

output subsidy that is funded by a surcharge such that consumers pay a uniform price

leads to excessive investment in both dirty and clean technology relative to an optimum

if the implemented marginal rate of return on investment is optimal and the implemented

portion of clean technology output is not too high relative to its optimal level. The reason

is that the revenue of clean technology users is too high relative to the price of its output

compared to an optimum of pollution control. This induces too much clean output. The

condition on the relative output between dirty and clean technologies implies that there

is too much output in dirty technology. For example, the marginal real rate of return

on investment is the inverse of the time discount factor when consumption is constant

across periods. The optimal marginal real rate of return on investment and the optimal

portion of clean technology output are jointly implementable only if there are emissions of

investment if only households pay a uniform surcharge, because the emissions tax receives

a greater weight relative to the factor price in the marginal cost of investment given this

exemption compared to uniform price for all energy users. There is greater output in dirty

and clean technologies relative to the allocation in equilibrium with uniform surcharge for

all energy users. But an optimum is implementable if some households are exempted from

the surcharge because the revenue of clean technology users decreases in the fraction of

exempted households for given portion of clean technology output. Discriminating among

households as opposed to between households and investment goods producers retains the

efficient relative price of output and the investment goods that produce output.

Governments in EU member countries use fully-funded tax-subsidy systems to promote

investment in wind and solar renewable energy. In particular, in Germany large electricity

users such as investment goods producers are exempted from paying the surcharge. The

distortion that exists under uniform surcharges is exacerbated when investment goods

producers are exempted from paying the surcharge assuming the real interest rate and the
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portion of clean technology output are optimal. Examining other situations, for example,

nonoptimal marginal rate of return on investment subject to international trade in assets,

is a topic for further research. A more detailed analysis of environmental policy under

price discrimination is warranted in future research because in practice larger electricity

users pay lower prices that are not fully explained by the exemption of the environmental

charge.

Usefulness of policies. An emissions tax or a tax-subsidy system with energy tax

rates and emissions tax rate in the investment sector can implement all optimal alloca-

tions. The latter system requires different tax rates for multiple dirty technology types

such as fuel types and vintages that have a different emission intensity of output. This

information is needed to administer the emissions tax too if emissions are not measured

directly. The carbon dioxide and methane emissions are inferred indirectly, for example,

from fuel input use. Thus the information requirement may be the same for these policies.

The capital gains tax and capital tax implement only noncontingent allocations. A

capital gains tax or capital tax seems impractible to internalize greenhouse-gas pollution

because these policies require to disentangle dirty and clean technology capital in the

portfolios of firms and households. The financial balance sheets contain nominal capital

amounts so that further accounts must be investigated to differentiate output between

fossil-fuel using and renewable energy technologies.

A system with an investment goods tax and an emissions tax rate in the investment

sector only implement allocations with fully utilized capital. The information of capital

vintages should be collectable at the same cost as the information for an emissions tax on

emissions that are not directly measurable. However paying for the emissions not occured

yet may pose a legal problem.

Fully-funded renewable energy subsidies implement allocations with full utilization of

capital from an environmental perspective. The variant with exempted households seems

politically feasible given the large popularity of both feed-in tariffs and feed-in premia

and of distributional policies. The identity of households that pay the surcharge does not

matter for Pareto efficiency assuming preferences that admit an essential independence

between the environment and the distribution of consumption. Thus efficiency can be

combined with distributional goals. Beside more differentiated rates than two surcharge

levels implement a Pareto optimum and redistribute income. A Mirrleesian approach to
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redistribution by an incompletely informed government is a topic for further research.

Limitations. Menanteau et al. (2003) argue that increased intermittent capacity

creates a need for additional capacity to stabilize the grid. The impact of grid stabilization

on capacity building originates in fluctuation of supply that does not arise in absence

of intermittent sources. This issue is blended out in the present paper, and may be

considered in further work.

Households pay a contingent price if an equilibrium is subject to noncontingent taxes

or subsidies and consumption fluctuates. I make the assumption that distributors of

energy do not discriminate between energy users that produce consumption goods and

energy users that produce investment goods. Thus I restrict attention to economies in

which households and producers of consumption goods and investment goods act on

contingent markets or make contingent contracts. The inability of electricity users, in-

cluding households, that produce consumption goods to respond to contingent prices of

electricity because it is not metered every day prevents efficiency if consumption should

fluctuate. Consumption fluctuation is likely optimal when the environmental shadow cost

is sufficiently high so that dirty capacity is sufficiently low or when the clean technology

productivity varies much. A question for further research is when the benefit of fluctuat-

ing consumption in terms of saved dirty capacity outweighs the cost of devices for daily

metering.
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