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Abstract

Photometric Stereo (PST) is a widely used technique of estimating surface normals from

an image set. However, it often produces inaccurate results for non-Lambertian surface

reflectance. In this study, PST is reformulated as a sparse recovery problem where non-

Lambertian errors are explicitly identified and corrected. We show that such a problem can

be accurately solved via a greedy algorithm called Orthogonal Matching Pursuit (OMP).

Furthermore, we introduce a smoothness constraint by expanding the pixel-wise sparse PST

into a joint sparse recovery problem where several adjacent pixels are processed simultane-

ously, and employ a Sequential Compressive - Multiple Signal Classification (SeqCS-MUSIC)

algorithm based on Simultaneous Orthogonal Matching Pursuit (S-OMP) to reach a robust

solution. The performance of OMP and SeqCS-MUSIC is evaluated on synthesized and

real-world datasets, and we found that these greedy algorithms are overall more robust to

non-Lambertian errors than other state-of-the-art sparse approaches with little loss of effi-

ciency.

Keywords: Photometric stereo; robust regression; sparse recovery; orthogonal matching

pursuit; sequential compressive MUSIC
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Chapter 1

Introduction

1.1 Background

1.1.1 Photometric stereo

Shading in 2D images provides valuable visual cues for understanding the spatial structure

of objects. Photometric Stereo (PST) is a powerful technique that exploits the shading

information to directly estimate the 3D surface orientation, i.e. normal vectors. In the

classical PST problem, the input is a set of n images captured from a fixed viewpoint under

n different calibrated lighting conditions; hence there are n observations of luminance at

each pixel location. Under the assumption of a Lambertian reflectance model, where the

observed luminance is proportional to the cosine of the incident angle and remains constant

regardless of the viewing angle, the relationship between n observations y ∈ Rn at each pixel

and the collection of n lighting directions L ∈ Rn×3 is formulated as a linear equation group

with respect to the normal vector n ∈ R3, i.e.:

y = Ln (1.1)

Then the linear system Eq. 1.1 is solved via ordinary Least Squares (LS). The advantage of

PST over 3D laser scanning is that the former provides a very high resolution (depending

on the actual resolution of the camera) and therefore could capture the fine details of the

surface that may not show up in the scanned model. In addition, PST only requires a simple

and inexpensive hardware setup whereas 3D scanning devices are usually costly and less

portable.

1



CHAPTER 1. INTRODUCTION 2

Although the classical PST method almost always guarantees a visually plausible normal

map, it in fact suffers from a serious accuracy problem: The simple Lambertian reflectance

model adopted in PST does not strictly apply to most real-world textures, which exhibit

specular reflection properties to various degrees. Even if the surface is indeed approxi-

mately Lambertian, other non-Lambertian errors can be introduced by the interaction of

the light and the objects’ geometry, resulting in cast shadows and interreflections. These

non-Lambertian observations, regarded as “outliers” in a Lambertian-based linear model,

may severely reduce the accuracy of LS results. Hence, a PST method that is robust to such

non-Lambertian effects is needed in order to generate a high quality normal map.

Many improved PST methods have been proposed since the original PST in an attempt

to minimize the effect of non-Lambertian components. These methods either adopt a more

sophisticated reflectance model to accommodate non-Lambertian observations as “inliers”

(e.g. [32, 5, 4]), or rather, keep the Lambertian model but use robust statistical methods to

rule out or reduce the effect of non-Lambertian outliers (e.g. [64, 31, 26]). A typical example

of the second category is the Least Median of Squares (LMS) approach used in our previous

study [72] (and see [26, 25]), in which the observations outside a certain confidence band

are deemed to be outliers. In this study, we also adopt the Lambertian model, but solve for

the normal vectors via a sparse representation framework that estimates both the normals

and non-Lambertian errors at the same time. This sparse method is more closely related

to the statistical-based methods. However, instead of rejecting the errant observations, our

method attempts to “correct” them so that they would follow a Lambertian model as closely

as possible. Eventually, the normal vector that requires the least amount of correction is

taken as the final solution.

1.1.2 Sparse representation and recovery

It is well understood that ordinary LS fails to unambiguously reconstruct a signal that is

passed through an underdetermined linear system, where the number of unknown variables

exceeds that of linear equations (Fig. 1.1b). However, it has been shown that if the signal to

be recovered is sparse – having a considerable amount of zero or nearly zero entries (Fig. 1.1c),

then an accurate reconstruction of the signal is still possible via a sparse recovery scheme [23].

The canonical form of a sparse recovery problem can be stated as follows: Given an

underdetermined linear model y = Ax, where A ∈ Rn×p is the so-called “dictionary” matrix

(n < p), and y ∈ Rn×1 is the vector consisting of n scalar observations, find the unknown
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sparse signal x ∈ Rp×1 such that:

min
x
‖x‖0 s.t. y = Ax (1.2)

where ‖·‖0 represents `0 pseudo-norm, or the number of non-zero entries.

=

y A x
(a) Overdetermined

=

y A x
(b) Underdetermined

=

y A x
(c) Sparse

Figure 1.1: Stylized visualization of three examples of linear equation systems. A and y
represent the design matrix and observations, respectively; x is the unknown signal to be
recovered. Positive and negative values are shown as coloured blocks, and zero entries are
represented by black blocks. (a) Overdetermined system, where there are more observations
(5) than unknowns (3). (b) Underdetermined system, where there are more unknowns (5)
than observations (3). The signal x cannot be uniquely determined from such a system. (c)
Underdetermined system with sparse signal. It is possible to recover x using sparse recovery
methods as long as we know that x is sparse, even though the system is underdetermined
and the exact positions of non-zero entries are not known a priori.

Eq. 1.2 is generally an NP-hard combinatorial problem [47]. In practice, it is more feasible

to solve a relaxed form thereof. We will briefly discuss various alternative formulations and

corresponding solvers in Section 2.2.

Photometric stereo and sparse recovery

PST is often formulated as an overdetermined regression problem. The classical PST adopts

three lights (hence three observations of luminance at each pixel location) [67] to solve for the

3D normal vectors. Later methods use more lights ranging from four to hundreds [7, 54, 26,

5]. Recently, a few attempts have been made to represent PST as an underdetermined system

firstly in the case of calibrated lighting directions [69, 33], as addressed here, and for the

case of unknown lighting conditions [27, 6], not studied in this report. Reconfiguring PST as
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an underdetermined system means explicitly modelling the non-Lambertian components as

additional unknowns. Suppose there are n lights (hence n equations for each pixel), the total

number of unknowns would be n + 3 (3 normal vector components and n non-Lambertian

error terms). As was already pointed out, such a system cannot be unambiguously solved

through ordinary LS. Fortunately, if we make an assumption that the majority of luminance

observations are approximately Lambertian, which is true for many real-world materials, then

the error vector is essentially a sparse vector with a large number of zero or approximately

zero entries. Now that we have a sparse representation of the PST problem, we can solve it

using a sparse recovery algorithm.

It has been shown by Wu et al. [69] and Ikehata et al. [33] that sparse PST behaves

significantly more robustly than the classical PST method. However, the accuracy is contin-

gent on the solver. As of now, the most accurate solver for the sparse formulation is Sparse

Bayesian Learning (SBL) as tested by Ikehata et al. in [33]. In the current study, we employ

a modified form of the sparse representation given in [33], and solve it via a different type

of approach – greedy sparse recovery.

1.2 Contribution

The main contributions of the current study are fourfold:

1. We propose an alternative sparse formulation for PST (Eq. 4.6 and Eq. 4.7). In previous

sparse PST studies [69, 33], the surface normal vector and the error vector are treated as

two entities and are solved independently. In this study, we convert their formulations

into a new canonical form of the sparse recovery problem by combining the two vectors

into one large vector. Although such a “stacked” formulation is not novel (e.g. [68]), it

is used in the context of surface normal estimation for the first time. The advantage

of this formulation is that it allows for a large repertoire of existing sparse recovery

algorithms to be more straightforwardly applied to the PST problem.

2. We apply a greedy algorithm called Orthogonal Matching Pursuit (OMP) [52, 61, 11],

from Information Theory, to solve the PST problem. It has been previously demon-

strated in [69, 33] that PST can be solved by several sparse recovery algorithms that

fall into different categories, including augmented Lagrangian rank-minimization [69],
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`1 optimization approaches and probability-based methods [33]. However, the possi-

bility of applying greedy solvers, an important category of sparse recovery algorithms,

to the PST problem has never been explored. To the best of our knowledge, this study

is the first such attempt at employing greedy approaches to estimate surface normals

within the framework of PST.

3. We employ a smoothness constraint by recovering several neighbouring pixel locations

at once. Specifically, we reformulate PST as a joint sparse problem, and solve it using

an extension of OMP – Simultaneous Orthogonal Matching Pursuit (S-OMP) [62,

63] from Signal Processing. In order to further improve the results, another refining

approach, again from Signal Processing, named Sequential Compressive - Multiple

Signal Classification (SeqCS-MUSIC) [39] is also applied following the initial greedy

estimation. As of yet, no previous attempts have been made at introducing a joint

sparse representation or any MUSIC-like approach into PST.

4. We numerically compare the performance of several normal vector recovery methods.

Most notably, it is the first time that the normal estimation accuracy of our previously

proposed method – LMS – has been tested and quantitatively demonstrated on complex

models.

1.3 Thesis Overview

This thesis is organized as follows: Chapter 2 provides a short survey on recent robust PST

and sparse recovery methods. Chapter 3 briefly recapitulates the mathematical details of

the classical PST, as well as one of our previous state-of-the-art robust PST methods: Least

Median of Squares (LMS) regression. To strike a balance between efficiency and accuracy, we

also introduce a 1D version of LMS (a.k.a. “mode-finder”) in Section 3.2 which is significantly

faster than regular LMS [72]. In Chapter 4, we provide a detailed description of our sparse

formulation and the OMP algorithm. Then in Chapter 5, we further extend PST into a

joint sparse problem, and attempt to solve it via S-OMP and SeqCS-MUSIC. Experimental

results and discussions are presented in Chapter 6, followed by several possible future research

directions discussed in Chapter 7.



Chapter 2

Related Work

2.1 Robust Photometric Stereo

This section presents a brief overview of current robust Photometric Stereo (PST) meth-

ods. Since the original non-robust Lambertian-based PST [67], many methods have been

proposed in an attempt to address non-Lambertian effects such as specularities and shad-

ows. These approaches usually adopt a robust statistical method and/or an improved

non-Lambertian reflectance model.

2.1.1 Statistics-based methods

In statistics-based methods, a robust statistical algorithm is employed to detect the non-

Lambertian observations as outliers, and exclude them from the estimation process in order

to minimize their influence on the final result. Early examples include a 4-light PST approach

in which the values yielding significantly differing albedos are excluded [19, 57, 7]. In a similar

5-light PST method [54], the highest and the lowest values, presumably corresponding to

highlights and shadows, are simply discarded.

Another 4-light method [71] explicitly includes ambient illumination and surface integra-

bility, and adopts an iterative strategy, using current surface estimates to accept or reject

each additional light based on a threshold indicating a shadowed value. The problem with

these methods is that they rely on throwing away a small number of outlier observation

values, whereas our robust sparse methods in the current study reach the solution based on

all observations, by correcting the non-Lambertian error of the outliers.

6
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Willems et al. [65] apply an iterative method to estimate normals. First, the pixel values

within a certain range (10–240 out of 255) are used to estimate an initial normal map.

In each of the following iterations, error residuals of normals for all lighting directions are

computed and the normals are updated based only on those directions with small residuals.

Sun et al. [58] show that at least six light sources are needed to guarantee that every location

on the surface is illuminated by at least three lights. They propose a decision algorithm to

discard only doubtful pixels, rather than throwing away all pixel values that lie outside a

certain range. However, the validity of their method is based on the assumption that out of

the six values for each pixel, there are at most one highlight and two shadow observations.

Julià et al. [35] utilize a factorization technique to decompose the luminance matrix into

surface and light source matrices, in which the shadow and highlight pixels are considered

as missing data.

Some recent studies introduce probability models as a mechanism to incorporate the

handling of shadows and highlights into the PST formulation. Tang et al. [60] model normal

orientations and discontinuities with two coupled Markov Random Fields (MRF). They

propose a tensorial belief propagation method to solve the Maximum A Posteriori (MAP)

problem in the Markov network. Chandraker et al. [17] formulate PST as a shadow labelling

problem where the labels of each pixel’s neighbours are taken into consideration, enforcing

the smoothness of the shadowed region, and approximate the solution via a fast iterative

graph-cut method. Another study [64] employs a Maximum-Likelihood (ML) imaging model

for PST. In this method, an inlier map modelled via MRF is included in the ML model.

However, the initial estimation of the inlier map would directly influence the final result,

whereas our sparse methods do not depend on the choice of any prior.

A few other studies employ random sampling based methods. Using 3-light datasets,

Mukaigawa et al. [46] adopt a Random Sample Consensus (RANSAC) based approach to

iteratively select random groups of pixels from different regions of the image, and the sampled

groups whose pixels are all taken from diffuse regions are used to calculate the coefficients

in the linear equation. RANSAC is also used in a multiview context [31] as a robust fitting

approach to select the points on a certain 3D curve. Drew et al. [26, 25] and Zhang and

Drew [72] employ a Least Median of Squares (LMS) method. Instead of taking samples

from different regions on the image, they use a denser image set (50 lights) and sample only

from the observations at each pixel location. Non-Lambertian observations are rejected as

outliers and excluded from the following LS step. Based on [17], Miyazaki et al. [45] use a
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median filtering approach similar to LMS but also considering neighbouring pixels. Instead

of taking random samples, they simply compare all the 3-combinations of observations, which

is feasible for the small number of lights used in their study. Although guaranteeing a high

statistical robustness, these methods are computationally heavy since they usually rely on a

large number of samples to take effect.

2.1.2 Non-Lambertian reflectance modelling

Instead of statistically rejecting non-Lambertian observations as outliers, another way to

minimize their negative influence on surface normal recovery is to incorporate a more so-

phisticated reflectance model to directly account for the non-Lambertian components.

Tagare and de Figueiredo [59] construct an m-lobed reflectance map model to approxi-

mate diffuse non-Lambertian surface-light interactions. In [57], a Torrance-Sparrow model

is employed to estimate the roughness of the surface that is divided into different areas.

Similarly, Nayar et al. [48] adopt a Torrance-Sparrow and Beckmann-Spizzichino hybrid re-

flectance model. Other mathematical models to encode surface reflectance include a polyno-

mial model as applied in Polynomial Texture Mapping (PTM) [44], and Spherical Harmonics

(SH) [8]. Drew et al. [26] propose a Radial Basis Function (RBF) interpolation to handle

the rendering of specularities and shadows. These models, however, generally require a large

number of parameters to be estimated.

Other studies use reference objects to facilitate the estimation of surface properties.

In [56], an object with simple, known 3D geometry and approximately Lambertian reflectance

(for instance, a white matte sphere) is present in the captured images. A look-up table

is established that relates luminance observations at each pixel location and the surface

orientation. Then the surface properties of other objects with similar reflectance as the

reference object can simply be inferred from the look-up table. This method, however,

only applies to isotropic materials. Hertzmann and Seitz [32] later revisited the idea of

including reference material. By adopting an orientation-consistency cue assumption that

two points on the surface with the same orientation have the same observed light intensity,

they effectively cast PST as a stereoptic correspondence problem. This approach is capable

of handling a wider range of anisotropic materials with a small number of reference objects,

usually one or two. Similar to [32], an appearance clustering method proposed by Koppal

and Narasimhan [40], also adopting the orientation consistency cue, focuses on finding iso-

normals across frames in a captured image sequence, and a classical PST approach is applied
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later to obtain the actual values of the surface normals. Although their method does not

rely on the presence of a reference object, it does require the image sequence to be densely

captured on a continuous path.

Recent studies attempt to solve a more complicated problem where neither shape nor

material information of the object surface is available. Goldman et al. [30] employ an ob-

jective function that contains terms for both shape and material, and apply an iterative

approach where the reflectance and shape are alternately optimized. The estimation of the

material is an inseparable part of the reconstruction process so an explicit reference object

is no longer needed. Alldrin et al. [5] also adopt a similar iterative approach that updates

shapes and materials alternately. Their formulation is non-parametric and data-driven, and

as such is capable of capturing an even wider range of reflectance materials. Ackermann et

al. [4] propose an example-based multi-view PST method which uses the captured object’s

own geometry as reference.

Yang and Ahuja [70] include a dichromatic reflection model into PST for both estimat-

ing surface normals as well as separating the diffuse and specular components, based on

a surface chromaticity invariant. Their method is able to reduce the specular effect even

when the specular-free observability assumption (that is, each pixel is diffuse in at least

one input image) is violated. However, this method does not address shadows and fails on

surfaces that mix their own colours into the reflected highlights, such as metallic materials.

Moreover, their method also requires knowledge of the lighting chromaticity – they suggest a

simple white-patch estimator – whereas in our method we have no such requirement. Kher-

ada et al. [37] propose a component-based mapping (CBM) method. They decompose the

captured images into direct components (single bounce of light from a surface) and global

components (illumination onto a point that is interreflected from all other points in the

scene), and then model matte, shadow and specularity separately within each component.

This method depends on a training phase and requires accurate disambiguation of direct

and global contributions, and has a high computational load.

The problems with these methods are that they either adopt a restricted assumption

of the surface reflectance, or require a certain type of reference, either by using an explicit

reference object or through self-referencing. Moreover, they usually do not work well against

non-Lambertian effects that are not accounted for by the surface reflectance alone, such

as cast shadows. In our current sparse method, we make no assumption of the surface

reflectance property and treat all non-Lambertian effects equally.
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2.1.3 Sparse formulation

Sparse representation has been incorporated into PST in a few recent studies. Wu et al. [69]

model the matrix of all luminance observations as a linear combination of Lambertian and

non-Lambertian components, and represent the non-Lambertian error as an additive sparse

noise matrix. Under the assumption that most pixel observations approximately follow the

Lambertian reflectance model, they obtain the solution by finding a sparse error matrix

such that the rank of the Lambertian component matrix is minimized. The formulation is

known as Robust Principal Component Analysis (R-PCA) in the field of sparse recovery.

Specifically, they adopt a fast and scalable algorithm suitable for handling a large amount

of data points, i.e. the Augmented Lagrange Multiplier method [41]. However, this method

requires a shadow mask to be specified explicitly. Ikehata et al. [33] reconsider PST as a pure

sparse regression problem and aim to minimize the number of non-zero entries (i.e. the `0
pseudo norm) in the error matrix. They also add an `2 relaxation term to account for cases

when the sparse assumption is violated. In order to avoid the difficult combinatorial problem

involved in the minimization of `0 norm, they introduce two approximation algorithms. One

is to relax the `0 pseudo norm into `1 norm, as justified in [23, 12], and the solution is

obtained via Iteratively Reweighted L1 minimization (IRL1) [15]. The other method is a

hierarchical Bayesian approach called Sparse Bayesian Learning (SBL) [66]. It has been

shown that SBL has an improved accuracy over IRL1 at the expense of lower efficiency, and

both IRL1 and SBL perform better than R-PCA [33].

Sparse methods have also found their use in uncalibrated PST, where the lighting direc-

tions are not known (but note that in this study we do assume known lighting directions

so that these works are somewhat peripheral). Favaro and Papadhimitri [27] incorporate

the rank-minimization algorithm proposed in [69] into the uncalibrated PST problem as a

pre-processing step to remove shadow and specularity effects. Argyriou et al. [6] recently

also adopt a sparse representation framework to decide the weights for finding the best

illuminants to use, again with the lighting directions unknown.

2.2 Sparse Recovery Methods

As was pointed out in Section 1.1.2, the canonical form of the sparse recovery problem

(Eq. 1.2) is NP-hard [47] and cannot be solved efficiently as-is. In this section, we summarize

alternative formulations to Eq. 1.2 and several types of solvers.
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The first type of approach is convex `1 relaxation. It has been shown that for a dictionary

matrix A that satisfies a certain restriction, Eq. 1.2 is likely to be equivalent to an `1

minimization problem [23, 12]:

min
x
‖x‖1 s.t. y = Ax (2.1)

which can be solved via convex optimization techniques such as Interior-Point (IP) meth-

ods [10], Gradient Projection [28], Iteratively Reweighted L1 (IRL1) [15], and so forth.

Alternatively, sparse recovery can be achieved via greedy algorithms. The basic idea is

to find the non-zero entries, one at a time, based on a certain criterion, and then recover x

via LS using only the observations in the support.

One of the most notable greedy algorithms is Orthogonal Matching Pursuit (OMP) [52,

61, 11], an improvement over the simple Matching Pursuit (MP) algorithm [43]. In OMP,

the column of the dictionary matrix A that has the strongest correlation with the current

residual r is selected at every iteration, and r in turn is iteratively updated based on the

previously selected columns. The algorithm is terminated as a fixed number of non-zero

entries are recovered or other stopping criteria are met. Then, a simple LS is performed only

on a submatrix of A consisting of the columns chosen by OMP, and the regressed result will

be assigned only to the signal entries corresponding to the selected columns. The columns

that are not selected by OMP, on the other hand, will not be used in the final LS step, and

their corresponding signal entries are simply set to zero.

In fact, OMP approximately solves the following k-sparse recovery problem:

min
x
‖y−Ax‖2 s.t. ‖x‖0 ≤ k (2.2)

Many state-of-the-art greedy algorithms nowadays are based on OMP. Examples in-

clude Regularized OMP (ROMP) [51, 49], Stagewise OMP (StOMP) [24], and Compressive

Sampling Matching Pursuit (CoSaMP) [50], Probability OMP (PrOMP) [21], Look ahead

OMP [18], OMP with Replacement (OMPR) [34], A* OMP [36], etc.

Some solvers employ a thresholding step to iteratively refine the recovered support, i.e.

the selection/rejection of an entry at each step is decided by whether the value of a cer-

tain function dependent on this entry falls below a given threshold. Algorithms in this

category include Iterative Hard Thresholding (IHT) [9], Subspace Pursuit(SP) [20], Approx-

imate Message Passing (AMP) [22], Two-Stage Thresholding (TST) [42], Algebraic Pursuit

(ALPS) [16], etc.
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The fourth category is probability-based algorithms. These methods assume the signal to

be recovered follows a specific probability distribution and solve the sparse recovery problem

with statistical methods such as Maximum Likelihood (ML) or Maximum A Posterior (MAP)

estimation. Sparse Bayesian Learning (SBL) [66] is one of the major algorithms in this

category, and has already been applied in the context of PST [33].



Chapter 3

Robust Estimation of Surface Normal

Vectors

3.1 Naive Lambertian-based Photometric Stereo

The classical Photometric Stereo (PST) method of estimating surface normals from multiple

images was proposed by Woodham [67]. PST usually assumes the object surface being

inspected follows a Lambertian reflectance model; i.e. the observed luminance y at each

point on the surface is proportional to the cosine of the incident light angle at that point, or

in vector form, the dot product of the surface normal n ∈ R3 and lighting direction l ∈ R3:

y = αl · n (3.1)

where α is a scalar constant representing albedo.

Now suppose we have a set of n images of an object surface taken at a fixed viewpoint with

constant exposure but illuminated by n different distant parallel light sources, respectively.

Let l j denote the jth lighting direction, and L = (l1, l2, ...ln)T ∈ Rn×3 the collection of all the

lighting directions. For each pixel k, there are n observed luminances yk = (yk1 , y
k
2 , ...y

k
n)

T ∈
Rn. Then we have n instances of Eq. 3.1 that can be collectively expressed as:

yk = αkL · nk (3.2)

where again αk is the albedo at pixel k.

13
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Then the surface normal nk can be simply solved via Least Squares (LS):

nk = L†yk/αk (3.3)

where

αk = ‖L†yk‖ (3.4)

and

L† = (LTL)−1LT (3.5)

is the Moore-Penrose Pseudoinverse.

Eq. 3.3 can be extended to handle all pixels simultaneously. For an image with K pixels

in total, let us construct a matrix Y ∈ Rn×K of all the n×K luminance observations as:

Y =
(
y1,y2, ...yK

)
(3.6)

Then, similar to Eq. 3.3, the unnormalized surface normal of all pixels can be solved via

Least Squares:

N = L†Y (3.7)

where N = (n1,n2, ...nK) ∈ R3×K whose K columns represent surface normals at K pixel

locations, respectively. The albedo can be computed as the norm of each column vector in

N as in Eq. 3.4. Note that in the current work, we only focus on the accurate estimation of

surface normals, although our methods can potentially be used to recover albedo as well.

Eq. 3.7 is capable of producing a smooth and visually consistent estimation of surface

normal vectors (for instance, Fig. 6.2c), provided L has a rank of 3; i.e. there are at least 3

lighting directions that do not lie on the same line. Moreover, such an LS solver has a very

low computational cost. However, the LS result is usually erroneous (see the angular error

map shown in Fig. 6.2d) due to the prevalence of non-Lambertian properties in real-world

images, such as specularities, shadows, interreflections, etc. Hence, an accurate recovery of

surface normal based on the Lambertian reflectance model must involve a robust method

that is resistant to the non-Lambertian components.

3.2 Least Median of Squares

One way to deal with non-Lambertian effects in images is to treat the affected observations

as outliers, and regress only on the inlier pixels. In our previous studies, we have adopted
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Least Median of Squares (LMS) regression proposed by Rousseeuw [53]. For each pixel k, we

have n given lighting directions L = (l1, l2, ...ln)T ∈ Rn×3 and n corresponding observations

of luminance yk = (yk1 , y
k
2 , ...y

k
n)

T ∈ Rn. The LMS algorithm as applied in the context of

PST can be outlined as follows:

1. Initialize the iteration counter q = 1.

2. Randomly sample a subset of d indices Jq ⊂ {1, 2, ..., n} (|Jq| = d). Here we choose

d = 3 since it is the smallest number required to unambiguously define a normal

vector. Take the subset of lighting directions indexed by Jq, denoted by LJq , and their

corresponding observations YJq .

3. Perform Ordinary Least Squares on this subset. Obtain an estimation of normal vector

NJq :

NJq = L†JqYJq (3.8)

4. Use the current estimation NJq to approximate y, and calculate the squared residuals

r21, r
2
2, ..., r

2
n for n observations, collectively stored in vector R2 = (r21, r

2
2, ..., r

2
n):

R = y− LNJq (3.9)

R2 = RTR (3.10)

5. Find the median MJq of the n residuals r21, · · · , r2n in R2:

MJq = median
i=1,··· ,n

r2i (3.11)

6. Increment q by 1, and go back to Step 2 until q > m. For our typical datasets where

n = 50 and d = 3, we choose m = 1500.

7. Find the smallest median of squared residuals Mmin such that:

Mmin = min
q=1,··· ,m

MJq (3.12)

and keep the estimation of normal vector n that gives rise to Mmin. Let the former be

denoted by nmin.
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8. Estimate the robust standard deviation σ:

σ = 1.4826

(
1 +

5

n− d

)√
Mmin (3.13)

9. Obtain the squared residuals r2i (i = 1, · · · , n) with respect to nmin for each of the n

observations. Assign a binary weight wi to each observation yki based on σ such that:

wi =

{
1 if r2i ≤ (2.5σ)2

0 otherwise
(3.14)

10. Obtain the LMS estimation for the kth pixel by performing LS only on observations

with wi = 1, i.e.:

nk
LMS = (wL)†(wyk) (3.15)

where w = diag(w1, w2, · · · , wn) ∈ Rn×n.

LMS has a 50% breakdown point, meaning it can tolerate up to 50% outliers. It has been

found to be able to provide very robust normal estimates for test image sets [26]. However,

its use is limited by its high computational cost. The time complexity of LMS is O(nd log n),

where n = 50 for a typical dataset and d = 3 (for PST) or higher (for more sophisticated

reflectance models, such as Polynomial Texture Mapping [44, 26]). Note that the surface

normal map recovered with LMS, though numerically more accurate than the LS result, does

appear to be less smooth than the latter (for example, compare Fig. 6.8B6 and Fig. 6.8B1).

3.3 Mode Finder

It is desirable to have a robust method that runs faster than LMS while providing a smooth

result. In this study, we have experimented with an alternative method known as LMS mode

finder [72]. It simplifies the underlying general linear regression model of LMS:

yi = xi1θ1 + ...+ xinθn + ei (3.16)

to a constant model:

yi = θ + ei (3.17)

where yi represents the ith observation, xik and θ(k) the independent variables and linear

coefficients, respectively, and ei the error term.
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The idea is to classify the observations that are close enough to the robust mode as

inliers, where the mode is identified using robust statistics. Mode finder is a special case of

the general LMS, so the algorithm in Section 3.2 still applies with a slight modification:

ALGORITHM LMS Mode Finder

1. Initialize the iteration counter q = 1.

2. Calculate the n squared residuals r2i (i = 1, · · · , n) with respect to the observation

indexed by q:

r2i = (yi − yq)2 (3.18)

3. Find the median Mq of all the squared residuals r2i :

Mq = median
i=1,··· ,n

r2i (3.19)

4. Increment q by 1, and go back to Step 2 until q > n.

5. Find the smallest median of squared residuals Mmin such that:

Mmin = min
q=1,··· ,n

Mq (3.20)

and keep the estimation of n that gives rise to Mmin, denoted by nmin.

6. Same as Step 8 – 10 in LMS.

LMS mode finder is essentially selecting a hyperplane that is perpendicular to the y di-

rection that has the smallest median of squared residuals with respect to all the observations.

Then LS is performed only on the data points that fall in a range around the hyperplane.

In other words, we find a value θ that contains the greatest number of observations in the

confidence band around it. This measurement of central tendency is similar to mode, except

that the former decides a band rather than a single value, providing a degree of “tolerance”.

Since we only need to estimate one coefficient for the model, the mode-finder algorithm can

be implemented much more efficiently than LMS.

In the context of PST, such a simplification is equivalent to a constant reflectance model

where the observed luminance is invariant to the direction of the incoming lights. Notice that

in our image datasets, shadowed and highlight pixels usually takes extreme brightness values

(close to 0 and 1, respectively), whereas Lambertian observations tend to take intermediate
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values. Thus, although this model does not physically agree with most real-world surfaces, it

is still helpful in rejecting the non-Lambertian observations that often deviate greatly from

a centre value. We will show in Chapter 6 that LMS mode finder does exhibit an extent of

robustness compared to LS.



Chapter 4

Sparse Regression

4.1 Sparse Formulation for Photometric Stereo

In this section, we explore the possibility of formulating and solving PST as a sparse regres-

sion problem. Since this study focuses only on the recovery of normal vectors, we omit the

albedo term α from all equations in this and the following sections for simplicity, and always

use n to represent the unnormalized surface normal vector unless otherwise specified.

Since most real-world objects do not have a strict Lambertian reflectance, it would be

more accurate to introduce an additional term e ∈ R into Eq. 3.1 to account for the non-

Lambertian error. Hence, Eq. 3.1 can be extended to:

y = l · n+ e (4.1)

For each pixel k with n observations, we would have an n-vector of error e = (e1, e2, ...en)
T ∈

Rn. Now let us write Eq. 4.1 in vector form (similar to Eq. 3.2):

y = Ln+ e (4.2)

Eq. 4.2, containing n linear equations but n + 3 unknowns (n components in e and 3

components in n), is effectively an underdetermined problem, and as such cannot be solved

unambiguously. However, if the error e is a sparse vector, i.e. most or at least a large

percentage of its elements are zero, then it is still possible to recover e exactly or almost

exactly using sparse methods. Fortunately, in many real-world images, often only a small

number of pixels are heavily contaminated by shadows or highlights. For those image sets,

19
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e is essentially sparse. This observation allows us to recover surface normal n and the

non-Lambertian e simultaneously from the following sparse regression problem:

min
n,e
‖e‖0 s.t. y = Ln+ e (4.3)

In Eq. 4.3, ‖·‖0 represents the `0 pseudo-norm, or the number of non-zero elements. This

formulation, however, has two major issues: 1) It is an NP-hard combinatorial problem; 2)

In real-world scenes, although many pixels are largely Lambertian, they may contain a small

error due to ambient lighting, interreflections and so forth, and therefore e is usually not

strictly sparse; there are many small elements that are close to but not exactly 0. Thus

the equality constraint is very hard to be satisfied. Instead, it is more realistic to use an

inequality constraint with a user-defined error tolerance ε:

min
n,e
‖e‖0 s.t. ‖y− Ln− e‖2 ≤ ε (4.4)

Alternatively, if we care more about how much the reconstructed luminance approxi-

mates the real observations rather than the sparsity of e, then it would be more natural to

reformulate Eq. 4.4 as:

min
n,e
‖y− Ln− e‖2 s.t. ‖e‖0 ≤ s (4.5)

where the scalar s is the sparsity of vector e. To further simplify Eq. 4.5, we propose merging

n and e into one large vector and treating them as one entity, i.e.:

y = Ln+ e

= Ln+ Ie

= (L, I)

(
n

e

)
= Ax

(4.6)

where I ∈ Rn×n is an n × n identity matrix, A = (L, I) ∈ Rn×(n+3) is the new merged

dictionary matrix, and x = (nT, eT)T ∈ R(n+3)×1 is the combined vector of all the unknown

variables. Thus Eq. 4.5 can be rewritten as:

min
n,e
‖y−Ax‖2 s.t. ‖x‖0 ≤ s (4.7)
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The stacked formulation was inspired by the work of Wright et al. [68], eq.(20). However,

in [68], both the signal and the noise are assumed sparse, whereas in our case, the signal

(normal vector) has only 3 components and is not at all sparse.

By formulating our problem in the form of Eq. 4.7, we can now take advantage of existing

algorithms to efficiently achieve an accurate solution. One such solver is a greedy algorithm

called Orthogonal Matching Pursuit (OMP) [52, 61, 11], which is known for its high accuracy

and low time-complexity. We will describe this algorithm in Section 4.2 in detail.

Previously, Ikehata et al. [33] proposed a different formulation to Eq. 4.7. They expressed

the PST problem in a so-called Lagrangian form, i.e.:

min
n,e
‖y− Ln− e‖22 + λ‖e‖1 (4.8)

and applied two solvers: Iteratively Reweighted L1 (IRL1) minimization and Sparse Bayesian

Learning (SBL). They showed that SBL provides a more accurate estimation but is more

computationally expensive. Later, in Section 6, we will show that our OMP solver produces

a more accurate result than SBL with comparable efficiency to IRL1.

4.2 Orthogonal Matching Pursuit

Sparse recovery problems like Eq. 4.7 can be solved via many different methods (see Sec-

tion 2.2 for a brief review). Here we choose the classical greedy Orthogonal Matching Pursuit

(OMP) for our surface normal recovery problem. Given the linear model in Eq. 4.6, the basic

idea of OMP is to iteratively select columns of the dictionary matrix A that are most closely

correlated with the current residuals, then project the observation y to the linear subspace

spanned by the columns selected as of the current iteration. We denote each column of A

as Aj , and assume each Aj is normalized, i.e. ‖Aj‖2 = 1 for j = 1, 2, . . . , p. Let i be the

current number of iterations, ri and ci the residuals and the subset of selected columns in A

at the ith iteration, respectively. Let A(ci) and x(ci) represent the columns indexed by ci
in A, and the entries indexed by ci in the signal x to be recovered, respectively. The OMP

algorithm [11], as applied to our PST problem, can be summarized as follows:

ALGORITHM Orthogonal Matching Pursuit

1. Initialize the iteration counter i = 1, residual r0 = y and c0 = ∅.
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2. Find a column At (t ∈ {1, 2, . . . , p} − ci−1) that is most closely correlated with the

current residual vector. Equivalently, solve the following maximization problem:

t = argmax
j
‖AT

j ri−1‖ (4.9)

3. Add t to the selected set of columns, i.e. update ci = ci−1 ∪ t, and use A(ci) as the

current selected subset of A.

4. Project the observation y onto the linear space spanned by A(ci). The projection

matrix is calculated as:

P = A(ci)(A(ci)
TA(ci))

(−1)A(ci)
T (4.10)

5. Update the residuals with respect to the new projected observations:

ri = y−Py (4.11)

6. Increment i by 1. If i > s = n/2 + 3 (=28 for our typical datasets of 50 images), then

proceed to Step 7, otherwise go back to Step 2.

7. Solve only for the entries indexed by ci in signal x, and simply set the rest of the

entries to 0, i.e.:

x(ci) = A(ci)
†y (4.12)

and

xj = 0 for each j /∈ ci (4.13)

8. Take the first three entries in x as the solutions for the x, y, and z component of the

normal vector, respectively:

n = (x1, x2, x3) (4.14)

In our formulation Eq. 4.6, we merge the normal and the errors into a large vector, so

the components of the two vectors are treated equally by OMP. In each iteration, which

column in the dictionary matrix is to be chosen purely depends on its correlation with the

current residuals. Thus there is no strict mathematical guarantee that the normal vector

components will be selected in the first s iterations. Indeed, this failure could happen if the
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non-Lambertian error vector accounts for most of the observations. However, since most of

the pixels in real-world images contain (at least partially) an underlying matte model, it is

expected that the normal vector components are more closely correlated to the observations

than the sporadic non-Lambertian errors. In our experiments, all normal vector components

are usually selected within the first few iterations (< 10). On the other hand, if one or two

components of the surface normal are rather small, then they might not be selected by our

algorithm. However, since they are very close to zero anyway, simply treating them as zero

would not negatively impact the accuracy of our estimation.

OMP has a low computational cost and can be implemented straightforwardly. We have

found that it is significantly faster than LMS as well as many other state-of-the-art robust

regression methods that have been applied in the context of PST. Note that for our particular

choice of the design matrix A, the correlation between any column in the identity matrix

and the residual r can be simply represented by one element in r. Therefore, the inner

product in Eq. 4.9 may be reduced to finding the maximum entry in r. This observation

allows for an even more efficient implementation. In this work, however, we still implement

OMP according to Eq. 4.9 for generality.

Stopping criterion

It is possible to choose a stopping criterion based on the convergence of the residual r. For

instance, we may terminate the iteration as the residuals in r fall below a given threshold,

or alternatively, when recently selected observations do not introduce any significant change

to r. However, OMP is not guaranteed to make a correct selection at every iteration,

especially at the heavily shadowed pixels (see Section 6.2.2). As a greedy algorithm, the

error introduced by the incorrect selection at one step will irreversibly accumulate to the

following iterations. In other words, r is not guaranteed to converge for these pixels. As a

result, all the observations at these bad pixels may be eventually selected before any stopping

criterion based on r is met, and therefore these pixels must be specially handled.

For simplicity, here we set the stopping criterion as a fixed number (s) of iterations.

We make a conservative assumption that 50% of the observed pixels are polluted by non-

Lambertian noise. Thus, for our typical datasets of n = 50 images and normal vectors with

3 components, the stopping criterion is i > s = n/2 + 3 = 28. This criterion ensures that

there is always a moderate number of observations (n/2 = 25) available for regression, and

that the accumulation of error will be stopped prematurely for bad pixels.
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Normalization and orthogonality

OMP requires that every column in A be normalized. One may argue that doing so would

change the relative ratio of the components in each row, and as a result, the first three

columns in the column-normalized A would appear to contain directions different from the

actual lighting vectors. However, this does not negatively affect our results. The most

essential part of OMP, the selection of a column in Step 2, is based on the inner product of

each column in A and the residual vector. In other words, it is the relative ratio between the

components within each column that matters, which is well preserved in the column-wise

normalization.

Another issue worth noting is the orthogonality of the design matrix A. It has been

shown that if A satisfies a Restricted Isometry Property(RIP), then the exact recovery of

signal x may be possible [14, 13]. Essentially, RIP specifies a near-orthonormal condition for

A. In our experimental setup, the lights are evenly distributed on the dome and the three

components of their position vectors are uncorrelated. As such, the first three columns of

A, corresponding to the light positions, are nearly orthogonal to each other. The rest of A

is a large identity matrix I, which itself is orthonormal. Also, due to the large number of

zeros in I, the dot product of any of the first three columns and any column in I would be

a rather small number. Thus, although it is yet to be strictly proven, we speculate that the

design matrix A in our formulation at least approximately satisfies RIP. This speculation

can be indirectly justified by the outstanding accuracy of OMP (see Chapter 6).

4.3 Visual Demonstration

In this section, we demonstrate how OMP enforces robustness onto the normal recovery

process by using a simple example. Particularly, we use a synthesized dataset Caesar (see

Section 6.1.1 for more information) and study all the 50 observations of one pixel (marked by

blue crosses in Fig. 4.1a) at location (X = 90, Y = 39) where the ground truth normal vector

is ngt = (−0.0780, 0.1828, 0.9801). The luminance profile of these observations, sorted by

the angle of incidence, is shown in Fig. 4.1c (blue dotted line), along with the actual matte

model curve (black solid line), i.e. the theoretical values of luminance if the surface is purely

Lambertian. It is obvious from Fig. 4.1c that due to the existence of specular reflection, a

good percentage of observations (especially when the incident angle is small) deviate from

the values predicted by a matte model.
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Figure 4.1: Visualization of all observations of one pixel from dataset Caesar. (a) The
pixel studied is marked with blue crosses at the same location (X=90,Y=39) on all images
numbered from 1 to 50. (b) Luminance observations arranged by the image index 1–50.
(c) Luminance observations sorted by incident angle. Blue dotted line shows the actual 50
observations; red circled line shows the approximated luminance using Least Squares; black
solid line represents the ground truth matte (Lambertian) luminance.

The naive LS regression (see Section 3.1), when applied to this pixel, attempts to

approximate the values of all observations without taking the actual matte model into

consideration (Fig. 4.1c, red line marked with circles). Naturally, the LS result nLS =

(−0.1578, 0.4852, 0.8600) deviates greatly from the ground truth (−0.0780, 0.1828, 0.9801).
On the other hand, OMP first attempts to identify s entries, one in each iteration, from

the stacked signal x = (x1, x2, ...xn+3)
T ∈ Rn+3 (see Eq. 4.6). Usually, these s entries include

3 components for normal vectors (x1, x2, x3) and (s − 3) components from the remaining

n entries (x4, x5, ..., xn+3) that correspond to error values. When the OMP algorithm as

described in Section 4.2 is applied to this pixel, it behaves as follows:

Iteration 1–3: The entries that correspond to normal components, x3, x2 and x1, are

selected in the order listed. This is not a coincidence since the first three columns of

the dictionary matrix A are overall more strongly correlated to the observations than

any of the rest of the columns that correspond to noise values. Also we noticed that

these entries are in fact selected in order of the absolute value of their corresponding

normal components. For instance, the third component of the ground truth normal

(-0.0780, 0.1828, 0.9801) is greater than the other two components. Therefore x3 gets
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Figure 4.2: Outliers identified by orthogonal matching pursuit. (a) Outliers with large non-
Lambertian error (red circles) detected in iteration 4 – 10. (b) Outliers with medium to
large error (red circles) detected in iteration 4 – 18. (c) All outliers (red circles) detected as
of iteration 28. Blue dotted lines show actual luminance observations in all three plots.

selected in the first iteration.

Iteration 4–10: Entries x26, x15, x32, x9, x37, x21, x20 are selected sequentially. These

entries correspond to non-Lambertian errors at observation #23, #12, ... #17, re-

spectively (marked with red circles in Fig. 4.2a). Note that the indices of observations

mentioned here (23, 12, ...) are equal to the entry indices found (26, 15, ...) minus 3,

since the first three elements in x do not represent errors. We notice that the corre-

sponding observations of these selected entries all have very high error values. Same

as in Iteration 1–3, the order of selection is also decided by the absolute values of the

error entries. For instance, observation #23 (incident angle ≈ 32◦) has the largest

non-Lambertian error value; therefore its corresponding error entry x26 is selected in

Iteration 4, before other error entries.

Iteration 11–18: Another eight entries x4, x10, x42, x8, x14, x51, x48, x5 are selected

sequentially. Their corresponding observations have medium error values (Fig. 4.2b).

Iteration 19–28: Select the rest of the error entries x43, x27, x50, x31, x16, x7, x13, x6, x53,

x25. The corresponding observations have small error values (Fig. 4.2c).

Through the 28 iterations above, we have obtained 28 indices; 3 of them correspond to

the normal vector components, and the remaining 25 represent the observations that have

significant non-Lambertian effects, i.e. non-zero values in signal x in the sparse regression

problem y = Ax (Eq. 4.6).
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These observations that do not follow the Lambertian model are called outliers. In many

previous robust methods such as LMS [72], the outliers are simply discarded. Suppose the

collection of outliers in 1..50 is represented by cout ⊂ {1, 2, ..., 50}, and the inlier collection

(observations that are approximately Lambertian) is cin = {1, 2, ..., 50} − cout. LMS only

performs trimmed LS on the observations indexed by cin:

y(cin) = L(cin)n (4.15)

OMP differs from LMS in that OMP uses all observations in the LS step. Rather

than excluding non-Lambertian outliers from the calculation, it simply marks them as “cor-

rectable” and attempts to correct their values with LS while keeping the inlier observations

unchanged. Here, the word “correct” refers to the attempt of estimating the Lambertian

luminance from the observations contaminated by non-Lambertian effects. Again, denote by

cout ⊂ {1, 2, ...50} the indices of non-Lambertian outliers. For our sample pixel, cout consists

of the 25 indices of the non-Lambertian observations selected through Iteration 4 – 28 (i.e.:

cout = {23, 12, ..., 22}). We mean to solve the following equation for normal vector n:

y = (L, I(cout))

(
n

e(cout)

)
(4.16)

For a given collection of outliers cout, Eq. 4.15 and Eq. 4.16 are expected to produce

similar results when outliers consist of only a moderate portion of all observations. As a

matter of fact, using the outliers identified with OMP, these two equations give the same

result for the sample pixel: nOMP = (−0.0877, 0.2282, 0.9697), which well approximates

the ground truth ngt = (−0.078, 0.1828, 0.9801) compared to the naive LS result nLS =

(−0.1578, 0.4852, 0.8600). However, we still favour Eq. 4.16 in this thesis for the following

three reasons:

1. When the number of outliers is large, Eq. 4.16 is likely to be more numerically sta-

ble than Eq. 4.15. In the OMP algorithm, if we, as discussed in Section 4.2, adopt

a stopping criterion based on residual r, then for some heavily shadowed pixels, a

large portion of or even all observations may be selected as outliers, leaving only a

small number of inliers. As a result, Eq. 4.15 is performed on very few observations,

which would possibly lead to erroneous solutions. On the other hand, Eq. 4.16 in

that situation would effectively fall back to naive LS, still guaranteeing a reasonable

solution.
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Figure 4.3: Observations corrected by orthogonal matching pursuit. Blue dotted line repre-
sents actual luminance observations; black solid line shows the actual matte model; red solid
line shows the luminance corrected by OMP.

2. If one or two out of the first three entries in x (i.e. normal vector components) are

not selected (for example, when the actual normal is parallel to the viewing vector,

meaning small x and y normal-vector components), then Eq. 4.16 guarantees that those

components are indeed zero, whereas Eq. 4.15 usually does not make such a guarantee.

3. Eq. 4.16 explicitly produces an error vector e, and thus the corrected observations

y − e (Fig. 4.3, red solid line). Note that the luminance observations after OMP

correction almost coincide with the ground truth matte model, exhibiting a high degree

of robustness.



Chapter 5

Constraint via Joint Sparse

Regression

In Chapter 4, we discussed formulating PST as a pixel-wise sparse regression problem. In

this formulation, the estimation of the surface normal at one pixel is entirely independent

from the observations at other pixels. If the solver fails at some pixel locations, then a

noticeable artifact would appear, rendering the recovered surface normal map less smooth.

In this chapter, we attempt to alleviate this problem by extending our aforementioned sparse

formulation into a joint sparse framework, which allows for simultaneous processing of several

adjacent pixels at once.

5.1 Formulation

In our regular sparse recovery model:

y = Ax (5.1)

only one sparse signal vector x ∈ Rn×1 is recovered from the observation vector y ∈ Rn×1

and the design matrix A ∈ Rn×p (n < p). However, it might happen that we want to

recover multiple signals that have the same support (i.e. locations of non-zero rows) and are

modulated by the same design matrix A simultaneously. This problem can be expressed as

follows (see [38]):

Y = AX (5.2)

29
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In Eq. 5.2, X = (x1,x2, · · · ,xN ) ∈ Rp×N is now a matrix with N columns, and each

column represents one signal to be recovered. Accordingly, Y = (y1,y2, · · · ,yN ) ∈ Rn×N

contains the corresponding observations. Similar to Eq. 1.2, the canonical form of joint

sparse recovery aims to minimize the `0 pseudo norm of X, i.e. the number of non-zero rows

in X:

min
X
‖X‖0 s.t. Y = AX (5.3)

‖X‖0 = ‖x1‖0 = · · · = ‖xN‖0

The rationale for assuming equal `0 norms is that we wish to enforce each signal (in our

case, pixel) having the same support.

The joint sparse recovery formulation Eq. 5.3 allows us to take advantage of the corre-

lation between signals and therefore obtain a more robust result with fewer measurements.

We found it very suitable for the purpose of surface normal reconstruction. Note that a key

feature of joint sparse recovery is that all column vectors in X to be recovered have the same

support. In PST, the physical surface of interest is usually smooth (at least locally), thus

adjacent pixel locations are expected to have similar normal directions. Furthermore, these

pixels tend to be contaminated by the same non-Lambertian effect under a given illumination

condition. For instance, two neighbouring pixels are very likely to be both located inside or

outside a cast shadow. Hence, when we estimate the normal of a given pixel k0, it would

provide us with more information if we also consider its N − 1 neighbours k1, k2, · · · , kN−1
and process the ensemble of N normal vectors all at once. To the best of our knowledge, no

one has used the joint sparse recovery formulation, as set out here, in PST.

We can express this idea in a form similar to Eq. 4.2:

Ỹ
k0

= LÑ
k0

+ Ẽ
k0 (5.4)

where Ñ
k0

= (nk0 ,nk1 , · · · ,nkN−1) ∈ R3×N is the ensemble of normal vectors of pixel k0 and

its N − 1 neighbours, Ỹ
k0

= (yk0 ,yk1 · · · ,ykN−1) ∈ Rn×N contains n observations at each

of the N pixels, and Ẽ
k0

= (ek0 , ek1 · · · , ekN−1) ∈ Rn×N is the sparse error matrix for the N

pixels.
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We can further rewrite Eq. 5.4 in the standard form of sparse recovery as in Eq. 5.2:

Ỹ
k0

= (L, I)

(
Ñ

k0

Ẽ
k0

)
= AX̃

k0

(5.5)

where X̃
k0

= (xk0 ,xk1 , · · · ,xkN−1) ∈ R(n+3)×N . Its every column xki is a combination of

nki and eki , i.e.:

xki =

(
nki

eki

)
(5.6)

Now that the surface-light interaction is expressed with the joint linear model that has the

same form as Eq. 5.2, we could approximate the sparse vector X̃
k0 by finding the solution

to Eq. 5.3. In practice, we choose to circumvent this NP-hard combinatorial problem by

solving a relaxed form of Eq. 5.3:

min
X̃k0

N−1∑
i=0

‖yki −Axki‖2 (5.7)

s.t. ‖X̃k0‖0 = ‖xk0‖0 = ‖xk1‖0 = · · · = ‖xkN−1‖0 ≤ s

In order to enforce the smoothness constraint on the surface normal recovery process,

we employ a joint sparse regression algorithm to solve Eq. 5.7 for each pixel and its N − 1

neighbours simultaneously. This technique would eventually result in N normal estimates

for each pixel (except for the pixels on the boundaries of the image, which may have fewer

neighbours). Then the “centre” of all these estimated vectors is taken as the final result.

Here we define each component nx, ny, nz of the “centre” vector n as the median of the

corresponding components across all the N normalized estimated vectors v1,v2, · · · ,vN ,

i.e.:
nx = median(v1x, v2x, · · · , vNx)

ny = median(v1y, v2y, · · · , vNy)

nz = median(v1z, v2z, · · · , vNz)

(5.8)

where (vix, viy, viz) = vi. Note that this is an approximate method that we choose due to its

simplicity. A more rigorous estimation may involve interpolation on the spherical coordinate

system.
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5.2 Simultaneous Orthogonal Matching Pursuit

It has been previously shown in Signal Processing that joint sparse regression problems can be

solved via a generalized form of OMP – Simultaneous Orthogonal Matching Pursuit [62, 63].

Note that “Simultaneous” means the same, here, as what we have termed “Joint”. Similar

to OMP, S-OMP selects the basis that is best correlated with the current residuals at each

iteration step. For the following linear model:

Y = AX (5.9)

where Y ∈ Rn×N is the observation matrix, A ∈ Rn×p is the dictionary matrix (n < p), and

X ∈ Rp×N is a matrix of the N signals to be recovered. Let Ri ∈ Rn×N and ci ∈ Ri be

the residual matrix and the subset of selected column indices in the dictionary A as of the

ith iteration, respectively. We also denote the submatrix of A that comprises the columns

specified by an index set c as A(c). Naturally, the jth column of A is represented by A(j).

In addition, let us denote the residual vector for the dth signal (d ∈ {1, ..., N}), i.e. the dth
column in the residual matrix, by Ri(d) ∈ Rn. The S-OMP algorithm as proposed in [62] is

summarized as follows:

1. Initialize the iteration counter i = 1, residual R0 = Y and index set c0 = ∅.

2. Find a column A(ti) (ti ∈ {1, 2, . . . , p}− ci−1) that is best correlated with the current

residual matrix, or equivalently, solve the following maximization problem:

ti = argmax
j

N∑
d=1

|〈Ri−1(d),A(j)〉| (5.10)

where 〈·, ·〉 represents the inner product.

3. Add ti to the selected set of columns, i.e. update ci = ci−1 ∪ ti.

4. Project the observation Y onto the linear space spanned by A(ci). The projection

matrix is calculated as:

Pi = A(ci)(A(ci)
TA(ci))

(−1)A(ci)
T (5.11)

5. Update the residuals with respect to the new projected observations:

Ri = Y−PiY (5.12)
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6. Update i = i+ 1. Go back to Step 2 until the stopping criterion is met.

Again, assuming that at most 50% of the observations are heavily non-Lambertian, we

choose the stopping criterion to be:

i > n/2 + 3 (5.13)

5.3 Sequential CS-MUSIC

MUltiple SIgnal Classification (MUSIC) is a signal processing algorithm, initially developed

by Schmidt [55] for estimating the direction of arrival (DOA) of signals received by sensor

arrays. It has been found that MUSIC-like criteria can be applied to any joint sparse

regression algorithms to refine the recovered support (i.e. collection of non-zero rows) [39, 38].

In this study, we employ the Sequential Compressive MUSIC algorithm (SeqCS-MUSIC)

proposed in [39] to improve the accuracy of S-OMP. SeqCS-MUSIC consists of two major

steps: Sequential Subspace Estimation and Support Filtering.

5.3.1 Notation

Consider the joint linear model in Eq. 5.9. Let ck ⊂ {1, 2, ...p} ∈ Rk be a set of k indices

of rows in the signal matrix X, and let A(ck) denote a submatrix of A that consists of

the k columns indexed by ck. For any sparse signal in X, we call the set of non-zero rows

its support, denoted by suppX. Naturally we have |suppX| = k for a k-sparse signal. In

addition, we denote the range space of A as R(A), and the projection on the orthogonal

complement of the subspace spanned by columns in A as P⊥R(A).

5.3.2 Support filtering: backward greedy step

The support recovered by a joint sparse recovery algorithm such as S-OMP may only be

partially correct. Let k denote the user specified sparsity of X, and r the rank of the signal

subspace of the observation matrixY. The purpose of the Backward Greedy step is to revisit

each of the k indices in the recovered support and select k − r of them that are most likely

to be correct. The algorithm of this step is as follows:

Algorithm: ck−r = SupportFiltering(A,Y, ck)



CHAPTER 5. CONSTRAINT VIA JOINT SPARSE REGRESSION 34

1. Calculate η(j) = ‖PR([A(ck\{j}) Y])A(j)‖2 for all j ∈ ck.

2. Choose those j’s that give rise to the smallest k − r values of η(j), and put them into

ck−r.

3. Return ck−r.

5.3.3 Sequential subspace estimation: forward greedy step

The MUSIC criterion [39] states that once k− r non-zero entries are correctly found, the re-

maining r entries can be determined unambiguously. In SeqCS-MUSIC, this is done through

the following Forward Greedy step:

Algorithm: ck = SequentialSubsapce(A,Y, ck−r)

1. Initialize the iteration counter d = 1, and let c = ck−r.

2. Apply singular value decomposition on [A(c),Y] = [U1, U0]diag[S1, S0][V1, V0] where

S1 = diag[s1, ..., sk] and S0 = diag[sk+1, ..., sk+d].

3. Solve the following optimization problem:

jd = argmin
j 6∈c

‖P⊥R(U1)
A(j)‖2 (5.14)

4. Add jd to c. Let d = d+ 1.

5. Return to Step 2 if d ≤ r, otherwise let ck = c and terminate.

5.3.4 Full Sequential CS-MUSIC algorithm

Combining the forward and backward greedy steps together, we now have the full SeqCS-

MUSIC algorithm:

ALGORITHM: X = SeqCS-MUSIC(A,Y)

1. Estimate the initial k-support ck using S-OMP.

2. Obtain U which is the rank-r signal subspace estimate of R(Y).
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3. Execute ck−r = SupportFiltering(A,U, ck) to refine the first k − r indices.

4. Execute ck = SequentialSubspace(A,U, ck−r) to recalculate the last r indices.

5. Perform LS only on the columns indexed by ck in A. Return the regressed result X.

5.4 Joint Sparse Solution for Photometric Stereo

Based on the SeqCS-MUSIC algorithm described in Section 5.3.4, our joint sparse PST

algorithm can be stated as follows:

ALGORITHM: Joint Sparse PST

1. For each pixel i in the image, create an empty queue Qi that stores the normal vector

estimates for pixel i. Thus, each element in Qi is a 3-vector.

2. Combine the n observations for pixel i and its 8-neighbours j1(i), j2(i), · · · , j8(i) to

form an n × 9 joint observation matrix Yi. For consistency in notation, we define

j0(i) ≡ i:

Yi =


y
j0(i)
1 y

j1(i)
1 y

j2(i)
1 · · · y

j8(i)
1

y
j0(i)
2 y

j1(i)
2 y

j2(i)
2 · · · y

j8(i)
2

...
...

...
. . .

...

y
j0(i)
n y

j1(i)
n y

j2(i)
n · · · y

j8(i)
n

 (5.15)

3. Solve the joint sparse recovery problem using SeqCS-MUSIC:

Xi = SeqCS-MUSIC(A,Yi) (5.16)

4. Take the first three elements of each column q ∈ {0, 1, ..., 8} in Xi as an estimate vjq(i)

of the normal vector at pixel jq(i). Push each vjq(i) to the end of its corresponding

queue Qjq(i).

5. Repeat Step 2–4 for all pixels.

6. For each pixel i, take all the vectors stored in Qi and obtain the final estimate via

Eq. 5.8.
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Results and Discussion

In this chapter, we present our experimental results and observations on synthesized and

real datasets. All experiments were carried out on a Dell Optiplex 755 computer equipped

with an Intel Core Duo E6550 CPU and 4GB RAM, running Windows 7 Enterprise (64-bit).

All algorithms were implemented in MATLAB R2012a (64-bit).

6.1 Normal Map Recovery

We first examine the angular error of normal maps recovered by different methods on both

synthesized and real datasets. For synthesized datasets, we quantitatively inspect the dif-

ference between the ground truth normal map and the recovered normal maps. For real

datasets without a ground truth map, on the other hand, the recovered normal maps are

examined visually and qualitatively.

6.1.1 Synthesized datasets

Four 3D objects are used for our synthesized datasets in this study: Sphere, Caesar, Buddha

and Venus. All 3D models are either created programmtically as geometrical primitives

(Sphere), or downloaded from the AIM@SHAPE Shape Repository (Caesar, Buddha) [2]

and the INRIA Gamma research database (Venus) [1]. For each object, 50 images are

rendered under various illumination conditions using raytracing software (POV-Ray 3.6) at

a resolution of 200 × 200 (except for Venus, whose resolution is 150 × 250). All scenes

feature significant specularity and large areas of cast shadow. Caesar, Buddha and Venus

36
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are rendered with the Specular Highlight shading model provided by POV-Ray (a modified

version of the Phong model) [3], and Sphere is rendered with a pure Phong model. A

checkered plane is intentionally included in the rendered scenes as background to (1) make

the cast shadow visible and (2) add further challenges to the algorithms since it introduces

local fluctuation in luminance while the surface normals remain constant. Sample images

from these datasets are shown in Fig. 6.1.

For each image set, the normal map is estimated using regular OMP and SeqCS-MUSIC

methods as proposed in this study. For comparison, we show the results given by two other

state-of-the-art sparse recovery methods – Iteratively Reweighted L1 optimization (IRL1)

and Sparse Bayesian Learning (SBL). Two other outlier detection based methods, LMS and

LMS Mode finder, are also applied and compared. Then, the angular error between the

normal map recovered using each method and the ground truth is quantitatively measured.

Note that only results for Caesar, Sphere and Buddha are shown in this section. The fourth

dataset Venus is reserved for later in Section 6.2.2 as a failure case.

We found these methods exhibit similar relative performance to each other on all three

datasets tested in this section – Caesar, Sphere, and Buddha. In Caesar, the normal maps

recovered using OMP (Fig. 6.2e) and SeqCS-MUSIC (Fig. 6.2i) have a higher quality than

those by IRL1 (Fig. 6.2g) and SBL (Fig. 6.2k) both qualitatively and quantitatively. We

observe that IRL1 and SBL, although much more robust than LS, still produce a considerable

error at highly specular regions, most notably the cheek and the forehead. As a result, the

faces on IRL1 and SBL normal maps appear to be more protruding than the ground truth.

Also, some fine details on these two normal maps, such as the wrinkles on the forehead, are

not well preserved. In addition, IRL1 and SBL fail to handle the regions right beside the

neck which are heavily shadowed.

On the other hand, OMP and SeqCS-MUSIC show a higher degree of robustness than

previous sparse methods at specularity-affected regions (cheek, forehead and nose) as well

as shadowed regions (areas around the neck on the checkered background), resulting in a

normal map closer to the original. For example, the forehead appears flat on OMP and

SeqCS-MUSIC normal maps, closely resembling the ground truth. The wrinkles are almost

perfectly recovered. However, OMP appears to be confused by the checkered pattern of the

background, producing a small angular error in these flat regions. This error is eliminated

by SeqCS-MUSIC. Overall, the SeqCS-MUSIC result is visually smoother and statistically

more robust than OMP.
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The LMS result (Fig. 6.2m) is better than IRL1 and SBL, but worse than OMP and

SeqCS-MUSIC. The 1D version of LMS – LMS Mode finder – produces a poorer visual

result (Fig. 6.2o) compared to the other robust methods, although it does give a statistically

more reliable result than LS. We will exclude this method from future discussion but still

show its result for reference.

The effect of specularity on normal map recovery can be further seen from the results for

the Sphere dataset in Fig. 6.3. Again, IRL1 and SBL results are noisy in the specularity-

affected areas, whereas OMP and SeqCS-MUSIC give much cleaner results. LMS performs

similarly to OMP and SeqCS-MUSIC. Interestingly, a pentagon-shaped pattern is visible on

each error map because there are exactly five lights at each elevation angle.

For Buddha, OMP and SeqCS-MUSIC again produce more accurate results than IRL1

and SBL. The angular error distribution of the LMS result is similar to that of OMP and

SeqCS-MUSIC, though with a slightly larger overall error.

From the normal map recovery results obtained on the three datasets, we can see that

OMP and SeqCS-MUSIC generally perform better than IRL1 and SBL on convex objects

and are more resistant to specularities and cast shadows. The statistical result for the

angular error of the normal maps recovered with different methods are listed in Table 6.1.

The SeqCS-MUSIC results have the lowest mean, median, 25% and 75% quantiles, as well

as standard deviation for all three datasets. The performance of OMP is comparable to

SeqCS-MUSIC. The LMS result is better than IRL1 and SBL, but worse than OMP and

SeqCS-MUSIC. These results are also depicted in Fig. 6.5. Curiously, we notice that the

estimation accuracy is generally lower on Sphere than Caesar, despite the simple geometry

of the former. This may be jointly caused by the unique lighting model, surface colour and

material that Sphere is rendered with. The exact explanation for this observation requires

further investigation in the future.

As is witnessed on the Buddha dataset, both OMP and SeqCS-MUSIC perform less

optimally than IRL1 and SBL on small concave regions that are rarely illuminated, such as

the creases on the clothes. This problem also occurs for Caesar on the medial side of the eyes

and under the eyebrows. It is a lesser concern for objects that are generally convex such as

Caesar and Buddha, but may exert a strong negative influence on a scene that contains large

concave areas. We will demonstrate the result for such a scene using Venus in Section 6.2.2.
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Caesar

Sphere

Buddha

Venus

Figure 6.1: Sample images from four synthesized datasets rendered with POV-Ray. From
top row to bottom row: Caesar, Sphere, Buddha and Venus.
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Figure 6.2: Normal maps of a head statue of Caesar recovered using seven methods. (a)
Ground truth normal map. (b) Colour wheel and colour bar used for normal and angu-
lar error visualization, respectively. Angular error is measured in degrees. (c,e,g,i,k,m,o)
Normal maps recovered using LS, OMP, IRL1, SeqCS-MUSIC, SBL, LMS and LMS-Mode,
respectively. (d,f,h,j,l,n,p) Angular error of normal maps recovered using the aforementioned
methods.
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Figure 6.3: Normal maps of an ideal sphere recovered using seven methods. (a) Ground truth
normal map. (b) Colour wheel and colour bar used for normal and angular error visualization,
respectively. Angular error is measured in degrees. (c,e,g,i,k,m,o) Normal maps recovered
using LS, OMP, IRL1, SeqCS-MUSIC, SBL, LMS and LMS-Mode, respectively. (d,f,h,j,l,n,p)
Angular error of normal maps recovered using the aforementioned methods.
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(e) OMP (f) OMP Error (g) IRL1 (h) IRL1 Error
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ror
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Figure 6.4: Normal maps of a Buddha statue recovered using seven methods. (a) Ground
truth normal map. (b) Colour wheel and colour bar used for normal and angular error
visualization, respectively. Angular error is measured in degrees. (c,e,g,i,k,m,o) Normal maps
recovered using LS, OMP, IRL1, SeqCS-MUSIC, SBL, LMS and LMS-Mode, respectively.
(d,f,h,j,l,n,p) Angular error of normal maps recovered using the aforementioned methods.
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25% Quantile Median Mean 75% Quantile STD

Dataset Caesar

LS 4.669 8.586 9.672 14.32 5.875
LMS Mode 1.313 6.769 8.148 13.46 7.620

LMS 1.335 2.692 3.700 4.305 4.242
IRL1 1.854 3.339 5.276 6.440 5.080
SBL 1.576 2.441 4.487 4.488 5.158
OMP 0.7571 2.624 2.424 2.690 3.332

SeqCS-MUSIC 0.000 0.7532 1.817 2.624 3.297

Dataset Sphere

LS 7.255 12.23 13.55 20.79 7.566
LMS Mode 1.658 4.939 6.211 9.907 4.901

LMS 2.588 3.601 3.261 4.030 1.103
IRL1 3.045 4.253 4.960 5.662 3.119
SBL 2.762 3.620 3.671 4.239 1.822
OMP 2.617 3.051 3.179 3.991 0.9324

SeqCS-MUSIC 0.7381 3.089 2.584 3.987 1.603

Dataset Buddha

LS 9.039 14.03 15.29 20.19 8.25
LMS Mode 7.304 14.70 17.42 25.03 13.79

LMS 1.985 4.736 8.454 6.391 15.35
IRL1 4.066 7.354 10.08 13.28 9.178
SBL 2.412 5.295 8.034 9.333 9.479
OMP 1.289 3.049 7.065 5.495 14.17

SeqCS-MUSIC 1.206 3.135 7.047 6.023 13.19

Table 6.1: Statistics for the angular error between the normal maps recovered for seven
methods and the ground truth, for three synthesized datasets. All numbers are shown in
degrees.
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(b) Sphere
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(c) Buddha

Figure 6.5: Angular error of normal maps recovered using seven methods. Red horizontal
lines indicate medians. Upper and lower border of blue boxes represent third (Q3) and
first quartile (Q1), respectively. Upper and lower whiskers show 1.0 Interquartile Range
(the difference between the upper and lower quartiles, the IQR) extended from Q3 and Q1,
respectively.
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6.1.2 Comparison via reconstructed surfaces

Using the normal maps recovered with various methods, we also reconstruct 3D surfaces

with the Frankot-Chellapa method [29] to directly compare the shapes. Here only the recon-

struction result for Caesar is used for demonstration. It is apparent from Fig. 6.6 that in

the LS, IRL1 and SBL results, the overall shape of the face appears to be more protruding

then it actually is, especially at the eyebrow ridge and the nose, whereas the OMP and

SeqCS-MUSIC methods manage to preserve the shape accurately. Again, the LMS result

appears to be less protruding than IRL1 and SBL results, although still not as accurate

as OMP and SeqCS-MUSIC. We speculate that the exaggerated convexity originates from

the inaccurately estimated normal vectors at highlight areas, such as the forehead and the

nose. Since our greedy algorithms generally provide a better recovery in those regions, they

naturally yield a more accurate shape recovery.

6.1.3 Real datasets

Three datasets of real-world scenes are tested in this study: Gold, an ancient golden coin,

Elba, an Italian relief sculpture, and Frag, a much-decorated golden frame (that surrounds

a painting by Fragonard). Sample images of the three datasets are shown in Fig. 6.7.

The advantages and disadvantages of the methods we found using synthesized datasets

are also observed in the real datasets. Most images in dataset Gold have a large area of

cast shadow. The influence of shadow can be clearly seen on the normal maps recovered by

LS, IRL1 and SBL (Fig. 6.8A1, A2 and A3, respectively), but is completely eliminated by

OMP and SeqCS-MUSIC (Fig. 6.8A4 and A5, respectively). As for Elba, the scene contains

a large number of small concave regions such as the pleats on the curtain. As expected,

greedy algorithms fail at these regions. Again we notice that the LS, IRL1 and SBL results

are more protruding than the greedy results, for both Gold and Elba (Fig. 6.8A1–A5 and

B1–B5). Although there is not a ground truth normal map to support our speculation, it

is reasonable to argue that the non-greedy algorithms exaggerate the convexity of Elba, as

was the case for Caesar (Fig. 6.6). The complex geometry of the object in our third dataset

– Frag – accounts for the noisy estimates observed in concave regions in the greedy normal

maps (Fig. 6.8C4 and C5). Note that the non-greedy results also show a large degree of

inaccuracy in these regions (Fig. 6.8C1–C3), but in a less noticeable manner since these

artifacts are usually smoothly blended into less-affected areas.
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(a) LS (b) Ground Truth (c) LMS

(d) IRL1 (e) Ground Truth (f) OMP

(g) SBL (h) Ground Truth (i) SeqCS-MUSIC

Figure 6.6: Three-dimensional surfaces reconstructed from normal maps. (b, e, h) Depth
map recovered with the ground truth normal map. The three ground truth depth maps
are identical and are intentionally duplicated for the convenience of visual comparison. (a,
d, g, c, f, i) Depth maps recovered using LS, IRL1, SBL, LMS, OMP, and SeqCS-MUSIC,
respectively.
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Gold

Elba

Frag

Figure 6.7: Sample images from three datasets of real-world scenes. From top row to bottom
row: Gold, Elba, and Frag.
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A B C

(1) LS

(2) IRL1

(3) SBL

(4) OMP

(5) SeqCS-
MUSIC

(6) LMS

Figure 6.8: Normal maps for three real-world datasets recovered using various methods.
Column A–C represent dataset Gold, Elba and Frag, respectively. Row (1)–(6) show results
using LS, IRL1, SBL, OMP, SeqCS-MUSIC and LMS, respectively.
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6.2 Robustness

For a better understanding of how well these methods behave in the presence of non-

Lambertian effects, we tested their performance on Sphere with varying degrees of spec-

ularity, and on Venus where a large portion of the scene is concave and as such, is heavily

polluted by cast shadow. To find out the robustness of these methods against external error

introduced by the experimental setup, we also tested the methods with additive image noise

and light calibration error.

6.2.1 Specularity

We rendered five datasets of the same object Sphere with highlight areas of various sizes

(Fig. 6.9, top row), and tested how the size of the specular region affects the performance of

our sparse regression methods. The size of the highlight is controlled by the phong_size

parameter in POV-Ray [3]. We found that although the accuracy of all four methods com-

pared (IRL1, SBL, OMP, SeqCS-MUSIC) decreases as the specular size increases, the greedy

algorithms are less affected (Fig. 6.9, middle and bottom figures).

6.2.2 Shadow and concavity: a failure case

In Section 6.1.1, we have already noticed the possibility that the performance of our greedy

algorithms may be negatively affected at shadowed concave regions. Here, we use the Venus

dataset to further demonstrate this observation. In Venus (Fig. 6.1 bottom row), the convex

foreground (the Venus statue) and the concave background (the dome) are well separated,

allowing us to clearly inspect the performance of algorithms on different regions.

The result is shown in Fig. 6.10. As speculated, greedy methods show robustness in

shiny, convex regions such as the outer rim of the dome, and on the statue itself, but fail

on the heavily shadowed background. The other three methods (LS, IRL1 and SBL), on

the contrary, suffer from noticeable angular error in convex areas. However, they are less

severely affected by shadow and concavity on the background than greedy methods. Overall,

the normal map recovered with greedy approaches are less smooth for Venus due to the

inaccurate estimation of normal vectors in the concave regions.
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Figure 6.9: Robustness of sparse recovery methods against specularity. Upper row: Sample
rendered images with phong_size 10–160, respectively from left to right. Middle figure:
Boxplot of the angular error of normal maps under various degrees of specularity. Upper
and lower border of blue boxes represent third (Q3) and first quartile (Q1), respectively.
Upper and lower whiskers show 1.0 Interquartile Range (IQR) extended from Q3 and Q1,
respectively. Red bars in blue boxes represent medians. At each specularity level, four sparse
recovery methods are compared, symbolized by different markers on the median bar: IRL1
(cross), SBL (triangle), OMP (diamond), and SeqCS-MUSIC (square). Red dots are outliers
distributed out of the error bar range. Lower figure: the medians of the angular error.
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(a) Ground Truth
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(b) Colour Scheme (c) LS (d) LS Error

(e) OMP (f) OMP Error (g) IRL1 (h) IRL1 Error

(i) SeqCS-MUSIC (j) SeqCS-MUSIC
Error

(k) SBL (l) SBL Error

Figure 6.10: Normal maps of the Venus dataset recovered using various methods. (a) Ground
truth normal map. (b) Colour wheel and colour bar used for normal and angular error
visualization, respectively. Angular error is measured in degrees. (c,e,g,i,k) Normal maps
recovered using LS, OMP, IRL1, SeqCS-MUSIC and SBL, respectively. (d,f,h,j,l) Angular
error of normal maps recovered using the aforementioned methods.
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6.2.3 Image noise

We tested four sparse algorithms (IRL1, SBL, OMP and SeqCS-MUSIC) against Gaussian

noise as well as salt and pepper noise. For Gaussian noise (Fig. 6.11), the accuracy of all

four methods drastically decreases as the noise level increases. Although greedy methods

appear to be slightly more adversely affected by noise, the joint recovery method SeqCS-

MUSIC still outperforms IRL1 and SBL while the noise distribution σ is within the range of

[0, 0.016]. On the other hand, all four methods are quite insensitive to salt and pepper noise

(Fig. 6.12). Although the performance of SeqCS-MUSIC remains the best among the four

methods across all experimental conditions, it does show a slight decrease in performance at

high levels of salt and pepper noise. This may indicate that the improvement introduced by

SeqCS-MUSIC is more likely to be accounted for by the MUSIC step on a per pixel level,

rather than the joint sparse recovery scheme.

6.2.4 Light calibration error

There might be cases when the lighting directions are not properly calibrated. That is, the

assumed lighting directions deviate from their actual values. In this test, we introduce for

every assumed lighting vector a fixed angular perturbation, ranging from 2◦ to 32◦, at a

random direction, while keeping the actual arrangement of lights unchanged.

We tested the performance of the sparse methods under various degrees of light calibra-

tion error on the Caesar dataset. The actual arrangement of lights is displayed in Fig. 6.13

(leftmost plot on the top row). As an increasingly greater random perturbation is added

to the assumed lighting directions, the angular error gradually increases for all four sparse

methods. Note that OMP appears to be most susceptible to the random calibration er-

ror, especially when the perturbation reaches 32◦. This problem is partially eliminated by

SeqCS-MUSIC.

Also note that in Fig. 6.13 (bottom), the median of the angular error produced by

OMP slightly decreases at 16◦ compared to previous conditions. We believe that this is a

fluctuation caused by the particular arrangement of lights at this condition. Despite this

decrease in the median, the widths of the error distributions steadily increase at 16◦ for all

four methods, as can be clearly seen from Fig. 6.13 (middle).



CHAPTER 6. RESULTS AND DISCUSSION 53

0 0.002 0.004 0.008 0.016
0

10

20

30

40

50

Noise Level (σ)

A
n

g
u

la
r 

E
rr

o
r(

d
e

g
re

e
s
)

 

 

IRL1

SBL

OMP

SeqCS−MUSIC

0 0.002 0.004 0.008 0.016
0

5

10

15

Noise Level (σ)

M
e

d
ia

n
 o

f 
A

n
g

u
la

r 
E

rr
o

r 
(d

e
g

re
e

s
)

 

 

IRL1

SBL

OMP

SeqCS−MUSIC

Figure 6.11: Robustness of sparse recovery methods against Gaussian noise. Upper row:
Sample images rendered with Gaussian noise of Mean = 0.5, and STD = 0 – 0.016 , respec-
tively from left to right. Middle figure: Boxplot of the angular error of normal maps under
various degrees of Gaussian noise. Upper and lower border of blue boxes represent third
(Q3) and first quartile (Q1), respectively. Upper and lower whiskers show 1.0 Interquartile
Range (IQR) extended from Q3 and Q1, respectively. Red bars in blue boxes represent
medians. At each noise level, four sparse recovery methods are compared, symbolized by
different markers on the median bar: IRL1 (cross), SBL (triangle), OMP (diamond), and
SeqCS-MUSIC (square). Lower figure: the medians of angular error.
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Figure 6.12: Robustness of sparse recovery methods against salt and pepper noise. Upper
row: Sample images rendered with salt and pepper noise of density = 0 – 4%, respectively
from left to right. Middle figure: Boxplot of the angular error of normal maps under various
degrees of salt and pepper noise. Upper and lower border of blue boxes represent third
(Q3) and first quartile (Q1), respectively. Upper and lower whiskers show 1.0 Interquartile
Range (IQR) extended from Q3 and Q1, respectively. Red bars in blue boxes represent
medians. At each noise level, four sparse recovery methods are compared, symbolized by
different markers on the median bar: IRL1 (cross), SBL (triangle), OMP (diamond), and
SeqCS-MUSIC (square). Lower figure: the medians of angular error.
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Figure 6.13: Robustness of sparse recovery methods against light calibration error. Top row:
Leftmost plot shows actual light positions under which the dataset is generated. Remaining
plots show miscalibrated light positions with angular perturbations (2◦ − 32◦, from left
to right) from the actual light positions at random directions. Middle figure: Boxplot of
the angular error of normal maps under various degrees of light calibration error. Upper
and lower border of blue boxes represent third (Q3) and first quartile (Q1), respectively.
Upper and lower whiskers show 1.0 Interquartile Range (IQR) extended from Q3 and Q1,
respectively. Red bars in blue boxes represent medians. At each angular perturbation level,
four sparse recovery methods are compared, symbolized by different markers on the median
bar: IRL1 (cross), SBL (triangle), OMP (diamond), and SeqCS-MUSIC (square). Bottom
figure: the medians of angular error.
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6.3 Efficiency

The actual per-pixel processing time for the MATLAB implementation of the seven algo-

rithms tested in this study are reported in Fig. 6.14. The maximum number of iterations for

IRL1 and SBL are set to 100 although the iteration will be terminated as soon as another

stopping criterion is met; OMP and SeqCS-MUSIC always terminate after exactly 28 itera-

tions for our datasets of 50 images; for LMS, the number of iterations is fixed at 1500 and

this number is simply reduced to 50 for the simpler 1D LMS Mode finder.

In our current implementation, the running time of OMP (4.823 ms/pixel) and SeqCS-

MUSIC (19.45 ms/pixel) are comparable to IRL1 (3.338 ms/pixel) and SBL (15.19 ms/pixel),

respectively. LMS is the slowest (57.48 ms/pixel), though it can be made faster with fewer

iterations at the expense of accuracy.
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Figure 6.14: Average running time (per pixel) of photometric stereo algorithms measured in
milliseconds.
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6.4 Summary

Based on the experimental results above, we have come to the conclusion that greedy al-

gorithms overall have a higher accuracy than L1 minimization and SBL with a comparable

efficiency, though greedy approaches may be less robust in poorly illuminated regions. LMS

is close to greedy algorithms in accuracy, despite its low efficiency. The algorithms tested in

this chapter are summarized and compared in Table 6.2.

Robustness Smoothness Efficiency
Over-
all

High-
light Shadow Concav-

ity

LS Very
Low

Very
Low

Very
Low

Very
Low Very High Very High

LMS Very
High

Very
High

Very
High – – Low Very Low

LMS
Mode Low Low Low – – Medium High

IRL1 High High High Medium High High

SBL High High High Medium High Low

OMP Very
High

Very
High

Very
High Low Medium High

SeqCS-
MUSIC

Very
High

Very
High

Very
High Low Medium Low

Table 6.2: Qualitative comparison of photometric stereo algorithms. The performance is
evaluated on a five-level scale: “Very Low”, “Low”, “Medium”, “High”, and “Very High”.
Fields that are not available are indicated by a “– –” sign.
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Conclusion and Future Work

In this study, the classical PST is reformulated as the canonical form of sparse recovery, and a

greedy algorithm – Orthogonal Matching Pursuit (OMP) – is applied to solve the problem.

Our formulation is different from previous ones [69, 33] in that the former incorporates

normal vector components and non-Lambertian errors in one combined vector, allowing for

the straightforward application of OMP. In order for OMP to obtain normal estimations,

the normal vector components have to be selected before the iteration stops. Although it is

not theoretically guaranteed, we observed that the normal components are always selected

within the first few iterations in the datasets we tested, unless some components are indeed

zero or very close to zero. We also speculate that the dictionary matrix in our formulation

is near-orthonormal and satisfies the conditions required by OMP to achieve exact recovery.

As an extension to the pixel-wise estimation scheme, a joint sparse recovery formulation

is also introduced. In this framework, many adjacent pixels are estimated simultaneously

through joint sparse recovery and up to 9 estimates of normal vectors will be obtained for

each pixel. Then the centre vector of these estimates is deemed to be the final result. The

Simultaneous Orthogonal Matching Pursuit (S-OMP) algorithm is employed as the base

solver, and Sequential Compressive MUSIC (SeqCS-MUSIC) is applied to refine the support

recovery result of OMP.

We found that our greedy methods – OMP and SeqCS-MUSIC – in general outperform

other state-of-the-art sparse solvers such as IRL1 and SBL [33] with little loss of efficiency.

In particular, the greedy methods provide a more numerically accurate estimation of normal

vectors in the presence of common non-Lambertian effects such as highlights and cast shad-

ows, although they may occasionally fail at concave areas that are poorly illuminated. In

58
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addition, all sparse methods tested are reasonably robust against additive image noise and

lighting calibration error.

Another two outlier-removal based methods – LMS and LMS Mode finder – are also

tested in this study for comparison. LMS results are overall statistically more accurate

than IRL1 and SBL, but less so than OMP and SeqCS-MUSIC. LMS Mode finder, the

1D simplification of LMS, shows some robustness against non-Lambertian errors, especially

highlights, but performs poorly against cast shadows.

This study opens up many possible directions for future research. First, a great number

of sparse recovery algorithms have already been proposed in the past few decades, each

designed for a specific formulation. Even within the domain of greedy algorithms, there are

many potential candidates aside from OMP that may be directly applied to PST. It would

be interesting to explore this large repertoire of sparse formulations and recovery algorithms

to find an optimal method for the PST problem.

Another future research topic is on enforcing a better smoothness constraint onto the

pixel-wise sparse regression. One may notice that the normal maps recovered with LS, IRL1

and SBL are usually visually smooth, even though they may greatly deviate from the ground

truth. On the other hand, smoothness cannot be guaranteed by a pure greedy algorithm,

especially in shadowed concave regions. The joint sparse formulation and SeqCS-MUSIC

relieve this problem with moderate success. However, in large regions where a pixel and

all its neighbours are inadequately illuminated, the improvement on smoothness introduced

by the joint sparse framework is limited. Moreover, the backward and forward greedy steps

in SeqCS-MUSIC are very time-consuming. Thus, more work needs to be done in order to

construct an efficient and strong smoothness constraint that addresses shadows and concavity

gracefully.

It has been shown that sparse methods such as IRL1 and SBL can be used to estimate the

lighting directions in the context of uncalibrated PST [6]. It is highly possible that greedy

algorithms can also be applied to this problem. Future studies may reveal more applications

of greedy algorithms in different aspects of the PST framework.
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