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Abstract 

This thesis proposes a solution to augment temporal coherency in 

painterly rendered computer animation sequences, using a computer engineering 

approach.  Painterly is a cognitive knowledge-based parameterized Non Photo-

realistic toolkit for creating artistically rendered still imagery.  Therefore, it is incapable of 

maintaining temporal coherency of rendered animation frames.  Consequently, movies 

rendered by Painterly demonstrate a significant amount of flickering.  We proposed and 

developed CPA - a system to enhance temporal coherency in the sequences rendered 

by Painterly.  CPA utilizes Painterly’s cognitive and perceptual knowledge space and 

induces coherency in the outputted results, by controlling and executing the main part of 

frame synthesis process.  We created cognitive-based painterly rendered sequences 

which showed a good deal of improvement in maintaining temporal cohesiveness.  

Furthermore, by incorporating the element of ‘time’ in Painterly’s frame synthesis 

process, we expanded its scope from being a still-oriented and state-less toolkit to a 

more multipurpose and state-full system. 

 

Keywords:  Non Photorealistic Rendering; Painterly Rendering; Stroke-Based 
Painterly; NPR Animation; Keyframing; Painterly Toolkit; Cognitive NPR; 
Temporal Coherence 
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1. Introduction  

This work proposes a solution to augment temporal coherency1 in Computer 

Graphics Imagery (CGI) painterly rendered animation/movie sequences, using a 

software engineering approach. Our proposed system, which is called CPA, incorporates 

aspects of humans’ cognitive and perception knowledge space in the frame synthesis 

process to create a coherent animated movie. This knowledge space is imported to CPA 

through using the Painterly toolkit as a base system. Painterly is a stroke-based 

parameterized Non-Photorealistic Rendering (NPR) toolkit which produces artistic 

rendered still images. Here, we explain our approach and provide some background 

information for the key topics and challenges of painterly animation which lead us to 

undertake this research work. We proceed with explaining our motivation and finish the 

Chapter with a short overview of the entire thesis work. 

1.1. Background and Challenges 

Non-Photorealistic Rendering (NPR) is a computer graphics technique for 

creating imagery inspired by cartoons, painting, drawing, technical illustration, etc. In this 

sense, it is different from other computer graphics techniques which focus more on 

photorealism2. An NPR system renders the input image into a non-realistic style such as 

a drawing, painting or cartoon. Different elements of the scene/image can be 

emphasized, deemphasized or abstracted to convey different amounts of information, 

appropriate to the desired narrative or artistic purpose. This fact alone makes NPR 

images very versatile in style and application. The main focus of this thesis work is on 

 
1
  Temporal coherence means maintaining the aesthetic completeness of the animation by 

controlling the movement and style of the objects, shapes and pixels in the frames over a 
certain time span. 

2
  The genre of painting that appears to be photographic, by using photographs to collect visual 

information.  
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stroke-base NPR systems. These systems typically accept an input image (2D or 3D) 

and create a list of strokes, which are then rendered onto a virtual digital canvas. Each 

of these strokes also, has a set of style-properties (e.g. size, color and orientation) 

determining how that stroke will be rendered onto the reference canvas. 

Painterly NPR is a subset of NPR with its basic inspiration coming from different 

styles of painting such as impressionism, expressionism, pen and ink, watercolor, etc. 

Painterly rendering holds big promises and potentials, with a wide range of applications 

from arts and design to gaming and even learning and medicine(DiPaola, 2007). 

Past studies have shown a relation between the rendering style (photorealistic or 

non-photorealistic) and humans’ perception and feeling about the rendered object. Even 

within a single style such as painterly NPR, different emotions and perceptions are 

evoked in viewers, through changing the settings and properties (e.g. brush size, 

texture, color palette, etc.) (Colton, Valstar, & Pantic, 2008; Duke, Barnard, Halper, & 

Mellin, 2003; Halper, Mellin, Herrmann, Linneweber, & Strothotte, 2003; Pelachaud & 

Bilvi, 2003; Shugrina, Betke, & Collomosse, 2006).  Furthermore, recent studies by using 

our lab’s  Painterly toolkit (DiPaola, 2007; “iVizLab - Simon Fraser University,” 2013) 

have demonstrated that textural detail of a painting, also, affects the viewers’ gaze 

pattern, while looking at the reference painting (DiPaola, Riebe, & Enns, 2010, 2013). As 

well, the colour and stroke types of painterly rendered 3D faces can affect emotion of the 

viewer (H. Seifi, DiPaola, & Arya, 2011; Hasti Seifi, 2010). All these studies emphasize 

the strong connection between a painterly rendering style and humans’ perception 

knowledge, which if can be best understood and utilized via computer modeling, creates 

a vast research potential to exploit.   

Painterly is a parameterized cognitive knowledge-based NPR system which 

came along as a research toolkit to explore the joint areas of art and design, 

computational science, and humans’ perception and cognition. This toolkit was 

conceptualized, designed and implemented by Steve DiPaola and former members of 

iVizLab (DiPaola, 2007, 2009; “iVizLab - Simon Fraser University,” 2013). While the 

majority of the works in painterly NPR have focused more on optimizing the algorithms 

or creating a wider variety of styles; Painterly’s goal and effort has mainly been to 

provide a research tool to bridge between artistic and scientific approaches in the 
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process of artistic and cognitive knowledge acquisition. It leverages human artists’ 

cognitive knowledge model, of how they approach (create and/or view) a painting work 

of art, inside the computational process of painterly rendering (DiPaola, 2007, 2009). By 

creating a rather ‘informed’ painting procedure, Painterly intends to approach the 

process of artistic painting, the way a human artist does, using computational modeling 

of the cognitive process. Note, in this thesis, we will refer to the Painterly toolkit software 

system with italics – that is Painterly - and the general NPR subfield without italics – that 

is “painterly rendering” or “painterly NPR”. Despite being part of Painterly’s research 

team, in the context of this thesis we will address this toolkit only by its full name, as 

Painterly. Also, we will refer to its research team as Painterly team. This is to avoid any 

possible confusion about the new proposed solution and developed subsystem of this 

thesis work – called CPA - and the Painterly toolkit. 

The computer graphics software field of painterly rendering has been around 

since 1990 (Haeberli, 1990) and is in a somewhat maturing state. However, painterly 

animation, that is a moving sequence of NPR images into a full coherent animation, 

certainly is rather a newly-introduces subject in this field. Regardless, it has been getting 

a considerable attention from researchers. Many research works have been exploring 

this paradigm, proposing automatic and semiautomatic systems and algorithms for 

painterly rendering movies or animation sequences, some being more successful in 

delivering better quality results than others.  

Stroke-based painterly rendered animation, which is also the main focus of this 

work, still faces two main non-trivial challenges. These two issues can be summarized 

as 1) ‘Shower Door Effect’ or ‘drifting apart strokes’ (Meier, 1996) and 2) lack of temporal 

coherency, also known as ‘Swimming’ (John P Collomosse, Rowntree, & Hall, 2005), 

‘Scintillation’, or unwanted flickering (Hays & Essa, 2004; L. Lin et al., 2010). The latter 

issue has been the main subject of this thesis work as well.  

The Shower Door Effect occurs when the strokes drift apart from a painted 

object’s surface and appear to be stuck more on the view pane. This issue creates the 

illusion that the painterly rendered image is seen through a semi-transparent shower 

door with the strokes fixed on the image plane instead of the object surface (Meier, 

1996). 
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Temporal incoherency appears as an uncontrolled motion or flickering in the 

animation. It severely damages the aesthetics of the resulted sequence. It also distracts 

the viewer from the sequence-content by producing unwanted perceptual cues (J. P. 

Collomosse, Rowntree, & Hall, 2005). Therefore, the temporal coherency issue has 

been a significant pragmatic challenge, attended to by various researchers through 

many different approaches and techniques such as: object-space methods, motion 

maps, optical flow, vector fields, etc. (Hays & Essa, 2004; Hertzmann & Perlin, 2000; 

Litwinowicz, 1997; Olsen, Maxwell, & Gooch, 2005; Park & Yoon, 2008). It should be 

noted that some amount of flickering in a computer-based painterly animation is 

acceptable, since flickering has always existed in the many decades of the traditional 

hand drawn painterly  art animation field. So, human viewers are used to perceiving 

some amount of flickering as the norm in this type of non-cell based art animation work. 

Therefore, the main goal of computer based NPR in the subject of temporal coherency 

issue is getting the flickering to an acceptably low level, without introducing other 

artifacts in the results. 

Apart from the common approaches in creating aesthetically pleasant and more 

coherent results or wider range of styles; making an ‘informed’ video painting process is 

something not many notable researchers have paid attention to (Agarwala, Hertzmann, 

Salesin, & Seitz, 2004; M. Kagaya et al., 2011; L. Lin et al., 2010). Utilizing image-

content information and scene semantics in the process of painterly rendering, with an 

eye on maintaining coherency, is the general research flow of aforementioned works and 

also this thesis.  

1.1.1. Research Goals: Why Should We Care? 

Why do we think using an image-content information approach is important in 

solving the temporal coherency issue in computer based NPR?  Increasing the levels of 

visual expressiveness and semantic effectiveness, especially in a painterly animation, is 

what animators are trying to achieve via different techniques and methods, from utilizing 

various external elements such as lighting to the usage of scene compositions.  In this 

way, they not only enhance the general emotional impact of the scene, but also can 

specifically convey any desired narrative or evoke an emotion by drawing and directing 

the viewers’ attention to a particular region of the frame/movie sequence.  Recent eye 
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tracking based human vision studies have shown that painters can easily and effectively 

guide the viewers’ gaze through a portrait painting piece, just by using some tacit 

knowledge about perception and painting techniques to exploit this knowledge (DiPaola 

et al., 2013). There is also some evidence that painters, as early as Rembrandt, were 

completely aware of this fact and successfully exploited these techniques to tell a 

specific narrative by affecting the viewers’ perception of the scene or sitter (DiPaola et 

al., 2010). Painterly has also shown in psychological studies conducted at the UBC 

Vision Lab3 (H. Seifi et al., 2011; Hasti Seifi, 2010) that variable use of NPR colour and 

stroke properties used on game like 3D facial characters can influence the viewer’s 

sense of the emotion of that character, and therefor NPR colour and stroke choice can 

be used as a new emotional authoring tool, much like face expression and music is 

currently, in avatar and video character design.  We believe that by incorporating 

humans’ perception and cognitive knowledge in the procedure of video painting, 

animators can enhance the visual or semantic expressiveness of the animation and 

narrative of the sequence.  And of course, reducing the annoying and distracting visual 

artifacts, such as flickering, is an inevitable step in achieving a more aesthetically 

pleasing and effective result. 

Painterly is an NPR toolkit which exerts humans’ perception and cognitive 

knowledge space in the computational painting process, but puts forward an unexplored 

challenge for video painting which is temporal coherency.  Focusing mainly on still 

images, it renders every single frame separately, without passing through the rendering-

information to the next frames.  Therefore, generated brush strokes are not necessarily 

cohesive through successive frames of a sequence, in the sense of orientation, length, 

size and color.  Coupling a system like Painterly, which combines this cognitive 

knowledge space with NPR techniques, with a method to alleviate its coherency 

problem, would expand the scope of Painterly; changing it from a ‘time-insensitive’ and 

stateless system, to a stateful and multipurpose one4.  This expansion in the domain of 

 
3
  http://www2.psych.ubc.ca/~ennslab/Vision_Lab/Home.html 

4
  In the context of computer science, state is used as a set of conditions at a moment in time. 

Stateful and stateless describe whether a system is designed to note and remember one or 
more preceding states in a given sequence of interactions with a user, another computer or 
program, or other outside element, in a reference time.  

http://www2.psych.ubc.ca/~ennslab/Vision_Lab/Home.html


 

6 

Painterly will certainly be a first step in pushing the boundaries of human perception 

studies further, by providing a wider space to explore and facilitating the research 

process with a more powerful toolkit, in entertainment, emotion and gesture research, in 

cognition research and in health areas such as face to face autism research that our lab 

is undertaking.  This expansion is one of the main goals of this thesis work. 

1.2. Motivation 

The motivation of this thesis work was reinforced when our Painterly team 

(“iVizLab - Simon Fraser University,” 2013) collaborated with the former 

cinematographer of Pixar, Jerrica Cleland and her pre-visualization company5 as part of 

an industry-research partnership grant from NSERC Engage6. Cleland was interested in 

pushing the state-of-the-art in NPR, by providing professional stills and animation 

sequences of a movie scene with a vast variety of visual styles and aesthetics, in an 

efficient time scale.  The purpose of generating these stills and sequences was to help 

the movie director decide on the visual style, design and look of the scene they wanted 

to shoot.  At the time, their company could only produce a limited range of painterly 

rendering styles; therefore, they wanted to expand their business potential by including 

more painterly styles, as well as emotionally authoring of styles, through collaborating 

with us – DiPaola’s Painterly team - and using our system – Painterly - as an external 

component. 

In this particular Engage, our research task was to work with them to envision a 

system and process, which could create a vast variety of artistic painterly styles, 

(eventually for their clients), while keeping these styles controllable and faithful to their 

economical production pipeline.  The idea was to automatically use the knowledge from 

a 3D authoring system, like Autodesk Maya, in Painterly.  Moreover, we wanted to 

incorporate the concerns of their design pipeline, controlled within the authored 3D 

objects, in the typical and common spline-based keyframe facility, used by designers.  

 
5
  Twenty One Inc. http://www.twentyoneinc.com/ 

6
  http://www.nserc-crsng.gc.ca/ 

http://www.twentyoneinc.com/
http://www.nserc-crsng.gc.ca/
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Figure 1.1 illustrates a number of various styles created with Painterly.  The reference 

still images are taken from the movie sequence provided to our Painterly team.  

In the following, there are 4 examples of painterly rendered videos sequences 

delivered to the TOI Inc. Company.  All the videos are provided in the author’s website7.  

These sequences were created by Painterly rendering the frames of the provided 

computer graphic movie.  The sequences and stills were delivered to their company as 

the result of our NSERC Engage Collaboration. 

Sequence #1.1. FirstScene-OriginalPalette 

Sequence #1.2. ThirdScene-PurplePalette 

Sequence #1.3. FirstScene-OriginalPalette_BiggerStrokes 

Sequence #1.4. FirstScene-OriginalPalette_Blurry 

In these example images and videos, the content region maps also contain some 

non-portrait elements like a ‘bottle’ (Figure 1.2).  These region maps were automatically 

created and labelled by the company’s 3D authoring system, using the industry leading 

software Autodesk Maya.  For painterly rendering the reference animations, first, we 

selected three different scenes of the provided movie, and then we selected a set of 

keyframes from each selected scene to be ‘painted’ by Painterly.  These generated still 

images were then interpolated by an uninformed and low-level pixel-based algorithm to 

create the final painterly animation sequences.  

 
7
  http://ivizlab.sfu.ca/research/PainterlyAnimThesis/ 

http://ivizlab.sfu.ca/research/PainterlyAnimThesis/
http://ivizlab.sfu.ca/research/PainterlyAnimThesis/
http://ivizlab.sfu.ca/research/PainterlyAnimThesis/
http://ivizlab.sfu.ca/research/PainterlyAnimThesis/
http://ivizlab.sfu.ca/research/PainterlyAnimThesis/
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Figure 1.1. Stills, taken from the animation sequence, provided by TOI Inc.  The 
stills were rendered by Painterly toolkit with various painterly styles. 
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Figure 1.2.  An example still image, with the provided region map that contains a 
non-portrait element [a bottle]. 

The final results were only semi-coherent - as much as what was achievable at 

the time.  However the pixel-based interpolation process – which is discussed in further 

detail in the next sub-section - was not anything close to ‘smart’ in sense of incorporating 

Painterly’s knowledge model and using labeled cognitive regions (See Section 4.3.1 for 

the term definition) in the procedure of making in-between frames.  Therefore, the whole 

process was not so faithful to the basic concerns of Painterly, plus the fact that the 

results were aesthetically poor.  This fact, reinforced the need for a system, which exerts 

Painterly’s cognitive knowledge space in the frame synthesis process to create a 

cohesive and cognitive-based animation and also enhance visual and semantic 

expressiveness of the animation sequence through doing so. 

This thesis work sets out to alleviate temporal coherency issues in Painterly 

rendered animation/movie sequences.  We propose a solution for making temporally 

coherent sequences through a more cognitive-based process, using Painterly; a process 
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which knows about the contents of a scene/frame, and uses this knowledge in painting 

process accordingly – more close in process to how a human painter would attempt to 

paint a movie sequence. 

1.2.1. Pixel-Based Interpolating 

We used a low-level pixel-based interpolating method to generate the results of 

TOI Collaboration task.  This method contained a cross-dissolving algorithm to morph 

between successive keyframes of the Painterly rendered reference keyframe-set.  The 

morphing process generated a number of in-between frames – based on the 

corresponding parameter value provided to the algorithm.  These generated in-between 

frames were then stitched together with the keyframes, at the end of the process, to 

create a QuickTime movie sequence.  The generated in-between frames had poor 

quality, due to the nature of morphing process.  This process worked with the pixels of 

the source and target keyframes.  For every pixel from the source keyframe, the 

corresponding pixel from the target keyframe was used to generate an in-between pixel 

which combined aspects of both source and target pixels’ color value, in a linear 

manner.  The rate of this linear warping also was provided to the cross-dissolving 

algorithm.  The resulting in-between frames had poor object contours and were visually 

blurry.  Besides, none of the generated in-between frames were an actual painted frame 

since they contained no real brush stroke.  Moreover, the cross-dissolving technique 

was unable to perceive any knowledge about the keyframes, as Painterly does.  

Accordingly, the in-between frames were generated without any knowledge.  As a direct 

result, this method failed to satisfy Painterly’s important concern which is leveraging 

aspects of humans’ cognitive knowledge in the process of painterly rendering images 

and generating frames.  Still this cross fade of interpolated frames using a pixel based 

approach is one often employed by the animation industry and is considered a viable 

approach.  Our interest was to improve on this standard technique. 

1.3. Synopsis of This Work 

Painterly is focused on still imagery. Therefore, any Painterly rendered animation 

sequence lacks temporal coherency by a great deal. This is because every single frame 
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is analyzed, painted and rendered individually. Further, this individual rendering occurs 

without passing or considering previous frames’ rendering-information or their passes’ 

and strokes’ properties such as density, orientations, sizes, and positions. Altogether, as 

mentioned before, Painterly conveys a human’s cognitive knowledge space in painting 

images but does not support temporal coherency. 

As a follow up to the aforementioned NSERC Engage (Section 1.2), this thesis 

work focuses on creating temporally coherent and cognitive-based painterly animation 

from CGI movie sequences. We create a whole new temporally coherent animation sub-

system to Painterly. This wholly new subsystem is called CPA, standing for Cognitive-

based Painterly Animator. CPA uses Painterly and its NPR single image calculations as 

a base. This means that Painterly provides CPA with inputs and a plan of how to 

generate all the new coherent frames. Moreover, Painterly is used to re-render CPA’s 

outputs as well; this way, CPA leverages Painterly’s cognitive knowledge model in its 

own frame-synthesis process. Our goal in designing and implementing CPA was to not 

only make temporally coherent cognitive-based painterly animation, but also automate 

the process so that CPA could be applicable and adaptable in an industry production 

pipeline, bringing coherent and improved animation sequences to the open source 

Painterly toolkit and its many research and production uses in entertainment, health, arts 

and sciences. 

 Looking at existing literature in painterly animation field, our work is mostly 

motivated by Lin et. al. and Kagaya et.al. and to a lesser extent by Hertzmann (M. 

Kagaya et al., 2011; L. Lin et al., 2010; O’Donovan & Hertzmann, 2012), in the sense of 

using frame semantics, optical flow and objective functions. We extract the information 

of meaningful cognitive regions, encapsulated in our inputs, provided by Painterly toolkit, 

and set up a meaningful connection between these cognitive regions throughout the 

successive keyframes. Accordingly, we maintain this connection during the frame-

synthesis, painting and rendering phases. We use this connection as an anchor-point in 

generating cohesive and yet cognitive-based frames, based on the scene’s optical flow 

and through using objective functions. Therefore, we believe our approach has benefits 

to the general field besides its use within Painterly.  
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As an attempt to exploit Painterly’s potentials to the utmost and attend to its 

temporal coherency problem, we proposed a new solution to cover for Painterly’s lack of 

coherency through a software engineering approach.  This new approach which is the 

main work of this thesis, takes a systematic and quantifiable method to design and 

develop a new subsystem – introduced as CPA - to take care of temporal coherency 

issue.  In the context of this thesis works, the title ‘CPA’ is used interchangeably for the 

proposed model and the corresponding developed subsystem.  CPA is a parameterized 

system that works with Painterly as an external subsystem/component and/or can be 

added to Painterly’s main body and used as an internal component later on.  The 

working scenario of CPA, in each round of painterly rendering a reference computer 

animation/movie sequence starts with a set of keyframes.  The reference 

animation/movie is manually or automatically keyframed.  This keyframe-set is then 

rendered with Painterly to produce CPA’s input.  To induce coherency in the generated 

frames, CPA intervenes in Painterly’s frame-synthesis procedure.  By out-sourcing a part 

of this process and taking over the execution of that part by itself, CPA induces 

cohesiveness in the outputted results.  To accomplish that, Painterly provide CPA with a 

scripted painting plan which encloses some information of its cognitive knowledge-based 

approach in painterly rendering the reference frame.  This painting process-plan is in the 

form of an XML8 scripted stroke log files (See Section 5.6.3 for an example of this XML 

files).  This XML file is a hierarchical tree representation of passes and their 

corresponding strokes, by the order they are rendered onto the digital canvas, plus the 

information about semantic regions of the frame. CPA uses this scripted plan and its 

encapsulated information as a resource and guideline to generate new coherent frames, 

between each two successive keyframes.This way, CPA takes advantage of Painterly’s 

well-developed, cognitively inspired algorithms for semantic parsing and hierarchical, 

blob-based stroke filling algorithm, and yet controls and induces coherency in the final 

results. Figure 1.3 better demonstrates the general flow of CPA and its interaction with 

Painterly. 

 
8
  A markup language for encoding documents in a format that is both human-

readable and machine-readable. 

http://en.wikipedia.org/wiki/Markup_language
http://en.wikipedia.org/wiki/File_format
http://en.wikipedia.org/wiki/Human-readable_medium
http://en.wikipedia.org/wiki/Human-readable_medium
http://en.wikipedia.org/wiki/Machine-readable_data
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Figure 1.3.  The main ongoing scenario of CPA and its interaction with Painterly 
toolkit. 

The process of generating in-between frames consists of 1) mapping the strokes 

of the first/source keyframe to the strokes from the second/target keyframe based on 

their position and color; and 2) transforming and propagating every reference mapped 

stroke from its source configuration to the target configuration. Stroke’s configuration is 

best described as the values of its style-properties such as size, brush type, color, order, 

etc. This process is done with an eye on corresponding cognitive regions in both source 

and target frames and their semantic connection. By transforming mapped strokes, CPA 
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generates a much smoother and more coherent interpolation between two reference 

frames. Produced in-between frames are then fed back into Painterly to be rendered 

onto the digital canvas. All keyframes and their corresponding synthetized in-between 

frames are eventually stitched together with a simple low-level movie making algorithm 

(See Section 5.7) to create a QuickTime movie. 

1.3.1. Contributions 

This thesis work proposed a solution for generating coherent and cognitive-

based animated NPR. By designing a two-way communication between the open source 

toolkit Painterly and our system – CPA – we could maintain and also extend the key 

capabilities of Painterly. Accordingly, we generated movie sequences based on a 

cognitively-informed model of human artistic practice. We incorporated high-level 

semantic knowledge such as semantic/cognitive regions, in CPA’s frame synthesis 

process; allowing for further elaboration of computational intelligence in the system in 

the future. We provide the users with the chance and possibility to creatively explore and 

generate different styles of outputs, through a parametric design. 

We presented an algorithm based on keyframing and mapping/interpolation of 

strokes, to extend Painterly, which is a still-based, time-insensitive and stateless NPR 

system, to a stateful and time-sensitive one, capable of processing animation. We 

reduced the amount of undesired flickering and increased temporal coherency in the 

resulted sequences, compared to a ‘un-informed’ approach for generating animation - 

which renders the frames independently, without any knowledge of previously rendered 

frames’ configuration. We maintained the identity of brush strokes and generated 

genuine painted frames which look plausible and similar to Painterly’s output images, in 

comparison to a low-level pixel-based interpolation technique. By employing the strokes 

which can move, flow and transform smoothly over time, we created an inserting 

interpretation of an "animated painting". 

We expand the research domain of Painterly in the interdisciplinary area of 

human perception, computational art and science. Accordingly, our work makes a 

potential contribution to the body of researches in psychology and cognitive science 

regarding human perception of art and visual stimuli. 



 

15 

We developed a flexible and standalone system architecture which can work with 

alternative frame-rendering modules other than Painterly.   

CPA is open source. For validation we have provided our source code and early 

comparative results for researchers in NPR computer science field – as well as other 

communities and fields. This is to facilitate any future reproduction of our system or 

replication of the model; as well as further studies and evaluations of this thesis work or 

extensions made to it. 

Ultimately, this thesis work is a proof of concept for our proposed solution to 

alleviate the temporal coherency issue in Painterly rendered sequences. It is just the 

beginning point of a deeper study of the cognitive and perceptive aspects of painterly 

movies. There is still a long way to go for a totally automatic and informed interpolation 

system which incorporates human’s cognitive knowledge in the frame synthesis process 

and creates coherent and high quality output with a wide range of styles.  

1.4. Thesis Outline 

Chapter 2 is a literature review on both painterly NPR and painterly NPR 

animation.  In this Chapter we first review NPR in general, its origins and roots and early 

stages.  We narrow down this large research field to the scope of our work which is 

stroke-based NPR, give an overview of state-of-the-art issues and proposed solutions.  

We continue the Chapter by reviewing animation NPR, major streams of this field, 

different techniques and approaches, most influential practices, and issues and open-

ended problems.  We also explain how our work is related to some of the ongoing 

research streams in this field and what issues we are aiming to address. 

Since Painterly NPR toolkit is the backbone of CPA, in Chapter 3 we describe 

this toolkit; first giving a short overview of the system and how it works, plus its 

advantages over similar existing systems.  Then we delve into more detail, reviewing its 

goals, design model, data structures, components, process flow and results.  In the end, 

we present a number of fine painterly rendered still images, generated with Painterly, to 

better show the real power of this toolkit. 
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Chapter 4 describes our proposed solution; the model and the system we 

developed based on that model.  We start this Chapter by providing our design goals 

and discussing our higher-level approach, giving a brief problem definition, describing 

the challenging issues we aim to address and specifying the scope of our work.  We 

then proceed with our proposed solution and give a big picture of CPA system.  We 

break this model down to its main phases and explain how the scenario goes on in each 

phase and what the key steps and points are in each one.  

In Chapter 5 we review the implementation detail of CPA.  We describe its data 

structure, component model, process flow and control structures in more detail, followed 

by providing some examples of the input/output scripts of the system.  We finish this 

Chapter with explaining the limitations of our implementation, stating the framework and 

libraries used in developing the system and a quick review of the system’s open-

parameters. 

Having reviewed CPA’s parameters, we start Chapter 6 with an overview of 

CPA’s parameter calibration, discussing the impacts of each of the parameters on the 

outputted results.  We proceed by presenting more fine-tuned results to better illustrate 

the capabilities of CPA followed by a short evaluation of the presented sequences. 

In Chapter 7 we discuss the contributions and limitations of current thesis work.  

We continue with suggesting directions for future and further research and studies and 

then finish this thesis by briefly summarizing the entire work.   

The Appendix includes the URLs to all of the videos included in this thesis. 
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2. NPR, Painterly NPR, Painterly Animation:  
State of the Art 

Obviously, a painterly NPR animation/movie is just an extension of painterly NPR 

for still images; and similarly, painterly NPR is just a variation of NPR in general. 

Therefore, to understand the dimensions of either one of these subfields, we should start 

with the roots. We start this Chapter with reviewing NPR literature in general, from the 

early works, and move on to the state-of-the-art in painterly NPR in particular. We go 

through its roots, main streams and challenges.  

2.1. NPR Systems 

NPR, standing for Non-Photorealistic Rendering is a computer graphics 

technique for creating images in a non-realistic way.  As obvious from the title, its 

approach is contrasting to other traditional computer graphics techniques which focus 

mainly on photorealistic outputs.  The inspiration for the styles of non-photorealistic 

rendering comes from paintings (e.g. different styles of painting, such as pen and ink or 

impressionism), drawings, cartoons and illustrations.  Its applications also range from 

movies, cartoons and video gaming to scientific visualization, experimental animations 

and technical or architectural illustrations; plus other rising fields such as computational 

photography, learning and medicine (e.g. communication systems for autistic children 

where filtering out some unnecessary details and information is crucial (DiPaola, 2007)). 

NPR also is referred as painterly rendering, artistic rendering, expressive rendering, art-

based rendering and many other similar titles. 

The focus of this work is on painterly or stroke-based rendering, which typically 

uses a 2D source such as a photograph and creates a list of strokes to be rendered onto 

a new digital canvas (Figure 2.1).  
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Figure 2.1.  Painterly rendered stills, created by ‘Painterly toolkit’ 

Basic elements of painterly rendering can be listed as a) a virtual digital canvas, 

which has different attributes and properties such as size and occasionally texture for 

some styles (Hays & Essa, 2004) and b) a list of brush strokes. Each brush stroke by 

itself carries a set of properties such as length, color, width, size, etc.  Brush strokes are 

placed on the virtual digital canvas in a predetermined order, generating a painting from 

the input image source.  Painterly NPR styles are diverse as painting styles, painted by 

artists of different times and eras.  However, the majority of the painterly NPR works are 
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based on impressionism (Litwinowicz, 1997; Meier, 1996) and to a lesser extent on other 

styles like expressionism and pointillism (Klein, Sloan, Finkelstein, & Cohen, 2002). 

The following sub-section briefly reviews existing painterly NPR literature on still 

imagery (Section 2.1.1) followed by painterly NPR videos and animation (Section 2.2). 

2.1.1. NPR Related Works 

Painterly style NPR is a type of NPR concentrating on making painting style 

imagery which was first explored by Haeberli (Haeberli, 1990). He described the notion 

of painting as a set of ordered brush strokes with color, orientation, size and shape, on a 

canvas.  Adopting Haeberli’s work as a base, Litwinowicz (Litwinowicz, 1997) proposed 

a fully automated algorithm for generating paintings from an input image, using short and 

linear strokes. Many other approaches, inspired by Heaberli’s algorithm, used local 

image processing techniques to gain a better control over the placement and color of the 

strokes.  Later, on this thread, Hertzmann (Hertzmann, Jacobs, Oliver, Curless, & 

Salesin, 2001; Hertzmann, 1998) developed an algorithm that used several passes for 

creating the brush strokes. These passes were ordered from much coarser strokes to 

finer ones, using an image difference grid layered with the same coarse-to-fine order 

aligned with those passes.  His work became a turning point in the field since he was the 

first one to leverage the actual process of painting – as done buy a human artist- in the 

painterly rendering procedure.  A painter artist starts the painting with broad and large 

strokes and then refines them progressively.  They create all the desired details in the 

art work, by applying smaller strokes over previously painted areas.  Hertzmann also 

categorized many of the Stroke-Based Rendering (SBR) techniques.  Later on for 

creating different painterly styles,  Hertzmann - alongside many others like Hays and 

Essa (Hays & Essa, 2004) - utilized low-level stroke parameters, like stroke length 

throughout the whole rendering phase. 

‘Painterly toolkit’ (DiPaola, 2007, 2009) was initially inspired by Hertzmann’s 

work. This toolkit uses human artists’ tacit knowledge and soft rules of painting in the 

form of parameters and exerts the values of these parameters in the system.  Painterly 

also has been going through many improvements, moving away from using a coarse-to-

fine multi-pass system to the current use of tonal masses based on lightness/darkness 
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and drawing type (DiPaola, 2008). Instead of color sampling with perturbations, it uses 

luminance (i.e. source tone) to remap the image into any color mapping.  Such 

mappings may include any one of the existing cognitive color temperature mapping 

models or some other custom-created one.  The latter change is different from any 

typical NPR color choice algorithm and has come from artistic practice investigations 

(See Section 3.3.1). 

To automate the whole NPR process, especially the higher-level of modeling 

scene semantics, and also to enhance the aesthetics of the results, many computer 

vision techniques have made attempts.  Most of them had a more global oriented vision 

of the process in mind.  Gooch (B. Gooch & Gooch, 2001) proposed segmenting the 

image into homogeneous grayscale regions. This approach led to a great reduction in 

the number of brush strokes.  

The segmentation was also used by Santella and Decarlo (Santella & DeCarlo, 

2002, 2004). They added a rather important extension to the process which was guiding 

the painting process by eye movements.  In this approach, users’ eye movements were 

the key element in specifying more important areas of painting and adding more details 

to them.  This attempt was faithful to the actual cognitive process of painting by a human 

artist since a human painter emphasizes and/or de-emphasizes the different regions of 

the scene/ sitter based on their personal goal of how to present the scene/ sitter.  They 

extracted this information from tracking the users’ eye movements while they were 

looking at the source image and then utilized that data to render the reference scene. 

A notable and important adaptive automatic system for painting was also 

presented by Collomosse and Hall (J. P. Collomosse, 2004; J.P. Collomosse & Hall, 

2002; John P Collomosse et al., 2005), since they used machine learning techniques in 

their process. Also JoaoCarvalho (Du Buf & Rodrigues, 2006) used human vision 

techniques in an endeavor to make a better tie between humans’ visual perception 

theories and painterly NPR procedures. 

There are also some common drawbacks and shortcomings in most NPR 

systems.  Gooch, as well as some others such as Collomosse (J.P. Collomosse & Hall, 

2002; B. Gooch & Gooch, 2001) have described one of these shortcomings as ‘limiting 
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attention to local image analysis by utilizing more local techniques for examining local 

and/or small pixel neighbourhoods’. These kinds of blind local analyzing techniques 

result in losing the rather important global view of the entire image.  Several researchers 

including Collomosse et al, Gooch et al, and Kagaya et al, looked for efficient global 

solutions (J.P. Collomosse & Hall, 2002; B. Gooch & Gooch, 2001; Mizuki Kagaya et al., 

2011). 

Considering the localization issue, Painterly toolkit, which will be introduced in a 

later Chapter, uses a hierarchical parametric system by implementing a perception blob 

tree structure.  Using a general semantic map for the portraits (background, skin, hair, 

clothes, etc.), the “blob thinker” – a subcomponent of Thinker (See Section 3.3.1), 

generates their corresponding blobs as “parent blobs”.  As the hierarchically iterative 

process continues, blobs become progressively smaller and turn into child-blobs.  These 

child-blobs can communicate up and down in the tree, providing global and local 

comparative information towards the decision making process for position and color of 

the next brush strokes.  This process both benefits from and simulates humans’ 

cognitive painting process.  This simulated process perceives a small cognitive region to 

work on rather than a single brush stroke on its own (e.g. working on eyes of the portrait, 

rather than working on a brush stroke on the canvas).  Fully benefitting from this local 

and global communication system and exploiting it in the system depends on a deeper 

understanding of humans’ creative and cognitive painting process.  This process is still 

the source of many ongoing researches in this field. 

Apart from all the works which are breaking the boundaries of painterly NPR, and 

taking it one step further, there are also some other works in the area which have deeply 

evaluated NPR’s current state, techniques, and possible future directions in a systematic 

way.  Gooch et.  al. (A. A. Gooch, Long, Ji, Estey, & Gooch, 2010) gave a state of the art 

of the field.  Salesin (Salesin, 2002) counted seven major challenges in the NPR field 

and discussed them. Collomosse et al, Hedge, Isenberg and Vanderhaeghe (J. 

Collomosse, Kyprianidis, Wang, & Isenberg, 2012; Hegde, Gatzidis, & Tian, 2013; 

Tobias Isenberg, 2013; Vanderhaeghe & Collomosse, 2013) discussed possible future 

directions that can be taken. There is also an ongoing discussion on evaluation methods 

used in NPR field about whether we should use science-based evaluation methods 
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(Tobias Isenberg, 2013) to assess the results or accept it as a form of art which should 

be appreciated on its own rather than measured (Hall & Lehmann, 2013). 

DiPaola (DiPaola, 2007, 2009) proposed a cognitive-based parameterized 

painterly NPR system for creating portrait paintings from input imagery – photographs in 

particular.  This toolkit, shortly referred to as Painterly throughout this thesis work (See 

Chapter 3), was developed based on extracting a qualitative tacit knowledge space from 

art books and human artists – particularly painters.  This knowledge space was then 

combined with human cognitive and vision knowledge and used to build a parameterized 

painterly NPR toolkit.  The set of painting parameters includes information about brush 

strokes (i.e. brush stroke properties), number of passes and the rendering techniques.  

These parameters are provided to the system as an XML script file.  Painterly toolkit is 

built up on Hertzmann’s multi-pass technique but also benefits from the cognitive studies 

on the humans’ vision system.  Therefore, it is capable of producing more expressive 

portrait pictures, compared to a general painterly system.  Painterly toolkit is used as the 

backbone of our system - CPA - providing us with our input set, plus rendering our 

input/output frames (See Chapter 4).  More information on stroke-based rendering, 

state-of-the-art, possible future directions and evaluation methods can be found in 

Hertzmann’s survey as well as some other evaluating works (A. A. Gooch et al., 2010; 

Hegde et al., 2013; T. Isenberg, 2013; Kyprianidis, Collomosse, Wang, & Isenberg, 

2013). 

2.2. NPR and Animation 

NPR originally started focusing on still images to create different non-

photorealistic looks and styles.  One of these styles is painterly NPR, inspired by various 

painting styles, the most widely explored of which is impressionismm.  With painterly 

rendering animation emerging, soon computerized painterly rendering became more 

than a tool for still imagery.  The exhausting, expensive, time consuming and extremely 

difficult traditional paint-on-glass technique or frame-by-frame method of creating 

painterly animation made the extreme potential of computerized painterly rendering 

systems seem even more welcomed.  Not to forget that in the traditional procedure, the 

degree of temporal coherency was much less than what was normally expected from a 
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computer-generated animation (O’Donovan & Hertzmann, 2012). New animation tools 

promised – and in many cases delivered - not only more temporal coherency but also 

greater speed and wider variety of animation styles. 

According to Hertzmann (O’Donovan & Hertzmann, 2012) a painterly animation 

system should combine at least two main goals of 1) capturing all the fine details and 2) 

following the moving objects and optical flow9 throughout the whole movie sequence. 

What that adds up to these two main goals is also producing an artistic style and 

avoiding unwanted flickering.  All of these, also, should be done in a timely efficient 

manner.  Giving the animator the benefit of having a total control over the production 

process counts as a big advantage most of the times.  This way the animator artists can 

also control the style, quality and visual aesthetics of the final results.  However this 

control might be a downfall of any system, when automation is needed more than 

interactivity.  These goals are sometimes conflicting with each other, while each of them 

are challenging on their own.  The result of them adding up together is a rather elaborate 

and arduous problem to deal with. 

In the following sub-section of this Chapter we give a compact overview of the 

existing literature in the field of NPR video/animation. 

2.2.1. NPR Animation Related Works 

There are two general approaches for creating NPR videos in the stream of 

Stroke-Based Rendering, according to Hertzmann and Perlin  (Hertzmann & Perlin, 

2000). The first approach depicts video as a painted world.  Brush strokes, in this 

approach, are attached to geometric objects (Daniels, 1999; Meier, 1996). Managing the 

density of strokes, as the objects gets closer to or farther from the camera, is the main 

challenge of the algorithms in this approach.  The second approach creates painted 

representations of the world, therefore brush strokes are detached from geometric 

objects, spatially and temporally (Hertzmann & Perlin, 2000; Litwinowicz, 1997). The 

common challenge in this approach is Scintillation, also known as Swimming or 

unwanted flickering.  Videos made based on this approach can flicker due to lack of 

 
9
  Pattern of objects’ motion in a scene. 
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temporal/spatial coherency in style-properties or orientation of the strokes.  For instance, 

the directions or sizes of brush strokes change drastically in subsequent frames, without 

any knowledge passed from one frame to the next. 

In the first group of aforementioned approaches, a set of particles are attached to 

the scene objects.  Each particle represents a brush stroke.  Meier (Meier, 1996) - from 

Walt Disney Feature Animation - used vectors of geometric objects to determine brush 

stroke orientation. Style-parameters such as colour and size were assigned to a number 

of strokes which were propagated to other strokes and used afterwards in the rendering 

process.  Otherwise, a reference image was used to obtain values of those parameters.  

The common issue with these approaches is handling particles’ proper density 

throughout the movie/animation.  The reason is moving objects cause the particles to 

move along and either get too close to each other or too far apart. 

Cornish et al (Cornish, Rowan, & Luebke, 2001) tried to address this issue by 

using a hierarchical view-dependant approach, based on algorithms for view-dependent 

polygonal simplification. They used a densely sampled polygonal model for each object.  

Each vertex of the model represented a particle.  So during the movement of the object, 

the number of vertices of the polygon was adjusted (increased or decreased 

accordingly) based on the distance and other view-properties.  This approach also 

allowed for having various amount of detail in different areas of the scene. 

The most common issue in the second aforementioned approaches is flickering.  

This undesired visual artifact occurs, when successive frames of a movie/animation 

sequence are painted separately, without any knowledge bridging between previously 

rendered frames and current or future ones.  Therefore, the number, size, length and 

orientation of brush strokes in the corresponding reference areas change within those 

frames. 

To mitigate this problem and avoid visually cluttered frames, many approaches 

and techniques have been proposed and used.  Any SBR painterly animation method 

basically consists of two main steps which are 1) stroke-based rendering of the input 

image and 2) propagating the strokes over video frames.  Apart from the rendering 
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phase, the main difference of various approaches is in their take on propagation phase 

and how they have handled it to maintain coherency. 

Daniels (Daniels, 1999) used optical flow for controlling the orientation of strokes; 

His method thereafter became a common approach in the field. In addition to optical 

flow, motion maps10 have been used quite a lot in an attempt to regulate stroke 

orientations and make the object movement smoother throughout successive frames.  

Motion information is extracted from the content of movie/animation.  This information is 

used to determine the position of strokes in the next frame.  Also a fairly good number of 

the works done in the field have used vector fields to control the orientation of strokes.  

These fields were either defined manually by the user or automatically, using normal 

vectors and curvatures of the geometric objects (Hays & Essa, 2004; Hertzmann & 

Perlin, 2000; Litwinowicz, 1997; Park & Yoon, 2008; Snavely, Zitnick, Kang, & Cohen, 

2006). 

Litwinowicz (Litwinowicz, 1997) used linear brush strokes and textures to create 

painterly animation. The orientation of brush strokes were determined using gradient 

interpolated by a thin-plate spline.  By adding random values to parameters of each 

brush stroke a variety of brush strokes were created.  These strokes were clipped to the 

edges of the scene objects and followed the motion of corresponding objects between 

successive frames.  Object motion was determined using optical flow.  Because of a 

high possibility of changes in the neighbouring gradients, their approach was prone to 

create significant flickering. 

According to Hays (Hays & Essa, 2004), using optical flow might push strokes far 

apart and consequently, create a gap between them. To care for that, they used motion 

vectors to change the position of brush strokes from frame to frame.  This resulted in 

regular spacing between strokes.  However relocated brush strokes were not consistent 

throughout consecutive frames which consequently produced flickering. 

Hayes and Essa (Hays & Essa, 2004) added temporal constraint as another 

property (e.g. size and opacity) to brush strokes and created a dynamic set of brush 
 
10

  A motion map represents the position and accordingly the velocity and acceleration of an 
object in the frame during a certain time span. 



 

26 

stroke properties. This set, then, changed gradually based on reference image and 

motion properties.  For orienting brush strokes over time and space, Radial Basis 

Functions (RBFS) were used.  Additionally, they used edge detection techniques for 

decoupling output resolution from the input dimension.  Besides, they utilized brush 

stroke textures and a simple lighting model to enhance not only the temporal coherency, 

but also the aesthetic of output video.  

Park and Yoon (Park & Yoon, 2008) replicated the manual technique of paint on 

glass, using motion maps to create a hand painted style video. They used two types of 

motion maps, ‘strong’ and ‘weak’, to represent the regions that had changed between 

successive frames.  In order to create these maps, they used block matching method to 

estimate motion, through displacing the object edges by motion vectors.  The maps 

where then, used to generate the necessary brush strokes for converting a frame to the 

next one.  They also used some systematic methods like MSE (Mean Square Error) and 

PSNR (Peak Signal-to-Noise-Ratio) to evaluate their results.  According to Park and 

Yoon, generally, evaluation methods for estimating the degree of maintenance of 

temporal coherency between two frames can be divided into two following groups: 

• Segmenting each frame and creating a spatio-temporal volume by connecting 
each segment to a corresponding spatio-temporal space.  Fitting continuous 
surfaces to voxel objects in the frames can give a temporal smoothing 
estimation, which can be measured using MSE and PSNR. 

• Calculating the magnitude of frame flicker.  Flickering occurs due to irregular 
visual changes in painted local areas and it highly depends on shape and 
color of the brush stroke, therefore using brush strokes’ color can be a 
reasonable way of estimating the magnitude of flickering.  Due to the 
overlapping of strokes in the painted frames, using the stroke-shapes is very 
dubious. 

Nonetheless, majority of the works in this area do not perform ay systematic 

evaluation, considering the outputs as forms of art which should be appreciated on their 

own (Hall & Lehmann, 2013). A common evaluation method, used by many notable 

researchers such as Hertzmann, Lin et.al. and Kagaya et. al,  is done based on the 

traditional software engineering approach and by providing the source code and the 

results to the public communities for further reproduction and evaluations (Hertzmann & 

Perlin, 2000; Mizuki Kagaya et al., 2011; L. Lin et al., 2010; O’Donovan & Hertzmann, 

2012).  
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Klein et al. (Klein et al., 2002) defined a set of functions, called rendering solids, 

which span over time. They could successfully create more painterly styles such as 

cubism and abstract styles – unlike common approaches that mainly aimed for an 

impressionistic look. 

For achieving temporal coherency in the painted output sequences, Snavely et. 

al. (Snavely et al., 2006) used depth information from a special camera together with 

data, from 2D sequences (which they call 2.5D video). To decrease the noise in the 

captured data, they filtered the video to the depth information of the input frames.  They 

proposed a technique for calculating normal and surface direction at each pixel in order 

to use it for determining the orientations of brush strokes.  Their output videos were 

showing two different NPR styles of painterly rendering and cross-hatching.  

Most of the painterly rendering techniques for animation use gradient to decide 

on the orientation of the brush strokes.  This method is good to express the shape of the 

object but not as much informative and expressive in showing the flow and movement of 

the objects.  According to Lee et. al (Lee, Lee, & Yoon, 2009), aligning strokes with the 

corresponding flow and movement of the objects, amplifies the viewers’ experience and 

perception of the dynamic of the objects’ motion. They proposed an algorithm to express 

objects based on their motion information (e.g. magnitude, direction, standard deviation).  

They segmented consecutive frames of the movie sequence to dynamic and static 

segments.  They, then, determined the orientation of strokes in each region by extracting 

motion information from moving objects in the scene. 

Interactivity has been another rather important motif that divides approaches 

based on their take on this concept.  The approaches that have focused on fully 

automating brush stroke synthesis for the entire video sequence have showed promising 

results.  Users of these systems are not required to have any major skill or knowledge 

which can be considered an advantage for any technical system.  On the contrary, there 

are some issues which make these systems unsuitable for all types of applications.  

Some of these issues can be listed as: low amount of control over the artistic side, 

limited style variety of the final result, poor edge definition and undesirable stroke 

movements.  The other approach, however, rotoscoping, allows the user to keyframe the 

strokes using spline interpretation in a spacetime domain.  This feature provides a full 
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control over the artistic side of the result.  Nonetheless, keyframing, when acting as a 

major requirement for these systems, is a laborious procedure and requires a lot of time 

and effort.  All in all, incorporating more interactivity to fully automated systems and 

enhancing the temporal coherency has been the ultimate state in the field of video 

painting, which many of the works have set themselves up to. 

Hertzmann and Perlin (Hertzmann & Perlin, 2000) used their still image algorithm 

for making painterly videos. They painted the new frame over the previous frame, only 

when there was a significant change between the two frames.  They warped the 

previous brush strokes towards the new output to keep them attached to the objects.  

Besides, they used optical flow in determining the orientations of strokes.  They 

successfully created results with paint-on-glass style.  According to Hertzmann, in a 30 

Hz painterly video, even a slight amount of flickering is noticeable.  Moreover, 30Hz 

frame rate, rather than a moving painting, looks like a usual video with bad artefacts.  

Hence he suggested using 10-15 frames per second. 

Later on Hertzmann (Hertzmann, 2002) added a new feature to his system by 

adding texture properties to the brush strokes. This feature required the addition of a 

height dimension to the set of previous style-properties of brush strokes.  The height was 

then used in calculating the light, leading to highlight and shades across the painting.  

This was rather a good step in achieving more realistic results like oil paintings. 

Agarwala (Agarwala et al., 2004) created a notable system which combined the 

features of rotoscoping (i.e. tracking contours in a video) with automatic video 

processing and interactive editing. In their proposed system, users specified curves in a 

number of keyframes.  Using that information, the system interactively tracked contours 

of objects, through computer vision techniques.  The curves could interactively be 

modified and optimized by the users throughout the process.  The basis of their work 

has been vastly used after that, most efficiently by Hertzmann (O’Donovan & 

Hertzmann, 2012). Agarwala’s work had another breakthrough, in sense of showing 

painted strokes and tracking curves can be paired together.  

Hertzmann (O’Donovan & Hertzmann, 2012) proposed an interactive system in 

which the user can control stroke synthesis – by specifying or modifying stroke 
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placement, orientation, movement and color, and manipulating them directly. They also 

benefited from an automatic stroke-generating system, which traced the strokes in the 

given video sequence using an objective function instead of a vector field, to determine 

the best placement.  Their method increased temporal coherency as well as producing 

cleaner region boundaries and finer details.  Their system however, was aimed for more 

professional users with a minimum knowledge of the procedure; since they have made 

more emphasis on users’ control over the painterly processing of frames.  Due to the 

greedy nature of their objective function, previously drawn strokes were limitedly 

considered.  This means that the strokes in the static regions slowly appeared and 

disappeared.  Painterly was inspired by Hertzmann’s NPR generating algorithm, 

therefore, CPA is benefitting from this algorithm indirectly, through using Painterly as its 

base system.  But despite benefitting a lot from Hertzmann’s algorithm, this thesis work 

moves away from their approach, regarding interactivity.  We are aiming for a more 

automated system with the minimal human supervision or manipulation so that the 

procedure can be injected into an industrial movie production pipeline.  As a result, CPA 

does not handle users’ realtime manipulation on the brush stroke synthesis process.  

Also, as mentioned before, the focus of this thesis work is on computer animation/movie 

sequences with automatically generated regioning inputs rather than movie sequences.  

Nonetheless, CPA is able to work with both 2D and 3D images and frames, if the proper 

region map files and ultimately the required XML scripts are provided to it. 

Lin et. al. (L. Lin et al., 2010) have proposed a two phase system for creating 

painterly animation, using video segmentation. The video parsing phase extracts and 

labels semantic objects from the target video assigned with different properties based on 

their material (hair, skin, clothes, etc.).  For that, the user labels multiple regions by 

drawing scribbles on them.  The annotated regions, then, are categorized into twelve 

semantic material classes.  The segmentation is propagated over other frames, using a 

video cut-out algorithm.  Hence, each object is segmented as a space-time volume.  A 

number of discriminative features are extracted from each volume.  These features are 

used to calculate dense correspondences over frame, for propagating brush strokes.  

The painterly rendering phase stylizes the video based on the correspondent features 

and assigned semantics of the objects.  They also use example-based brush strokes, 

which are created by the artists for each different material/object category.  An automatic 
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process chooses the style of the brush based on the target object’s class.  As a result, 

different styles were automatically applied to different regions.  

Their system performs a two-pass rendering process, which is different from 

Painterly.  This is because Painterly is a multi-pass system and the number of passes 

can vary to the users’ liking.  As a result and to be compatible with Painterly, CPA is a 

multi-pass-based system as well, to have the flexibility of working with any number of 

passes provided in its input frames.  Placement of the strokes in both of the passes in 

Lin et.  al.’s system is determined by the orientation-property which is calculated from 

the region contents.  After rendering each reference keyframe, the brush strokes are 

propagated over the rest of the frames, before the next keyframe.  Keeping track of 

moving objects throughout consecutive frames and synthesizing strokes based on the 

global object deformation, makes the corresponding strokes remain more coherent with 

movement of the objects.  It also creates cleaner edges.  The system, however, has 

problems in rendering sudden and drastic movements as it is based on a presumption 

that all movements are continuous and smooth.  They have achieved good, solid and 

less-flickering results, due to their vast use of a large database of paintings which leads 

to their system learning different forms of strokes used in different regions.  But all this 

has been achieved at the price of creating just one style of painting.  

Kagaya et al (Mizuki Kagaya et al., 2011) proposed an object-based painterly 

rendering system, which they called it a ‘multi-style’ rendering system. This system 

extracted spatial and layout information of objects in the image/frame and used it to 

determine style-parameters and orientation of strokes for individual regions in each 

keyframe.  Their goal was to more realistically and truthfully mimic the way a human 

artist paints.  They used different types of stylization to control the focus of viewers on 

different objects in the scene they were painting.  In this sense, they are close to the 

main goal of Painterly itself.  Similar to Lin at al, Kagaya et al used a semiautomatic 

video segmentation, dividing the scene into temporally coherent moving or deforming 

regions (objects or background).  Style-properties were assigned to each region of 

marked keyframes by the users and then propagated to the target object through all the 

other frames.  Stroke-orientation parameter also could be assigned to each object, in 

every keyframe and propagated likewise.  However, the general and underlying 
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movement direction of the corresponding object was considered in transporting the 

strokes.  Orientation could also be incorporated with color gradient, applied in the region.  

There is a great deal of similarity between our proposed solution in this thesis 

work and Kagaya’s system, in the sense of keyframing and propagating style-

parameters from keyframes to all the other frames generated in between those 

keyframes.  The difference is that, our system - CPA - do not rely on users to assign the 

style-parameters directly, as Painterly determines them after rendering the input 

keyframes.  Nonetheless, users get to determine their output style, by tweaking 

Painterly’s and CPA’s parameters directly.  Another difference between Kagaya’s’ work 

and this thesis work is that we do not account for the underlying movement of the 

cognitive regions; therefore the orientation of strokes in the generated in-between 

frames is determined by morphing source strokes’ orientation to the target.  Another 

feature which Kagaya shares with Lin et. al. was ‘batch computation’ of the strokes.  It 

means they didn’t provide any user interface for the artist to tune and refine the results in 

no other way than re-running the program after changing the parameters.  So, 

intermediate strokes could not be modified and changed after creation.  This feature is 

another similarity between our approach in the current thesis work and both Kagaya’s 

and Lin’s works.  Kagaya et. al. achieved much smoother results due to using a blending 

feature, but still showed a noticeable amount of flickering, especially in the boundary 

areas of objects in the images.  

This thesis work, as mentioned before, has a lot in common with Lin et al and 

Kagaya et al, in the sense of using video segmentation information and propagating 

style-parameters from keyframes to the produced in-between frames.  Moreover, like 

Hertzmann, our system - CPA - uses an objective function in determining the placement 

of synthesized strokes in generated in-between frames.  CPA uses the information about 

cognitive regions, extracted from the frames’ contents, by Painterly rendering the 

reference keyframes.  CPA creates a strong and coherent connection between these 

region blobs throughout the keyframes and uses this connection as an anchor point in 

propagating the synthesized strokes more cohesively throughout the generated in-

between frames.  As such, the style-parameters are specified for each deforming or 

moving region per keyframe.  These parameters are then propagated to the next frames 

coming in-between each pair of consecutive keyframes.  Correspondingly, CPA does 
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batch computation as well.  However, this thesis is focusing on computer 

animations/movies (i.e. CGI) with fully automated regioning and labeling process, using 

a third authoring tool (e.g. Autodesk Maya, Adobe Photoshop).  Whereas Lin et al 

depends on the user for this step of the process.  CPA, also, differs with their system in 

another sense which is the number of rendering passes.  They do have a predefined 

number of passes (two in total) while CPA is a multi-pass-based system.  The reason is 

that, as a subsystem to Painterly, CPA needs to be compatible with it.  Painterly, as 

mentioned before, is a multi-pass toolkit with which the users can render as many 

passes as serves them best. 

Similar to Kagaya et. al, CPA does not have a global stroke orientation 

throughout the entire image/frame.  Stroke orientation and curvature is determined 

completely by Painterly and based on many other factors like size of the semantic blob, 

stroke -density of the blob and previously synthesised strokes in the same region.  As an 

external subsystem which does not interfere with Painterly’s internal algorithms, CPA 

does not deal with harmonizing or globalizing orientations in either a region or the entire 

image.  In fact, CPA transforms the strokes’ orientation and shape from their source 

state to the target.  Also, similar to Kagaya et. al. CPA is a multi-style painting system.  

Painterly provides CPA with a wide range of painterly style stills to begin with.  

Moreover, by incorporating interpolation-style parameter in the frame synthesis process, 

CPA is able to create a wide range of in-between frames and interpolation styles in the 

resulted sequence.  Another difference between CPA and their system is in their take on 

interactivity.  Kagaya et al. opted for an interactive system whereas CPA is aiming for a 

more automated procedure, with the least amount of user modification and supervision.  

Some other approaches in the paradigm of painterly animation have used 

different techniques and proposed avant-garde algorithms, some of which have 

achieved impressive results.  Haro and Essa (Haro & Essa, 2002) based their work on 

Hertzmann’s (Hertzmann et al., 2001), which used machine learning algorithms to learn 

NPR image transformations from pairs of source images and their painted versions. 

They, then, extended the approach to painterly movies.  Their approach was successful 

in maintaining coherency through the movie sequence, but couldn’t capture a wide range 

of painterly styles. 
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According to T.Lin et. al. using optical flow to propagate brush strokes over the 

frames may cause some critical downfalls and severely damage the visual aesthetic of 

the output, if calculated incorrectly (T. Lin, Lin, & Wang, 2012). To get a way around this 

issue, they proposed a system which combined motion segmentation and occlusion 

handling to calculate more accurate dense-feature correspondences.  They 

automatically divided the frame to non-overlapping motion layers, to eliminate 

ambiguous motions happening near the juncture of motion areas.  Dense 

correspondences were then extracted inside each motion layer with an occlusion 

handling procedure.  This made brush propagation more robust against complex 

motions or occlusions. 

There have been many other successful innovative approaches in the video 

painting field using machine learning, computer vision, vector fields, rotoscoping and 

many other methods, some of which have achieved fairly good results. Reviewing all this 

literature is beyond the scope of this thesis work. 
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3. The Painterly Toolkit 

The Painterly toolkit works as the backbone of CPA. As a result, our work in this 

thesis is tightly interrelated to this toolkit’s domain, internal processes, inputs and 

outputs. Its strengths will count as our strengths and its limitations will affect the scope 

and results of our work. Therefore, it is important to have a general idea about this toolkit 

and how it works. In this Chapter, we provide a brief overview of Painterly, going through 

its goals, design model, data structure, main components and internal data flow. We 

then proceed with its internal sub-components and modules, inputs, outputs and finally 

its limitations (DiPaola, 2013). It should be noted, however, that Painterly is not a 

contribution of this thesis. Our contribution – which is extending and enhancing Painterly 

in the area of NPR animation with our whole new CPA system - is provided and 

discussed in detail in Chapter 4 and above. 

3.1. Introduction to Painterly  

Painterly NPR Toolkit – briefly referred to as Painterly in the context of this thesis 

work - is a cognitive-based parameterized painterly NPR system for creating portrait 

paintings from still imagery inputs. The toolkit is conceptualized, designed and 

implemented as part of iVizLab main research streams (DiPaola, 2007, 2009; “iVizLab - 

Simon Fraser University,” 2013) with two main goals in mind: First, to provide a tool for 

delving into possible combinations of painting parameters; thereby creating a wider 

range of painterly styles; Second, to provide a tool for exploring the interdisciplinary 

space of art and human perception. A large number of existing NPR software/toolkits are 

utterly built up on computational image processing techniques and algorithms such as 

image segmentation, edge detection, etc..  In this regard, Painterly is different from most 

other peer NPR toolkits/softwares.  It can distinguish between different semantic areas 

of a painting - portraiture or scenery - such as background, skin, eyes, etc.  Therefore, it 
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can treat each cognitive area differently; based on the desired parameter setting defined 

by the user.  

Painterly accepts an input image, a number of map files and a set of painting 

parameters (e.g. brush size, stroke length, colour palette, etc.) specifying the style of 

output result, in an XML script format. It then renders or ‘paints’ the input image in the 

specified style using the 3D OpenGL standard.  The input XML file contains the initial 

conditions, painting parameters, number of passes and the algorithms to use.  Cognitive 

regions of input images are specified and labeled by the user or through other authoring 

tools (e.g. Autodesk Maya or Adobe Photoshop) in the form of a region-map file.  Each 

region can be painted with different colour palettes, brush sizes, types or styles.  

Painterly also accepts matte files, used to denote the areas of input image which need to 

be treated differently (for instance painted with more or less detail).  All of the style 

parameters and the attributes are pixel resolution independent.  This allows for global 

and local re-scaling through the corresponding parameters. 

Aside from the rendered image, Painterly also outputs an XML translated form of 

the rendered image known as ‘XML stroke log’ file (See Section 5.5 for a sample of this 

XML script).  This XML file, which can act like a rendering plan, contains a hierarchical 

tree representation of passes, semantic blobs, strokes and strokes’ style-parameters.  

These style-parameters control the behaviours of strokes and eventually, the aesthetic 

look of the final painted result.  Furthermore, by feeding such XML file back to Painterly, 

it can re-render it and output the image representation of it – same as the first original 

rendered one.  This feature makes Painterly a very robust system. 

Painterly’s internal NPR algorithms are high-level cognitive painterly techniques 

to enhance emulate a human artist’s painting process.  Similar to Haeberli and 

Hertzmann (Haeberli, 1990; Hertzmann, 1998), Painterly is a multi-pass, coarse-to-fine 

system. It starts with coarser strokes in first passes.  Brush strokes get finer 

progressively in the latter passes to achieve a more detailed result.  The coarse-to-fine 

method best captures the way a human artist paints; starting with large tonal masses 

and progressively adding more details over the previously painted layers.  Painterly 

provides the user with different color palette options such as using reference image’s 

original color palette or a specific one provided by the user (Figure 2.1).  
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This thesis work has its roots in Painterly’s latter goal, as well as spreading its 

leaves in the first one.  As mentioned before, Painterly is originally aimed at creating still 

painterly rendered images – with an emphasis on portraiture - and this thesis is an 

endeavor for exploiting its capacities for creating temporally coherent painterly animation 

sequences.  Painterly toolkit is used as the base system of CPA, in the sense of 

providing CPA’s input in the form of some XML stroke log files, as well as painting the 

input keyframes and CPA’s generated outputs. These XML files are scripted 

representations of the input keyframes, rendered by Painterly. Therefore, they 

encapsulate the cognitive-based aspects of the rendered keyframes. 

In the following Sections we describe Painterly more in details, its design model, 

components, data structures, process flow and results. 

3.2. System Overview 

Collecting qualitative and tacit painterly knowledge from art books and 

interviewing human artists (painters in particular), converting it to a quantitative 

parameterized model and then implementing it as a toolkit, is Painterly’s main building 

structure (Figure 3.1) (DiPaola, 2007). 

The first step in the design model is collecting soft and cognitive rules of painting 

(obtained from interviews and reference data) and quantifying them in the form of a 

parameterized computer model. This step is the key to make not only the base low-level 

NPR components, but also more complicated and higher-level ones which are built up 

from them correspondingly. This methodology provides the user with control over the 

painting process as well as guaranteeing the customization that is promised by the 

toolkit. One big promise of the toolkit – like of many other similar software/toolkits - is 

creating outputs with a wide variety range of styles. However – unlike many other 

systems - the main concern of this toolkit is to build a scientific and artistic inquiery 

system from scratch. To attain this goal, it uses a knowledge based domain, together 

with hierarchical and mutidimentional parameter spaces (DiPaola, 2009). These spaces 

have been used rather successfully in existing reserches in computer science filed, such 

as facial animation (DiPaola & Gabora, 2009; DiPaola et al., 2013). Using low-level 
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parameter-based and object-oriented language to build up a more complicated and 

higher-level components, is the main structure of this approach. 

 

Figure 3.1.  Painterly’s Process Chart (Image taken from (DiPaola, 2007)) 

Rigorousness and universality are two important notes that had to be taken into 

account in selecting Painterly’s low-level language. To achieve that, XML scripting 

language is used as the low-level dimension in the knowledge space. These dimentions 

can be accessed via higher-level constructs such as 2D maps or simple low-level 

equations. Also higher-level constructs are completely build up on lower-level 

parameters with temporal, spatial and logical attributes and properties. For instance, in a 

painting, a high-level construct like a ‘brush stroke’ is buid up on low-level parameters 

such as opacity, scale, color and length. Low-level parameters of Painterly fall into three 

main functional groups as followes: 

• Constant parameters: the basic and low-level parametes like brush scale, 
color or opacity. These parameters can be floats or can be remapped into 
other knowledge buffers like depth maps. 

• Method parameters: basically a method that is used as a parameter for a 
higher-level method and provides a refinement over the lower-level 
parameters, preparing them for the next level class/function which is going to 
use them. 
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• Process method parameters: these parameters more or less control and guide 
the flow of processes and their parameters. 

3.3. System Inner-View 

Painterly’s framework, referred to as ‘Thinker-Painter’ in the context of this work, 

consists of two main components of Thinker and Painter which are explained in details 

later in this Section.  Instead of considering the individual perception blobs, or regions or 

brush strokes, Thinker-Painter ‘Thinks’ in terms of ‘Paint Actions’.  PaintAction refers to 

the hypothetical ‘painting action’ of a human painter in every state, such as specifying an 

area of canvas to paint on, picking a colour, deciding on the region to paint and 

determining the desired attributes (e.g. density of brush strokes, size and length of them 

and their physical place on that working area of canvas).  

The Thinker-Painter component analyzes the current state of painting together 

with the source image.  This component considers the collection of ‘high-level intentions’ 

of the artist and creates a PaintAction.  The high-level intentions are in fact, a set of 

parameters defined by the user which are fed to the system.  The PaintAction is then 

passed to another component – Painter - to be ‘painted’ on the digital canvas, starting by 

perception blobs and getting down to strokes inside the blobs.  Besides Thinker and 

Painter, there also is another component coming between these two main components, 

known as ‘Concerns’.  This component might tweak the PaintAction, whenever 

necessary, based on Painterly’s considerations and rules (e.g. making some regions 

more detailed based on their surrounding regions).  This way the PaintAction actually is 

separated from the painterly techniques.  By separating the cognitive process of painting 

from the final result, a wider variety of output styles will be supported.  Besides, it takes 

the system one step closer to its main goal of exploring humans’ cognitive process of 

painting.  Not to mention that using an object-orientated design model in implementing 

the system makes it easier for any further modifications, in terms of adding more 

features, changing or reusing any existing one. 

The Thinker component is like the brain of Painterly’s framework.  It identifies 

and analyzes various areas of painting, as well as giving instructions on how to paint on 

them.  On the contrary, Painter is like the hand.  It renders/paints the PaintAction onto 
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the digital canvas.  The PaintAction is in fact, the communication package passed 

between these two components; A package that contains high-level parameters and 

information (Figure 3.2) (DiPaola, 2009). The Thinker component, in fact, analyzes and 

re-examines the painting area after synthesizing and laying down each stroke, as 

opposed to doing it after the entire pass.  This sway, it is guaranteed that the number of 

redundant strokes are reduced, accuracy of modeling the painting process will increase 

and the entire painting process becomes more efficient, as well as the fact that this 

method enables system to use different ‘End Conditions’. 

3.3.1. Main Components: Thinker, Painter, Palettes and Concerns 

In this sub-section we discuss Painterly’s main components and their role in the 

whole scenario of Painterly rendering in more detail. 

Blob Thinker 

Blob thinker takes on the job of making a hierarchical knowledge structure from 

the source image. A human painter sees the scenery or sitter in regions of light and dark 

and bases the painting process on that. Blob thinker, in its attempt to mimic this process, 

is set to capture this lightness/darkness regioning. The resulted hierarchical tree 

structure divides the image into regions of “light” and “dark”, which get finer 

progressively. 

This method incorporates a rather cognitive and semantic level, higher than just 

strokes/pixels, in the process of painting. Thus, it gives an upper hand to the system to 

actually see the big picture. This, consequently, enables the system to a) “think” about 

different areas of the source image and reference canvas, b) to “decide” on “which” area 

is going to be treated next and c) “how” the act is going to be executed. This rather 

semantic area is called a semantic blob or sub blob. Our system – CPA – uses these 

semantic regions in its frame synthesis process to keep the propagation of strokes 

coherent throughout the generated in-between frames (See Section 4.3.2). 
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Thinker - Analyses the current canvas together 

with source image.  It then creates PaintAction 

objects representing high-level plan for painting 

on a certain region of the canvas in a specific 

way.  Any number of Concern objects 

suggesting certain possible modifications to the 

PaintActions can be exerted in the process. 

 

Painter - Receives a PaintAction object as the 

input and decides how to render it onto the 

digital canvas. 

 

Concern - A lightweight, modular object that 

can be injected to Thinker to suggest 

modifications to the PaintActions it produces 

(e.g. choice of Palettes is a type of concern). 

 

PaintAction - An interface consist of high-level 

parameters specifying the region which should 

be painted and how it should be painted.  

Figure 3.2.  Process flow and main modules of ThinkerPainter (Image taken from 
(DiPaola, 2013)) 

The thinking process is recursive and is repeated after rendering the synthesized 

strokes on the digital canvas. However, there are some higher-level constructs which 

can and will affect the blob selection, as well as the rendering process. These high-level 

constructs, called “Concerns”, may, for instance, dictate the Thinker that a cluster of leaf 

blobs should be treated and rendered as a rather bigger ‘parent blob’. 

Action Painter 

This component is responsible for painting/rendering the PaintAction onto the 

digital canvas by making splines on the reference image’s gradient to direct strokes. 

Painter literally tries to be faithful to the true shape of each stroke as appeared in 

PaintAction. Moreover it incorporates ‘detail’ and ‘density’ parameters in the rendering 

process. These two parameters determine how gross/fine and dense/sparse the final 

result will be. Painter’s process can be interrupted, intervened and modified by Thinker, 
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most specifically by the PaintAction, determining how the strokes should be painted onto 

the reference canvas. 

Concerns  

The interception that happens between Thinker and Painter components and on 

the PaintAction is via ‘Concerns’. These Concerns are based on Painterly’s concerns 

and considerations. For example, it is a concern of the system to make the regions 

around a center of interest more detailed with a specific stroke density. Concerns can 

communicate upwards in the perception blob tree to modify the PaintAction. Therefore, 

by performing a more global analysis over the state of the painting at each point of time 

and exerting the set of Concerns in the process, it is guaranteed that the resulted 

PaintAction is always updated and optimized. Concerns are the ideal place to leverage 

more high-level considerations and soft-rules into the system and put them into test. 

Meta Palettes 

PSDPortraitPalette is actually a ‘meta Palette’. It is used for applying and/or 

combining different color palettes for different regions of the source (hair, skin, clothes, 

etc.). BlendPalette acts true to its name which is blending colors from different palettes. 

These two palette components belong to the same class. In a higher-level work, the 

regions of reference source image can be semantically assigned a color. This color can 

be taken form another image (e.g. a painting masterpiece that the user happens to like 

for its color palette) by using a tone-to-color matching technique. RelativeJCHPalette 

assigns a color to every single stroke. It selects the color from the palette, belonging to 

the same semantic area of the corresponding stroke (Figure 3.3). 
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Figure 3.3.  The Maps affecting brush parameters across the canvas.  
SmartPalette is extracted from the original photo’s color palette.  

Relative JCH Palette 

CIECAM02 colour space is the final result of an experimental project. The project 

started with FullRangeValuePalette, which lead to SmartHSVPalette and then 

RelativeHSVPalette. Mapping and converting tonal values to color values is rather 

helpful in mimicking the actual cognitive process of a human artist. A human painter 

works with a higher-level value system consisting of values for light distribution across 

the canvas, rather than the color or tonal values themselves. CIECAM02 color space 

has been incorporated in current version of Painterly, since observing and learning from 
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art practices had shown that the usual software color conversion system were nothing 

close to the cognitive process that a human painter undergoes for choosing color 

palettes (DiPaola, 2013). Using this color space is a great advantage for CPA in 

synthesis of in-between frames (See Sections 4.3.2 and 4.3.3). RelativeJCHPalette 

maps color values and lightness/darkness values together. It gets a color value system 

as an input and applies it to the target image in the same way a human painter does; by 

remapping and rescaling tonal/color values to lightness/darkness values. 

A major drawback of using CIECAM02 colour space in Painterly is the time 

overhead it has added to painting process. Converting color values to lightness/darkness 

values slows down the system by a great deal.  However, being more close to the actual 

cognitive process of humans’ painting, incorporating this color space in the toolkit has 

been a step forward towards the ultimate goal of Painterly. 

3.3.2. Sub-Components: Blobs, Strokes and Concerns 

The main elements a human painter combines in their work are light, volume and 

also the content of the art piece being created. These are also the elements 

incorporated in Painterly by using relative scaling, a higher-level smart Palette decision, 

a set of comparisons and an iterative decision making process. Painterly can 

communicate with any 2D buffer/map, reference data or any other knowledge equation 

however it also has the potential of leveraging 3D knowledge into the process, but for 

that the 3D volume or the plane of the scene or reference object/image should be 

available.  

The hierarchical blob tree, together with the semantic content maps and labels, 

enables the user to connect the tone-color map with the semantic content of the 

reference image (e.g. larger brush with constrained color will be used for ‘background’). 

But also, there are other features allowing the user to leverage the knowledge about the 

‘space’ or ‘volume’ of the objects – as they appear in the source image - in the final 

result of painting process. 

In reality, a human artist uses not only the luminance but also the depth of field 

as well; and in fact, a combination of these two factors. Keeping this in mind, Painterly 
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has provided a set of complicated semantic Concerns, enabling the system to go back 

and forth between these two approaches, based on the reference content and the other 

knowledge collection. For instance, if calculated ‘depth planes’ is over/under a specific 

error angle value, system changes to using gradient. 

3.4. Limitations 

Since Painterly is the backbone of CPA, knowing its strengths and weaknesses 

is a crucial matter as they will affect our work, directly or indirectly, and work in our favor 

and/or against us. Accordingly, there are some limitations in Painterly’s design and 

performance which are explained in the following. 

Painterly can be used in many different research areas, from art to vision, for 

experimenting new NPR techniques. However, the research oriented nature of the toolkit 

(DiPaola, 2007) has compensated speed, which means delaying the research process 

itself, waiting for the results of an experimental render to come out. The rendering 

process, thus far is between 1 to 15 minutes per image, on an average computer, PC or 

laptop with an average graphics card. This number can vary depending on the number 

of passes specified in the XML script input. The number of passes in its own turn is 

directly related to the desired amount of details and refinement in the final result. So 

creating a more elaborate output might take even more than the previously mentioned 

time.  Painterly mainly uses OpenGL as the 3D language for the graphic techniques 

which is hardware accelerated. But the challenge here, which slows everything down, is 

the conversion of RGB to JCH color space. Since there still is not a GPU (Graphics 

Processing Unit) implementation of these colour conversions available. 

As a research tool, current Painterly system does not create a good end user 

experience, due to not having a proper user interface. One can definitely say it is not 

implemented for ordinary end-users because of its multiple language based scripting 

choices. Part of a currently ongoing research of Painterly’s team is to create a higher-

level authoring system, capable of writing and executing scripts automatically. Using AI 

(genetic algorithms in particular) in creating a better and smarter front-end is one of the 
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considered options. Having a suitable user interface will ease out the working 

experience for the users by a great deal. 

Communicating with different knowledge buffers, such as color palettes, mattes 

and depth buffers through scripting language, makes the system highly customizable 

and knowledge-based. However, a lot of these components and data files, the matte 

files for instance, are still somewhat ‘out-sourced’, meaning that they are created 

separately with other software and applications such as Adobe Photoshop or Autodesk 

Maya. This disconnection regress the aspired ‘ease of use’. Painterly is not fully 

automatic as the preparations from tweaking style parameters to generating matte files 

are done manually. However, the step of generating matte files can be automated, 

mainly when the input image[s] are imported from a CGI 3D source. Wielding more 

automation in the process is a desired goal and part of planned future works for 

Painterly’s team. Nonetheless, it should not be forgotten that some steps of the process 

such as regioning and labeling the semantic perception blobs are highly content-driven 

and completely different for various types of images (such as portraiture images and 

landscape scenes). Painterly team has begun discussions with Zhao (Zeng, Zhao, 

Xiong, & Zhu, 2009; Zhao & Zhu, 2011) about collaborating on a shared research in 

semantic labelling area. The research might include using semantic parse trees onto and 

above perception blob trees. 

Currently, Painterly is focused on portraiture, not in the internal JAVA code but 

more on the assumptions, knowledge buffers and scripting; although it has been tested 

and used it on reference images containing other focal objects besides faces (Section 

1.2). Extending the content knowledge semantics to include other genres of imagery 

such as landscape, figurative, still life, etc. is also another goal worth pursuing for 

Painterly team. This expansion would ultimately affect several aspects of our CPA 

system as well. In order to achieve that, knowing other knowledge approaches towards 

these painterly genres is a must. Implementation and testing are the steps coming after 

that. Building up a system which is capable of working with different styles of imagery is 

the ultimate state for Painterly team.  
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3.5. Fine-Tuned Painterly rendered stills 

In this Section we present a number of fine-tuned painterly rendered stills, 

created with Painterly, to show the real power of this toolkit and the wide spectrum of 

styles it can create.  

Figure 3.4 shows several styles generated from one reference still image.  These 

different styles demonstrate just a small part of the wide range of styles that Painterly 

can generate. All different aesthetics and looks have been achieved through modifying 

Painterly toolkit’s painterly parameters. 

Figure 3.5 shows more fine-tuned examples that can be generated with Painterly. 

These examples were used in four eye tracking studies which gave empirical evidence 

that the artists, in general, and Rembrandt in particular, can influence the viewer's 

appreciation of art by selective use of painted detail. The aforementioned works showed 

that Rembrandt clearly anticipated the scientific knowledge (i.e. vision science), which 

was also verified by these works for the first time, through the collection of objective data 

of viewers gaze patterns (DiPaola et al., 2010, 2013). It should be noted that Painterly 

does not merely mimic the surface properties from the Rembrandt source but uses an 

elaborate cognitive model of the human painterly process to recreate Rembrandt’s style 

in the previous and following images.  The findings from this work are being applied to 

emotional authorship in rendered characters (H. Seifi et al., 2011; Hasti Seifi, 2010) and 

within face to face communication for autism studies to better filter an autistic viewer to 

the goal of the communication. All these research, by iVizLab and other researchers 

which use open source Painterly will presumably benefit from the strong temporally 

coherent NPR animation sequences that CPA can provide. 
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Figure 3.4.  Different styles of painterly rendered stills from one reference image 
(the very last image), generated by Painterly 
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Figure 3.5.  Different painterly rendered stills, using Painterly toolkit, specifically 
showing that  empirical research can both support the arts (e.g. art 
critics on Rembrandt’s contributions) and learn from the arts 
(scientists can mine innovations intuited by artists) supplying an 
early vision/perception toolkit and process. 
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4. Our Solution for extending Painterly to 
Create Time-coherent Animations:  
Architectural and Algorithmic Design 

We start this Chapter by discussing the challenges to which we are proposing a 

solution and articulating our high-level design goals. We then describe the essential 

aspects of our proposed solution, discussing first the overall system architecture (and its 

integration of the existing Painterly system), and outlining the key algorithmic aspects of 

our solution including key-framing, stroke-to-stroke matching, and stroke interpolation. 

The system implemented based on this solution model is called CPA, standing for 

Cognitive-based Painterly Animator. In the context of this thesis and this Chapter 

accordingly, this name is used for the designed model and the developed system, 

interchangeably. 

4.1. Design Goals and High-Level Approach 

Painterly is a knowledge-based parameterized NPR toolkit with the goal of 

creating still 2D and 3D painterly NPR images, mainly from portraiture (See Chapter 3). 

Time is not a salient factor in rendering still imagery. As a result, this toolkit did not 

previously include mechanisms for ensuring temporal coherency if used to produce 

multiple frames for a movie/animation sequence. The aim of this work was to extend 

Painterly with a means for creating such coherency, thereby obtaining a suitable system 

for creating animation in a painterly style.  

Part of our motivation in utilizing Painterly was to take advantage of its well-

developed, cognitively inspired algorithms for semantic parsing and hierarchical, blob-

based stroke filling (based on research into the practice of skilled human painters). 

Therefore, one specific design goal was to extend Painterly for animation in a way that 

preserves and leverages a large degree of Painterly's cognitively-based processing. 
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To summarize, the following basic goals informed our system design: 

• Extend Painterly to the task of creating animations 

• Maintain and utilize Painterly's cognitively-inspired rendering capabilities 

• Provide a solution that ensures a high degree of temporal coherency across 
time (i.e. across the sequence of image frames) which performs better than 
previously used pixel-based interpolation algorithm discussed in Section 1.2.1. 

Considering the challenge of creating painterly animation, many different 

fundamental approaches could be considered, having different mechanisms as well as 

different aesthetic outcomes. A simple approach is to treat each frame as a separate 

painting; however, this approach generally leads to a large amount of flickering and fails 

to meet the goal of temporal coherence. As an example of a practical and modestly 

successful alternate approach from previous literature, the system of Hertzmann 

(Hertzmann & Perlin, 2000), painted over the previously rendered frames, only on the 

areas that had been changed. In the current work, we explored a different approach, 

which focuses on achieving coherency and the sense of 'flow' by treating the animation 

as a collection of strokes which gradually move, deform and change color in a smooth 

way, over time.  

4.2. System Architecture Overview: Extending Painterly 

Maintaining cohesiveness in a painted video requires the system to be stateful. 

The internal components of such a system should be able to keep detailed information 

about the rendering process of each reference image and utilize this information in 

processing and rendering the next images/frames. Painterly is currently incapable of 

passing on and utilizing this information in its Thinker component’s internal process for 

generating blob trees and corresponding strokes of the ongoing procedure. Every image 

created and rendered by Painterly is unique, and therefore it differs from the previous 

and next images.  The change in color, orientation, length and position of each single 

brush stroke happens – significantly or very subtly - in all areas of the image - regardless 

of the semantic region in which the stroke falls in. 
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4.2.1. Extending Painterly with External vs. Internal Modifications 

For addressing this issue, there can be two different approaches. The first 

approach is to implement the required information flow inside the body of Painterly itself, 

within the Thinker-Painter framework. This way, all the rendered frames would initially be 

made in coordination with each other and eventually will have a cohesive flow. This 

approach might sound ideal, since it gets to the root of the issue and addresses it from 

the bottom up. However, this approach has the drawback of modifying Painterly's 

algorithms somewhat arbitrarily and therefore moving away from Painterly's well-

researched foundation in the cognitive practice of human painters (and away from the 

potential to build on this research with further cognitive and perceptual modeling 

elements). If a human painter had to constrain their perceptive and creative thinking and 

techniques to procedures that only work correctly (or the same) with 100s of frames in 

an animation rather than just the one painting in front of them, that work would suffer. 

Artists do not work with that severe constraint. This internal animation thinking approach 

might also limit Painterly's ability in creating various styles of painterly imagery by limiting 

the behavior of painting elements (e.g. brush strokes, Concerns).  As a drawback on the 

pragmatic level, this approach would require a complete re-designing of the structural 

and process model of the system. A redesign that would move away from artist and 

cognitive knowledge centered approach. 

These drawbacks lead us to the other possible approach, which we elected to 

follow: addressing the information flow problem from outside the body of Painterly itself 

and through an extended system which uses Painterly as one element. Such an external 

solution guarantees that no internal process or component of Painterly will be changed 

or modified. The result of this work will practically expand the scope of Painterly, from 

being a stateless and still-oriented system to a stateful and multipurpose one, without 

changing its original ‘time-insensitive’ nature. Since Painterly sets itself apart from other 

similar system by being more of a research tool, this expansion will also affect the scope 

of its target research domain to include new dimensions, to study and explore. 
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4.2.2. Keyframing, Interpolation and Data Flow to/from Painterly 

Our solution to induce coherency in Painterly rendered animation/movie 

sequences involves intervening in Painterly’s frame synthesis process, and doing a part 

of this job with our system - CPA.  We use Painterly as our base system, being the main 

planning and rendering engine.  This means that we use it to initiate a planning process 

on how to execute the frame-synthesis procedure, incorporating its cognitive knowledge 

space into the process.  We take on the responsibility of doing the frame synthesis 

procedure based on this planning process.  Then we have Painterly render our 

generated frames (Figure 4.1).  We are able to do this backward processing with 

Painterly, due to the robustness of this toolkit (See Section 3.1).  Our solution depends 

on 2 types of data which flow between Painterly and the rest of the system: keyframes 

(used as input to Painterly) and XML stroke log files (a data format, both output from 

Painterly to acquire a stroke-plan for the keyframes and input to Painterly to render 

additional frames) (See Section 5.6 for an example of this XML files). 

 

Figure 4.1.  CPA as a black box, in relation to Painterly.  CPA uses Painterly to 
initiate the painting process and also to finish it. 

Keyframing has widely been used in many different approaches in the video 

painting field.  Keyframes are frames which contain some content that define the starting 

and ending points of a smooth transition.  So, keyframing is to assign some specific 

parameter values to any of the content of keyframes, as a specific point in time.  In our 

solution, the use of keyframing provides several benefits.  It allows us to render certain 

frames using Painterly's full Thinker/Painter apparatus, thereby leveraging Painterly's 

cognitively-based algorithms.  At the same time, it allows us to avoid painting every 

frame separately with Painterly, thus avoiding the temporal incoherency discussed in 

Section 4.2 and also mitigating the large time-cost of Painterly’s time-consuming 
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rendering process.  Keyframing allows our extended system to intervene in the frame 

synthesis process by intelligently interpolating the non-keyframes (we shall refer to these 

as in-between or 'IB-frames’) in a manner which encourages temporal coherence. 

Our solution starts with a set of keyframes, provided by the user or any other 

system.  In this sense we have taken a similar approach as the three most influential 

research works on this thesis which are Lin et. al., Kagaya et. al. and Hertzmann (Mizuki 

Kagaya et al., 2011; T. Lin et al., 2012; O’Donovan & Hertzmann, 2012). These 

keyframes could be selected and extracted either manually or automatically, from the 

target movie/animation sequence.  The keyframe set is processed by Painterly to get to 

use the result of its thinking, painting and rendering algorithms in the form of outputted 

XML stroke log files.  This XML file contains a hierarchical tree representation of passes, 

semantic blobs/regions, strokes and strokes’ style-parameters (See Section 5.6).  The 

information in these XML files is used as reference points in propagating and generating 

the necessary IB-frames between the reference keyframes.  For producing IB-frames, 

each two consecutive keyframes, referred to as source and target keyframes, are used 

as beginning and ending points of a transformation procedure.  This transformation 

happens to the contents of source keyframe in order to metamorphose them towards 

their corresponding ones in the target keyframe.  The IB-frames are passed as XML 

stroke log files, back to Painterly for rendering.  All the keyframes and the generated IB-

frames are then stitched together to create a movie/animation sequence (See Section 

5.7).  The result will hopefully be both cohesive and yet cognitive-based, due to actively 

incorporating Painterly’s cognitive knowledge space in the course of generating IB-

frames.  Figure 4.2 demonstrates the whole process, from beginning to the end, more 

clearly.  
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Figure 4.2.  Generating IB-frames with CPA.  Keyframes are fed in Painterly. The 
XML output of this phase is then used by CPA. The XML 
representations of IB-frames, outputted by CPA, are then fed back to 
painterly to get rendered. 
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Examining our proposed technique for generating IB-frames, the algorithm 

comprises two main phases: 1) Analyzing/Mapping which analyzes source and target 

XML files and maps together their corresponding content and 2) 

Transforming/Generating which transforms the source’s mapped content towards their 

corresponding target states and generates the output IB-frames.  These two phases are 

discussed in more details in Section 4.3. 

4.3. Proposed Technique for 
Stroke-based Keyframe Interpolation  

In this Section we describe the technique we have designed for generating stroke 

data for IB-frames based on intelligent interpolation of stroke data from keyframes.  Our 

proposed technique consists of two main phases which we will call Analyzing/Mapping 

and Transforming/Generating.  The Analyzing and Mapping sub-phases work together to 

accomplish the task of creating an optimal stroke-to-stroke mapping between the 

collection of strokes in one keyframe and the collection of strokes in the following 

keyframe.  The Transforming and Generating sub-phases utilize that mapping, and work 

together to generate interpolated strokes which smoothly transform in position, shape 

and color from a starting state in one keyframe to an ending state in the next.  These two 

phases and the functions they perform are illustrated in Figure 4.3 and discussed in 

more detail in the proceeding sub-sections. 

4.3.1. Review of Terms: Pass, Region, Stroke 

In this sub-section we briefly review some terminology and concepts used heavily 

in the following Sections and sub-sections. 

Semantic Regions/Cognitive Blobs 

These similar concepts (used here interchangeably) refer to sub-regions within 

an image that are associated with semantic label data. This data construct is used by 

Painterly and our proposed extended system – CPA - to incorporate cognitive/semantic 

information in the process of painting, rather than just strokes and/or pixels. Using the 

semantic region data, Painterly and CPA are able to a) “see” the big picture of the 
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painting process; b) “think” about different areas of the source image and reference 

canvas and c) “decide” on which area is going to be treated next as well as how the act 

is going to be executed. 

 

 

Figure 4.3.  CPA’s main phases.  (a) Analyzing/Mapping and (b) 
Transforming/Generating phase  
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Pass 

Pass refers to a round of stroke-placement on the virtual digital canvas. Also on 

the script level, a Pass consists of a number of Regions together with a Pass Header 

carrying its attributes and properties (See Section 5.5). 

Stroke 

In this context, stroke refers to a high-level construct, built of low-level 

parameters such as opacity, scale, color and points. A stroke models several 

parameters of an actual brush stroke in a real painting. 

4.3.2. Analyzing/Mapping Phase 

The main goal of the Analyzing/Mapping phase is to analyze, compare and map 

between the contents of source and target reference keyframes.  Recall that, the main 

information blocks which are passed back and forth between Painterly and our extended 

system – CPA - are XML stroke log files.  These XML scripts, as explained before, are 

output by Painterly and serve as a [painting] process-plan, containing all the information 

about passes, semantic regions and strokes with their hierarchical orders and their 

specific property values.  The Analyzing/Mapping phase must compare between two 

given XML stroke log files which represent two successive keyframes from the input 

frame-set.  

To transform the XML elements which are passes, regions and strokes, from the 

source keyframe script towards the target, we first need to find an optimal mapping 

between these elements.  Since every pass and its corresponding semantic regions are 

built out of simple strokes, we need to map between the strokes of source and target 

XML files.  By finding the most optimal mapping, we obtain a smoother transformation 

and eventually enhance the coherency of generated IB-frames. 

A painted frame is made up of multiple passes of strokes.  The order of these 

passes affects the final aesthetic look of the resulted image.  To maintain this order, we 

need to find several mappings, one per each pass of strokes.  Additionally, each pass 

contains a number of cognitive regions.  It is not only crucial to keep these regions intact, 

but also we need to form a strong connection between them and coherently maintain it 
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throughout successive keyframes.  Each region consists of a number of brush strokes.  

Each brush stroke has an order in the XML’s hierarchical tree, in addition to other style-

properties.  Ultimately, in order to maintain the orders’ priority and regions connection, 

we should map between strokes of each two corresponding semantic regions from their 

corresponding passes in source and target XML scripts.  

Finding the most optimal one-to-one (stroke-to-stroke) mapping is not a 

straightforward procedure.  Although the two Source and Target XMLs typically have the 

same number of passes, there is no guarantee that they also have the same number of 

strokes.  Moreover, no two strokes from the source and target XML files are necessarily 

the same in shape, size, orientation or color.  Consequently, we need to compare 

various pairs of source and target strokes, to find the ones which are the closest to each 

other based on some criteria.  This criteria and the stroke distinction are explained in 

more detail in proceeding sub-sections. 

Region Equality as the Eligibility Criteria 

In the sense of using scene semantics, this thesis work’s approach is highly 

similar to Lin et. al.’s work (L. Lin et al., 2010). CPA extracts the semantic region 

information from the provided XML inputs and utilizes it to generate a strong connection 

between semantic regions in the given set of keyframes, similar to Lin et.al. However, 

unlike Lin et. al. which extracted the scene semantic information inside their 

segmentation and video parsing algorithm,  this semantic information is provided to CPA 

from an external source – which is Painterly. This connection is used as an anchor point 

in synthesizing the IB-frames. In other words, the first level of comparison made on the 

source and target strokes is on their semantic regions. Any target stroke is Eligible for 

further analysis only if it belongs to the same semantic region as the reference source 

stroke. This first step filters out all the strokes from other semantic regions and 

guarantees to keep the mapping in the same region. The resulted set of all the eligible 

target strokes is called the ‘Eligibility-Set’. All further analysis is done only on the 

members of this Eligibility-Set.  
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Position-Color ‘Similarity’ as the Mapping Criteria:  

CPA maps each two corresponding eligible strokes together, based on their 

degree of ‘similarity’ in color and position, or more precisely, a combination of these two.  

In this context, we define ‘similarity’ as the degree of fulfilling all the necessary criteria 

that makes a stroke a proper candidate for mapping among the rest of the eligible 

strokes.  In this case, similarity in position simply means that the actual position of 

source and target strokes, across the X and Y axis (with pixel being the measuring unit), 

is the most similar to each other.  Just like position, similarity in color also means that 

source and target strokes have the minimum difference in color.  These criteria inform a 

set of rules and constraints which direct the process of mapping and affect the result of 

this phase which consequently determines the aesthetics of the resulting IB-frames.  

Figure 4.4 illustrates the position- color-based mapping strategy.  The degree of 

similarity, either in position or in color, is the objective function which we are minimizing 

and optimizing, since it directly determines the fitness of the mapping and therefore 

configuration of the generated stroke, and consequently the aesthetics of the results.  In 

this sense, we have taken the same road as Hertzmann (O’Donovan & Hertzmann, 

2012), as we also based our objective function on utilizing optical flow of the scene 

objects. 

Position Similarity; Minimum Movement 

The key to achieve and maintain cohesiveness is to minimize the amount of 

changes happening between source and target keyframes. Since the two keyframes are 

different in content, their XML representations also vary, in the sense of strokes’ 

positions, orientation and color. We need to make these changes morph smoothly from 

the source keyframe to the target one.  

According to our experience and observations, the number one enemy of 

cohesiveness is the movement of strokes, which naturally happens when source and 

target keyframes are rendered separately. Most commonly, reducing the amount of 

physical movement of a stroke produces a greater improvement in perceived coherence 

compared to other changes (e.g. color). We speculate that the reason lies in how 

humans perceive movement and the effect of this perception on directing their gaze and 
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attention. Investigating the psychological aspect of this phenomenon further would be 

interesting but is beyond the scope of the present work. 

 

Figure 4.4.  Mapping source and target strokes, based on position-color 
similarity.  Source Stroke 1 (ss1) is compared to target stroke 1 and 
2(TS 1 and TS 2) in terms of position and color. D1 and D2 are the 
corresponding distances between SS 1 and both TS1 and TS 2. The 
combination of these position distances and the color distances will 
determine the best mapping for the SS1. 

 Thus, to minimize the amount of undesired and annoying visual artifacts and 

enhance the sense of coherency, we need to keep the stroke-movements to a minimum 

possible amount.  Of course the rendered keyframes do not necessarily contain identical 

strokes. (In fact, practically they have nearly none.) Therefore, our best option to 

minimize the amount of stroke-movement is to map each source stroke to one from the 

target keyframe which is the most ‘similar’ one, in terms of position. This means that the 

two source and target strokes should have the least distance among all other strokes. 

This will guarantee that each mapped stroke will eventually undergo the minimum 

amount of movement form the source keyframe to the target one.  
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Each stroke possesses more than one control points, and also the strokes do not 

have any direction – unlike the regular vectors. For these reasons, we needed to find the 

minimum distance between source and target strokes’ control points and ultimately 

average the calculated distance to come up with an overall position-distance score for 

two given source and target strokes. Figure 4.5 better illustrates the method of 

calculating this distance score for every given source and target stroke. 

 

Figure 4.5.  Calculating distance between source (SS) and target (TS) strokes.  
Di is the summation of all Euclidian distances between the reference 
control point of the SS and all points of TS. The overall distance is 
the summation of all D1 to D4. 

Color Similarity as another Determining Factor  

Current version of CPA is, in fact, the second version of this system, after 

applying a round of revisions to its former design model. The revision was based on 

some observations on the performance of the former system. Through these 

observations we detected a number of issues which addressing them was the base for 

the first round of revisions. There have been a number of modifications and additions to 

the first version of CPA, to get this system to its current configuration. 

Two rather important additions were made to the former version of CPA after the 

first round of revisions. Firstly, we incorporated ‘color similarity’ in the course of mapping 
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strokes and secondly we focused on ‘how’ we can incorporate this similarity. As 

mentioned above, spatial position – shortly referred to as position in the context of this 

thesis - is the number one factor to watch for, when we want to minimize the amount of 

changes between source and target keyframes. Nonetheless, when talking about the 

‘similarity’ of source and target strokes, we cannot disregard ‘similarity’ in terms of the 

strokes’ color values. Since it is almost impossible to find two strokes with the exact 

same color value number, our best option was to consider ‘color similarity’ instead of 

‘color equality’ in finding the best match.  We also had to transform the source stroke’s 

color into the target stroke’s color, later on, in the Transformation phase (See Section 

4.3.3 for more detail on color transformation). ‘Closeness’ in the source’s and target’s 

color values, leads to more smoothness and subtlety in transformation and therefore 

more cohesiveness in the resulting animation sequence. 

Using CIECAM02 color space  was a huge advantage and imposed a big 

challenge at the same time, towards tackling the ‘color similarity’. In this 3-dimensional 

color space, a perceptually relevant difference between two color values can simply be 

calculated as the Euclidian distance between the representative points of these color 

values. As a result, to find the two strokes with the most ‘similar’ color, we just needed to 

find the target stroke whose color point had the shortest distance from the source’s color 

point, among the eligible candidate strokes. The calculated value of this distance is 

assigned to each candidate stroke, as their color distance score. (See Section 4.3.3 for 

more details on the implementation of color metrics.) 

But how this color space is structured to allow this conversion? The Jab color 

space guarantees that any pair of points within it would seem exactly as similar as any 

other pair of equal Euclidean distance from one another to the average human 

(someone who is not visually impaired or have faulted sight). This means that ‘J’, ’a’, and 

’b’ correlates are based on humans’ actual visual perception. Their limits, therefore, 

correspond to the biological limits of humans’ vision and visual perception (which are 

complex and out of the scope of this thesis work). The shape of this color space is also 

somewhat quirky; the 'red' end tends to have larger limits than the 'blue' end because 

humans’ eyes are far better at distinguishing between reds than blues. This is because 

humans evolved the ability to see yellows/blues fairly recently in their genetic history; 

long after they became able to see reds/greens 



 

65 

In this color space, ‘J’ is somewhat normalized arbitrarily to a 0-100 scale; this 

means that ‘a’ and ‘b’ are scaled relative to J’s value, such that 1 unit of distance in any 

direction represents an equal change in perceived color distance. The extreme values of 

‘a’ and ‘b’ are determined mostly by the biological and perceptual limits of humans’ eyes. 

In other words, they depend on the range and type of the light which humans’ eyes can 

detect; there are values of 'a' and 'b' that theoretically exist but are ignored, since most 

humans cannot perceive them as being any different from some other less extreme 

values. 

To be able to make comparisons between color values of different frames, the 

color space and the correlates need to be normalized. This ‘Normalization’ was the 

actual curveball in using this color space, since it is not properly and fully normalized. 

The value of ‘J’ ranges from 0 to100 and can therefore be normalized with some 

success, but the two Chroma correlates - 'a' and 'b' – are not as straightforward. A value 

of '0' for ‘a’ or ‘b’ means 'without Chroma’, that is gray. However, that is the only real 

assumption we can make about ‘a’ and ‘b’ correlates; since each one of them can get 

positive or negative values and their ranges are not conveniently defined. 

Whit all that been said, there was no convenient way to normalize ‘a’ and ‘b’ 

without being arbitrary or clipping off valid parts of the color space. In fact, any selected 

ratio would be essentially arbitrary.  

Position-Color Ratio  

Rather than being separate factors which can be calculated and measured 

individually, color and position have a nontrivial correlation in determining the degree of 

fitness for a possible mapping, for any given stroke. So the similarity score for any two 

given stroke, is in fact a combination of position similarity and color similarity scores. The 

important question in this state of the method is how to find a balance point between 

‘position’ and ‘color’ in this combination. In fact, this ratio may depend on the content of 

the images.  

There was no standard solution for determining the best ratio in various 

conditions. Moreover, normalizing the color space was a nontrivial task which we had to 

deal with. Therefore, we needed to come up with some heuristic method to find the best 
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ratio range, eventually obtaining a suitable value to use in our implementation. 

Regarding the color distance, we were just looking for finding the minimum difference 

between the source and target strokes’ color values, and therefore the maximum 

possible differences were not a matter of salience. As a result, to find the best 

combination of position similarity and color similarity, our best option was to find different 

scale factors between color and distance and observe the results. Nonetheless, no one 

ratio will be 'better' than the other; they will merely represent different styles. Therefore, 

the best thing we could do was to parameterize these ratios, so that users can modify 

them as they please, to get the desired look in the final result. The details of our method 

and findings are discussed further in Section 5.5 and Section 6.1.1.  

Stroke Mapping: Situations Where 1-to-1 Mapping is Not Possible 

Three possible scenarios might happen in the course of mapping corresponding 

strokes from source and target XML files.  The first, ideal, scenario is that for each given 

stroke from each pass and cognitive region of the reference source XML, a fit match is 

found in the corresponding pass and region of the target XML.  The second possible 

scenario happens when there remains at least one stroke in the source XML script which 

is not matched with any eligible stroke form the target XML file: we refer to this source 

stroke as a 'Not-Matched Source'.  The third scenario is when there remains at least one 

stroke among the target XML script that is left unmatched.  We refer to this target stroke 

as a 'Not-Matched Target'.  Such Not-Matched strokes are dealt with in the 

Transformation/Generation phase by applying Fade-in and Fade-out processes (See 

Section 4.3.3).  

Stroke Mapping: Analysis and Processing of Sub-Strokes 

CPA encodes the strokes by a series of control points, making it possible to 

consider each stroke as a list of sub-strokes.  Each sub-stroke possesses at least 2 

control points. All of these sub-strokes share the same style-properties, as the original 

stroke. When rendering each stroke onto the reference canvas, these control points are 

used to generate a spline, to represent the reference stroke.  In the course of designing 

CPA, we explored 2 different techniques for taking the multi-segmented nature of 

strokes into account. 
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The earlier - the former – technique was to break each stroke to its constructive 

sub-strokes. This means that each stroke was broken down to a set of smaller strokes, 

each having just 2 control points but sharing the same style-properties, as the original 

non-broken stroke. For instance, a stroke with 5 control point would be broken down to 4 

smaller sub-strokes. Figure 4.6 shows a better view of this process. 

 

Figure 4.6.  A Stroke with 5 control points broken down to its 4 constructing 
sub-strokes, marked by blue dashed circles. 

By choosing this approach, we could increase the chances of each sub-stroke for 

getting mapped to the most ‘similar’ sub-stroke. Theoretically this would have created 

much subtle changes in position and color of the mapped strokes throughout successive 

key-frames. As a result, we would have created a more cohesive animation/movie 

sequence 

There were a number of issues with our first technique which eventually lead us 

to make some changes to get to the current technique used in CPA. Through generating 

our very first batches and test-runs using the first technique, we realized that this method 

was not increasing the chances of a sub-stroke for getting matched and was, in fact, 

worsening the incoherency of the final sequence. The reason was that this approach 

would end up matching different sub-stroke particles from a source stroke, with sub-
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strokes of a number of different target strokes and transforming them accordingly 

towards the target particles. Therefore, each unified stroke would end up disintegrating 

and blending with other strokes, by the end of interpolation process (Figure 4.7). 

 

Figure 4.7.  Sub-stroke particles get mapped to multiple target strokes’ particles. 

Nevertheless, these sub-stroke particles were never put back together to form a 

whole complete stroke as it appeared in the next key-frame. This was because by the 

end of morphing process each sub-stroke had drifted far apart from the body of the 

original stroke, so putting them back together was practically impossible. Therefore this 

method led to a stream of steady small changes and movements happening across the 

frame, and failed to yield the desired cohesive outcome. The second issue was the high 

memory complexity of this approach. Increasing the number of strokes by breaking down 

each stroke was doubling, tripling or in some cases quadrupling the size of active 

memory taken by the system and therefore, damaging the overall performance of the 

system. Addressing these issues formed the basis for our current technique which is 

used in the current version of CPA. This technique is based on keeping the strokes’ 

integrity. In this technique, we treat each stroke as a whole unit, without breaking it 

apart. Strokes of the source keyframe are compared to their corresponding ones from 

the target keyframe to eventually be mapped with their fittest counterparts. Figure 4.8 
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shows a better comparison between the former technique and the current technique of 

mapping source and target strokes.  

 
(a) 

 
(b) 

Figure 4.8.  CPA's former and current mapping techniques.  In the First 
technique (a), each stroke was broken down to a number of sub-
strokes and mapped accordingly to other sub-strokes from multiple 
target strokes. In the current technique (b), strokes are mapped as a 
whole unit and transform accordingly, keeping their unity. 
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Grid-Based Search 

To help limit and minimize the stroke movements through the time, CPA uses a 

grid-based search, by superimposing a grid window on the reference keyframes. Strokes 

are labeled based on the grid window they fall in. So each stroke gets a series of labels 

which are actually the grid window number of the windows their control points fall in. 

While searching for candidate eligible strokes for a reference source stroke, these 

window labels are used to filter out the strokes which have at list one grid window in 

common with the reference source stroke. Just like region, the grid window is used at 

the very first step of analysis, to determine the eligible strokes for further comparisons 

and analysis. Strokes which are not from the same semantic region or does not have 

any grid window in common are not even eligible for similarity score calculation (Figure 

4.9). 

 

Figure 4.9.  Grid windows are superimposed on source (a) and target (b) 
keyframes.  The black stroke in the target keyframe is an eligible 
candidate stroke for the blue stroke in source keyframe, since these 
two strokes have common window labels for their control points. 
The green stroke is not eligible for further analysis for the orange 
source stroke, because they don’t share any common window. 

This grid-based search has two main advantages. Firstly, it speeds up the search 

to find the candidate strokes for mapping, by shrinking the size of Eligibility-Set (See 

Section 4.3.2) and accordingly the number of the eligible strokes that should be 

examined for similarity score calculation. Secondly, it directly helps to increase the 

coherency level. By framing the area in which the system should look for an eligible 
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candidate stroke, this grid search physically limits the allowed position transformation, 

since strokes can be mapped only if they fall in the same window. The grid window value 

is an integer number that determines the number of evenly distributed columns and rows 

across the frame. Therefore, any frame will eventually be divided into ‘grid value x grid 

value’ numbers of windows. This parameter is applied to every individual pass 

separately, so each image can be processed with multiple grid window size values. The 

size of these grid windows are eventually determined by the user. More detail about this 

parameter is given in Sections 5.8.2 and 6.1.2. 

4.3.3. Transforming/Generating Phase 

The most challenging goal of this phase of our solution is to transform the 

content of source keyframe towards their corresponding in the target one.  This 

transformation is done based on the mapping result from the previous phase. Just like 

mapping, transforming needs to be performed on representative elements of the frames’ 

contents, which are elements of the source and target XML files. The 

Transforming/Generating phase takes on the responsibility of reflecting all the necessary 

changes to morph each mapped element from their states in the source XML towards 

their states in the target file. Strokes, as the smallest high-level constructs of the 

painting, are the entities which undergo this procedure. As these strokes are ultimately 

represented and referred to, as the numbers and property values in CPA’s internal 

procedures, the transformation is applied to almost all their properties (i.e. position, 

color, opacity and order). The rate and time course of transformation for these properties 

depends on the 'Interpolation-Style' settings in CPA (See Section 5.8.4). 

The final Generating aspect of the phase is conceptually more straightforward, as 

described in ‘Generating Sub-phase’ sub-section in the current Chapter. 

Three Types of Stroke Transformation 

There are three main types of transformations.  Correspondingly, they happen in 

any cases of three possible mapping scenarios, articulated in Section 4.3.2.  
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Normal 

A Normal transformation is a simple morphing, happening in cases of one-to-one 

mapping between corresponding strokes from source and target XML files.  This 

transformation is performed on the style-properties of a reference stroke, to gradually 

alter them from their source-values towards the target-values.  This whole process 

follows a dominant interpolation-style, which can be determined and authored to the 

model, through system-parameters (See Section 5.8).  The stroke-properties which 

undergo this morphing process are position, opacity, color and order. 

The remaining two transformation types can be construed as special 

modifications of the Normal transformation type. 

Fade Out  

This transformation type is used in the scenario when the source stroke has not 

been mapped to any corresponding stroke in target image (Not-Matched Source).  

Hence, to prevent any sudden disappearance of that stroke, it is faded out instead by 

gradually reducing its opacity; changing it from its current value to zero.  The reference 

stroke will go through the Normal transformation on all properties, except for the opacity.  

Fade In 

This transformation type is used in cases when the target stroke is not matched 

and mapped to any corresponding source stroke (Not-Matched Target).  To avoid any 

abrupt appearance of such a stroke, at any point during the sequence, the stroke is set 

to gradually appear among other strokes.  This is done by gradually increasing its 

opacity value from zero to its current value.  Apart from the opacity, all other style-

properties go through a Normal transformation. 

Transforming Strokes as Whole Units 

In order to keep the morphing of images as smooth as possible, CPA treats each 

and every stroke as a whole entity, without breaking it apart; unlike the former technique 

(See Section 4.3.2). The source stroke will move, rotate, change its color and opacity 

and even its order in the hierarchical tree structure of XML script, in order to 

metamorphose to the target stroke. Figure 4.10 shows a better depiction of this transition 
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of the source stroke’s control points along the transformation procedure. Middle states of 

the morphing stroke are the state of that particular stroke in its corresponding IB-frame. 

The number of these ‘transitional states’ is an open-parameter of CPA, defined by the 

user. It actually is the number of IB-frames the user wants to make between two 

successive keyframes. 

 

Figure 4.10.  The spatial changes of the control points of a stroke, transforming 
from its source configuration to the target configuration (Photo 
credit: Nahid Karimaghalou). 

Equalizing the Number of Control Points 

One consequence of keeping strokes as whole units is that the transformation 

procedure may include an extra step of changing the number of their control points. The 

two mapped strokes – source and target - might differ from each other in the number of 

points (e.g. one has 3 and the other has 7 points).  Therefore, equalizing the number of 

control points is the first step in the morphing process.  By adding the necessary number 

of point to the smaller stroke, we guarantee that both mapped strokes will have the same 

number of points, which eventually makes the transformation process easier (Figure 

4.11).  
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Figure 4.11.  Equalizing the number of control points in two mapped stroke.  The 
yellow point is the new control point added to the smaller stroke - 
SS 1 - to equalize the number of its points to TS 1 

Accounting for Stroke Order 

One other important change we made in the earlier version of CPA, to get to the 

current state, was to consider the ‘order’ by which a stroke is painted onto the digital 

canvas, in the transformation procedure. This order number is crucial in determining the 

final look of the resulting image. Eventually, all the strokes are put on top of each other 

on the virtual digital canvas and consequently, they are covering or overlapping with 

each other. The colors of strokes with lower opacities combine with the colors of strokes 

underneath them. Some other strokes may get completely covered by the strokes 

painted on top of them. Thus, it was important to take into account the order of matched 

strokes and interpolate this value in the transformation process as well. The current 

method of morphing this order value follows the overall interpolation-style and is 

currently linear across the generated IB-frames. For instance, if a stroke with an order 

number of 400 (meaning that it is the 400th stroke that is painted in that pass) is mapped 

to a stroke with the order of 600, the order of source stroke is changed gradually and 

linearly towards the order of target stroke. In this example it will increase from 400 to 

600. Applying non-linear order-transformation has not been explored in current thesis 

work. However, it certainly is an interesting practice that will create more abstract image 

results. It can be explored in future research works.  
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The rendering order of strokes is not considered in the mapping phase since it is 

not an actual style-property of the source and target strokes. Therefore, this property is 

not a matter of salience in finding the fittest map for the reference source stroke. 

Nonetheless, it is in the rendering procedure that this order becomes important, due to 

multi-layer nature of the painterly rendered image. Accordingly, to keep the 

transformation process as smooth as possible and reduce the amount of abrupt 

changes, CPA, also morphs this property value in the transformation phase. 

Transforming Colors 

As part of morphing a source stroke to its mapped target stroke, we need to 

transform their color values as well.  As mentioned previously in Section 4.3.2, mapping 

was done based on strokes’ position and color similarity.  Because of using CIECAM02 

color space, we needed to normalize the strokes’ color values based on their color 

information extracted from the reference frame, so that we could map the strokes 

together (See Section 5.5).  Taking this extra step of normalizing, however, was an 

advantage in morphing color values in the transformation phase.  As a result, each color 

point could be treated as a control point, in a three dimensional space.  Therefore, the 

transformation process was similar to a normal position morphing, from the source color 

point towards the target color point.  

Interpolation-Style Parameter:  
Affecting Transformation Style and Motion Pattern 

The Interpolation-style, which dominates the transformation procedure for all 

stroke-properties, is determined by a user-defined parameter. This parameter controls 

the rate and pattern of position and color morphing, as well as order transformation. 

Therefore, the style of transformation is directly affected through changing this 

parameter. It can be set to a constant value for a linear transformation or can be 

exponential or even the result of any desired mathematical equation to generate more 

un-realistic and abstract interpolations between keyframes. However, aiming at solving 

the coherency issue, this parameter has not been the focus of current thesis work, since 

it mainly affects the style of generated outputs. Nonetheless, the style of generated 

outputs can affect the perceptual level of coherency, as flickering is more visible, 

noticeable and sometimes more distracting and annoying in some styles comparing to 
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some other ones. Ultimately, in this thesis work, interpolation-style parameter has set to 

have a constant value and eventually create linear transformation, in all style-properties 

of reference strokes. Exploring different variations of interpolation style, through different 

values of this parameter is certainly an interesting task, which can be pursued in more 

future research works.  

'Generating' Sub-phase 

This step of Transforming/Generating phase is responsible for producing the 

actual IB-frames. Conceptually, the transformation data which has been computed in the 

latter sub-phase is applied and integrated to result in the final stroke data for each frame. 

Notable details beyond this occur at the implementation level, where an internal XML 

data-structure is instantiated and populated with the new values; this is explained in 

Section 5.2.2. 
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5. Implementation 

In this Chapter we explain CPA in further detail. We start with its internal data 

structure, design/component models, process model and dataflow. We then, precede to 

a more detailed review of CPA’s control structures and provide samples of the scripting 

input/output of the system. We continue this Chapter with some general information 

about the framework, programming languages and libraries used for implementing CPA. 

Finally we will conclude with a quick review of CPA’s open-parameter and their impact 

on the outputted results. 

5.1. Data Structures 

Figure 5.1 shows the main data structures used throughout CPA.  The XML 

script file is read and parsed by a DOM object and is transformed to an internal data 

structure digestible by CPA. Overall, there are three main sub-structures nesting into 

each other to form a more unified and sophisticated construct. Each StrokeData object 

represents a stroke and consists of numeric values of its style-properties. This structure 

is somewhat the smallest and most atomic entity of all. RegionData objects represent 

semantic/cognitive blobs/regions of the painting. As everything eventually comes down 

to computational operations, numeric values and number crunching in parametric 

systems, cognitive regions of the image are represented by some nested data structures 

consisting of some other data constructs. Each RegionData object carries a number of 

StrokeData objects. Going another level up, every PassData object contains a number of 

RegionData objects plus some header nodes. These header nodes carry some common 

information about the brush properties or other globally required information that all of 

the strokes belonging to the same PassData share with each other. XMLData objects 

represent an explicit XML stroke log file. Each XMLData object contains a number of 

PassData objects equivalents to the number of passes in the XML script file, a header 
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node, carrying the main information about the XML file itself (e.g. the version of the 

scripting language) and some other attributes with their numeric values (Figure 5.1). 

 

Figure 5.1.  CPA’s main data-structure and data-flow.  The returning arrows 
show the conversion that happens after each round of frame-
generation, to finally output another XML stroke log file. 

As showed in Figure 5.2, MapData objects contain a number of StrokeData 

objects and a header node. In this sense, this object is somewhat similar to a PassData 

object. The difference is that in a MapData object, two StrokeData objects are paired 

together, representing two strokes from source and target XML files that have been 

mapped together. 

 

Figure 5.2.  MapData object’s structure 
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5.2. Component Model 

CPA’s structure consists of four main components which are Reader, Analyzer, 

Generator and Dumper. However, the main work is done by the two middle components, 

while Reader and Dumper are technically responsible for managing input/output streams 

and reading from/writing to XML scripts. Reader intakes the actual XML stroke log file, 

parses it and populates an XMLData object based on that. Analyzer’s job starts with 

breaking down source and target XMLData structures, passed to it by Reader. It then 

analyzes and compares them to find the best mapping between corresponding strokes 

of source and target XML scripts. The mapping criteria are dictated to the system by 

CPA’s open-parameters, defined by the user. Analyzer creates a dataset of all mapped 

strokes. This dataset will then be used by Generator to create the final IB-frames (Figure 

5.3).  

 

Figure 5.3.  CPA’s main components.  The inputs and outputs are coming from 
and returning to Painterly. 
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In the following, we explain the internal structure of our two main components, 

Analyzer and Generator, in more details. 

5.2.1. Analyzer 

This component is responsible for analyzing, comparing and mapping between 

XMLData objects.  The whole idea behind analyzing two input XML scripts is to find the 

best mapping between the strokes of each two corresponding semantic blobs from their 

corresponding passes, based on ‘similarity’ of strokes in position and color.  As 

mentioned in Section 4.3.2, in this context, we define ‘similarity’ as the degree of fulfilling 

all the necessary criteria that makes a stroke an eligible mapping candidate among the 

rest of the strokes.  These criteria are the internal rules and constraints of the system.  

They are in fact system’s open-parameters determined by the user (Figure 5.4). 

 

Figure 5.4.  Analyzer component; zoomed in.  Source and target XML scripts are 
provided through Reader component. Analyzing and comparing is a 
pre-step before finding an optimal map between source and target 
XML elements. Generated map is then passed to the Generator 
component to be processed respectively. 

5.2.2. Generator 

This component is responsible for morphing the mapped strokes from their 

source configuration to their target ones, based on the mapping created by Analyzer 

(transforming sub-phase), and generating the actual IB-frames afterwards (generating 
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sub-phase).  Generator also, applies and leverages user’s preferences about the 

number of IB-frames and the style of interpolation.  These preferences are also the 

system’s open-parameters.  The produced results of Generator are then passed to 

Dumper to be flushed out in the form of XML scripted stroke log files (Figure 5.5). 

 

Figure 5.5.  Generator component; Zoomed in.  The mapping generated in 
Analyzer component is used in Transformer, together with motion 
preferences. The newly transformed strokes are put back together to 
populate an XMLData objects in Generator. 

These outputted XML files are fed back into Painterly to be rendered and painted 

onto the digital canvas.  The resulting image sets - which comprise all the generated IB- 

frames for each two successive key-frames, together with all the original keyframes - are 

eventually stitched together to create a QuickTime movie sequence. 

5.3. Process Model - Data Flow 

Here, we look at the whole process, from beginning to end, following the flow of 

data objects in CPA. The input XML stroke log file is read in through Reader component 

and an XMLData object is instantiated and filled upon that. This XMLData object is then 

passed to Analyzer from the Reader component. Concerns which are a set of rules to 
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determine the criteria of mapping based on user’s preferences are then initiated and 

applied in the analysis process of each PassData. Consequently, a mapping would be 

created between each two corresponding PassData objects of the reference source and 

target XMLData objects. This mapping is represented as a MapData object which is then 

passed to the Generator component. Another set of Concerns are initiated here and 

used by Generator to apply user’s preferences about the interpolation style in the final 

IB-frame. Generator instantiates a new XMLData object, and applies the necessary 

changes based on the provided MapData, to transform the source XML’s content and 

accordingly create the new IB-frame’s XML. This XMLData is then passed to be 

outputted by Dumper (Figure 5.6).  

5.4. Control Structure in Details 

In this sub-section we provide a short tour through the actual implemented 

modules and functions of the four main components of the system, from beginning to the 

end of a job. 

5.4.1. Reader 

Load 

When ‘Load’ function from the Reader component is called, it instantiates an 

XMLData object. Using a DOM object, Load function parses both input XML scripts 

(source and target) and fills the reference XMLData object. As described in Section 5.1, 

an XMLData object is a hierarchical tree structure of PassData, RegionData, StrokeData 

objects. These objects are linked together based on their relative position and order of 

appearance in the reference XML script. By superimposing a grid window on top of the 

reference image, the Reader also groups instances of StrokeData objects based on the 

grid window in which their corresponding control points fall, across the digital canvas. 

This step makes future accesses and comparisons faster and more efficient. The 

looseness/tightness of this grid for each PassData is an open-parameter of system 

defined by the user. The two XMLData objects created here are then passed to the 

Analyzer to be analyzed and compared in order to create the MapData. This Map Data 
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contains the information about which two StrokeData objects of the corresponding 

passes from Source and Target XML files are mapped together. 

 

Figure 5.6.  CPA’s Process model and Data flow. 

5.4.2. Analyzer 

MapBetween 

This function of Analyzer component accesses every StrokeData from the 

reference RegionData of the source XMLData. It then tries to find the best and fittest 

candidate among corresponding StrokeData object of the target XMLData. In the course 
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of comparisons made between the source and target StrokeData objects, ‘IsEligible’ 

function is called to determine the eligibility of selected target stroke. ‘IsEligible’ in its 

turn, creates a set of eligible candidate strokes, called ‘Eligibility-Set’, which is then used 

by ‘FindBestMatch’ function.  

FindBestMatch 

This function intakes the Eligibility-Set and selects the best and fittest candidates 

for the given StrokeData object of the corresponding pass. The selection is affected by 

the Concerns rule-set, authoring the constraints and mapping preferences of the user to 

the Analyzer component. This functions instantiates and fills a MapData object to be 

used in the Generator component.  

5.4.3. Generator 

MakeInBetweens 

This function generates the in-between states of the given mapped source and 

target strokes based on the user’s required number of in-between frames. Meanwhile, it 

injects Concerns rule-set in the process of crafting stroke motion. This rule-set is the 

channel through which the desired interpolation-style is dictated to the Generator. The 

interpolation-style is an open-parameter of the system defined by the user. The result set 

which is a set of StrokeData objects is passed to ‘SetTheValues’ function which in turn 

instantiates an XMLData object to be populated with new StrokeData objects and 

flushed out through the Dumper. 

5.4.4. Dumper  

Dump 

This function of Dumper component transforms the XMLData object to a DOM 

object, manages the output streams and writes out the in-between XML Stroke Log to 

the output path. 
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5.5. Color Normalizing 

Despite working to our advantage, using CIECAM02 color space raised one 

rather important challenge which addressing it was not straightforward. In the course of 

mapping and morphing source and target strokes, we needed to compare their color 

values and transform them. The problem was that the values of ‘J’, ‘a’ and ‘b’ were not 

properly normalized. Without normalizing them no valid comparison could be made. 

Since there was no standard way of doing this, we addressed this issue in a rather 

content-based way. 

What we did was to normalize these values per frame and based on the data 

extracted from that frame. We extracted the minimum and maximum values that each 

one of ‘J’, ‘a’, and ‘b’ correlates could have had in that particular frame and used these 

values to normalize them. However, in practice, we extracted this information once for 

every batch of frames belonging to the same scene, instead of doing it per frame. Our 

reason was that successive frames of any one given scene were very much similar to 

each other regarding color range values. 

5.6. Scripting Examples 

What come bellow are excerpts of Painterly’s Input XML scripts, the Header and 

the Body, followed by CPA’s input and output script, the XML Stroke Log file. The scripts 

are indented, shortened and commented for legibility.  

In the first two scripts, the main process starts at the Pass blue block. Each Pass 

block consists of Thinker, Painter and Concern sections. The main dominant information 

through all processed passes are provided in Header file (e.g. source image and region 

map file directory) whereas the details about how each pass should be processed and 

rendered is given in the Body XML script. In Previous versions of Painterly, Header and 

Body used to be combined in one unified script file, which has been changed in the 

current new version. This separation reduces the amount of redundant header codes 

and eventually, the possibility of errors in reading/writing the XML stroke log script. By 
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adding one header node to the script file which carries all the common style-properties, 

we can dominate all sibling nodes of passes that belong to the same tree root. 

5.6.1. Header Script: 

reference-path resources/TOICam3/MasterBeauty161.jpg      

output-path o/TOI/Cam3/TestCase2/MasterBeauty161StrokeLogImage-

testing      

painting-path dev/strokeLog/TOIstrokeLog-TestCase2-testing.csv  

    

variable resources/TOICam3/MasterBeauty161.psd name region-map  

  

variable dev/paintingHeader/green name palette-folder 

   

variable name hertzmannPainterExtras1     

write-stroke-output o/TOI/Cam3/TestCase2/TOIstrokeLog161-

testing.xml 

 %This tells HertzmannPainter to output a log of all the 

strokes it makes for pass 1 

variable name hertzmannPainterExtras2     

 write-stroke-output o/TOI/Cam3/TestCase2/TOIstrokeLog161-

testing.xml  %This tells HertzmannPainter to output a log of 

all the strokes it makes for pass 2 

variable name hertzmannPainterExtras3     

 write-stroke-output o/TOI/Cam3/TestCase2/TOIstrokeLog161-

testing.xml    %This tells HertzmannPainter to output a 

log of all the strokes it makes for pass 3 

variable 1 name thinker-blob-complexity   % This affects 

how finely the portrait is detailed 

variable 0.2 name gradient-filter-size   % This affects 

how closely brush strokes will follow the contours of the image; 

at large values the strokes will be greatly distorted. 

variable 30 name painter-stroke-length   % This affects 

the length of brush strokes 

variable 0.05 name painter-grid-size   % This affects 

the size of brush strokes 

5.6.2. Body Script 

% script demo 

region-map  % load 2d maps 

   file    

variablename   region-map  

pass   - begin a pass 

    thinker   class   BlobThinker             

blobs-from-regions TRUE   

 leaf-blob-size 0.05   
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 max-blob-size 0.5   

 blob-complexity 0.08   

 blob-blur-size 70   

 density 1   

 detail 0.9 

 painter   class   StrokePainter             

opacity 0.5   

 grid-size 0.04   

 brush-scale 0.9   

 brush class eduPainter.toolkit.jogl.GLTextureBrush  

  brush-file resources/brushes/spatter.gif  

  variable name hertzmannPainterExtras1      

palette   class   eduPainter.palette.RelativeJChPalette 

map-file    

  variable name region-map 

 palette-folder    

  variable name palette-folder 

 palette class eduPainter.palette.RelativeJChPalette  

  ignore-duplicate-palcolors FALSE  

5.6.3. Stroke Log Script 

Painterly also outputs another XML scripted file, referred to as ‘Stroke Log’ in this 

context, which is the input/output script of CPA. The stroke log files generated by CPA 

would later on be fed-back to Painterly, to be painted onto the digital canvas. Below is 

another excerpt of the mentioned script file which will be discussed afterwards. This 

code block is also indented and commented for readability. 

  <?xml version="1.0" ?> 

  <stroke-list width="938" height="400"> 

   <brush-def id="0"> 

    <brush class="eduPainter.toolkit.jogl.GLTextureBrush"> 

     <brush-scale>1.0</brush-scale> 

  <!--Canonical Path: 

'C:\Users\root539\Desktop\paintOutStrokes\trunk\resources\brushes

\spatter.gif'-->   

<brush-file>resources\brushes\spatter.gif</brush-file> 

    </brush> 

   </brush-def> 

   <pass> 

    <stroke region="bg" brush="0" size="38.294605" 

alpha="0.0128058195"> 

     <color J="19.449165" a="0.19258387" b="0.11884503"/> 

   <p x="333.17840576171875" y="218.58920288085938"/> 

   <p x="269.790283203125" y="358.0365905761719"/> 

   <p x="157.702880859375" y="462.4398498535156"/> 
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    </stroke> 

    <stroke region="bg" brush="0" size="38.294605" 

alpha="0.30496562"> 

     <color J="19.449165" a="0.19258387" b="0.11884503"/> 

     <p x="229.76763916015625" y="76.5892105102539"/> 

     <p x="222.14756774902344" y="229.57797241210938"/> 

     <p x="316.4951477050781" y="350.25177001953125"/> 

    </stroke> 

The main process starts by initiating a Stroke-List. The header node, ‘brush-def’, 

provides the required information about the brush class and its image file for all the 

proceeding passes and their corresponding strokes. Users may change the brush 

definition for any of the passes. This would add another brush-def node along the way 

which would dominate all the pass nodes and their child stroke nodes appearing after 

the newly added brush-def node.  

Each Pass contains a number of strokes. This number depends on the ‘density’ 

parameter defined by the user in the Body XML script. The total number of strokes is 

virtually infinite; therefore it can go as high as users’ preference for more elaborate and 

detailed looks. The number of passes also depends on the user’s liking of the output 

result. Each Stroke element contains a set of control points, with X and Y values, 

determining its position on the canvas along the X and Y axis. The units of these axes 

are pixels. Since we are mainly focusing on 2D images the Z value has been considered 

0 by Painterly for all of the control points.  

5.7. Framework 

Since Painterly has been developed in Java, we used Java 1.7.0 as our 

programming language, in order to make the two systems more compatible. CPA is 

developed in IntelliJ IDEA 12.1 Community Edition, Jetbrain’s Java development 

environment. This IDE has been claimed to be the most intelligent Java IDE by the 

provider’s website. It provides the developers with lots of helpful features like fast and 
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smart code completion, version control support and refactoring tools. The Community 

Edition of this IDE is available for download from their website11 and it is free to use.  

Painterly uses Java Advanced Imaging (JAI) version 1.1.3 libraries which is an 

Application Programming Interface (API). This library is freely available for download via 

their website12. Painterly also uses Java Media Framework API (JMF) version 2.1.1.e. It 

is used for incorporating time-based media data such as audio and video, into Java 

applications. According to their website, version 2.1.1 of this API provides support for 

capturing and storing media data, controlling the type of processing and performing 

custom processing on media data stream. 

Moreover, to stitch jpeg images together for making an animation sequence, we 

used the aforementioned version of JAI library. The media library of JAI provides a 

simple and low-level function to create QuickTime movies from a collection of jpeg 

images. The frame-rate of the resulted movie is an open-parameter of this function 

which can determine the speed of the final sequence. 

5.8. System’s Open-Parameters; Quick Review 

We have declared and discussed CPA’s open-parameters and their impact on 

the outputted results along the latter Sections. In this Section we quickly review them 

collectively, before moving on to the next Chapter and discussing the details about how 

different values of these parameters can have different impacts on the results. 

5.8.1. Number of IB-Frames 

This parameter determines the number of IB-frames created between each two 

consecutive keyframes. Generating a higher number of IB-frames will increase the 

smoothness of movement and transformation; and vice versa. However, this number 

needs to be balanced with the number of original frames which have been skipped 

between each two successive keyframes. For instance, if the user has chosen frame 
 
11

  http://www.jetbrains.com 
12

  http://www.oracle.com 

http://www.jetbrains.com/
http://www.oracle.com/
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number 1 and frame number 6 as the reference keyframes, the number of IB-frames 

should be in balance with the original 4 frames that have been skipped between their 

selected keyframes. Going over 4 will slow the animation down but create a smoother 

transformation. Whereas, going under 4 will speed the flow up but generate a rougher 

transformation. Whatever this number is, the speed of the final animation piece can also 

be modified by frame-rate value in the movie making algorithm used in CPA (See 

Section 5.7). 

5.8.2. Grid Window 

This parameter determines the size of the grid window which is superimposed on 

the source and target keyframes. This grid is used for 1) speeding up the search to find 

all the candidate strokes, in the process of mapping source and target XML files. And 2) 

increasing/decreasing the coherency by framing the area in which the system should 

look for an eligible candidate stroke. This parameter will be discussed in further detail in 

Section 6.1.2.  

5.8.3. Position-Color Ratio 

Considering color ‘similarity’ in optimizing the mapping between source and 

target XML files, raises the challenge of finding a balance point between these two 

factors in the competition of color similarity vs. position similarity. Simply favoring one 

over the other would affect the aesthetics of the results. So we should find a ratio 

between these two values. This ratio will indicate how much the color value will be 

weighted comparing to the position, in the course of calculating the overall similarity 

score for a given target stroke. Pragmatically, position similarity score is summed up with 

color similarity score, in order to calculate the overall eligibility score. So each one of 

these scores – position similarity and color similarity – are multiplied by a number 

(integer or float) before being summed up together. The optimal range of ratio between 

these two parameters is utterly content-based and depends on the quality of the 

reference keyframe[s]. This parameter’s estimating method will be discussed in more 

detail in Section 6.1.1. 
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5.8.4. Interpolation-Style 

This parameter dominates the transformation procedure for all stroke-properties 

by controlling the rate and pattern of position, color and order morphing. In other words, 

this is the parameter which determines how each stroke should move and change 

through time to transform from its source state to the target state. Therefore, it directly 

determines the style of transformation. This parameter can get many different values. It 

can be set to have a constant value for a linear transformation or it can be the result of 

any desired mathematical equation to generate exponential or un-realistic and abstract 

interpolations. The flickering and other possible undesired visual artifacts might be more 

noticeable and distracting or disturbing in some styles more than the others. For 

instance, in a linear interpolation wrong movements might appear to be more noticeable 

comparing to an abstract form of transformation; since in the latter one, there is not any 

known stereotype of the interpolation and movements that the viewers are used to and 

therefore expect to see. As a result, this parameter can indirectly affect the perceptual 

level of coherency in the final result. Nonetheless, since this thesis work was set out to 

attend to coherency issue in the Painterly rendered sequences, and this parameter does 

not have a direct impact on the coherency level, it has not been the focus of current 

thesis work. We have set a constant value to this parameter to create linear 

transformation, in all of the style-properties of the reference strokes. 
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6. Parameter Calibration, Tests and Examples of 
Final System Output 

In this Chapter we present and discuss results from different stages of qualitative 

testing we have carried out as part of the development, refinement and validation of 

CPA. We begin with parameter calibration tests, which let us understand the behavior of 

the system under various settings of the parameters left open in initial system design. 

When then move on to tests which demonstrate the performance of the current system 

on real-world, industry-relevant data obtained from our NSERC Engage Collaboration 

(See Section 1.2). All the video sequences which are provided in this Chapter are 

accessible through author’s website13. 

6.1. Impact of System Open-Parameter Settings and 
Demonstration of Potential Output Artifacts 

Being a parametric system, the quality of CPA’s results highly depends on the 

values set for its parameters, and furthermore the optimal setting of parameters may 

depend on the content of the images being processed. For example, as mentioned in 

Section 5.8, the number of IB-frames can change to the users’ liking. However, the 

‘fitness’ of this number is directly affected by the number of skipped frames between 

each two consecutive keyframes and the desired speed of the resulting movie 

sequence. Moreover, providing the proper position-color ratio range and grid window 

scale is crucial in the aesthetics of the results and the overall processing time 

As part of CPA system development we devised various test scenarios to 

qualitatively explore the impact of different parameter settings. In this Section, we 

present results showing how different values of each of the CPA's open parameters can 

 
13

  http://ivizlab.sfu.ca/research/PainterlyAnimThesis/ 

http://ivizlab.sfu.ca/research/PainterlyAnimThesis/
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affect the aesthetics of the output. We observe certain failure modes and types of output 

artifact that can result when parameter settings are not optimal. These findings represent 

progress toward understanding the best default settings or ranges for the parameters, 

and toward understanding how to improve the parameterized system with further 

heuristics or AI techniques in the future. 

For a better and clearer demonstration of what actually happens to the strokes 

throughout the generated IB-frames, we chose to work mostly with coarse rendering 

styles, using low numbers of strokes. This way, each brush stroke is visually 

distinguishable and the movements and interpolations are subsequently easier to follow. 

In some examples, we have cropped the specific part of the image to emphasize more 

on the point being discussed. 

6.1.1. Position-Color Ratio 

The effect of a parameter like position-color ratio is heavily content-based, and 

technically can vary for every single frame. However, considering the fact that 

successive frames are highly similar in content and change gradually, the ratio value can 

be approximated for almost all frames in a particular scene. Unfortunately there is not 

any standard way or rule of thumb to guess the most proper range of this parameter in a 

realtime manner. Therefore, we took the step of performing a number of test-runs in 

order to estimate the most suitable range for this parameter. These test-runs help 

narrow down the wide range of this parameter to find the fittest range which works for 

that specific frame set.  

Figure 6.1 and Figure 6.2 together illustrate the effect of this parameter on the 

generated IB-frames, when not in a suitable range. Figure 6.1 demonstrates the source 

and target keyframes that we have used to create the example IB-frames.  These 

keyframes are rendered with Painterly, using a low density value, large brush size, and 

one single pass, to create a coarse result with sparsely distributed strokes across the 

canvas. This way, the brush strokes are more distinguishable and therefore, their 

movement and transformation is easier to follow. 
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Figure 6.2 illustrates three individual IB-frames, generated between the 

aforementioned keyframes.  Each of these IB-frames, a, b and c have been generated 

separately, with a different value for position-color ratio. Moreover, these frames are 

rendered with grid size value of 1. This means that the effect of grid size parameter has 

been eliminated, to isolate the impact of changing position-color ratio. According to our 

observations on this test data, the most desirable settings for position-color contain 

values in the range [10, 13] for position and the range [2, 3] for color. Instead of 

using a float number, we found it easier to multiply each of position similarity score and 

color similarity score by a number from the corresponding range mentioned above, and 

then sum up the two scores together, to find the overall similarity score for any given 

stroke. In this figure, parts a, b and c each show the results of settings not employing the 

proper range. Images (a) and (b) (the top and middle ones) show results of position-

color ratios 14/4 and 20/7 respectively (position is higher than the optimal range). Image 

c shows the result of the ratio 6/4 (position is lower than the optimal range). 

As previously explained in Section 5.8.3, position-color ratios indicate how much 

the position similarity score will be weighted comparing to the color similarity score, in 

calculating the overall similarity score. The generated IB-frames show distortion and 

visible imperfections which is a result of assigning an improper value for position-color 

ratio. 
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(a) 

 

(b) 

Figure 6.1. (a) and (b) are respectively source and target keyframes, used for 
generating the IB-frames of Figure 6-2.  
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(a) 

(b) 

(c) 

Figure 6.2.  (a), (b) and (c) are single IB-frames generated between keyframes of 
Figure 6-1.  (a) is generated with 14/4, (b) is generated with 20/7 and 
(c) is generated with 6/4 position/color ratios.  Improper 
position/color ratio has affected the aesthetics of the results. 
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6.1.2. Grid Window Size 

Calibrating grid window size also is another important step for enhancing the 

quality of output frames. The choice of grid value, on one hand, affects the time 

complexity of algorithm by determining the size of the list of candidate strokes in the 

mapping phase. On the other hand, it determines how far CPA should look for a 

candidate eligible stroke and therefore directly affects the coherency level of the final 

results, because a tighter grid would limit the scope of allowed position transformations 

and consequently the amplitude of movements. This parameter shows the number of 

equally distributed columns and rows on both width and height of the frame. Accordingly, 

any frame would eventually be divided into ‘grid value x grid value’ number of windows. 

Grid window is assigned to every individual pass separately, so each image can be 

processed with multiple grid window size values. The value of this parameter highly 

depends on its corresponding passes’ configuration; how big or small the brush sizes 

are and how dense or sparse the strokes are distributed across the canvas. If grid 

window size is not assigned in the right range, undesirable transformations and stroke 

movements may occur in the results. This will eventually cause more flickering in the 

final movie. In the following, we discuss three possible scenarios that can happen and 

their consequences: the grid size value being higher or lower than the optimal range, or 

being in this range. Moreover, despite the fact that there is not any standard or official 

definition for grid window size, we found it easier to give a better sense of this 

parameter’s size by comparing it relatively to the minimum or maximum average 

distance between the mapped strokes.  

Tight Grid Window Size 

When the grid window size is relatively smaller than the average Euclidian 

distance between the control points of two closest strokes in the pass, the grid window is 

too tight. A tight grid size shrinks the size of the Eligibility-Set and accordingly decreases 

the number of eligible candidate strokes for mapping (See Section 4.3.2 for term 

definition). As a result, it may cause non-optimal mappings. This will make some strokes 

undergo a series of unnecessary transformation or behavior (e.g. fading in/out). 

Eventually it will deteriorate the output quality and damage the coherency level. 



 

98 

In Figure 6.3 and Figure 6.4, we investigate the behavior of two strokes in the 

course of transforming from their source states in the first keyframe to their target ones 

in the next keyframe. This series of images are rendered with a very sparse density 

value and a relatively large brush size. They also have been severely cropped to give a 

closer and better view of each single stroke’s movement and transformation. The 

suitable grid window range for these two keyframes is [2-3]. Figure 6.3 shows the two 

reference keyframes with a tight grid window which is 14. We have generated 10 IB-

frames between these two keyframes which are shown in the following Figure. In Figure 

6.4 the first and last images, marked by a red border, show the aforementioned source 

and target keyframes, without showing the grid. The rest of the images are the 10 IB-

frames produced between those two keyframes. The two strokes we wanted to focus on 

are marked by red and blue dashed circles. The longer stroke, marked with a red circle, 

is almost at the same place in both source and target keyframes. Therefore, we expect 

this stroke to remain relatively the same, throughout the generated IB-frames. However, 

following the red circle across the IB-frames shows that this stroke undergoes 

unnecessary movements and deformations. The shorter stroke, marked with a blue 

dashed circle, disappears in the second keyframe. Therefore, we expect it to fade out 

throughout the IB-frames, without changing its original shape. However, following the 

blue circles show that, this stroke also, undergoes some deformation, before completely 

fading out. We have not marked these two strokes in all of the frames, to avoid excess 

clutter and keep the images cleaner.  

 
(a) 

 
(b) 

Figure 6.3.  (a) and (b) are respectively source and target keyframes showing the 
superimposed grid windows.  Despite being relatively close, due to 
tightness of the imposed grid, the long strokes do not fall into the 
same grid cell, and therefore do not get mapped to each other. 



 

99 

  

  

  

  

  

 
 



 

100 

Figure 6.4.  Improper grid window size has caused unnecessary transformations 
of the strokes.  The first and last images marked by a red border are 
the source and target key frames.  The rest are all generated IB-
frames between these two keyframes.  Note the behavior of strokes 
marked by the red and blue dashed circles. 

The following is a URL to the video of this transformation, to better illustrate the 

impact of tight grid window size. 

 Sequence #6.1-TightGridWindowSize 

Loose Grid Window Size  

An unexpected phenomenon that can occur when the grid window size is bigger 

than the proper range is what we call “migrating strokes”. A grid window is loose when 

the grid size is relatively bigger that the average Euclidian distance of two farthest 

source and target strokes. A loose grid window increases the size of Eligibility-Set (See 

Section 4.3.2) and as a result, increases the number of eligible candidate strokes for 

mapping. This fact by itself would increase the time complexity of the algorithm, by 

increasing the search and analysis time, happening over the Eligibility-Set. Apart from 

time complexity, enlarging the scope of eligible strokes will increase the chance of 

strokes for getting mapped. But it also will increase the chances of non-optimal 

mappings between strokes. In particular, the phenomenon can appear when semantic 

regions are distributed discretely across the keyframe (Figure 6.5). Theoretically, any 

two strokes from the same semantic areas would be eligible for mapping on the first 

level. However, not any mapping between the strokes of a region makes sense visually. 

In this particular example, mapping a stroke from the beard area to the moustache area 

is allowed (all the strokes belong to the same semantic region which is ‘hair’) but not 

optimal. 

http://ivizlab.sfu.ca/research/PainterlyAnimThesis/
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Figure 6.5.  Two marked areas belong to the same semantic region, but they are 
located discretely across the image.  If a stroke from the red circle 
gets mapped to a stroke from the blue circle (or vice versa), despite 
being allowed, the mapping will not be an optimal one.  

Such non-optimal mapping might cause the strokes to leave their local eligible 

region in the transformation process and ‘migrate’ to another non-local area, from the 

same semantic region. This undesired movement takes away from the coherency of 

transformation. Figure 6.6 illustrates the source and target keyframes with a loose grid 

window. While the suitable grid window range for these two keyframes is [9-12], the 

superimposed grid has the value of 3. Note that the areas marked by the red and blue 

dashed circles remain in the same grid window in both source and target keyframes. As 

a result, any stroke from the red circle area is eligible to get mapped to a stroke from the 

blue circle area, if both belong to the hair region. However, such mapping would not be 

optimal. Figure 6.7 demonstrates how some small strokes move across the lip area, 

going from the beard to the moustache of the character due to the non-optimal mapping. 

This phenomenon is more apparent in frames with smaller strokes, in which the 

size of the grid window is significantly bigger than the maximum distance between the 

two farthest brush strokes; it is also more apparent when semantic regions are 

distributed discretely throughout the frame. For these reasons, the example set chosen 

to illustrate this undesired visual artifact is finer in rendering and has not been cropped 

or zoomed. This way, the movement of the migrating strokes can be easily followed. 
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(a) 

 

(b) 

Figure 6.6.  (a) and (b) are respectively the source and target keyframes used for 
generating the IB-frames of Figure 6-7.  Note the big size of the grid 
window compared to the size of the strokes. The red and the blue 
circles belong to the same semantic region of hair and also remain 
in the same grid window in both (a) and (b). 
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Figure 6.7.  A series of 5 IB-frames generated in between keyframes of Figure 6-
6.  Note the migrating strokes moving from the bottom left side of 
the character’s beard to the top left side of the moustache, 
throughout these frames. 

Below is URL to the video of this transformation, to better depict the effect of 

loose grid window on the output results. 

 Sequence #6.2-ThirdScene-MigratingStrokes 

Suitable Grid Window Size 

A suitable value range for the grid size parameter keeps the scope of eligible 

candidate strokes at an efficient size. This means that it neither reduces the chances of 

http://ivizlab.sfu.ca/research/PainterlyAnimThesis/
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strokes to get mapped, nor does it allow for a high number of non-efficient mappings. In 

other words, it optimizes the mapping process and keeps the unnecessary movements 

and transformations to a minimum.  

Figure 6.8 and Figure 6.9 are based on the same set of keyframes studied in 

Figure 6.3 and Figure 6.4. This time, we will investigate the behavior of the same two 

strokes over time and through successive generated IB-frames, using a suitable grid 

window value. Figure 6.8 demonstrates source and target keyframes marked with this 

grid window size, while Figure 6.9 show the 10 generated IB-frames between these two 

keyframes, using the new grid window size. The frames marked by a red border show 

the source and target keyframes. The blue dashed circle marks the stroke, which 

remains almost unchanged in the source and target keyframes. Ideally, we expect it to 

stay relatively unchanged throughout the generated IB-frames as well. Following the 

blue circles, we see that this stroke remains almost the same and does not move or 

change its shape during the transformation. Similarly, the stroke marked with a red circle 

is the one which changes significantly from the source keyframe to the target – since it 

disappears. Therefore, we expect to see a smooth transformation to gradually change its 

source state to the target state. Following the behavior of this stroke through IB-frames 

shows that the desired transformation and movement are obtained for this stroke. 

 
(a) 

 
(b) 

Figure 6.8.  (a) and (b) are respectively source and target keyframes with the 
superimposed grid window.  Note the position and shape of the 
marked strokes in both source and target keyframes and how the 
blue marked stroke remains almost the same from the source to the 
target keyframe while the red marked stroke disappears in the target 
keyframe. 
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Figure 6.9.  Choosing a proper grid window scale has optimized the mapping.  
The first and last images marked by a red border are the source and 
target key frames. The rest are all generated IB-frames between 
these two keyframes. Note the behavior of strokes marked by the 
red and blue dashed circles. The blue marked stroke remains almost 
the same while the red marked strokes transforms from its source 
state to its target state as expected. 

Following is a URL to a video sequence for better demonstrating the effect of grid 

window parameter, when chosen in a suitable range. 

 Sequence #6.3 - SuitableGridWindowSize 

6.1.3. “Thinning-Out Issue” 

Increasing the number of passes in Painterly rendered keyframes, eventually 

causes a drop in the quality of the IB-frames generated by CPA. We call this 

phenomenon the “thinning out” issue. This issue is the result of CPA’s less-than-optimal 

communication method with Painterly, which is an incomplete part of current CPA. We 

have suggested a solution for this problem in 7.1. Painterly’s Concerns component 

modifies the PaintActions directly, based on Painterly’s internal/external concerns (See 

Section 3.3.1). In this case, by increasing the number of passes in rendering the 

keyframes, the overall number of accumulated strokes in each semantic region also 

increases, considering the fact that all the strokes from different passes are piled up on 

top of each other, across the frame. This, consequently, causes the strokes to overlap 

with each other and cover up previously rendered strokes. CPA keeps the number of 

passes and their corresponding strokes in the generated IB-frames the same as the 

number of passes and strokes in the original Painterly rendered keyframes. Ultimately, 

the generated IB-frames are rendered with Painterly. Because of Painterly’s updated 

global view at each point of the process, Concerns will modify each stroke of the 

http://ivizlab.sfu.ca/research/PainterlyAnimThesis/
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rendering IB-frame and its style-properties based on that global view. Therefore, not all 

generated strokes in the CPA generated IB-frames end up getting rendered onto the 

canvas, and not all get rendered with the same style-properties, planned and assigned 

to them by CPA. In other words, some brush strokes might get omitted or trimmed and 

some might change their color or opacity values by the time they are rendered onto the 

canvas. This issue is easier to observe when the strokes are sparsely distributed across 

their corresponding passes and brush strokes can be singled out. Figure 6.10 and 

Figure 6.11 better demonstrates this phenomenon.  Figure 6.10 shows the source and 

target keyframes which are used to generate IB-frames, shown in Figure 6.11.  These 

keyframes are originally rendered with 6 passes of coarse-to-fine brush strokes. These 

frames are generated with a sparse stroke distribution in their passes, by lowering the 

density parameter in Painterly’s parameter values (See Section 3.3.1), and coarse brush 

strokes so that their movements are easier to follow. Figure 6.11 illustrates the source 

and target keyframes – marked by a red border – together with the two generated IB-

frames between the aforementioned keyframes.  Note that how the strokes in the 

marked areas do not get rendered onto the final frame.  
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(a) 

 

(b) 

Figure 6.10.  (a) and (b) are respectively the source and target keyframes, used 
for generating the IB-frames of Figure 6-11.  These keyframes are 
rendered with 6 passes of coarse-to-fine brush strokes. 
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Figure 6.11.  These IB-frames show the 'thinning-out' issue.  The images marked 
by a red border are the source and target keyframes, shown in 
Figure 6-10 and the rest are 2 generated IB-frames between those 
keyframes. Note how the zoomed areas of the frames are thinning 
out in the number of rendered strokes, through the IB-frames.  

Below is a URL to a video sequence to better show this undesirable visual 

artifact. 

 Sequence #6.4-ThirdScene-ThinningOut 

Figure 6.12 shows both “migrating strokes” and “thinning out” problem, in another 

set of 6 generated IB-frame from a different scene.  The source and target keyframes 

are not shown in this series. The red marked areas show the migrating strokes while the 

blue marked areas demonstrate the thinning out issue throughout these IB-frames. 

http://ivizlab.sfu.ca/research/PainterlyAnimThesis/
http://ivizlab.sfu.ca/research/PainterlyAnimThesis/
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Figure 6.12.  6 generated IB-frames, selected from a different scene.  This series 
of generated IB-frames illustrate ‘thinning out’ and ‘migrating 
strokes’ issues. The red circle shows the movement of the migrating 
strokes while the blue marked area shows the thinning out issue 

Following is a URL to a video sequence of the above stills, demonstrating these 

two undesirable visual artifacts. 

 Sequence #6.5-FirstScene-MigratingStrokes_ThinningOutIssue 

At the end, all the above instructions are given towards a better understanding of 

CPA’s parameters’ range and default settings to facilitate any possible future 

enhancement via AI techniques or heuristic methods. 

6.1.4. General Aesthetic Effects of CPA’s Open-Parameters 
on the Final Results 

In the latter subsections, we reviewed CPA’s open-parameters and their effect on 

the generated results. These parameters were isolated and tested in a rather goal-

oriented way, to investigate the effect of each single parameter on the look of the 

generated frame and the overall cohesiveness of the final result. However, we should 

mention that flickering is not a totally undesired artifact, since people are used to 

perceive some specific amount and type of flickering in the traditional hand drawn 

painterly animation. Therefore, the flickering artifact can even make the result of a 

computer NPR more plausible to the eyes of human viewers. In fact, the purpose of 

CPA’s parameters is to control the flickering – as well as other visual artifacts – rather 

than to eliminate it. As a result, flickering and incohesiveness can also be controlled and 

used as a new aesthetic dimension in the computational NPR animation.  

CPA’s parameters provide the user with an overall control over the generated 

artifacts which were reviewed in the latter sub-sections. These artifacts can be controlled 

to achieve a more CGI look or modified and set to create a hand-drawn looking result, or 

even more abstract and new styles. The interpolation-style is a parameter which controls 

and dominates the whole interpolation process, and therefore is the channel to dictate 

the users preferred style in the frame synthesis process. 

http://ivizlab.sfu.ca/research/PainterlyAnimThesis/
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6.2. Examples of System Output using Real-World Input 
Data 

In this Section we present and discuss system output results obtained by 

applying the current version of CPA, and our best known usage practices, to real, 

industry-sourced animation data. We created fine-tuned painterly rendered keyframes 

with Painterly and also tweaked CPA’s parameters to create the best possible results to 

show the capability of CPA in generating higher quality and cognitive-based 

animation/video sequences. These results can be qualitatively compared to other NPR 

animation techniques, for example our earlier pixel-based interpolation technique (which 

we also present for comparison).   In this manner we provide some informal evidence 

that the CPA system as a whole has made advances toward the stated goals of a more 

temporally coherent, cognitively motivated animated NPR output. By making these 

sample videos as well as the CPA source code publicly available, we allow the 

community to judge the merit of the current CPA system performance, and potentially to 

validate system performance on a broader selection of input data. 

The example animation sequences were obtained from 3D pre-visualization 

design firm, Twenty One Inc., with whom we collaborated on an NSERC Engage project 

(See Section1.2).  We selected 3 different sequences of the source animation.  These 

sequences are referred to as First Scene, Second Scene and Third Scene; we chose 

these three scenes based on their different characteristics.  More detail about these 

scenes and their specifications is given under the following sub-sections. 

Shown below are 3 original animation frames (prior to rendering via CPA) which 

provide representative examples of the 3 source animation sequences, respectively 

(Figure 6.13). 
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Figure 6.13.  TOI Collaboration stills, selected from three different scenes of the 
reference animation sequence.  These three scenes were used as 
inputs of CPA. Stills respectively belong to the First Scene (top), 
Second Scene (middle) and Third Scene (bottom). 

Each set of frames from the input scenes was keyframed using a uniform 

spacing of 3 regular frames between each two successive keyframes.  Semantic region 

maps of these frames were automatically created by the TOI Inc.’s 3D authoring tool - 

Autodesk Maya.  Keyframe sets and their corresponding semantic region maps were 

used to create elaborate and refined looking images, by using Painterly with manually 

chosen painting script parameters.  Painterly’s outputted XML stroke log scripts were 

then used by CPA, to generate a set of middle IB-frames.  Five IB-frames were 

generated between each pair of successive keyframes.  The entire frame set, consisting 

of the original renders and the synthesized IB-frames, was stitched together to create a 

QuickTime movie sequence (See Section 5.7 for more information on the stitching 

method). 

We generated 5 IB-frames between each two consecutive keyframes, while the 

original frame count between keyframes was 3.  We did that to be able to smooth the 

interpolation and also be able to better monitor the course of transformation.  As a result, 

we needed to have a higher frame rate (i.e. higher than normal which is 24 fps) to keep 

the speed of the sequence in a normal and plausible range.  The final frame rate was 

chosen manually and independently for every batch based on test-runs. 
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6.2.1. Preparing Fine-Tuned Sequences 

To create our fine-tuned output sequences, we performed a number of test-runs 

to design scripted painterly rendering parameters for use by Painterly. Figure 6.14 

illustrates the look of the rendering style we arrived at for use in the first 3 CPA video 

results presented below.  Note that a common color palette was used, to create a more 

unified look among all the scenes. Two other sets of rendering parameters (not shown 

here) were designed for the FirstScene and SecondScene, and applied to the final 2 

CPA videos presented in Section 6.2.5. 
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Figure 6.14.  Top, middle and bottom images are respectively taken from First 
Scene, Second Scene, and Third Scene batches.  All three batches 
are Painterly rendered using the same color palette to create a more 
unified look. 

6.2.2. CPA Video Result #1 - First Scene 

Video description 

In First Scene, aside from one moving character, a large portion of each frame, 

especially in the background region, remains still throughout the sequence. The reason 

for choosing this scene was to test how well CPA performs on input combining static and 

dynamic areas. We wanted to achieve a temporally cohesive result on both areas. 

Frames of this sequence contain 4 passes, and a stroke count averaging 

approximately 76000 on the finest passes (e.g. for skin and clothes). The IB-frames 

were generated with 10/1 position color ratio (i.e. position weighted 10 times more than 

color) and grid size values of 1, 0.5, 0.1 and 0.1. The rendering frame rate was 40 fps. 

Video Link 

 Sequence #6.6-FirstScene-CPA-FineTuned-p10_c1-fr40 

http://ivizlab.sfu.ca/research/PainterlyAnimThesis/
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6.2.3. CPA Video Result #2 - Second Scene 

Video Description 

Second Scene was chosen mostly because it contains a character moving into 

the scene from outside. We wanted to see how CPA would perform with the sudden 

appearance of an object which wasn’t previously there.  

This sequence was rendered with 4 passes in total, with an average stroke count 

of approximately 60000 in the finest passes (e.g. for skin and clothes). IB-frames were 

generated via a 9/1 position-color ratio and grid size values of 1, 0.5, 0.1 and 0.1. The 

sequence was made at a rate of 30 fps. 

Video Link 

 Sequence #6.7–SecondScene-CPA-FineTuned-p9_c1-fr30 

6.2.4. CPA Video Result #3 - Third Scene 

Video Description 

In the Third Scene sequence, the movement happens in the form of a camera 

zooming into the character’s face, so all areas of the image are moving constantly and 

steadily. The reason for choosing this scene was to test CPA’s performance with a set of 

frames with constantly moving contents.  

The sequence was rendered with 4 passes and an average stroke count of 

76000 in the finest passes (e.g. for skin and eyes). The generated IB-frames used a 10/2 

position-color ratio and grid window values of 1, 0.6, 0.2 and 0.1. The sequence was 

made at 35 fps. 

Video Link 

 Sequence #6.8–ThirdScene-CPA-FineTuned-p10_c2-fr35 

http://ivizlab.sfu.ca/research/PainterlyAnimThesis/
http://ivizlab.sfu.ca/research/PainterlyAnimThesis/
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6.2.5. CPA Video Result #4, #5, and #6 – Alternate Styles for First 
Scene 

Here we present one more outputs generated from the First Scene batch of 

frames. This sequence was rendered by Painterly using different parameter settings and 

the OriginalPalette color palette - different from the previous test sequences.  

Video Description 

This video is generated using the FirstScene keyframe set. The frames are 

rendered using 3 passes, and an average number of approximately 55000 brush strokes 

in the finest pass (eyes). The sequence is generated with a position-color ration of 10/2, 

grid window size of 2, 1 and 0.1, and frame rate of 40 fps. 

Video Link 

 Sequence #6.9–FirstScene-CPA-OriginalPalette-p10_c2-fr40 

Comparative Videos 

The following video sequences are generated by stacking sequence #1.3 and 

#6.9 to present a better comparative view of CPA’s performance on reducing the amount 

of flickering in the reference video sequence. 

Video Link 

 Sequence #6.10-FirstScene-OriginalPalette_BiggerStrokes/CPA-
OriginalPalette-p10_c2-fr40 

Video Description 

The above sequence demonstrates a full view of the Sequence #1.3 followed by 

video sequence #6.9 

Video Link 

 Sequence #6.11-FirstScene--OriginalPalette_BiggerStrokes/CPA-
OriginalPalette-p10_c2-fr40[OneHeadShot] 

http://ivizlab.sfu.ca/research/PainterlyAnimThesis/
http://ivizlab.sfu.ca/research/PainterlyAnimThesis/compareFull.mp4
http://ivizlab.sfu.ca/research/PainterlyAnimThesis/compareFull.mp4
http://ivizlab.sfu.ca/research/PainterlyAnimThesis/compareCUwomen.mp4
http://ivizlab.sfu.ca/research/PainterlyAnimThesis/compareCUwomen.mp4
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Video Description 

The above sequence demonstrates a close up of the woman character’s head 

from sequence #1.3 followed by the same head cut from sequence #6.9. 

Video Link 

 Sequence #6.11-FirstScene--OriginalPalette_BiggerStrokes/CPA-
OriginalPalette-p10_c2-fr40[TwoHeadShots] 

Video Description 

 The above sequence illustrates a close up of the man and woman characters’ 
heads from sequence #1.3 followed by the same head cut from sequence 
#6.9. 

6.2.6. Results Discussion 

In the accompanying videos, we demonstrated CPA’s performance on the 

materials (computer animation sequence with automatically generated region maps) 

accumulated from our NSERC Engage Collaboration with Twenty One Inc. We evaluate 

CPA’s performance qualitatively by generating sample sequences from three selected 

scenes of the aforementioned TOI Collaboration video sequence. Generated sequences 

are provided on the author’s website14, and also discussed here. The videos are labeled 

by the Chapter and video number. We should mention that the version of Painterly which 

we used for generating the old TOI results – which we delivered to the company at the 

time - is different from the current version of this toolkit. For generating the results and 

movie sequences of this thesis work, we have used the newer version of Painterly 

toolkit. Painterly has moved from CIELAB JCh color space to CIECAM02, in its current 

version. We have discussed the merits of using this new color space in Section 4.3.2. 

Some more modifications have also been done on the newer version of Painterly, 

regarding XML scripting and parameters set. However, these updates have not affected 

the aesthetic qualities of the generated results; since they have been mostly 

architectural updates to make Painterly more robust. With all that been said, it was 

impossible for us to recreate the exact old TOI Collaboration results with the new version 

 
14

  http://ivizlab.sfu.ca/research/PainterlyAnimThesis/ 

http://ivizlab.sfu.ca/research/PainterlyAnimThesis/compareCUManWoman.mp4
http://ivizlab.sfu.ca/research/PainterlyAnimThesis/compareCUManWoman.mp4
http://ivizlab.sfu.ca/research/PainterlyAnimThesis/
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of Painterly, or re-use those old results in CPA. Therefore, we needed to re-render the 

selected scenes’ frames (FirstScene, SecondScene, and ThirdScene) with the new 

version of Painterly and use them in CPA to generate our results, which have been 

presented in this thesis work. Since re-rendering an exact replication of the old TOI 

Collaboration keyframes was technically impossible, we Painterly rendered the keyframe 

in the most similar style and color palette.  

Apart from the keyframe-set, we have compared CPA’s results with the old pixel-

based interpolation method – which we used to generate TOI Collaboration results, 

delivered to the company. The following points are overall comparisons between CPA’s 

and previous pixel-based interpolation method’s results and performance. 

• The previous pixel-based interpolation method as discussed in Section 1.2.1 
was not ‘smart’. It was unable to acquire or perceive any knowledge from 
scene contents (e.g. semantic regions of the frames) and/or utilize it in the 
process of generating in-between frames. Whereas, CPA leverages 
Painterly’s knowledge space in the process of frame synthesis.  

• As a result, the generated IB-frames are real ‘painted frames’, equivalent of 
any other frame which is rendered by Painterly. This means that CPA 
generated IB-frames have real stroke and other structural components of a 
painterly rendered.  say more 

• CPA system has fairly good edge preservation. Whereas due to the nature of 
morphing process, the pixel based algorithm made blurry edges and contours 
(See Section 1.2.1). 

• The previous pixel-based interpolation method was a simple linear method 
which could only generate on type of interpolation style, whereas, CPA 
supports more different interpolation styles. Through its parameters, the user 
can author their style preferences to CPA. This will eventually be fully affecting 
the look and style of the generated in-between frames. 

• CPA is significantly slower than the previous method, in the overall frame 
synthesis procedure. Depending on the complexity of the keyframes (the 
number of passes and strokes in each pass), CPA requires 10 minutes to 5 
hours per frame, on a modern desktop, with CPU between 3.4 and 3.8 GHz. 
Apart from implementation characteristics, CPA’s low speed is due to the 
amount of computational work that is done for generating the IB-frames, since, 
as mentioned before, each of the newly generated IB-frames are real painted 
frames, equal to any other Painterly rendered frame, with the necessary 
structural components. Whereas the pixel-based interpolation method 
generated only morphing images between two keyframe which were merely 
image files without any structural build. Nonetheless, CPA’s ‘temporal 
performance’ is somewhat similar to some of the previous systems from other 
research works. For instance, Hertzmann’s system (Hertzmann & Perlin, 
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2000) took 3-4 hours to render one single frame, using a 3.4 GHz CPU. 
Completing longer sequences took weeks to complete. We believe that CPA 
(and for that matter Painterly) can eventually be sped up by implementing 
more of the code based to GPU acceleration.  

The newly rendered keyframe-set differ from the old TOI Collaboration keyframe-

set, in the degree of finesse. The new set is more elaborate and finer regarding the 

stroke sizes, especially in the regions of eyes and skin. Accordingly, brush strokes are 

harder to distinguish in #1, #2 and #3 sequences. However in sequence #2, there are 

some strokes around the characters neck and collar which are more distinguishable. 

Following the behavior of these strokes shows a fair amount of temporal cohesiveness 

throughout the generated IB-frames. Also, in sequence #3, the eyes of the character 

move fairly cohesive and the shades on the skin keep the temporal coherence. In 

sequence #4, which looks similar to one of the old pixel-based method’s result 

(Sequence #1.3-FirstScene-OriginalPalette_BiggerStrokes) (See Section 1.2), 

strokes are more distinguishable. The sequence shows that the movement of the blobs 

is fairly coherent across the generated frames, in comparison to the older pixel-based-

interpolated sequence. There are some visual imperfection and noise occurring around 

the edges of the characters, which do flicker to some extent in the in-between frames. 

But overall, the edge preservation is far better than the pixel-based method. 

While evaluating and comparing the interpolation methods themselves is 

possible, evaluating the generated painterly rendered movie sequences is a nontrivial 

process, since painterly movie sequences are forms of art, at some point Noted NPR 

scientists Hall and Lehmann argue NPR artistic results “experiments are at best difficult 

to design, and even the Turing test is of limited value because we are not asking 

whether a piece has been produced by a human but whether it possesses artistic merit 

regardless of its source” (Hall & Lehmann, 2013). Therefore, presenting a method for 

evaluating the resulted sequences remains elusive. 

http://ivizlab.sfu.ca/research/PainterlyAnimThesis/
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7. Conclusion and Future Works 

In this Chapter, we conclude this thesis by articulating the contributions and 

limitations of the current thesis work, providing some suggestions on the directions 

which can be taken in the future and giving a short summary of the entire work at the 

end. 

7.1. Contributions 

Following the main design goals of this thesis work, articulated in Section 4.1, 

this thesis work have fulfilled them to a full extent, while making several contributions to 

the body of NPR animation field.  Our Design for CPA is: 

1.  A novel system architecture for generating animated NPR.  Through 
carefully designed two-way communication between Painterly and the 
other components of CPA, it maintains and extends key capabilities of 
Painterly which are:  

a. The capability of rendering painterly animation/movie sequences 
based on a cognitively-informed model of human artistic practise. 

b. The incorporation of high-level knowledge such as image region 
semantics, allowing for future elaboration of computational 
intelligence in the system.  

c. Allowing the users for creatively explore different styles of output 
through a parametric design. 

►This will allow for controlling and using of visual artifacts as 
another dimension in the aesthetics of the generated results – as 
well as the overall body of NPR research; since controlling the 
flickering as a visual artifact and using it as a possible aesthetic 
factor is a goal of computer generated NPR animation. 

2.  A novel algorithmic approach, based on keyframing and 
mapping/interpolation of strokes, for extending a still-based and 
stateless NPR system to a stateful and animation-inclusive one, while 
solving a number of key issues as follows: 
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a. Compared to a "naive"/”un-informed” approach to generating 
animation (rendering the frames independently and without 
knowledge of previous or future frames’ configuration) our 
approach limits the amount of undesired visual flickering and 
enforces temporal coherency in the resulted sequences. 

b. Compared to a pixel-based interpolation technique, our approach 
preserves the identity of strokes and thus each frame maintains a 
plausible "painted" look. 

c. Our approach creates an interesting aesthetic interpretation of an 
"animated painting" by employing strokes which move, flow and 
transform smoothly over time 

►This elevation that CPA has brought to Painterly certainly will 
expand the domain and scope of Painterly, as a research tool, in 
the interdisciplinary area of human perception, computational art 
and science.  For instance, time-based animation/movie 
sequences that are created by Painterly and CPA can be used in 
2 ongoing iVizLab researches.  Firstly, they can be used in 
emotional control of game and entertainment sequences.  
Secondly, they can be used in the lab’s research work in face to 
face autism communication.  With knowledge gleans from passed 
down art techniques, CPA’s results can be used to guide the 
viewer’s eye, in order to better understand a face to face 
conversation and communication (“iVizLab - Simon Fraser 
University,” 2013; H. Seifi et al., 2011; H. Seifi, DiPaola, & Enns, 
2012; Hasti Seifi, 2010) 

3.  A flexible system architecture which can incorporate and/or 
synergically work with alternative still-frame-rendering modules (other 
than Painterly) in future investigations. 

CPA also delivers a number of side contributions to the NPR community and 

other research communities. 

4.  Implementation of CPA together with its open source and publicly 
available source code, allows future research to further validate and 
improve on the design. 

5.  Our work also makes a potential contribution to research in 
psychology and cognitive science regarding human perception of art 
and visual stimuli. 

6.  Building on Painterly's previous use in still-image-oriented perception 
research, CPA can now also be used in animation-oriented perception 
research. 
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7.2. Limitations 

There are some limitations to the design and performance of CPA as well which 

are listed briefly as follows: 

1.  Current implementation of CPA is not optimal in terms of time and 
memory efficiency.  It has yet lots of room to enhance. 

2.  Current system design of CPA creates a "thinning out artifact" due to 
Painterly's re-application and authoring of ‘Concerns’ rule-set, on 
interpolated stroke data (this drawback could be corrected through 
future development). 

3.  CPA requires the users to have a detailed understanding of the 
provided painterly rendering parameters; both Painterly’s parameters 
and CPA’s parameters.  Therefore it is not intended for ordinary 
users. 

4.  Setting the CPA’s open-parameters, which are mostly content-based, 
depends on the user experience and requires performing a number of 
test-runs.  This shortcoming also can be fixed through future works 
and further automations.  

7.3. Future Works and Extensions to CPA 

There are a number of improvements that can be performed to the design model 

or internal algorithms of CPA or on the Painterly-CPA interaction model to enhance and 

optimize CPA’s performance, as well as CPA and Painterly’s synergy. This will 

consequently improve CPA’s generated results and its overall user interaction 

experience. 

Certainly, not having a user-friendly UI is a downside for both Painterly and CPA. 

The fact that users should deal with a relatively high number of parameters with different 

ranges and impacts on the output, makes the whole parameter tweaking phase a 

baffling process. Although, we should mention that the Painterly team is working on the 

Artificial Intelligence front end, using Evolutionary Systems, Deep Learning, to help the 

users control and modify Painterly parameters easier. This way, the users would be able 

to generate their desired results without having to have any required knowledge of 

Painterly’s internal processes and parameters. 
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Painterly and CPA are two individual components which run separately and not 

collaboratively, as one unit. This makes the user experience even more frustrating. 

Since, for making a painterly movie sequence, users need to go back and forth from 

Painterly to CPA and back to Painterly and finally to CPA again. Improving the workflow 

and designing a unified and easy-to-use UI is a simple but necessary future step to take. 

To find a desirable parameter range, users need to tweak the parameter values 

in the input scripts, and conduct some test-runs to narrow down the range in both 

Painterly and CPA systems. Dealing with two parametric systems at the same time 

might make the whole experience rather daunting and frustrating for the user. As a 

possible future work, we suggest to build a side tool to help users decide on their 

preferred range of parameters for both systems. Such a tool can provide histograms of 

the number of passes, semantic regions, and strokes, together with the density of each 

pass, how the strokes are distributed across the reference canvas, etc. and a preview of 

the resulting painterly image. This enables users have a better evaluation of the inputs 

and make a better estimation of the parameters, and as a result, generate their desired 

outputs much faster and easier. 

This thesis work has been focusing on enhancing and maintaining temporal 

coherency. Therefore, we did not explore different interpolation styles, induced by 

changing CPA’s Interpolation-style parameter. A possible future work can be to expand 

the styles of our resulting movies/animations by adding a selection of predefined 

interpolation-styles. Moreover, exploring and examining different values for this 

parameter can result in new and abstract forms of interpolation and movement in the 

final animation/movie sequence. 

Currently CPA works on CGI based source material, mainly because Painterly 

and CPA work best with known semantic regions (hair, face, bottle, etc.) which can be 

automatically produced by labeling regions in a CGI 3D model. However, nothing 

specific in the code precludes using live action video sequences as source. When image 

processing and pattern recognition techniques exist to label regions of live action video 

sequences automatically (similar to what we have now with CGI models), Painterly and 

CPA should work fine on live action video sequences. Our lab (“iVizLab - Simon Fraser 

University,” 2013) is interested in using Deep Learning AI techniques to do such 
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automatic labeling. Already Painterly produces strong work on still photography or hand 

label sequences.  

This thesis work concentrated on the temporal incoherency problem. We 

mentioned in this thesis that the other non-trivial challenge was the Shower Door Effect. 

We believe that Painterly and CPA could be enhanced to improve this problem by 

understanding the 3D topology nature of a scene from CGI source. And therefore not 

have strokes drift on the 2D picture plane but feel more affixed to the actual 3D surfaces 

in a scene. This however is a subject of future work where painterly concerns that have 

knowledge of depth could be passed on to CPA via the XML script. 

The implementation of CPA as we presented in here was a research prototype.  

It was developed to explore and test our approach to achieve temporal coherency in 

Painterly rendered movie sequences.  Therefore, the code can be optimized in several 

ways to reduce the time and memory complexity of the algorithm and accordingly 

enhance the performance of CPA.  Some of these improvements are as follows: 

• Using alternative technologies for reading in / writing to XML files 

• Incorporating innovative and heuristic search method in finding the fittest 
stroke for mapping 

In conclusion, this work was an effort in exerting and incorporating the cognitive 

knowledge model behind the creative process of painting by a human artist in a painterly 

NPR animation system.  Our vision is to create cognitive-based and coherent 

animation/movie sequences.  We incorporated aspects of human’s cognitive knowledge 

in our results by using a cognitive and knowledge-based toolkit (Painterly) to process, 

plan and paint our keyframes and outputted frames.  Moreover, we achieved a fair 

amount of coherency in our results, by controlling the frame synthesis process and 

making each frame cohesive with the previous and the next frame.  We think this work is 

a beginning point for a much deeper exploration of the cognitive and perceptive aspects 

of painterly movies. 
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7.4. Summary  

One of the most popular issues in the field of NPR animation is the lack of 

temporal coherency.  Painterly rendered sequences tend to have poor temporal 

coherency due to undesired visual artifacts appearing in the form of unwanted flickering.  

This issue not only deteriorates the aesthetic quality of the results, but it also takes away 

from the visual and semantic effectiveness and expressiveness of the movie/animation 

sequence.  Many different techniques and algorithms have been proposed to mitigate 

this problem.  Some of these approaches have successfully reduced the amount of 

flickering to some extent; however, temporal coherency is still the main focus of many 

ongoing research works.  

Past research has demonstrated that using scene semantics and human’s 

perception knowledge in the painting process enhances the semantic effectiveness of 

the artistic narrative conveyed through that sequence as well as the visual 

expressiveness of the piece itself (Colton et al., 2008; DiPaola et al., 2013, 2013; Duke 

et al., 2003; Halper et al., 2003; Pelachaud & Bilvi, 2003). However, there still is a 

general lack of work on incorporating such perceptual knowledge in the video stylizing 

process. 

Among the more notable and successful approaches for attending to the 

flickering issue, only a few research techniques have been taking the road towards a 

more ‘informed’ and knowledge-based process.  Video segmentations and the use of 

scene semantics are some of the methods that these researchers have utilized in their 

works (Agarwala et al., 2004; M. Kagaya et al., 2011; L. Lin et al., 2010; O’Donovan & 

Hertzmann, 2012). Besides the lack of more research work on incorporating humans’ 

perceptual and cognitive knowledge in the NPR video field, there also is a lack of 

automation in the majority of the existing literature.  Providing the user with a fully 

interactive system has been so popular that there almost is not a relatively ‘smart’ and 

yet automatic system for painterly rendering video sequences.  These two issues raise 

the need for a smart and automated system, which requires the least amount of user 

manipulation and effort, and/or can be adapted in an industrial movie/animation making 

pipeline. 
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Painterly is a knowledge-based and parameterized NPR toolkit, which 

incorporates humans’ cognitive and perceptive painterly knowledge space inside the 

process of painterly rendering (DiPaola, 2007, 2009). However, Painterly is incapable of 

transmitting previous frames’ rendering information to the next ones. Consequently, 

movie sequences which are rendered by Painterly, lack temporal coherency by a great 

deal. Using a software engineering approach, we proposed and developed CPA, which 

is a solution to enhance coherency in Painterly rendered movie/animation sequences. 

CPA uses Painterly as a base system, to exploit Painterly’s well-developed and 

cognitively inspired algorithms for semantic parsing and hierarchical, blob-based stroke 

filling, and enforces coherency to the resulting movie sequences. Painterly toolkit 

provides CPA with a painting process-plan in the form of XML scripts which encapsulate 

aspects of human’s cognitive knowledge space. CPA uses these XML files as inputs. 

The content information of each keyframe and the encapsulated scene semantics, which 

are provided in these XML scripts, are used by CPA to coherently propagate and 

interpolate the brush strokes and other painterly elements through generating a number 

of in-between frames. All the generated in-between frames are eventually rendered by 

Painterly. Finally, all the keyframes and the generated in-between frames are stitched 

together to make a movie/animation sequence. 

Ultimately, the resulting movie sequences generated by CPA were comparable 

and superior to the results of a low-level and pixel-bases interpolation algorithm15 

regarding the coherency of the piece. Moreover, by successfully incorporating Painterly’s 

knowledge space in CPA’s interpolation and frame synthesis process, we created 

coherent cognitive-based computer movie/animation sequences. As a result, we 

expanded Painterly’s domain and scope and elevated it from a stateless and still-

oriented system to a stateful and multipurpose one, without compromising its research-

intended goals. Furthermore, we developed a system based on our proposed model, 

which can be used in the industrial animation/movie production pipeline. Our results 

were evaluated using a focused group method and through performing comparative 

evaluations. Lastly, this thesis work is a proof of concept for our proposed solution to 

 
15

  The interpolation algorithm we used to deliver our results for NSERC Engage Collaboration 
(See Section 1.2). 
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mitigate temporal coherency issue in Painterly rendered animation sequences. Our 

source code and early comparative results are openly accessible to NPR computer 

science community and public to provide the means for future reproduction of our 

system and further studies, evaluations and extensions of our proposed model. 



 

133 

References 

Agarwala, A., Hertzmann, A., Salesin, D. H., & Seitz, S. M. (2004). Keyframe-based 
tracking for rotoscoping and animation. In ACM SIGGRAPH 2004 Papers (pp. 
584–591). New York, NY, USA: ACM. doi:10.1145/1186562.1015764 

Collomosse, J., Kyprianidis, J. E., Wang, T., & Isenberg, T. (2012). State of the “Art”: A 
Taxonomy of Artistic Stylization Techniques for Images and Video. IEEE 
Transactions on Visualization and Computer Graphics. 
doi:10.1109/TVCG.2012.160 

Collomosse, J. P. (2004). Higher level techniques for the artistic rendering of images and 
video (Doctoral Dissertation). Retrieved from http://epubs.surrey.ac.uk/600592/ 

Collomosse, J. P., Rowntree, D., & Hall, P. M. (2005). Stroke surfaces: temporally 
coherent artistic animations from video. IEEE Transactions on Visualization and 
Computer Graphics, 11(5), 540–549. doi:10.1109/TVCG.2005.85 

Collomosse, J.P., & Hall, P. M. (2002). Painterly Rendering using Image Salience. In 
Proceedings of the 20th UK conference on Eurographics (p. 122–). Washington, 
DC, USA: IEEE Computer Society. Retrieved from 
http://dl.acm.org/citation.cfm?id=787261.787788 

Collomosse, John P, Rowntree, D., & Hall, P. M. (2005). Stroke surfaces: temporally 
coherent artistic animations from video. IEEE transactions on visualization and 
computer graphics, 11(5), 540–549. doi:10.1109/TVCG.2005.85 

Colton, S., Valstar, M. F., & Pantic, M. (2008). Emotionally aware automated portrait 
painting. In Proceedings of the 3rd international conference on Digital Interactive 
Media in Entertainment and Arts (pp. 304–311). New York, NY, USA: ACM. 
doi:10.1145/1413634.1413690 

Cornish, D., Rowan, A., & Luebke, D. (2001). View-dependent particles for interactive 
non-photorealistic rendering. In No description on Graphics interface 2001 (pp. 
151–158). Toronto, Ont., Canada, Canada: Canadian Information Processing 
Society. Retrieved from http://dl.acm.org/citation.cfm?id=780986.781005 

Daniels, E. (1999). Deep canvas in Disney’s Tarzan. In ACM SIGGRAPH 99 Conference 
abstracts and applications (p. 200–). New York, NY, USA: ACM. 
doi:10.1145/311625.312010 



 

134 

DiPaola, S. (2007). Painterly rendered portraits from photographs using a knowledge-
based approach. In In Proc: SPIE Human Vision and Imaging, Int. Society for 
Optical Engineering, Keynote (Vol. 6492, pp. 649203–649203–10). 
doi:10.1117/12.706594 

DiPaola, S. (2008). The Trace and the Gaze: Textural Agency in Rembrandt’s Late 
Portraiture from a Vision Science Perspective. Proceedings of Electronic Imaging 
& Visual Arts. 

DiPaola, S. (2009). Exploring a parameterised portrait painting space. International 
Journal of Arts and Technology, 2(1/2), 82. doi:10.1504/IJART.2009.024059 

DiPaola, S. (2013). Exploring the cognitive correlates of artistic practice using a 
parameterized non-photorealistic toolkit (Doctoral Dissertation). University Of 
British Columbia, Vancouver. 

DiPaola, S., & Gabora, L. (2009). Incorporating characteristics of human creativity into 
an evolutionary art algorithm. Genetic Programming and Evolvable Machines, 
10(2), 97–110. doi:10.1007/s10710-008-9074-x 

DiPaola, S., Riebe, C., & Enns, J. T. (2010). Rembrandt’s textural agency: A shared 
perspective in visual art and science. Leonardo, 43(2), 145–151. 

DiPaola, S., Riebe, C., & Enns, J. T. (2013). Following the masters: Portrait viewing and 
appreciation is guided by selective detail. Perception, 42(6), 608 – 630. 
doi:10.1068/p7463 

Du Buf, H., & Rodrigues, J. (2006). Painterly rendering using human vision. Retrieved 
from 
http://w3.ualg.pt/~dalmeida/publicacoes/pub/PainterlyRenderingUsingHumanVisi
on.pdf 

Duke, D. j., Barnard, P. j., Halper, N., & Mellin, M. (2003). Rendering and affect. 
Computer Graphics Forum, 22(3), 359–368. doi:10.1111/1467-8659.00683 

Gooch, A. A., Long, J., Ji, L., Estey, A., & Gooch, B. S. (2010). Viewing progress in non-
photorealistic rendering through heinlein’s lens. In Proceedings of the 8th 
International Symposium on Non-Photorealistic Animation and Rendering (pp. 
165–171). New York, NY, USA: ACM. doi:10.1145/1809939.1809959 

Gooch, Amy A., Long, J., Ji, L., Estey, A., & Gooch, B. S. (2010). Viewing progress in 
non-photorealistic rendering through Heinlein’s lens. In Proceedings of the 8th 
International Symposium on Non-Photorealistic Animation and Rendering (pp. 
165–171). New York, NY, USA: ACM. doi:10.1145/1809939.1809959 

Gooch, B., & Gooch, A. (2001). Non-photorealistic rendering (1st ed.). Natick, MA, USA: 
A. K. Peters, Ltd. 



 

135 

Haeberli, P. (1990). Paint by numbers: Abstract image representations. In Proceedings 
of the 17th annual conference on Computer graphics and interactive techniques 
(pp. 207–214). New York, NY, USA: ACM. doi:10.1145/97879.97902 

Hall, P., & Lehmann, A. S. (2013). Don’t measure—Appreciate! NPR seen through the 
prism of art history. In P. Rosin & J. P. Collomosse (Eds.), Image and Video-
Based Artistic Stylisation (pp. 333–351). Springer London. Retrieved from 
http://link.springer.com/chapter/10.1007/978-1-4471-4519-6_16 

Halper, N., Mellin, M., Herrmann, C. S., Linneweber, V., & Strothotte, T. (2003). 
Psychology and non-photorealistic rendering: The beginning of a beautiful 
relationship. In G. Szwillus & J. Ziegler (Eds.), Mensch & Computer 2003 (pp. 
277–286). Vieweg+Teubner Verlag. Retrieved from 
http://link.springer.com/chapter/10.1007/978-3-322-80058-9_28 

Haro, A., & Essa, I. (2002). Learning video processing by example. In 16th International 
Conference on Pattern Recognition, 2002. Proceedings (Vol. 1, pp. 487–491 
vol.1). doi:10.1109/ICPR.2002.1044771 

Hays, J., & Essa, I. (2004). Image and video based painterly animation. In Proceedings 
of the 3rd International Symposium on Non-photorealistic Animation and 
Rendering (pp. 113–120). New York, NY, USA: ACM. 
doi:10.1145/987657.987676 

Hegde, S., Gatzidis, C., & Tian, F. (2013). Painterly rendering techniques: A state-of-the-
art review of current approaches. Computer Animation and Virtual Worlds, 24(1), 
43–64. doi:10.1002/cav.1435 

Hertzmann, A. (1998). Painterly rendering with curved brush strokes of multiple sizes. In 
Proceedings of the 25th annual conference on Computer graphics and interactive 
techniques (pp. 453–460). 

Hertzmann, A. (2002). Fast paint texture. In Proceedings of the 2nd international 
symposium on Non-photorealistic animation and rendering (p. 91–ff). New York, 
NY, USA: ACM. doi:10.1145/508530.508546 

Hertzmann, A., Jacobs, C. E., Oliver, N., Curless, B., & Salesin, D. H. (2001). Image 
analogies. In Proceedings of the 28th annual conference on Computer graphics 
and interactive techniques (pp. 327–340). New York, NY, USA: ACM. 
doi:10.1145/383259.383295 

Hertzmann, A., & Perlin, K. (2000). Painterly rendering for video and interaction. In 
Proceedings of the 1st international symposium on Non-photorealistic animation 
and rendering (pp. 7–12). 

Isenberg, T. (2013). Evaluating and validating non-photorealistic and illustrative 
rendering. In P. Rosin & J. P. Collomosse (Eds.), Image and Video-Based Artistic 
Stylisation (Vol. 42, pp. 311–331). London: Springer London. Retrieved from 
http://www.springerlink.com/index/10.1007/978-1-4471-4519-6_15 



 

136 

Isenberg, Tobias. (2013). Evaluating and Validating Non-photorealistic and Illustrative 
Rendering. In Image and Video-Based Artistic Stylisation. Springer. Retrieved 
from http://link.springer.com/chapter/10.1007/978-1-4471-4519-6_15 

iVizLab - Simon Fraser University. (2013). Retrieved November 1, 2013, from 
http://dipaola.org/lab/ 

Kagaya, M., Brendel, W., Deng, Q., Kesterson, T., Todorovic, S., Neill, P. J., & Zhang, E. 
(2011). Video painting with space-time-varying style parameters. IEEE 
Transactions on Visualization and Computer Graphics, 17(1), 74–87. 
doi:10.1109/TVCG.2010.25 

Kagaya, Mizuki, Brendel, W., Deng, Q., Kesterson, T., Todorovic, S., Neill, P. J., & 
Zhang, E. (2011). Video Painting with Space-Time-Varying Style Parameters. 
IEEE Transactions on Visualization and Computer Graphics, 17(1), 74–87. 
doi:10.1109/TVCG.2010.25 

Klein, A. W., Sloan, P. J., Finkelstein, A., & Cohen, M. F. (2002). Stylized video cubes. In 
Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on 
Computer animation (pp. 15–22). New York, NY, USA: ACM. 
doi:10.1145/545261.545264 

Kyprianidis, J. E., Collomosse, J. P., Wang, T., & Isenberg, T. (2013). State of the “Art”: 
A taxonomy of artistic stylization techniques for images and video. IEEE 
Transactions on Visualization and Computer Graphics, 19(5), 866–885. 
doi:10.1109/TVCG.2012.160 

Lee, H., Lee, C. H., & Yoon, K. (2009). Motion based painterly rendering. Computer 
Graphics Forum, 28(4), 1207–1215. doi:10.1111/j.1467-8659.2009.01498.x 

Lin, L., Zeng, K., Lv, H., Wang, Y., Xu, Y., & Zhu, S. C. (2010). Painterly animation using 
video semantics and feature correspondence. In Proceedings of the 8th 
International Symposium on Non-Photorealistic Animation and Rendering (pp. 
73–80). New York, NY, USA: ACM. doi:10.1145/1809939.1809948 

Lin, T., Lin, L., & Wang, Q. (2012). Robust stroke-based video animation via layered 
motion and correspondence. In Proceedings of the 20th ACM international 
conference on Multimedia (pp. 729–732). New York, NY, USA: ACM. 
doi:10.1145/2393347.2396298 

Litwinowicz, P. (1997). Processing images and video for an impressionist effect. In 
Proceedings of the 24th annual conference on Computer graphics and interactive 
techniques (pp. 407–414). New York, NY, USA: ACM Press/Addison-Wesley 
Publishing Co. doi:10.1145/258734.258893 

Meier, B. J. (1996). Painterly rendering for animation. In Proceedings of the 23rd Annual 
Conference on Computer Graphics and Interactive Techniques (pp. 477–484). 
New York, NY, USA: ACM. doi:10.1145/237170.237288 



 

137 

O’Donovan, P., & Hertzmann, A. (2012). AniPaint: Interactive painterly animation from 
video. IEEE Transactions on Visualization and Computer Graphics, 18(3), 475–
487. doi:10.1109/TVCG.2011.51 

Olsen, S. C., Maxwell, B. A., & Gooch, B. (2005). Interactive vector fields for painterly 
rendering. In Proceedings of Graphics Interface 2005 (pp. 241–247). School of 
Computer Science, University of Waterloo, Waterloo, Ontario, Canada: Canadian 
Human-Computer Communications Society. Retrieved from 
http://dl.acm.org/citation.cfm?id=1089508.1089548 

Park, Y., & Yoon, K. (2008). Painterly animation using motion maps. Graphical Models, 
70(1–2), 1–15. doi:10.1016/j.gmod.2007.06.001 

Pelachaud, C., & Bilvi, M. (2003). Computational model of believable conversational 
agents. In M. P. Huget (Ed.), Communication in Multiagent Systems (pp. 300–
317). Springer Berlin Heidelberg. Retrieved from 
http://link.springer.com/chapter/10.1007/978-3-540-44972-0_17 

Salesin, D. (2002). Non-photorealistic animation & rendering: 7 grand challenges. In 
Keynote talk at NPAR. 

Santella, A., & DeCarlo, D. (2002). Abstracted painterly renderings using eye-tracking 
data. In Proceedings of the 2Nd International Symposium on Non-photorealistic 
Animation and Rendering (p. 75–ff). New York, NY, USA: ACM. 
doi:10.1145/508530.508544 

Santella, A., & DeCarlo, D. (2004). Visual interest and NPR: an evaluation and 
manifesto. In Proceedings of the 3rd international symposium on Non-
photorealistic animation and rendering (pp. 71–150). New York, NY, USA: ACM. 
doi:10.1145/987657.987669 

Seifi, H., DiPaola, S., & Arya, A. (2011). Expressive animated character sequences 
using knowledge-based painterly rendering. Int. J. Comput. Games Technol., 
2011, 7:7–7:7. doi:10.1155/2011/164949 

Seifi, H., DiPaola, S., & Enns, J. T. (2012). Exploring the effect of color palette in 
painterly rendered character sequences. In Proceedings of the Eighth Annual 
Symposium on Computational Aesthetics in Graphics, Visualization, and Imaging 
(pp. 89–97). Aire-la-Ville, Switzerland, Switzerland: Eurographics Association. 
Retrieved from http://dl.acm.org/citation.cfm?id=2328888.2328903 

Seifi, Hasti. (2010, December 3). Emotion depiction: expressive character sequences 
using painterly rendering (Thesis). Communication, Art & Technology: School of 
Interactive Arts and Technology. Retrieved from http://summit.sfu.ca/item/11479 

Shugrina, M., Betke, M., & Collomosse, J. P. (2006). Empathic painting: Interactive 
stylization through observed emotional state. In Proceedings of the 4th 
international symposium on Non-photorealistic animation and rendering (pp. 87–
96). New York, NY, USA: ACM. doi:10.1145/1124728.1124744 



 

138 

Snavely, N., Zitnick, C. L., Kang, S. B., & Cohen, M. (2006). Stylizing 2.5-D video. In 
Proceedings of the 4th international symposium on Non-photorealistic animation 
and rendering (pp. 63–69). New York, NY, USA: ACM. 
doi:10.1145/1124728.1124739 

Vanderhaeghe, D., & Collomosse, J. (2013). Stroke Based Painterly Rendering. In Paul 
Rosin & J. Collomosse (Eds.), Image and Video-Based Artistic Stylisation (pp. 3–
21). Springer London. Retrieved from 
http://link.springer.com/chapter/10.1007/978-1-4471-4519-6_1 

Zeng, K., Zhao, M., Xiong, C., & Zhu, S.-C. (2009). From image parsing to painterly 
rendering. ACM Trans. Graph., 29(1), 2:1–2:11. doi:10.1145/1640443.1640445 

Zhao, M., & Zhu, S.-C. (2011). Portrait painting using active templates. In Proceedings of 
the ACM SIGGRAPH/Eurographics Symposium on Non-Photorealistic Animation 
and Rendering (pp. 117–124). New York, NY, USA: ACM. 
doi:10.1145/2024676.2024696 

 

 

 



 

139 

Appendix.  Painterly Videos 

There are 13 numbers of videos enclosed in this thesis work.  Below is a list of the 
aforementioned video sequences, by the order they appear in this thesis and a short description 
on each video sequence.  The video files are available on the author’s website.  They are also 
uploaded by this thesis to the Simon Fraser University’s Library website. 

Twenty One Inc. NSERC Engage Video Sequences (4 Videos) 

Below are 4 video URLs to the video sequences of Chapter 1.  These 4 video sequences have 
been rendered by Painterly toolkit and delivered to TOI Company, as part of the NSERC Engage 
Collaboration (See Section 1.2). 

Video 1: Sequence #1.1. TOI-FirstScene-OriginalPalette 

The above video is taken from the first scene of the original video and rendered with the original 
color palette with Painterly toolkit. 

Video 2: Sequence #1.2. TOI-ThirdScene-PurplePalette 

The above video is taken from the third scene of the original video and rendered with Painterly 
toolkit, with a purple color palette and a different style. 

Video 3: Sequence #1.3. TOI-FirstScene-OriginalPalette_BiggerStrokes 

The above video is taken from the first scene of the original video and rendered with the original 
color palette by Painterly toolkit and has big strokes. 

Video 4: Sequence #1.4. TOI-FirstScene-OriginalPalette_Blurry 

The above video is taken from the first scene of the original video and rendered with the original 
color palette, using Painterly toolkit, but has a blurry look. 

Calibration Videos (5 videos) 

Below are 5 video URLs to the video sequences of Chapter 6.  These 5 videos depict parameter 
calibration as discussed in Chapter 6. 

Video 1: Sequence #6.1. TightGridWindowSize 

The above video is illustrating the effect of tight grid window on the output results (See Section 
6.1.2).  

Video 2: Sequence #6.2. ThirdScene-MigratingStrokes 

The above video demonstrates the impact of loose grid window on the output results (See 
Section 6.1.2).  

Video 3: Sequence #6.3. SuitableGridWindowSize 

The above video shows the effect of suitable grid window size on the output results (See Section 
6.1.2).  

Video 4: Sequence #6.4. ThirdScene-ThinningOut 

http://ivizlab.sfu.ca/research/PainterlyAnimThesis/
http://ivizlab.sfu.ca/research/PainterlyAnimThesis/
http://ivizlab.sfu.ca/research/PainterlyAnimThesis/
http://ivizlab.sfu.ca/research/PainterlyAnimThesis/
http://ivizlab.sfu.ca/research/PainterlyAnimThesis/
http://ivizlab.sfu.ca/research/PainterlyAnimThesis/
http://ivizlab.sfu.ca/research/PainterlyAnimThesis/
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The video above shows the thinning out issue and the impact of higher pass numbers on the 
output results (See Section 6.1.3).  

Video 5: Sequence #6.5. FirstScene-MigratingStrokes_ThinningOutIssue 

The video shows both migrating strokes and thinning out issue on the output results (See 
Section6.1.2).  

CPA Fine-Tuned Videos (4 videos) 

Below are video URLs to the videos generated by CPA from the video sequence provided by the 
Twenty One Inc. to show the strength of CPA. 

Video 1: Sequence #6.6. FirstScene-CPA-FineTuned-p10_c1-fr40 

The above video is taken from the first scene of the original video and rendered with black-brown 
color palette. 

Video 2: Sequence #6.7. SecondScene-CPA-FineTuned-p9_c1-fr30 

The above video is taken from the second scene of the original video and rendered with the same 
black-brown color palette. 

Video 3: Sequence #6.8. ThirdScene-CPA-FineTuned-p10_c2-fr35 

The above video is taken from the third scene of the original video and rendered with the black-
brown color palette. 

Video 4: Sequence #6.9. FirstScene-CPA_OriginalPalette-p10_c2-fr40 

The above video is taken from the first scene of the original video and rendered with the original 
color palette. 

Video 5: Sequence#6.10-FirstScene-OriginalPalette_BiggerStrokes/ 
CPA-OriginalPalette-p10_c2-fr40 

The above sequence demonstrates a full view of the Sequence #1.3 followed by video sequence 
#6.9Video Link. 

Video 6: Sequence#6.11-FirstScene--OriginalPalette_BiggerStrokes/CPA-OriginalPalette-
p10_c2-fr40[OneHeadShot] 

The above sequence demonstrates a close up of the woman character’s head from sequence 
#1.3 followed by the same head cut from sequence #6.9. 

Video 7: Sequence #6.11-FirstScene--OriginalPalette_BiggerStrokes/CPA-OriginalPalette-
p10_c2-fr40[TwoHeadShots] 

The above sequence illustrates a close up of the man and woman characters’ heads from 
sequence #1.3 followed by the same head cut from sequence #6.9. 

http://ivizlab.sfu.ca/research/PainterlyAnimThesis/
http://ivizlab.sfu.ca/research/PainterlyAnimThesis/
http://ivizlab.sfu.ca/research/PainterlyAnimThesis/
http://ivizlab.sfu.ca/research/PainterlyAnimThesis/
http://ivizlab.sfu.ca/research/PainterlyAnimThesis/
http://ivizlab.sfu.ca/research/PainterlyAnimThesis/compareFull.mp4
http://ivizlab.sfu.ca/research/PainterlyAnimThesis/compareFull.mp4
http://ivizlab.sfu.ca/research/PainterlyAnimThesis/compareCUwomen.mp4
http://ivizlab.sfu.ca/research/PainterlyAnimThesis/compareCUwomen.mp4
http://ivizlab.sfu.ca/research/PainterlyAnimThesis/compareCUManWoman.mp4
http://ivizlab.sfu.ca/research/PainterlyAnimThesis/compareCUManWoman.mp4

