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Abstract 

The authors propose a new approach to estimating stochastic volatility parameters. Traditional 

methods maximize the conditional likelihood. The proposed model optimizes two criteria: the 

deviation of the observed residuals PDF from the theoretical PDF and the in-sample predictive 

power of the volatility estimate. The resulting model yields better results than GARCH and than 

Harvey et al.’s stochastic volatility model. Two more applications of this innovation are also 

examined. First, volatility fit residuals for two assets are combined to estimate dynamic 

correlation. The model aptly estimates dynamic correlation when it is significant – though with 

some lag. Second, these models are used to replicate the RBC Risk Appetite Indicator. Results 

show that even though the authors are missing 40% of the inputs to the risk indicator, the 

replication strategy adequately replicates the indicator. We expect these three models to be of 

significant use to the SIAS team. 

 

Keywords:  Stochastic Volatility; Risk Appetite Indicator; Particle Filter; Dynamic Correlation; 

Residual Distribution Matching.  
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1: Introduction 

“No pain no Spain! So no risk, no return…“  - unattributed 

1.1 Motivation and Research Objectives  

Given that expected return and risk are the two factors that drive financial markets, the authors 

attempt to quantify risk in a way that is as accurate and efficient as possible. This research project 

has two main objectives: 

1. Implement a Stochastic Volatility (SV) model using particle filtering, as well as a simple 

dynamic correlation model. These models have applications in risk management, option 

pricing (including the pricing of spread options), as well as capital markets expectations. 

In addition, the output of these models serves as input to replicate the RBC RAI; 

2. Replicate the RBC Risk Appetite Indicator (RAI). This model has applications in risk 

management and capital markets expectations. As RBC publishes their RAI infrequently, 

index replication can provide more up-to-date situational awareness regarding the overall 

level of risk in financial markets. 

Upon completion of this project, the models or data will be supplied to the SIAS team upon 

request. 

1.2 Literature Review 

1.2.1 Filtering 

Estimation constitutes a fundamental problem of econometrics and engineering. It consists of 

determining the value of parameters and states (a.k.a. hidden variables) that optimally fit a set of 

noisy measurements. To compute these estimates, one uses a best guess of the dynamics of the 

system. This is known as the state propagation equation. 

For example, to estimate the motion of a car, one would use Newton’s Second Law as the state 

propagation equation. In finance, the state propagation equation for a volatility estimator could 

be, for example, a GARCH(1,1) process [Bollerslev, 1986]:  
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which can be rewritten as:

 

where xt is the variance (square of volatility) at time t. In the literature, xt is the standard 

designation given to the state variable. But as is often the case in most applications, the state 

variable is not directly observable; it can only be inferred from movements in underlying asset 

prices. To remedy this problem, estimation formulations also rely on a so-called measurement 

equation, which describes (in this example) how volatility influences asset prices. For the 

GARCH(1,1) process, the measurement equation takes the following form: 

 

or

 

where the asset log-returns are denoted by yt, which is the standard way of denoting 

measurements at time t. Together, the state propagation and the measurement equations 

(equations (2) and (4) above) are referred to the state space equations of the system. This notation 

is used throughout this thesis. 

The estimate of the states is updated over time as noisy measurements become available. Optimal 

state estimation has become a field of its own. For a complete primer on the topic, the interested 

reader is referred to Simon [2006]. 

Famous for guiding Apollo spaceships to the Moon and back, the Kalman filter [Kalman, 1960] 

has found applications in finance. It is the optimal linear filter, regardless of the noise 

distribution
2
. However, linear filters do not handle financial time series well because of severe 

non-linearities. To mitigate this shortcoming, a few refinements have been made to Kalman filter 

over the years. 

The Extended Kalman Filter (EKF) [Anderson and Moore, 1979] uses a first-order truncated 

                                                      
2
 Some publications maintain that the Kalman filter is the optimal linear filter for systems with Gaussian 

noise. This is incorrect [Simon 2006]. For any given data time series, some non-linear filters may 

perform better than the Kalman filter, but this filter is the optimal linear filter for any system. 
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Taylor’s series expansion about the current state to linearize non-linear systems. It is the most 

popular filter for non-linear systems [Simon, 2006]. Though more robust than the Kalman filter 

against non-linearities, the EKF tends to underestimate the covariance of the states [van der 

Merwe et. al, 2000(a)]. 

The Unscented Kalman Filter (UKF) [Julier and Uhlmann, 1997] is based on a mapping, the 

unscented transformation. It generally handles non-linear systems better than the EKF. In 

particular, state covariance matrices computed using the UKF are much closer to the truth than 

those computed using the EKF. However, the UKF does not perform well for arbitrary (non-

Gaussian) noise distributions [van der Merwe et. al. 2000(b)], such as those routinely encountered 

in finance. 

Simultaneous robustness against non-linearity and arbitrary noise distributions requires Monte 

Carlo simulation. The Particle Filter (PF) [Gordon et. al., 1993] is a Bayesian approach that 

simulates the path of a large number of samples (particles, as they are also called). In terms of 

accuracy and robustness, this type of algorithm dominates Kalman-type filters [Simon, 2006]. 

However, this comes at the cost of increased computational time. 

The basic particle filtering process follows [Simon, 2006]: 

1. Generate samples from the probability distribution of the initial state; 

2. For each sample (particle), propagate the state of the system (xk) one step forward in 

time. This yields the a-priori distribution of the particles for that next time step; 

3. Using the measurement equation, compute the likelihood of each a-priori particle 

conditioned on the measurement (yk) at that next time step; 

4. Scale the relative likelihoods based on the results of step 3; 

5. Compute a-posteriori particles based on the relative scaled likelihoods. These particles 

follow the PDF of p(xk|yk); 

6. Go back to step 2 above and repeat the process until the last measurement is processed. 

1.2.2 Stochastic Volatility  

Computing asset price volatility has critical applications in finance such as the calculation of 

value at risk, mean variance optimization, and pricing options
3
. Standard price diffusion theory 

                                                      
3
 The price of long-term options is usually based on the expected long-term volatility, which can be 

determined using implied volatility [Crack, 2012]. On the other hand, asset volatility is known to have 

significant auto-correlation. Therefore, shorter-term options can be priced using historical volatility, but 

one must also account for the jump diffusion premium. 
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states that returns are log-normally distributed: 

 

In the above expression, the asset volatility is assumed constant. However, asset price volatility is 

rarely constant, though it tends to exhibit auto-correlation (days with high volatility tend to follow 

days of high volatility, and vice-versa [Tsay, 2010]). Since the development of the ARCH model 

by Nobel laureate Robert Engle [1982], the computation of time-varying (dynamic) volatility has 

flourished into a rich field of econometrics research. For example, Bollerslev [1986] introduced 

the popular GARCH model, which is routinely used to forecast volatility and option prices 

[Chatfield, 2004]. However, GARCH tends to overstate volatility. It also shows a tendency to 

overstate the duration of high volatility periods [Gonzalez et al., 2002]. To mitigate this problem, 

researchers have patched the basic GARCH formulation as best as they could, resulting in such 

formulations as IGARCH, EGARCH, TGARCH, etc. [Tsay, 2010]. One of the major problems 

with these formulations is the specification (or misspecification) of the state equation for 

volatility. Revisiting Equation (1), one notices that volatility is a deterministic function; once one 

knows the volatility at the previous time step and the innovation, then the volatility at the current 

time step is known with certainty. There is no allowance for any diffusion of the volatility 

process – no error term in the state equation. Such models are called deterministic volatility 

models.  

In contrast, Stochastic Volatility (SV) models include a diffusion term not only in the asset price 

process (measurement equation), but also in the volatility process (state equation) [Chatfield, 

2004]. The Heston [1993] model is a popular SV model. The present thesis uses another SV 

formulation [Harvey et al., 1994], which is obtained by shifting the mean drift in equation (5) to 

zero, by relaxing the constant volatility assumption, and by assuming a time step of 1: 

 

where the state (xt) is the log-variance of the asset price, which follows an AR(1) process: 

 

and where 1t and 2t are normally distributed random variables with zero mean. The general 

version of this model allows the error terms to be correlated. This captures the empirically 

observed leverage effect whereby volatility is higher for large price drops than for large price 
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gains [Yu, 2005]. This research project neglects leverage effects. 

1.2.3 Dynamic Correlation 

This research project also seeks to determine the time-varying (dynamic) correlation across 

assets. The ideal way to tackle this would be to derive a multivariate stochastic volatility and 

correlation formulation. For example, Chib’s approach [2006] does accomplish this modeling feat 

of arms, but at great cost: a very large number of parameters to estimate and slow speed.  

We seek a simpler algorithm, which mirrors an approach examined by Engle [2002]. It consists of 

computing the dynamic correlation using a two-stage divide-and-conquer strategy: 

1. Estimate the stochastic volatility of each asset separately using a univariate formulation; 

2. Blend the residuals from step 1 to compute the dynamic correlation using an Exponential 

Moving Average (EMA). 

As will be shown later, if one neglects cross-volatility effects, this requires the simultaneous 

optimization of three parameters using one set of measurements (asset returns). Opting for the 

simultaneous and dynamic estimation of the volatility and correlation of two assets would have 

brought about the dreaded curse of dimensionality - with at least nine parameters to estimate 

simultaneously using only two sets of measurements (returns of two securities). In light of this, 

one can see why the simpler approach is preferable.  

1.2.4 Risk Appetite Indicators 

Risk appetite reflects investors' willingness to hold risky assets. Changes in risk appetite can 

explain movements in capital markets that seem unrelated to the flow of economic and political 

news. A rising risk appetite implies that investors are willing to hold riskier assets. This in turn 

drives stock prices up.  

Several indices have been created to measure market risk appetite. Tarashev, Tsatsaronis, and 

Karampatos [2003] developed a Risk Appetite Index (RAI) at the Bank for International 

Settlements (BIS). This indicator is computed as follows: 

1. Use a GARCH model and historical data to predict the statistical distribution of future 

asset returns; 

2. For the same assets, use option prices with different strikes to determine the implied 

volatilities and draw the volatility smile; 
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3. The volatility smile is mapped into a subjective probability distribution of future 

payoffs. The value of the index is the ratio of the left tails of the two distributions (i.e., 

the ratio of the statistical downside risk to the subjective downside risk).  

The Gai and Vause [2004] RAI, developed at the Bank of England (BE), is similar to the BIS 

method, but uses the ratio of the full distributions instead.   

The Kumar and Persaud [2002] Global Risk-Appetite Index (GRAI) is constructed by first 

ranking assets by their riskiness (variance of past returns), and then by their excess returns 

(difference between futures and spot prices measured at a single point in time). This indicator is 

used as an input for both the IMF and JPMorgan RAIs.   

The Credit Suisse First Boston Risk-Appetite Index (CSFB) [Wilmot, Mielczarski, and Sweeney 

2004] is similar to the GRAI in that it compares risk (past volatility) and excess returns across 

assets. The value of the CSFB on a given day is the slope of the cross-sectional linear regression 

of risk and excess returns - the higher the slope, the higher the risk appetite.  

Credit Suisse Global Risk Appetite Index is based on the relationship of excess returns and 

volatility of safe assets and risky assets. This RAI examines equities and bonds of developed and 

emerging markets [Lascelles, 2013]. 

The Royal Bank of Canada (RBC) Risk Appetite Index combines 46 different inputs measuring 

overall market price, volatility, correlation, flow, sentiment surveys, and third-party risk indices 

[Lascelles, 2013]. The index weighs all inputs equally. 

1.3 Innovation of this Research 

This research innovates in the way Stochastic Volatility (SV) parameters are estimated. Though 

the first two steps of the stochastic volatility estimation process (particle filtering and particle 

smoothing) are identical to Kim’s model [2005, 2008], the final step in the process (parameter 

estimation) is done completely differently. While Kim uses the traditional approach of 

conditional likelihood maximization, this research proposes a new technique called Residuals 

Distribution Matching (RDM). It uses a standard Nelder-Mead optimization algorithm
4
 to find the 

combination of parameters that: 

1. Results in a residuals distribution with the desired shape; 

2. Selects estimates with superior in-sample volatility prediction power. 

                                                      
4
 fminsearch function in MATLAB. 
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The final result is an estimator that: 

1. Appears to outperform the traditional GARCH volatility estimator; 

2. Has better volatility prediction capability than another popular SV model: the Harvey 

et al. model [1994]; 

3. Is simpler to derive and use than Kim’s multi-step likelihood estimator; 

4. Has better empirical convergence than Kim’s likelihood estimator. 

 

1.4 Thesis Structure 

Section 2 discusses the main theoretical aspects of this project. Section 3 presents and discusses 

the major results of the research. It also validates the results of this research against those of 

previous studies. Finally, Section 4 presents the conclusions of this research and outlines potential 

future work.  
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2: Theoretical Considerations 

“All models are wrong, but some are useful” – George Box (1919-2013) 

2.1 Particle Filtering 

The Particle Filter (PF) is a probability-based (Bayesian) estimator based on Monte Carlo 

methods [Simon 2006]. Figure 2.1 below shows an example of a filtered system using 100 

particles (or Monte Carlo samples). 

Figure 2.1 Evolution of 100 Particles or Monte Carlo Samples to Estimate Volatility 

 

Since the particle filter is nothing but a Monte Carlo simulation, the estimated volatility at each 

time step is the mean value of all particles at that time step. In addition, one can obtain an 

estimate of the volatility estimation error by computing the error statistics of the particles. The 
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95% confidence interval, for example, is computed by finding the 2.5
th
 and 97.5

th
 percentiles of 

the particles. 

Originally imagined by Metropolis
5
, the PF is based on the simple idea that as the number of 

trials of an experiment approaches infinity, the probability of an event taking place converges to 

the ratio of number of occurrences of that event divided by the number of trials. With the advent 

of modern computing, Metropolis’ idea has spawned a family of filters that can outperform any 

Kalman-type filter at the cost of extra computation.  

The first PF model was put forth by Gordon, Salmond, and Smith [1993]. Known as Sequential 

Importance Sampling (SIS), this original formulation can at times suffer from sample 

impoverishment. Given certain conditions, all Monte Carlo samples may end up with zero weight 

in the estimate, except for a single sample [Simon, 2006]. Several mitigation strategies have been 

devised over the last 20 years.  

This thesis uses two particle methods (an SIS filter and an SIS smoother) to estimate the 

stochastic volatility of assets over time. Section 2.2.6 discusses how degeneracy issues are 

handled. 

2.2 Stochastic Volatility Estimation 

2.2.1 State-Space Equations 

The measurement and state propagation equations above ((6) and (7)) constitute the starting point 

of the stochastic volatility estimator. The proposed model mainly follows the treatment of Kim 

[2005, 2008], who slightly modified the formulation of Harvey et al. [1994]. Kim substitutes x for 

(x-) in both equations and defines  as exp(-). She obtains: 

 

 

But Equation (8) still has a multiplicative error term, which is rather difficult to handle in 

filtering. One can transform the measurement equation so that the error term becomes additive by 

                                                      
5
 of Metropolis-Hastings fame. 
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squaring both sides and taking the logarithm of both sides [Shumway and Stoffer, 2006]. The 

resulting state space-formulation is 

 

 

where the left-hand side of the measurement equation (10) is now the log of the square of the 

zero-mean log-returns
6
, and the error term in the measurement equation is the log of the square of 

a Gaussian random variable, which is a ln(1
2
) random variable [Shumway and Stoffer, 2006]. On 

the other hand, the noise term in the state propagation equation (11) remains Gaussian. Note that 

in the above derivations, yt and xt do not necessarily always represent the same quantities. For 

example, yt denotes the log-returns in Equation (6). On the other hand, it represents the log of the 

square of the log-returns in Equation (10). Think of yt and xt as the measurement and the state, 

which change as we rearrange the state-space equations from an intractable form to a shape that 

can reasonably be tackled. There remains only one problem: the ln(1
2
) distribution does not have 

zero mean, which is a desirable feature of an error term. To remedy this issue, the following 

substitution is made: 

 

where E(ln(t
2
)) is the expected value of a ln(1

2
) random variable, which is -1.27. The final 

version of the state-space description of the stochastic volatility model is 

 

 

where the error term in the measurement equation (vt) follows a zero-mean ln(1
2
) distribution, 2t 

is a Gaussian error term with unknown but constant variance. This system has three unknown 

parameters: , , and the variance of the 2t error term (henceforth denoted by Q). The value of 

these parameters must somehow be estimated in an optimal fashion. 

Shumway and Stoffer [2006] propose modeling the observation noise as a mixture of two 

Gaussian distributions. This model requires the simultaneous estimation of seven parameters 

                                                      
6
 See Equations (5.6) and (5.7) in Kim’s thesis [2005]. 
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using only one set of measurements. Kim [2005] estimates the parameters of the US/GBP 

exchange rate volatility using both the three-parameters model derived above and the more 

complex seven-parameters model. She finds that both models give similar results. In light of this, 

the authors elect to stick to the simpler model. 

2.2.2 Summary of Stochastic Volatility Determination Process 

Figure 2.2 below shows the overall flow diagram of the stochastic volatility determination 

process. The details of that process are explained in the following sections. 

Figure 2.2 Flow Chart of the Stochastic Volatility Determination Process 

 

2.2.3 Parameter Estimation Process 

2.2.3.1 Kim’s Approach 

Kim [2005] uses the conditional likelihood maximization approach to estimate the three unknown 

parameters (, , Q). This algorithm is similar in spirit to the basic algorithm for estimating a 

ARCH or a GARCH process [Tsay, 2010]. Kim’s Ph.D. thesis actually includes the source code 

she uses for her calculations. During initial testing, the authors found instances where Kim’s 

likelihood maximization algorithm required baby-sitting because the program had to be 
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interrupted and restarted several times as the accuracy of the solution improved (see Section 2.4.3 

in Kim’s thesis [2005]). In addition, Kim’s algorithm did not always deliver satisfactory results
7
.  

In light of all this, we propose a different algorithm that requires no baby-sitting and yields good 

results for all seven data series analyzed so far
8
. We call this proposed algorithm the Residual 

Distribution Matching (RDM) algorithm.  

2.2.3.2 Residuals Distribution Matching (RDM) 

This algorithm is the innovation of this research project. It estimates the optimal value of the 

system parameters iteratively as follows: 

1. The user specifies an initial guess for the system parameters. In particular, we find that an 

initial guess of [, Q, ] = [0.95, 0.05, -8] works for all seven times series analysed so 

far; 

2. The algorithm uses a particle filter and a particle smoother to compute the volatility for 

this guess. That part of the algorithm is identical to Kim’s algorithm. Refer to Section 

2.1.2 in Kim’s thesis [2005] for more information; 

3. The time-varying volatility signal is compared to the actual asset returns to generate a 

time-series of residuals. This is done using Equation (6) above; 

4. The empirical PDF of these residuals is compared to the PDF of the ideal distribution of 

residuals: the ln(12) distribution (see Figure 2.3 below for a typical example); 

5. The algorithm computes the area of the empirical residuals PDF falling outside the 

ln(12) distribution. Ideally, this area would be zero or near zero. Using the area outside 

the theoretical PDF as an objective function is preferable to comparing the mean and 

variance of the empirical PDF to that of the theoretical PDF because area is much less 

sensitive to outliers. The algorithm also adds a small penalty for cases where the estimate 

has poor in-sample one-step-ahead volatility prediction capability. This ensures both a 

good fit and reasonable in-sample volatility prediction capability; 

6. The whole algorithm is wrapped in a Nelder-Mead optimization algorithm9. This is the 

well-known fminsearch function in MATLAB. The reader should remain mindful that the 

                                                      
7
 During initial tests carried out by the authors of this study. 

8
 The RDM algorithm was successfully tested on the following data series: DEX Universe Bond Index, spot 

Gold price, spot Brent oil price, S&P 500 index, 10-yr U.S. Treasury swap rate, S&P TSX Composite 

index, US Dollar index. 
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Nelder-Mead algorithm does not guarantee convergence any more than the conditional 

likelihood maximization algorithm does.  

Figure 2.3 Theoretical & Empirical Distribution of Residuals for the Optimal SV Estimate for SPX  

 

In essence, whether one maximizes conditional likelihood or seeks to match the empirical 

residuals PDF to the theoretical residuals PDF, one should get the same result, as long as the 

model is correctly specified, that is, as long as it truly represents reality. Initial testing reveals that 

the RDM algorithm provides better robustness than the conditional likelihood maximization 

model. In addition, it requires no baby-sitting and contains a penalty feature that rewards good in-

sample volatility prediction.  

                                                                                                                                                              
9
 In initial testing, the Nelder-Mead method yielded much better results than the steepest ascent method. 
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2.2.4 Data Considerations 

2.2.4.1 Data Start and End 

Unless otherwise mentioned, all data series used in this research are weekly
10

 asset prices/returns 

starting on January 1
st
 2002, and ending on November 1

st
, 2013 for a total of 616 measurements. 

2002 was selected as a starting point for two reasons: 

1. There is no need to deal with missing data issues resulting from the financial markets 

shutdown that followed the tragic events of September 11
th
, 2001.  

2. The FRED database begins tracking the 10-yr interest rate swap in 2001, and the 10-yr 

swap is an input of the volatility/correlation component of the Risk Appetite Indicator. 

2.2.5 Singularity Avoidance 

The proposed model has a singularity that must be protected against. In Equation (10) above, if 

the log-return between two data points matches the average log-return, then the argument of the 

log function vanishes, which results in a singularity. To avoid this situation, the data points near 

the singularity are slightly adjusted to ensure that the system remains well behaved. This is done 

by adjusting these vulnerable data points so that the return is some random value very close, but 

not identical to the average log-return. This enables the algorithm to perform as expected, but 

creates a volcanoe-shaped scaled log-return distribution (as shown in Figure 2.4 below). This 

shape is created by the scarcity of returns near 0 (about the mean log-return), and the resulting 

abundance of log-returns just around the mean. As shown empirically in Section 3.2, this 

singularity protection process does not negatively impact the results. This makes theoretical sense 

because what really drives volatility processes is not samples where returns are near the average, 

but samples that show large gains or losses. 

                                                      
10

 Last trading day of the week. 



 

 15 

Figure 2.4 Empirical Predictive PDF of Log-Returns for the S&P 500 Index (Scaled by SV)  

 

2.2.6 Particle Filter Degeneracy Issues 

The SIS particle filter has well-documented sample impoverishment (degeneracy) problems 

[Simon, 2006]. To ensure that a given set of simulation results is not plagued by particle 

degeneracy, the authors visually inspect the 95% confidence interval of the volatility estimate for 

possible narrowing or abnormally high jitteriness. Such behaviour (shown in Figure 2.5 below for 

a simulation of Gold using only 10 particles) betrays particle filter degeneracy [Doucet and 

Johansen, 2009]. But as seen in Figure 2.6 and Figure 2.7 below, 250 particles yield satisfactory 

results. 

Figure 2.5  Gold Volatility Estimate and 95% Confidence Interval (with 10 Particles) 
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Figure 2.6  Gold Volatility Estimate and 95% Confidence Interval (with 1000 Particles) 

 

Figure 2.7 Gold Volatility Estimate and 95% Confidence Interval (with 250 Particles) 

 
 

It would be possible to eliminate the prospect of particle filter degeneracy entirely by 

implementing a more robust resampling algorithm - Markov Chain Monte Carlo resampling [van 

der Merwe et. al. 2000(b)]. But for now, a visual inspection of the 95% confidence interval 

suffices. 

2.2.7 Why not use a Kalman Filter? 

As mentioned in the literature review section, the Kalman filter is the best possible linear filter for 

any noise distribution. So why not use it to filter the stochastic volatility system, which is linear 

(see Equations (13) and (14))? It turns out that though the model is linear, the true stochastic 

volatility process may not be. Hence, a non-linear formulation like the particle filter used here is 

better suited.  
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2.3 Dynamic Correlation 

As mentioned in the literature review section, we seek a simple divide-and-conquer approach to 

determining dynamic cross-asset correlation. The selected strategy uses a two-stage process: 

1. Estimate the SV of each asset separately using a univariate formulation; 

 

2. Blend the residuals from step 1 to compute the dynamic correlation using an Exponential 

Moving Average (EMA). 

The RiskMetrics group suggested the EMA approach [Engle, 2002]. Their model has a smoothing 

factor () of 0.94 and it is regularly used in the industry. The model uses a recursive definition of 

the correlation matrix qij: 

 

from which one obtains the dynamic correlation as follows: 

 

Like every other EMA, this filter has a lag. In this case, the lag is 17 time steps
11

. 

2.4 Risk Appetite Indicator 

The authors seek to replicate the RBC Risk Appetite Index (RAI), as it is only published 

intermittently, which is not convenient for investors. 

2.4.1 Data Inputs in the RBC Risk Appetite Index 

The RBC RAI has 46 inputs [Lascelles, 2013]. Table 1 below shows all RAI inputs in column 1. 

Column 2 shows which inputs were located and used in the replicated RAI: “√“ implies that the 

input was found, while ”×” indicates that the input was not found. Column 3 indicates the 

polarity of each indicator: “1” implies that a high value of the input betrays a risk loving attitude, 

while “-1” implies that a high value of the inputs denotes a risk averse sentiment. Finally, 

columns 4 and 5 show the source of the data inputs that were located. 

                                                      
11

 Filter lag = (1-)
-1

 = (1-0.94)
-1

=16.67~17 
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Table 1 RBC RAI Inputs, List of Inputs Obtained by the Authors, and References 

RBC RAI Inputs 

Included in  
Replicated 
RAI 

Risk 
Loving/ 
Averse 

Data Source Reference Link 

PRICE 

U.S. 10-Year Treasury 
Real Yield 

√ 1 
FRED ST. LOUIS 
FED 

http://research.stlouisfed.org/fred2/search?st=10-
Year+Treasury+Inflation-
Indexed+Security%2C+Constant+Maturity  

U.S. Corporate Bond 
Spread 

√ -1 
FRED ST. LOUIS 
FED 

http://research.stlouisfed.org/fred2/series/BAMLC0A0C
M 

U.S. High Yield Bond 
Spread 

√ -1 
FRED ST. LOUIS 
FED 

http://research.stlouisfed.org/fred2/series/BAMLH0A0H
YM2/ 

Global Corporate Bond 
Spread 

× N/A     

Global High Yield Bond 
Spread 

× N/A     

Emerging Market 
Sovereign Bond 
Spreads 

× N/A     

Sovereign Credit 
Default Swap (CDS) 
Spreads CDS spreads 

× N/A     

Price-to-Earnings (P/E) 
Ratio P/E ratio of S&P 
500 Index. 

√ 1 Bloomberg Bloomberg  

Put-Call Ratio Ratio on 
S&P 500 Index. 

√ -1 Bloomberg Bloomberg 

VOLATILITY 

Euro-U.S. Dollar 
(EURUSD) Option 
Volatility 1 Year 

 ×  N/A     

U.S. Swaption 
Volatility 1Y 5Y 
Normalized 

 ×  N/A     

CBOE Volatility Index 
(VIX) 

√ -1 Bloomberg Bloomberg  

Consensus Economics 
Standard Deviations of 
GDP Forecasts – U.S. 

 ×  N/A     

Consensus Economics 
Standard Deviations of 
GDP Forecasts – 
Eurozone 

 ×  N/A     

Consensus Economics 
Standard Deviations of 
GDP Forecasts – U.K. 

 ×  N/A     

Consensus Economics 
Standard Deviations of 
GDP Forecasts – Japan 

 ×  N/A     

Survey of Professional 
Forecasters Real GDP 
Forecast Dispersion 

 ×  N/A     

Economic Policy 
Uncertainty Index 

 ×  N/A     

CORRELATION 

Cross-Asset Class 
Correlation 

 √  -1 
Dynamic 
Correlation  Dynamic correlation estimated in this thesis 

Correlation of S&P 500 
Stocks and S&P 500 
Index 

 ×  N/A     

http://research.stlouisfed.org/fred2/search?st=10-Year+Treasury+Inflation-Indexed+Security%2C+Constant+Maturity
http://research.stlouisfed.org/fred2/search?st=10-Year+Treasury+Inflation-Indexed+Security%2C+Constant+Maturity
http://research.stlouisfed.org/fred2/search?st=10-Year+Treasury+Inflation-Indexed+Security%2C+Constant+Maturity
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FLOW 

Net Speculative Long 
Positions in U.S. 
Treasury 

×  N/A     

U.S. Corporate Bond 
Issuance 

√ 1 Sifma http://www.sifma.org/research/statistics.aspx  

Eurozone Corporate 
Bond Issuance 

×  N/A     

U.S. Net Equity 
Issuance 

√ 1 Sifma http://www.sifma.org/research/statistics.aspx  

Eurozone Net Equity 
Issuance 

×  N/A     

U.S. Mutual Fund 
Flows Into Equities 

√ 1 ICI http://www.ici.org/research/stats  

U.S. Mutual Fund 
Flows Into Bonds 

√ 1 ICI http://www.ici.org/research/stats  

U.S. Mutual Fund 
Flows Into Emerging 
Markets 

× N/A     

Credit Growth – U.S. ×  N/A     

Credit Growth – 
Eurozone 

√ 1 MD Briefing http://mdbriefing.com/eurozone-credit.shtml 

SURVEY 

Thomson 
Reuters/University of 
Michigan Consumer 
Sentiment Index 

√ 1 Bloomberg  Bloomberg 

European Commission 
Economic Sentiment 
Indicator –EU 

√ 1 Bloomberg  Bloomberg 

European Commission 
Economic Sentiment 
Indicator – Eurozone 

√ 1 Bloomberg  Bloomberg 

Japanese Consumer 
Confidence Index 

√ 1 Bloomberg  Bloomberg 

National Association of 
Home Builders 
Housing Market Index 

√ 1 Bloomberg  Bloomberg 

Market Vane Bullish 
Consensus Stock Index 

×  N/A     

Rasmussen Investor 
Index 

√ 1 Rasmussen 
http://www.rasmussenreports.com/public_content/busi
ness/indexes/rasmussen_consumer_index/rasmussen_c
onsumer_index  

THIRD-PARTY RISK INDICES 

Bloomberg Financial 
Conditions Index – U.S. 

√ 1 Bloomberg   

Bloomberg Financial 
Conditions Index – 
Europe 

√ 1 Bloomberg  Bloomberg 

BofA Merrill Lynch 
Financial Stress Index 

√ -1 Bloomberg  Bloomberg 

Kansas City Financial 
Stress Index 

√ -1 
Bank of Kansas 
City 

 
http://www.kansascityfed.org/research/indicatorsdata/
kcfsi/  

 
St. Louis Federal 
Reserve Bank Financial 
Stress Index 

√ -1 
FRED ST. LOUIS 
FED 

 

 http://research.stlouisfed.org/fred2/series/STLFSI 

 
Citigroup Macro Risk × N/A     

http://www.sifma.org/research/statistics.aspx
http://www.sifma.org/research/statistics.aspx
http://www.ici.org/research/stats
http://www.ici.org/research/stats
http://mdbriefing.com/eurozone-credit.shtml
http://www.rasmussenreports.com/public_content/business/indexes/rasmussen_consumer_index/rasmussen_consumer_index
http://www.rasmussenreports.com/public_content/business/indexes/rasmussen_consumer_index/rasmussen_consumer_index
http://www.rasmussenreports.com/public_content/business/indexes/rasmussen_consumer_index/rasmussen_consumer_index
http://www.kansascityfed.org/research/indicatorsdata/kcfsi/
http://www.kansascityfed.org/research/indicatorsdata/kcfsi/
http://research.stlouisfed.org/fred2/series/STLFSI
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Index 

Westpac Risk Aversion 
Index 

√ -1 Bloomberg  Bloomberg 

Credit Suisse Global 
Risk Appetite Index 

√ 1 Credit Suisse 

 
https://doc.research-and-
analytics.csfb.com/docView?language=ENG&format=PD
F&source_id=csplusresearchcp&document_id=80529715
0&serialid=DNuqDu3QYtx6%2BfzZW95CNdT3bFZg7fizc7
vlTMbbhUc%3D 

 
State Street Investor 
Confidence Index 

√ 1 Bloomberg  Bloomberg 

 

2.4.2 Complementary Data Inputs Required to Replicate the RBC RAI 

As seen in the above table, 24 out of 35 inputs for the price, flow, survey and third-party sub-

indices were found. On the other hand, few volatility and correlation inputs were located. The 

following explains how the models implemented for this thesis fill this gap. 

For volatility, the authors use the SV model to construct an in-house composite market volatility 

index combining the S&P 500 index, gold, Brent oil, the 10-yr US-treasury floating swap, and the 

US dollar index. This is in addition to the implied volatility VIX index data. Hence, two volatility 

inputs are used to construct the volatility sub-index. 

For correlation, the authors reproduce the composite correlation index in the RBC RAI using the 

dynamic correlation model created in this thesis. It combines the pair-wise correlations among the 

S&P 500 index, gold, Brent oil, the 10-yr US-treasury floating swap, and the US dollar index (10 

correlation estimates in total). These estimates are combined into a composite market correlation 

index. In the end, this composite correlation sub-index looks very similar to the correlation 

composite published by RBC. 

 

 

Figure 2.8 below shows the relative weight of each of the six sub-indices in the RBC RAI.  

Table 2 also shows this information, as well as the number of inputs that the authors use to 

replicate the index. 

https://doc.research-and-analytics.csfb.com/docView?language=ENG&format=PDF&source_id=csplusresearchcp&document_id=805297150&serialid=DNuqDu3QYtx6%2BfzZW95CNdT3bFZg7fizc7vlTMbbhUc%3D
https://doc.research-and-analytics.csfb.com/docView?language=ENG&format=PDF&source_id=csplusresearchcp&document_id=805297150&serialid=DNuqDu3QYtx6%2BfzZW95CNdT3bFZg7fizc7vlTMbbhUc%3D
https://doc.research-and-analytics.csfb.com/docView?language=ENG&format=PDF&source_id=csplusresearchcp&document_id=805297150&serialid=DNuqDu3QYtx6%2BfzZW95CNdT3bFZg7fizc7vlTMbbhUc%3D
https://doc.research-and-analytics.csfb.com/docView?language=ENG&format=PDF&source_id=csplusresearchcp&document_id=805297150&serialid=DNuqDu3QYtx6%2BfzZW95CNdT3bFZg7fizc7vlTMbbhUc%3D
https://doc.research-and-analytics.csfb.com/docView?language=ENG&format=PDF&source_id=csplusresearchcp&document_id=805297150&serialid=DNuqDu3QYtx6%2BfzZW95CNdT3bFZg7fizc7vlTMbbhUc%3D
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Figure 2.8  Information Content of each Sub-Index in the RBC RAI 

 

 

 

Table 2 Sub-Indices in the RBC RAI along with number of Inputs in each Sub-Index. 

Sub-Indices RBC RAI Replicated RAI 

PRICE 9 5 

VOLATILITY 9 2 

CORRELATION 2 1 

FLOW 10 5 

SURVEY 7 6 

THIRD-PARTY RISK INDICES 9 8 

Total 46 27 

 

2.4.3 Filtering High Frequency Data 

The put/call ratio and the Westpac Risk Aversion Index are particularly noisy. To compensate for 

this jitteriness, the put/call is filtered through a 5-day EMA, while the Westpac index is filtered 

through a 10-day EMA. 
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2.4.4 Overview of Risk Appetite Indicator Replication Process 

Figure 2.9 below shows a flowchart of the RAI replication process. The process is detailed in the 

following sub-sections. 

Figure 2.9  Flowchart of the RAI Replication Process 

 

2.4.5 Linear Interpolation for Time Sampling 

Given that the various inputs are provided at different frequencies, the RAI replication strategy 

uses linear interpolation to sample each input at the desired frequency – every five days in this 

case. Hence, regardless of how much or how little data is available for a given input, the 

replicated RAI always uses the data in the most meaningful manner possible. 

2.4.6 Input Scaling 

Given that not all RAI input have the same scale, it is necessary to normalize all inputs to give 

them the correct weight in the final index. For example, a P/E ratio of 40 does not at all mean the 

same thing as a corporate bond spread of 40bps. Hence, all inputs are normalized to a range 

between -1 and +1, where -1 is the most risk averse value encountered in the dataset and +1 is the 

most risk loving value in the dataset. Figure 2.10 below shows an example of this process: 
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Figure 2.10  Normalized Values of Inputs for the Price Sub-Indicator of the RAI 

 

 

2.4.7 RAI Replication Strategy 

Given that 40% of the inputs of the RBC RAI could not be obtained, the authors attempt to best 

replicate the RBC RAI. Lascelles [2013] states that each of the 46 inputs in the RBC RAI is given 

equal weight. Hence, all normalized inputs within a sub-indicator (say price) are added and then 

normalized within the -1 to +1 range as in Figure 2.11 below: 

Figure 2.11  Normalized Indices Sub-Indicator of the Replicated RAI 

 

Each of the replicated sub-indicators is scaled by the number of inputs in the sub-indicator. For 

example, the replicated price sub-indicator is multiplied by 9 because the RBC RAI contains 9 

price inputs. This strategy is particularly useful to ensure that the replicated volatility sub-index 

(which only has two inputs as opposed to nine inputs in the RBC RAI) does not ruin the accuracy 

of the replicated RAI. 



 

 24 

All scaled sub-indicators are then added together and scaled to a range similar to that of the RBC 

RAI. Reasonable thresholds for risk aversion, risk loving, risk seeking, risk neutral, and risk 

reluctant are added (though they do not match the values in the RBC RAI). 

2.5 How the Volatility/Correlation Estimators Relate to RAI 

So far, the reader might be tempted to think that this research project is really two separate 

projects: 1. volatility/correlation estimation, 2. Risk Appetite Indicator; but that is not quite the 

case. It turns out that getting good dynamic correlation data free of charge is quite difficult.  

As mentioned in the last section, the RAI requires a fair amount of volatility and correlation data 

(11 inputs out of 46). For the volatility part of the indicator, volatility estimation provides 1 out of 

9 inputs for the RAI. But since only two inputs are available (in-house stochastic volatility 

indicator and the VIX index), each input has a weight equivalent to 4.5 inputs in the RBC RAI. 

For correlation, the in-house correlation estimator provides 1 out of 2 inputs for the RAI, which 

has a weight equal to 2 inputs in the RBC RAI. In total, volatility/correlation estimation gives 

6.5/46=14% of the total information content of the replicated RAI, which is non-negligible (see 

Figure 2.12). 

Figure 2.12  Information Content in Replicated RAI from Volatility/Correlation Models in this Project 

 

 

 

 

 

Due to the significant influence of in-house volatility/correlation estimation on the replicated 

RAI, the authors undertook both projects simultaneously. 

 

14% of replicated RAI from stochastic  
volatility & dynamic correlation  
estimators 

86% of replicated RAI  
from original inputs 
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3: Results and Discussion 

“To err is human, but to really screw up you need a computer” – popular expression 

This section not only presents the results obtained from the proposed models, but also 

verifies/validates them against theoretical results and/or the findings of previous research 

campaigns. The authors also seek to determine where the proposed models perform better or 

worse than other models. 

3.1 Computational Speed 

The MATLAB source code originally used by Kim [2005] for her Ph.D. thesis is optimized for 

speed through vectorization (replacement of for loops with vector operations), and other 

improvements. The updated code runs about 33% faster than the original code written by Kim. 

The final version of the filtering/smoothing code, along with the Nelder-Mead algorithm for 

optimization takes about two hours12 to find the optimal volatility estimate for a given asset; with 

616 measurements and 1000 particles. Reducing the number of particle to 250 while keeping the 

dataset intact requires 25 minutes of computational time. Speed-up13 would be possible with the 

replacement of some of the code by .mex files, but this is left as future work.  

3.2 Stochastic Volatility Estimator 

3.2.1 Volatility of the US Dollar vs British Pound Exchange Rate  

 

Figure 3.1 shows the estimated stochastic and GARCH volatility of the US dollar / British pound 

exchange rate between October 1st, 1981 and June 28th, 1986. On this plot, the noisy green signal 

corresponds to the log-returns, the blue curve represents the GARCH estimate, and the red curve 

denotes the Stochastic Volatility (SV) estimate. One immediately notices that the GARCH and 

SV estimates generally track each other.  

                                                      
12

 Using a MacBook Pro laptop computer with a 2.6GHz Intel Core i7 processor. 
13

 Perhaps by as much as 80%-90%. 
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Figure 3.1 Stochastic and GARCH Volatility Estimates for US Dollar vs British Pound Exchange Rate  

 

But a closer look at the volatility estimates (see Figure 3.2) shows that the stochastic estimate 

appears to perform better the GARCH estimate in that it: 

1. Does not lag the measurements; 

2. Quickly responds to sudden decreases in volatility.  

Though not detectable in this dataset, the GARCH model also tends to over-estimate volatility in 

when shocks occur. This is indeed the case in almost all the datasets with large volatility shocks 

that are analysed. 

Figure 3.2 Zoomed-in Portion of  
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Figure 3.1 

 

 

This US Dollar / British Pound dataset has become something of a benchmark case in the SV 

literature. Harvey et al. [1994] also estimate the volatility of this dataset using a quasi-maximum 

likelihood method, based on a Kalman filter. Recall that the Kalman filter is not as suitable for 

non-linear systems (such as most financial time series) as particle filters, which are specifically 

designed to tackle non-linear problems. The volatility estimates obtained by Harvey et al. [1994] 

(see Figure 3.3 below) are smoother than a GARCH fit, but appear to have a significant number 

of outliers near the end of the dataset, where there is a volatility shock. In addition, the Harvey et 

al. model appears to miss the period of low volatility between times 515 and 545 in Figure 3.3. 

Hence, it appears that the proposed model has better in-sample volatility prediction capability 

than the well-known Harvey et al. model14. 

                                                      
14

 One may notice that the log-returns in the present analysis slightly differ from those in Harvey et al. 

[1994]. This is likely due to the number of significant digits in the two datasets. This effect does not 

invalidate the results of this comparison.  
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 Figure 3.3 Stochastic Volatility Estimates for USD/GBP Obtained by Harvey et al. [1994] 

 

As for Kim [2005, 2008], she does not provide plots of the estimated SV, only of the model 

parameters. Therefore, one cannot directly compare her volatility filtering results to those 

obtained with the proposed model.  

Another way to judge the quality of a volatility fit consists of normalizing the current 

measurement by the previous volatility estimate. This gives a measure of in-sample volatility-

prediction power. Under ideal circumstances, the resulting PDF would be Gaussian. All other 

factors held equal, the RDM algorithm tends to select solutions that have good in-sample 

volatility prediction power. The SV computed here does indeed have better predictive power than 

the GARCH filter for all seven assets studied. In other words, the empirical PDF of the log-return 

distribution (scaled by volatility) obtained using the SV fit more closely resembles a Gaussian 

PDF than it does for the GARCH fit. An example of this is shown below for the US Dollar Vs. 

British Pound exchange rate (Figure 3.4 below): 
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Figure 3.4 Volatility Prediction Power for GARCH and SV Fits for USD/GBP Exchange Rate 

 

 

Figure 3.5 and Figure 3.6 below show the SV and GARCH volatility estimates for the S&P 500 

index and for gold: 
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Figure 3.5 GARCH & SV Fits for the S&P 500 Index  

 

 

Figure 3.6 GARCH & SV Fits for Gold 
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As seen in the above volatility plots, the SV estimate does not peak as high as the GARCH 

estimate, which is desirable [Gonzalez et al., 2002]. In fact, from all the relevant criteria 

identified (smoothness, absence of lag, quick response to decreases in volatility, reasonable as 

opposed to over-reaction to volatility spikes, and volatility prediction power) we conclude that the 

SV algorithm proposed here appears to outperform both the GARCH and the Harvey et al. 

models. This result does not come as a surprize because the present model has a stochastic term 

for volatility (which the GARCH model lacks), uses a particle filter (while the model developed 

by Harvey et al. uses a Kalman filter), and has a bias for estimates with better volatility prediction 

power. In conclusion, the proposed SV model is verified and valid. However, such improved 

results come at the cost of much lower computational efficiency than the GARCH model. 

3.3 Dynamic Correlation Estimator 

3.3.1 Verification of Correlation Estimator using Step Function 

Two artificial datasets are generated to verify the dynamic correlation model. The first one is a 

simple step function, which instantly jumps to a different value every 400 seconds. 

Figure 3.7 True Simulated Correlation for Step Function Case 
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The proposed dynamic correlation model is used to estimate the correlation estimation error using 

this known step function profile. The results are shown in Figure 3.8 below for the residuals 

computed with both the GARCH and SV fits.  

Figure 3.8 Correlation Estimates for Step Function Verification Case 

 

 

This SV fit uses only 25 particles, yet yields results very similar to the GARCH fit. The 

simulation is repeated with a larger number of particles, but yields a very similar result. Hence, 

what drives the accuracy of the correlation estimate is not the quality of the residuals (input) 

passed from the volatility filter, but the quality of the correlation filter itself.  

As seen in the above plot, the RiskMetrics Exponential Moving Average (EMA) is much better at 

estimating dynamic correlation when it is significantly different from zero. So this estimator 

could estimate or predict the active risk of a passive or semi-active portfolio against its 

benchmark because: 

1. In such cases, the correlation between the portfolio and the benchmark is high; 

2. Estimates of asset volatility with in-sample predictive power are available; 

3. Asset volatility and cross-asset correlation suffice to compute forward-looking active risk 

(in a Gaussian log-returns world). 

Note how the unconditional correlation estimate (in magenta on the above plot), which is 

computed by taking the standard deviation of the residuals, completely fails to capture the time-

varying nature of this correlation process.  



 

 33 

By computing the difference between the true and estimated correlation, one obtains the 

estimation error. But to gain some confidence in this estimate and ensure that the model does not 

fall victim to over-fitting, one must find out whether the error estimate provides reasonable 

results for a completely different correlation process. This is done below. 

3.3.2 Validation of Correlation Estimator using Mountain Function 

The second artificial correlation process follows a mountain function: 

Figure 3.9 True Simulated Correlation for Mountain Case 

 

This artificial process is simulated and the data is passed to the volatility and correlation 

estimators. The estimated correlation and the 95% confidence interval are show below: 
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Figure 3.10 Dynamic Correlation Estimate, along with True Correlation and Confidence Interval 

 

 

As seen in the above plot, the EMA lags the true signal slightly (17 time steps to be exact). This is 

from the very nature of the EMA. The estimate (in red) is below the true correlation (in black) as 

the correlation rises; and the hangs above the true correlation as it decreases. On the other hand, 

the lag is not big enough to throw the 95% confidence interval outside the true signal too often. 

The only real problem is that the confidence interval is very large near zero correlation. In fact, 

the 95% confidence interval near 0 is +/-0.34. Given this caveat, the dynamic correlation model is 

considered verified. 

As for computational time, the correlation estimate is obtained instantly because no heavy-duty 

filter is used in the correlation estimation process. The residuals are passed to a simple EMA 

filter, which takes no time at all. Hence, to compute the cross-asset correlation of 10 assets, for 

example, one would need to run SV filter 10 times (once for each asset). But once volatility is 

estimated, the 45 possible cross-asset correlations are obtained at negligible computational cost. 

To summarize, this dynamic correlation algorithm is extremely rapid, yields reasonable estimates 

for large correlations (both positive and negative), but does not perform well for low correlations. 

This shortcoming is not due to the quality of the residuals data from the volatility estimation 

process, it is rather a true shortcoming of the correlation EMA. It might be possible to fix this by 

implementing a particle filter or a double-EMA, but this is left as future work. 
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3.4 Cross-Asset Correlations of Selected Securities 

3.4.1 S&P 500 Vs. S&P TSX Stock Indices 

We now turn to the analysis of the dynamic correlation of real-world securities. To begin, Figure 

3.11 shows the correlation between the S&P 500 and S&P TSX indices. As expected, the 

correlation between the two stock indices is quite high (unconditional/static correlation around 

0.8). However, the dynamic correlation has dropped significantly (beyond the 95% confidence 

interval) since the beginning of 2013. This is likely due to the relative overweigh position in 

materials stocks in the TSX and the relative overweigh position in tech stocks in the S&P 500 

index. Also, one notices a sharp rise in correlation in late 2008. This is consistent with the 

financial wisdom that cross-asset correlation increases in times of crisis.  

Figure 3.11 Correlation between the S&P 500 and the S&P TSX Stock Indices 
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3.4.2 S&P 500 Index Vs. US Dollar Index 

Figure 3.12 below shows the correlation between the S&P 500 index and the US dollar index. 

Common financial wisdom dictates that when stock markets suffer heavy losses, investors seek 

refuge in the US dollar. This is certainly reflected in the unconditional correlation of about -0.35 

between the two securities. The correlation was particularly negative and severe (dynamic 

correlation hovering around -0.5) between 2009 and 2013. This may well have been due to the 

Quantitative Easing (QE) campaign pursued by the US Federal Reserve. As the central bank 

pumped capital into bond markets (lowering yields), investors turned to stocks, but lost 

confidence in the strength of the US dollar. As seen on the right-hand side of Figure 3.12, the data 

appears to say that this effect has become muted since early 2013. However, it is likely that the 

eventual tapering of QE would cause a resumption of negative correlation because QE tapering 

would likely cause a stock correction and an increase in the value of the US dollar index. 

Figure 3.12 Correlation between the S&P 500 and the US Dollar Indices 

 



 

 37 

3.5 Risk Appetite Estimator 

Figure 3.13 below shows the original RBC RAI, as well as the replicated RAI. The replication 

strategy is discussed in the theory section.  

Figure 3.13: RBC and Replicated RBC Risk Appetite Indicators 

  

 

From the above plot, the replicated RAI closely resembles the RBC RAI from 2002 to until now. 

It shows the revived risk appetite from its lowest historical level in late 2008 to its highest level 

since the financial crisis. Furthermore, both the RBC and the replicated RAI show that the current 

appetite level is barely in risk seeking territory, meaning that the previous extreme risk aversion 

seems to come to the end. Risk appetite is now near its historically average.  

The replicated RAI is considered validated. 
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4: Conclusions 

4.1 Stochastic Volatility Estimation 

Using the Residual Distribution Matching (RDM) method, the authors estimate the stochastic 

volatility of assets. This process differs from the traditional conditional likelihood maximization 

method. In addition, RDM gives more value to estimates with better in-sample volatility 

prediction power. The proposed model appears to outperform the famous GARCH model. 

Compared to GARCH, RDM: 

1. Is smoother; 

2. Does not lag the measurements; 

3. Quickly responds to sudden decreases in volatility; 

4. Provides superior in-sample volatility prediction capability. 

In addition, the output of the proposed model is compared to that of a well-known stochastic 

model [Harvey et al., 1994]. Results hint that the proposed model provides better in-sample 

volatility prediction than the Harvey et al. model during periods of extreme and quiescent 

volatility.  

However, the RDM method is slower than GARCH because it is based on Monte Carlo 

simulation (particle filter). 

4.2 Dynamic Correlation 

Using the residuals from the stochastic volatility fit, the model uses a simple exponential moving 

average filter to estimate dynamic (time-varying) correlation. Artificial simulation is then used to 

determine estimation error. Results show that this model (first proposed by the RiskMetrics 

group): 

1. Provides good estimates of the dynamic cross-asset correlation when it is high; 

2. Is not ideally suited for low-correlation environments; 

3. Has a lag of 17 time steps.  
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It might be possible to improve this model by implementing a double exponential moving average 

filter or a particle filter. 

4.3 Risk Appetite Indicator  

Although 40% of the inputs of the RBC RAI could not be located, the authors successfully 

replicate the RAI. This indicator will provide SIAS managers with a quick overview of the 

overall level of risk in markets.  

4.4 Future Work  

The following is a compilation of the actions that could be pursued to improve the quality of the 

models: 

1. Speed up model execution by replacing some of the computationally slow .m files by 

much faster .mex files. Computational speed could potentially be improved by as much as 

90%; 

2. Improve the dynamics correlation model, possibly through the use of a particle filter or of 

a double EMA filter; 

3. Replace the SIS particle filter by a Markov Chain Monte Carlo particle filter to improve 

efficiency by reducing the number of required particles while staying away from filter 

degeneracy problems. 

In addition, the SV and dynamic correlations could be used to: 

1. Predict the active risk of passive and semi-active portfolios (see Section 3.3.1); 

2. Price relatively short-maturity options or spread options, especially those with high 

correlation. 

Finally, it would be possible to create an even faster (though somewhat less accurate) SV model 

by: 

1. Doing away with the particle filter, which is the reason why the SV model is so slow in 

the first place; 

2. Using a Nelder-Mead optimizer to optimize the three SV parameters in Section 2.2.1 

using a objective function penalizing: 

a. Inadequate in-sample volatility prediction power; 
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b. Residuals distribution that is not close to the ideal residuals distribution; 

c. High amount of noise in estimated volatility signal. 

This new model would run a little slower than a GARCH estimator, but much faster than the SV 

model used here.  

As for the RAI, it would be desirable to locate some of the missing inputs and include them in the 

replicated version of the RAI. In addition, the authors were forced to eye-ball some of the data 

from plots because numerical data was simply not available for some inputs. It would be desirable 

to obtain actual numerical data for these inputs. 
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