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Abstract

We use probabilistic methods, along with other techniques, to address three topics in number
theory and analysis.

Champernowne’s number is well known to be normal, but the digits are highly pat-
terned. The definition of normality reflects the convergence in frequency of the digits of a
random number, but the behaviour of the discrepancy is better described by the law of the
iterated logarithm. We use this to define “strong normality,” and find that almost all num-
bers are strongly normal, and strongly normal numbers are normal. However, the base-2
Champernowne number is not strongly normal in the base 2. We use a method of Sierpinski
to construct a number strongly normal in every base.

Next, we define normality of an integer sequence modulo an integer ¢; this is a refinement
of the existing notion of uniform distribution modulo ¢. If « is normal in the base r, the
sequence given by the integer part of "« is uniformly distributed modulo every integer ¢ > 1;
however, the sequence is normal modulo ¢ if and only if ¢ divides . This particular sequence
does show pseudorandom behaviour modulo every g > r; we define “base-r normality modulo
q” to capture this behaviour.

The third topic concerns flat polynomials. A sequence of polynomials is “flat” if its
values on the unit circle are bounded above and below by absolute constant multiples of
v/n, where n is the degree. Beck showed that there exist flat sequences of polynomials with
coefficients that are [th roots of unity, for every [ greater than some lower bound. Beck gave
a lower bound of 400, but we correct a minor error in his proof and show that this should
have been 851. Beck relied on a constant from Spencer’s work on the discrepancy of linear
forms. We repeat Spencer’s calculation, slightly improving the value of his constant and
giving a new bound of 492. An improvement of Spencer’s method, due to Kai-Uwe Schmidst,
allows us to lower the bound to 345.
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Chapter 1

Introduction

1.1 Probabilistic Methods

Probabilistic methods have been widely useful in combinatorics, analysis and number theory.
The theorems of probability are sometimes the only known avenue to proof; in other cases,
other methods can be used, but the methods of probability may be much easier to apply.

It ought not to be surprising that probability theory finds application in the study of
normal numbers. The notion of normality is itself probabilistic, and Borel used the central
limit theorem in his proof that almost all numbers are normal [10]. Soon after, Sierpinski
gave an “elementary” proof of the same fact making direct use of measure theory [34]. By
“elementary,” we suggest, Sierpinski simply meant “without the tools of probability.” There
is no doubt that Borel’s probabilistic proof is far simpler, although Sierpiniski’s method is
of striking beauty. An even easier proof than Borel’s is available, using the strong law of
large numbers (see, for example, Laha and Rohatgi [23]).

It is perhaps more surprising to find probability theory applied to problems in analysis.
An example relevant to our work is Kahane’s proof [20] of the existence of “ultra-flat”
sequences of polynomials with unimodular coefficients. Queffelec and Saffari [37] refined
his work, also using the probabilistic approach; and we do not know of any other way to
approach this problem.

We have used probabilistic tools, along with other techniques, to tackle three questions
in number theory and analysis. The first two topics extend the notion of normality of
numbers, but in different directions. The last one deals with the asymptotic behaviour of a
certain class of trigonometric polynomials.

Since two of our topics concern normal numbers, in Chapter 2 we summarize the essential
definitions and most relevant (to this work) results in the study of normality. We also present
graphic evidence of the remarkable patterning in the digits of Champernowne’s number.
This motivates the work presented in Chapter 3. Here we find that the law of the iterated
logarithm gives us a sharp criterion for the discrepancy of a random number. We use this
to define “strong normality,” and find that almost all numbers are strongly normal, but
the base 2 Champernowne number is not strongly normal in the base 2. Strong normality



is a strictly more stringent condition than normality, since strongly normal numbers are
normal. While a rational number may be simply normal, no rational can be simply strongly
normal. We use Sierpiniski’s method to construct a number strongly normal in every base;
unlike Sierpinski, we make use of a lemma in probability to carry out the construction. This
construction would be exceedingly difficult, if not impossible, without probabilistic methods.

Next, we define normality of an integer sequence modulo an integer ¢. If « is normal
in the base 7, the integer sequence [r"«a] is normal modulo r. We show that this sequence
is simply normal, that is, uniformly distributed, modulo every integer g > 1; however, the
sequence is normal modulo ¢ if and only if ¢ divides r. We propose a notion of “base-
r normality modulo ¢” in order to capture the pseudorandom behaviour of the sequence
|| modulo ¢, when ¢ is greater than r. The central limit theorem for Markov chains
plays a key role in our argument.

The last chapter addresses a result of Beck [7]: there exist sequences of flat polynomials
with coeflicients that are Ith roots of unity, for every integer greater than some ly. Beck gave
the value [y = 400, but we correct a minor error in his proof and show that this should have
been lp = 851. However, Beck relied on a constant K ~ 9 from Spencer’s work [35] on the
discrepancy of linear forms. Spencer gave a better value, K ~ 5.32, and we slightly improve
this to K =~ 5.199. Using this value of K, we are able to give a new bound of [y = 492. The
Lindeberg central limit theorem is essential here, along with other more elementary tools
of probability. In revisiting Spencer’s method, we address various questions of convergence
which were not explicitly addressed in the original work. Finally, we present a refinement of
Spencer’s technique, due to K.-U. Schmidt, giving a new best value of K ~ 3.65. Since we
state Beck’s theorem explicitly in terms of K, Schmidt’s work immediately gives Iy = 345.

1.2 Some Theorems of Probability

It seems worthwhile to gather together, for reference, the main tools of probability used in
this work.
Given a probability measure P on a suitable set €2, the probability of A C € is

P[A] = /AdP.

The expected value of a random variable X : 2 — R is
E[X] = / XdP.
Q

If u = E[X], then the variance of X is E[(X — u)?].
In Chapter 5, we will make repeated use of the Markov inequality (see, for example, [9],
p. 65). Given a random variable X, and o, A > 0,

E[| XY
ot

PllX[>a] <



We will ordinarily have A = 1.

The law of the iterated logarithm (see, for example, [9], Theorem 9.5) provides the key
idea in Chapter 3.

Theorem 1.2.1. Suppose Xi,...,X, are independent and identically distributed random
variables with mean 0 and variance 1. If

o
j=1

then

P limsupL =1|=1.
n—oo V2nloglogn

Replacing X; with —X; for each i gives

S,
P |liminf ———2 — — 1| =1
[lnnilcg v2nloglogn }

as an immediate corollary.

The central limit theorem comes in many guises, and we will need it in two forms. The
Lindeberg central limit theorem is the version we need for Chapter 5; it is, for example,
Theorem 27.2 in Billingsley [9].

Theorem 1.2.2. Suppose that for each n, the random variables Xy1, ..., Xny, are indepen-
dent, and that
E[X,k] =0

for each nk; write
2 2 2 ~ 5
oqr = E[X7] and sy, = g lopet

Suppose, further, that, for every € > 0, the Lindeberg condition holds:
lim / X2, dP = 0.
n—oee Z Xnk>€sn nk

S,
Then the distribution of — converges weakly to the normal distribution:
Sn

Iim P [Sn < J,‘:| = 1/ e /24t
n—oo Sn V2T J o

for every x.



A collection of random variables of this form is known as a triangular array. Note that
the X, are not necessarily identically distributed. Since variance is additive for independent
random variables, s2 is the variance of S,,.

The weak convergence of the conclusion is uniform on R (although, in general, weak
convergence is not necessarily uniform).

In Chapter 4, we need Doeblin’s central limit theorem for Markov chains (see, for ex-
ample, [15], p. 99). We give the theorem here in simplified form; the theorem applies to
a more general class of Markov chains and holds for the partial sums of values of any real
functional on the state space.

Consider a finite state space {ci,...,¢;}, and an irreducible Markov chain {z,}, n =
1,2,...; suppose the transition probabilities are independent of n (the transition probability
pij is the probability that x,41 = ¢; if x, = ¢;, for any n). Fix some i € {1,...,¢}, and
define the random variable v, by

ynzl if In = G,
yn = 0 otherwise.

In other words, ¥, is the indicator functional for the ith state.

Let m; be the stable frequency of the ¢th state. For the Markov chains we will be
considering, this is non-zero, and indeed for our case m; = 1/q.

In the more general case, we need to consider a random variable defined to be the sum
of the values of a functional from n = 7, to n = 7,41 — 1, where 7, is the vth value of n
for which x,, = ¢; (the vth entrance time for the ith state). In our simplified case, however,
this is always 1, and we can ignore it in the statement of the theorem.

With this simplification, we can define the random variables

Zn = Yn — T

and
Tl,+171

Zy = Z Zn

n=ry,

where 7, is, again, the vth entrance time for the ith state. Now put
2 2

We are interested in the partial sums of y,. If we let

n
Sp = Z Yk,
k=1

then S;, counts the number of times the ith state ¢; occurs in the first n steps of the Markov
process.



Finally, we define
2

B =mo;.

In the more general version of the theorem, the conditions are that the expected return
time for the ith state be finite, and that 0? be finite. In the case of interest to us, these two
conditions certainly hold.

Here, then, is the central limit theorem for functionals on Markov chains, in simplified
form:

Theorem 1.2.3. With S,,, m; and B as defined above,
Sn — mn :| 1 / z 2
Ilm P|——— <z| = — e V24t
n—00 [ vVBn V2T J o
In the more general version, we should note, the state space can be countably infinite,
but we assume the state space is not decomposable. Moreover, if we are considering a

functional for which
Ty+1—1
3 y] ‘1,

n=Try,

pi = E

then we have to replace the m; with M; = m;u; in the definition of z, and in the conclusion
of the theorem.

In our application of the theorem, it will be convenient that the conclusion is independent
of the starting state of the Markov chain. This follows from the fact that m; and o2, and
their product B, do not depend on the distribution of the initial state x.



Chapter 2

Normal Numbers

This chapter and the next have appeared as [6].

2.1 Normality

We can write a real number « in any integer base > 2 as a sum of powers of the base:

o
— ]
a= E a;r7,

j=—d

with a; € {0,1,...,7 — 1} . The standard “decimal” notation is

Oé:a‘*da‘—(d—l) ...ao_al a2

The sequence of digits {a;} gives the representation of « in the base r, and this repre-
sentation is unique unless « is rational, in which case « may have two representations. (For
example, in the base 10, 0.1 = 0.0999-- - .)

We call a subsequence of consecutive digits a string. The string may be finite or infinite;
we call a finite string of ¢ digits a t-string. An infinite string beginning in a specified position
we call a tail, and we call a finite string beginning in a specified position a block.

A number « is simply normal in the base r if every l-string in its base-r expansion
occurs with an asymptotic frequency approaching 1/r. That is, given the expansion {a;} of
« in the base r, and letting my(n) be the number of times that a; = k for j < n, we have

lim =
n—oo n

for each k € {0,1,...,r — 1}. This is Borel’s original definition [10].

A number is normal in the base r if every t-string in its base-r expansion occurs with
a frequency approaching r—t. Equivalently, a number is normal in the base r if it is simply
normal in the base r! for every positive integer ¢ (see [10,31,40]).



A number is absolutely normal if it is normal in every base. Borel [10] showed that
almost every real number is absolutely normal.

In 1933, Champernowne [14] produced the first concrete construction of a normal num-
ber. Champernowne’s number is

Y0=.123456789101112131415 ---.

The number is written in the base 10, and its digits are obtained by concatenating the
natural numbers written in the base 10. This number is likely the best-known example of a
normal number.
Generally, the base-r Champernowne number is formed by concatenating the integers
1, 2, 3, ... in the base r. For example, the base-2 Champernowne number is written in the
base 2 as
v =.110 11 100 101 --- .

For any r, the base-r Champernowne number is normal in the base r. However, the
question of its normality in any other base (not a power of r) is open. For example, it is
not known whether the base-10 Champernowne number is normal in the base 2.

In 1917, Sierpiriski [34] gave a construction of an absolutely normal number (in fact, one
such number for each ¢ with 0 < & < 1). A computable version of this construction was
given by Becher and Figueira in 2002 [3].

Most fundamental irrational constants, such as v/2, log 2, 7, and e, appear to be normal,
and statistical tests done to date are consistent with the hypothesis that they are normal.
(See, for example, Kanada on 7 [20] and Beyer, Metropolis and Neergard on irrational
square roots [8].) However, there is no proof of the normality of any of these constants.

There is an extensive literature on normality in the sense of Borel. Introductions to the
literature may be found in [7] and [12].

2.2 Walks on the Digits of Numbers and on Chromosomes

In this section we graphically compare two walks on the digits of numbers with a walk
on the values of the Liouville A function and a walk on the nucleotides of the human X
chromosome.

The walks are generated on a binary sequence of digits (Figures 2.1 and 2.2) by converting
each 0 in the sequence to —1, and then using digit pairs (£1,+1) to walk (£1,+1) in the
plane. The colour or shading in the figures gives a rough indication of the number of steps
taken in the walk. The values of the Liouville A function (Figure 2.3) are already +1.

There are four nucleotides in the X chromosome sequence, and each of the four is assigned
one of the values (£1,+1) to create a walk on the nucleotide sequence (Figure 2.4). The
nucleotide sequence is available on the UCSC Genome Browser [39).

A random walk on a million digits is expected to stay within roughly a thousand units of
the origin, and this will be seen to hold for the walks on the digits of m and on the Liouville
A function values. On the other hand, the walks on the digits of Champernowne’s number
and on the X chromosome travel much farther than would be expected of a random walk.



77777

Figure 2.1: A walk on 10° binary digits of 7

The walk on the Liouville A function moves away from the origin like \/n, but it does
not seem to move randomly near the origin. In fact, the positive values of A first outweigh
the negative values when n = 906180359 [24], which is not at all typical of a random walk.
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Figure 2.2: A walk on 10° binary digits of the base-2 Champernowne number
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Figure 2.3: A walk on 108 values of the Liouville A function
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Figure 2.4: A walk on the nucleotides of the human X chromosome
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Chapter 3

Strong Normality of Numbers

3.1 Definition of Strong Normality

Mauduit and Sarkozy [27] have shown that the digits of the base-2 Champernowne number
2 fail two tests of randomness. Dodge and Melfi [16] compared values of an autocorre-
lation function for Champernowne’s number and 7, and found that 7 had the expected
pseudorandom properties but that Champernowne’s number did not.

Here we provide another test of pseudorandomness, and show that it must be passed by
almost all numbers. Our test is a simple one, in the spirit of Borel’s test of normality, and
Champernowne’s number will be seen to fail the test.

If the digits of a real number « are chosen at random in the base r, the asymptotic
frequency mg(n)/n of each 1-string approaches 1/r with probability 1. However, the dis-
crepancy my(n) —n/r does not approach any limit, but fluctuates.

Kolmogorov’s law of the iterated logarithm allows us to make a precise statement about
the discrepancy of a random number. We use this to define our criterion.

Definition 3.1.1. For real a,, and my(n) as above, o is simply strongly normal in the base
r if for each k € {0,...,r —1}

n
mg(n) — —
lim sup : r =1
noee i v/2nloglogn
r
and n
my(n) — —
lim inf r =—1.
n—oo \/r — 1
2nloglogn
r

We make two further definitions analogous to the definitions of normality and absolute
normality.

12



Definition 3.1.2. A number is strongly normal in the base r if it is simply strongly normal
in each of the bases 17, j =1,2,3,....

Definition 3.1.3. A number is absolutely strongly normal if it is strongly normal in every
base.

This definition of strong normality is sharper than the one given previously in [5].

3.2 Almost All Numbers are Strongly Normal

Theorem 3.2.1. Almost all numbers are simply strongly normal in any base r.

Without loss of generality, we consider numbers in the interval [0, 1] and fix the integer
base r > 2. We take Lebesgue measure to be our probability measure. For any k, 0 < k <
r — 1, the ith digit of a randomly chosen number is k with probability r—'. For i # j, the
ith and jth digits are both k with probability 2, so the digits are pairwise independent.

We define the sequence of random variables X; by

Xj:\/’l“—l

1
if the jth digit is k, with probability —, and
r

-1
otherwise, with probability L.
r
Then the X; form a sequence of independent identically distributed random variables
with mean 0 and variance 1. Put .
Sn=>_X;.
j=1

By the law of the iterated logarithm (Theorem 1.2.1), with probability 1,

n

li _ =1
lrILILSolip v2nloglogn
and g
lim inf n 1.

n—oo /2nloglogn -
Now we note that, if my(n) is the number of occurrences of the digit k in the first n
digits of our random number, then

_ n — my(n)
Sp=mg(n)vr—1-— BV

Substituting this expression for S, in the limits immediately above shows that the random
number satisfies Definition 3.1.1 with probability 1. O
This is easily extended.

13



Corollary 3.2.1. Almost all numbers are strongly normal in any base r.

By the theorem, the set of numbers in [0, 1] which fail to be simply strongly normal in
the base 77 is of measure zero, for each j. The countable union of these sets of measure zero
is also of measure zero. Therefore the set of numbers simply strongly normal in every base
rJ is of measure 1. O

The following corollary is proved in the same way as the last.

Corollary 3.2.2. Almost all numbers are absolutely strongly normal.

The results for [0,1] are extended to R in the same way.

3.3 Champernowne’s Number is Not Strongly Normal
We begin by examining the digits of Champernowne’s number in the base 2,
v2 =.110 11 100 101 --- .

Each integer ¢, for 277! < ¢ < 2" — 1, has an n-digit base-2 representation, and so
contributes an n-block to the expansion of 9. In each of these n-blocks, the first digit is 1.
If we consider the remaining n—1 digits in each of these n-blocks, we see that every possible
(n—1)-string occurs exactly once. The n-digit integers, concatenated, together contribute a
block of length n2"~!, and in this block, if we set aside the ones corresponding to the initial
digit of each integer, the zeros and ones are equal in number. In the whole block there are
(n —1)2"72 gzeros and (n — 1)2"~2 + 27! ones. The excess of ones over zeros in the entire
(n2"‘1)—block is just equal to the number of integers, 2"~!, contributing to the block.

As we concatenate the integers from 1 to 2% — 1, we write the first

k
N-1=) n2""'=(k-1)2"+1
n=1

digits of vo9. The excess of ones in the digits is
2k — 1.

The locally greatest excess of ones occurs at the first digit contributed by the integer 2%,
since each power of 2 is written as a 1 followed by zeros. At this point the number of digits
is N = (k —1)2F + 2 and the excess of ones is 2¥. That is, the actual number of ones in the
first N digits is

mi(N) = (k—2)2F 1 41 4 2k,

This gives

14



Thus, we have
ml(N) — % ok—1
N1/2+€ - ((]{3— 1)2]{:)1/24-8'

For any sufficiently small positive g, the right-hand expression is unbounded as k — oco. We

have
mi(N) = § mi(N) = §
lim sup 5 2_ > limsup 2 =

Nooo 3V2NloglogN = Noow  NU/2He B
We thus have:

Theorem 3.3.1. The base-2 Champernowne number is not strongly normal in the base 2.

One can show that Champernowne’s number also fails the lower limit criterion. In fact,
N
my(N) — 5 > 0 for every N.

To see this, we suppose it true for N < N = (k—1)2¥ 4-1, and proceed by induction on
k. We can arrange the digits of the integers 2¥,2F +1,...,2F + 281 _1ina 281 by k +1
matrix, where the i-th row is given by the digits of the integer 2¥ + i — 1. Each row begins
with (1,0,...), and if we delete the first two columns we now have a matrix with the i-th row
given by the digits of the integer i — 1, possibly preceded by some zeros. If we ignore the first
row and the initial zeros in each subsequent row, we get the first N;_; digits of 9, and by
our induction hypothesis m1(N) > mo(N) for N < Nj_;. Therefore, if we now include all
the zeros as we read the matrix in the natural order, any excess of zeros must come from the
initial zeros, and there are 28~ —1 of these. As we showed above, m1(Ny)—mq(Ny) = 2F -1,
so m1(N) > mo(N) + 251 for every N with Ny < N < Ny + (k + 1)2F1.

A similar argument on the integers from 2F + 2¥=1 to 2¥+1 — 1 where each row of
the matrix now begins with (1,1,...), gives the result that m;(N) > mo(N) for every
N < Ngi1. O

The theorem can be generalized to every Champernowne number, since there is a short-
age of zeros in the base-r representation of the base-r Champernowne number. Each base-r
Champernowne number fails to be strongly normal in the base r.

3.4 Strongly Normal Numbers are Normal

Our definition of strong normality is strictly more stringent than Borel’s definition of nor-
mality:

Theorem 3.4.1. If a number « is simply strongly normal in the base r, then « is simply
normal in the base .

We give two proofs. The first is as in the published version [6] of this result. We have
since found a much shorter proof, which we give here as a second proof.

For the first proof, we will show that if a number is not simply normal, then it cannot
be simply strongly normal.
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Let my(n) be the number of occurrences of the 1-string k in the first n digits of the
expansion of « in the base r, and suppose that « is not simply normal in the base r. This

implies that for some k
lim )
n—oo n
Then there is some ) > 1 and infinitely many n; such that either
rmi(ni) > Qn;

or .
rmy(n;) < —.

Q

If infinitely many n; satisfy the former condition, then for these n;,
me(n;) — — > Q— — — =n;P
r r r

where P is a positive constant.

Then for any R > 0,
mg(n) —2 P
lim sup RM > limsup R —

n—oo  V2nloglogn n—oo  V/2nloglogn

S0 « is not simply strongly normal.

On the other hand, if infinitely many n; satisfy the latter condition, then for these n;,
— —mg(n;) > — — == =n;P,
r r

Qr

and once again the constant P is positive. Now
¥ —mk(n)

mg(n) — 2
lim inf k) — 5 = —limsup —=

n—oo +/2nloglogn n—oo V2nloglogn

and so, in this case also, « fails to be simply strongly normal.

For the second, much shorter, proof, we suppose that « is simply strongly normal.
Definition 3.1.1 implies that, for each k& € {0,...,r — 1},

mg(n) 1

lim sup

n—oo /r—1 [2loglogn
r n

Since the denominator approaches 0 as n — oo, the upper limit of the numerator must be
0 as well. This, combined with a similar argument on the lower limit, gives

lim <m’“(”) - 1) —0,

n—oo n r

which is exactly the definition of simple normality in the base r. O

The general result is an immediate corollary.

Corollary 3.4.1. If « is strongly normal in the base r, then « is normal in the base r.

16



3.5 No Rational Number is Simply Strongly Normal

In light of Theorem 3.4.1, it will suffice to show that no simply normal rational number can
be simply strongly normal.

If « is rational and simply normal in the base r, then if we restrict ourselves to the first
n digits in the repeating tail of the expansion, the frequency of any 1-string k is exactly n/r
whenever n is a multiple of the length of the repeating string. The excess of occurences of k
can never exceed the constant number of times k occurs in the repeating string. Therefore,
with my(n) defined as in Section 3.1,

n
lim sup (mk(n) - 7> =Q,
n—00 r
with @ a constant due in part to the initial non-repeating block, and in part to the maximum
excess in the tail.
But

y Q
im sup

—— < -9,
n—oo v/2nloglogn

so a does not satisfy Definition 3.1.1.

3.6 Construction of an Absolutely Strongly Normal Number

To determine an absolutely strongly normal number, we modify Sierpinski’s method of
constructing an absolutely normal number [34]. We begin with an easy lemma. In what
follows, the function f(n) depends on both n and «, and the probability is the Lebesgue
measure of the set of a € [0, 1] for which f satisfies the condition(s).

Lemma 3.6.1. Let f(n) be a real-valued function of the first n base r digits of a number
a € [0,1], and suppose

P [lim sup f(n) = 1} =1

n—oo
and
p [liminff(n) - —1] —1.
n—oo
Given positive numbers d1 > do > 03 > -+, and €1 > €9 > €3 > -+, we can find positive

integers M1 < Moy < M3 < --- so that

P su n)—1>9; or inf n)+1|>6| <& .
MiS”<I3wi+l fn) ' ‘MiS”<Mi+1 fn) ‘ ' '
For sufficiently large M,
P |sup f(n) >1+6| < L and

4

n>M

17



. €1
P f —-1-9 — .
[ngle(n) < 1} < 1
Set Mj to be the least such M.

Now, as M — oo,

P

Mi<n<M

sup f(n)<1—51] -0,

and also

P [M11<r711f<Mf(n) > -1 +51] —0.

Thus, for sufficiently large M, these four conditions are satisfied:

P| sup f(n)<1—51] <6—1,
My<n<M 4
P| inf f(n)>-1+d] <2t
Mi<n<M L 4 ’
P

sup f(n) > 1+ &
n>M

£2
< Z ,
and

. €2
P [ngl]fwf(n) <—-1- 52} <5

We set Ms to be the least M > M; satisfying all four conditions. Since

P| sup f(n)>146| <P |sup f(n)>1+06],
M <n<M> _nle
and _ _
. L _ ' o
we have
Pl —1>a o inf +1]> 6| <er.
|M1§171LEM2 fm) Lo ‘M1SH7L1<M2 f(n) ‘ 1 1

We can continue in this way, recursively choosing Ms, My, Ms, ... so that each M; is the
least satisfying the required conditions.

O
Now we fix an integer base r > 2 and a 1-string k € {0, 1,
put

...,7 —1}. For each a € [0, 1],
mk(n)—E

v/ 2nloglogn



Here, as in Definition 3.1.1 of Section 3.1, my(n) is the number of occurrences of k in the
first n base r digits of a, and « is simply strongly normal in the base r if

limsup f(n) =1

n—oo

and
liminf f(n) = —1.

n—oo
By Theorem 3.2.1 | Section 3.2, these conditions hold with probability 1, so f satisfies the
conditions of Lemma 3.6.1.

Now fix 0 <e <1;set 0; = - and ¢; = &,; = These 0; and ¢; also satisfy the
1

€
3 23’
conditions of Lemma 3.6.1.

We will construct a set A. C [0,1], of measure less than 1, in such a way that every
element of Aac is absolutely strongly normal.

Let My < My < M3 < --- be determined as in the proof of Lemma 3.6.1, so that the
conclusion of the lemma holds. We build a set A,; containing those a for which the first

M;41 digits are, in a loose sense, far from simply strongly normal in the base r.

Around each o = .ayaz---apy, , --- such that
sup  f(n)—1| >4 (3.6.1)
M;<n<M; 41
or
inf 1 ; .6.2
MiS:lriMiJrl f(n) + >0 (3 0 )

we construct an open interval containing o:

a a ap; 1 a a amp; 2
(7}+T§+~-+ T S - >

rMita rMiv1’ r2 rMita rMiti

Let A, ; be the union of all the intervals constructed in this way. By our construction,
the union of the closed intervals consisting of the numbers with initial digits .aias ... ap,,,
satisfying one of our two conditions (3.6.1) or (3.6.2) has measure less than ¢;, so, denoting
Lebesgue measure by p,

3
}L(Ar7k7i) < 351' == 2177“3

In this way we construct A, ; for every base r and 1-string k € {0,1,...,r —1}. We let

oo r—1 oo

Aa = U U UAT,k,i ’

r=2k=01=1
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Let E. be the complement of A, in [0,1]. Since pu(A4:) < 1, E; is of positive measure.
We claim that every element of E. is absolutely strongly normal.

For each base r and 1-string k € {0,1,...,r — 1}, we have specified a set of integers
M; < My < Mg < ---, depending on r and k. By our construction, if @ € E., then,
recalling that f depends on «, we have

sup  f(n)—1| < ¢
M;<n<M;41

and

inf 1| < 6
et f(n)+1] <4

for every i. Clearly for this «, since é; — 0,

limsup f(n) =1

and
liminf f(n) = —1 .

This is true for every k, so « is simply strongly normal to the base r, by Definition 3.1.1
(Section 3.1). Thus « is simply strongly normal to every base, and is therefore absolutely
strongly normal by Definitions 3.1.2 and 3.1.3.

To specify an absolutely strongly normal number, we note that E. contains no interval,
since, by Section 3.5, no rational number is simply strongly normal in any base. Since E.
is bounded, inf F. is well-defined; and inf E. € E. since otherwise inf E. would be interior
to some open interval of A..

For example, inf F; is a well-defined absolutely strongly normal number.

3.7 Further Questions

It should be possible to construct a computable absolutely strongly normal number by the
method of Becher and Figueira [3].

We conjecture that such naturally occurring constants as the irrational numbers 7, e,
V2, and log 2 are absolutely strongly normal.
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On the other hand, we speculate that the binary Liouville A number, created in the
obvious way from the A function values, may be normal but not strongly normal.

Bailey and Crandall [2] proved normality in the base 2 for an uncountable class of
“generalized Stoneham constants” of the form

e}

1
a23(r) = 3 o
=0

where r; is the jth binary digit of a real number r in the unit interval.. This class of numbers
may be a good place to look for examples of strong normality. However, new techniques
may be required for this.
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Chapter 4

Modular Normality of Integer
Sequences

4.1 Uniform Distribution Modulo ¢ and Modular Normality

For the basic definitions of the normality of numbers, we recall Section 2.1.
Niven ([29], [30]) made the following definition for sequences of integers (see also [22]).

Definition 4.1.1. Let {A;} be a sequence of integers. The sequence is uniformly distributed
modulo q if the asymptotic frequency of each residue class modulo q is 1/q. That is, if p(n)
is the number of times that A; = k (mod q) for j < n, then

pr(n) 1

lim =—.
n—oo 7N q

In this work, we will use the term simply normal modulo ¢ to mean uniformly distributed
modulo ¢. Simple normality modulo every integer ¢ > 1 is known in the literature as uniform
distribution modulo Z.

The following is almost self-evident, but we state it as a theorem since it is worthy of
note and we have not found it explicitly in the literature.

Theorem 4.1.1. The number « is simply normal in the base r if and only if the sequence
{|r7al} is simply normal modulo r.

Here, the notation |a]| denotes the integer part of a for a > 0.
We observe that, if a has the base r representation

00
a;
o = E )
rJ
Jj=1
then

[ra) =a; (modr),
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as long as we assume (without loss of generality) that the sequence {a;} does not have a tail
in which every digit is r—1. We let A; = [r/a, and let my(n) be the number of occurrences
of the digit k in the first n base r digits of a. Then, with pi(n) as defined above, we have

pie(n) = my(n) .

The result then follows from the definitions of simple normality of o and simple normality
of the sequence {A;} modulo r. O

Given a sequence of integers {A;}, we consider subsequences of length t, of the form
(Ajs1,...,Aj44), and call them t-blocks. For each t-block we form an ordered t-tuple of
residue classes modulo ¢, (c1,¢2,...,¢), with ¢; = A;4; (mod ¢), and call this a t-string of
residues.

Definition 4.1.2. A sequence {A;} of integers is normal modulo g if every t-string of
residues modulo q has frequency approaching q~t in the limit. Formally, let T denote a t-
string of residues, and let v-(n) be the number of occurrences of T in the first n t-blocks
(Ay,..., A, ..., (A(n—l)t—l-h cel Ant). Then Aj is normal modulo q if, for every integer
t > 1 and every t-string T, we have

vr(n) 1

lim = —
n—oo n qt

For simplicity, the definition is based on the frequency of each t-string in the first n
disjoint t-blocks. We could just as easily have taken the first n overlapping t-blocks. The
proof that these definitions are equivalent is identical to the proof that the analogous def-
initions are equivalent for normal numbers, as in [31]. The definition we use is analogous
to the definition of normality given by Pillai [33]. In our context, asymptotically uniform
frequency of the t-strings of residue classes is not equivalent to simple normality modulo
¢*. The non-equivalence is an evident consequence of our main theorem in this chapter,
Theorem 4.3.1, which demonstrates that no sequence {|r/a]} can be normal modulo 7* for
any t > 1. (In fact, an examination of the proof reveals that this is true for every «, whether
or not « is normal in the base 7.)

On the other hand, in the context of normality of numbers, asymptotically uniform
frequency of t-strings of digits in consecutive disjoint blocks in the base 7 is indeed equivalent
to simple normality in the base !, since there is a one-to-one correspondence between digits
in the base 7' and t-strings of digits in the base r.

Here we are considering the integer parts of the sequence {r"«}, where « is normal in the
base r. We note that the fractional parts of this sequence have been well studied; they form
a sequence of real numbers that is uniformly distributed modulo 1, and the Weyl criterion
can be applied to establish the uniform distribution.

While we are specifically studying the sequence {|r"«]}, the concepts can of course be
applied to any sequence of integers. For example, the sequence of the primes is not simply
normal modulo any integer ¢ > 1. On the other hand, the sequence given by A; = j is
simply normal modulo every ¢ > 1 (uniformly distributed modulo Z), but it is not normal
modulo any integer.
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4.2 The Sequence [2"/2]

We illustrate the notion of modular normality by examining a simple example.
The integer part of 24/2 is 2. This is 0 (mod 2), and so 0 is the first binary digit (after
the “decimal” point) of V2. We have

1222 =5=1 (mod 2),

so the second binary digit of v/2 is 1.
Continuing in this manner, we obtain the sequence

{4,} =1{2,5,11,22,45,90, 181, ...}
giving the sequence of residue classes
{a,} ={0,1,1,0,1,0,1,...}

modulo 2. The sequence of residue classes, of course, exactly matches the sequence of binary
digits of v/2.

Note that A,,41 is equal to either 2A4,, or 2A4,, + 1. This allows us to compute the residue
classes of the sequence modulo any integer ¢, simply from the initial residue class of A;
modulo ¢ and the sequence {a,} of residue classes modulo 2. (In fact, we can use the
residue class of A,, for any specified n as our initial condition.)

We have A; = 2 = 2 (mod 3). Since ag = 1, we know that Ay = 24; + 1 and so
Ay =2-2+1 = 2 (mod 3). We can generate the sequence of residue classes modulo 3
referring only to the {a,}, without any need to refer directly to the {A,}. In this way we
obtain the sequence of residues

{en} =12,2,2,1,0,0,1,...}

modulo 3.
If ap41 =0, then A, 11 = 2A,,, 50 ¢r1 = 2¢, (mod 3), and we can specify the transitions
by the following table:

cp, |0 1 2
(A
Cn+1 0 2 1
On the other hand, if a,+1 = 1, we have 4,11 = 24, + 1, and ¢, 11 = 2¢, + 1 (mod 3),

giving us these transitions:

c, |0 1 2
I A
cnt1 |1 0 2

Thus, ¢,41 depends jointly on a,41 and c,.
Now /2 is widely believed to be normal in the base 2, and indeed in every base. If this
is the case, then the sequence {A,,} is normal modulo 2, and Theorem 4.3.1 establishes that
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the sequence is also simply normal modulo 3. However, it is clear that the sequence cannot
be normal modulo 3, since a transition from 0 to 2 is impossible. Therefore the 2-string
7 = (0,2) cannot occur in the sequence {c,}, and the strings (1,1) and (2,0) must likewise
be missing.

Working now modulo 4, we have 41 = 2 = 2 (mod 4) and A3 =5 =1 (mod 4). We
obtain the sequence of residues, modulo 4,

{en} =1{2,1,3,2,1,2,1,...}.
If an41 = 0, we get the following table of transitions:

e, |0 1 2 3

A
€n+10202

When a,4+1 = 1, the table looks like this:

e, |0 1 2 3

I
ens1|1 3 1 3

Once again, although we prove in the next section that the sequence {A,} is simply
normal modulo 4 if v/2 is normal in the base 2, the sequence fails to be normal modulo 4
since the 2-string (0, 3) cannot occur; there are 7 other impossible 2-strings.

We conclude these examples by considering a number 3 generated by choosing each of the
binary digits independently and with equal probability from {0,1}. This model of a “truly
random” number gave rise to the notion of normality. Borel proved that such a number is
normal in the base 2 with probability 1 [10]. We let B,, = |2"(3], generating a sequence
of integers from the base-2 representation of 3. Now we consider {B,,} modulo 3, and as
before we generate the sequence of residue classes. The three residue classes constitute the
states of a Markov chain, and we obtain the matrix of transition probabilities

1 1

2 3 0

1 1

2 0 3
1 1

0 35 3

Here the i, jth entry represents the probability of a transition from the ith to the jth
residue class (for convenience we use the indices {i,5} € {0,1,2}). For example, if B,, =0
(mod 3), then B4 =1 (mod 3) with probability 1/2.

If we consider the sequence of residues of {B,,} modulo 4, we get the following transition
probability matrix:
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We will generalize this Markov chain model in the following section.

4.3 Normality of the Sequence |r"a| Modulo ¢

For the elementary theory of Markov chains, we have relied on [9] and [18].
We assume that the number « is normal in the base r, so that the sequence given by

A, =[]

is normal modulo r.

First, consider integers ¢ > r, and let ¢, be the residue class of A,, (mod ¢). We number
the residue classes in the usual way from 0 to ¢ — 1. The possible transitions from ¢, to
Cn+1 are given by

Cng1 = (mod ¢q) .

These possible transitions from ¢, = h (mod ¢q) give r distinct consecutive residue classes
for any specified value of h. Furthermore, for ¢, = h 4+ 1 (mod ¢q), we have r¢,, = rh +7r
(mod gq), so the r possible transitions from h + 1 are consecutive to the possible transitions
from h.

We obtain the following transition probability matrix by setting the ¢, jth entry equal
to 1/r if the transition from i to j is possible, and equal to 0 otherwise :

This is a ¢ X ¢ matrix with rq non-zero entries. If r divides ¢, then there are ¢/r identical
blocks of r rows each. Otherwise, the consecutive residue classes “wrap around,” so that
some rows both begin and end with non-zero entries. In the previous section, the modulo
4 transition probability matrix is an example of the former case and the modulo 3 matrix
illustrates the latter case.
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Note that the transition probability matrix is not directly obtained from {A,}. Rather,
the 4, jth entry gives the probability of a transition from ¢ to 7 modulo ¢ in the sequence
{|r™3]|}, where the base r digits of 3 are independent random variables, each with uniform
distribution on {0,...,r — 1}.

There are exactly r non-zero entries in each row and each column, so the rows and
columns each sum to 1.

We may interpret the matrix to represent a digraph on g vertices labelled from 0 to ¢ —1.
Each vertex has indegree r and outdegree r. If a transition from ¢ to j is possible in the
sequence of residues ¢, then we draw an arrow from i to j. (Note that to say a transition is
possible is not to say that it actually occurs in a particular sequence; we will have to show
that it must occur in any sequence arising from a normal number «.)

We need to show that there is a directed path joining any pair of vertices; that is, each
residue class is accessible from every other in the sequence. (Once again, this will only prove
that one state can be reached from another, not that it is necessarily reached.)

First, we show that any vertex j can be reached from 0. Certainly 0 can be reached
from O (there is a loop in the digraph at 0), so we only need consider j > 0. Set i to be
the least index of a row with a non-zero entry in the jth column, and note that ¢ is strictly
less than j. Thus there is ¢ < j so that j can be reached from i. Now the same is true
for 4, so we can obtain a strictly decreasing sequence of indices such that there is a path
from the vertex of least index to the jth vertex. This sequence must terminate in the first
row, of index 0, so there is a path from 0 to j. Thus the digraph contains a tree rooted at
0, and is therefore connected. This, together with the fact that each vertex is of indegree
equal to its outdegree, is enough to show that there is an Eulerian circuit of the digraph.
Consequently, any vertex can be reached by a directed path from any other, and the Markov
chain corresponding to this matrix is irreducible.

Furthermore, the loop at 0 implies that the Markov chain is aperiodic. Since the entries of
the transition matrix sum to 1, there is a unique stable distribution of states, in which every
state has probability 1/¢q. The Markov chain converges to this distibution exponentially
fast, regardless of the initial distribution (see [9], Theorem 8.7, p. 109).

If ¢ < r, then the transition probability matrix has no zero entries, and there is a
directed path of length 1 joining every ordered pair of vertices. We have r = gq + h, for
unique integers g > 1 and 0 < h < ¢. The transition matrix is of the form

(g+Dr=t o g+ Drt gt et

Each row has h consecutive entries of the form (g + 1)r~!, and ¢ — h entries of the form

gr~!. Once again, each column and each row sums to 1, and the corresponding Markov

chain is irreducible and aperiodic, and each state has stationary probability 1/q.

Now we state and prove the main result of this chapter.
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Theorem 4.3.1. If a number « is normal in the base r, the integer sequence given by
A, = |r"a]

is simply normal modulo every integer greater than 1.
Furthermore, the sequence is normal modulo the integer ¢ > 1 if and only if ¢ divides r.

The first part, that {A,} is uniformly distributed modulo Z, was proved by Vanden
Eynden [38]. We give a new proof here, since we will use the same method to prove the
second part of this theorem, and to prove Theorem 4.4.1 of the next section.

We specify an integer modulus ¢ > 1, and form the integer sequence {A,} and the
sequence of residues {¢,} modulo ¢, as above. We can take the sequence {a,} to be the
base r digits of «, or the sequence of residues of {A,,} modulo r, as required.

We form the ¢ x ¢ matrix of possible transitions in the sequence {¢,}, and note, as in the
first part of this section, that this matrix corresponds to an irreducible aperiodic Markov
process with no transient states. The states of the process correspond to the ¢ residue
classes, and the process has a stable asymptotic distribution in which all states occur with
probability approaching 1/q.

Considering the Markov chain, we specify an arbitrary starting state k, with 0 < k <
g — 1. Let p;(t) be the number of occurrences of the ith residue class in the first ¢ steps of
the Markov process. Doeblin’s central limit theorem® (Theorem 1.2.3) guarantees that, for
any € > 0,

t
P [ wi(t) — ‘ > 575] —0 (4.3.1)
q
as t — oo.
Since
t = t
P () — 2| >et| <N P |lmt) - -] >
w0 - £ > o] < > |CZCEHEE
we have ) 1 _
P |max M(t)—f >e|l —0
| i t q ]
as t — oo. That is, if ¢ is large enough,
_ " . _
Pmax’ul()—fza <e.
L t q l

The probability measure is uniform on the set of ¢-strings of residue classes modulo 7.

Thus, there are at most er’ strings for which [£4= it(t) -

%‘ > ¢ for some 7. Defining €; to be

the set of t-strings modulo r, the mean value of “ZT(t) — %‘ is
i(t 1 —1
/ M()—‘dP<e—|—q e < 2. (4.3.2)
ol t q

'In fact, a weak law of large numbers in this context would suffice. Here we take the weak law as an easy
consequence of the central limit theorem.
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The first term of the estimate comes from those t-strings for which no frequency p;(t)/t
differs from 1/¢ by more than ¢, of total probability at most 1, and the second comes from
the other t-strings, of total probability less than e, for which p;(¢)/t differs from 1/¢ by at

most (¢ —1)/q.
Returning to the sequence {ay}, we recall that for every string length ¢ and for every

t

ve(n
t-string 7, the frequency of 7 in the first n t-blocks, ﬁ, approaches 7" as n — oco. We
n

can choose n; so large that, if n > ny,

vr(n) 1
n rt

3

rt

for every 7. (Note that n; depends on «.) For convenience, we can assume that n; = mr!

for some integer m.

Now set N = tny, so we are considering the first N integers in the sequence {A,}. Let
i (IN) be the number of occurrences of the ith residue class modulo ¢ if each string 7 occurs
exactly m times, and let p;(7) be the number of times the ith residue class occurs modulo
g when the string 7 occurs modulo r in the first n; blocks of {a, }. We continue to suppose,
for now, that every t-block of the sequence {c¢,, } begins with the same residue class k£ modulo
q, so these numbers are well-defined. We have already established, by (4.3.2), that

fi(N) 1
AP P
‘ &L,
since
L(N) 1] |1 ; 1 ; 1
ai(N) 1] 72#(7)_7 g/ pat) 1o
N q rt - t q o] t q

We let p;(N) be the number of times the ith residue class occurs in the sequence {c,},
still supposing each t-block begins with k, but now with the strings 7 in their actual order
determined by {A,}. We would like to estimate

Note that

Ai(N) =m pi(r),

and that

pi(N) = mepi(r),

where m; = v-(n;) is the number of occurrences of 7 in the first n; t-blocks of the sequence

{an}.

For each T,




by assumption, and so
|ms —m| < me.

This gives

pi(N)  fi(N) 1
‘ N | S g el < (4.33)

since there are r! terms in the sum, and each p;(7) is at most ¢.
We can conclude, then, that the actual frequency of the ith residue class differs from

1/q by

’ui(N)_l‘ . ‘MN) _m<N>‘+‘m<N>

1
- — . 4.3.4
N . N N ’<35 (4.3.4)

N q

We need to correct our assumption that every block of {¢,,} begins with the same residue
class k. In the estimate of (4.3.3), we bounded p;(7) by ¢, and this will not be changed by
any arbitrary choice of initial states in each ¢-block. The estimates of (4.3.2) come from the
application of the central limit theorem in (4.3.1). Since the application of the central limit
theorem does not depend on the initial state (see the discussion following Theorem 1.2.3),
the convergence of (4.3.1) holds regardless of the initial state of each ¢-block, and indeed
the convergence is uniform over the set of starting states. All the estimates of (4.3.4) are
valid regardless of any arbitrary assignment of residue classes at the start of each block.

We can take € small by taking ¢ and n; large, so we can conclude that

‘M(”) _ 1’ =0
n q
as n — oo. Thus, the sequence {A,} is simply normal modulo q.
Since the modulus ¢ was arbitrary, this concludes the proof of the first part of the
theorem: the sequence A, is simply normal modulo every integer ¢ > 1. That is, the
sequence {|r"a|} is equidistributed modulo Z.

Now if ¢ > r, there are (¢—r)q zero entries in the transition probability matrix, and each
one of these corresponds to a transition that cannot occur in the sequence of residues {cy}
modulo ¢. It is evident that, for every ¢ > 2, some t-strings will not occur in the sequence
{cn}, so the sequence {A,} fails to be normal modulo gq.

It remains to consider ¢ < r. If ¢ divides r, then all entries in the matrix of transition
probabilities modulo ¢ have the same value 1/¢g. Consider strings of length s. The transition
from one such string to another is itself a Markov chain, and every such transition has
probability ¢7°. We can make an argument very similar to the first part of the proof: replace
the residue classes modulo ¢ by s-strings o of residue classes; and replace the t-strings of
residue classes in our argument by st-strings (or, equivalently, ¢-strings of s-strings). The
probability space will be 4, again with the uniform probability measure.

To construct the matrix of transition probabilities, we arbitrarily index the s-strings o;,
with i = 1,...,¢°. The i, jth entry is the probability of transition from o; to ;. Again, we
can initally assume that every st-string begins with some fixed s-string x, and then correct
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this assumption without affecting our estimates. In the same way as before, we can show
that the frequency of each s-string in {c,} approaches ¢—°. Since this is true for every s,
the sequence {4,,} is normal modulo g.

Now suppose g does not divide r, so

r=gq+h

with ¢ > 0 and 0 < h < q. Each row of the transition probability matrix modulo g has
q — h entries g/r, and h entries (g + 1)/r. The frequency of any 2-string approaches one of
the two distinct values g/(qr) and (g + 1)/(gr), and neither of these is the ¢~2 required for
normality. In this case, then, {A,} is not normal modulo g. O

4.4 A Condition Modulo ¢ for Normality in the Base r

This work was originally motivated by the simple observation that the sequence {LQ”\/@}
appeared to have random properties in moduli other than 2. This led us to wonder if the
question of normality in one base could be approached via some modulus other than a power
of the base. In this section we give a partial affirmative answer to the question.

We will restrict ourselves to the case ¢ > r. Suppose « € [0,1) , and write

A, = |r"al,
a, = A, (modr), a,€{0,....,7—1}, and
cn = A, (modgq), ¢,€{0,...,q—1}.

We have A, 11 = rA, + ans1. Given any particular value of ¢, the possible values of ¢,11
are all distinct modulo ¢, so for fixed ¢, the value of ¢,11 is determined by a,+1, and the
map apnyi > Cpy1 iS one-to-one. Thus, for fixed ¢y, the map

(an+1, ceey Gn+t—1) = (an, Sy Cn+t—1)

is one-to-one. For fixed a,,, the reverse map

(Cn+17 L 7cn+t—1) — (an+17 LI 7aTL+t—1)

is also one-to-one. There are r‘~! possible t-strings starting with any fixed c¢,; and since

there are g possible values for c,, there are gr'™' possible t-strings. The set of possible
t-strings is a proper subset of {0,...,¢ — 1}!, and we will call this subset ,Q;. As before,
the set of possible t-strings in the sequence {a,} is Q = {0,...,r — 1}*.

Now form the matrix of transition probabilities modulo ¢, as before, where the i, jth
entry is the probability that ¢,+1 = j if ¢, = i, where ¢, = |[r"3] (mod q) if the digits of 3
are independent and uniformly distributed in the base r. There are 7 entries of value ~! in
each row, and ¢ — r zero entries. We have uniform probability on €, so if the probability

were uniform on the values c,;11 at the start of each ¢-block, then we would have uniform
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probability on ,.Q; as well. The latter probability is not in general uniform, but it does
approach uniformity as n approaches infinity.

This motivates the following definition. We continue to assume that ¢ > r, so that
|-Q¢| = qr'=!. The set ,Q; is the set of possible t-strings in the sequence {c,} modulo ¢
determined by {|r"3|}, where the base r digits of § are random as before. However, in the
definition, we allow {A,,} to be any integer sequence.

Definition 4.4.1. Let v,(n) be the number of times the s-string o occurs in the first n
s-blocks of {cy}, where ¢, = A,, (mod q) and 0 < ¢,, < ¢ —1. The integer sequence {A,} is
base-r normal modulo ¢, or r-normal modulo ¢, if
Ve (n) 1

lim

n—oo

| =0

n qrs—
for every s-string o € Qs, for every string length s > 1.
We now give a condition modulo ¢ for normality in the base r.

Theorem 4.4.1. Given integers ¢ > r > 1, the number « is normal in the base r if and
only if the sequence {|r"«]} is r-normal modulo q.

To prove the theorem, we repeat the argument of the last section. For the “only if”
direction of proof, we replace the s-strings of residue classes modulo ¢ with s-strings of
residue classes 0 € .Qg, and otherwise proceed as before, making the argument based on
the Markov chain of the s-strings.

For the “if” direction, we interchange the roles of the s-strings modulo r and the s-
strings modulo ¢q. Note that, to argue in this direction, we apply the central limit theorem
for Markov chains to the process given by random s-strings modulo 7, and we assume, to
begin with, that every t-string of s-strings modulo 7 begins with some arbitrary string x.
In this direction of proof, the underlying probability space is ,Qst, not Q.

The transition probability matrix in this direction of proof is constructed by considering
a randomly generated sequence {~,} modulo g. The first element ~y; is uniformly distributed
on {0,1,...,q — 1}. The distribution of 7,41 is dependent on 7,: given ~, = i, we have

1
P[%m:]]:;

if (i,7) € ,Q2. Now the i, jth entry of the matrix gives the probability of a transition from
the ith to the jth residue class modulo r, and every entry has the value 1. O

The theorem says that, if o is normal in the base r, the sequence {[r"«|} is as close as
it can be to normality modulo every ¢ > r, given the constraints imposed by the transition
probabilities. Conversely, r-normality modulo g of {|r"«|} for any integer ¢ > r implies
that « is normal in the base r.

One could extend the definition of r-normality modulo ¢ to cover the case ¢ < r. How-
ever, since in this case the map from €, to ,Q; is not one-to-one (even if we fix the first
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element of each t-string), we would not expect to be able to prove both directions of the
last theorem.

We are led to wonder whether there is a converse to part of Theorem 4.3.1. If {|r"«]}
is simply normal modulo every integer ¢ > 1, does this guarantee normality of « in the base
r?7 We conjecture not.

Simple normality modulo 2 of {[2"«|} neither implies nor precludes simple normality
modulo some other ¢g. For example, the base 2 expansion of 1/3 is

.010101.. .,
and this is simply normal in the base 2. The sequence {4, } = {[2"/3]} is
0,1,2,5,10,21,...,
and modulo 3 this is the repeating sequence
0,1,2,2,1,0,0,1,2,2,1,0,....

Thus, {A,} is simply normal modulo 3. On the other hand, modulo 5 this is the repeating
sequence
0,1,2,0,0,1,2,0,...,

which is not uniformly distributed modulo 5.
Now consider the sequence {|2"/5]}. It is easily verified that this sequence is simply
normal modulo 2 and 5, but not modulo 3. The sequence modulo 5 is a repeating 20-string.

Finally, we suppose that it is feasible to construct a sequence of integers normal modulo
every integer ¢ > 1; we would call such a sequence “normal modulo Z.” Furthermore, we
conjecture that almost every sequence of integers is normal modulo Z, as long as we define
“almost every” in the suitable asymptotic sense.
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Chapter 5

Flat Sequences of Polynomials with
Cyclotomic Coefficients

5.1 Littlewood’s Problem and Flat Polynomials

The context of this work is the Littlewood problem in L.,: do there exist constants A and
B, and a sequence of polynomials
n
Pn = Z Gnj 2!
§=0

with coefficients 41, such that

Avn+1<|p,(2)| < Bvn+1

for z on the unit circle? Such a sequence of polynomials is called “flat,” and we loosely call
an element of such a sequence a “flat polynomial.” If the constants A and B can be replaced
by 1 — e, and 1+ €,, where €, — 0 as n — oo, then the sequence is called “ultra-flat.”

This problem was discussed by Littlewood [26], and related results have been reviewed
by Borwein [13] and Erdélyi [17]. We note that the problem is still open.

Of interest to us here is the line followed by Kahane [19], who proved that, if the
coefficients are complex with |ay;| = 1, then ultra-flat polynomials do indeed exist. Since
we will use his result, we state it now:

Theorem 5.1.1 (Kahane). There is a sequence g, of degree n polynomials with unimodular
coefficients, and a sequence £, > 0 with €, — 0, such that

(I —en)vn <lgn(2)| < (1 +en)vn
for|z| = 1.

It should be noted that there was an error in Kahane’s proof. This was pointed out, and
corrected, by Queffelec and Saffari [37]; the theorem itself is correct as originally stated by
Kahane.
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Beck [4] built on this result to show that sequences of flat polynomials exist of which
the coefficients are [th roots of unity, if [ is sufficiently large. His result, the main topic of
this paper, is the following:

Theorem 5.1.2 (Beck). If | is a sufficiently large integer, then there are constants A and
B and a sequence p,, of polynomials

n
pn(2) = Zanjz]
=0

with ap; = 2/ | e {0,...,1 =1} for =0,...,n, such that
Avn+1<|pn(2)| < BVn+1

for |z| = 1 and n sufficiently large.

Beck stated and proved the theorem with [ = 400. There was a minor error in the proof,
however; with the error corrected, [ should be 851. We will give the corrected proof below.
It should be noted that the error only affected the numerical bound; the method of proof
itself, and the qualitative result, are entirely correct.

We will need Spencer’s result on the discrepancy of linear forms [35]:

Theorem 5.1.3 (Spencer). Let
Li(:vl,...,xn):a¢1$1+~-+amxn, 1<1<n

be n linear forms in n variables with real coefficients |a;j| < 1. Then there is an absolute
constant K, and a choice of uj = *1 for j =1,...,n, so that

|Ll(ulvvun)|§K\/ﬁa ].SZSTZ,
if n is sufficiently large.

The value of K in Spencer’s theorem ultimately determines the least value of [ for which
Beck’s theorem holds. Beck used Spencer’s estimate K = 9, but Spencer also gave a lower
estimate of K = 5.32. Here we will obtain a slightly lower estimate, K ~ 5.199, and using
this, we will lower the value of [ to 492. A refinement of Spencer’s method, due to K.-U.
Schmidt (personal communication), improves this significantly, to K = 3.65. This, in turn,
lowers the value of | to 345. We will outline Schmidt’s result in Section 5.6.

5.2 Proof of Beck’s Theorem

In this section we closely follow Beck’s method of proof [4]. However, his proof was driven
by a particular value of the constant K in Spencer’s theorem (Theorem 5.1.3). Here we
make the argument without assuming any particular value for K. In Sections 5.5 and 5.6
we will use the available values of K to draw our numerical conclusions. We believe there is
still room to improve on the value of K; if this is done, the general form of Beck’s theorem
we give here can be applied immediately.

To be precise, the form of the theorem we will prove is as follows:
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Theorem 5.2.1 (Beck). Suppose that K is such that, for sufficiently large n, for every set
of n linear forms in n variables

Li(z1,...,2p) = anx1 + -+ + ainTnp, 1<i<n,

with real coefficients |a;;| < 1 fori,j € {1,...,n}, there exist uj = 1 for j =1,...,n so
that
|Li(ug, ... un)| < Kv/n, 1<i<n.

Then there is an integer ly and constants A and B, such that for any integer I > ly there is
a sequence p, of polynomials

n
pn(z) = Z anjzj7
=0

of which each coefficient is an lth root of unity, with

Avn+1<py(z) < BYyn+1

for |z| =1 and n sufficiently large. Furthermore,

m_L2Rmvem 0}. (5.2.1)

logmin{ZGZ:lZiS,cosl— l

First, let
Li(x) = a;1Z1 + -+ QinZn, 1<t <n,

be a set of n linear forms in n variables with complex coefficients a;;, |a;j| < 1. From these
we form 2n linear forms with real coeflicients in 2n variables:

Mi(z1,. .., 22,) = Re(aj1)wy + - - + Re(ain)rn + 02y + - - + 0wy, 1<i<n,
My yi(21,. .. @) = Im(ag)zt + -+ - + Im(aim)Tn + 02pp1 + -+ - + 022y, 1<i<n.
By our assumption, we can find u; € {£1}, j =1,...,2n, so that
|M;(u1, . .., uz)| < KvV2n, 1<i<2n.
In turn, this means that
|Li(ug, ... un)| < 2K+/n, 1<i<n. (5.2.2)
We make use of this to prove the following lemma:

Lemma 5.2.1 (Beck). Given n+ 1 complex numbers by, by, ..., by, all of modulus at most
d, there exist ug,uy,...,u, € {£1} such that, for any R > K,

Z upbp2®| < 4RdV2mv/n + 1 (5.2.3)
k=0

|21=1

when n is sufficiently large.
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Here, as throughout this paper, K is the constant in Theorem 5.2.1, guaranteed to exist
by Theorem 5.1.3.

We note that this lemma is where a slight error occurred in Beck’s proof. The error was
kindly pointed out to us by Tamas Erdélyi: Beck ([4], p. 274) left out a constant in the
application of Bernstein’s inequality to (5.2.4) below. The constant was required since Beck
parametrized the unit circle by 2™ rather than by e as we have done here. As a result,
he omitted the factor v/27 in (5.2.3).

We have changed some details to correct the error, but apart from these minor details
the proof we give is the same as the original. The substance of Beck’s proof is certainly
correct.

Paterson and Tarokh ([32], Lemma 6) have also given a corrected version of Beck’s proof.
However, they did not point out where the error lay, nor did they examine the effect of the
error on the value of [j.

To prove the lemma, without loss of generality we can let d = 1.
Set v = [27n]. Form v linear forms in v variables, with only the first n coefficients

non-zero:
v—1

Lm(xo,...,xy_l):Z(bkeQ’TikTm>xk, m=0,...,v—1
k=0

with by = 0 for £ > n — 1. By (5.2.2), there are ug,...,u,—1 € {£1} such that, if n is
sufficiently large and R > K,

n—1 v—1
Zukbkzk = Zukbkzk < 2K+\/v < 2RV2mn
k=0 k=0
for every z = 2T =0,...,v—1.
Put
n—1
M = max Zukbkzk .
l21=1 |7 =5
Then
n—1 '
M = Zukbkezﬁk
k=0
for some 3 € [0,27). There is some m(f3) € {0,2m,..., (v —1)27} such that
‘ 5 m<ﬁ>‘ < 1
v v 2n
Now let

n—1
f(@) = Z ukbkeiak.
k=0
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We have

| df, (5.2.4)

s -1 (™) ﬁ/jm 76)

and by Bernstein’s inequality this is no greater than

M
‘ 5 ‘ <mar =Y
2n 2
This gives
M M
M _re - M < ]f (m(mﬂ < 2RVamn.
2 2 v
Replacing n by n 4 1 gives the lemma. O

Now we have what we need to prove the theorem. Let g, be a sequence of “ultra-flat”
polynomials, as given by Theorem 5.1.1:

Z) = Zankzkv |ank‘ = ]-a 0< k < n,
with
(I=n)Vn+1<|gn(z)| < (1 +n)Vn+1, |z] =1, (5.2.5)

where 1, — 0 as n — oo.
Fix an integer [ > 3, and denote by P; the regular polygon of which the vertices are the
Ith roots of unity. The inscribed circle has radius p = p(l) = cos T
Now consider the kth coefficient of g,: a = ani = 2™, where 0 < oy, < 1. (From this
point, for convenience we will drop the n from a,; it is understood that a; and oy depend
on n.) For some integer j = j(n, k) with 0 < j <,
L]
— =<« 4 —.
20 = " F T

For each k € {0,...,n}, let Ag be the triangle with vertices

—.

eQm’%’ ezm'%’ 2milt
The diameter of Ay, is A
diam A, < 777 (5.2.6)
By joining the midpoints of the sides, we obtain four similar triangles Ag(1;s), s =1,...,4.

For convenience we define Ag(1;1) to be the triangle containing the arc of the circle inscribed
in Py, so Ag(1;1) has vertices

jI—1 i d
6271'1 7 —|—e2ml
2 e 2

id ji+1
e27‘rzl +62ﬁz ;

S,
~I.
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Decomposing each of Ag(1;s) into four similar triangles in the same way, we get 16 triangles
Ag(2;s), s=1,...,16. Iterating, we get

4 42 44

Ay = UAk(1§5): UAk:(QQS) == UAk(q;s) =,
s=1 s=1 s=1

and

4
diam Ag(gq;s) = 27 9diam Ay < 2_‘1%.

Now fix ¢ € Z with 2¢ > n 4 1. Then there are indices sa, ..., s, all depending on £,
such that
par € Ap(q; .S’q) C - CAR(2;582) T Ap(1l;1) C Ay

Let wy 4 be any vertex of Ay(g;sq), arbitrarily chosen for each k. By (5.2.6),

n n n
47 4
k k -
— < — < 1279 — < —,
glli}l( Zpakz Zwk‘,qz > Z |pak, — wiql < (n+1) I =
k=0 k=0 k=0
Now set 1 4
d = dy = Sdiam Ap(q = 1s,-1) = 277

If wy, 4 is a vertex of Ap(q—1;54-1), put w;qfl = Wy 4. Otherwise, arbitrarily choose one of
the endpoints of the side of Ag(q — 1; sq_l) containing wy, 4, and label it wz7q_1. Then each
<wk,q - w;; q_1> is a complex number of modulus at most d, and by Lemma 5.2.1 there exist
u = =1, for K =0,...,n, so that

n

Z Uk, (Wk,q — Wz,q—l) 2P| <4RdV2mv/n + 1

k=0

max
|z|=1

for R > K. Now, if wp, was a vertex of Ag(q — 1;54-1), set wp g1 = wj -1 = Whq-
Otherwise, if u = 1, set wi -1 = Wlt,qu and if uy = —1, define wy 41 to be the other
endpoint of the side of Ay (¢ — 1;s4—1) containing wy, 4, so that

Wk,q — Wk,q-1 = — (Wk,q - wZ,q—l) .

Then, in every case,
k * k
(W — Whg-1) 2" =tk (Whg — Wi g 1) 2",

and we have

|z1=1

= M. k 16 Rm\/2m
max | Y wr g2t = D wig17¥| S 4RAVITV+ T =271 T i T
k=0 k=0

Iterate, choosing wg 4—2,...,w, 1, S0 that, by applying Lemma 5.2.1 with



we have

1 V2
max Zw;ﬂz _Zw’” 12F| < ARANV2mvn 1 =27 GRW T

|z]=1

6Rryon

forr=2,...,q—1.

One last iteration will reach wy = wyo. Here wy; is a vertex of Ag(1 : 1), so either
W = W1 = e%i%, or w1 is a midpoint of Ay. In the latter case, wy is one of the roots of
unity

Q2T p2mif  2milE

J+1
) ) .

This time we can take d = d; = % and choose wy according to Lemma 5.2.1 so that

ZWMZ —Zwkz <4Rd\ﬁ\/ﬁ_4R”r\/7

=1
|| o

Summarizing, we have

Z pakz — Zwkz

max
|2|=1

< max

EDICEE SR
|z]=1
+ E max Zwk7rzk—2wk7r_1zk
=1
s k=0
n

+ max Zwmzk — Zwkzk
=1 =0 k=0
q oy oy
r=2
12Rm\/2 ]
< 7['\/ T T+ 0(1).

By (5.2.5),

> pardt| < (p+ &)V +1,

k=0

(p—&)Vn+1<

where p = cos? and &, — 0 as n — oco. This gives

< 7  12Rm\2m
< CcoS _—+

l l

74‘ I fn> vn+1+0(1).
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By setting

(5.2.7)

12R7v/2
-}

lozmin{ZGZ: >3, cos— —

we obtain the theorem. ]

The condition [ > 3 is redundant; we state it to emphasize that Beck’s method of
approximation by the endpoints of triangles requires a largest triangle of which the endpoints
must be roots of unity.

5.3 Proof of Spencer’s Theorem

Spencer [35] calculated several values of K, of which the best was K < 5.32. Without
developing any new technique, we will slightly improve on this result.

Our goal is to prove Theorem 5.1.3. We will closely follow the method of Spencer, and
we will use the following theorem due to Kleitman [21].

Theorem 5.3.1 (Kleitman). Let A C {£1}" and t < r/2 be given, with

t
r
A= <Z> :
=0
Then diam A > 2t.

Here, the diameter is taken with respect to the Hamming metric, which counts the
number of coordinates where two elements of {£1}" differ. The theorem says that some
pair of elements of A differs in at least 2¢ coordinates.

For this and what follows we will make use of two functions. The first, the binary entropy
function, is defined for 0 < ¢ <1 as

H(q) = —qlogyq — (1 —q)logs(1 —q), 0<g<1,

and
H(0)=H(1)=0.

The second is the normal distribution function, defined for z € R by

P(z) = \/12?/ e 24t .

We begin with a combinatorial lemma. The proof is as given by Spencer [35].
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Lemma 5.3.1. Let 1/2 > ay > ay > -+ be given, and put
B={(b1,....,bn) €Z" : |{i: |bi] > s} <asn, s=1,2,...}.
Then |B| < 2", with N
c:Z[H(as)—l—as].
s=1

Note that the sum may fail to converge, in which case the lemma gives no information
about the cardinality of B.

Qg

Put as = |asn]. We can choose {i: |b;] = s} in Z (Z) ways. For each choice of
k=0
{i : |b;| = s}, there are 2% < 2% ways of choosing b; = +s.

We have, then,
BT |23 ()

s=1 k=0

A straightforward estimation, given below, yields

3 (Z) < gnH(as/n), (5.3.1)

k=0

Therefore,
o 0
\B| < H gas+nH(as/n) < H 271(H(as)+as)’
s=1 s=1

and this is the lemma.
To see (5.3.1), let p+ g = 1, with ¢ > p. For o = np,

Then

The following lemma is given in more general form in an appendix of [36].

Lemma 5.3.2. Let L(u) = aju; + - - - + ayu, be a linear form with real coefficients a;, with
la;| < 1 for each i, and let the u; = +1 be independent and uniformly distributed random
variables. Then

P [|L(u)| > \Wr] < 2¢/2, (5.3.2)
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By comparing power series, it is easily seen that coshc < /2 for every real ¢, with
equality only when ¢ = 0. Then

1 1
E ca;u; —  pca; _ c(_ai)
e 7€ T3¢

2
= cosheca; < coshe < e /2,

Since the a;u; are independent, we have
,
E [eCL(“)} = Hcosh ca;
i=1

< 67"02/2

Now using Markov’s inequality, for positive ¢ and «,
P[L(u)|>a] = 2P [eCL(u) > eca]
< 2E [eCL(“)} e < 27 2mcar,
Putting ¢ = a//r, we have
P[|L(u)| > a] < 2°°/(20)=0%/r — 9¢=a®/(2r),
We get (5.3.2) by putting o = A/ O
We prove one more lemma in probability before we turn to Spencer’s main lemma.

Lemma 5.3.3. Let L(u) = ajuy + - - - + a,u, be a linear form with real coefficients a;, with
la;] <1 for each i, and let the u; = +1 be independent and uniformly distributed random
variables. Fix C >0 and € > 0. Then, for 0 < A < C,

P [|L(u)| > AV/r] <2(1+e)®(-A) (5.3.3)
when 1 s sufficiently large.

First, suppose L(u) = ajuj + - -+ + a,u, is as in the lemma, and write a = (ay,...,a,).
Each a;u; is a random variable of mean 0 and variance a?, and L(u) is a random variable
of mean 0 and variance

T
2 _ 2 _ 2
o’ =al3=> ai.
i=1

We consider the case 02 < /. By Markov’s inequality,
P[|L(u)| > \r] = P[L(u)?> \7]

_ E [L(u)?]

- A2r

_ o 1
A2y XV
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Thus, (5.3.3) is satisfied in this case if r is sufficiently large.
Now we turn to the general case. Let L, be a sequence of linear forms

L,(u) = apjug + -+ + appty, r=1,2,...,

with the u; as stated in the lemma, and write a, = (a,1,...,a,). Each a,u; is a random

variable of mean 0 and variance a?;, and L, (u) is a random variable of mean 0 and variance

.
of = a3 =Y a7
i=1

In light of the first case we considered, we can assume without loss of generality that
02 > /r. Then o, — 0o as 7 — 00, and the Lindeberg condition is satisfied. That is, for
every n > 0,

1 T
lim — / a2uldp =0,
T U% ; |ariui|2770'7‘ e
where p is the probability measure on each w;. By the Lindeberg central limit theorem
(Theorem 1.2.2), the distribution function of L,(u)/||ar||2 converges weakly to ®. This
convergence is uniform on R, and therefore uniform on [-C,C]. Since ||arll2 < /7, this
gives that, for 0 < A < C and for any € > 0, there exists R such that

P[|L,| > \/r| <2(1+e)®(-N) (5.3.4)

when r > R. This R is established for the given sequence L., and indeed, for each ¢ there is
some R for which (5.3.4) holds for every sequence L,. If it were otherwise, then one could
construct a sequence L, such that (5.3.4) failed for infinitely many r. O

Now we state and prove Spencer’s main result as a lemma, closely following Spencer’s
argument. This is Spencer’s Lemma 20 ([35], p 704), although the bulk of the proof is given
with his Lemma 4 ([35], p 681). Our statement of the lemma corrects a typographic error
in the original work.!

For the purpose of the lemma, we construct a function ¥ = W¢ . for each choice of large
C > 0 and small € > 0. Let M > 0 be such that ®(—M) = e~C*/4. Define

U(t) =2(1+e)e ¥/?

ift > C, and
T(t) = 2(1 +€)B(—t)

if0<t< M. For M <t <C, set

2 2 oy
U(t) =2(1+¢)exp <—C;+25_M>.

!The inequality in H (% - p) < 1—p isreversed in the original.
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From our construction of ¥, it will be clear that, for L(u) as in Lemmas 5.3.2 and 5.3.3,
and for ¢ > 0,
P [|L(w)| > tv7] < U(2), (5.3.5)

by those lemmas.
We should point out that Spencer uses

P [|L(u)] > ty/7] < 2B(~t) + o(1)

here. Without more information about the error term, we cannot guarantee convergence of
the sum defining (8 in the following lemma. We therefore use our admittedly more awkward
construction, here and in Lemma 5.6.1.

Lemma 5.3.4 (Spencer). Fiz large C > 0, small € > 0, and the function ¥ = V¢ . as
above. Let a rational number o < 1, a real number K > 0, and a real sequence s such that
Y75t < 1, be given. Suppose that

U(K(2s+1))ys+1 < V(K (25 — 1))7s

fors=1,2,...; define

o0

B=a 'S [H (WK (25 — 1)) + (K (25 — 1))
s=1

and suppose that 3 < 1. Choose p, with 0 < p < 1/2, so that

1
H < p> <l1-p.
2
Let L;, i =1,2,...,n, be n linear forms in r variables,
L (x) =anx1 + - + appay, 1<i<n,

with r < an, and real coefficients |a;;| < 1.
Then for n sufficiently large, there exists u = (uq,...,u,), with each u; € {—1,0,1}, so
that
i u; = 0} < 2p(an) (5.3.6)

and
|L; (u)] < K1 < Ky/ay/n, 1<i<n. (5.3.7)

Without loss of generality, we can assume r = an. To see this, write « = w/v in reduced
form, where w and v are positive integers. We can make the argument letting ny — oo,
where n; = kv. For np < n < ngy1, we can add forms and variables with zero coefficients
to obtain |L; (u) | < Ky/a/np < Ky/oy/n +v.

Let u = (uq,...,uy), and let the u; be independent random variables such that each
u; = +1 with equal probability.
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Define T : {£1}" — Z™ by

T(ul,...,ur) = (bl,...,bn),

with
and
b, =s if (2s — 1)K+/r < |L;(u)] < (2s + 1)K/
fors=1,2,....
Now define
B={beZ":|{i:|bi| > s} <nV(K(2s—1))s, s=1,2,...}.
We have

Pb; > s] = P [|L((w)] > K (25 — 1)v/7] < W(K(2s — 1))

for r sufficiently large, by (5.3.5).
The expected number of i such that b; > s is at most nW(K(2s — 1)). By Markov’s
inequality,

P({i: b > s}| = n¥(K(2s — D)) <

L (5.3.8)

We have

PbeB]>1-) 7'
s=1

since the union of the sets in (5.3.8) is the complement of B.
(0.9}
Put k =1- nys_ L. Then [T-1(B)| > k2", since we are using the uniform probability
s=1
measure on {+1}".

Here we apply Lemma 5.3.1, with » = an and
c=af = [H(V(K(2s— 1))+ ¥(K(2s — 1)7],
s=1

to get
|B| < 270 = 96,
Now we look for A C {£1}" on which T is constant, and so that
|A| > k27 /207 > orH1/2-p), (5.3.9)

note that the constant  is absorbed in the latter inequality if r is sufficiently large. By the
pigeonhole principle, there is some b € B so that, if

A=T"1(b),
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then

A |T-1(B)|/|B]
k2" /257

—  or(1=5)

AVARLY,

as desired.

r(1/2—p)
From the proof of Lemma 5.3.1, we have 2"H7(1/2-P) > Z (T) We can apply

k
Kleitman’s theorem (Theorem 5.3.1), using (5.3.9), to get =
diam A > (1 — 2p)r. (5.3.10)
Then there exist vectors u; and us € A with
p(ug,uz) = diam A,
where p is the Hamming metric.
Put u= 12 Thisis not in general an element of {+1}"; we have u = (uy,...,u,),

with u; € {—1,0,1}. Now u; = 0 if and only if uy and ug have the same ith coordinate, so

{i:ui =0} = r—p(us,uz)
= r—diam A
< r—(1—=2p)r="2pr.

This gives (5.3.6). For each i € 1,...,n,

Li(ul) — Li(UQ) ‘

Ll(u) = B)

Since u; and ug belong to A, we have T'(u;) = T(uz), and so L;(uy) and L;(uz) differ by

less than 2K /r. Thus
|Li(u)| < Kyv/r = Ky/av/n,
and this is (5.3.7). O

With the main lemma in hand, we now turn to the proof of Theorem 5.1.3. First, fix
a < 1. We will show that K and {7} can be chosen to satisfy the conditions of Lemma
5.3.4, and indeed that 8 can be made arbitrarily small.

Note that H(q) + ¢ is dominated by H(q) ~ —qlogs g for small q. By considering ratios
of the partial sums of the power series for the two sides, one can see that

42
o—t2/2

2~ o
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as t grows large. (The power series for ® is easily obtained by term-by-term integration of
e~t*/2.) Thus, given any choice of 1, we can make H (U (K)vy;) + ¥(K)v1, the first term in
the sum for 3, arbitrarily small by choosing K large enough. This gives

H(Y(K)y)+ Y (K)y <7

for some suitably small . With M and C as in the definition of ¥, a straightforward
calculation shows that

V(K (25 +1))7s54110gy (WK (25 +1))Ys41) | Vsl —ssk?
W(K(2s —1))7s logy (W (K (25 — 1))7s) Vs

if K(2s+1) < M orif K(2s—1) > C, and otherwise

WK(2s + 1)) Y5110y (WK (25 + 1))vsr1) _ Vsl —cky2
(K (25 —1))7s logy (W (K (25 — 1))7s) Vs
Thus, if vs grows slowly enough, say

. 2
Jstl < min (eK ,eCK/4> ,
s

we can ensure that the sum for [ is less than, say, 2n. If we choose n < «/2, then 5 < 1. Since
H maps [0,1/2] continuously onto [0, 1], the p of Lemma 5.3.4 exists, and the conclusions

apply.

Our strategy now is to apply Lemma 5.3.4 repeatedly. Note that the lemma ensures the
existence of R so that the conclusions of the lemma apply for an =r > R.

On the first iteration, we set @ = a3 = 1. For simplicity, we make an appropriate
choice of {vs} for all iterations, though it is not strictly necessary that {vs} be the same in
every iteration. We choose K = Gj so that § = ;1 < 1. We set p = p; < 1/2. Then, if
r1 = ain =n > R, there exists u = u; € {—1,0,1}" so that

[Li(u)] < Kvay/n = Givn

foreachi e l,...,n, and
{J - uj = 0} < 2pin.
We define mo = [{j : u; = 0}
Now construct new linear forms of reduced length by indexing the j for which u; = 0:
Jis--+5Jmy- The coeflicient a;; of

2
LE J(x) = apxr + -+ A1moTms

is defined to be the coefficient a;j, of L;.
On the next iteration, set & = ag = ma/n < 2piay, and ro = agn. Choose K = Go

so that (s is small enough to give po < p;. Then, if 79 > R, Lemma 5.3.4 gives uy €
{—1,0,1}*" so that

1L (uo)| < K/av/n = Goy/agy/n.
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Proceed in this way, obtaining at the hAth iteration

2 R
Li(un)| + L2 (ug)| 4 -+ L8 )
G1yvarvn + Goy/agy/n + - -+ Gr/apy/n.
Here the vector u™ is obtained from the nonzero coordinates of uq, ..., uy inserted in the

appropriate positions. From the estimates beginning on page 47, if G; is large enough, {7}
is chosen appropriately, and

|Li (w)| <
<

Gi <Gy < oy
then
Br < —op " 20(Gr)y logy(¥(Gr)n)
1 2Gk'yle_Gz/Q

a e —
k log 2v/27

~

if U(Gg) = 2(1 + &)®(—Gy). Otherwise, if U(Gy) = 2(1 + €)€_G%/2,

22 " e—Gr/2
1245
B < oy, log 2
Note that, for small p, H(1/2 — p) ~ 1 — 2p?/log2 (from the power series), so for small 3,
Blog 2

5

~

Since
Qpq1 ~ 2prag,

we can certainly choose {Gy} so that

oo
S=) Gr/or
k=1

converges.
After some iteration, say the hth, we get r,41 < R. Now the vector u* is constructed
first from the nonzero coordinates of uj,...,un, as before, and then the remaining rp41

zero coordinates are replaced arbitrarily with £1. Then we have

|Li (u*)| < Giyoaavn+ -+ Gpy/apy/n+ rpg
< Svn+R.

For n > 0, if n = ry is sufficiently large we get

L ()] < (S +n)v/m.

Then u* is the u of Theorem 5.1.3, and S+ is the absolute constant K of the theorem. [

49



5.4 The Value of K

Spencer ([35]) proved two versions of Theorem 5.1.3. Beck ([4]) used the first result, K ~ 9.
At the end of his paper, Spencer gave a calculation improving this to K = 5.32. Here we
repeat the calculation, slightly improving the value to K = 5.2. Spencer made no attempt
to optimize his calculation. While our calculation is not rigorously optimized, we did a
crude automated search among choices of GG;, and we believe we are close to the best result
available by Spencer’s method as it stands.

The calculation is based on the iteration argument given in the previous section. We set
1 = 1.01, and ~, = 103%~! for s > 1. For convenience, we put

bjk = [H (V(G;(2k — 1)) + ¥ (G;(2k — 1))vk]
and write

o0
~1
Bi=)_ aj b
k=1

at the jth iteration. Setting oy = 1 and G = 4, we get
oy b1 1 = 0.0010475

and
oy by~ 3.74 x 10729,

Clearly, the sum for 3; is dominated here by the first term:
51 ~ 0.0010475.

We can take p; = 0.019054, giving 2p1a; < 0.03811 and G1/a1 = 4.
On the second iteration, we set ag = 0.03811 and G2 = 5. Again (and in every iteration),
(i is dominated by the first term and we get

B2 =~ 0.0035193

and can take ps = 0.011044. This gives 2psap < 0.00084177 and G2,/ < 0.9761.

We set ag = 0.00084177 and G3 = 5.1 and continue, taking a4 = 0.000097814 and
G4 =6, and a5 = 2.91067 x 1075 and G5 = 9.

On the next iteration, ag ~ 7 x 107!2, and we can choose Gg and subsequent values
giving such rapid convergence of Z(;il Gj,/aj that this sum is dominated by the first five
terms. Thus,

K=Y G;a;+¢e <4+ .9761 + .1480 +.0594 4 .01536 < 5.199.
j=1

We can therefore take K = 5.199 in Theorem 5.1.3.
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There is no reason to think that Spencer’s result could not be substantially improved,
giving a significantly lower value of K. On the other hand, Spencer showed that K has
a positive lower bound, and indeed K must be greater than 1 ([35], Theorem 19). If the
coefficients of n linear forms, each in n real coefficients, form a Hadamard matrix with each
entry £1, then any choice of u € {£+1}" gives L;(u) > /n for some i.

5.5 The Value of [,
Using K = 5.199 and (5.2.1), we immediately find
lp = 492.

Thus, there exist flat polynomials of which the coefficients are 492nd roots of unity.

Spencer suggested that one should not expect to do better than K ~ 3 by some refine-
ment of his method. For K = 3, (5.2.1) would give [y = 284.

In principle, if K were sufficiently small, Beck’s method would yield the existence of flat
polynomials with coefficients that were 3rd roots of unity. However, not even a result of the
type K — 0 as n — oo could be used to extend Beck’s method to Littlewood polynomials,
and Beck himself recognised this limitation. Since K is bounded below by 1, the best we
can hope to achieve by this method is lg = 95.

Beck used the value K =~ 9, taken from the first version Spencer gave of his theorem.
With the proof of Beck’s theorem corrected, this gives the value [y = 851. Had Beck used
K =~ 5.32, the best value given by Spencer, he would have found [y = 503.

5.6 Further Improvements

Kai-Uwe Schmidt has calculated a value of K ~ 3.65 (personal communication), using a
refinement of Spencer’s technique. This, on its own, improves the value of Iy to 345.

He has very kindly agreed to allow us to use the following lemma and his outline of the
proof. This lemma is an improvement of Lemma 5.3.4 above. The overall strategy of the
proof is as already given for Lemma 5.3.4, and we will be able to refer to that proof for some
of the details. Other details are from [1], p. 188. The function ¥ is as defined just before
Lemma 5.3.4.

Lemma 5.6.1 (Schmidt). Let ¢t be real, with ¥(t) < 1/e, and define

h=—(1—3(t))logy(1—U(t)) — Z U ((2s —1)t)logy ¥ ((25 — 1)t).

Let
Li(x) = apnx + - + ajppxy, 1=1,...,n,

be a set of n linear forms in r variables, with r < n, and with real coefficients of absolute
value at most 1.
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Then, if r is large enough, and

r
h<-——-— 5.6.1
~ (2log2)n’ ( )
there is some u = (uy,...,u,) € {—1,0,1}" such that
2log2)h
|{k:uk—0}rg<1— (los2)im ")
and
|Li(w)] < tv/r
for each i.

Let u be random, distributed uniformly on {+1}", and set
bz' = L,;(u)
for each ¢ € {1,...,n}. Let ¢; be the closest integer to |b;|/(2t\/r), so

c; = il —i-}
L2ty 2]

The entropy function in this context is defined to be

H(ci) = — ZP [c; = s]logy P [c; = s].
5=0

By 5.3.5,
Ple; =0 =P [|Li(u)| < t/r] > 1 - 0(2),
and
Plo—s — P 252—1 - 2|tb\/|; _ 23;1
< P [Li(u)] = (25 — Dtv/r]
< ((2s—1)t)

for s > 1, if r is large enough. The function z log, = is decreasing for 1/e < x < 1, and from
our assumption that ¥(¢) < 1/e, we have that 1 — U(¢) > 1/e. Therefore,
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Since entropy is subadditive, we have

H(ct, .. yen) < ZH(CZ‘) < nh.

i=1

If a discrete random variable X assumes no value with probability greater than 27, then

H(X) > v. Therefore, some particular value of (ci,...,¢,) must have probability at least
277" This implies that there is some set A C {£1}", on which (ci,...,c,) is constant, and
so that

|A] > 2r—nh, (5.6.2)

The binary entropy function was defined in Section 5.3, for 0 < ¢ < 1, as

H(q) = —qlogyq — (1 —q)loga(1 —q), 0<g<1,

and
H(0)=H(1)=0.

On examining the derivative of the difference between the sides, we see that

1 2
H(=-—¢) <1- 2
(-9 < og 2

for —1/2 < q < 1/2 (with equality only when ¢ = 0).

Putting
1 hnlog 2
0=——14/
2 2r
we get
h
H() <1- 2
r

as long as condition (5.6.1) of the lemma holds. Now, from (5.6.2) and (5.3.1), we have
) L6r] ,
,
Az202S (k)
This implies, by Kleitman’s theorem, that
diam A > 26r.

From here, the argument follows the same lines as the conclusion of the proof of Lemma
5.3.4 (page 47). O

Now it is relatively straightforward to show that h satisfies condition (5.6.1) of the

lemma, as long as t is chosen large enough. We can use the estimates of Section 5.3 to do
this. As in that section, we can show that an iteration, choosing suitable successive values
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of t, converges and gives the K of Spencer’s theorem (Theorem 5.1.3). Finally, we can
compute a value for K.
Schmidt (personal communication) has carried out the iteration, using the successive

values
t=2.9,3.8,4.7,6.

In this way he has shown K ~ 3.65. It is immediate, from (5.2.1) of Theorem 5.2.1, that

lp = 345.

Schmidt has pointed out that the constant 44/27 in Lemma 5.2.1 can be improved in
two ways. First, instead of splitting the complex coeflicients of the linear forms into their
real and imaginary parts, one can look at projections on lines through the origin. Second,
one can seek to use a tighter version of the Bernstein inequality. These techniques may very
well improve the value of Iy even more than the refinement of Spencer’s work.
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Appendix

Open Questions

In the study of the normality of numbers, the main open question is generic: are any of the
familiar irrational constants such as , e, log 2, and v/2 normal in any base? This question
seems to be harder than questions of irrationality and transcendence.

When it comes to strong normality, the subject is very much open for exploration. What
numbers, known to be normal, are also strongly normal? Can a computable construction of
a strongly normal number be given?

The subject of modular normality is also wide open. We wonder whether our theorem on
base-r normality modulo g can be extended to the case ¢ < r, possibly with some additional
condition. Is o necessarily normal in the base r if {|7"«]} is uniformly distributed modulo
Z? There are various classes of sequences known to be uniformly distributed modulo Z (see,
for example, [22]); are any of these normal modulo Z? If “almost all” is suitably defined,
we conjecture that almost all integer sequences are normal modulo Z.

The premier question about flat sequences of polynomials is Littlewood’s problem: do
there exist flat sequences of polynomials with +1 coefficients?

While it is clear that Beck’s approach cannot reach the Littlewood problem, we do
wonder how close this approach can get. Can we improve Spencer’s constant, perhaps by
placing suitable constraints on the systems of linear forms? How far can we improve on
Beck’s method itself?

The method of approximation by triangles has to stop at third roots of unity. We are
led to wonder whether there may be some other approximation technique, different from
Beck’s, that would allow us to connect Kahane’s result to Littlewood’s question.
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