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Abstract

We use probabilistic methods, along with other techniques, to address three topics in number
theory and analysis.

Champernowne’s number is well known to be normal, but the digits are highly pat-
terned. The definition of normality reflects the convergence in frequency of the digits of a
random number, but the behaviour of the discrepancy is better described by the law of the
iterated logarithm. We use this to define “strong normality,” and find that almost all num-
bers are strongly normal, and strongly normal numbers are normal. However, the base-2
Champernowne number is not strongly normal in the base 2. We use a method of Sierpiński
to construct a number strongly normal in every base.

Next, we define normality of an integer sequence modulo an integer q; this is a refinement
of the existing notion of uniform distribution modulo q. If α is normal in the base r, the
sequence given by the integer part of rnα is uniformly distributed modulo every integer q > 1;
however, the sequence is normal modulo q if and only if q divides r. This particular sequence
does show pseudorandom behaviour modulo every q > r; we define “base-r normality modulo
q” to capture this behaviour.

The third topic concerns flat polynomials. A sequence of polynomials is “flat” if its
values on the unit circle are bounded above and below by absolute constant multiples of√
n, where n is the degree. Beck showed that there exist flat sequences of polynomials with

coefficients that are lth roots of unity, for every l greater than some lower bound. Beck gave
a lower bound of 400, but we correct a minor error in his proof and show that this should
have been 851. Beck relied on a constant from Spencer’s work on the discrepancy of linear
forms. We repeat Spencer’s calculation, slightly improving the value of his constant and
giving a new bound of 492. An improvement of Spencer’s method, due to Kai-Uwe Schmidt,
allows us to lower the bound to 345.
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Chapter 1

Introduction

1.1 Probabilistic Methods

Probabilistic methods have been widely useful in combinatorics, analysis and number theory.
The theorems of probability are sometimes the only known avenue to proof; in other cases,
other methods can be used, but the methods of probability may be much easier to apply.

It ought not to be surprising that probability theory finds application in the study of
normal numbers. The notion of normality is itself probabilistic, and Borel used the central
limit theorem in his proof that almost all numbers are normal [10]. Soon after, Sierpiński
gave an “elementary” proof of the same fact making direct use of measure theory [34]. By
“elementary,” we suggest, Sierpiński simply meant “without the tools of probability.” There
is no doubt that Borel’s probabilistic proof is far simpler, although Sierpiński’s method is
of striking beauty. An even easier proof than Borel’s is available, using the strong law of
large numbers (see, for example, Laha and Rohatgi [23]).

It is perhaps more surprising to find probability theory applied to problems in analysis.
An example relevant to our work is Kahane’s proof [20] of the existence of “ultra-flat”
sequences of polynomials with unimodular coefficients. Queffelec and Saffari [37] refined
his work, also using the probabilistic approach; and we do not know of any other way to
approach this problem.

We have used probabilistic tools, along with other techniques, to tackle three questions
in number theory and analysis. The first two topics extend the notion of normality of
numbers, but in different directions. The last one deals with the asymptotic behaviour of a
certain class of trigonometric polynomials.

Since two of our topics concern normal numbers, in Chapter 2 we summarize the essential
definitions and most relevant (to this work) results in the study of normality. We also present
graphic evidence of the remarkable patterning in the digits of Champernowne’s number.
This motivates the work presented in Chapter 3. Here we find that the law of the iterated
logarithm gives us a sharp criterion for the discrepancy of a random number. We use this
to define “strong normality,” and find that almost all numbers are strongly normal, but
the base 2 Champernowne number is not strongly normal in the base 2. Strong normality
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is a strictly more stringent condition than normality, since strongly normal numbers are
normal. While a rational number may be simply normal, no rational can be simply strongly
normal. We use Sierpiński’s method to construct a number strongly normal in every base;
unlike Sierpiński, we make use of a lemma in probability to carry out the construction. This
construction would be exceedingly difficult, if not impossible, without probabilistic methods.

Next, we define normality of an integer sequence modulo an integer q. If α is normal
in the base r, the integer sequence brnαc is normal modulo r. We show that this sequence
is simply normal, that is, uniformly distributed, modulo every integer q > 1; however, the
sequence is normal modulo q if and only if q divides r. We propose a notion of “base-
r normality modulo q” in order to capture the pseudorandom behaviour of the sequence
brnαc modulo q, when q is greater than r. The central limit theorem for Markov chains
plays a key role in our argument.

The last chapter addresses a result of Beck [7]: there exist sequences of flat polynomials
with coefficients that are lth roots of unity, for every integer greater than some l0. Beck gave
the value l0 = 400, but we correct a minor error in his proof and show that this should have
been l0 = 851. However, Beck relied on a constant K ≈ 9 from Spencer’s work [35] on the
discrepancy of linear forms. Spencer gave a better value, K ≈ 5.32, and we slightly improve
this to K ≈ 5.199. Using this value of K, we are able to give a new bound of l0 = 492. The
Lindeberg central limit theorem is essential here, along with other more elementary tools
of probability. In revisiting Spencer’s method, we address various questions of convergence
which were not explicitly addressed in the original work. Finally, we present a refinement of
Spencer’s technique, due to K.-U. Schmidt, giving a new best value of K ≈ 3.65. Since we
state Beck’s theorem explicitly in terms of K, Schmidt’s work immediately gives l0 = 345.

1.2 Some Theorems of Probability

It seems worthwhile to gather together, for reference, the main tools of probability used in
this work.

Given a probability measure P on a suitable set Ω, the probability of A ⊂ Ω is

P[A] =
∫
A

dP.

The expected value of a random variable X : Ω→ R is

E[X] =
∫

Ω
XdP.

If µ = E[X], then the variance of X is E[(X − µ)2].
In Chapter 5, we will make repeated use of the Markov inequality (see, for example, [9],

p. 65). Given a random variable X, and α, λ > 0,

P[|X| ≥ α] ≤ E[|X|λ]
αλ

.
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We will ordinarily have λ = 1.

The law of the iterated logarithm (see, for example, [9], Theorem 9.5) provides the key
idea in Chapter 3.

Theorem 1.2.1. Suppose X1, . . . , Xn are independent and identically distributed random
variables with mean 0 and variance 1. If

Sn =
n∑
j=1

Xj ,

then

P
[
lim sup
n→∞

Sn√
2n log log n

= 1
]

= 1.

Replacing Xi with −Xi for each i gives

P
[
lim inf
n→∞

Sn√
2n log log n

= −1
]

= 1

as an immediate corollary.

The central limit theorem comes in many guises, and we will need it in two forms. The
Lindeberg central limit theorem is the version we need for Chapter 5; it is, for example,
Theorem 27.2 in Billingsley [9].

Theorem 1.2.2. Suppose that for each n, the random variables Xn1, . . . , Xnrn are indepen-
dent, and that

E[Xnk] = 0

for each nk; write

σ2
nk = E[X2

nk] and s2
n =

rn∑
k=1

σ2
nk.

Suppose, further, that, for every ε > 0, the Lindeberg condition holds:

lim
n→∞

rn∑
k=1

1
s2
n

∫
Xnk≥εsn

X2
nkdP = 0.

Then the distribution of
Sn
sn

converges weakly to the normal distribution:

lim
n→∞

P
[
Sn
sn
≤ x

]
=

1√
2π

∫ x

−∞
e−t

2/2dt

for every x.
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A collection of random variables of this form is known as a triangular array. Note that
the Xnk are not necessarily identically distributed. Since variance is additive for independent
random variables, s2

n is the variance of Sn.
The weak convergence of the conclusion is uniform on R (although, in general, weak

convergence is not necessarily uniform).

In Chapter 4, we need Doeblin’s central limit theorem for Markov chains (see, for ex-
ample, [15], p. 99). We give the theorem here in simplified form; the theorem applies to
a more general class of Markov chains and holds for the partial sums of values of any real
functional on the state space.

Consider a finite state space {c1, . . . , cq}, and an irreducible Markov chain {xn}, n =
1, 2, . . .; suppose the transition probabilities are independent of n (the transition probability
pij is the probability that xn+1 = cj if xn = ci, for any n). Fix some i ∈ {1, . . . , q}, and
define the random variable yn by{

yn = 1 if xn = ci,
yn = 0 otherwise.

In other words, yn is the indicator functional for the ith state.
Let πi be the stable frequency of the ith state. For the Markov chains we will be

considering, this is non-zero, and indeed for our case πi = 1/q.
In the more general case, we need to consider a random variable defined to be the sum

of the values of a functional from n = τν to n = τν+1 − 1, where τν is the νth value of n
for which xn = ci (the νth entrance time for the ith state). In our simplified case, however,
this is always 1, and we can ignore it in the statement of the theorem.

With this simplification, we can define the random variables

zn = yn − πi

and

Zν =
τν+1−1∑
n=τν

zn,

where τν is, again, the νth entrance time for the ith state. Now put

σ2
i = E[Z2

ν ].

We are interested in the partial sums of yn. If we let

Sn =
n∑
k=1

yk,

then Sn counts the number of times the ith state ci occurs in the first n steps of the Markov
process.
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Finally, we define
B = πiσ

2
i .

In the more general version of the theorem, the conditions are that the expected return
time for the ith state be finite, and that σ2

i be finite. In the case of interest to us, these two
conditions certainly hold.

Here, then, is the central limit theorem for functionals on Markov chains, in simplified
form:

Theorem 1.2.3. With Sn, πi and B as defined above,

lim
n→∞

P
[
Sn − πin√

Bn
≤ x

]
=

1√
2π

∫ x

−∞
e−t

2/2dt.

In the more general version, we should note, the state space can be countably infinite,
but we assume the state space is not decomposable. Moreover, if we are considering a
functional for which

µi = E

[
τν+1−1∑
n=τν

yn

]
6= 1,

then we have to replace the πi with Mi = πiµi in the definition of zn and in the conclusion
of the theorem.

In our application of the theorem, it will be convenient that the conclusion is independent
of the starting state of the Markov chain. This follows from the fact that πi and σ2

i , and
their product B, do not depend on the distribution of the initial state x1.
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Chapter 2

Normal Numbers

This chapter and the next have appeared as [6].

2.1 Normality

We can write a real number α in any integer base r ≥ 2 as a sum of powers of the base:

α =
∞∑

j=−d
ajr
−j ,

with aj ∈ {0, 1, . . . , r − 1} . The standard “decimal” notation is

α = a−d a−(d−1) · · · a0 . a1 a2 · · · .

The sequence of digits {aj} gives the representation of α in the base r, and this repre-
sentation is unique unless α is rational, in which case α may have two representations. (For
example, in the base 10, 0.1 = 0.0999 · · · .)

We call a subsequence of consecutive digits a string. The string may be finite or infinite;
we call a finite string of t digits a t-string. An infinite string beginning in a specified position
we call a tail, and we call a finite string beginning in a specified position a block.

A number α is simply normal in the base r if every 1-string in its base-r expansion
occurs with an asymptotic frequency approaching 1/r. That is, given the expansion {aj} of
α in the base r, and letting mk(n) be the number of times that aj = k for j ≤ n, we have

lim
n→∞

mk(n)
n

=
1
r

for each k ∈ {0, 1, . . . , r − 1}. This is Borel’s original definition [10].
A number is normal in the base r if every t-string in its base-r expansion occurs with

a frequency approaching r−t. Equivalently, a number is normal in the base r if it is simply
normal in the base rt for every positive integer t (see [10,31,40]).
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A number is absolutely normal if it is normal in every base. Borel [10] showed that
almost every real number is absolutely normal.

In 1933, Champernowne [14] produced the first concrete construction of a normal num-
ber. Champernowne’s number is

γ10 = .1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · · .

The number is written in the base 10, and its digits are obtained by concatenating the
natural numbers written in the base 10. This number is likely the best-known example of a
normal number.

Generally, the base-r Champernowne number is formed by concatenating the integers
1, 2, 3, . . . in the base r. For example, the base-2 Champernowne number is written in the
base 2 as

γ2 = .1 10 11 100 101 · · · .

For any r, the base-r Champernowne number is normal in the base r. However, the
question of its normality in any other base (not a power of r) is open. For example, it is
not known whether the base-10 Champernowne number is normal in the base 2.

In 1917, Sierpiński [34] gave a construction of an absolutely normal number (in fact, one
such number for each ε with 0 < ε ≤ 1). A computable version of this construction was
given by Becher and Figueira in 2002 [3].

Most fundamental irrational constants, such as
√

2, log 2, π, and e, appear to be normal,
and statistical tests done to date are consistent with the hypothesis that they are normal.
(See, for example, Kanada on π [20] and Beyer, Metropolis and Neergard on irrational
square roots [8].) However, there is no proof of the normality of any of these constants.

There is an extensive literature on normality in the sense of Borel. Introductions to the
literature may be found in [7] and [12].

2.2 Walks on the Digits of Numbers and on Chromosomes

In this section we graphically compare two walks on the digits of numbers with a walk
on the values of the Liouville λ function and a walk on the nucleotides of the human X
chromosome.

The walks are generated on a binary sequence of digits (Figures 2.1 and 2.2) by converting
each 0 in the sequence to −1, and then using digit pairs (±1,±1) to walk (±1,±1) in the
plane. The colour or shading in the figures gives a rough indication of the number of steps
taken in the walk. The values of the Liouville λ function (Figure 2.3) are already ±1.

There are four nucleotides in the X chromosome sequence, and each of the four is assigned
one of the values (±1,±1) to create a walk on the nucleotide sequence (Figure 2.4). The
nucleotide sequence is available on the UCSC Genome Browser [39].

A random walk on a million digits is expected to stay within roughly a thousand units of
the origin, and this will be seen to hold for the walks on the digits of π and on the Liouville
λ function values. On the other hand, the walks on the digits of Champernowne’s number
and on the X chromosome travel much farther than would be expected of a random walk.
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Figure 2.1: A walk on 106 binary digits of π

The walk on the Liouville λ function moves away from the origin like
√
n, but it does

not seem to move randomly near the origin. In fact, the positive values of λ first outweigh
the negative values when n = 906180359 [24], which is not at all typical of a random walk.
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Figure 2.2: A walk on 106 binary digits of the base-2 Champernowne number
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Figure 2.3: A walk on 106 values of the Liouville λ function
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Figure 2.4: A walk on the nucleotides of the human X chromosome
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Chapter 3

Strong Normality of Numbers

3.1 Definition of Strong Normality

Mauduit and Sárközy [27] have shown that the digits of the base-2 Champernowne number
γ2 fail two tests of randomness. Dodge and Melfi [16] compared values of an autocorre-
lation function for Champernowne’s number and π, and found that π had the expected
pseudorandom properties but that Champernowne’s number did not.

Here we provide another test of pseudorandomness, and show that it must be passed by
almost all numbers. Our test is a simple one, in the spirit of Borel’s test of normality, and
Champernowne’s number will be seen to fail the test.

If the digits of a real number α are chosen at random in the base r, the asymptotic
frequency mk(n)/n of each 1-string approaches 1/r with probability 1. However, the dis-
crepancy mk(n)− n/r does not approach any limit, but fluctuates.

Kolmogorov’s law of the iterated logarithm allows us to make a precise statement about
the discrepancy of a random number. We use this to define our criterion.

Definition 3.1.1. For real α, and mk(n) as above, α is simply strongly normal in the base
r if for each k ∈ {0, . . . , r − 1}

lim sup
n→∞

mk(n)− n

r√
r − 1
r

√
2n log log n

= 1

and

lim inf
n→∞

mk(n)− n

r√
r − 1
r

√
2n log log n

= −1 .

We make two further definitions analogous to the definitions of normality and absolute
normality.

12



Definition 3.1.2. A number is strongly normal in the base r if it is simply strongly normal
in each of the bases rj, j = 1, 2, 3, . . ..

Definition 3.1.3. A number is absolutely strongly normal if it is strongly normal in every
base.

This definition of strong normality is sharper than the one given previously in [5].

3.2 Almost All Numbers are Strongly Normal

Theorem 3.2.1. Almost all numbers are simply strongly normal in any base r.

Without loss of generality, we consider numbers in the interval [0, 1] and fix the integer
base r ≥ 2. We take Lebesgue measure to be our probability measure. For any k, 0 ≤ k ≤
r − 1, the ith digit of a randomly chosen number is k with probability r−1. For i 6= j, the
ith and jth digits are both k with probability r−2, so the digits are pairwise independent.

We define the sequence of random variables Xj by

Xj =
√
r − 1

if the jth digit is k, with probability
1
r

, and

Xj = − 1√
r − 1

otherwise, with probability
r − 1
r

.
Then the Xj form a sequence of independent identically distributed random variables

with mean 0 and variance 1. Put

Sn =
n∑
j=1

Xj .

By the law of the iterated logarithm (Theorem 1.2.1), with probability 1,

lim sup
n→∞

Sn√
2n log log n

= 1 ,

and
lim inf
n→∞

Sn√
2n log log n

= −1 .

Now we note that, if mk(n) is the number of occurrences of the digit k in the first n
digits of our random number, then

Sn = mk(n)
√
r − 1− n−mk(n)√

r − 1
.

Substituting this expression for Sn in the limits immediately above shows that the random
number satisfies Definition 3.1.1 with probability 1.

This is easily extended.

13



Corollary 3.2.1. Almost all numbers are strongly normal in any base r.

By the theorem, the set of numbers in [0, 1] which fail to be simply strongly normal in
the base rj is of measure zero, for each j. The countable union of these sets of measure zero
is also of measure zero. Therefore the set of numbers simply strongly normal in every base
rj is of measure 1.

The following corollary is proved in the same way as the last.

Corollary 3.2.2. Almost all numbers are absolutely strongly normal.

The results for [0, 1] are extended to R in the same way.

3.3 Champernowne’s Number is Not Strongly Normal

We begin by examining the digits of Champernowne’s number in the base 2,

γ2 = .1 10 11 100 101 · · · .

Each integer q, for 2n−1 ≤ q ≤ 2n − 1, has an n-digit base-2 representation, and so
contributes an n-block to the expansion of γ2. In each of these n-blocks, the first digit is 1.
If we consider the remaining n−1 digits in each of these n-blocks, we see that every possible
(n−1)-string occurs exactly once. The n-digit integers, concatenated, together contribute a
block of length n2n−1, and in this block, if we set aside the ones corresponding to the initial
digit of each integer, the zeros and ones are equal in number. In the whole block there are
(n− 1)2n−2 zeros and (n− 1)2n−2 + 2n−1 ones. The excess of ones over zeros in the entire(
n2n−1

)
-block is just equal to the number of integers, 2n−1, contributing to the block.

As we concatenate the integers from 1 to 2k − 1, we write the first

N − 1 =
k∑

n=1

n2n−1 = (k − 1)2k + 1

digits of γ2. The excess of ones in the digits is

2k − 1.

The locally greatest excess of ones occurs at the first digit contributed by the integer 2k,
since each power of 2 is written as a 1 followed by zeros. At this point the number of digits
is N = (k− 1)2k + 2 and the excess of ones is 2k. That is, the actual number of ones in the
first N digits is

m1(N) = (k − 2)2k−1 + 1 + 2k.

This gives

m1(N)− N

2
= 2k−1 .

14



Thus, we have
m1(N)− N

2

N1/2+ε
≥ 2k−1

((k − 1)2k)1/2+ε
.

For any sufficiently small positive ε, the right-hand expression is unbounded as k →∞. We
have

lim sup
N→∞

m1(N)− N
2

1
2

√
2N log logN

≥ lim sup
N→∞

m1(N)− N
2

N1/2+ε
=∞ .

We thus have:

Theorem 3.3.1. The base-2 Champernowne number is not strongly normal in the base 2.

One can show that Champernowne’s number also fails the lower limit criterion. In fact,

m1(N)− N

2
> 0 for every N .

To see this, we suppose it true for N ≤ Nk = (k−1)2k + 1, and proceed by induction on
k. We can arrange the digits of the integers 2k, 2k + 1, . . . , 2k + 2k−1 − 1 in a 2k−1 by k + 1
matrix, where the i-th row is given by the digits of the integer 2k + i− 1. Each row begins
with (1, 0, . . .), and if we delete the first two columns we now have a matrix with the i-th row
given by the digits of the integer i−1, possibly preceded by some zeros. If we ignore the first
row and the initial zeros in each subsequent row, we get the first Nk−1 digits of γ2, and by
our induction hypothesis m1(N) > m0(N) for N ≤ Nk−1. Therefore, if we now include all
the zeros as we read the matrix in the natural order, any excess of zeros must come from the
initial zeros, and there are 2k−1−1 of these. As we showed above, m1(Nk)−m0(Nk) = 2k−1,
so m1(N) > m0(N) + 2k−1 for every N with Nk ≤ N ≤ Nk + (k + 1)2k−1.

A similar argument on the integers from 2k + 2k−1 to 2k+1 − 1, where each row of
the matrix now begins with (1, 1, . . .), gives the result that m1(N) > m0(N) for every
N ≤ Nk+1.

The theorem can be generalized to every Champernowne number, since there is a short-
age of zeros in the base-r representation of the base-r Champernowne number. Each base-r
Champernowne number fails to be strongly normal in the base r.

3.4 Strongly Normal Numbers are Normal

Our definition of strong normality is strictly more stringent than Borel’s definition of nor-
mality:

Theorem 3.4.1. If a number α is simply strongly normal in the base r, then α is simply
normal in the base r.

We give two proofs. The first is as in the published version [6] of this result. We have
since found a much shorter proof, which we give here as a second proof.

For the first proof, we will show that if a number is not simply normal, then it cannot
be simply strongly normal.
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Let mk(n) be the number of occurrences of the 1-string k in the first n digits of the
expansion of α in the base r, and suppose that α is not simply normal in the base r. This
implies that for some k

lim
n→∞

rmk(n)
n

6= 1.

Then there is some Q > 1 and infinitely many ni such that either

rmk(ni) > Qni

or
rmk(ni) <

ni
Q
.

If infinitely many ni satisfy the former condition, then for these ni,

mk(ni)−
ni
r
> Q

ni
r
− ni

r
= niP

where P is a positive constant.
Then for any R > 0,

lim sup
n→∞

R
mk(n)− n

r√
2n log log n

≥ lim sup
n→∞

R
nP√

2n log logn
=∞,

so α is not simply strongly normal.
On the other hand, if infinitely many ni satisfy the latter condition, then for these ni,

ni
r
−mk(ni) >

ni
r
− ni
Qr

= niP,

and once again the constant P is positive. Now

lim inf
n→∞

mk(n)− n
r√

2n log log n
= − lim sup

n→∞

n
r −mk(n)
√

2n log logn
and so, in this case also, α fails to be simply strongly normal.

For the second, much shorter, proof, we suppose that α is simply strongly normal.
Definition 3.1.1 implies that, for each k ∈ {0, . . . , r − 1},

lim sup
n→∞

mk(n)
n
− 1
r√

r − 1
r

√
2 log log n

n

= 1.

Since the denominator approaches 0 as n → ∞, the upper limit of the numerator must be
0 as well. This, combined with a similar argument on the lower limit, gives

lim
n→∞

(
mk(n)
n
− 1
r

)
= 0,

which is exactly the definition of simple normality in the base r.

The general result is an immediate corollary.

Corollary 3.4.1. If α is strongly normal in the base r, then α is normal in the base r.
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3.5 No Rational Number is Simply Strongly Normal

In light of Theorem 3.4.1, it will suffice to show that no simply normal rational number can
be simply strongly normal.

If α is rational and simply normal in the base r, then if we restrict ourselves to the first
n digits in the repeating tail of the expansion, the frequency of any 1-string k is exactly n/r
whenever n is a multiple of the length of the repeating string. The excess of occurences of k
can never exceed the constant number of times k occurs in the repeating string. Therefore,
with mk(n) defined as in Section 3.1,

lim sup
n→∞

(
mk(n)− n

r

)
= Q,

with Q a constant due in part to the initial non-repeating block, and in part to the maximum
excess in the tail.

But
lim sup
n→∞

Q√
2n log log n

= 0 ,

so α does not satisfy Definition 3.1.1.

3.6 Construction of an Absolutely Strongly Normal Number

To determine an absolutely strongly normal number, we modify Sierpiński’s method of
constructing an absolutely normal number [34]. We begin with an easy lemma. In what
follows, the function f(n) depends on both n and α, and the probability is the Lebesgue
measure of the set of α ∈ [0, 1] for which f satisfies the condition(s).

Lemma 3.6.1. Let f(n) be a real-valued function of the first n base r digits of a number
α ∈ [0, 1], and suppose

P
[
lim sup
n→∞

f(n) = 1
]

= 1

and
P
[
lim inf
n→∞

f(n) = −1
]

= 1 .

Given positive numbers δ1 > δ2 > δ3 > · · · , and ε1 > ε2 > ε3 > · · · , we can find positive
integers M1 < M2 < M3 < · · · so that

P

[∣∣∣∣∣ sup
Mi≤n<Mi+1

f(n)− 1

∣∣∣∣∣ > δi or
∣∣∣∣ inf
Mi≤n<Mi+1

f(n) + 1
∣∣∣∣ > δi

]
< εi .

For sufficiently large M ,

P

[
sup
n≥M

f(n) > 1 + δ1

]
<
ε1

4
and

17



P
[

inf
n≥M

f(n) < −1− δ1

]
<
ε1

4
.

Set M1 to be the least such M .
Now, as M →∞,

P

[
sup

M1≤n<M
f(n) < 1− δ1

]
→ 0 ,

and also

P
[

inf
M1≤n<M

f(n) > −1 + δ1

]
→ 0 .

Thus, for sufficiently large M , these four conditions are satisfied:

P

[
sup

M1≤n<M
f(n) < 1− δ1

]
<
ε1

4
,

P
[

inf
M1≤n<M

f(n) > −1 + δ1

]
<
ε1

4
,

P

[
sup
n≥M

f(n) > 1 + δ2

]
<
ε2

4
,

and

P
[

inf
n≥M

f(n) < −1− δ2

]
<
ε2

4
.

We set M2 to be the least M > M1 satisfying all four conditions. Since

P

[
sup

M1≤n<M2

f(n) > 1 + δ1

]
≤ P

[
sup
n≥M1

f(n) > 1 + δ1

]
,

and

P
[

inf
M1≤n<M2

f(n) < −1− δ1

]
≤ P

[
inf
n≥M1

f(n) < −1− δ1

]
,

we have

P

[∣∣∣∣∣ sup
M1≤n<M2

f(n)− 1

∣∣∣∣∣ > δ1 or
∣∣∣∣ inf
M1≤n<M2

f(n) + 1
∣∣∣∣ > δ1

]
< ε1 .

We can continue in this way, recursively choosing M3,M4,M5, . . . so that each Mi is the
least satisfying the required conditions.

Now we fix an integer base r ≥ 2 and a 1-string k ∈ {0, 1, . . . , r − 1}. For each α ∈ [0, 1],
put

f(n) = f(α, k, n) =
mk(n)− n

r√
r − 1
r

√
2n log log n

.
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Here, as in Definition 3.1.1 of Section 3.1, mk(n) is the number of occurrences of k in the
first n base r digits of α, and α is simply strongly normal in the base r if

lim sup
n→∞

f(n) = 1

and
lim inf
n→∞

f(n) = −1 .

By Theorem 3.2.1 , Section 3.2, these conditions hold with probability 1, so f satisfies the
conditions of Lemma 3.6.1.

Now fix 0 < ε ≤ 1; set δi =
1
i

and εi = εr,i =
ε

3 · 2ir3
. These δi and εi also satisfy the

conditions of Lemma 3.6.1.
We will construct a set Aε ⊂ [0, 1], of measure less than 1, in such a way that every

element of ACε is absolutely strongly normal.
Let M1 < M2 < M3 < · · · be determined as in the proof of Lemma 3.6.1, so that the

conclusion of the lemma holds. We build a set Ar,i containing those α for which the first
Mi+1 digits are, in a loose sense, far from simply strongly normal in the base r.

Around each α = .a1a2 · · · aMi+1 · · · such that∣∣∣∣∣ sup
Mi≤n<Mi+1

f(n)− 1

∣∣∣∣∣ > δi (3.6.1)

or ∣∣∣∣ inf
Mi≤n<Mi+1

f(n) + 1
∣∣∣∣ > δi (3.6.2)

we construct an open interval containing α:(
a1

r
+
a2

r2
+ · · ·+

aMi+1

rMi+1
− 1
rMi+1

,
a1

r
+
a2

r2
+ · · ·+

aMi+1

rMi+1
+

2
rMi+1

)
.

Let Ar,k,i be the union of all the intervals constructed in this way. By our construction,
the union of the closed intervals consisting of the numbers with initial digits .a1a2 . . . aMi+1

satisfying one of our two conditions (3.6.1) or (3.6.2) has measure less than εi, so, denoting
Lebesgue measure by µ,

µ (Ar,k,i) < 3εi =
ε

2ir3
.

In this way we construct Ar,k,i for every base r and 1-string k ∈ {0, 1, . . . , r− 1}. We let

Aε =
∞⋃
r=2

r−1⋃
k=0

∞⋃
i=1

Ar,k,i ,
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so

µ(Aε) ≤
∞∑
r=2

r−1∑
k=0

∞∑
i=1

µ (Ar,k,i)

<

∞∑
r=2

r−1∑
k=0

∞∑
i=1

ε

2ir3

=
(
π2

6
− 1
)
ε .

Let Eε be the complement of Aε in [0, 1]. Since µ(Aε) < 1, Eε is of positive measure.
We claim that every element of Eε is absolutely strongly normal.

For each base r and 1-string k ∈ {0, 1, . . . , r − 1}, we have specified a set of integers
M1 < M2 < M3 < · · · , depending on r and k. By our construction, if α ∈ Eε, then,
recalling that f depends on α, we have∣∣∣∣∣ sup

Mi≤n<Mi+1

f(n)− 1

∣∣∣∣∣ < δi

and ∣∣∣∣ inf
Mi≤n<Mi+1

f(n) + 1
∣∣∣∣ < δi

for every i. Clearly for this α, since δi → 0,

lim sup
n→∞

f(n) = 1

and
lim inf
n→∞

f(n) = −1 .

This is true for every k, so α is simply strongly normal to the base r, by Definition 3.1.1
(Section 3.1). Thus α is simply strongly normal to every base, and is therefore absolutely
strongly normal by Definitions 3.1.2 and 3.1.3.

To specify an absolutely strongly normal number, we note that Eε contains no interval,
since, by Section 3.5, no rational number is simply strongly normal in any base. Since Eε
is bounded, inf Eε is well-defined; and inf Eε ∈ Eε since otherwise inf Eε would be interior
to some open interval of Aε.

For example, inf E1 is a well-defined absolutely strongly normal number.

3.7 Further Questions

It should be possible to construct a computable absolutely strongly normal number by the
method of Becher and Figueira [3].

We conjecture that such naturally occurring constants as the irrational numbers π, e,√
2, and log 2 are absolutely strongly normal.
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On the other hand, we speculate that the binary Liouville λ number, created in the
obvious way from the λ function values, may be normal but not strongly normal.

Bailey and Crandall [2] proved normality in the base 2 for an uncountable class of
“generalized Stoneham constants” of the form

α2,3(r) =
∞∑
j=0

1
3j23j+rj

,

where rj is the jth binary digit of a real number r in the unit interval.. This class of numbers
may be a good place to look for examples of strong normality. However, new techniques
may be required for this.
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Chapter 4

Modular Normality of Integer
Sequences

4.1 Uniform Distribution Modulo q and Modular Normality

For the basic definitions of the normality of numbers, we recall Section 2.1.
Niven ([29], [30]) made the following definition for sequences of integers (see also [22]).

Definition 4.1.1. Let {Aj} be a sequence of integers. The sequence is uniformly distributed
modulo q if the asymptotic frequency of each residue class modulo q is 1/q. That is, if µk(n)
is the number of times that Aj ≡ k (mod q) for j ≤ n, then

lim
n→∞

µk(n)
n

=
1
q
.

In this work, we will use the term simply normal modulo q to mean uniformly distributed
modulo q. Simple normality modulo every integer q > 1 is known in the literature as uniform
distribution modulo Z.

The following is almost self-evident, but we state it as a theorem since it is worthy of
note and we have not found it explicitly in the literature.

Theorem 4.1.1. The number α is simply normal in the base r if and only if the sequence
{brjαc} is simply normal modulo r.

Here, the notation bac denotes the integer part of a for a > 0.
We observe that, if α has the base r representation

α =
∞∑
j=1

aj
rj
,

then
brjαc ≡ aj (mod r) ,
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as long as we assume (without loss of generality) that the sequence {aj} does not have a tail
in which every digit is r−1. We let Aj = brjαc, and let mk(n) be the number of occurrences
of the digit k in the first n base r digits of α. Then, with µk(n) as defined above, we have

µk(n) = mk(n) .

The result then follows from the definitions of simple normality of α and simple normality
of the sequence {Aj} modulo r.

Given a sequence of integers {Aj}, we consider subsequences of length t, of the form
(Aj+1, . . . , Aj+t), and call them t-blocks. For each t-block we form an ordered t-tuple of
residue classes modulo q, (c1, c2, . . . , ct), with ci ≡ Aj+i (mod q), and call this a t-string of
residues.

Definition 4.1.2. A sequence {Aj} of integers is normal modulo q if every t-string of
residues modulo q has frequency approaching q−t in the limit. Formally, let τ denote a t-
string of residues, and let ντ (n) be the number of occurrences of τ in the first n t-blocks
(A1, . . . , At) , . . . ,

(
A(n−1)t+1, . . . , Ant

)
. Then Aj is normal modulo q if, for every integer

t ≥ 1 and every t-string τ , we have

lim
n→∞

ντ (n)
n

=
1
qt
.

For simplicity, the definition is based on the frequency of each t-string in the first n
disjoint t-blocks. We could just as easily have taken the first n overlapping t-blocks. The
proof that these definitions are equivalent is identical to the proof that the analogous def-
initions are equivalent for normal numbers, as in [31]. The definition we use is analogous
to the definition of normality given by Pillai [33]. In our context, asymptotically uniform
frequency of the t-strings of residue classes is not equivalent to simple normality modulo
qt. The non-equivalence is an evident consequence of our main theorem in this chapter,
Theorem 4.3.1, which demonstrates that no sequence

{
brjαc

}
can be normal modulo rt for

any t > 1. (In fact, an examination of the proof reveals that this is true for every α, whether
or not α is normal in the base r.)

On the other hand, in the context of normality of numbers, asymptotically uniform
frequency of t-strings of digits in consecutive disjoint blocks in the base r is indeed equivalent
to simple normality in the base rt, since there is a one-to-one correspondence between digits
in the base rt and t-strings of digits in the base r.

Here we are considering the integer parts of the sequence {rnα}, where α is normal in the
base r. We note that the fractional parts of this sequence have been well studied; they form
a sequence of real numbers that is uniformly distributed modulo 1, and the Weyl criterion
can be applied to establish the uniform distribution.

While we are specifically studying the sequence {brnαc}, the concepts can of course be
applied to any sequence of integers. For example, the sequence of the primes is not simply
normal modulo any integer q > 1. On the other hand, the sequence given by Aj = j is
simply normal modulo every q > 1 (uniformly distributed modulo Z), but it is not normal
modulo any integer.
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4.2 The Sequence b2n
√

2c
We illustrate the notion of modular normality by examining a simple example.

The integer part of 2
√

2 is 2. This is 0 (mod 2), and so 0 is the first binary digit (after
the “decimal” point) of

√
2. We have

b22
√

2c = 5 ≡ 1 (mod 2) ,

so the second binary digit of
√

2 is 1.
Continuing in this manner, we obtain the sequence

{An} = {2, 5, 11, 22, 45, 90, 181, . . .}

giving the sequence of residue classes

{an} = {0, 1, 1, 0, 1, 0, 1, . . .}

modulo 2. The sequence of residue classes, of course, exactly matches the sequence of binary
digits of

√
2.

Note that An+1 is equal to either 2An or 2An+1. This allows us to compute the residue
classes of the sequence modulo any integer q, simply from the initial residue class of A1

modulo q and the sequence {an} of residue classes modulo 2. (In fact, we can use the
residue class of An for any specified n as our initial condition.)

We have A1 = 2 ≡ 2 (mod 3). Since a2 = 1, we know that A2 = 2A1 + 1 and so
A2 ≡ 2 · 2 + 1 ≡ 2 (mod 3). We can generate the sequence of residue classes modulo 3
referring only to the {an}, without any need to refer directly to the {An}. In this way we
obtain the sequence of residues

{cn} = {2, 2, 2, 1, 0, 0, 1, . . .}

modulo 3.
If an+1 = 0, then An+1 = 2An, so cn+1 ≡ 2cn (mod 3), and we can specify the transitions

by the following table:
cn 0 1 2
↓ ↓ ↓ ↓

cn+1 0 2 1
.

On the other hand, if an+1 = 1, we have An+1 = 2An + 1, and cn+1 ≡ 2cn + 1 (mod 3),
giving us these transitions:

cn 0 1 2
↓ ↓ ↓ ↓

cn+1 1 0 2
.

Thus, cn+1 depends jointly on an+1 and cn.
Now

√
2 is widely believed to be normal in the base 2, and indeed in every base. If this

is the case, then the sequence {An} is normal modulo 2, and Theorem 4.3.1 establishes that
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the sequence is also simply normal modulo 3. However, it is clear that the sequence cannot
be normal modulo 3, since a transition from 0 to 2 is impossible. Therefore the 2-string
τ = (0, 2) cannot occur in the sequence {cn}, and the strings (1, 1) and (2, 0) must likewise
be missing.

Working now modulo 4, we have A1 = 2 ≡ 2 (mod 4) and A2 = 5 ≡ 1 (mod 4). We
obtain the sequence of residues, modulo 4,

{en} = {2, 1, 3, 2, 1, 2, 1, . . .}.

If an+1 = 0, we get the following table of transitions:

en 0 1 2 3
↓ ↓ ↓ ↓ ↓

en+1 0 2 0 2
.

When an+1 = 1, the table looks like this:

en 0 1 2 3
↓ ↓ ↓ ↓ ↓

en+1 1 3 1 3
.

Once again, although we prove in the next section that the sequence {An} is simply
normal modulo 4 if

√
2 is normal in the base 2, the sequence fails to be normal modulo 4

since the 2-string (0, 3) cannot occur; there are 7 other impossible 2-strings.
We conclude these examples by considering a number β generated by choosing each of the

binary digits independently and with equal probability from {0, 1}. This model of a “truly
random” number gave rise to the notion of normality. Borel proved that such a number is
normal in the base 2 with probability 1 [10]. We let Bn = b2nβc, generating a sequence
of integers from the base-2 representation of β. Now we consider {Bn} modulo 3, and as
before we generate the sequence of residue classes. The three residue classes constitute the
states of a Markov chain, and we obtain the matrix of transition probabilities

1
2

1
2 0

1
2 0 1

2

0 1
2

1
2

 .

Here the i, jth entry represents the probability of a transition from the ith to the jth
residue class (for convenience we use the indices {i, j} ∈ {0, 1, 2}). For example, if Bn ≡ 0
(mod 3), then Bn+1 ≡ 1 (mod 3) with probability 1/2.

If we consider the sequence of residues of {Bn} modulo 4, we get the following transition
probability matrix:
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

1
2

1
2 0 0

0 0 1
2

1
2

1
2

1
2 0 0

0 0 1
2

1
2


.

We will generalize this Markov chain model in the following section.

4.3 Normality of the Sequence brnαc Modulo q

For the elementary theory of Markov chains, we have relied on [9] and [18].
We assume that the number α is normal in the base r, so that the sequence given by

An = brnαc

is normal modulo r.
First, consider integers q > r, and let cn be the residue class of An (mod q). We number

the residue classes in the usual way from 0 to q − 1. The possible transitions from cn to
cn+1 are given by

cn+1 ≡


rcn
rcn + 1
. . . . . . . . . . .
rcn + r − 1

(mod q) .

These possible transitions from cn ≡ h (mod q) give r distinct consecutive residue classes
for any specified value of h. Furthermore, for cn ≡ h + 1 (mod q), we have rcn ≡ rh + r
(mod q), so the r possible transitions from h+ 1 are consecutive to the possible transitions
from h.

We obtain the following transition probability matrix by setting the i, jth entry equal
to 1/r if the transition from i to j is possible, and equal to 0 otherwise :

r−1 r−1 · · · r−1 0 0 · · · 0 · · · 0 0 · · · 0
0 0 · · · 0 r−1 r−1 · · · r−1 · · · 0 0 · · · 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 · · · 0 0 0 · · · 0 · · · r−1 r−1 · · · r−1

 .

This is a q×q matrix with rq non-zero entries. If r divides q, then there are q/r identical
blocks of r rows each. Otherwise, the consecutive residue classes “wrap around,” so that
some rows both begin and end with non-zero entries. In the previous section, the modulo
4 transition probability matrix is an example of the former case and the modulo 3 matrix
illustrates the latter case.
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Note that the transition probability matrix is not directly obtained from {An}. Rather,
the i, jth entry gives the probability of a transition from i to j modulo q in the sequence
{brnβc}, where the base r digits of β are independent random variables, each with uniform
distribution on {0, . . . , r − 1}.

There are exactly r non-zero entries in each row and each column, so the rows and
columns each sum to 1.

We may interpret the matrix to represent a digraph on q vertices labelled from 0 to q−1.
Each vertex has indegree r and outdegree r. If a transition from i to j is possible in the
sequence of residues cn, then we draw an arrow from i to j. (Note that to say a transition is
possible is not to say that it actually occurs in a particular sequence; we will have to show
that it must occur in any sequence arising from a normal number α.)

We need to show that there is a directed path joining any pair of vertices; that is, each
residue class is accessible from every other in the sequence. (Once again, this will only prove
that one state can be reached from another, not that it is necessarily reached.)

First, we show that any vertex j can be reached from 0. Certainly 0 can be reached
from 0 (there is a loop in the digraph at 0), so we only need consider j > 0. Set i to be
the least index of a row with a non-zero entry in the jth column, and note that i is strictly
less than j. Thus there is i < j so that j can be reached from i. Now the same is true
for i, so we can obtain a strictly decreasing sequence of indices such that there is a path
from the vertex of least index to the jth vertex. This sequence must terminate in the first
row, of index 0, so there is a path from 0 to j. Thus the digraph contains a tree rooted at
0, and is therefore connected. This, together with the fact that each vertex is of indegree
equal to its outdegree, is enough to show that there is an Eulerian circuit of the digraph.
Consequently, any vertex can be reached by a directed path from any other, and the Markov
chain corresponding to this matrix is irreducible.

Furthermore, the loop at 0 implies that the Markov chain is aperiodic. Since the entries of
the transition matrix sum to 1, there is a unique stable distribution of states, in which every
state has probability 1/q. The Markov chain converges to this distibution exponentially
fast, regardless of the initial distribution (see [9], Theorem 8.7, p. 109).

If q < r, then the transition probability matrix has no zero entries, and there is a
directed path of length 1 joining every ordered pair of vertices. We have r = gq + h, for
unique integers g ≥ 1 and 0 ≤ h < q. The transition matrix is of the form (g + 1)r−1 · · · (g + 1)r−1 gr−1 · · · gr−1

gr−1 · · · · · · (g + 1)r−1 · · · · · ·
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 .

Each row has h consecutive entries of the form (g + 1)r−1, and q − h entries of the form
gr−1. Once again, each column and each row sums to 1, and the corresponding Markov
chain is irreducible and aperiodic, and each state has stationary probability 1/q.

Now we state and prove the main result of this chapter.
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Theorem 4.3.1. If a number α is normal in the base r, the integer sequence given by

An = brnαc

is simply normal modulo every integer greater than 1.
Furthermore, the sequence is normal modulo the integer q > 1 if and only if q divides r.

The first part, that {An} is uniformly distributed modulo Z, was proved by Vanden
Eynden [38]. We give a new proof here, since we will use the same method to prove the
second part of this theorem, and to prove Theorem 4.4.1 of the next section.

We specify an integer modulus q > 1, and form the integer sequence {An} and the
sequence of residues {cn} modulo q, as above. We can take the sequence {an} to be the
base r digits of α, or the sequence of residues of {An} modulo r, as required.

We form the q×q matrix of possible transitions in the sequence {cn}, and note, as in the
first part of this section, that this matrix corresponds to an irreducible aperiodic Markov
process with no transient states. The states of the process correspond to the q residue
classes, and the process has a stable asymptotic distribution in which all states occur with
probability approaching 1/q.

Considering the Markov chain, we specify an arbitrary starting state k, with 0 ≤ k ≤
q − 1. Let µi(t) be the number of occurrences of the ith residue class in the first t steps of
the Markov process. Doeblin’s central limit theorem1 (Theorem 1.2.3) guarantees that, for
any ε > 0,

P
[∣∣∣∣µi(t)− t

q

∣∣∣∣ ≥ εt]→ 0 (4.3.1)

as t→∞.
Since

P
[
max
i

∣∣∣∣µi(t)− t

q

∣∣∣∣ ≥ εt] ≤ k−1∑
i=0

P
[∣∣∣∣µi(t)− t

q

∣∣∣∣ ≥ εt] ,
we have

P
[
max
i

∣∣∣∣µi(t)t − 1
q

∣∣∣∣ ≥ ε]→ 0

as t→∞. That is, if t is large enough,

P
[
max
i

∣∣∣∣µi(t)t − 1
q

∣∣∣∣ ≥ ε] < ε.

The probability measure is uniform on the set of t-strings of residue classes modulo r.
Thus, there are at most εrt strings for which

∣∣∣µi(t)t − 1
q

∣∣∣ ≥ ε for some i. Defining Ωt to be

the set of t-strings modulo r, the mean value of
∣∣∣µi(t)t − 1

q

∣∣∣ is∫
Ωt

∣∣∣∣µi(t)t − 1
q

∣∣∣∣dP < ε+
q − 1
q

ε < 2ε. (4.3.2)

1In fact, a weak law of large numbers in this context would suffice. Here we take the weak law as an easy
consequence of the central limit theorem.
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The first term of the estimate comes from those t-strings for which no frequency µi(t)/t
differs from 1/q by more than ε, of total probability at most 1, and the second comes from
the other t-strings, of total probability less than ε, for which µi(t)/t differs from 1/q by at
most (q − 1)/q.

Returning to the sequence {an}, we recall that for every string length t and for every

t-string τ , the frequency of τ in the first n t-blocks,
ντ (n)
n

, approaches r−t as n → ∞. We
can choose nt so large that, if n ≥ nt,∣∣∣∣ντ (n)

n
− 1
rt

∣∣∣∣ < ε

rt

for every τ . (Note that nt depends on α.) For convenience, we can assume that nt = mrt

for some integer m.
Now set N = tnt, so we are considering the first N integers in the sequence {An}. Let

µ̃i(N) be the number of occurrences of the ith residue class modulo q if each string τ occurs
exactly m times, and let µi(τ) be the number of times the ith residue class occurs modulo
q when the string τ occurs modulo r in the first nt blocks of {an}. We continue to suppose,
for now, that every t-block of the sequence {cn} begins with the same residue class k modulo
q, so these numbers are well-defined. We have already established, by (4.3.2), that∣∣∣∣ µ̃i(N)

N
− 1
q

∣∣∣∣ < 2ε,

since ∣∣∣∣ µ̃i(N)
N

− 1
q

∣∣∣∣ =

∣∣∣∣∣ 1
rt

∑
τ

µi(τ)
t
− 1
q

∣∣∣∣∣ ≤
∫

Ωt

∣∣∣∣µi(t)t − 1
q

∣∣∣∣ dP.

We let µi(N) be the number of times the ith residue class occurs in the sequence {cn},
still supposing each t-block begins with k, but now with the strings τ in their actual order
determined by {An}. We would like to estimate∣∣∣∣µi(N)

N
− µ̃i(N)

N

∣∣∣∣ .
Note that

µ̃i(N) = m
∑
τ

µi(τ),

and that
µi(N) =

∑
τ

mτµi(τ),

where mτ = ντ (nt) is the number of occurrences of τ in the first nt t-blocks of the sequence
{an}.

For each τ , ∣∣∣∣ mτ

mrt
− 1
rt

∣∣∣∣ < ε

rt
,
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by assumption, and so
|mτ −m| < mε.

This gives ∣∣∣∣µi(N)
N

− µ̃i(N)
N

∣∣∣∣ ≤ 1
mtrt

∑
τ

|mτ −m|µi(τ) ≤ ε, (4.3.3)

since there are rt terms in the sum, and each µi(τ) is at most t.
We can conclude, then, that the actual frequency of the ith residue class differs from

1/q by ∣∣∣∣µi(N)
N

− 1
q

∣∣∣∣ ≤ ∣∣∣∣µi(N)
N

− µ̃i(N)
N

∣∣∣∣+
∣∣∣∣ µ̃i(N)
N

− 1
q

∣∣∣∣ < 3ε. (4.3.4)

We need to correct our assumption that every block of {cn} begins with the same residue
class k. In the estimate of (4.3.3), we bounded µi(τ) by t, and this will not be changed by
any arbitrary choice of initial states in each t-block. The estimates of (4.3.2) come from the
application of the central limit theorem in (4.3.1). Since the application of the central limit
theorem does not depend on the initial state (see the discussion following Theorem 1.2.3),
the convergence of (4.3.1) holds regardless of the initial state of each t-block, and indeed
the convergence is uniform over the set of starting states. All the estimates of (4.3.4) are
valid regardless of any arbitrary assignment of residue classes at the start of each block.

We can take ε small by taking t and nt large, so we can conclude that∣∣∣∣µi(n)
n
− 1
q

∣∣∣∣→ 0

as n→∞. Thus, the sequence {An} is simply normal modulo q.
Since the modulus q was arbitrary, this concludes the proof of the first part of the

theorem: the sequence An is simply normal modulo every integer q > 1. That is, the
sequence {brnαc} is equidistributed modulo Z.

Now if q > r, there are (q−r)q zero entries in the transition probability matrix, and each
one of these corresponds to a transition that cannot occur in the sequence of residues {cn}
modulo q. It is evident that, for every t ≥ 2, some t-strings will not occur in the sequence
{cn}, so the sequence {An} fails to be normal modulo q.

It remains to consider q < r. If q divides r, then all entries in the matrix of transition
probabilities modulo q have the same value 1/q. Consider strings of length s. The transition
from one such string to another is itself a Markov chain, and every such transition has
probability q−s. We can make an argument very similar to the first part of the proof: replace
the residue classes modulo q by s-strings σ of residue classes; and replace the t-strings of
residue classes in our argument by st-strings (or, equivalently, t-strings of s-strings). The
probability space will be Ωst, again with the uniform probability measure.

To construct the matrix of transition probabilities, we arbitrarily index the s-strings σi,
with i = 1, . . . , qs. The i, jth entry is the probability of transition from σi to σj . Again, we
can initally assume that every st-string begins with some fixed s-string κ, and then correct
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this assumption without affecting our estimates. In the same way as before, we can show
that the frequency of each s-string in {cn} approaches q−s. Since this is true for every s,
the sequence {An} is normal modulo q.

Now suppose q does not divide r, so

r = gq + h

with g > 0 and 0 < h < q. Each row of the transition probability matrix modulo q has
q − h entries g/r, and h entries (g + 1)/r. The frequency of any 2-string approaches one of
the two distinct values g/(qr) and (g + 1)/(qr), and neither of these is the q−2 required for
normality. In this case, then, {An} is not normal modulo q.

4.4 A Condition Modulo q for Normality in the Base r

This work was originally motivated by the simple observation that the sequence
{
b2n
√

2c
}

appeared to have random properties in moduli other than 2. This led us to wonder if the
question of normality in one base could be approached via some modulus other than a power
of the base. In this section we give a partial affirmative answer to the question.

We will restrict ourselves to the case q > r. Suppose α ∈ [0, 1) , and write

An = brnαc,
an ≡ An (mod r), an ∈ {0, . . . , r − 1}, and
cn ≡ An (mod q), cn ∈ {0, . . . , q − 1}.

We have An+1 = rAn + an+1. Given any particular value of cn, the possible values of cn+1

are all distinct modulo q, so for fixed cn the value of cn+1 is determined by an+1, and the
map an+1 7→ cn+1 is one-to-one. Thus, for fixed cn, the map

(an+1, . . . , an+t−1) 7→ (cn+1, . . . , cn+t−1)

is one-to-one. For fixed an, the reverse map

(cn+1, . . . , cn+t−1) 7→ (an+1, . . . , an+t−1)

is also one-to-one. There are rt−1 possible t-strings starting with any fixed cn; and since
there are q possible values for cn, there are qrt−1 possible t-strings. The set of possible
t-strings is a proper subset of {0, . . . , q − 1}t, and we will call this subset rQt. As before,
the set of possible t-strings in the sequence {an} is Ωt = {0, . . . , r − 1}t.

Now form the matrix of transition probabilities modulo q, as before, where the i, jth
entry is the probability that cn+1 = j if cn = i, where cn ≡ brnβc (mod q) if the digits of β
are independent and uniformly distributed in the base r. There are r entries of value r−1 in
each row, and q − r zero entries. We have uniform probability on Ωt, so if the probability
were uniform on the values cnt+1 at the start of each t-block, then we would have uniform
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probability on rQt as well. The latter probability is not in general uniform, but it does
approach uniformity as n approaches infinity.

This motivates the following definition. We continue to assume that q > r, so that
|rQt| = qrt−1. The set rQt is the set of possible t-strings in the sequence {cn} modulo q
determined by {brnβc}, where the base r digits of β are random as before. However, in the
definition, we allow {An} to be any integer sequence.

Definition 4.4.1. Let νσ(n) be the number of times the s-string σ occurs in the first n
s-blocks of {cn}, where cn ≡ An (mod q) and 0 ≤ cn ≤ q− 1. The integer sequence {An} is
base-r normal modulo q, or r-normal modulo q, if

lim
n→∞

∣∣∣∣νσ(n)
n
− 1
qrs−1

∣∣∣∣ = 0

for every s-string σ ∈ rQs, for every string length s ≥ 1.

We now give a condition modulo q for normality in the base r.

Theorem 4.4.1. Given integers q > r > 1, the number α is normal in the base r if and
only if the sequence {brnαc} is r-normal modulo q.

To prove the theorem, we repeat the argument of the last section. For the “only if”
direction of proof, we replace the s-strings of residue classes modulo q with s-strings of
residue classes σ ∈ rQs, and otherwise proceed as before, making the argument based on
the Markov chain of the s-strings.

For the “if” direction, we interchange the roles of the s-strings modulo r and the s-
strings modulo q. Note that, to argue in this direction, we apply the central limit theorem
for Markov chains to the process given by random s-strings modulo r, and we assume, to
begin with, that every t-string of s-strings modulo r begins with some arbitrary string κ.
In this direction of proof, the underlying probability space is rQst, not Ωst.

The transition probability matrix in this direction of proof is constructed by considering
a randomly generated sequence {γn} modulo q. The first element γ1 is uniformly distributed
on {0, 1, . . . , q − 1}. The distribution of γn+1 is dependent on γn: given γn = i, we have

P [γn+1 = j] =
1
r

if (i, j) ∈ rQ2. Now the i, jth entry of the matrix gives the probability of a transition from
the ith to the jth residue class modulo r, and every entry has the value r−1.

The theorem says that, if α is normal in the base r, the sequence {brnαc} is as close as
it can be to normality modulo every q > r, given the constraints imposed by the transition
probabilities. Conversely, r-normality modulo q of {brnαc} for any integer q > r implies
that α is normal in the base r.

One could extend the definition of r-normality modulo q to cover the case q < r. How-
ever, since in this case the map from Ωt to rQt is not one-to-one (even if we fix the first
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element of each t-string), we would not expect to be able to prove both directions of the
last theorem.

We are led to wonder whether there is a converse to part of Theorem 4.3.1. If {brnαc}
is simply normal modulo every integer q > 1, does this guarantee normality of α in the base
r? We conjecture not.

Simple normality modulo 2 of {b2nαc} neither implies nor precludes simple normality
modulo some other q. For example, the base 2 expansion of 1/3 is

.010101 . . . ,

and this is simply normal in the base 2. The sequence {An} = {b2n/3c} is

0, 1, 2, 5, 10, 21, . . . ,

and modulo 3 this is the repeating sequence

0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, . . . .

Thus, {An} is simply normal modulo 3. On the other hand, modulo 5 this is the repeating
sequence

0, 1, 2, 0, 0, 1, 2, 0, . . . ,

which is not uniformly distributed modulo 5.
Now consider the sequence {b2n/5c}. It is easily verified that this sequence is simply

normal modulo 2 and 5, but not modulo 3. The sequence modulo 5 is a repeating 20-string.

Finally, we suppose that it is feasible to construct a sequence of integers normal modulo
every integer q > 1; we would call such a sequence “normal modulo Z.” Furthermore, we
conjecture that almost every sequence of integers is normal modulo Z, as long as we define
“almost every” in the suitable asymptotic sense.
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Chapter 5

Flat Sequences of Polynomials with
Cyclotomic Coefficients

5.1 Littlewood’s Problem and Flat Polynomials

The context of this work is the Littlewood problem in L∞: do there exist constants A and
B, and a sequence of polynomials

pn =
n∑
j=0

anjz
j

with coefficients ±1, such that

A
√
n+ 1 ≤ |pn(z)| ≤ B

√
n+ 1

for z on the unit circle? Such a sequence of polynomials is called “flat,” and we loosely call
an element of such a sequence a “flat polynomial.” If the constants A and B can be replaced
by 1− εn and 1 + εn, where εn → 0 as n→∞, then the sequence is called “ultra-flat.”

This problem was discussed by Littlewood [26], and related results have been reviewed
by Borwein [13] and Erdélyi [17]. We note that the problem is still open.

Of interest to us here is the line followed by Kahane [19], who proved that, if the
coefficients are complex with |anj | = 1, then ultra-flat polynomials do indeed exist. Since
we will use his result, we state it now:

Theorem 5.1.1 (Kahane). There is a sequence qn of degree n polynomials with unimodular
coefficients, and a sequence εn > 0 with εn → 0, such that

(1− εn)
√
n ≤ |qn(z)| ≤ (1 + εn)

√
n

for |z| = 1.

It should be noted that there was an error in Kahane’s proof. This was pointed out, and
corrected, by Queffelec and Saffari [37]; the theorem itself is correct as originally stated by
Kahane.
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Beck [4] built on this result to show that sequences of flat polynomials exist of which
the coefficients are lth roots of unity, if l is sufficiently large. His result, the main topic of
this paper, is the following:

Theorem 5.1.2 (Beck). If l is a sufficiently large integer, then there are constants A and
B and a sequence pn of polynomials

pn(z) =
n∑
j=0

anjz
j

with anj = e2πik/l, k ∈ {0, . . . , l − 1} for j = 0, . . . , n, such that

A
√
n+ 1 < |pn(z)| < B

√
n+ 1

for |z| = 1 and n sufficiently large.

Beck stated and proved the theorem with l = 400. There was a minor error in the proof,
however; with the error corrected, l should be 851. We will give the corrected proof below.
It should be noted that the error only affected the numerical bound; the method of proof
itself, and the qualitative result, are entirely correct.

We will need Spencer’s result on the discrepancy of linear forms [35]:

Theorem 5.1.3 (Spencer). Let

Li(x1, . . . , xn) = ai1x1 + · · ·+ ainxn, 1 ≤ i ≤ n

be n linear forms in n variables with real coefficients |aij | ≤ 1. Then there is an absolute
constant K, and a choice of uj = ±1 for j = 1, . . . , n, so that

|Li(u1, . . . , un)| ≤ K
√
n, 1 ≤ i ≤ n,

if n is sufficiently large.

The value of K in Spencer’s theorem ultimately determines the least value of l for which
Beck’s theorem holds. Beck used Spencer’s estimate K ≈ 9, but Spencer also gave a lower
estimate of K ≈ 5.32. Here we will obtain a slightly lower estimate, K ≈ 5.199, and using
this, we will lower the value of l to 492. A refinement of Spencer’s method, due to K.-U.
Schmidt (personal communication), improves this significantly, to K ≈ 3.65. This, in turn,
lowers the value of l to 345. We will outline Schmidt’s result in Section 5.6.

5.2 Proof of Beck’s Theorem

In this section we closely follow Beck’s method of proof [4]. However, his proof was driven
by a particular value of the constant K in Spencer’s theorem (Theorem 5.1.3). Here we
make the argument without assuming any particular value for K. In Sections 5.5 and 5.6
we will use the available values of K to draw our numerical conclusions. We believe there is
still room to improve on the value of K; if this is done, the general form of Beck’s theorem
we give here can be applied immediately.

To be precise, the form of the theorem we will prove is as follows:
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Theorem 5.2.1 (Beck). Suppose that K is such that, for sufficiently large n, for every set
of n linear forms in n variables

Li(x1, . . . , xn) = ai1x1 + · · ·+ ainxn, 1 ≤ i ≤ n,

with real coefficients |aij | ≤ 1 for i, j ∈ {1, . . . , n}, there exist uj = ±1 for j = 1, . . . , n so
that

|Li(u1, . . . , un)| ≤ K
√
n, 1 ≤ i ≤ n.

Then there is an integer l0 and constants A and B, such that for any integer l ≥ l0 there is
a sequence pn of polynomials

pn(z) =
n∑
j=0

anjz
j ,

of which each coefficient is an lth root of unity, with

A
√
n+ 1 < pn(z) < B

√
n+ 1

for |z| = 1 and n sufficiently large. Furthermore,

l0 ≤ min

{
l ∈ Z : l ≥ 3, cos

π

l
− 12Kπ

√
2π

l
> 0

}
. (5.2.1)

First, let
Li(x) = ai1x1 + · · ·+ ainxn, 1 ≤ i ≤ n,

be a set of n linear forms in n variables with complex coefficients aij , |aij | ≤ 1. From these
we form 2n linear forms with real coefficients in 2n variables:

Mi(x1, . . . , x2n) = Re(ai1)x1 + · · ·+ Re(ain)xn + 0xn+1 + · · ·+ 0x2n, 1 ≤ i ≤ n,

Mn+i(x1, . . . , x2n) = Im(ai1)x1 + · · ·+ Im(ain)xn + 0xn+1 + · · ·+ 0x2n, 1 ≤ i ≤ n.

By our assumption, we can find uj ∈ {±1}, j = 1, . . . , 2n, so that

|Mi(u1, . . . , u2n)| ≤ K
√

2n, 1 ≤ i ≤ 2n.

In turn, this means that

|Li(u1, . . . , un)| ≤ 2K
√
n, 1 ≤ i ≤ n. (5.2.2)

We make use of this to prove the following lemma:

Lemma 5.2.1 (Beck). Given n+ 1 complex numbers b0, b1, . . . , bn, all of modulus at most
d, there exist u0, u1, . . . , un ∈ {±1} such that, for any R > K,

max
|z|=1

∣∣∣∣∣
n∑
k=0

ukbkz
k

∣∣∣∣∣ ≤ 4Rd
√

2π
√
n+ 1 (5.2.3)

when n is sufficiently large.
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Here, as throughout this paper, K is the constant in Theorem 5.2.1, guaranteed to exist
by Theorem 5.1.3.

We note that this lemma is where a slight error occurred in Beck’s proof. The error was
kindly pointed out to us by Tamás Erdélyi: Beck ([4], p. 274) left out a constant in the
application of Bernstein’s inequality to (5.2.4) below. The constant was required since Beck
parametrized the unit circle by e2πiθ rather than by eiθ as we have done here. As a result,
he omitted the factor

√
2π in (5.2.3).

We have changed some details to correct the error, but apart from these minor details
the proof we give is the same as the original. The substance of Beck’s proof is certainly
correct.

Paterson and Tarokh ([32], Lemma 6) have also given a corrected version of Beck’s proof.
However, they did not point out where the error lay, nor did they examine the effect of the
error on the value of l0.

To prove the lemma, without loss of generality we can let d = 1.
Set ν = d2πne. Form ν linear forms in ν variables, with only the first n coefficients

non-zero:

Lm(x0, . . . , xν−1) =
ν−1∑
k=0

(
bke

2πi km
ν

)
xk, m = 0, . . . , ν − 1

with bk = 0 for k > n − 1. By (5.2.2), there are u0, . . . , uν−1 ∈ {±1} such that, if n is
sufficiently large and R > K,∣∣∣∣∣

n−1∑
k=0

ukbkz
k

∣∣∣∣∣ =

∣∣∣∣∣
ν−1∑
k=0

ukbkz
k

∣∣∣∣∣ < 2K
√
ν < 2R

√
2πn

for every z = e2πim/ν , m = 0, . . . , ν − 1.
Put

M = max
|z|=1

∣∣∣∣∣
n−1∑
k=0

ukbkz
k

∣∣∣∣∣ .
Then

M =

∣∣∣∣∣
n−1∑
k=0

ukbke
iβk

∣∣∣∣∣
for some β ∈ [0, 2π). There is some m(β) ∈ {0, 2π, . . . , (ν − 1)2π} such that∣∣∣∣β − m(β)

ν

∣∣∣∣ ≤ 2π
2ν
≤ 1

2n
.

Now let

f(θ) =
n−1∑
k=0

ukbke
iθk.
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We have ∣∣∣∣f (β)− f
(
m(β)
ν

)∣∣∣∣ ≤ ∫ β

m(β)
ν

∣∣f ′(θ)∣∣ dθ, (5.2.4)

and by Bernstein’s inequality this is no greater than

nM

∣∣∣∣β − m(β)
ν

∣∣∣∣ ≤ nM 1
2n

=
M

2
.

This gives
M

2
= |f(β)| − M

2
≤
∣∣∣∣f (m(β)

ν

)∣∣∣∣ < 2R
√

2πn.

Replacing n by n+ 1 gives the lemma.

Now we have what we need to prove the theorem. Let gn be a sequence of “ultra-flat”
polynomials, as given by Theorem 5.1.1:

gn(z) =
n∑
k=0

ankz
k, |ank| = 1, 0 ≤ k ≤ n,

with
(1− ηn)

√
n+ 1 < |gn(z)| < (1 + ηn)

√
n+ 1, |z| = 1, (5.2.5)

where ηn → 0 as n→∞.
Fix an integer l ≥ 3, and denote by Pl the regular polygon of which the vertices are the

lth roots of unity. The inscribed circle has radius ρ = ρ(l) = cos
π

l
.

Now consider the kth coefficient of gn: ak = ank = e2πiαk , where 0 ≤ αk < 1. (From this
point, for convenience we will drop the n from ank; it is understood that ak and αk depend
on n.) For some integer j = j(n, k) with 0 ≤ j < l,

j

l
− 1

2l
≤ αk <

j

l
+

1
2l
.

For each k ∈ {0, . . . , n}, let ∆k be the triangle with vertices

e2πi j−1
l , e2πi j

l , e2πi j+1
l .

The diameter of ∆k is

diam ∆k <
4π
l
. (5.2.6)

By joining the midpoints of the sides, we obtain four similar triangles ∆k(1; s), s = 1, . . . , 4.
For convenience we define ∆k(1; 1) to be the triangle containing the arc of the circle inscribed
in Pl, so ∆k(1; 1) has vertices

e2πi j−1
l + e2πi j

l

2
, e2πi j

l ,
e2πi j

l + e2πi j+1
l

2
.
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Decomposing each of ∆k(1; s) into four similar triangles in the same way, we get 16 triangles
∆k(2; s), s = 1, . . . , 16. Iterating, we get

∆k =
4⋃
s=1

∆k(1; s) =
42⋃
s=1

∆k(2; s) = · · · =
4q⋃
s=1

∆k(q; s) = · · · ,

and
diam ∆k(q; s) = 2−qdiam ∆k < 2−q

4π
l
.

Now fix q ∈ Z with 2q ≥ n + 1. Then there are indices s2, . . . , sq, all depending on k,
such that

ρak ∈ ∆k(q; sq) ⊂ · · · ⊂ ∆k(2; s2) ⊂ ∆k(1; 1) ⊂ ∆k.

Let ωk,q be any vertex of ∆k(q; sq), arbitrarily chosen for each k. By (5.2.6),

max
|z|=1

∣∣∣∣∣
n∑
k=0

ρakz
k −

n∑
k=0

ωk,qz
k

∣∣∣∣∣ ≤
n∑
k=0

|ρak − ωk,q| ≤ (n+ 1)2−q
4π
l
≤ 4π

l
.

Now set
d = dq =

1
2

diam ∆k(q − 1; sq−1) = 2−q
4π
l
.

If ωk,q is a vertex of ∆k(q− 1; sq−1), put ω∗k,q−1 = ωk,q. Otherwise, arbitrarily choose one of
the endpoints of the side of ∆k(q − 1; sq−1) containing ωk,q, and label it ω∗k,q−1. Then each(
ωk,q − ω∗k,q−1

)
is a complex number of modulus at most d, and by Lemma 5.2.1 there exist

uk = ±1, for k = 0, . . . , n, so that

max
|z|=1

∣∣∣∣∣
n∑
k=0

uk
(
ωk,q − ω∗k,q−1

)
zk

∣∣∣∣∣ ≤ 4Rd
√

2π
√
n+ 1

for R > K. Now, if ωk,q was a vertex of ∆k(q − 1; sq−1), set ωk,q−1 = ω∗k,q−1 = ωk,q.
Otherwise, if uk = 1, set ωk,q−1 = ω∗k,q−1, and if uk = −1, define ωk,q−1 to be the other
endpoint of the side of ∆k(q − 1; sq−1) containing ωk,q, so that

ωk,q − ωk,q−1 = −
(
ωk,q − ω∗k,q−1

)
.

Then, in every case,
(ωk,q − ωk,q−1) zk = uk

(
ωk,q − ω∗k,q−1

)
zk,

and we have

max
|z|=1

∣∣∣∣∣
n∑
k=0

ωk,qz
k −

n∑
k=0

ωk,q−1z
k

∣∣∣∣∣ ≤ 4Rd
√

2π
√
n+ 1 = 2−q

16Rπ
√

2π
l

√
n+ 1 .

Iterate, choosing ωk,q−2, . . . , ωk,1, so that, by applying Lemma 5.2.1 with

d = dr = 2−r
4π
l
,
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we have

max
|z|=1

∣∣∣∣∣
n∑
k=0

ωk,rz
k −

n∑
k=0

ωk,r−1z
k

∣∣∣∣∣ ≤ 4Rd
√

2π
√
n+ 1 = 2−r

16Rπ
√

2π
l

√
n+ 1

for r = 2, . . . , q − 1.
One last iteration will reach ωk = ωk,0. Here ωk,1 is a vertex of ∆k(1 : 1), so either

ωk = ωk,1 = e2πi j
l , or ωk,1 is a midpoint of ∆k. In the latter case, ωk is one of the roots of

unity
e2πi j−1

l , e2πi j
l , e2πi j+1

l .

This time we can take d = d1 =
π

l
and choose ωk according to Lemma 5.2.1 so that

max
|z|=1

∣∣∣∣∣
n∑
k=0

ωk,1z
k −

n∑
k=0

ωkz
k

∣∣∣∣∣ ≤ 4Rd
√

2π
√
n+ 1 =

4Rπ
√

2π
l

√
n+ 1.

Summarizing, we have

max
|z|=1

∣∣∣∣∣
n∑
k=0

ρakz
k −

n∑
k=0

ωkz
k

∣∣∣∣∣ ≤ max
|z|=1

∣∣∣∣∣
n∑
k=0

ρakz
k −

n∑
k=0

ωk,qz
k

∣∣∣∣∣
+

q∑
r=2

max
|z|=1

∣∣∣∣∣
n∑
k=0

ωk,rz
k −

n∑
k=0

ωk,r−1z
k

∣∣∣∣∣
+ max
|z|=1

∣∣∣∣∣
n∑
k=0

ωk,1z
k −

n∑
k=0

ωkz
k

∣∣∣∣∣
≤ 4π

l
+

q∑
r=2

2−r
16Rπ

√
2π

l

√
n+ 1 +

4Rπ
√

2π
l

√
n+ 1

≤ 12Rπ
√

2π
l

√
n+ 1 +O(1).

By (5.2.5),

(ρ− ξn)
√
n+ 1 <

∣∣∣∣∣
n∑
k=0

ρakz
k

∣∣∣∣∣ < (ρ+ ξn)
√
n+ 1,

where ρ = cos
π

l
and ξn → 0 as n→∞. This gives(

cos
π

l
− 12Rπ

√
2π

l
− ξn

)
√
n+ 1−O(1) <

∣∣∣∣∣
n∑
k=0

ωkz
k

∣∣∣∣∣
<

(
cos

π

l
+

12Rπ
√

2π
l

+ ξn

)
√
n+ 1 +O(1).
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By setting

l0 = min

{
l ∈ Z : l ≥ 3, cos

π

l
− 12Rπ

√
2π

l
> 0

}
, (5.2.7)

we obtain the theorem.
The condition l ≥ 3 is redundant; we state it to emphasize that Beck’s method of

approximation by the endpoints of triangles requires a largest triangle of which the endpoints
must be roots of unity.

5.3 Proof of Spencer’s Theorem

Spencer [35] calculated several values of K, of which the best was K ≤ 5.32. Without
developing any new technique, we will slightly improve on this result.

Our goal is to prove Theorem 5.1.3. We will closely follow the method of Spencer, and
we will use the following theorem due to Kleitman [21].

Theorem 5.3.1 (Kleitman). Let A ⊂ {±1}r and t < r/2 be given, with

|A| ≥
t∑
i=0

(
r

i

)
.

Then diam A ≥ 2t.

Here, the diameter is taken with respect to the Hamming metric, which counts the
number of coordinates where two elements of {±1}r differ. The theorem says that some
pair of elements of A differs in at least 2t coordinates.

For this and what follows we will make use of two functions. The first, the binary entropy
function, is defined for 0 ≤ q ≤ 1 as

H(q) = −q log2 q − (1− q) log2(1− q), 0 < q < 1,

and
H(0) = H(1) = 0.

The second is the normal distribution function, defined for x ∈ R by

Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2dt .

We begin with a combinatorial lemma. The proof is as given by Spencer [35].
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Lemma 5.3.1. Let 1/2 > a1 > a2 > · · · be given, and put

B = {(b1, . . . , bn) ∈ Zn : |{i : |bi| ≥ s}| ≤ asn, s = 1, 2, . . .} .

Then |B| ≤ 2cn, with

c =
∞∑
s=1

[H(as) + as] .

Note that the sum may fail to converge, in which case the lemma gives no information
about the cardinality of B.

Put αs = basnc. We can choose {i : |bi| = s} in
αs∑
k=0

(
n

k

)
ways. For each choice of

{i : |bi| = s}, there are 2k ≤ 2αs ways of choosing bi = ±s.
We have, then,

|B| <
∞∏
s=1

[
2αs

αs∑
k=0

(
n

k

)]
.

A straightforward estimation, given below, yields

αs∑
k=0

(
n

k

)
≤ 2nH(αs/n). (5.3.1)

Therefore,

|B| <
∞∏
s=1

2αs+nH(αs/n) ≤
∞∏
s=1

2n(H(as)+as),

and this is the lemma.
To see (5.3.1), let p+ q = 1, with q > p. For α = np,

α∑
k=0

(
n

k

)
pkqn−k = pαqn−α

α∑
k=0

(
n

k

)(
q

p

)α−k
< 1.

Then
α∑
k=0

(
n

k

)
≤

α∑
k=0

(
n

k

)(
q

p

)α−k
≤ 1
pαqn−α

= 2nH(p).

The following lemma is given in more general form in an appendix of [36].

Lemma 5.3.2. Let L(u) = a1u1 + · · ·+ arur be a linear form with real coefficients ai, with
|ai| ≤ 1 for each i, and let the ui = ±1 be independent and uniformly distributed random
variables. Then

P
[
|L(u)| ≥ λ

√
r
]
≤ 2e−λ

2/2. (5.3.2)

42



By comparing power series, it is easily seen that cosh c ≤ ec
2/2 for every real c, with

equality only when c = 0. Then

E [ecaiui ] =
1
2
ecai +

1
2
ec(−ai)

= cosh cai ≤ cosh c ≤ ec
2/2.

Since the aiui are independent, we have

E
[
ecL(u)

]
=

r∏
i=1

cosh cai

≤ erc
2/2.

Now using Markov’s inequality, for positive c and α,

P [|L(u)| ≥ α] = 2P
[
ecL(u) ≥ ecα

]
≤ 2E

[
ecL(u)

]
e−cα < 2erc

2/2−cα.

Putting c = α/r, we have

P [|L(u)| ≥ α] ≤ 2eα
2/(2r)−α2/r = 2e−α

2/(2r).

We get (5.3.2) by putting α = λ
√
r.

We prove one more lemma in probability before we turn to Spencer’s main lemma.

Lemma 5.3.3. Let L(u) = a1u1 + · · ·+ arur be a linear form with real coefficients ai, with
|ai| ≤ 1 for each i, and let the ui = ±1 be independent and uniformly distributed random
variables. Fix C > 0 and ε > 0. Then, for 0 < λ < C,

P
[
|L(u)| ≥ λ

√
r
]
≤ 2(1 + ε)Φ(−λ) (5.3.3)

when r is sufficiently large.

First, suppose L(u) = a1u1 + · · ·+ arur is as in the lemma, and write a = (a1, . . . , ar).
Each aiui is a random variable of mean 0 and variance a2

i , and L(u) is a random variable
of mean 0 and variance

σ2 = ‖a‖22 =
r∑
i=1

a2
i .

We consider the case σ2 <
√
r. By Markov’s inequality,

P
[
|L(u)| ≥ λ

√
r
]

= P
[
L(u)2 ≥ λ2r

]
≤

E
[
L(u)2

]
λ2r

=
σ2

λ2r
<

1
λ2
√
r
.
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Thus, (5.3.3) is satisfied in this case if r is sufficiently large.
Now we turn to the general case. Let Lr be a sequence of linear forms

Lr(u) = ar1u1 + · · ·+ arrur, r = 1, 2, . . . ,

with the ui as stated in the lemma, and write ar = (ar1, . . . , arr). Each ariui is a random
variable of mean 0 and variance a2

ri, and Lr(u) is a random variable of mean 0 and variance

σ2
r = ‖ar‖22 =

r∑
i=1

a2
ri.

In light of the first case we considered, we can assume without loss of generality that
σ2
r ≥
√
r. Then σr → ∞ as r → ∞, and the Lindeberg condition is satisfied. That is, for

every η > 0,

lim
r→∞

1
σ2
r

r∑
i=1

∫
|ariui|≥ησr

a2
riu

2
i dµ = 0,

where µ is the probability measure on each ui. By the Lindeberg central limit theorem
(Theorem 1.2.2), the distribution function of Lr(u)/‖ar‖2 converges weakly to Φ. This
convergence is uniform on R, and therefore uniform on [−C,C]. Since ‖ar‖2 ≤

√
r, this

gives that, for 0 < λ < C and for any ε > 0, there exists R such that

P
[
|Lr| ≥ λ

√
r
]
< 2(1 + ε)Φ(−λ) (5.3.4)

when r > R. This R is established for the given sequence Lr, and indeed, for each ε there is
some R for which (5.3.4) holds for every sequence Lr. If it were otherwise, then one could
construct a sequence Lr such that (5.3.4) failed for infinitely many r.

Now we state and prove Spencer’s main result as a lemma, closely following Spencer’s
argument. This is Spencer’s Lemma 20 ([35], p 704), although the bulk of the proof is given
with his Lemma 4 ([35], p 681). Our statement of the lemma corrects a typographic error
in the original work.1

For the purpose of the lemma, we construct a function Ψ = ΨC,ε for each choice of large
C > 0 and small ε > 0. Let M > 0 be such that Φ(−M) = e−C

2/4. Define

Ψ(t) = 2(1 + ε)e−t
2/2

if t ≥ C, and
Ψ(t) = 2(1 + ε)Φ(−t)

if 0 < t ≤M . For M < t < C, set

Ψ(t) = 2(1 + ε) exp
(
−C

2

2
+
C2

4
C − t
C −M

)
.

1The inequality in H
`

1
2
− p

´
< 1− β is reversed in the original.
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From our construction of Ψ, it will be clear that, for L(u) as in Lemmas 5.3.2 and 5.3.3,
and for t > 0,

P
[
|L(u)| ≥ t

√
r
]
≤ Ψ(t), (5.3.5)

by those lemmas.
We should point out that Spencer uses

P
[
|L(u)| ≥ t

√
r
]
≤ 2Φ(−t) + o(1)

here. Without more information about the error term, we cannot guarantee convergence of
the sum defining β in the following lemma. We therefore use our admittedly more awkward
construction, here and in Lemma 5.6.1.

Lemma 5.3.4 (Spencer). Fix large C > 0, small ε > 0, and the function Ψ = ΨC,ε as
above. Let a rational number α ≤ 1, a real number K > 0, and a real sequence γs such that∑∞

s=1 γ
−1
s < 1, be given. Suppose that

Ψ(K(2s+ 1))γs+1 < Ψ(K(2s− 1))γs

for s = 1, 2, . . .; define

β = α−1
∞∑
s=1

[H (Ψ(K(2s− 1))γs) + Ψ(K(2s− 1))γs]

and suppose that β < 1. Choose p, with 0 < p < 1/2, so that

H

(
1
2
− p
)
< 1− β .

Let Li, i = 1, 2, . . . , n, be n linear forms in r variables,

Li (x) = ai1x1 + · · ·+ airxr, 1 ≤ i ≤ n ,

with r ≤ αn, and real coefficients |aij | ≤ 1.
Then for n sufficiently large, there exists u = (u1, . . . , ur), with each ui ∈ {−1, 0, 1}, so

that
|{i : ui = 0}| ≤ 2p(αn) (5.3.6)

and
|Li (u)| ≤ K

√
r ≤ K

√
α
√
n, 1 ≤ i ≤ n . (5.3.7)

Without loss of generality, we can assume r = αn. To see this, write α = w/v in reduced
form, where w and v are positive integers. We can make the argument letting nk → ∞,
where nk = kv. For nk < n < nk+1, we can add forms and variables with zero coefficients
to obtain |Li (u) | ≤ K

√
α
√
nk+1 ≤ K

√
α
√
n+ v.

Let u = (u1, . . . , un), and let the ui be independent random variables such that each
ui = ±1 with equal probability.
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Define T : {±1}r → Zn by

T (u1, . . . , ur) = (b1, . . . , bn),

with
bi = 0 if |Li(u)| ≤ K

√
r

and
bi = s if (2s− 1)K

√
r < |Li(u)| ≤ (2s+ 1)K

√
r

for s = 1, 2, . . ..
Now define

B = {b ∈ Zn : |{i : |bi| ≥ s}| ≤ nΨ(K(2s− 1))γs, s = 1, 2, . . .} .

We have
P[bi ≥ s] = P

[
|L((u)| ≥ K(2s− 1)

√
r
]
≤ Ψ(K(2s− 1))

for r sufficiently large, by (5.3.5).
The expected number of i such that bi ≥ s is at most nΨ(K(2s − 1)). By Markov’s

inequality,

P[|{i : bi ≥ s}| ≥ nΨ(K(2s− 1))γs] ≤
1
γs
. (5.3.8)

We have

P [b ∈ B] ≥ 1−
∞∑
s=1

γ−1
s

since the union of the sets in (5.3.8) is the complement of B.

Put κ = 1−
∞∑
s=1

γ−1
s . Then |T−1(B)| ≥ κ2r, since we are using the uniform probability

measure on {±1}r.

Here we apply Lemma 5.3.1, with r = αn and

c = αβ =
∞∑
s=1

[H (Ψ(K(2s− 1))γs) + Ψ(K(2s− 1))γs] ,

to get
|B| ≤ 2rβ = 2αβn.

Now we look for A ⊂ {±1}r on which T is constant, and so that

|A| ≥ κ2r/2βr > 2rH(1/2−p); (5.3.9)

note that the constant κ is absorbed in the latter inequality if r is sufficiently large. By the
pigeonhole principle, there is some b ∈ B so that, if

A = T−1(b),
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then

|A| ≥
∣∣T−1(B)

∣∣ /|B|
≥ κ2r/2βr

= κ2r(1−β)

as desired.

From the proof of Lemma 5.3.1, we have 2rH(1/2−p) ≥
r(1/2−p)∑
k=0

(
r

k

)
. We can apply

Kleitman’s theorem (Theorem 5.3.1), using (5.3.9), to get

diam A ≥ (1− 2p)r. (5.3.10)

Then there exist vectors u1 and u2 ∈ A with

ρ(u1,u2) = diam A,

where ρ is the Hamming metric.

Put u =
u1 − u2

2
. This is not in general an element of {±1}r; we have u = (u1, . . . , ur),

with ui ∈ {−1, 0, 1}. Now ui = 0 if and only if u1 and u2 have the same ith coordinate, so

|{i : ui = 0}| = r − ρ(u1,u2)
= r − diam A
≤ r − (1− 2p)r = 2pr.

This gives (5.3.6). For each i ∈ 1, . . . , n,

Li(u) =
Li(u1)− Li(u2)

2
.

Since u1 and u2 belong to A, we have T (u1) = T (u2), and so Li(u1) and Li(u2) differ by
less than 2K

√
r. Thus

|Li(u)| ≤ K
√
r = K

√
α
√
n,

and this is (5.3.7).

With the main lemma in hand, we now turn to the proof of Theorem 5.1.3. First, fix
α < 1. We will show that K and {γs} can be chosen to satisfy the conditions of Lemma
5.3.4, and indeed that β can be made arbitrarily small.

Note that H(q) + q is dominated by H(q) ∼ −q log2 q for small q. By considering ratios
of the partial sums of the power series for the two sides, one can see that

Φ(−t) ∼ e−t
2/2

t
√

2π
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as t grows large. (The power series for Φ is easily obtained by term-by-term integration of
e−t

2/2.) Thus, given any choice of γ1, we can make H(Ψ(K)γ1) + Ψ(K)γ1, the first term in
the sum for β, arbitrarily small by choosing K large enough. This gives

H(Ψ(K)γ1) + Ψ(K)γ1 < η

for some suitably small η. With M and C as in the definition of Ψ, a straightforward
calculation shows that

Ψ(K(2s+ 1))γs+1 log2(Ψ(K(2s+ 1))γs+1)
Ψ(K(2s− 1))γs log2(Ψ(K(2s− 1))γs)

∼ γs+1

γs
e−4sK2

if K(2s+ 1) < M or if K(2s− 1) > C, and otherwise

Ψ(K(2s+ 1))γs+1 log2(Ψ(K(2s+ 1))γs+1)
Ψ(K(2s− 1))γs log2(Ψ(K(2s− 1))γs)

<
γs+1

γs
e−CK/2.

Thus, if γs grows slowly enough, say

γs+1

γs
< min

(
eK

2
, eCK/4

)
,

we can ensure that the sum for β is less than, say, 2η. If we choose η < α/2, then β < 1. Since
H maps [0, 1/2] continuously onto [0, 1], the p of Lemma 5.3.4 exists, and the conclusions
apply.

Our strategy now is to apply Lemma 5.3.4 repeatedly. Note that the lemma ensures the
existence of R so that the conclusions of the lemma apply for αn = r > R.

On the first iteration, we set α = α1 = 1. For simplicity, we make an appropriate
choice of {γs} for all iterations, though it is not strictly necessary that {γs} be the same in
every iteration. We choose K = G1 so that β = β1 < 1. We set p = p1 < 1/2. Then, if
r1 = α1n = n > R, there exists u = u1 ∈ {−1, 0, 1}n so that

|Li(u)| ≤ K
√
α
√
n = G1

√
n

for each i ∈ 1, . . . , n, and
|{j : uj = 0}| ≤ 2p1n.

We define m2 = |{j : uj = 0}|.
Now construct new linear forms of reduced length by indexing the j for which uj = 0:

j1, . . . , jm2 . The coefficient aik of

L
(2)
i (x) = ai1x1 + · · ·+ a1m2xm2

is defined to be the coefficient aijk of Li.
On the next iteration, set α = α2 = m2/n ≤ 2p1α1, and r2 = α2n. Choose K = G2

so that β2 is small enough to give p2 ≤ p1. Then, if r2 > R, Lemma 5.3.4 gives u2 ∈
{−1, 0, 1}α2n so that

|L(2)
i (u2)| ≤ K

√
α
√
n = G2

√
α2

√
n.
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Proceed in this way, obtaining at the hth iteration

|Li (u∗)| ≤ |Li(u1)|+ |L(2)
i (u2)|+ · · ·+ |L(h)

i (uh)|
≤ G1

√
α1

√
n+G2

√
α2

√
n+ · · ·+Gh

√
αh
√
n.

Here the vector u∗ is obtained from the nonzero coordinates of u1, . . . ,uk inserted in the
appropriate positions. From the estimates beginning on page 47, if G1 is large enough, {γs}
is chosen appropriately, and

G1 < G2 < · · · ,

then

βk < −α−1
k 2Ψ(Gk)γ1 log2(Ψ(Gk)γ1)

∼ α−1
k

2Gkγ1e
−G2

k/2

log 2
√

2π

if Ψ(Gk) = 2(1 + ε)Φ(−Gk). Otherwise, if Ψ(Gk) = 2(1 + ε)e−G
2
k/2,

βk < α−1
k

2G2
kγ1e

−G2
k/2

log 2
.

Note that, for small p, H(1/2− p) ∼ 1− 2p2/ log 2 (from the power series), so for small β,

p ∼
√
β log 2

2
.

Since
αk+1 ∼ 2pkαk,

we can certainly choose {Gk} so that

S =
∞∑
k=1

Gk
√
αk

converges.
After some iteration, say the hth, we get rh+1 < R. Now the vector u∗ is constructed

first from the nonzero coordinates of u1, . . . ,uh, as before, and then the remaining rh+1

zero coordinates are replaced arbitrarily with ±1. Then we have

|Li (u∗)| ≤ G1
√
α1

√
n+ · · ·+Gh

√
αh
√
n+ rh+1

≤ S
√
n+R.

For η > 0, if n = r1 is sufficiently large we get

|Li (u∗)| ≤ (S + η)
√
n.

Then u∗ is the u of Theorem 5.1.3, and S+η is the absolute constant K of the theorem.
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5.4 The Value of K

Spencer ([35]) proved two versions of Theorem 5.1.3. Beck ([4]) used the first result, K ≈ 9.
At the end of his paper, Spencer gave a calculation improving this to K ≈ 5.32. Here we
repeat the calculation, slightly improving the value to K ≈ 5.2. Spencer made no attempt
to optimize his calculation. While our calculation is not rigorously optimized, we did a
crude automated search among choices of Gi, and we believe we are close to the best result
available by Spencer’s method as it stands.

The calculation is based on the iteration argument given in the previous section. We set
γ1 = 1.01, and γs = 103s−1 for s > 1. For convenience, we put

bj,k = [H (Ψ(Gj(2k − 1))γk) + Ψ(Gj(2k − 1))γk] ,

and write

βj =
∞∑
k=1

α−1
j bj,k

at the jth iteration. Setting α1 = 1 and G1 = 4, we get

α−1
1 b1,1 ≈ 0.0010475

and
α−1

1 b1,2 ≈ 3.74× 10−29.

Clearly, the sum for β1 is dominated here by the first term:

β1 ≈ 0.0010475.

We can take p1 = 0.019054, giving 2p1α1 < 0.03811 and G1
√
α1 = 4.

On the second iteration, we set α2 = 0.03811 and G2 = 5. Again (and in every iteration),
βi is dominated by the first term and we get

β2 ≈ 0.0035193

and can take p2 = 0.011044. This gives 2p2α2 < 0.00084177 and G2
√
α2 < 0.9761.

We set α3 = 0.00084177 and G3 = 5.1 and continue, taking α4 = 0.000097814 and
G4 = 6, and α5 = 2.91067× 10−6 and G5 = 9.

On the next iteration, α6 ≈ 7 × 10−12, and we can choose G6 and subsequent values
giving such rapid convergence of

∑∞
j=1Gj

√
αj that this sum is dominated by the first five

terms. Thus,

K =
∞∑
j=1

Gj
√
αj + ε < 4 + .9761 + .1480 + .0594 + .01536 < 5.199.

We can therefore take K = 5.199 in Theorem 5.1.3.
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There is no reason to think that Spencer’s result could not be substantially improved,
giving a significantly lower value of K. On the other hand, Spencer showed that K has
a positive lower bound, and indeed K must be greater than 1 ([35], Theorem 19). If the
coefficients of n linear forms, each in n real coefficients, form a Hadamard matrix with each
entry ±1, then any choice of u ∈ {±1}n gives Li(u) ≥

√
n for some i.

5.5 The Value of l0

Using K = 5.199 and (5.2.1), we immediately find

l0 = 492.

Thus, there exist flat polynomials of which the coefficients are 492nd roots of unity.
Spencer suggested that one should not expect to do better than K ≈ 3 by some refine-

ment of his method. For K = 3, (5.2.1) would give l0 = 284.
In principle, if K were sufficiently small, Beck’s method would yield the existence of flat

polynomials with coefficients that were 3rd roots of unity. However, not even a result of the
type K → 0 as n→∞ could be used to extend Beck’s method to Littlewood polynomials,
and Beck himself recognised this limitation. Since K is bounded below by 1, the best we
can hope to achieve by this method is l0 = 95.

Beck used the value K ≈ 9, taken from the first version Spencer gave of his theorem.
With the proof of Beck’s theorem corrected, this gives the value l0 = 851. Had Beck used
K ≈ 5.32, the best value given by Spencer, he would have found l0 = 503.

5.6 Further Improvements

Kai-Uwe Schmidt has calculated a value of K ≈ 3.65 (personal communication), using a
refinement of Spencer’s technique. This, on its own, improves the value of l0 to 345.

He has very kindly agreed to allow us to use the following lemma and his outline of the
proof. This lemma is an improvement of Lemma 5.3.4 above. The overall strategy of the
proof is as already given for Lemma 5.3.4, and we will be able to refer to that proof for some
of the details. Other details are from [1], p. 188. The function Ψ is as defined just before
Lemma 5.3.4.

Lemma 5.6.1 (Schmidt). Let t be real, with Ψ(t) < 1/e, and define

h = −(1−Ψ(t)) log2(1−Ψ(t))−
∞∑
s=1

Ψ ((2s− 1)t) log2 Ψ ((2s− 1)t) .

Let
Li(x) = ai1x1 + · · ·+ airxr, i = 1, . . . , n,

be a set of n linear forms in r variables, with r ≤ n, and with real coefficients of absolute
value at most 1.
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Then, if r is large enough, and

h ≤ r

(2 log 2)n
, (5.6.1)

there is some u = (u1, . . . , ur) ∈ {−1, 0, 1}r such that

|{k : uk = 0}| ≤ r

(
1−

√
(2 log 2)hn

r

)

and
|Li(u)| ≤ t

√
r

for each i.

Let u be random, distributed uniformly on {±1}r, and set

bi = Li(u)

for each i ∈ {1, . . . , n}. Let ci be the closest integer to |bi|/(2t
√
r), so

ci =
⌊
|bi|

2t
√
r

+
1
2

⌋
.

The entropy function in this context is defined to be

H(ci) = −
∞∑
s=0

P [ci = s] log2 P [ci = s] .

By 5.3.5,

P [ci = 0] = P
[
|Li(u)| < t

√
r
]
≥ 1−Ψ(t),

and

P [ci = s] = P
[

2s− 1
2
≤ |bi|

2t
√
r
<

2s+ 1
2

]
≤ P

[
|Li(u)| ≥ (2s− 1)t

√
r
]

≤ Ψ((2s− 1)t)

for s ≥ 1, if r is large enough. The function x log2 x is decreasing for 1/e < x < 1, and from
our assumption that Ψ(t) < 1/e, we have that 1−Ψ(t) > 1/e. Therefore,

H(ci) ≤ h.
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Since entropy is subadditive, we have

H(c1, . . . , cn) ≤
n∑
i=1

H(ci) ≤ nh.

If a discrete random variable X assumes no value with probability greater than 2−v, then
H(X) ≥ v. Therefore, some particular value of (c1, . . . , cn) must have probability at least
2−nh. This implies that there is some set A ⊂ {±1}r, on which (c1, . . . , cn) is constant, and
so that

|A| ≥ 2r−nh. (5.6.2)

The binary entropy function was defined in Section 5.3, for 0 ≤ q ≤ 1, as

H(q) = −q log2 q − (1− q) log2(1− q), 0 < q < 1,

and
H(0) = H(1) = 0.

On examining the derivative of the difference between the sides, we see that

H(
1
2
− q) ≤ 1− 2

log 2
q2

for −1/2 ≤ q ≤ 1/2 (with equality only when q = 0).
Putting

δ =
1
2
−
√
hn log 2

2r
,

we get

H(δ) < 1− hn

r

as long as condition (5.6.1) of the lemma holds. Now, from (5.6.2) and (5.3.1), we have

|A| ≥ 2rH(δ) ≥
bδrc∑
k=0

(
r

k

)
.

This implies, by Kleitman’s theorem, that

diam A ≥ 2δr.

From here, the argument follows the same lines as the conclusion of the proof of Lemma
5.3.4 (page 47).

Now it is relatively straightforward to show that h satisfies condition (5.6.1) of the
lemma, as long as t is chosen large enough. We can use the estimates of Section 5.3 to do
this. As in that section, we can show that an iteration, choosing suitable successive values
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of t, converges and gives the K of Spencer’s theorem (Theorem 5.1.3). Finally, we can
compute a value for K.

Schmidt (personal communication) has carried out the iteration, using the successive
values

t = 2.9, 3.8, 4.7, 6.

In this way he has shown K ≈ 3.65. It is immediate, from (5.2.1) of Theorem 5.2.1, that

l0 = 345.

Schmidt has pointed out that the constant 4
√

2π in Lemma 5.2.1 can be improved in
two ways. First, instead of splitting the complex coefficients of the linear forms into their
real and imaginary parts, one can look at projections on lines through the origin. Second,
one can seek to use a tighter version of the Bernstein inequality. These techniques may very
well improve the value of l0 even more than the refinement of Spencer’s work.
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Appendix

Open Questions

In the study of the normality of numbers, the main open question is generic: are any of the
familiar irrational constants such as π, e, log 2, and

√
2 normal in any base? This question

seems to be harder than questions of irrationality and transcendence.
When it comes to strong normality, the subject is very much open for exploration. What

numbers, known to be normal, are also strongly normal? Can a computable construction of
a strongly normal number be given?

The subject of modular normality is also wide open. We wonder whether our theorem on
base-r normality modulo q can be extended to the case q < r, possibly with some additional
condition. Is α necessarily normal in the base r if {brnαc} is uniformly distributed modulo
Z? There are various classes of sequences known to be uniformly distributed modulo Z (see,
for example, [22]); are any of these normal modulo Z? If “almost all” is suitably defined,
we conjecture that almost all integer sequences are normal modulo Z.

The premier question about flat sequences of polynomials is Littlewood’s problem: do
there exist flat sequences of polynomials with ±1 coefficients?

While it is clear that Beck’s approach cannot reach the Littlewood problem, we do
wonder how close this approach can get. Can we improve Spencer’s constant, perhaps by
placing suitable constraints on the systems of linear forms? How far can we improve on
Beck’s method itself?

The method of approximation by triangles has to stop at third roots of unity. We are
led to wonder whether there may be some other approximation technique, different from
Beck’s, that would allow us to connect Kahane’s result to Littlewood’s question.
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