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Abstract 

Juvenile Idiopathic Arthritis (JIA) is the most common rheumatic disease of childhood.  

Our objective is to predict the results of remission so that those children who are likely to 

experience poor remission outcomes could benefit from early aggressive treatment.  

Many classification techniques could provide either a binary prediction or an estimated 

probability of remission.  However, parents would like to know more specifically about 

the remission outcomes of children similar to their own.  In this project, we propose a 

supervised clustering method that provides this information.   

Inspired by the basic idea of supervised principal component analysis, we perform 

supervision by selecting and/or weighting explanatory variables differently depending on 

their associations with the class response.  Our supervised clustering method is applied 

to JIA data and to data simulated with known properties.  Our method is shown to be 

competitive with an existing supervised clustering method, classification trees and 

random forests in terms of out-of-sample misclassification rates. 

Keywords:  Variable weighting; logistic regression; categorical; classification tree; 
random forest; SRIDHCR 
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1. Introduction 

1.1. Overview of Juvenile Idiopathic Arthritis 

Juvenile Idiopathic Arthritis (JIA) is the most common rheumatic disease of 

childhood (Hashkes and Laxer 2005).  JIA is a chronic disease characterized by 

persistent joint inflammation and causes much disability.  “Juvenile” points out that the 

symptoms appear before the patient is aged 16 years, and “Idiopathic” means the 

causes of disease are unknown.  JIA affects about 80-90 per 100,000 children.  It 

consists of several subtypes, and the chances of remission vary widely depending on 

the subtype.   

Treatment options for children with JIA have increased dramatically in recent 

decades, but along with these options come different risks and side effects.  Parents 

need to decide whether to take a conservative, less risky approach to treatment, or be 

more aggressive, but with greater risk.  Unfortunately, most parents have little specific 

knowledge of the expected course of the disease, treatment response and risk of side 

effects to their child.  For parents to make treatment decisions better on newly 

diagnosed children, it would be helpful to provide them with their child’s predicted 

chance of remission so that those children who are likely to experience poor remission 

outcome could benefit from early aggressive treatment.  

1.2. Objective 

In this research, several Canadian Institutions of Health Research (CIHR)—

funded JIA cohorts, such as the Research in Arthritis in Canadian Children (ReACCh) 

and the Biologically-Based Outcome Predictors in JIA (BBOP), collected data on disease 

status and demographic information on recently diagnosed patients.  This project will 

focus on the disease remission, since it is the top priority outcome chosen by patients’ 
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families.  Our objective is predicting whether a child will experience poor or good 

outcomes, as measured according to whether the JIA is in remission.  This is a 

classification question.   

There are many classification techniques that can provide predicted outcomes for 

classification problems (Hastie, Tibshirani, and Friedman 2009).  However, these 

typically provide either a binary prediction or an estimated probability of remission.  It 

may be easier for parents to understand statements like, “your child is similar to _ other 

children, _ % of whom experienced remission when treated with _.”  A classification tree 

(Breiman, 1984) is the well-established classification technique that creates predictions 

by grouping subjects in this manner.  However, classification trees are notoriously 

unstable and can produce a totally different tree with just a small change in data.   

Alternatively, we could treat this problem as a clustering question, in which a 

child belongs to a cluster of similar children based on his/her explanatory variables.  

Then we could estimate the probability of remission in this cluster.  Unfortunately, since 

clustering is unsupervised, explanatory variables that contribute most to forming clusters 

may not be highly related to the outcome.   

To solve this problem, we develop a supervised approach that makes use of a 

measured outcome to “guide” clustering.  The new supervised clustering technique we 

are developing is similar to supervised principal component analysis (Bair et al. 2006).  

We select those variables that have relative high associations with the outcome, and 

apply a clustering algorithm to these selected variables.  Optionally, we can weight 

variables’ influence on the clustering according to the strength of their association with 

the outcome.  We expect our supervised clustering method will have competitive 

performance for predicting outcomes compared to classification trees, and also provide 

more stable results. 

1.3. Outline 

This project is organized as follows.  In Chapter 2, we review some basic 

concepts of classification and clustering, and introduce an existing supervised clustering 

algorithm.  Chapter 3 mainly discusses the framework of our supervised clustering 
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method and how to choose tuning parameters.  In Chapter 4, we compare our method 

with the existing supervised clustering method, a classification tree, and a random forest 

on the JIA data.  We also try these methods on other data sets with multiple class 

response (i.e., not binary).  In Chapter 5, simulation studies based on the JIA data are 

presented and discussed.  Chapter 6 concludes the whole project and suggests future 

work. 



 

4 

2. Review of Classification and Clustering 

In machine learning, there are two types of problems distinguished by whether 

there is an output variable in the data: supervised learning and unsupervised learning 

(Hastie, Tibshirani, and Friedman 2009).  A supervised learning algorithm analyzes 

training data and produces a function of explanatory variables to predict the output 

variable.  The type of output variable leads to two distinct problems: regression is used 

for predicting numerical output, while classification is used for predicting categorical 

output.  In unsupervised learning, there is no target variable that we are trying to predict. 

Instead, we try to explore the hidden structure of explanatory variables, such as 

searching for clusters or reducing dimensionality (e.g., principal component analysis).  In 

this chapter, the basic concepts and common methods of classification and clustering 

are described.  Moreover, a “supervised clustering” method is introduced that uses an 

output variable to help inform the clustering process. 

2.1. Classification 

In a classification problem, the population is divided into c groups, called 

“classes”, and the goal is to identify any observation’s class based on some explanatory 

variables.  A sample is taken, consisting of observations (also called “items”) whose 

class memberships are known.  A rule or function that implements classification is fit to 

the data and is known as a classifier.  There are many attributes that are desired in a 

would-be classifier, such as accuracy, speed, and comprehensibility.  Accuracy is 

generally the most essential concern at least in small or moderately sized data sets.  

The most widely used measure of accuracy is misclassification rate: 

misclassification  rate =
the  number  of  misclassified  observations

the  total  number  of  observations
  , 
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where an observation is “misclassified” if its predicted class does not match its known 

class. 

There are several well-established classification procedures, such as linear 

discriminant analysis, quadratic discriminant analysis, and logistic regression, which are 

still used as staple solutions for classification (Hastie, Tibshirani, and Friedman 2009).  

All of these methods assume that either the form of the underlying joint density of 

explanatory variables is known, or the exact relationship between the response and 

explanatory variables is known except for the values of some parameters. However, in 

real problems, this assumption does not always hold.  In particular, real applications 

often consist of a mix of numerical and categorical variables.  Therefore, some 

nonparametric (also called distribution-free) classification procedures have been 

introduced, which can be used without assuming the form of joint density of explanatory 

variables.  Examples include K-nearest neighbour, naïve Bayes, neural networks, and 

classification trees (Hastie, Tibshirani, and Friedman 2009).  Among these methods, the 

classification tree is commonly used, especially when we need to explain the results to 

non-statisticians, due to the easy interpretability of its structure.  

A popular tree-based method is classification and regression trees (CART), 

which was introduced by Breiman (1984).  Recursive partitioning is the key to finding a 

decision tree in CART.  It is a recursive process of splitting each subset of data, called a 

“node”, into two offspring nodes.  The starting point of a classification tree is called the 

root node, consisting of all the observations in the data.  A split is determined by a 

condition on the value of a single variable that improves misclassification rate the most.  

Observations whose variable satisfies the condition are grouped into one offspring node, 

while the remaining observations are grouped into the other offspring node.  A node that 

is split into two offspring nodes is called a nonterminal node.  When a node is no longer 

split, it is called a terminal node.  Each observation falls into a particular terminal node in 

the end.  Theoretically, we can keep splitting a tree until each terminal node contains a 

single observation.  But usually, a lower limit on the number of observations in a node is 

applied to stop splitting and prevent over-fitting.  Sometimes, the tree is still too large 

even when the stopping rule is applied. Then some branches of the tree are pruned 

according to how much they can improve the prediction of classes per added node.  

After pruning, the observations in each class are counted at every terminal node, and 
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the most common class in the node is assigned to be the predicted value for that node.  

As an illustration of a tree structure, we apply classification tree to Pima Indians 

Diabetes data set (http://astro.temple.edu/ ~alan/pima.indians.diabetes3.txt).  The graph 

of the classification tree is in figure 2.1.  

 

Figure 2.1 Classification tree for predicting diabetes status of 266 Pima Indians: 
0 for normal and 1 for diabetes.  At each node, there is an 
associated question on an explanatory variable. An observation is 
assigned to the left branch if the answer is “yes”, to the right branch 
if the answer is “no”.  Finally, the majority class is assigned as the 
class label of each terminal node.  For example, the left-most 
terminal node consists of subjects with glucose < 127.5 and 
pedigree < 0.6825.  There were 130 subjects in class “0”, 16 in class 
“1”, so the node is assigned to class “0” 
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There are several advantages of classification trees.  First, they usually have 

good comprehensibility.  If a tree is not too large, the decision tree graph gives us a 

visual explanation of the results.  It is very easy to interpret, even for non-statisticians.  

Also, it is applicable for both continuous and categorical explanatory variables.  These 

features make it an appealing candidate technique for our JIA problem since there are 

many categorical variables in the JIA data and the goal is to produce a classifier that 

parents can understand. 

Even though classification trees provide us with easily interpreted decision tree 

structures, there are still some drawbacks of this method.  First, even a small change in 

the data can at times cause large changes in the tree.  For example, adding or deleting 

one observation can change the variables or locations of splits on a node, including the 

root node, thereby affecting all subsequent splits involving those data.  Also, sometimes 

a tree might get too large even with some pruning.  A complex tree structure is no longer 

easy to understand. 

Random forest (Hastie, Tibshirani, and Friedman 2009) is a useful algorithm to 

reduce the instability of a classification tree by constructing a large number of trees and 

combining their predictions.  Suppose there are n items in the data and each of them 

contains p explanatory variables.  Before constructing a classification tree, n items are 

randomly sampled from the data with replacement.  This “resample” becomes the data 

set on which the tree is grown.  Any unsampled items, called out-of-bag (OOB) data, are 

used to test how well the tree does with classifying.  Instead of selecting a best split from 

all p explanatory variables at each node, a random forest grows trees by randomly 

selecting 𝑚 < 𝑝 explanatory variables as candidate variables at each node.  After a 

classification tree is built, items in the OOB data are assigned to predicted classes 

based on the tree.  This process is repeated a large number of times.  In each repetition, 

a different set of OOB data are predicted by the tree grown on a different resample.  

Thus, a given item gets predicted numerous times by trees in different repetitions.  In the 

end, each item is assigned to its most frequently predicted class.  While a random forest 

often decreases the variability of a classification tree considerably, it cannot give us an 

easily interpreted tree structure anymore. 



 

8 

2.2. Clustering 

2.2.1. General concepts 

The task of clustering is to gather items into different groups called “clusters”, 

such that items in the same cluster are more similar to each other than to those in other 

clusters.  The goal of clustering looks similar to that of classification, but there is a major 

difference.  Clustering is unsupervised—we do not have a measured response that 

identifies the group to which an observation belongs.  Instead, methods of clustering 

items depend upon how similar the items are to each other.  Similar items are assigned 

to the same cluster, while remaining items form additional clusters.  There is no 

predetermined number of clusters into which a population should be partitioned. 

The criterion of measuring how far apart two items are is called dissimilarity. Let 

𝑥! = (𝑥!!,… , 𝑥!")! and 𝑥! = (𝑥!!,… , 𝑥!")! be sets of p explanatory variables on items i 

and j,   respectively.  The dissimilarity between 𝑥! and 𝑥!, 𝑑(𝑥! , 𝑥!), usually satisfies the 

following three properties: 

1. 𝑑(𝑥! , 𝑥!) ≥ 0 

2. 𝑑 𝑥! , 𝑥! = 0 

3. 𝑑 𝑥! , 𝑥! = 𝑑(𝑥! , 𝑥!) 

There are several ways to measure dissimilarity.  The most commonly used is 

Euclidean distance: 

𝑑 𝑥! , 𝑥! = (𝑥!" − 𝑥!")!
!
!!!

! !
. 

In this paper, we use Euclidean distance as the default measurement for dissimilarity.   

Intuitively, explanatory variables with relatively large variation have greater 

contribution to the distance measurement than those with less variability, thus they 

greatly influence the clustering. In order to let every explanatory variable make equal 

contribution to the distance measurement, we should first standardize all the variables to 

have equal variance (i.e., 1).  Generally they are also centered to have mean zero 

although this is not necessary. 
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There are two basic types of clustering algorithms: hierarchical and non-

hierarchical. 

2.2.2. Hierarchical clustering 

Strategies for hierarchical clustering consist of two types: agglomerative and 

divisive.  Agglomerative clustering algorithms start by treating each item as its own 

cluster.  Two clusters are combined into one larger cluster in successive steps until all 

items are in one cluster.  Divisive clustering algorithms do the opposite, performing like a 

tree.  At beginning, they treat all items as members of a single cluster; then recursively 

split one of the existing clusters into two new clusters until each item is its own cluster. 

In agglomerative algorithms, merging occurs between the two clusters with the 

smallest between-cluster dissimilarity, whereas in divisive algorithms, splitting occurs 

between the two clusters with the largest between-cluster dissimilarity.  There are 

several possible ways to measure distance between clusters that contain more than one 

observation, such as single linkage, complete linkage, and average linkage.  There are 

also methods for selecting an appropriate number of clusters.  See Izenman (2008) for 

details. 

2.2.3. Non-hierarchical clustering 

Non-hierarchical clustering methods, also called partitioning methods, 

predetermine the number of clusters, K, and find some “optimal” partitioning of the data 

into K clusters. There are several popular non-hierarchical clustering methods, such as 

K-means, K-medoids, and PAM.  Next, we discuss the most popular method, K-means, 

which will also be used in our supervised clustering algorithm in Chapter 3. 

The framework of the K-means algorithm is as follows: 

1. Determine a K, and choose K items in the data to be the initial “centers” for the 

algorithm. 

2. Assign each item to a cluster according to which of the centers is nearest 

(distance is usually computed using Euclidean dissimilarity). 
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3. For each cluster created in Step 2, compute its current p-dimensional mean point 

(called a centroid). 

4. Re-assign each item to the cluster whose centroid is nearest, and recalculate the 

centroids for each cluster. 

5. Repeat Step 4 until no more items change clusters. 

The final assignment to clusters may vary with different initial points.  Therefore the K-

means algorithm is run several times, and the final assignment chosen is the one with 

minimum sum of within-cluster distance: 

𝑆𝑊𝐷 = 𝑑 𝑥! , 𝑥!!:! ! !!
!
!!!   

where 𝑥! is the centroid of cluster k, and 𝐶 𝑖  is the cluster assignment for 𝑥!. 

2.3. Existing supervised clustering methods 

The objective of classification is to predict the class of new observations, while 

clustering assigns observations into groups based on the underlying structure of 

explanatory variables.  They have different objectives, but both classification and 

clustering assign data into groups.  We may wonder how well a clustering method would 

work if we applied it to a classification problem.  Since there is now a class response 

helping to determine the clustering, the clustering algorithm becomes supervised.  The 

objective of supervised clustering is to produce clusters so that most of observations 

within a cluster are from the same class.  Eick et al. (2004) developed some algorithms 

for supervised clustering, among which “single representative insertion/deletion steepest 

decent hill climbing with randomized restart” (SRIDHCR) was recommended on the 

basis of prediction accuracy and algorithm efficiency on several data sets.  Thus, we will 

use SRIDHCR as an alternative method to compare with our proposed supervised 

clustering method.  The detailed structure of SRIDHCR is explained next. 

In the dataset, the number of observations is n, and the number of classes in the 

outcome measure is c. Most often, 𝑐 = 2.  Suppose we group the observations into K 

clusters, and C is a clustering solution mapping n observations into K clusters (i.e., 

assigning a number from 1,…,K to the n observations).  The class with the highest 
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frequency in a cluster is called the “majority class”.  All other classes in that cluster are 

“minority classes”.  Observations in one of the minority classes are called “minority 

examples”.  For any cluster, the majority class is the predicted class for all items in that 

cluster. 

In supervised clustering, the following two quantities are critical:  

• Class impurity, measured by the percentage of minority examples in the different 

clusters of a clustering (note that this is also the misclassification rate defined 

earlier); 

• Number of clusters, K. Although we can obtain a pure clustering (i.e., no impurity) 

by assigning observations into n clusters (K=n), this is meaningless in practical 

problems because it gives us no information about the similarities among 

observations and leads artificially to perfectly pure clusters.  In general, we like to 

keep the number of clusters low to enhance interpretation of the clusters.  

In particular, Eick et al. (2004) use the following fitness function measured on a 

clustering: 

𝑞 𝐶 = 𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦 𝐶 + 𝛽 ∗ 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝐾  

where     𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦 𝐶 = #𝑜𝑓  𝑀𝑖𝑛𝑜𝑟𝑖𝑡𝑦  𝐸𝑥𝑎𝑚𝑝𝑙𝑒𝑠  𝑖𝑛  𝑐𝑙𝑢s𝑡𝑒𝑟𝑖𝑛𝑔  𝐶 /𝑛, 

𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝐾 =
!!!
!
,𝐾 ≥ 𝑐

0,𝐾 < 𝑐
, 

and 𝛽 0 < 𝛽 ≤ 2.0  determines the impact of the penalty for the number of clusters.  No 

rigorous justification was given in the paper regarding choice of the penalty coefficient 𝛽. 

Representative-based clustering aims to find a set of K representatives (i.e., 

items) that best characterize clusters in a dataset.  Clusters are created by assigning 

each object to the closest representative in a manner similar to K-means clustering.  

Representative-based supervised clustering algorithms seek to accomplish the following 

goal: find a set of representatives such that the clustering C obtained by using these 

representatives minimizes 𝑞 𝐶 .  
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In particular, the “single representative insertion/deletion steepest decent hill 

climbing with randomized restart” (SRIDHCR) algorithm is as follows: 

1. Randomly select a number of observations from the dataset as the initial set of 

representatives, called 𝑅𝐸𝑃.   

2. Create an initial clustering, 𝐶!, by assigning all remaining observations to the 

cluster of their closest representative within 𝑅𝐸𝑃, and compute the fitness function 

𝑞 𝐶! . 

3. For observation 𝑖 = 1,… , 𝑛, obtain a new set of representatives, 𝑅𝐸𝑃!, by either 

adding observation 𝑖  to 𝑅𝐸𝑃  if 𝑖 ∉ 𝑅𝐸𝑃 , or removing observation 𝑖  from 𝑅𝐸𝑃  if 

𝑖 ∈ 𝑅𝐸𝑃.  For each 𝑅𝐸𝑃!, create the clustering 𝐶! and compute the fitness function 

𝑞 𝐶! .  If 𝑞 𝐶! < 𝑞 𝐶!  for all 𝑖, the algorithm terminates.  Otherwise it continues to 

Step 4. 

4. For 𝑖!:  𝑞 𝐶!! = 𝑚𝑖𝑛! 𝑞 𝐶! , set 𝐶! = 𝐶!!, 𝑅𝐸𝑃 = 𝑅𝐸𝑃!!.  Then repeat Step 3. 

Like K-means clustering, this process can be sensitive to the choice of initial points in 

𝑅𝐸𝑃.  Usually, we run this process several times, and report the best clustering with 

minimum value of 𝑞 𝐶! . 
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3. Our Supervised Clustering Method 

When developing a supervised clustering method, a challenging issue is how to 

use the target class response to supervise the clustering algorithm.  In the 

representative-based supervised clustering algorithms described in Section 2.3, 

supervision is imposed using the impurity of a clustering to guide the choice of clustering 

directly.  Inspired by the basic idea of supervised principal component analysis (Bair et al. 

2006), we propose a new supervised clustering method in which supervision is 

performed by weighting the explanatory variables differently, depending on their 

univariate associations with the class response.  In this chapter, supervised principal 

component analysis is introduced and the framework of our supervised clustering 

method is described in detail. 

3.1. Supervised Principal Component Analysis 

In regression modeling, we sometimes face high-dimensional data in which the 

number of explanatory variables is much more than the number of observations.  When 

there are many highly correlated variables in the data, then the actual information 

contained in the data can often largely be explained in a lower-dimensional subspace.  

Principal component analysis (PCA) is a popular dimension-reducing technique that 

seeks to project the data onto a lower-dimensional subspace indexed by “principal 

components” without losing important information.  Often, most of the variability of data 

can be accounted for by the first few principal components. Following a PCA, regression 

can be carried out using the first few principal components as the explanatory variables.  

However, this does not always work well. 

Since PCA is based only on the internal structure of the explanatory variables, 

there is no guarantee that the principal components with largest variation are also good 

predictors of the response variable.  If they are not, then the regression based on the 
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first few principal components does not predict responses well.  In order to solve this 

problem, Bair et al. (2006) presented a revised version of PCA, called supervised 

principal component analysis (SPCA).  Here is the basic structure of SPCA: 

1. Compute univariate linear regression coefficients for the response on each 

variable separately. 

2. Select those variables whose absolute value of regression coefficient is greater 

than a threshold 𝜃, and use these variables to form a new reduced data matrix. 

3. Perform PCA on the new reduced data matrix. 

4. Use the first few principal components in a regression model to predict the 

response. 

Since SPCA identifies variables with high correlations with the response prior to 

performing PCA, the first few principal components are more likely to have strong 

correlation with the response variable than without screening.  Therefore, SPCA often 

predicts the response better than PCA does. 

Conventional clustering algorithms gather items into clusters only according to 

explanatory variables, which is similar to how PCA is normally conducted.  The items 

within each cluster have more similar characteristics to one another than to items in 

other clusters.  However, when there is a class response, these similar items within each 

cluster may not be in the same class because clustering algorithms do not use the 

information about the class response.  In our new supervised clustering method, we use 

the class response to supervise the clustering algorithm, in a process similar to SPCA: 

choose those explanatory variables highly associated to the class response to conduct a 

conventional clustering algorithm.  

3.2. Proposed Supervised Clustering Method 

SPCA works only when all explanatory variables are continuous.  In our 

algorithm, we improve the first step of the SPCA algorithm so that it can be applied to 

data with both continuous and categorical explanatory variables, both of which are 

present in the JIA data. 
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The framework of our proposed supervised clustering method is as follows: 

1. Fit a logistic regression of the class response on each explanatory variable 

separately, and use likelihood ratio tests to measure the associations between 

each explanatory variable and the response. 

2. Select those explanatory variables with p-value from the likelihood ratio test 

smaller than a threshold 𝜌, forming new data set 𝑋∗. 

3. Manipulate 𝑋∗  so that they are in appropriate form for a clustering algorithm. 

Create dummy variables to replace categorical variables, and (optionally) weight 

variables differently according to their associations with response. 

4. Perform K-means algorithm and assign class labels based on the majority class 

within each cluster. 

More detailed information on each step is described in this section. 

3.2.1. Association between explanatory variables and response 

Logistic regression is a popular regression analysis tool used for predicting the 

outcome of a categorical dependent variable according to one or more explanatory 

variables.  Usually, “logistic regression” refers specifically to the problem in which the 

dependent variable is binary, such as our JIA problem.  For a binary response Y and 

vector of explanatory variables 𝑋 = 𝑥!, 𝑥!,… , 𝑥! , let 𝜋(𝑥) = 𝑃(𝑌 = 1|𝑋 = 𝑥) .  The 

logistic regression model is  

𝑙𝑜𝑔𝑖𝑡(𝜋(𝑥)) = 𝑙𝑜𝑔
𝜋(𝑥)

1 − 𝜋(𝑥)
= 𝛼 + 𝑥𝛽 

where 𝛼 is the intercept and 𝛽 is a 𝑝×1 vector of regression coefficients.  Equivalently,  

𝜋(𝑥) =
𝑒𝑥𝑝(𝛼 + 𝑥𝛽)

1 + 𝑒𝑥𝑝(𝛼 + 𝑥𝛽)
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Categorical explanatory variables need to be converted into numerical values 

prior to fitting the logistic regression model.  For instance, suppose v is a categorical 

variable with m levels.  Then we create m-­‐1 dummy variables  

𝑥!" =
1, 𝑖𝑓  𝑣! = 𝑗𝑡ℎ  𝑙𝑒𝑣𝑒𝑙
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 , 𝑖 = 1,… , 𝑛;   𝑗 = 1,… ,𝑚 − 1 

Logistic regression can be generalized to deal with a multicategory dependent 

variable.  This is called multinomial logistic regression.  Let Y be a categorical response 

with J categories, and 𝜋!(𝑥) = 𝑃(𝑌 = 𝑘|𝑋 = 𝑥) with 𝜋!
!
!!! = 1.  Logistic models pair 

each response category with a baseline category, often the most common one or the 

first or the last one.  If the last category is chosen as the baseline, then the J-1 logistic 

regression models are 

𝑙𝑜𝑔
𝜋!(𝑥)
𝜋!(𝑥)

= 𝛼! + 𝑥𝛽! , 𝑘 = 1,… , 𝐽 − 1  

where 𝛼!  and 𝛽!  are intercept and vector of regression coefficients corresponding to 

response k, respectively. Equivalently,  

𝜋!(𝑥) =
𝑒𝑥𝑝(𝛼! + 𝑥𝛽!)

1 + 𝑒𝑥𝑝(𝛼! + 𝑥𝛽!)
!!!
!!!

   , 𝑘 = 1,… , 𝐽 − 1 

and 

𝜋!(𝑥) =
1

1 + 𝑒𝑥𝑝(𝛼! + 𝑥𝛽!)
!!!
!!!

 

To test the significance of each variable’s association with the response in a 

proposed model, we conduct likelihood ratio tests.  For each variable, we could set 𝐻!: a 

model with only intercept(s) versus 𝐻!: proposed model with intercept(s) and slope(s).  

In other words, it tests whether there is a significant improvement in fit by including an 

explanatory variable or set of explanatory variables in the model.  The test statistic is 

defined as 

𝐷 = −2 ℓ𝓁! − ℓ𝓁!   
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where ℓ𝓁! and ℓ𝓁! are log-likelihood of the proposed and null model, respectively.  The 

test statistic D approximately follows a chi-square distribution with degrees of freedom 

equal to the number of parameters of proposed model minus the number in the model 

under 𝐻!. 

In our supervised clustering method, we fit a logistic regression model with only 

one explanatory variable each time, and use the likelihood ratio test of significance for 

the explanatory variable.  (Note that we test a set of dummy variables corresponding to a 

single categorical variable together in one step.)  The stronger the association between 

an explanatory variable and the response, the smaller the p-value of its likelihood ratio 

test will be.  As in the SPCA, we select those explanatory variables with p-value smaller 

than a threshold 𝜌, forming 𝑋∗ from all selected variables.  Notice that choosing 𝜌 = 1 

includes all explanatory variables in 𝑋∗.  Otherwise, 𝜌 is a tuning parameter that we need 

to specify. 

3.2.2. Transformation of categorical variables 

After obtaining 𝑋∗, we want to run a clustering algorithm on it.  However, there is 

a serious issue we need to consider: how to cluster with categorical variables?  As 

mentioned in Section 2.2, all the clustering algorithms assign items into clusters based 

on some distance measurement.  There is no natural definition of distance inherent in a 

categorical variable.  Therefore, categorical variables need to be recoded so that they 

can also make the same contribution to a distance measurement as the numerical 

variables do.  

Categorical variables can be mainly classified into two types: nominal and ordinal.  

Considering nominal variables first, the Euclidean distance between any two units with 

different categories should be the same, while the distance between units with the same 

category should be zero.  To achieve this goal, we create one dummy variable for each 

level of the categorical variable.  In this way, there are only two possible values of 

distance: one for matched categories, and the other for unmatched categories.  For 

example, a nominal variable with three categories (A, B, C) is recoded by three dummy 

variables in Table 3.1.  If one unit has level A and another has level B, the squared 
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Euclidean distance between these two units is 2.  If one unit has level A and another has 

level C, the squared Euclidean distance is also 2.   

Table 3.1 Recoding nominal variable with dummy variables 

Nominal variable Dummy 1 Dummy 2 Dummy 3 
A 1 0 0 

B 0 1 0 

C 0 0 1 

 

For an ordinal variable, we assume the distances between adjacent categories 

are the same.  Then the distances between nonadjacent categories are larger than 

between adjacent categories, and there are m different distances, including 0, where m 

is the number of categories.  We transform an ordinal variable with m levels into m-­‐1 

dummy variables. Table 3.2 presents an example of an ordinal variable with 4 levels.  

For example, the squared Euclidean distance between Excellent and Good is 1, while 

the squared Euclidean distance between Excellent and Poor is 3. 

Table 3.2 Recoding ordinal variable with dummy variables 

Evaluation Dummy 1 Dummy 2 Dummy 3 
Excellent 1 1 1 

Good 0 1 1 

Fair 0 0 1 

Poor 0 0 0 

 

3.2.3. Variable weighting 

Like conventional clustering algorithms, we should first standardize all the 

variables in some way.  For numerical variables, we rescale variables so that they have 

mean equal to zero and standard deviation equal to one.  Suppose 𝑥!! and 𝑥!! are two 

independent values randomly chosen from the standardized numerical variable j.  Using 

Euclidean distance, the contribution of a numerical variable j to the distance can be 

measured by 𝑥!! −   𝑥!!
!
.  Now, calculate the expected value of 𝑥!! −   𝑥!!

!
: 
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𝐸 𝑥!! −   𝑥!!
! = 𝑉𝑎𝑟 𝑥!! −   𝑥!! + 𝐸 𝑥!! −   𝑥!!

! = 𝑉𝑎𝑟 𝑥!! + 𝑉𝑎𝑟 𝑥!! = 2 

Next, consider categorical variables.  There seems to be no straightforward 

method to standardize the recoded dummy variables. Suppose there is a nominal 

variable v with m categories, and we recode it with m dummy variables 𝑧!,… , 𝑧!.  If we 

randomly select two observations 𝑣!  and 𝑣!  from 𝑣 , and we let the corresponding 

dummy variables be 𝑧!!,… , 𝑧!! ! and 𝑧!",… , 𝑧!! !, then the contribution of the nominal 

variable to the distance can be measured by 𝑧!! − 𝑧!! !!
!!! .  We want the expected 

distance between two randomly selected values of a categorical variable to be the same 

as that of the standardized numerical variable. Now, calculate the expected value of 

𝑧!! − 𝑧!! !!
!!! : 

𝐸 𝑧!! − 𝑧!! !!
!!! = 𝑃 𝑦! ≠ 𝑦! ∗ 2 = 2 ∗ 1 − 𝜋!!!

!!! , 

where 𝜋!  is the probability of kth category. In order to make 𝐸 𝑧!! − 𝑧!! !!
!!! =

𝐸 𝑥!! −   𝑥!!
!
, we need to standardize dummy variables by dividing by 1 − 𝜋!!!

!!! .  

In practice, we need to use sample proportions instead of 𝜋!.  As an example, the 

dummy variables in Table 3.1 are now standardized in Table 3.3 

Table 3.3 Recoding nominal variable with standardized dummy variables 

Nominal variable Dummy 1 Dummy 2 Dummy 3 

A 
!

!! !!!!!!!!!!!
 0 0 

B 0 
!

!! !!!!!!!!!!!
 0 

C 0 0 
!

!! !!!!!!!!!!!
 

 

For ordinal variables, we can use the same approach to standardizing as we do 

for a nominal variable.  

After standardizing all the explanatory variables, we could run a clustering 

algorithm on selected variables with equal weight.  However, since each explanatory 

variable has different relationship with the response, their influences on forming clusters 

should not be the same.  Even when we select only variables with small p-values, their 
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associations with the response may still be quite different.  For instance, two explanatory 

variables with p-value 0.05 and 10!! may have very different capacity for predicting 

class response. Therefore, we want to rescale each explanatory variable according to its 

predictive potential prior to clustering. This involves multiplying each selected, 

standardized variable by a constant depending on that variable’s association with the 

response.  The constant −𝑙𝑜𝑔(𝑝!), where 𝑝! is the p-value for variable 𝑗, seems to be a 

reasonable choice for the following reasons (see Figure 3.1): 

• −𝑙𝑜𝑔(𝑝) is a decreasing function of the p-value. The smaller the p-value is, larger 

the −𝑙𝑜𝑔(𝑝) is. 

• The range of variances produced by −𝑙𝑜𝑔(𝑝)  seems reasonable in that there are 

clear differences between important and less-important predictors, yet no 

extremely large standard deviations are produced. 

• The value of −𝑙𝑜𝑔(𝑝)  changes gently when p-value is greater than 0.2, so that 

such variables do not differ greatly in weight.  The value of −𝑙𝑜𝑔(𝑝)  changes 

sharply when p-value is near zero, so that small change of p-values near zero 

result in substantially different influence on the clustering. 

We notice that −𝑙𝑜𝑔(𝑝)   provides relatively much smaller multipliers to 

explanatory variables with large p-values than to those with small p-values.  Thus, 

weighting by the −𝑙𝑜𝑔(𝑝) is kind of like a screening for highly associated explanatory 

variables.  In addition, selecting explanatory variables according to some threshold 𝜌 is 

arbitrary.  A variable with a p-value just above the threshold would be excluded, while 

one with a p-value just below the threshold would be selected.  In fact, these two 

explanatory variables may have no big difference in their predictive ability.  If we use 

−𝑙𝑜𝑔(𝑝)  weights without preselecting, this situation can be avoided.  Therefore, 

weighting variables directly without preselecting is an alternative procedure to the 

approach to variable selection used originally in Bair et al. (2006).  We therefore have 

four variants of our procedure: with or without variable selection, and with or without 

weighting.  In the simulation study in Chapter 5, we will compare several different 

weighting and selection combinations. 
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Figure 3.1 Curve of – 𝒍𝒐𝒈(𝒑) for 𝒑 ∈ (𝟎,𝟏) 

3.2.4. Perform K-means algorithm 

After variable screening, categorical variable transformation, and variable 

weighting, we get a new explanatory variable set 𝑋∗∗  that can be used within 

conventional clustering algorithms.  In our supervised clustering method, we choose to 

perform K-means algorithm on 𝑋∗∗, although a different clustering method could have 

been considered.  Before we conduct K-means algorithm, the number of clusters K 

needs to be determined.  This K is a tuning parameter that influences the performance of 

our method directly.  In next section, we will discuss how to find the optimal K. 

We run the K-means algorithm several times, and choose the clustering 

assignment that minimizes the sum of within-cluster distance.  Then for each cluster, the 

majority class of the cluster is assigned to be the predicted class for all items in that 

cluster.  
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3.3. Tuning parameters 

In our method, there are two tuning parameters that need to be determined: the 

threshold p-value 𝜌 and the number of clusters K.  We use two different methods to seek 

the optimal tuning parameters. 

3.3.1. Fitness function  

The basic objective of our supervised clustering method is grouping observations 

with the same class into the same clusters, and meanwhile keeping the number of 

clusters not too large.  The fitness function 𝑞 𝐶  used in SRIDHCR not only considers 

the performance of predicting class response but also provides a penalty on the number 

of clusters.  It seems also appropriate to measure the performance of our supervised 

clustering method.  Therefore, we would like to find optimal values of 𝜌 and K that 

minimize 𝑞 𝐶 .  More specifically, we predetermine several different combinations of 𝜌 

and K   (e.g., 𝜌 = 0.01, 0.05, 0.1, 0.2, 1.0;𝐾 = 1,… ,30 ), and perform our supervised 

clustering method on each combination separately.  In the end, we choose the 

corresponding 𝜌 and K that have the minimum value of 𝑞 𝐶 . 

However, there is a drawback to this fitness function.  As we mentioned in 

Section 2.3, no rigorous justification was given regarding choice of the penalty coefficient 

𝛽.  We need also predetermine the value of 𝛽.  Small 𝛽 tends to suggest a large K, while 

a relative large 𝛽 prefers a small number of clusters due to the heavy penalty on K.  

Thus, the choice of tuning parameters can be subjective.  A more objective method is 

needed. 

3.3.2. Cross-Validation 

Cross-validation is one of the most popular methods for estimating prediction 

error, and hence is often used for selecting tuning parameters (Hastie, Tibshirani, and 

Friedman 2009).  In an r-fold cross-validation, the data set is randomly partitioned into r 

roughly equal subsets (e.g., 10-fold cross-validation is most commonly used).  For each 

subset, a model is fit to the remaining 𝑟 − 1 subsets and the fitted model is used to 

predict the outcomes for the excluded subset.  After repeating this procedure on each 
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subset, every observation obtains a predicted value.  Then the overall prediction error 

can be computed comparing these predictions to the original data.   

Since cross-validation is randomized, the results are variable.  In order to obtain 

more reliable prediction error, we need to repeat the cross-validation procedure a few 

times and calculate the average prediction error.  Theoretically, the model with minimum 

average error should be chosen as the best model.  However, there are many other 

models whose average errors are very close to the minimum one.  Thus, a “1-SE” rule is 

often used with cross-validation, in which we choose the most parsimonious model 

whose average error is no more than one standard error above the error of the best 

model. 

In our problem, the cross-validation procedure is as follows: 

1. Randomly partition the data set into r equal subsets (we use 𝑟 = 10). 

2. Perform our supervised clustering method on 𝑟 − 1 subsets, and find the majority 

class in each cluster.  Then determine the cluster into which each observation of 

the remaining subset falls.  The predicted class response for each observation is 

the majority class of its cluster. 

3. For each single subset, repeat Step 2 to obtain predicted class response.  After 

obtaining predicted class response on every observation, compute the 

misclassification rate for the full sample. 

4. Repeat above steps several times for each different value of 𝜌 and K.  Then 

compute the average misclassification rates and their standard errors.  Select the 

combination of 𝜌 and K with minimum average value of misclassification rate.  We 

apply the “1-SE” rule when we select K.  As an example, Figure 3.2 shows how 

“1-SE” rule works. 
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Figure 3.2 Misclassification rates of cross-validation ±𝟏 standard error: 
misclassification rate reaches the minimum value at K=34; Using the 
“1=SE” rule, K=31 would be chosen 
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4. Examples to Compare Methods 

In this chapter, our supervised clustering method is applied to the JIA data and 

compared with SRIDHCR, a classification tree, and a random forest.  Since we use 

logistic models in the variable selection step in our method, we will also apply a stepwise 

logistic regression approach to the JIA data and compare it with our method.  In addition, 

these methods are also applied to other data sets with multiple class response. 

4.1. Description of JIA data 

Our JIA data consists of 269 children who suffered from Juvenile Idiopathic 

Arthritis, supplied by Dr. Jaime Guzman of BC Children’s Hospital.  The data consists of 

17 explanatory variables and 1 response.  Table 4.1 provides more detailed descriptions 

of each variable. 

Since parents may care mainly about whether their child can somehow achieve 

remission, we redefine a two-class response: no remission as one class and all the other 

three categories (all with some remission) as the other class.  Among all these variables, 

there are two variables with missing data: ESR_RES and S_ASIAN_ANY.  We need to 

handle these missing values before applying our supervised clustering method and other 

alternative methods on this data set.  The S_ASIAN_ANY variable has 95% missing 

data, so it contributes very little information.  We therefore eliminate this variable.  On 

the other hand, ESR_RES has only 30 missing values.  Because the missing rate is low, 

we used simple regression imputation to replace the missing data with surrogate values 

(Paul, 2002).  The regression imputation procedure is as follows: treat ESR_RES as 

response and the other 15 explanatory variables (excluding S_ASIAN_ANY) as 

predictors, and fit a linear model using all complete cases.  Then predict missing data 

based on the fitted linear model and replace the missing values with predicted values.  

This is performed prior to using any analytical methods. 
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Table 4.1 Description of JIA data 

Variable Name Type (levels) Description 

ESR_RES Numeric Erythrocite Sedimentation Rate (ESR) is a blood test that raises 
in response to inflammation 

DIAGNOSIS Categorical (10) Subtype of juvenile arthritis according to International League of 
Associations for Rheumatology 

PGADA Numeric Physician Global Assessment of Disease Activity (PGADA) as 
marked in a 10 cm line 

ANA_RES Categorical (4) Antinuclear Antibody (ANA) text is done in blood and used for 
classification and prognosis 

SEX Categorical (2) Patient's sex 

WRIST_ANY Categorical (2) Swelling of the wrist joint at time of enrolment 

HIP_ANY Categorical (2) Swelling of the hip joint at time of enrolment 

ANKLE_ANY Categorical (2) Swelling of the ankle joint at time of enrolment   

JOINTS_ 
SYMMETRIC 

Categorical (2) 
Swelling of the same joint in both sides of the body at enrolment 

ARTHRITIS Numeric Parent's overall opinion of how much arthritis is affecting the 
child as marked in a 10 cm line 

FIRST_N_ANY Categorical (2) First Nations ancestry 

CH_KO_JA_ANY Categorical (2) Chinese, Korean or Japanese ancestry 

S_ASIAN_ANY Categorical (2) South Asian ancestry 

BLACK_ANY Categorical (2) Black ancestry 

FHX_RH_DIS Categorical (2) History of rheumatic disease in a relative 

CHAQ_VISIT1_ 
CHAQ_score 

Numeric Child Health Assessment Questionnaire (CHAQ) score at 
enrolment, with higher number meaning more functional 
difficulties due to arthritis 

JAQQ_VISIT1_JAQ
Q_score 

Numeric Juvenile Arthritis Quality of Life Questionnaire (JAQQ) score at 
enrolment, with higher number meaning poor quality of life 

Response Categorical (4) Four categories: no remission; remission in six months; 
remission in twelve months with medication; remission in twelve 
months with no medication 
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4.2. Implement our supervised clustering method on JIA 
data 

As the first step of our supervised clustering method, the associations between 

explanatory variables and response are measured by the p-values of the likelihood ratio 

tests (see Table 4.2). 

Table 4.2 Associations between explanatory variables and response in JIA 
data (p-values of likelihood ratio test) 

Variable ANKLE_
ANY 

WRIST_
ANY 

JOINTS
_SYMM
ETRIC 

DIAGN
OSIS 

ESR_R
ES SEX ANA_R

ES 
JAQQ_s

core 

P-value 0.005 0.007 0.031 0.035 0.057 0.116 0.139 0.156 

Variable HIP_AN
Y PGADA CHAQ_

score 
CH_KO
_JA_AN

Y 
BLACK_

ANY 
ARTHRI

TIS 
FIRST_
N_ANY 

FHX_R
H_DIS 

P-value 0.173 0.239 0.284 0.474 0.601 0.638 0.703 0.981 

 

ANKLE_ANY and WRIST_ANY are most highly associated to the response, 

while FHX_RH_DIS does not seem to have any strong relationship to the response.  To 

select explanatory variables, we use thresholds 𝜌 = 0.05, 0.1, 0.2 .  The number of 

variables selected at each threshold is 4, 5, and 9, respectively.  𝜌 = 1 is used to include 

all the explanatory variables.  For each threshold, we run the algorithm both with 

– 𝑙𝑜𝑔(𝑝) weighting and without.  For each combination of threshold and weighting, the 

other tuning parameter, the number of clusters K, needs to be determined.  In order to 

maintain some interpretability of clustering, we choose K under 40.  We start with the 

fitness function method to select tuning parameters 𝜌 and K. 

At first, we predetermine the penalty coefficient of the fitness function, 𝛽 = 0.1, 

and run each combination of threshold, weighting, and 𝐾.  Figure 4.1 shows the curves 

of the fitness function, the impurity and the penalty term (𝛽 ∗ 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝐾 ).  In the right-

top graph (𝜌 = 0.05 and unweighted), we just try K fewer than 10, because there are 

only 15 different distances between observations for the four selected unweighted 

variables.  From all of the graphs, we can see that penalty term keeps increasing and 

impurity has an overall decreasing trend, as the number of clusters K increases.  Due to 
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the small predetermined value of 𝛽, the increase of the penalty term is generally less 

than the decrease of impurity.  Thus, the fitness also has a decreasing tendency as the 

number of clusters increases.  Under different thresholds, fitness functions reach 

minimum at relatively large K (between 32 and 37), and minimum values of fitness 

functions are very close.  Moreover, for the same threshold, weighting or not weighting 

variables gives very similar results. 

Next, we predetermine a larger value of the penalty efficient, 𝛽 = 0.3.  Figure 4.2 

shows that as the number of clusters increases, the penalty term increases and impurity 

has an overall decreasing trend, which is just the same as Figure 4.1.  However, we 

notice that the fitness functions reach minimum value at K=2, and then have an 

increasing trend.  This is because the increase of penalty term is larger than the 

improvement of impurity.  We list the optimal number of clusters, the minimum value of 

fitness function, and corresponding impurity and penalty term in Table 4.3, so as to 

select the optimal tuning parameter 𝜌 and K, and analyze the influence of different 

values of 𝛽. 

From Table 4.3, we can see that the smallest value of fitness function is 0.370 for 

𝛽 = 0.1.  Therefore, using the fitness function method with 𝛽 = 0.1, the optimal tuning 

parameters are: 𝜌 = 0.2  and 𝐾 = 36 , unweighted.  Meanwhile, we notice that the 

minimum values of fitness function with different 𝜌 are very close, which indicates the 

threshold 𝜌 does not have great influence on the value of fitness function.  To simplify 

the tuning parameter selection procedure, we might ignore the choice of 𝜌, and just use 

𝜌 = 1.  The feasibility of this behaviour will be examined in the simulation study in 

Chapter 5.  On the other hand, when 𝛽 = 0.3, the optimal tuning parameters are: 𝐾 = 2 

and 𝜌 = 0.05  or 0.1, unweighted.  As 𝛽  increases from 0.1 to 0.3, the penalty for 

increasing the number of clusters increases as well.  Consequently, the fitness function 

method will choose a smaller number of clusters as the optimal tuning parameter.  The 

results of fitness function method heavily depend on the choice of 𝛽, which makes it a 

very subjective method. 
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Figure 4.1 When 𝜷 = 𝟎.𝟏, the figures of fitness function for different thresholds 
𝝆 = 𝟎.𝟎𝟓,𝟎.𝟏,𝟎.𝟐, and 𝟏 
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Figure 4.2 When 𝜷 = 𝟎.𝟑, the figures of fitness function for different thresholds 
𝝆 = 𝟎.𝟎𝟓,𝟎.𝟏,𝟎.𝟐, and 𝟏 
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Table 4.3 Results of the fitness function method for selecting tuning 
parameters 

 𝜷 = 𝟎.𝟏 𝜷 = 𝟎.𝟑 

𝝆 Optimal 
K 𝒒 𝑪  Impurity(C) Penalty 

term 
Optimal 

K 𝒒 𝑪  Impurity(C) Penalty 
term 

0.05, 
weighted 32 0.379 0.346 0.033 2 0.409 0.409 0 

0.05, 
unweighted 2 0.401 0.401 0 2 0.401 0.401 0 

0.1, 
weighted 36 0.378 0.342 0.036 2 0.409 0.409 0 

0.1, 
unweighted 32 0.379 0.346 0.033 2 0.401 0.401 0 

0.2, 
weighted 37 0.374 0.338 0.036 2 0.409 0.409 0 

0.2, 
unweighted 36 0.370 0.334 0.036 2 0.420 0.420 0 

1,  
weighted 37 0.378 0.342 0.036 2 0.409 0.409 0 

1,  
unweighted 36 0.371 0.335 0.036 2 0.416 0.416 0 

 

Next, a less subjective method, cross-validation, is used to select the tuning 

parameters 𝜌 and K.  For the same combinations of 𝜌 and weighting, and for each K 

(from 2 to 40), we perform our supervised clustering method using cross-validation five 

times, and then record the average misclassification rates and their standard errors.  

Using 𝜌 = 0.05, and unweighted approach, there are only 15 distinct distances between 

observations.  The number of distinct distances could be less in each cross-validated 

fold.  Thus we try K fewer than 8 for this approach.  Figure 4.3 lists the cross-validation 

results for different 𝜌 and weighting.  In these graphs, misclassification rates decrease 

substantially as K increases at the beginning.  After that, as K increases, 

misclassification rates have increasing trends due to overfitting.  Applying “1-SE” rule, 

the optimal K for different 𝜌 are listed in Table 4.4.  We notice that 4 weighted cases 

have the same optimal K and the same corresponding misclassification rate 0.394.  As a 

result, the optimal tuning parameters are: 𝐾 = 3 and any 𝜌, weighted.  In addition, for the 
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same threshold 𝜌, weighting variables provides slightly lower misclassification rate than 

not weighting.    

After selected the tuning parameters, we run K-means algorithm and assign 

predicted class to each cluster.  The detailed results are not presented here.  

Table 4.4 The results of cross-validation method 

𝝆 weighted(Y/N) Optimal K CV Misclassification Rate 

0.05 
Y 3 0.394 

N 3 0.403 

0.1 
Y 3 0.394 

N 2 0.401 

0.2 
Y 3 0.394 

N 3 0.413 

1 
Y 3 0.394 

N 3 0.419 

 



 

33 

  

  

  

  

Figure 4.3 Misclassification rate V.S the number of clusters using cross-
validation  
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4.3. Comparison with other methods 

In this section, we apply SRIDHCR, stepwise logistic regression, a classification 

tree and a random forest to the JIA data, and compare their performances with our 

supervised clustering method. 

4.3.1. SRIDHCR on JIA data 

Since SRIDHCR is also based on Euclidean distance to assign clusters, it can 

only handle numeric explanatory variables.  We use the recoding method described in 

Section 3.2.2 to create sets of numerical variables out of each categorical variable.  We 

conduct the SRIDHCR algorithm five times for each different value of 𝛽 (0.1 and 0.3), 

and select the solution with minimum value of the fitness function. 

SRIDHCR selects the best clustering based on the same fitness function that we 

used for our supervised clustering method.  Thus, we list the results of these two 

methods using the same penalty coefficients for comparison in Table 4.5.  When 𝛽 = 0.1, 

the two methods choose similar number of clusters, but the impurity of SRIDHCR is 

much better than our method.  When 𝛽 rises to 0.3, SRIDHCR still chooses the number 

of clusters more than 30, while our method suggests 2 as the optimal number of clusters.  

Even though SRIDHCR provides better impurity, we cannot conclude that SRIDHCR will 

have better performance on classifying new data.  Because this impurity is measured 

within JIA data itself rather than on the new data, overfitting could happen.  

In order to check the performance of SRIDHCR on classifying new data, we use 

cross-validation to calculate a misclassification rate.  Moreover, cross-validation not only 

provides an estimate of the out-of-sample misclassification rate, but also gives an 

approach to select optimal 𝛽 .  For different values of 𝛽  (0.1, 0.2,… , 1) , we perform 

SRIDHCR using cross-validation with five repetitions, and then record the average 

misclassification rates and their standard errors.  We apply the “1-SE” rule (choose the 

largest 𝛽 whose misclassification rate is no more than one standard error above the 

minimum misclassification rate) to select optimal 𝛽  and record the corresponding 

misclassification rate.  The results are given in Table 4.6 and will be discussed in 

Section 4.3.2. 
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Table 4.5 Comparative performances of SRIDHCR and our supervised 
clustering method on JIA data 

 𝜷 = 𝟎.𝟏 𝜷 = 𝟎.𝟑 

 Optimal 
K 𝒒 𝑪  Impurity 

(C) 
Penalty 

term 
Optimal 

K 𝒒 𝑪  Impurity 
(C) 

Penalty 
term 

SRIDHCR 32 0.210 0.177 0.033 31 0.301 0.202 0.099 

Our Method 38 0.371 0.334 0.037 2 0.409 0.409 0 

4.3.2. Classification tree, random forest and stepwise logistic 
regression on JIA data 

In a classification tree, we use cross-validation to prune a tree, and compute the 

misclassification rate at the same time.  In a random forest, an analogous 

misclassification rate—“out of bag” (OOB) misclassification rate—can be computed, 

which also builds the classifier using part of the data and predicts on the rest of the data.  

In the stepwise logistic regression, we use forward selection to select the best logistic 

model, and then predict class response according to this best model.  The 

misclassification rate is also calculated by cross-validation.  We will record the cross-

validated misclassification rates of the classification tree, stepwise logistic regression, 

and our supervised clustering method and the OOB misclassification rate of random 

forest to compare their performance of predicting classes.  Moreover, we will calculate 

their corresponding 95% confidence intervals. 

The cross-validation procedure for pruning a classification tree is shown in Figure 

4.4.  Applying “1-SE” rule, the cross-validation suggests no split in the classification tree, 

which means classifying all the items into the majority classes.  After computing the out-

of-sample misclassification rate of random forest and stepwise logistic regression, we list 

all the results in Table 4.6 including SRIDHCR.  Applying cross-validation to SRIDHCR 

selects 0.8 as the optimal value of 𝛽, and the resulting cross-validated misclassification 

rate is worse than that of our supervised clustering method.  Our method has the 

smallest out-of-sample misclassification rate among these methods, but there are 

obvious overlaps between their 95% confidence intervals.  In conclusion, among these 

methods, our supervised clustering method has slightly better performance for predicting 

class response in JIA data, although the differences are not significant.  
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Figure 4.4 Cross-validation procedure for pruning classification tree on JIA 
data 

Table 4.6 Comparative performances of different methods on JIA data 

 Classification 
Tree 

Random 
Forest Our Method SRIDHCR 

(𝜷 = 𝟎.𝟖) 
Stepwise 
Logistic 

Misclass. Rate 0.468 0.413 0.394 0.446 0.424 

CI [0.408, 0.528] [0.354, 0.472] [0.336, 0.452] [0.387, 0.505] [0.365, 0.483] 

 

4.4. Multiple-class examples 

In the JIA data, our supervised clustering method provides competitive 

performance compared with other classification methods and SRIDHCR.  However, the 

response we used in JIA data has only two classes.  We would like to know how well our 

supervised clustering method could perform on data with more than two classes of 
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Learning Repository (http://archive.ics.uci.edu/ml/datasets.html).  Table 4.7 gives a 

summary for these data sets. 

Table 4.7 Summary of multiple-classes data sets 

Data Set Name Number of 
Observations 

Response 
Levels Explanatory variables 

Iris 150 3 4 numeric 

Flag 194 4 18 categorical, 10 numeric 

Lymphography 148 4 18 categorical 

 

In our supervised clustering method, we use threshold 𝜌 = 1  and weight 

explanatory variables differently depending on their associations with the class response.  

The out-of-sample misclassification rates and corresponding 95% confidence intervals 

calculated by classification tree, random forest, SRIDHCR, stepwise logistic regression 

and our method are listed in Table 4.7.  In the Iris data, our method gives the third-best 

misclassification rate.  In the Flag data, our method gives the best misclassification rate.  

In the Lymphography data, our method gives the third-best misclassification rate.  Since 

most confidence intervals are highly overlapped, there is no significant difference among 

the results of these methods.  Overall, our supervised clustering method maintains 

competitive performance on these multiple-class data sets, being behind only random 

forest and stepwise logistic regression sometimes, which do not provide an interpretable 

grouping of units. 

Table 4.8 Comparative performances of different methods on multiple-classes 
data sets 

Data Our Method Classification 
Tree 

Random 
Forest SRIDHCR Stepwise 

Logistic 

Iris 
Mis. rate 0.044 0.053 0.040 0.059 0.033 

CI [0.011, 0.077] [0.017, 0.089] [0.009, 0.071] [0.021, 0.097] [0.004, 0.062] 

Flag 
Mis. rate 0.251 0.289 0.283 0.495 0.258 

CI [0.190, 0.312] [0.225, 0.353] [0.220, 0.346] [0.425, 0.565] [0.196, 0.320] 

Lym 
Mis. rate 0.524 0.547 0.500 0.566 0.507 

CI [0.444, 0.604] [0.467, 0.627] [0.419, 0.581] [0.486, 0.646] [0.426, 0.588] 
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5. Simulation Study 

In Chapter 4, our supervised clustering method, SRIDHCR, classification tree, 

and random forest are applied to the JIA data.  However, none of them classifies the 

data well.  A possible reason is that the explanatory variables do not provide strong 

enough information to predict the class response.  In this chapter, in order to further 

investigate the performance of our supervised clustering method, we simulate class 

responses based on the explanatory variables of JIA data, and apply our method to the 

simulated data.  For comparison, SRIDHCR, classification tree, and random forest are 

applied on the simulated data as well. 

5.1. Simulate data 

First, we use the recoding method described in Section 3.2.2 to create sets of 

numerical variables out of each categorical variable and standardize each variable to 

have mean=0 and standard deviation=1.  Denote this set of explanatory variables by 𝑋!.  

Then we use a logistic regression function to obtain the probability of remission in 

response class for each observation: 

                                           𝑙𝑜𝑔𝑖𝑡(𝜋) = 𝛼 + 𝑋!𝛾 (5.1) 

where 𝜋 = 𝜋!,… ,𝜋! ! is a vector of the probabilities of remission for each observation, 

and we assume 𝛾 ∼ 𝑁 0,𝜎!𝐼 .  Based on properties of the normal distribution, 𝑙𝑜𝑔𝑖𝑡(𝜋) 

also follows a normal distribution with mean 𝛼  and variance 𝜎!𝑋!𝑋!! .  The diagonal 

elements of 𝜎!𝑋!𝑋!!  are the variance of each 𝑙𝑜𝑔𝑖𝑡 𝜋! .  To simplify the process of data 

simulation, we use the average diagonal value from 𝑋!𝑋!!  as the common variance.  

After obtaining 𝜋  from (5.1), we randomly generate a binary response for each 

observation according to its probability of remission.  This process of data simulation can 

be briefly described as follows: 
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Manipulate  𝑋!
Cℎ𝑜𝑜𝑠𝑒  𝛼  𝑎𝑛𝑑  𝜎

!"#$%&'(  (!.!)
  𝜋  

!"#$%&'(  !"#"$%&"
  𝑐𝑙𝑎𝑠𝑠  𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 

Therefore, only two parameters, 𝛼 and 𝜎 need to be determined when we are 

simulating data.  Different values of 𝛼  and 𝜎  result in different structures of class 

responses.  In order to select 𝛼  and 𝜎 , we create two constraints to describe the 

distribution of probabilities in the sample: 𝑃 𝜋! < 0.5 = 𝑎! and 𝑃 𝜋! < 0.1 = 𝑎!.  The 

goal is to predict 𝐼(𝜋! > 0.5) for each observation.  That is, we think of any simulated 

“patient” with 𝜋! > 0.5 as being more likely to be a “success” (e.g., in remission) than not.  

Even though the random binary response might be opposite the true probability for some 

observations (𝜋! > 0.5  but 𝑦! = 0 , for example), we want our models to guess the 

underlying probability.  To this end, observations with 𝜋! close to 0.5 are more likely to 

have misleading responses than those with 𝜋! ≈ 0 or 𝜋! ≈ 1. A problem is “hard-to-

classify” if it has many observations with 𝜋! ≈ 0.5, and “easy-to-classify” if it has many 

𝜋! ’s near 0 or 1.  In the simulation study, we consider three different scenarios. 

Scenario 1: To simulate a “hard-to-classify” class response with equal class 

probability, we want approximately half of observations have remission probability 𝜋! 

less than 0.5, and many 𝜋!′𝑠 are around 0.5.  We set 𝑎! = 0.5 and 𝑎! = 0.05 to spread 

out the probability but maintain a mound shape.  Solving these two constraints, we get 

𝛼 = 0 and 𝜎 = 0.22.  Figure 5.1 shows the histogram of 𝜋! after simulating 100 data sets 

of size 269. 

Scenario 2: To simulate an “easy-to-classify” class response, we want most 

remission probabilities 𝜋! to be extremely low or high.  We use 𝑎! = 0.5 and 𝑎! = 0.25 to 

form this valley shape of 𝜋!.  Solving these two constraints, we get 𝛼 = 0 and 𝜎 = 0.69.  

We simulate data 100 times and draw the histogram of 𝜋! in Figure 5.2. 

Scenario 3: In the JIA data, we could define another two-class response: “full 

remission” (remission in 12 months with no medication) and not “full remission”.  There 

are 66 “full remission” patients out of 269.  Two classes are no longer approximately 

even at this time.  We would like responses that resemble this situation.  Thus, we use 

𝑎! = 1 − 66/269 and play with 𝑎! values until we find one that gives us a generally 
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decreasing density of 𝜋!.  That one turns out to be 𝑎! = 0.3, which leads to 𝛼 = −1.25 

and 𝜎 = 0.3.  We simulate data 100 times and draw the histogram of 𝜋! in Figure 5.3. 

 

Figure 5.1 Histogram of 𝝅𝒊 for 𝜶 = 𝟎 and 𝝈 = 𝟎.𝟐𝟐 

 

Figure 5.2 Histogram of 𝝅𝒊 for 𝜶 = 𝟎 and 𝝈 = 𝟎.𝟔𝟗 
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Figure 5.3 Histogram of 𝝅𝒊 for 𝜶 = −𝟏.𝟐𝟓 and 𝝈 = 𝟎.𝟑 

5.2. Pilot Study 

Before we start to simulate data, a pilot study is conducted in order to determine 

the number of data sets we need in the simulation study.  The objective of the simulation 

study is to obtain an estimate of the average population misclassification rate by 

comparing the predicted class to the expected class, 𝐼(𝜋! > 0.5), and  the corresponding 

confidence interval for each method.  In order to obtain relatively accurate estimates of 

the misclassification rate, we want to keep the confidence interval narrow.  Specifically, 

the width of 95% confidence interval should be no more than 0.02 (i.e., ±0.01). 

If we assume the population misclassification rate of method 𝑙, 𝑚!, approximately 
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where 𝑚! is the sample mean of 𝑚!,  𝑉𝑎𝑟(𝑚!) is the variance of 𝑚!, M is the number of 

data sets we simulate, and 𝑍!.!"#  is the 97.5% quantile of standardized normal 

distribution.  We wish to estimate misclassification rates to within ±0.01  with 95% 

confidence.  When we set the width of a 95% confidence interval to 0.02, we still need to 

know 𝑉𝑎𝑟(𝑚!) in order to calculate the number of data sets we need.  We estimate 

𝑉𝑎𝑟(𝑚!) using a pilot study.  Since SRIDHCR and our supervised clustering method take 

a relatively long time for running, we use random forest on 100 simulated data sets for 

each scenario to estimate the common variances.  The estimated variance of 𝑚! and 

estimated number of data sets are listed in Table 6.1.  In order to make the width of 95% 

confidence interval of misclassification rate under 0.02 for all these three scenarios, we 

decide to simulate 120 data sets for each scenario, in case variances for other methods 

are slightly larger. 

Table 6.1 Estimated variance of 𝒆𝒊 for three scenarios 

 Scenario 1 Scenario 2 Scenario 3 

Estimated Variance 0.00264 0.00108 0.00128 

Number of data sets 101 41 49 

 

5.3. Results and Discussions of Simulation Study 

We apply our supervised clustering method, SRIDHCR, classification tree and 

random forest to each simulated data set, then calculate cross-validation 

misclassification rates for our method, SRIDHCR and classification tree, and OOB 

misclassification rate for random forest.  We also calculate a population misclassification 

rate by comparing the predicted class to the expected class, 𝐼(𝜋! > 0.5) .  In our 

supervised clustering method, we use 𝜌 = 0.1  and 1, and use both weighted and 

unweighted versions.  We also use cross-validation to choose the optimal settings 

among these four.  We record the average out-of-sample misclassification rate 𝑒 and the 

average population misclassification rate 𝑚 for all the methods, and the average number 

of clusters 𝐾 in our method and the average number of terminal nodes in classification 

tree.  In addition, we calculate 95% confidence intervals for the mean of 𝑒!： 
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𝑒! − 𝑡!.!"#,!!" ∙ 𝑆!! 120 ,   𝑒! + 𝑡!.!"#,!!" ∙ 𝑆!! 120   

where 𝑆!! is the sample variance of the misclassification rates for method 𝑙, and t!.!"#,!!" 

is the 97.5% quantile of a Student’s t-distribution with 119 degrees of freedom.  Similarly, 

95% confidence intervals for the mean population misclassification rate 𝑚!  are also 

calculated.  The results for all three scenarios are listed in Table 6.2.  

First, we compare the results of our supervised clustering method with different 

tuning parameters in following aspects: 

• Using 𝜌 = 1  without weighting is actually using no supervision by the 

associations between explanatory variables and the class response.  Compared 

to the other three selecting or/and weighting approaches, it provides both worse 

out-of-sample misclassification rates and worse population misclassification rates, 

which means selecting or/and weighting explanatory variables improves the 

performance of our method for predicting class response. 

• Using the same 𝜌, a weighted approach provides smaller misclassification rate 

than unweighted approach does.  Thus, weighting explanatory variables by 

– 𝑙𝑜𝑔(𝑝) seems to help to improve the performance of our method for predicting 

class response. 

• Using weighted explanatory variables, both 𝜌 = 1 and 𝜌 = 0.1 result in similar 

misclassification rates, and they are not much different from the optimal result of 

our method.  The choice of 𝜌 has relatively small influence on the results of our 

method.   

• Running all four methods and selecting the one with the best cross-validation 

error results in only a very small improvement in population misclassification rate 

compared to the two weighted methods.   

Based on these results, we can recommend the use of the weighted procedure without 

prior variable selection for this classification task. 
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Table 6.2 The results of simulation study (average misclassification rate, 
confidence interval, the number of clusters) 

 
Our Method Class. 

Tree 
Rand. 
For. 

SRID-
HCR 𝜌 = 0.1, 

weighted 
𝜌 = 0.1, 

unweighted 
𝜌 = 1, 

weighted 
𝜌 = 1, 

unweighted 
CV-

Optimal t 

Scenario 
1 

𝒆 0.340 0.353 0.338 0.392 0.330 0.377 0.362 0.393 

CI 
(𝒆) 

[0.334, 
0.347] [0.347, 0.360] [0.332, 

0.344] [0.385, 0.399] [0.325, 
0.336] 

[0.369, 
0.386] 

[0.354, 
0.370] 

[0.385, 
0.400] 

𝒎 0.268 0.291 0.263 0.336 0.258 0.284 0.246 0.320 

CI 
(𝒎) 

[0.257, 
0.278] [0.280, 0.301] [0.253, 

0.272] [0.325, 0.347] [0.249, 
0.266] 

[0.271, 
0.297] 

[0.238, 
0.253] 

[0.311, 
0.329] 

𝑲   8 9 9 10 10 3   

Scenario 
2 

𝒆 0.239 0.273 0.240 0.307 0.233 0.263 0.214 0.290 

CI 
(𝒆) 

[0.232, 
0.247] [0.264, 0.281] [0.233, 

0.247] [0.299, 0.316] [0.226, 
0.239] 

[0.254, 
0.271] 

[0.207, 
0.221] 

[0.282, 
0.299] 

𝒎 0.211 0.251 0.210 0.287 0.205 0.203 0.165 0.261 

CI 
(𝒎) 

[0.202, 
0.219] [0.243, 0.259] [0.202, 

0.218] [0.278, 0.295] [0.197, 
0.212] 

[0.194, 
0.212] 

[0.159, 
0.171] 

[0.253, 
0.269] 

𝑲 17 15 17 15 18 4   

Scenario 
3 

𝒆 0.246 0.258 0.246 0.274 0.241 0.271 0.256 0.280 

CI 
(𝒆) 

[0.240, 
0.252] [0.252, 0.264] [0.240, 

0.252] [0.268, 0.280] [0.235, 
0.246] 

[0.265, 
0.278] 

[0.250, 
0.262] 

[0.274, 
0.286] 

𝒎 0.166 0.182 0.165 0.198 0.163 0.181 0.151 0.198 

CI 
(𝒎) 

[0.158, 
0.173] [0.174, 0.190] [0.157, 

0.173] [0.189, 0.207] [0.156, 
0.171] 

[0.173, 
0.190] 

[0.146, 
0.157] 

[0.190, 
0.205] 

𝑲 11 11 11 10 14 2   

 

Next we compare the results of our method (𝜌 = 1, weighted) to the other three 

alternative methods.  Our supervised clustering method provides the best out-of-sample 

misclassification rate among these four methods in scenario 1 and scenario 3, and the 

second best misclassification rate in scenario 2.  Considering the population 

misclassification rate, random forest shows the best ability to predict the population class 

response.  Our supervised clustering method has better performance than classification 

tree except in the easy-to-classify Scenario 2, where there is considerable overlap in 

their confidence intervals.  SRIDHCR has the worst population misclassification rate of 
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the four methods studied.  Overall, our supervised clustering method shows competitive 

performance for predicting class response compared to SRIDHCR, classification tree, 

and random forest.  In particular, our method is significantly better than the classification 

tree in two of the three cases studied. 
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6. Conclusion and Future Work 

This project developed a supervised clustering method applied to the JIA 

problem, which is a typical classification problem.  In order to evaluate how well our 

supervised clustering method works on predicting class response, we compared it with 

an existing supervised clustering method (SRIDHCR) and two classification methods 

(classification tree and random forest).  In Section 6.1, we summarize the main 

difficulties and challenges we faced and solved when developing our supervised 

clustering method, and discuss the performance of our method on predicting class 

response compared to other alternative methods.  Section 6.2 suggests some future 

work that remains to be done. 

6.1. Conclusion 

When developing a supervised clustering method, a challenging issue is how to 

use the target class response to supervise on clustering.  In the existing supervised 

clustering algorithm, SRIDHCR, supervision is implemented by using the impurity of a 

clustering to guide the choice of clustering directly.  In our method, supervision is 

imposed by weighting explanatory variables differently according to their associations 

with the class response, extending an idea that was used originally in supervised 

principal component analysis.  However, SPCA works only when all explanatory 

variables are continuous.  Here we fit logistic regression model with one explanatory 

variable each time, and use the p-value from the likelihood ratio test of significance as 

the measure of association between the response and the explanatory variable.  With 

this improvement, our supervised clustering method can be applied to data with both 

continuous and categorical explanatory variables. 

All clustering algorithms assign observations into clusters based on some 

distance measurement.  But there is no definition of distance in a categorical variable.  
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Therefore, before implementing a clustering algorithm, categorical variables need to be 

recoded so that they can make the same contribution to a distance measurement as the 

numeric variables do.  We create dummy variables to replace categorical variables.  The 

specific approach differs according to the type of categorical variable. 

In the JIA example and simulation study, our supervised clustering method 

provides competitive results for predicting class response compared to SRIDHCR, 

classification tree and random forest.  To be specific, the out-of-sample performance of 

our method relative to random forest fluctuates across different data sets, and our 

method shows better out-of-sample performance for predicting class response than 

classification tree.  In the population misclassification rate, our method was clearly 

second-best among the four.  This is not surprising.  Random forest is known to be a 

good classifier (Hastie, Tibshirani, and Friedman 2009), and we had expected it to 

perform better than our method.  We had hoped that our method could provide similar 

performance to a classification tree and perhaps be better than the alternative 

supervised clustering method.  This is exactly what has happened.  Moreover, our 

supervised method provides the form of results that patients’ parents prefer to see, thus 

our supervised clustering method should be a good candidate approach in JIA problem.   

While we have not explored any follow-up analysis of the clustering produced by 

our method, it would be easy to identify variables that are important in the clusterings, for 

example by using ANOVA tests with the explanatory variable as the response and the 

clusters as the treatment groups.  Also, we could present mean values of each variable 

in each cluster, as well as each cluster’s classification results (similar to those in Figure 

2.1) to aid in a clinical interpretation of the clusters. 

Even though our method provides encouraging performance, it is not without 

drawbacks.  Compared with the high speed of the classification tree and the random 

forest (i.e., less than one second per data set), our method is very time-consuming using 

our R code.  For example, our method takes about 10 minutes for the JIA data.  If there 

are thousands of observations or hundreds of variables, the running time would be a 

very serious problem. 
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6.2. Future work 

Although our supervised clustering method has already presented competitive 

performance for predicting class response, there are still some details that need to be 

investigated.  We made a few arbitrary decisions in our method.  For example, we 

choose the K-means algorithm for our clustering.  In fact, we could try other clustering 

algorithms, which might give better results.  Since performing a clustering algorithm is 

the last step of our supervised clustering method, we could follow all the original steps of 

the procedure, and just use a different clustering algorithm at the last step.  In addition, 

we use – 𝑙𝑜𝑔(𝑝) to weight explanatory variables, but there is no rigorous justification for 

this.  Many other options could be used for weighting explanatory variables.  

Furthermore, we simulated only three specific scenarios based on the JIA data, and 

used the same model for creating binary responses each time.  More simulation of 

different data structures should be conducted in order to check the performance of our 

method in general.  Finally, the R code for our method should be optimized so that the 

running time can be reduced, if possible. 
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