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Abstract

In this project we propose a numerical algorithm for solving the atmospheric dispersion

problem with point sources and deposition at the ground. The problem is modelled by the

3D advection-diffusion equation with delta distribution source terms, as well as variable

advection speed and diffusion coefficients. We construct a finite volume scheme using a

splitting approach in which the CLAWPACK software package is used as the advection solver

and an implicit solver is proposed for the diffusion terms. Next, we apply the algorithm

to an actual industrial scenario involving emissions of airborne zinc from a mining smelter

using actual wind measurements, and then compare our results to another set of simulations

obtained from an algorithm based on a Gaussian plume solver. Finally, we propose a new

and efficient framework for solving the inverse source emission problem that utilizes the

solution of the adjoint equations.
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Chapter 1

Introduction

1.1 Atmospheric Pollution

Atmospheric pollution or air pollution refers to the presence of possibly harmful chemicals,

particulates or biological matter in the atmosphere. Some well known chemical pollutants

include sulfur oxides, nitrogen oxides, carbon monoxide and other organic compounds such

as methane. These are chemicals that can cause damage to natural or man made structures,

as well as being harmful to humans and other animals. Particulates are tiny airborne solid

or liquid particles that are suspended in air. They are categorized based on size and can be

as big as 10 micrometers in diameter. Examples include ash emitted from volcanoes, plant

pollen and road dust. Another important class of atmospheric pollutants is radioactive

material that can pose serious risks even at very low concentration. Examples include

nuclear explosions, reactor melt downs (such as the well known Chernobyl disaster), and

natural processes such as radioactive decay of radon.

In all of these examples our main topic of interest is tracking concentration of a pollutant

as it is dispersed via motion of the atmosphere. Atmospheric dispersion modelling refers to

the mathematical study and simulation of the processes mentioned above. It is a popular

discipline and has been an active topic of research for many years. Atmospheric dispersion

models are often used to assess the impact of industrial facilities on the ambient environment,

either in risk assessment studies or for emergency response.

In general, atmospheric dispersion modelling is an extremely difficult and complicated

problem. The process is clearly linked to the behavior of the atmosphere and hence de-

pends on meteorological data. Chemical reactions are always present in the atmosphere

1



CHAPTER 1. INTRODUCTION 2

which result in some pollutants being converted into other chemicals that might behave

differently. These are naturally nonlinear processes that are difficult to model. The range of

pollution transport can range from a few kilometers up to global scales. Pollution can also

be transferred between the various layers of the atmosphere, each of which have different

properties.

For all of these reasons, atmospheric dispersion modelling necessitates many simplify-

ing assumptions and is accompanied by uncertainties and large errors (either in the input

measurements or the results). In this project we are mainly interested in short range trans-

port of pollutants that is on the order of tens of kilometers. Consequently we will ignore

large scale effects such as Coriolis forces or the curvature of the earth. In fact, as we will

see in chapter 2, we make some fairly major simplifying assumptions on the meteorological

aspect of the problem. Here we focus on pollutants being emitted from point sources, which

represent stacks or other small-area sources of a given height (Figure 1.1). Contaminants

emitted into the atmosphere will be transported by the wind while turbulent behavior of

the atmosphere will result in mixing and dispersion of the contaminant and gravity acts

to deposit the contaminants on the ground. The final aim of this project is to generate a

numerical algorithm that is capable of modelling three dimensional dispersion of pollutants

in the atmosphere and their deposition on the ground. We are only interested in transport

of a single contaminant and so we will not consider chemical reactions. We will construct

our model for dispersion of a generic contaminant which can be used to study a wide class

of contaminants. In particular, we will study release of zinc from an industrial facility.

1.2 Review of Previous Works

As mentioned above, atmospheric dispersion modelling is an active and well developed

area of research. Zlatev [47] presents a comprehensive review of common methods and

challenges arising in atmospheric dispersion modelling on a global scale with many references

to existing works and common techniques used in the literature. A more compact review

of the same topic can be found in the article by Dimov et al. [9]. It is common that

the short range dispersion of pollutants is modelled using the advection-diffusion equation.

Ever since the introduction of these models by authors such as Taylor [42], Roberts [37]

and Sutton [41], various analytical and approximate solutions for this problem have been

introduced. Examples of such solutions can be found in the works of Ermak [11] or Fisher



CHAPTER 1. INTRODUCTION 3

Gravity (Settling)

Turbulent mixing

Wind

Figure 1.1: Pollution dispersion from a stack due to advection by the wind, diffusion from
turbulent mixing and gravitational settling.

and Macqueen [13], most of which fall under the category of Gaussian plume solutions.

Seinfeld [39] presents a large collection of Gaussian plume solutions and some of the details

behind the derivation of the formulas.

Applications of Gaussian plume models are plentiful in the literature. They have been

applied to a large number of industrial studies as well as other applications such as volcanic

ash dispersal [43, 10], transport of seeds, pollen and odours [45, 7], or sudden release of

biological or radioactive contaminants [20]. As mentioned above there is a large variety of

approximate solutions for the dispersion problem. Carrascal et al. [6] investigate the sen-

sitivity of Gaussian plume solutions to parameters in the models and report some concerns

regarding sensitivity of the solutions to different atmospheric stability classes. Hamby [16]

studies sensitivity of the Gaussian plume solution to wind direction, speed, stability class

and other parameters and discovers that the near field solution is very sensitive to meteoro-

logical data. As we will see in chapter 2, derivation of Gaussian plume solutions requires a

number of simplifying assumptions. See [39] for a collection of Gaussian plume solutions and

details of their underlying assumptions. For these reasons one might be interested in a more

sophisticated or flexible approach towards solution of the atmospheric dispersion problem.

Nevertheless, more complex models are not necessarily more accurate, in the sense that

they employ different assumptions and parameterizations whose validity typically depends

sensitively on atmospheric conditions, location or other effects.
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1.3 Goals and Outline

In this thesis our ultimate goal is to simulate dispersion of pollutants on an industrial site

subject to measured wind data in three dimensions. We believe that the main strength of

this model is in its ability to handle variable wind and to solve the underlying PDE directly

rather than using an approximate solution as is done with Gaussian plume solutions. This

work is based on the study of Lushi and Stockie [27] where the inverse source identification

problem is considered. Here we develop a three dimensional solver for atmospheric dispersion

problems and apply this solver to the same setting they considered. A secondary goal is to

compare the solution from this solver to a Gaussian plume solution and also validate results

of the inverse problem solved by Lushi and Stockie.

We start by introducing the advection-diffusion PDE as a general model for atmospheric

dispersion in chapter 2. We consider generalizations of the model and present as many details

as possible while staying in line with the main topic of this thesis. Since the literature on

atmospheric dispersion and meteorology is vast we will only briefly touch on this subject.

We describe various parameterizations for the velocity fields and diffusion coefficients that

are based on both theoretical and experimental results. In chapter 3, we use the models

described in chapter 2 and design a numerical scheme based on the CLAWPACK package

for solving hyperbolic conservation laws. Afterwards, we apply our numerical scheme to

do a simulation based on the real world setting considered in [27]. Finally in chapter 4 we

discuss the adjoint equation formulation and its application to the solution of inverse source

identification problems. These results are not intimately connected to the first few chapters

of the thesis and instead set the stage for future work on this topic.



Chapter 2

Mathematical Models For

Atmospheric Dispersion

Here we present some common mathematical models that are used for studying the atmo-

spheric dispersion problem. We start by introducing the advection-diffusion equation which

is a partial differential equation (PDE) that represents the physical system. Point and line

sources are introduced as examples of stacks or roads that emit pollutants. Afterwards,

we consider some analytical and approximate solutions of the PDE in simple circumstances

including instantaneous and steady sources. Later, we describe models for approximating

the wind velocity profiles and eddy diffusion coefficients based on a combination of exper-

imental and theoretical results, and finish this chapter with a discussion of dry deposition

of particulates. All of these concepts are later built into a numerical scheme and their

implementation is considered in Chapter 3.

2.1 Advection-Diffusion Equation

Atmospheric dispersion of pollutants is an example of a mass transport phenomenon where

we are generally interested in the advection of contaminants due to the wind, along with

dispersion due to turbulent mixing in the atmosphere. It is natural to consider the advection-

diffusion equation as a model for this problem. For convenience let us start by deriving the

equations for a single contaminant, after which the extension to multiple contaminants is

straightforward. For a detailed treatment of advection-diffusion-reaction systems including

5



CHAPTER 2. MATHEMATICAL MODELS FOR ATMOSPHERIC DISPERSION 6

examples, see Hundsdorfer [18], Zlatev [46] or Dimov et al. [9]. A detailed derivation and

justification of our model can be found in the monograph by Seinfeld [39] but our approach

here is similar to that of Stockie [40]. Let c( ~X, t) [kg/m3] denote mass concentration (or

density) of a pollutant at time t [s] and position ~X = (x, y, z) ∈ R3 [m]. Conservation of the

contaminant results in the following equation for concentration,

∂c

∂t
+∇ · ~f = s, (2.1.1)

where ~f( ~X, t) [kg/m2s] is the contaminant mass flux due to advection and diffusion and

s( ~X, t) [kg/m3s] is a source term. The diffusive contribution to the flux is due to tur-

bulent mixing and is generally believed to follow Fick’s law; that is, the diffusive flux

is taken proportional to the concentration gradient ~fD := −K∇c. The diffusion tensor

K := diag (Kx,Ky,Kz) [m2/s] is a diagonal matrix with the eddy diffusion coefficients usu-

ally being functions of position. The wind advects the pollutant downstream and results in

a simple linear advective flux, ~fA := c~u where ~u = (ux, uy, uz) [m/s] is the wind velocity.

Adding together the two fluxes and setting ~f = ~fD + ~fA, we can rewrite (2.1.1) as the

familiar advection-diffusion PDE

∂c

∂t
+∇ · (c~u) = ∇ · (K∇c) + s. (2.1.2)

2.1.1 Boundary Conditions

Various boundary conditions can be imposed along with (2.1.2) but we are interested in

solving this equation in the half-space z ≥ 0 where z = 0 denotes the ground. We also

restrict ourselves to short range dispersion of pollutants on the order of tens of kilometers,

so that it makes sense to consider the concentration c tending to zero in the far field. This

is consistent with the conservation of contaminant mass in the domain. The boundary

condition at ground level is more interesting since this is where deposition of pollutants

takes place. A simple example would be a non-penetrable ground which corresponds to

having zero vertical advective and diffusive fluxes at ground level, or

uzc−Kz
∂c

∂z
= 0 at z = 0. (2.1.3)

In a more general setting, one could consider a settling velocity for the particulates with

uz = −uset and a deposition coefficient Wdep that captures the effect of the total flux of
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contaminants penetrating the ground. This results in the Robin boundary condition

− usetc−Kz
∂c

∂z
= −Wdepc. (2.1.4)

2.1.2 Source Terms

The approximation of the contaminant sources is of crucial importance in modelling disper-

sion of pollutants. Source terms represent pollutant sources or sinks and assumptions on

their form is essential in the derivation of analytical solutions as well as in numerical studies

of (2.1.2). A simple form of the source term arises for a point source representing a stack

or exhaust port, which can be modelled as a delta distribution,

s( ~X, t) = Qδ( ~X − ~Xs) = Qδ(x− xs)δ(y − ys)δ(z − zs) (2.1.5)

in 3D, where δ(·) is the Dirac delta distribution, ~Xs = (xs, ys, zs) is the position of the

source and Q [kg/s] is the total output of the source in unit time. For a detailed treatment

of distributions and their definition in higher dimensional spaces see Rudin [38]. We come

back to the topic of distributions in section 3.4 where we discuss the numerical approximation

of point sources.

Line sources are another common type of source term which represent roads or arrays of

closely-situated stacks. For example, a line source of length L extending from (xs,−L/2, zs)
to (xs, L/2, zs) can be represented by

s( ~X, t) = QLδ(x− xs)γ(y)δ(z − zs) (2.1.6)

where the distribution γ(y) is given by

γ(y) =

 1 for |y| ≤ L/2,

0 otherwise
(2.1.7)

and QL [kg/ms] is the emission rate per unit length of the source in unit time. For detailed

treatment of line sources see [33].

We can also consider distributed sources representing piles of debris, stacks that are

large compared to the typical advection-diffusion scale, or pollutants spilled over large areas.

These area sources have the general form

s( ~X, t) = ψ(x− xs, y − ys, z − zs) (2.1.8)

where ψ( ~X) is a distribution with compact support.
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2.1.3 Multiple Contaminants

The advection-diffusion equation (2.1.2) is the main focus of this thesis and we are concerned

throughout this document with solutions corresponding to a single contaminant. Still, it

is worthwhile to mention the extension of this model to multiple contaminants. Assuming

there are m contaminants, then we have a PDE for each contaminant ck for k = 1, ..,m:

∂ck
∂t

+∇ · (ck~u) = ∇ · (K∇ck) + sk, (2.1.9)

note that the diffusion tensor is the same for each contaminant since eddy diffusivity is

an attribute of the flow rather than the tracer particle, which is different from molecular

diffusion. Contaminant interactions can be modelled via the source terms sk to generate

models that capture chemical reaction of contaminants resulting in coupling of the equations

in (2.1.9).

2.2 Some Analytical Solutions

Here we discuss a few analytical solutions of (2.1.2) for various initial and boundary condi-

tions that aid us in building intuition into the behavior of the advection-diffusion equation.

Of particular importance is a class of steady state solutions known as Gaussian plume solu-

tions that are used extensively in practice and are known to give acceptable approximations

to real world measurements, see for example [4, 3, 14, 24]. Gaussian plume solutions are

attractive mainly because they are fast to compute and give physically relevant results even

in complicated conditions such as time dependent wind, source inversion problems and ap-

proximation of dispersion over complicated terrain. For a discussion on the limitations of

Gaussian plume solutions see [44]. Details of deriving the Gaussian plume solutions are dis-

cussed by Stockie [40] with references to many existing works in the literature. In particular,

Seinfeld [39] presents a detailed treatment of Gaussian plume solutions, their derivation and

application in various cases, and many references to other sources on this topic. Here we do

not go into the details of the derivations, and instead just summarize the results.

2.2.1 Unbounded Domain with Instantaneous Source

Let us first consider a simplified case of the advection-diffusion problem. Consider the

homogeneous form of (2.1.2) in the whole of R3 with non-isotropic diffusion, uni-directional
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wind u in the x direction and a point source initial condition at location ~Xs = (0, 0, 0). To

summarize, we will consider the problem
∂c

∂t
+ u

∂c

∂x
= ∇ · (K∇c), for ~X ∈ R3, t ≥ 0

c( ~X, 0) = Qδ(x)δ(y)δ(z),

c( ~X, t)→ 0 as
∣∣∣ ~X∣∣∣→∞,

(2.2.1)

where the last far-field boundary condition is prescribed to make sure that the total mass

of the contaminant is conserved in the domain. Making the change of variables

τ = t, ξ =
x− ut√
Kx

, η =
y√
Ky

, ζ =
z√
Kz

, (2.2.2)

where we recall K = diag(Kx,Ky,Kz) and employing the chain rule we have

∂c

∂t
=
∂c

∂τ
− u√

Kx

∂c

∂ξ
,

∂c

∂x
=

1√
Kx

∂c

∂ξ
,

∂2c

∂x2
=

1

Kx

∂2c

∂ξ2
,

∂2c

∂y2
=

1

Ky

∂2c

∂η2
,

∂2c

∂2z
=

1

Kz

∂2c

∂ζ2
,

which reduces (2.2.1) to the isotropic heat equation with a singular source term in the new

coordinates ~Θ = (ξ, η, ζ),

∂c

∂τ
= ∇ · ∇c, for ~Θ = (ξ, η, ζ) ∈ R3, τ ≥ 0,

c(~Θ, 0) =
Q√

KxKyKz

δ(ξ + ut)δ(η)δ(ζ),

c(~Θ, τ)→ 0 as
∣∣∣~Θ∣∣∣→∞.

(2.2.3)

This is the fundamental form of the heat equation with an extra factor multiplying the initial

condition due to scaling of the coordinates and the emission rate. For a detailed treatment

of the fundamental solution of the heat equation, see [12]. The fundamental solution of

(2.2.3) is given by

c(~Θ, τ) =
Q

(4πτ)3/2
√
KxKyKz

exp

−
∣∣∣~Θ∣∣∣2
4τ

 . (2.2.4)

This tells us that the solution is the same as that of the heat equation for an observer that

is moving at the advection speed. The fundamental solution in the original coordinates is

given by

c( ~X, t) =
Q

(4πt)3/2
√
KxKyKz

exp

[
− 1

4t

(
(x− ut)2

Kx
+
y2

Ky
+
z2

Kz

)]
. (2.2.5)
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2.2.2 Non Penetrable Ground with Point Source

A simple case of the Gaussian plume solution is the steady state solution of (2.1.2) for

unidirectional wind with non penetrable boundary conditions at ground level for a point

source. In order to derive the solution, several assumptions must be made. First, we

represent the source term as a delta distribution centered at ~Xs = (0, 0, H) and neglect

topographical variations i.e. treat the ground as the z = 0 plane. Without loss of generality,

we assume that the wind blows in the x direction so that ~u = (u, 0, 0). This solution can be

generalized to other wind directions by a simple rotation of coordinates. We also assume

the contaminant cannot penetrate the ground, i.e. equation (2.1.3) holds and we assume

concentrations tend to zero in the far-field. To summarize, the boundary conditions are

Kz
∂c

∂z
(x, y, 0) = 0,

lim
x→∞

c(x, y, z) = 0, lim
|y|→∞

c(x,y, z) = 0, lim
z→∞

c(x, y, z) = 0, c(0, y, z) = 0.
(2.2.6)

Note that the solution for negative values of x is not physically relevant because the wind

velocity is positive, so we consider the solution only in the orthant x, z ≥ 0.

As for the diffusion coefficients, we consider isotropic eddy diffusivities so that Kx =

Ky = Kz = K. Since the problem is advection-dominated, we can also assume the advective

flux in the x direction is much greater than the diffusive flux, and therefore we can take

Kx = 0.

Putting all of these assumptions together, along with the fact that we are looking for a

steady state solution, (2.1.2) simplifies to

u
∂c

∂x
= K

∂2c

∂y2
+K

∂2c

∂z2
+Qδ(x)δ(y)δ(z −H). (2.2.7)

The solution to this equation is given in [40] as

c(r, y, z) =
Q

4πur
exp

(
−y2

4r

)[
exp

(
−(z −H)2

4r

)
+ exp

(
−(z +H)2

4r

)]
, (2.2.8)

where the variable r is related to x via

r =
1

u

∫ x

0
K(ρ) dρ. (2.2.9)

This solution is commonly referred to as the Gaussian plume solution since (2.2.8) is essen-

tially a Gaussian distribution with standard deviation

σ2 =
2

u

∫ x

0
K(ρ) dρ = 2r. (2.2.10)
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The σ coefficients are much easier to measure than the diffusion coefficients, which is one

of the major reasons why the Gaussian plume solutions are widely used in practice.

2.2.3 Gaussian Puff Solution

We can also consider the problem in (2.2.1) with a reflecting boundary condition at ground,

that is 

∂c

∂t
+ u

∂c

∂x
= ∇ · (K∇c), for ~X ∈ (R2 × R+), t ≥ 0,

c( ~X, 0) = Qδ(x)δ(y)δ(z −H),
∂c

∂z

∣∣∣∣
z=0

= 0,

c( ~X, t)→ 0 as
∣∣∣ ~X∣∣∣→∞.

(2.2.11)

Note that this problem is very similar to that of Section 2.2.2 except that the source is

not continuous in time but rather consists of a single instantaneous “puff” at t = 0. The

solution is given by

c(x, y, z, t) =
Q

(2πt)3/2σxσyσz
exp

(
−(x− ut)2

2σ2
x

− y2

2σ2
y

)
×
[
exp

(
−(z −H)2

2σ2
z

)
+ exp

(
−(z +H)2

2σ2
z

)]
,

(2.2.12)

where

σ2
x,y,z =

2

u

∫ x

0
Kx,y,z(ρ) dρ. (2.2.13)

See Chapter 18 of [39] for more details on derivation of these solutions using Fourier trans-

forms.

2.3 Velocity and Eddy Diffusivity Coefficients

One of the important aspects of modelling atmospheric dispersion is the spatial dependence

of parameters in the model. Atmospheric dispersion models often include a large number of

parameters that have an inherently large uncertainty or measurement error. This allows a

lot of freedom in the parameter space which in turn enables one to fit the solution to almost

any measurement. Also, models can be insensitive to some parameters, meaning that one

could easily achieve a solution that looks reasonable and yet has all the wrong parameters.

Often, it is the case that measurements are provided with large error margins, which means

that the simulations will be acceptable for a wider range of parameters. Loosely speaking,
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the problem has too many degrees of freedom. For these reasons, when choosing a model

for the parameters, one should avoid enlarging the parameter space as much as possible.

Keeping these issues in mind, it is sometimes impossible to avoid introducing new param-

eters to the model. The most obvious case for our problem is the velocity profile ~u(x, y, z, t).

Wind velocity is often measured at a finite number of locations (usually only one) at a cer-

tain height. Since we are interested in transport at small scales we have to somehow “guess”

what the velocity profile looks like as a function of height. Of course, the velocity profile

will vary based on location and topography as well but trying to construct the entire ve-

locity field with only one point measurement is a futile endeavor. Also, in order to model

the diffusion coefficients, we need to have an idea of how the eddy diffusivity coefficients

vary in space. We often do not have a direct measurement of these coefficients and have

to find them implicitly based on atmospheric stability classes and other measurements. In

practice one can make measurements of the standard deviation parameters σx, σy, σz which

are directly related to the diffusion coefficients.

2.3.1 Velocity Profiles

A lot of effort has been put into studies of velocity profiles ~u and theory of turbulent mixing

in the atmospheric boundary layer. Arya [1] has a very detailed treatment of velocity profiles

and turbulent diffusivity coefficients for momentum and heat. This is a classic reference in

the literature that considers both neutral and thermally stratified surface layers. For the

sake of simplicity we assume that the surface layer is neutral. Of course this choice is not

strictly correct since we do not have enough data to decide of what type the boundary layer

actually is. However, we have decided to apply Occam’s razor and stick to the simplest

possible model.

There are two main approximations used in the literature: the first is a power law that

does not have a sound theoretical basis but tends to fit observations well [1]; and the second

is a logarithmic law that can be derived from theory but is not typically as good a fit as

the power law. We will not present this theory since it is outside the scope of this thesis

and requires extensive background in the theory of atmospheric turbulence. The power law

assumes the relationship
u(z)

ur
=

(
z

zr

)m
, (2.3.1)

where u(z) is the velocity at height z. The reference velocity is denoted by ur and zr is
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the height at which the reference velocity is measured and is commonly taken to be 10

meters. This is a modified version of Prandtl’s boundary layer velocity for flow over flat

surfaces. The exponent m is known to vary from 0.1 for smooth surfaces to 0.4 for rough

urban areas. The exponent also depends on the stability of the atmosphere and generally

increases with stability, so that there is more variation in more disturbed surface layers.

Hence, the exponent tends to vary from case to case but for generally open and smooth

areas m = 1/7 is considered a “good compromise” [35]. This is the same value as suggested

by Prandtl for laminar boundary layers. Therefore, we will take the velocity profile to be

the same as that of laminar flow over a flat surface.

The logarithmic law assumes the following relationship

u(z)

ur
= 1 +

ln(z/z0)

ln(zr/z0)
, (2.3.2)

where z0 is known as the roughness parameter or roughness length and varies depending on

surface type and stability conditions between 10-100 meters [1]. The two velocity profiles

(power law and logarithmic law) can be set to match each other closely but still not much

can be said about their parameters unless enough measurements are made in the area of

interest over a long period of time. Choosing an appropriate value of m or z0 is more an

exercise in statistics and data fitting (see [34] as an example of such studies). Also note that

for the power-law and the logarithmic-law the velocity at z = 0 is either zero or undefined,

which results in an inconsistency in our simulations; therefore we regularize these velocity

profiles by taking the velocity to be constant below a certain height zcutoff. The reason for

this inconsistency is that these profiles only make sense on a scale that is larger than that

of the turbulent behavior of the atmosphere and they are often accepted at a certain height

above the ground.

2.3.2 Eddy Diffusion Coefficients

The eddy diffusion coefficients (Kx,Ky,Kz) are difficult to measure in practice and for this

reason studies of these parameters are rather scarce. A compact treatment of corrections to

these coefficients is presented by Seinfeld and Pandis [39] which is also the main reference

for this section. The expressions are based on similarity solutions by Monin and Obukhov

[32] who were the pioneers in developing the theory of turbulent mixing in the atmosphere.

Going back to our derivation of the advection-diffusion equation (2.1.2), we are interested
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Surface z0 (m)

Very Smooth (ice, mud) 10−5

Snow 10−3

Smooth sea 10−3

Level desert 10−3

Lawn 10−2

Uncut Grass 0.05

Full grown root crops 0.1

Tree Covered 1

Low-density residential 2

Central business district 5− 10

Table 2.1: Surface roughness parameter z0 for various terrain types, source [31].

in finding how the diffusion coefficients Kx,Ky,Kz vary with height. Let us start with the

vertical diffusivity.

Vertical Diffusivity Kz

Following the Monin-Obukhov similarity theorem and observational results, Kz can be ex-

pressed as

Kz =
κu∗z

φ(z/L)
, (2.3.3)

where

φ(z/L) =


1 + 4.7z/L Stable (E, F),

1 Neutral (D),

(1− 15z/L)1/2 Unstable (A, B, C),

(2.3.4)

where κ is known as the von Karman constant and is assumed to be approximately 0.4, u∗ is

a characteristic velocity also known as the friction velocity, and L is a length scale referred

to as the Monin-Obukhov length [39]. The friction velocity can be written as a function of

roughness z0 and velocity at the reference height

u∗ =
κur

ln(hr/z0)
, (2.3.5)
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assuming an adiabatic temperature profile. A complete derivation of the Monin-Obukhov

length is presented in Section 16.4.3 of [39] but to simplify its calculation we use the expres-

sion proposed by Golder [15]
1

L
= a+ b log z0, (2.3.6)

where the parameters a and b are determined based on the Pasquill stability class of the

atmosphere as shown in Table 2.2.

Pasquill Stability Class a b

A (Extremely unstable) −0.096 0.029

B (Moderately unstable) −0.037 0.029

C (Slightly unstable) −0.002 0.018

D (Neutral) 0 0

E (Slightly stable) 0.004 −0.018

F (Moderately stable) 0.035 −0.036

Table 2.2: Monin-Obukhov length parameters for different stability classes, source [39].

Combining equations (2.3.3)–(2.3.6), we have a method for identifying Kz based on the

stability of the atmosphere and the wind velocity at a reference height. There are many

assumptions and uncertainties underlying these results and therefore they should only be

viewed as guidelines for choices of parameters. We could also bypass u∗ by assuming that

the diffusivity is known at a reference height zr (usually taken to be 10m), and then use

(2.3.3) to get
Kz(z)

Kz(zr)
=
z φ(zr/L)

zr φ(z/L)
, (2.3.7)

which is more useful in cases where we have direct access to the diffusion coefficient at

some height. Many other approximations of Kz exist in the literature and some of them are

mentioned in Section 18.12.2 of [39] but we choose to use these simpler equations. In fact,

(2.3.7) is the only expression we build into our code since in reality we cannot say much

about behavior of the atmosphere in our real world application. Note that the vertical

diffusivity at ground level vanishes in our model; this results in an inconsistency in the

boundary conditions of the PDE. In order to avoid this inconsistency we regularize the

diffusivity profile by taking Kz(z) to be constant below a certain height zcutoff which we

take to be the same cutoff height as that of the velocity profile.
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Horizontal Diffusivity Kx and Ky

It is reasonable to assume that Kx = Kz in our application due to symmetry. An expression

based on measurements of the σx and σy parameters for unstable conditions (due to [39]) is

Ky ' 0.1z
3/4
i (−κL)−1/3u∗ (2.3.8)

where zi is height of the mixing layer changing between 100 meters to 3km depending on

topography, stability, season and time of year. Note that the value of L is negative only for

unstable conditions, and therefore this expression cannot be used directly in stable and neu-

tral atmospheric classes. Here we use (2.3.8) to approximate the horizontal diffusivities for

stable and neutral conditions since we do not have another model. Note that the horizontal

diffusivities are assumed to be independent of height as opposed to the vertical diffusivity.

2.3.3 Dry Deposition

An accepted assumption in modelling the deposition of particulates is that the deposition

flux is proportional to the concentration at ground level [39]. Therefore we can assume the

following relationship for the vertical component of the flux at ground level

fz|z=0 = −WdepC, (2.3.9)

where Wdep [ms−1] is the deposition coefficient (or deposition velocity). An extensive discus-

sion of this parameter is presented by Seinfeld [39]. In this project we are mainly interested

in two specific contaminants: zinc (Zn) and strontium (Sr) and we use the deposition velocity

given by Lushi and Stockie [27] that is 0.005 [m/s] for both contaminants.



Chapter 3

The Numerical Scheme

In this section we discuss details of the numerical scheme used to obtain the results in this

thesis. One of our main objectives is to develop a 3D advection-diffusion solver based on

CLAWPACK 4.3. We start by explaining the idea of splitting and justify why the Godunov

splitting is preferable for our problem; then we move on to treat the split equations. A

short introduction to finite volume schemes and hyperbolic conservation laws is followed

by a description of the finite volume formulation of the diffusive term. Next we briefly

discuss our discretization of the advective term and explain how CLAWPACK is used to

solve the advective term. We also mention our treatment of the point sources and discuss

how higher order approximations to delta distributions can be constructed by solving a finite

dimensional moment problem. Afterwards we assemble all the pieces of our split scheme and

explain the order in which the sub-problems are solved. Finally we present a convergence

study with several test cases of varying complexity and show that the expected order of

convergence is obtained in all cases.

3.1 Splitting

Here we discuss the splitting approach, which breaks the original equation into smaller sub-

problems that can be solved more easily or efficiently. This is a common technique that

is often employed in the solution of larger systems of equations or for cases where signifi-

cant efficiency improvements can be achieved by breaking the problem into smaller parts.

Depending on the context and the type of terms that are split, these methods are called

directional splitting, source term splitting or fractional step methods. Since we are interested

17
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in eventually splitting various physical behaviours of the system (advection, diffusion and

the source term) as well as splitting derivatives in the various coordinate directions, we pre-

fer to use the term operator splitting to refer to the most general form of a splitting scheme.

Many well known numerical methods such as Alternating Direction Implicit (ADI) meth-

ods and Implicit Explicit (IMEX) methods can be categorized as operator splitting schemes.

Hundsdorfer [18] presents a comprehensive review of splitting schemes and provides a gen-

eral theory of split operators in the last two chapters with many examples focused on

advection-diffusion-reaction equations. LeVeque [25] also has an extensive treatment of

splitting methods and their error analysis. We start by discussing the simpler first order

splitting schemes and consider Godunov splitting since this will be the method of choice in

our project. We will briefly mention Strang splitting but will not discuss other techniques

since these are not relevant to this project. The reader is advised to look at the books

mentioned above as well as the articles [28, 2] for treatment of ADI and IMEX schemes

respectively.

3.1.1 First order Splitting Methods

Consider the first order system of equations

ωt(t) = L ω(t), (3.1.1)

where L is a general (not necessarily linear) differential operator, either in continuous or

discrete form that arises from a PDE with homogeneous or periodic boundary conditions.

For simplicity, we assume that L = L1 + L2 can be split into two operators; in the case of

the advection-diffusion equation, L1 and L2 may be the advection and diffusion operators

respectively. Assuming that ω(t) is well behaved, we can represent the process of updating

the solution from one time step to the next as

ω(tn+1) = e∆t Lω(tn), (3.1.2)

where

e∆t L = I + ∆t L+
1

2
∆t2 L2 + ....+

1

n!
∆n Ln + · · · (3.1.3)

is the exponential expansion of the operator L and ∆t is the time step. This is a common

notation employed in the literature on operator splitting. Straightforward Taylor expansion
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of all terms in (3.1.1) about t = tn tells us where the notation comes from. For simplicity,

assume that the operator L does not depend on time. Then formally differentiating (3.1.1)

with respect to t yields

ωtt = L ωt = L2ω, (3.1.4)

which generalizes to
∂nω

∂tn
= Lnω. (3.1.5)

Substituting this expression into the Taylor expansion of ω(t) around tn gives

ω(tn+1) =

(
I + ∆t L+

1

2
∆t2 L2 + ....

)
ω(tn) = e∆t Lω(tn). (3.1.6)

Therefore it is natural to think of e∆t L as the exact solution map for (3.1.1) or the time

stepping operator. Having these results at our disposal, we can design a calculus of solution

operators that is useful in terms of error analysis. Of course, one must return to the original

Taylor expansion in order to understand how the error behaves in the case of time dependent

or nonlinear operators.

Now if we are interested in solving (3.1.2) by operator splitting we could solve the

equivalent problem

ω∗(tn) = e∆t L1ω(tn),

ω(tn+1) = e∆t L2ω∗(tn),
(3.1.7)

so that the new solution operator is

ω(tn+1) = e∆t L2e∆t L1ω(tn). (3.1.8)

Expanding both operators will help us identify the truncation error

e∆t L =

(
I + ∆t (L1 + L2) +

1

2
∆t2 (L1 + L2)2 + ...

)
,

e∆t L2e∆t L1 =

(
I + ∆t (L1 + L2) +

1

2
∆t2 (L2

1 + 2L2L1 + L2
2) + ...

)
.

(3.1.9)

Therefore the truncation error is

1

∆t

(
e∆t L − e∆t L2e∆t L1)w(t) =

1

2
∆t (L1L2 − L2L1)w(t) +O(∆t2), (3.1.10)

which shows that the splitting scheme introduces a first order error in time unless the

operators L1 and L2 commute, that is L2L1 = L1L2. Obviously this is not always true. A
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simple example is given by the advection and diffusion operators,

L1 = ∇ · (~u),

L2 = ∇ · (K ∇) ,
(3.1.11)

for which
L2L1ω = ∇ · (K ∇ (∇ · (~u ω))) ,

L1L2ω = ∇ · (~u (∇ · (K ∇ω))) ,
(3.1.12)

are not the same operators in the general case where the advection speed u or diffusion

coefficients K depend on spatial coordinates. This is clearly the case for our computations

since, as we saw in Section 2.4, both wind speed and vertical diffusion coefficients vary

with altitude. While formally only first order accurate, the coefficient of the O(∆t) term in

Godunov splitting may be much smaller than the coefficients in the second order terms and

therefore the first order scheme is not really so bad (Section 17.5 of [25]). Godunov splitting

is generally a valuable tool since it ensures first order error for a large class of the solution

operators and is ideal for extending existing 1D codes to higher dimensions with minimum

programming overhead.

Extension of these concepts to more operators can be achieved naturally via the solution

operator notation. For example, given three operators L1,L2,L3 we have

ω(tn+1) = e∆t L3e∆t L2e∆t L1ω(tn). (3.1.13)

As expected the truncation error becomes more complicated and commutativity conditions

become more entangled;

1

∆t

(
e∆t L − e∆t L3e∆t L2e∆t L1)w(t) =

1

2
∆t ((L1L2 − L2L1) + (L1L3 − L3L1) + (L2L3 − L3L2))w(t) +O(∆t2).

(3.1.14)

These extensions are key to constructing higher order splitting schemes.

3.1.2 Strang Splitting

Following the idea of constructing a commutative pair of operators, we move on to Strang

splitting which is also very popular in practice. Strang splitting avoids the lack of commu-

tativity by applying the split operators in alternating order over two half time steps, that
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is
ω(tn+1) =

(
e

1
2

∆t L1e
1
2

∆t L2
)(

e
1
2

∆t L2e
1
2

∆t L1
)
ω(tn),

= e
1
2

∆t L1e∆t L2e
1
2

∆t L1ω(tn).
(3.1.15)

It is easy to see that in this case the overall split operators commute and the first order

truncation error in (3.1.10) is eliminated. Defining the commutator

[A1, A2] = A1A2 −A2A1, (3.1.16)

and applying the exponential expansions successively we see that the truncation error is

given by

1

∆t

(
e∆t L− e

1
2

∆t L1e∆t L2e
1
2

∆t L1
)
w(t) =

1

24
∆t2 ([L1, [L1,L2]] + 2[L2, [L1,L2]])ω(tn+1/2) +O(∆t4),

(3.1.17)

which is second order in ∆t.

We will not employ Strang splitting in our applications since it is not supported by

CLAWPACK in 3D for dimensional splitting. That means we would not be able to use

dimensional splitting for advection, which reduces code performance. A full 3D solve of the

hyperbolic operator is more expensive than the dimensional split version and we often need

to have a fine mesh. This is not of much concern since the contaminant deposition problem,

by nature, is accompanied by large measurement errors for both the pollutant concentration

and the model parameters. Therefore, the extra accuracy of a higher order scheme is not

necessarily useful.

3.1.3 Boundary Conditions and Split Operators

One of the main difficulties in applying split operators arises in identifying proper boundary

conditions for the split steps. In Section 17.9 of [25], LeVeque presents an example of an

advection-reaction equation in 1D with Dirichlet boundary conditions:

ωt + uωx = −βω,

ω(0, t) = 1,
(3.1.18)

where u is the advection speed and β is the reaction rate. A similar example with conver-

gence results is also considered by Hundsdorfer [18].
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Suppose that we split the advection and reaction terms by solving the following set of

equations over a time step from tn to tn+1

ω∗t = −uω∗x subject to ω∗(0, t) = 1, ω∗(x, tn) = ω(x, tn),

ω∗∗t = βω∗∗ subject to ω∗∗(0, t) = 1, ω∗∗(x, tn) = ω∗(x, tn+1).
(3.1.19)

Assume that the problem is discretized in space using a finite volume scheme (see Section

3.1.6). Let us take the Courant Friedrichs Lewy (CFL) number ν = u∆t
∆x = 1 (see Section

3.4.2), so that the solution operator for the advection equation for the first cell adjacent to

the boundary is

W ∗1 = Wn
0 , (3.1.20)

where Wn
0 is a hypothetical cell which is utilized to impose the boundary condition (see

Section 3.3.2 for more details). Then applying the reaction solution operator gives

Wn+1
1 = e−β∆tW ∗1 , (3.1.21)

and putting these steps together we have

Wn+1
1 = e−β∆tWn

0 , (3.1.22)

which is the exact solution operator with no splitting error. Since a constant boundary

condition is prescribed for the ghost cell, we have Wn
0 = 1. Then the predicted cell average

value is

Wn+1
1 = e−β∆t CFL== e−

β
u

∆x = 1− β

u
∆x+O(∆x2), (3.1.23)

while the actual cell average from the exact solution is

1

∆x

∫
cell

e−
β
u

∆xdx = 1− β

2u
∆x+O(∆x), (3.1.24)

where an O(∆x) error is introduced. Assuming that a similar error arises when a diffusive

process is added to the equation, then the error would propagate through the whole solution

implicitly and our scheme would return to being first order. Also note that the first order

error introduced by splitting is only detectable by comparing the numerical solution against

the analytic solution. That is, doing a numerical convergence study by comparing the

solution over successively finer grids will not uncover this source of error.
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3.1.4 Splitting Advection, Diffusion and Sources

Now that the basic ideas surrounding splitting schemes are laid out, we will next present

an overview of the splitting method that we will actually employ in this project.

Pollution dispersion in the atmosphere is advection-dominated in the sense that the

diffusive effects in (2.1.2) are small compared to the advection. For this reason, it is desirable

to use a sophisticated hyperbolic solver to treat the advective term, and we will use the

CLAWPACK solver for this purpose. CLAWPACK also uses Strang splitting to handle

source terms by default and we develop our own approach for treating the diffusion term.

Solving both the advection and diffusion terms in 3D is not cheap even when using splitting

and it can take a very long time to compute for very fine grids. Therefore, we employ

dimensional splitting for both advection and diffusion, which reduces the linear algebra to

1D solves in each direction. This is very desirable since we end up with an O(N) algorithm

rather than O(N3) (where N denotes the number of grid cells in each direction). Of course

this type of splitting is highly susceptible to splitting error and since CLAWPACK 4.3 only

works with Godunov dimensional splitting in 3D, we should not expect to see better than

first order accuracy in time. Choosing a CFL number close to 1 means that the time error

will be equivalent to a first order spatial error because ∆t will be on the order of ∆x. An

overview of our algorithm is as follows:

1. Read data, initialize and factor diffusion matrices.

2. Compute source contributions over a half time step.

3. Solve the advection terms using CLAWPACK’s wave propagation algorithm, sweeping

in x then y then z and also choose ∆t if adaptive time stepping is employed.

4. Update and factor the diffusion matrices if adaptive time stepping is employed.

5. Apply the diffusion terms, sweeping in x then y and then z.

6. Compute the source contributions over another half time step.

7. Return to step 2.
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3.2 Finite Volume Methods and Conservation Laws

Finite volume schemes are commonly used for the solution of conservation laws in the engi-

neering and mathematical communities. They are also used in many commercial softwares

such as FLUENT or open source packages such as OpenFOAM and CLAWPACK. For an

extensive treatment of finite volume schemes and an introduction to the CLAWPACK pack-

age see the monograph by LeVeque [25] or the CLAWPACK manual [26]. There are a vast

number of references on finite volume schemes including the book by Hirsch [17] and the

monograph on computational fluid dynamics by Chung [8], both of which consider finite

volume methods from an engineering point of view. We will start by introducing the basic

concept of a finite volume scheme while heavily depending on [25].

Let us revisit the homogeneous form of equation (2.1.1) in one dimension,

ct + fx = 0 (3.2.1)

with some prescribed boundary conditions. This PDE can be viewed as a conservation law

for c where the function f(c(x, t)) is the flux and c(x, t) is the conserved quantity. The

theory of conservation laws is very well developed (see chapter 11 of [12] and chapters 2 and

3 of [25]). A finite volume scheme approximates the integral of the solution of (3.2.1) over

finite intervals, often called finite volumes or grid cells. Intuitively, the method attempts

to conserve the quantity c over the volume of each cell. Denote the ith cell by the interval

Ci = [xi−1/2, xi+1/2] of length ∆x. Integrate (3.2.1) over the grid cell Ci to obtain the

following integral form of the conservation law

d

dt

∫
Ci
c(x, t)dx = f(c(xi−1/2, t))− f(c(xi+1/2, t)). (3.2.2)

Let the solution in this cell after n time steps be denoted by Cni which is defined as the

average of the exact solution over the cell Ci,

Cni ≈
1

∆x

∫ xi+1/2

xi−1/2

c(x, tn)dx. (3.2.3)

Consider integrating both sides of (3.2.2) over a time interval [tn, tn+1] with tn+1 = tn+∆t.

Then we have∫
Ci
c(x, tn+1)dx−

∫
Ci
c(x, tn)dx =

∫ tn+1

tn

f(c(xi−1/2, t))dt−
∫ tn+1

tn

f(c(xi+1/2, t))dt. (3.2.4)
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Divide (3.2.4) by ∆x and use (3.2.3) to get

Cn+1
i − Cni =

1

∆x

[∫ tn+1

tn

f(c(xi−1/2, t))dt−
∫ tn+1

tn

f(c(xi+1/2, t))dt

]
, (3.2.5)

which is a rule for updating the approximation Cni . The next step is to approximate the

integrals on right hand side of (3.2.5). Define

F
n+1/2
i−1/2 ≈

1

∆t

∫ tn+1

tn

f(c(xi−1/2, t))dt (3.2.6)

as a numerical approximation of the flux integral. Putting equations (3.2.5) and (3.2.6)

together we have a formula to update values of the approximate solution in a manner that

mimics the conservative form of the original PDE,

Cn+1
i = Cni −

∆t

∆x

(
F
n+1/2
i+1/2 − F

n+1/2
i−1/2

)
. (3.2.7)

Figure 3.1 depicts the configuration of the discretized solution in 1D. Since we are looking

for a scheme that will update the approximate solution using previous approximations then

we need to write the approximate fluxes as a function of the solutions Cni . A simple case

would be to use the cell average values on either side of the face to write

F
n+1/2
i−1/2 = F(Cni−1, C

n
i ) (3.2.8)

where F is called the numerical flux. This definition of the numerical flux guarantees the

conservation of C within the domain of solution. The choice of the numerical flux determines

the accuracy and order of our finite volume scheme.

Cni−1 Cni Cni+1

Fni+1/2Fni−1/2

Figure 3.1: Schematic of the finite volume discretization of the conserved quantity c and
the fluxes mentioned in (3.2.7).
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3.3 Treating Diffusion with an Implicit Solver

In this section we explain how the diffusion term in (2.1.2) is discretized with an implicit

finite volume scheme. We consider how the variable diffusion coefficients are treated and

discuss the discretization of the boundary conditions.

3.3.1 Diffusion Flux and Variable Diffusion Coefficients

With the basic idea of finite volume methods laid out we can now discretize the diffusion

term. Consider the 1D diffusion equation

ct − (K(x)cx)x = 0 (3.3.1)

with prescribed initial and boundary conditions, which is a parabolic PDE. We assume that

the diffusion coefficient K(x) is a function of position but not time. Comparing (3.3.1) and

(3.2.1), the flux f for diffusion can be written as

f(c(x, t)) = −K(x)cx(x, t). (3.3.2)

To approximate the flux in cell Ci, we use a simple centered difference at the cell interface to

obtain the derivative and take Ki−1/2 = K(xi−1/2) which gives a formula for the numerical

flux as

F(Ci−1, Ci) = −Ki−1/2

(
Ci − Ci−1

∆x

)
. (3.3.3)

Since we are not interested in using an explicit scheme for the parabolic PDE (3.3.1) due

to severe time step restrictions, we define

Fni−1/2 = F(Cn+1
i−1 , C

n+1
i ) (3.3.4)

which we can substitute in (3.2.7) to obtain an implicit finite volume scheme

Cn+1
i = Cni +

∆t

∆x2

[
Ki+1/2(Cn+1

i+1 − C
n+1
i )−Ki−1/2(Cn+1

i − Cn+1
i−1 )

]
. (3.3.5)

This is the familiar second order centered difference scheme that is commonly used in finite

difference approximations. Rearranging the terms in (3.3.5) to keep the implicit terms on

the left hand side and the explicit terms on the right, we can see the form of the matrix

that will be used in the implicit solve(
− ∆t

∆x2
Ki+1/2

)
Cn+1
i+1 +

(
1 +

∆t

∆x2
(Ki+1/2 +Ki−1/2)

)
Cn+1
i +(

− ∆t

∆x2
Ki−1/2

)
Cn+1
i−1 = Cni .

(3.3.6)
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Therefore, each time step requires inversion of a sparse tridiagonal matrix, which is in

general non-symmetric when K(x) varies with position.

3.3.2 Boundary Conditions

So far we have only approximated the solution for interior points that are not adjacent to

the boundary. Extra work is required to implement the boundary conditions with the same

order of accuracy as the interior equations. We will describe the discretization of three types

of boundary conditions (Dirichlet, Neumann and Robin) although we are more interested

in the Robin condition which will be used to model the ground deposition.

Dirichlet BC

Let us focus our attention on the boundary cells Cn+1
1 and Cn+1

N . The Dirichlet boundary

condition for the PDE (3.3.1) over a domain Ω = [a, b] dictates c(a) = l(t),

c(b) = r(t),
(3.3.7)

where the left and right boundary conditions l(t) and r(t) are given functions of time. To

satisfy the Dirichlet conditions in discrete form we make use of ghost cells. Consider a

hypothetical cell Cn+1
0 to the left of Cn+1

1 as depicted in Figure 3.2. Now the boundary

of the domain is the left interface of C1 and this is where we need to satisfy the boundary

conditions. We approximate the solution at this point by the average of the cell centered

values and set it equal to the Dirichlet boundary condition,

Cn+1
1/2 =

Cn+1
0 + Cn+1

1

2
= l(tn+1). (3.3.8)

Similarly for the right boundary we have

Cn+1
N+1/2 =

Cn+1
N + Cn+1

N+1

2
= r(tn+1), (3.3.9)

where Cn+1
N+1 is the hypothetical value. Solving for the ghost values in equations (3.3.8) and

(3.3.9) and then substituting back in (3.3.6), we have a closed system of equations. This

process gives a second order approximation to the Dirichlet boundary condition according

to LeVeque [25].
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Neumann BC

The next well known form of boundary conditions is the Neumann condition given by
−K(a)

∂c

∂x
(a) = l(t),

K(b)
∂c

∂x
(b) = r(t),

(3.3.10)

in the 1D case. Again, we will derive the boundary condition for the cell on the far left of

the domain and the same argument can be used for the cell adjacent to the right boundary.

Consider the hypothetical value Cn0 , but this time we make use of this value to approximate

the derivative of the solution at the left interface of C1. We discretize the first condition in

(3.3.10) using centered differences to get

Cn+1
1 − Cn+1

0

∆x
= − 1

K(a)
l(tn+1), (3.3.11)

and similarly for the right boundary

Cn+1
N+1 − C

n+1
N

∆x
= − 1

K(b)
r(tn+1). (3.3.12)

Putting equations (3.3.11), (3.3.12) and (3.3.6) together we have a closed system of equations

for the solution at the cell centers.

Cn0 Cn1 Cn2

Fn1+1/2Fn−1/2

Figure 3.2: Schematic of a ghost cell (shaded) for implementation of the boundary conditions
at the left boundary.

Robin

With the Dirichlet and Neumann boundary conditions laid out, we can extend our imple-

mentation of these conditions to the mixed Robin boundary condition,
αc(a)−K(a)

∂c

∂x
(a) = l(t),

βc(b) +K(b)
∂c

∂x
(b) = r(t),

(3.3.13)
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where α and β are constants. Again we employ the idea of ghost cells to discretize this

boundary condition. We use centered differences to discretize the derivative and write out

a fully implicit formula that can be substituted in (3.3.6) to give the value in the ghost cell

based on interior points. For the boundary condition on the left side of the interval we have

α
Cn+1

1 + Cn+1
0

2
−K(a)

(
Cn+1

1 − Cn+1
0

∆x

)
= l(tn+1), (3.3.14)

and similarly for the right boundary,

β
Cn+1
N+1 + Cn+1

N

2
−K(b)

(
Cn+1
N+1 − C

n+1
N

∆x

)
= r(tn+1). (3.3.15)

Similar to the previous cases, equations (3.3.14) and (3.3.15) will close the system given by

(3.3.6). In particular we are interested in homogeneous Robin conditions with l(t) = r(t) = 0

with the freedom to choose the coefficients α, β.

3.4 Advection Solver

Now we consider the discretization of the advective term which involves solving a problem

of the form

ct +∇ · (~uc) = 0, (3.4.1)

with prescribed boundary conditions and a given velocity field ~u(x). Going back to the form

of (3.2.1), it is clear that this is a conservation law with flux

f(c) = ~uc. (3.4.2)

Note that this form of the flux is indeed more general in the sense that it also incorporates

variable velocity fields that depend on time or space. For now we consider a constant velocity

field so that we can provide some basic definitions. Later we will generalize our arguments

to the case of variable velocity field. The main reference for the material in this section is

the monograph by LeVeque [25] which has a detailed treatment of hyperbolic conservation

laws.

3.4.1 Characteristics and Riemann Problems

Since we are eventually interested in dimensional splitting, let us consider the 1D version of

(3.4.1) with given initial condition over the whole of R and positive advection speed u > 0

ct + ucx = 0, c(x, 0) = g(x). (3.4.3)
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We can make the simple change of variable ξ = x− ut to obtain

dc

dξ
= −1

u
ct + cx = 0, (3.4.4)

which means that the solution is constant along the characteristic curve x = ut+ C where

C is a constant. This suggests that the solution to the advection equation is simply the

initial condition shifted along the characteristics, that is

c(x, t) = g(x− ut). (3.4.5)

A special case of the hyperbolic problem (3.4.3) with a jump initial condition

g(x) =

 cl for x < 0,

cr for x > 0,
(3.4.6)

is called the Riemann problem corresponding to (3.4.3), where cl and cr are given constant

values. This is solved by simply propagating the jump discontinuity along characteristics.

3.4.2 Finite Volume Formulation

Following the same conventions as Section 3.2.1, we can discretize the hyperbolic equation

in (3.4.3). Many choices can be made for the numerical flux which affect the accuracy and

stability of the numerical scheme. The simplest choice is the first order upwind flux which

uses a first order approximation of the spatial derivative of c to give

Fni−1/2 = uCni−1, (3.4.7)

that allows us to rewrite (3.2.6) as

Cn+1
i = Cni −

u∆t

∆x

(
Cni − Cni−1

)
. (3.4.8)

This scheme is stable when ν = u∆t
∆x ≤ 1, which is called the CFL condition named after

Courant-Friedrichs-Lewy [25]. Intuitively, the CFL condition dictates that flow of informa-

tion in the discretized hyperbolic system should mimic the flow of information in the actual

PDE. In other words, the discrete domain of dependence of the solution must contain the

analytical domain of dependence [25].

To understand how the upwind method makes use of the solution to a Riemann problem,

take the solution at the current time step Cni to be exact in all cells. We want to solve the



CHAPTER 3. THE NUMERICAL SCHEME 31

PDE with a piecewise constant initial condition as pictured in Figure 3.3a. Based on the

initial data there is a Riemann problem at each cell interface with a jump ∆Cni+1/2 =

Cni+1 − Cni across each cell face. Updating the solution over a time increment ∆t means

that the discontinuities must move along characteristics a distance u∆t into the next cell

(Figure 3.3b). Assuming the CFL condition is satisfied, the discontinuity can only move

as far as the next cell interface otherwise characteristics from neighboring cells cross and

solution will not be unique anymore. So far the solution is updated exactly but since the

numerical scheme can only see the solution as averages over the cells, we have to take the

average of the new solution over each cell which gives the updated solution as shown in

Figure 3.3c. The variation in the average cell value after this step is exactly the second term

on the right hand side of (3.4.8). This image helps to understand why we prefer to keep the

CFL number close to one in order to reduce the smearing of discontinuities.

A large collection of higher order variants of this method is available such as the Lax-

Wendroff method,

Cn+1
i = Cni −

u∆t

2∆x
(Cni+1 − Cni−1) +

1

2

(
u∆t

∆x

)
(Cni−1 − 2Cni + Cni+1). (3.4.9)

These high resolution schemes tend to give oscillatory solutions near discontinuities. Hence

they are effective when the solution is smooth. In chapter 6 of [25] a detailed treatment of

flux limiters and high resolution schemes is presented. We will not discuss these methods

since they constitute a vast topic deserving of an extensive amount of time and background.

3.4.3 Variable Coefficients

So far we have only considered a constant coefficient hyperbolic system, whereas the pollu-

tant advection problem with velocity field correction and time dependent wind is a variable

coefficient problem following our discussions in Chapter 2. The case of a time dependent

wind u(t) is rather easy to deal with, since (3.4.1) becomes

ct + (u(t)c)x = ct + u(t)cx = 0. (3.4.10)

The only difference in our numerical scheme is that at each time step we have to update

the advection speed. Hence, the upwind scheme reads

Cn+1
i = Cni −

u(tn)∆t

∆x

(
Cni − Cni−1

)
. (3.4.11)
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Cni−1 Cni Cni+1

(a)

Cni−1 Cni Cni+1︸ ︷︷ ︸
u∆t

(b)

Cn+1
i−1 Cn+1

i Cn+1
i+1

(c)

Figure 3.3: Schematic depiction of the solution from the upwind scheme. (a) The solution
at time tn. (b) Taking the solution at tn as the initial condition for a Riemann problem
at each cell interface we get the exact solution at tn+1 by shifting the initial condition a
distance u∆t. (c) Taking the average of the new solution at each cell yields the numerical
solution at the next time step.
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It is important to note that in this case the Courant number (ν = u∆t/∆x) changes as the

velocity varies in time. This means that we must either use adaptive time stepping or else

choose a time step for the largest velocity value (which could generate excessive smearing

when the velocity is small).

In the case of a spatially dependent advection speed we have the PDE,

ct + (u(x, t)c)x = 0. (3.4.12)

Using (3.2.7) and defining the flux as

F
n+1/2
i−1/2 = u(xi−1, tn)Cni−1, (3.4.13)

we can write the upwind scheme as

Cn+1
i = Cni −

∆t

∆x

(
u(xi, tn)Cni − u(xi−1, tn)Cni−1

)
. (3.4.14)

3.5 Point Sources

In this section we consider the numerical treatment of point sources since these are the

most common type of sources used in atmospheric dispersion applications. The physical

dimension of pollution sources is typically much smaller than the discrete grid sizes used

and therefore they can be considered as point sources or delta distributions.

3.5.1 Delta Distribution and Action on Test Functions

The reader is encouraged to consult the monograph by Rudin [38] for a detailed definition

and treatment of the theory of distributions and test functions. Here we will only present a

very brief introduction to these subjects.

We define a test function in a domain Ω ⊆ R as an infinitely differentiable and compactly

supported function φ(x) ∈ C∞c (Ω) such that ∂αφ vanishes outside a compact set K for all

multi-indices α and supp φ ⊆ K for any set K b Ω. Let D(R) denote the space of test

functions over the whole real line, and denote by D∗(R) the space of distributions. Now

consider a sequence of test functions {φj} ∈ D(R) such that

∂αφj → 0 uniformly on K as j →∞,
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for all multi-indices α. Then a linear functional T belongs to D∗(R) and hence is a distri-

bution if and only if

T (φj)→ 0 as j →∞.

In other words distributions are elements that act like bounded linear functionals over test

functions. Note that distributions, in general, are very different from conventional functions.

For example, they do not need to be single valued or defined pointwise. Therefore we should

keep in mind that they are only defined via their action on test functions. Of particular

interest to our work here is the delta distribution defined as

〈δ, φ〉 := δ(φ) =

∫
R
δ(x)φ(x) dx = φ(0), (3.5.1)

which selects a point value of a smooth function. Note that we have employed the Riesz

representation theorem [38] in our notation in order to write the action of the delta distri-

bution as an integral. Having this definition in mind, it is obvious that we cannot discretize

this distribution directly and so we need to approximate the delta distribution with another

distribution that can be represented as a function. Once we have such an approximation,

then it can be discretized and built into a numerical scheme.

3.5.2 Moment Conditions

Consider approximating the delta distribution with a sequence of distributions δh(x) that

converges to the delta distribution as h→ 0 in the sense of (3.5.1). That is, find δh ∈ D∗(Ω)

such that ∀φ ∈ D(Ω)

lim
h→0

∫
R
δhφ dx→

∫
R
δφ dx = φ(0), (3.5.2)

so that action of the approximation δh is similar to that of the delta distribution in the

limit of small h. Now consider expanding φ(x) ∈ D(Ω) about x = 0 using Taylor’s theorem.

Since φ is infinitely differentiable we have

〈δh, φ〉 =

∫
R
δh

(
φ(0) + xφx(0) +

x2

2
φxx(0) + · · ·

)
dx

=

∫
R
δhφ(0) dx+

∫
R
δhxφx(0) dx+

∫
R
δh
x2

2
φxx(0) dx+ · · ·

(3.5.3)

Of particular interest are forms of δh that have compact support on an interval [−h/2, h/2],

in which case (3.5.3) takes the form

〈δh, φ〉 =

∫ h/2

−h/2
δhφ(0) dx+

∫ h/2

−h/2
δhxφx(0) dx+

∫ h/2

−h/2
δh
x2

2
φxx(0) dx+ · · · (3.5.4)
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Now if we look at the error between the action of the approximate distribution and the

original delta distribution we see that

〈δh, φ〉 − 〈δ, φ〉 =φ(0)

(∫ h/2

−h/2
δh dx− 1

)
+ φx(0)

(∫ h/2

−h/2
δhx dx

)

+
φxx(0)

2

(∫ h/2

−h/2
δhx

2 dx

)
+ · · ·

(3.5.5)

This way of expressing the residual makes clear what conditions should be satisfied in order

to minimize the error. Roughly speaking each term in (3.5.5) involves integration over higher

powers of x, which represent the different orders of convergence. That is, for each integral

in (3.5.5) we have∣∣∣∣∣
∫ h/2

−h/2
δhx

m dx

∣∣∣∣∣ ≤
∫ h/2

−h/2
|δh| |xm| dx ≤ hm

∫ h/2

−h/2
|δh| dx = O(hm). (3.5.6)

Note that the absolute value of δh only makes sense in terms of the function associated

with this distribution. Setting the terms inside the brackets in (3.5.5) to zero we obtain the

following sequence of conditions that should be satisfied by δh∫ h/2

−h/2
δh dx = 1,∫ h/2

−h/2
xδh dx = 0,∫ h/2

−h/2
x2δh dx = 0,

...

(3.5.7)

which are known as the moment conditions. It is interesting to note that the first condition

states that the approximate delta distribution should integrate to 1 over its support, while

the second condition forces δh to be even. It is easy to see that a piecewise constant function

δh :=

 1/h, for |x| ≤ h,

0, otherwise,
(3.5.8)

satisfies the first two conditions and hence yields second order convergence in the sense of

(3.5.6). This choice is not unique and so if we also want continuity, then we can choose a
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hat function or the cosine approximation given by

δh :=


1

2h

(
1 + cos

(
2πx

h

))
, for |x| ≤ h,

0, otherwise.

(3.5.9)

The only conclusion we can draw from the third condition is that δh cannot be positive over

its whole support. To satisfy more than the first two conditions in (3.5.8) is a difficult task

in general.

3.5.3 Solving the Moment Problem

Finding a function that satisfies all the conditions of (3.5.7) is an infinite dimensional mo-

ment problem whereas satisfying a finite number of these conditions results in the finite

dimensional moment problem. For an introduction to moment problems and their solution,

see section 5.3 of [21]. This is an ill-posed problem with conditional existence or uniqueness

of solution. Clearly the finite dimensional case lacks uniqueness of solution, since any sym-

metric function that integrates to 1 can satisfy the first two conditions. Since our numerical

method is only first order, we are already satisfied with the piecewise constant approxima-

tion in (3.5.8). But we take a short detour here to derive a higher degree approximation

to the δ that satisfies the third moment condition as well. This is an exercise in solving

ill-posed integral equations. Consider summarizing the conditions in (3.5.7) as

(δh, ψn) = βn, n ∈ N, (3.5.10)

for functions ψn that we assume are polynomials whose degree increases with n. In order

to find a solution to this problem we need the ψn to be linearly independent. We also need

a basis for the ψn that is orthogonal with respect to the inner product

(f1, f2) =

∫ 1

−1
f1(x)f2(x)dx, (3.5.11)

which is the familiar L2 inner product. We restrict our attention to functions that are

supported on the interval [−1, 1] and note that a simple rescaling will convert the solution

so that it is supported on [−h/2, h/2]. Using the L2 inner product as well as the first two

conditions in (3.5.7) suggests choosing the Legendre polynomials as a basis; which are given
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by the Rodriguez formula

Pm(x) =
1

2mm!

∂m

∂xm
(
(x2 − 1)m

)
,

‖Pm‖L2 =
2

2m+ 1
, for m = 0, 1, 2, ...

(3.5.12)

Expanding the first three ψn in terms of the Legendre basis gives

ψ0(x) = 1 = P0(x),

ψ1(x) = x = P1(x),

ψ2(x) = x2 =
2

3
P2(x) +

1

3
P0(x).

(3.5.13)

We can also represent the approximation δh(x) in terms of the basis polynomials as

δh(x) = a0P0(x) + a1P1(x) + a2P2(x). (3.5.14)

Then, substituting (3.5.13) and (3.5.14) into (3.5.10) and using orthogonality we have

a0 ‖P0‖ = 1,

a1 ‖P1‖ = 0,

a0

3
‖P0‖ +

2a2

3
‖P2‖ = 0,

(3.5.15)

which can be easily solved to obtain

a0 =
1

2
, a1 = 0, a2 = −5

4
. (3.5.16)

This solution clearly satisfies the first three moment conditions and is pictured in Figure

3.4a. Note that we could add an arbitrary number of terms to (3.5.14) using higher order

Legendre polynomials and the resulting function would still satisfy the desired moment

conditions–this is another way of showing the lack of uniqueness in the solution. Since the

function is only supported on [−1, 1], the solution in Figure 3.4a is clearly not continuous,

but we can take advantage of the higher order Legendre polynomials to get a solution that

is as smooth as we want. Consider adding a term involving P4(x) to the solution (3.5.14)

so that

δh(x) =
1

2
P0(x)− 5

4
P2(x) + a4P4(x), (3.5.17)

Now we can evaluate this function at the end points and set a4 = 3/4 to get the symmetric

function pictured in Figure 3.4b. Note that we could also add a multiple of P6(x) or any

other higher order Legendre polynomial with an even index, and the solution would still

satisfy the same requirements. This framework allows us to create approximations to the

delta distribution that have arbitrary order of accuracy.
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Figure 3.4: (a) Approximate delta distribution with the first three moment conditions. (b)
Approximation is made continuous by adding a multiple of P4(x).

3.5.4 Discretizing the Source Term

Once an analytical approximation to the delta distribution is obtained we can move on to

discretizing the approximation in our numerical scheme. For simplicity, we consider the

simple equation

ct(x) = s(x), (3.5.18)

which is actually the stage in our split step scheme that applies the source term. For

simplicity, consider the 1D case with a source that is constant, so s is only a function of the

spatial coordinates. To discretize this equation, all we need to do is integrate the source

term over each grid cell to obtain

Cn+1
i = Cni +

∆t

∆x

∫
Ci
s(x) dx. (3.5.19)

Now our approximation of the integral on the right hand side dictates the spatial accuracy

of this formula. We will use the composite trapezoidal rule, which is formally O(∆x2), to

approximate source terms that have support independent of the mesh size (see for example

case 4 in section 3.5.2 where we consider a smooth cosine function).

Another case of the source terms are delta distributions that have support of the order

of the mesh size; for example, see the function defined in (3.5.20) below. Note that in this

case the composite trapezoid rule does not give satisfactory results because the function is
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supported on a very small interval and we do not gain accuracy by refining the mesh. To

remedy this problem we compute the exact value of the integral in (3.5.19) and build the

answer into our numerical scheme. As an example, consider the delta source term centered

at xs that was previously defined in (3.5.8). Also suppose the solution is discretized over a

grid of size ∆x so that the source term can be written as

δh(x) =


1

∆x
, for |x− xs| ≤ ∆x,

0, otherwise.

(3.5.20)

Assume that x`−1/2 ≤ xs ≤ x`+1/2 for some index `, so that the source term is only supported

on the grid cells C`−1, C`, C`+1. Assume further that
∣∣xs − x`+1/2

∣∣ > ∣∣xs − x`−1/2

∣∣ so that

the source is closer to the right interface of C` Then we have∫
δh(x) dx =

∫
C`
δh dx+

∫
C`+1

δh dx, (3.5.21)

which indicates the contribution of the source to the solution at each cell is

Cn+1
` − Cn` =

∆t

∆x

(
1− xs − x`

∆x

)
,

Cn+1
`+1 − C

n
`+1 =

∆t

∆x

(
xs − x`

∆x

)
.

(3.5.22)

3.6 Pollutant Deposition

The last component in our numerical scheme is the ground deposition computation. By

definition, the deposition of pollutants is given by the space-time integral of the vertical

flux across the boundary at ground level and over time. Denote by g(x, y, t) the value of

deposition at z = 0 which satisfies

g(x, y, tn+1) = g(x, y, tn) +

∫ tn+1

tn

Wdepc(x, y, 0) dt, (3.6.1)

and can be discretized as

Gn+1
i,j = Gni,j +

Wdep∆t

2

(
Cni,j,1 + Cni,j,0

)
(3.6.2)

where the indices i, j = 1, ..., N indicate grid cells in x and y directions, the last index

indicates grid cells in z direction, and the index zero refers to a ghost cell. In order to omit

the value of the solution at the ghost cell we need to refer to the Robin boundary condition

− usetc(x, y, 0)−Kz(0)
∂c

∂z
(x, y, 0) = −Wdepc(x, y, 0). (3.6.3)
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We define W̄dep = Wdep − uset and rewrite this equation as

−Kz(0)
∂c

∂z
(x, y, 0) = −W̄depc(x, y, 0), (3.6.4)

using a discretization similar to that of (3.3.14) to obtain

−Kz(0)

(
Cni,j,1 − Cni,j,0

∆x

)
= −W̄dep

(
Cni,j,1 + Cni,j,0

2

)
. (3.6.5)

We solve this equation for the ghost value to get

Cni,j,0 =
γ − 1

γ + 1
Cni,j,1, (3.6.6)

where γ = 2Kz(0)
∆xW̄dep

. Now we substitute this result back into (3.6.2) to obtain an explicit

relationship for updating the ground deposition values

Gn+1
i,j = Gni,j + Wdep∆t

(
γ

γ + 1

)
Cni,j,1. (3.6.7)

3.7 Extension to Multiple Dimensions

In the previous sections, we laid out the main ideas behind our numerical scheme while

focusing on 1D. In this section we will extend the scheme to 3D by means of directional

splitting. This section can be viewed as the place where we bring all the preceding ideas to-

gether and assemble them into a 3D solver to model dispersion and deposition of pollutants

as discussed in Chapter 2.

3.7.1 Internal Grid Cells

Consider the full advection diffusion equation introduced in (2.1.2), which we present in

expanded form

∂c

∂t
+
∂cu(z)

∂x
+
∂cv(z)

∂y
=
∂

∂x

(
Kx

∂c

∂x

)
+

∂

∂y

(
Ky

∂c

∂y

)
+

∂

∂z

(
Kz(z)

∂c

∂z

)
+Qδ(x− xs)δ(y − ys)δ(z − zs).

(3.7.1)

The velocity field is assumed to have the form ~u(x, y, z) = (u(z), v(z), uset). We assume

that Kz and ~u depend on z as discussed in section 2.4. We are interested in splitting the
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differential operators to break the problem into simpler subproblems involving advection,

diffusion and the source term:

c(1)(tn) = c(tn) + e
∆t

(
u(z) ∂

∂x
+v(z) ∂

∂y
+uset

∂
∂z

)
c(tn), (3.7.2a)

c(2)(tn) = c(1)(tn) + e
−∆t

(
∂
∂x(Kxx ∂

∂x)+ ∂
∂y

(
Kyy

∂
∂y

)
+ ∂
∂z (Kzz(z) ∂

∂z )
)
c(1)(tn), (3.7.2b)

c(tn+1) = c(2)(tn) + ∆t Qδ(x− xs)δ(y − ys)δ(z − zs), (3.7.2c)

where we have suppressed the dependence c on position to keep the equations simple. There

is a further splitting that separates the spatial operators in (3.7.2a) to obtain

c(1a)(tn) = c(tn) + e∆t(u(z) ∂
∂x)c(tn), (3.7.3a)

c(1b)(tn) = c(1a)(tn) + e
∆t

(
v(z) ∂

∂y

)
c(1a)(tn), (3.7.3b)

c(1)(tn) = c(1b)(tn) + e∆t(uset ∂∂z )c(1b)(tn). (3.7.3c)

We can solve this system using the 1D advection solvers introduced earlier. We also split

(3.7.2b) to give

c(2a)(tn) = c(1)(tn) + e−∆t( ∂
∂x(Kxx ∂

∂x))c(1)(tn), (3.7.4a)

c(2b)(tn) = c(2a)(tn) + e
−∆t

(
∂
∂y

(
Kyy

∂
∂y

))
c(2a)(tn), (3.7.4b)

c(2)(tn) = c(2b)(tn) + e−∆t( ∂
∂z (Kzz(z) ∂

∂z ))c(2b)(tn). (3.7.4c)

Expressions (3.7.3) and (3.7.4) along with (3.7.2c) represent the fully split problem that we

wish to solve. Discretization is done naturally using the upwind scheme (3.4.14) for advective

terms, the implicit centered scheme (3.3.6) for diffusive terms and a multidimensional version

of (3.5.22) for the source term at the internal grid cells away from the boundaries.

3.7.2 Boundary Conditions

Proper boundary conditions are crucial for capturing the correct physics of our problem.

There are two main issues regarding boundary conditions for the 3D advection-diffusion

equation (3.7.1) in the discrete setting. First, the original PDE is defined on a half space

which is infinite in x, y and z > 0, but in our numerical scheme we consider a finite domain.

Therefore, we need to prescribe boundary conditions on all faces of the domain except for

the boundary at ground level, which we will treat separately. We assume the problem is ad-

vection dominated and therefore we prescribe outflow boundary conditions for the advection



CHAPTER 3. THE NUMERICAL SCHEME 42

solves in all directions. As for the diffusion diffusion, we prescribe homogeneous Neumann

boundary conditions in the x and y directions, as well as in the positive z direction– this

aims to to conserve the total mass of the contaminant.

The second issue concerns proper splitting of the Robin boundary condition (3.6.3) which

incorporates the sum of the advection and diffusion fluxes:

usetc(x, y, 0) +Kz(0)
∂c

∂z
(x, y, 0) = Wdepc(x, y, 0).

Our aim here is to choose the split boundary conditions so that the total flux at the ground

equals the required ground deposition flux. We prescribe outflow boundary conditions for

the advection solver at z = 0 which gives the advective flux fA = usetc(x, y, 0). Next, we

choose the diffusion flux so that it makes up for the rest of the vertical flux,

fD = Kz(0)
∂c

∂z
(x, y, 0) = (Wdep − uset)c(x, y, 0) = W̄depc(x, y, 0), (3.7.5)

which gives the proper boundary condition for the diffusion solver.

3.8 Convergence Studies

Having discussed the details of the numerical scheme, we now proceed to test the scheme

to ensure convergence and the correct order of accuracy. Here we present a series of tests

starting with simple settings and continuing to more complicated problems. We are gener-

ally interested in measuring the rate of convergence over the whole 3D domain as well as

convergence at ground level (being the z = 0 plane). We use the discrete `1, `2 and `∞

norms defined as ∥∥∥~V ∥∥∥
`q

=

(
1

N

N∑
i=1

|Vi|q
) 1

q

, for 1 ≤ q <∞,∥∥∥~V ∥∥∥
`∞

= max
i
|Vi| ,

(3.8.1)

for a generic vector ~V of length N .

We are concerned only with studying the effect of changes in the spatial grid size since

the advection solver works best with a Courant number that is close to 1, and so we have

for example ∆t ≈ ν∆x. Note that a scheme that is O(∆t,∆x2) will now only be first order

since ∆t ∝ ∆x/u. Except for the test case of simple diffusion we will report convergence

results with Courant number ν ≈ 0.9. This is also desirable from a performance perspective

since this ensures the largest possible stable time step.
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In order to measure the numerical convergence rate we measure the difference between

solution values on successively finer grids. That is, we take sequences of three successive grids

with number of gridpoints N, 2N, 4N and estimate the error by computing the difference

between the solutions

~EN = ~CN − ~C2N (1 : 2 : end), (3.8.2)

where we are borrowing MATLAB’s notation to emphasize that solutions are compared

only at the coarse grid points. Given this definition of ~EN , in the limit of large N , the

convergence rate λ of the numerical scheme is given by the expression

λ = log2

(
‖EN‖`q
‖E2N‖`q

)
. (3.8.3)

In the studies to follow, we choose 5 grids of size N3 with N = [16, 32, 64, 128, 256] and

present error norms for all grid sizes in the accompanying plots to verify that the error is in

fact being reduced at the expected rate.

3.8.1 Preliminary Tests

We start with a simple advection test having no diffusion, next we consider isotropic dif-

fusion with no advection, and finally we report on an advection-diffusion test. All three of

these preliminary tests take zero source term and smooth initial conditions, and results are

presented in Table 3.1. We see that the desired first order convergence rate is maintained

in all test cases.

Case 1: Simple Advection

The first test case has a velocity ~u = (1, 0, 0) and omits the diffusion and source terms,

taking Kx,y,z = Q = 0. We take the initial condition to be a smooth cosine bump centered

at (3, 0, 3) and having support within the cube supp g = {2 ≤ x ≤ 4,−1 ≤ y ≤ 1, 2 ≤ z ≤ 4}
given by

g(x, y, z) =

 g̃(x, y, z), for (x, y, z) ∈ supp g,

0, otherwise,
(3.8.4)

where

g̃(x, y, z) =
1

8
[1 + cos (π(x− 3))] · [1 + cos (π(y))] · [1 + cos (π(z − 3))] . (3.8.5)
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We apply outflow boundary conditions on all sides of the domain and take the domain to be

a cube given by {0 ≤ x, z ≤ 10,−5 ≤ y ≤ 5}. Godunov splitting is employed for advection

and solutions are computed up to time t = 8.4, which is equivalent to taking 240 time steps

on the finest mesh with N = 256, and with a Courant number ν = 0.896.

Case 2: Pure Diffusion

In this test we omit advection and consider only the diffusion problem. We use the same

initial condition as (3.8.4) with the velocity field and the source term set to zero. Isotropic

diffusion with Kx = Ky = Kz = 0.25 is considered, and the solution domain is the same as

in case 1. We consider homogeneous Neumann boundary conditions on all faces and choose

a constant time step of size ∆t = 0.003, computing the solution over various grids for 300

time steps.

Case 3: Advection-Diffusion

After separately testing the advection and diffusion solvers we now consider both advection

and diffusion. The domain and initial conditions are the same as in the previous two cases,

the velocity field is ~u = (1, 0, 0) and the diffusion coefficients are taken to be Kx = Ky =

Kz = 0.25. The Courant number is again taken to be ν = 0.9 and solutions are computed

for 240 time steps on the finest mesh. We choose outflow boundary conditions on all sides

for the advection terms, and use homogeneous Neumann for all sides for the diffusion terms.

We choose these boundary conditions since they will be used in our real world application

in section 3.4.6.

norm

Case `1 `2 `∞

1 1.0215 1.0131 0.9929

2 1.0091 1.0120 1.0277

3 1.1829 1.1789 1.1140

Table 3.1: Convergence study for cases 1, 2 and 3. All convergence rates are for the finest
mesh and errors are computed over the whole domain.
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Figure 3.5: (a) Plot of `1 norm of error for preliminary cases for various mesh sizes.

3.8.2 Testing with Source Terms

Next, we test the advection-diffusion solver when both smooth and delta sources are used. In

the case of the delta source we present the convergence rate over the entire domain and also

over a volume that is separated from the source. The reason for this choice is to determine

whether convergence degrades close to the singular source. Results are presented in Table

3.2 accompanied by Figure 3.6.

Case 4: Smooth source

In this test we consider homogeneous initial conditions. All parameters are the same as

in Case 3 and the solution is computed to the same time. We choose outflow boundary

conditions for advection on all faces and diffusion is solved using Neumann boundary con-

ditions. The termination time is the same as in the previous cases, which is long enough for

the solution to hit one of the boundaries, and therefore we see the effect of the boundary

conditions. We specify the source as a smooth cosine bump centered at ~Xs = (4, 0, 4) and

supported on a cube of size h = 2, given by

s(x, y, z) =

 s̃(x, y, z) for (x, y, z) ∈ supp s,

0 otherwise,
(3.8.6)

where

s̃(x, y, z) =
1

8h3

[
1 + cos

(
π

(x− xs)
h

)]
·[

1 + cos

(
π

(y − ys)
h

)]
·
[
1 + cos

(
π

(z − zs)
h

)]
,

(3.8.7)
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and

supp s = {|x− xs| , |y − ys| , |z − zs| ≤ h} . (3.8.8)

The trapezoid rule is employed for integration of the smooth source. Results of this conver-

gence study is presented in Table 3.2 and we see the expected first order convergence.

Case 5: Point source

In this case we consider a source term corresponding to the 3D version of the delta distri-

bution defined in (3.5.20)-(3.5.22) and centered at ~Xs = (4, 0, 4)–this is a constant valued

function supported on a rectangular prism of size ∆x ×∆y ×∆z. Figure 3.7 pictures the

plume generated by this source term at the final time.

As we see in table 3.2, the convergence in the `2 and `∞ norms is lost, which is clearly due

to the singularity introduced by the delta distribution. In other words, the source blows up

too fast for the solution to converge in its vicinity. Looking at the Gaussian plume solution

in equation (2.2.8) we realize that even the analytic solution has a singularity at the source;

therefore, this loss of convergence is expected. In order to check whether the solution is

converging away from the source, we also compute the convergence rates over half of the

domain where 5 ≤ x ≤ 10 which is well separated from the point source. In Table 3.2 we

see that the solution is converging in the `2 norm away from the source but over the entire

domain, the solution is only converging in the `1 norm. Also note that the convergence rates

are lower as compared to case 4 where a smooth source term was considered. Figure 3.8

shows two slices of the point wise `1 error of the solution between the two finest grids. We

can see that large error occurs around the source which is consistent with our observation

of the fact that convergence rate improves away from the source.

norm

Case `1 `2 `∞

4 1.0275 1.0489 1.0471

5 (entire domain) 0.6267 -0.5206 -2.0227

5 (away from the source) 0.7050 0.4921 -0.7156

Table 3.2: Convergence rates for smooth and point sources (cases 4 and 5).
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Figure 3.6: Plot of errors for cases 4 and 5 for different grid sizes in `1, `2 and `∞ norms.
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Figure 3.7: Contour slices of the plume of case 5 computed with N = 128 and the source
denoted by the blue circle. (a) Horizontal slice of the solution at source height z = 4 and
(b) vertical slice of the solution at y = 0.
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Figure 3.8: Contour slices of the point wise error in `1 norm for case 5 between N = 128
and 256. (a) Shows a horizontal slice of the error at the source height z = 4 and (b) shows
a horizontal slice at z = 0.

3.8.3 Variable Velocity and Diffusivity

For the next set of convergence tests we consider variable velocity and diffusion coefficients

as in Section 2.4. Since the point source had a negative effect on convergence in case 5,

we will present results for both smooth and singular sources so as to clearly identify any

degradation in convergence.

Case 6: Variable Velocity

The setup of the problem is exactly the same as cases 4 and 5 except that we use the

vertical velocity profile from (2.3.1) for the velocity field ~u = (u(z), 0, 0). We choose the

reference height zr = 10, the reference velocity ur = 1 and the exponent m = 0.3 with a

cutoff height zcutoff = 2 (see sections 2.3.1-2.3.2). Results are presented in Table 3.3 and

Figure 3.9. Clearly convergence rates are satisfactory for the smooth source, but for the

point source we see that convergence rates are similar to those of case 5. This indicates that

the convergence rate is degrading due to the singular source and the variable velocity field

is affecting convergence.
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norm

Case `1 `2 `∞

6 (smooth source) 1.0270 1.0499 1.0494

6 (point source) 0.5932 -0.5208 -2.0229

6 (away from the source) 0.6928 0.5525 -0.5319

Table 3.3: Convergence study for case 6 with smooth and point sources with variable velocity
field.
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Figure 3.9: Solution errors for case 6 with variable velocity field for various grid sizes.
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Case 7: Variable Diffusivity

To study the effect of variable diffusion coefficients, we consider both a smooth and a

point source as in cases 4–6. We enable variations of the vertical diffusivity Kz(z) and

keep Kx = Ky = 0.25 constant. We also enable variations in the velocity profile with the

same parameters as in case 6. The atmosphere is assumed to be under stable conditions

(stability class F) so we use (2.3.3) with the function φ(z/L) corresponding to classes E or

F. Expression (2.3.7) is used with the reference height taken to be zr = 10 and the reference

diffusivity is Kz(zr) = 0.25. For the Monin-Obukhov length L we use expression (2.3.6) and

parameter values a = 0.035, b = −0.036 corresponding to moderately stable conditions. We

assume the terrain is uncut grass which gives a roughness length of z0 = 0.05 from Table

2.1 which together with our other assumptions yields L = 7. We also keep the diffusion

coefficient constant below the height zcutoff = 2 since the current form of our corrections

result in a zero diffusivity at ground level which is not desirable specially when we consider

ground deposition (see section 2.4.2 for further details on this assumption). Table 3.4 and

Figure 3.10 show results of this convergence study. We can see the expected first order

convergence rate for the smooth source but convergence degrades for the singular source in

a manner similar to cases 4–6; hence, the degradation is due to the singular source and not

the variable diffusion coefficient.

norm

Case `1 `2 `∞

7 (smooth source) 1.0268 1.0481 1.0457

7 (point source) 0.5365 -0.5236 -2.0260

7 (away from the source) 0.6227 0.5560 -0.5073

Table 3.4: Convergence study for case 7 with smooth and point sources and corrections to
both velocity profile and diffusivity coefficients.

Case 8: Deposition at ground level

For the final numerical convergence study, we consider enabling ground deposition along

with all other components of the model including variable velocity and diffusivity. We take

uset = 0 and consider Wdep = 0.01 which is taken much larger than the real value in order to
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Figure 3.10: Approximate solution errors for case 7 on various grid sizes with variable
velocity field and diffusion coefficients.

accentuate the effects of ground deposition. All other parameters are the same as in cases

4–7. Table 3.5 presents the results for smooth and point sources. Similar to cases 4–7 we

see that first order convergence for the smooth source is achieved but convergence degrades

due to the singular source term.

norm

Case `1 `2 `∞

8 (smooth source) 1.0240 1.0479 1.0456

8 (point source) 0.5365 -0.5236 -2.0258

8 (away from the source) 0.6227 0.5560 -0.5073

Table 3.5: Convergence study for case 7 with smooth and point sources with ground depo-
sition.

3.9 Sensitivity to Model Parameters

Since we have so many parameters in the model it is desirable to know the sensitivity of

the computed results to each parameter. To do a comprehensive sensitivity analysis is not

an easy task and there are many methods we could use. For example, a more sophisticated

approach makes use of a package such as DASPK that automatically calculates sensitivity

coefficients. Other approaches incorporate solution of the adjoint equations and Lagrange

multiplier approaches which reformulate the problem as a constrained optimization problem

(see for example the work of Petzold [5]). Here we use a simple “manual” approach and
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Figure 3.11: Plot of errors for case 8 with ground deposition and variable velocity and
diffusivity.

solve the problem for various parameter values and look at how much the solution changes.

The problem set up for the sensitivity study is slightly different from that of convergence

studies, the reason being that we would like to have a setting that is closer to the real

application. We therefore need a test problem that is advection-dominated and has a domain

size of the same size as that of the real problem considered in chapter 4. Simulations are

performed for 0 ≤ t ≤ 300 with ∆t = 0.15 and N = 100 mesh points in each direction. The

solution domain is the cube {0 ≤ x, z ≤ 300, |y| ≤ 150}, and we consider a point source of

unit strength positioned at ~Xs = (150, 0, 10). Outflow boundary conditions are employed on

all faces of the domain for advection, and homogeneous Neumann boundary conditions are

used for diffusion except at ground level where a deposition condition with W̄dep = 0.005 is

used. As for the velocity field we consider a horizontal reference velocity field of magnitude

|(ur, vr, 0)| = 10. We also include the effect of changes in wind direction by taking the

wind velocity vector to rotate sinusoidally with period ω = 2π
300 (that is the field does a full

rotation in the computation time). To summarize, the velocity field is given by

(ur, vr) = 10 · (cos (ωt) , sin (ωt)) . (3.9.1)

We choose a reference state for the simulations and consider relative deviation of the solution

in comparison to this state. Since our convergence studies indicate the solution with the

point source has better convergence in the `1 norm we will utilize this norm to quantify how

much the solution varies. Denote by Cαi the numerical solution of the problem for the ith

value of parameter α and let Cr be the solution with the reference parameters. Then the

deviation is given by

∆αi(Cr) = ‖Cαi − Cr‖`1 . (3.9.2)
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The absolute deviation of the solution is not very informative so we will normalize (3.9.2)

to get a sense of how much the solution departs relative to the reference solution, that is

∆̄αi(Cr) =
‖Cαi − Cr‖`1
‖Cr‖`1

. (3.9.3)

As for the choice of the reference parameters, the horizontal diffusion coefficients are constant

Kx = Ky = 0.025 and the reference value of the vertical diffusivity is that of stability class F

over a terrain of roughness z0 = 0.05 which gives Kz(10) = 0.0391. For the reference velocity

profile parameterization we consider m = 0.14. All parameter values for the reference state

in the sensitivity studies are summarized in Table 3.6.

Parameter Symbol Value

Stability class F

Reference height zr 10 [m]

Roughness length z0 0.05 [m]

Reference diffusion coefficient Kz(zr) 0.0391 [m2 s−1]

Vertical diffusion coefficient Kx,Ky 0.025 [m2 s−1]

Velocity profile exponent m 0.14

Cutoff height for velocity and diffusion zcutoff 2 [m]

Deposition coefficient Wdep 0.005 [m s−1]

Settling velocity uset 0.0027 [m s−1]

Table 3.6: Values of the parameters corresponding to the reference state in the sensitivity
analysis.

3.9.1 Sensitivity to Stability Classes and Terrain

We start by considering sensitivity to the stability class and terrain type which affect pa-

rameters z0, a and b in expression (2.3.6), and in turn give different values of L and Kz.

This case is important since in the real world we are dealing with variable wind over a

period of months and during this time the atmosphere will gradually go from one stability

class to another and furthermore, the terrain type will also change, although we often have

to assume that it is constant over the entire domain.
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Table 3.7 shows a grid of values of L for different terrain and stability class. A similar

table can be constructed for values of the diffusion coefficient at reference height Kz(zr)

using equations (2.3.3) to (2.3.5) and Table 3.8 shows these values. Note that the vertical

diffusion coefficient can vary by nearly two orders of magnitude for different choices of

stability conditions. Table 3.9 shows the relative deviation of the solution at termination

time; that is, we are comparing the solutions in one instance in time. Table 3.10 shows the

relative deviation of the accumulative ground depositions during the whole simulation run.

As expected, deviations in the ground deposition values are larger since these values are

being integrated over the solution time, therefore the differences accumulate. Our results

indicate that an inappropriate choice of stability class could result in relative variations

of the solution by up to two orders of magnitude. This is not desirable but still not very

surprising because we know the values of Kz(zr) also vary by a few orders of magnitude.

L z0(terrain type)

Stability Class 10−3 10−2 0.05 0.1 1

D ∞ ∞ ∞ ∞ ∞

E 7.7 11 17 22 250

F 3.5 4.9 7 8.5 2.8

Table 3.7: Values of the Monin-Obukhov length L for various stability classes and terrain
types.

Kz(zr) z0(terrain type)

Stability Class 10−3 10−2 0.05 0.1 1

D 1.7372 2.3162 3.0198 3.4744 6.9487

E 0.0247 0.0456 0.0811 0.1108 0.5849

F 0.0121 0.0222 0.0391 0.0531 0.2627

Table 3.8: Values of the diffusion coefficient at reference height Kz(zr) for various stability
classes and terrain types.
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∆̄(stability,z0)(Cr) z0(terrain type)

Stability Class 10−3 10−2 0.05 0.1 1

D 1.1137 1.2069 1.2762 1.3092 1.4315

E 0.0231 0.0124 0.0673 0.1095 0.5383

F 0.0447 0.0273 0 0.0222 0.2626

Table 3.9: Relative deviation of solution at the final time (t = 30).

∆̄(stability,z0)(Dr) z0(terrain type)

Stability Class 10−3 10−2 0.05 0.1 1

D 71.870 93.539 106.13 111.64 122.34

E 0.5408 0.2223 2.7579 5.2005 43.725

F 0.8526 0.6326 0 0.3240 23.588

Table 3.10: Relative deviation of accumulated ground deposition during simulation time
(0 ≤ t ≤ 30).
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3.9.2 Sensitivity to Velocity Profile

To study the effects of changing the vertical velocity profiles, we start from the reference

setting that was used in the previous sensitivity study and consider five different values of

the exponent m = [0.1, 0.14, 0.2, 0.3] in equation (2.3.1). Results are presented in Table

3.10, which tells us the solution can vary up to 35% for various values of the exponent m.

m 0.1 0.14 0.2 0.3

∆̄m(Cr) 0.0329 0 0.0488 0.1277

∆̄m(Dr) 0.1062 0 0.1440 0.3509

Table 3.11: Relative deviation of the solution at the final time as well as accumulated ground
deposition for various values of exponent m.



Chapter 4

Application to an Industrial

Setting

Having discussed the details of our numerical algorithm and extensively tested the scheme we

now consider a real world application of our solver. This setting is introduced in the paper

by Stockie and Lushi [27] where dispersion of zinc from a lead-zinc smelter was studied.

The site is located in Trail, British Columbia, Canada and is operated by Teck Resources

Limited. In [27] the authors used a Gaussian plume type solution and also solved the

inverse source estimation problem where they estimated source emissions based on readings

at receptors. Here we wish to compare our results with those of Stockie and Lushi and

assess the accuracy of their results against a more complex model.

4.1 Problem Description

An aerial photo of the Trail site is presented in Figure 4.1. The four sources Ss for

s = 1, 2, 3, 4 as well as the nine receptors Rr for r = 1, 2, ..., 9 are marked on the map.

The site dimensions are relatively small (1600× 800m) and therefore it is justifiable to use

our short range transport model here. The company has performed a series of measurements

of zinc, strontium, sulfur and other species of contaminants over the period of two years

2001-2002 consisting of accumulations of particulates within dustfall jars (receptors). Me-

teorological data is available for the same period which consists of wind speed and direction

measurements averaged over 10 minute intervals. We now list a number of assumptions

57



CHAPTER 4. APPLICATION TO AN INDUSTRIAL SETTING 58

regarding our problem, which are imposed by Stockie [27]:

(i) All emission sources are considered to be point sources and are modelled by delta

distributions as discussed in chapters 2 and 3. We also assume that all sources have

constant emission rates which is a good approximation at least for monthly-averaged

data.

(ii) The wind velocity ~u(t) is a function of time only and is uniform over the domain. This

is a huge simplification but is justifiable given the relatively small size of the domain

and short time intervals.

(iii) We neglect variations in topography therefore the wind is only horizontal. There are

mountains around the site but they are far enough away for this assumption to be

reasonable.

(iv) Dry deposition is assumed for all simulations given that measurements are performed

over months when rainfall is rather small. The main effect of considering wet deposition

is in the deposition velocity.

(v) Effects of plume rise are incorporated as effective heights of point sources.

(vi) The atmosphere is of the neutral stability class (class D of the Pasquill-Gifford clas-

sification) for all monthly periods. We do not have enough meteorological data to

vary the stability class in time and therefore we choose the class D as a compromise

that takes into account predominant atmospheric conditions during the months of the

simulations.

4.1.1 Parameter Values

Physical values corresponding to Zn as the main contaminant are presented in Table 4.1

and are taken from [27]. The effective height of the sources is Hs = [15, 35, 15, 15]m which

takes into account the effects of plume rise. Dustfall jars are cylindrical glass containers of

diameter 0.162 m and cross-sectional area A = 0.0206 m2. We assume that the atmosphere

is of stability class D and therefore the corresponding value of vertical diffusivity at reference

height zr = 10 m can be found from equation (2.3.3) for a neutral atmosphere. We assume

a roughness parameter of z0 = 0.05 m as a compromise for the overall terrain of the site.
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Figure 4.1: An aerial view of the Trail site showing the approximate positions of sources
(red circles) and receptors (green triangles). The Direction of prevailing winds and compass
north are also indicated in the bottom right corner (source [27]).

Putting these assumptions together with an averaged wind velocity of about 1.6 m/s we get

Kz(zr) ≈ 0.52 m2/s. We will also regularize the wind and velocity profiles and assume that

they are constant below a height of 2 m. This is to prevent the wind speed and diffusion

coefficients from vanishing near the ground on very fine grids. Table 4.2 summarizes the

model parameters just discussed.

Parameter Symbol Units Value for Zn

Density ρ kg m−3 3540

Molar mass M kg mol−3 0.161

Deposition velocity Wdep m s−1 0.005

Settling velocity uset m s−1 0.0027

Table 4.1: Values of physical parameters for zinc, which actually appears in the form of a
sulfate ZnSO4 (source [27]).
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Parameter Symbol Value

Stability class D

Reference height zr 10 [m]

Roughness length z0 0.05 [m]

Reference diffusion coefficient Kz(zr) 0.52 [m2 s−1]

Velocity profile exponent m 0.14

Cutoff height for velocity and diffusion zcutoff 2 [m]

Table 4.2: Values of model parameters based on average wind velocity and recommended
stability class.

4.1.2 Wind Data

The wind measurements, which are provided in 10 minute intervals for a monthly period,

are perhaps the most important input for our simulations. We are working with raw mea-

surements and therefore we need to clean up the data before they can be used for the

simulations.

First, for calm wind conditions where u < 0.1m/s, we set the velocity to umin = 0.1m/s

since the anemometers used for the measurements are not accurate for small wind velocities.

We also compute the wind direction at these data points by interpolation of wind direction at

the closest valid points having a non-zero velocity. Next, we apply a Laplacian smoothing

operator to both the wind direction and velocity measurements in order to reduce the

noise. The effect of this process for 5 iterations is visible in Figure 4.2 which indicates

some reduction in noise as well as the maximum wind velocity. This smoothing process

is attractive for our numerical simulations since the smoothness of velocity field is a key

assumption for our discretization.

The histogram and windrose diagram of the wind data are pictured in Figure 4.3. Look-

ing at the data we realize that the wind velocity is below 4 m/s for most of the time;

indeed only 4.8% of the measurements are above this value. Therefore, it is crucial for our

simulations to use adaptive time stepping, otherwise the code performance would degrade

dramatically. This also affects the accuracy of our scheme, since a small time step arising

from large wind velocity results in a small Courant number, and therefore the advection

solver introduces unnecessary smearing of the solution at times when the velocity is much
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Figure 4.2: (a) Raw wind velocity measurements for June 3-July 2, 2002 and (b) smoothed
velocity after five iterations of the averaging operator.

4.2 Results

We consider a computational domain Ω = {−2000 ≤ x ≤ 4000,−2000 ≤ x ≤ 4000, 0 ≤ z ≤
500}, that is large enough so that boundary conditions have little effect on the solution. A

grid of size 100×100×100 is used which means that the horizontal grid cells are 60×60m2

and the vertical resolution is 5 m. For this set of results we use the engineering estimates

of the source emission rates, Qs = [35, 80, 5, 5] × 103 kg/yr for zinc identified in [27]. The

x-coordinates of the sources are xs = [748, 625.6, 255, 251.6] m and the y-coordinates are

ys = [224.4, 176.6, 646, 867]m. As mentioned in Section 4.1.2 we will employ adaptive time

stepping so that we maintain a Courant number that is close to 0.9 in order to minimize

the number of time steps required for the simulation and improve the accuracy of the

advection solver; this means that the diffusion matrix must be reassembled at each time

step. We perform our simulations for the period of June 3-July 2, 2002, which is a relatively

long simulation time (approximately 2.9 × 107 s and requires on the order of 1 to 2 days
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Figure 4.3: (a) Histogram of measured wind data for the period of June 3-July 2, 2002 with
the mean value of wind velocity being 1.62m/s. (b) Wind rose diagram of wind data with
the portion of calm winds identified by the inner circle. Note the dominant direction of the
wind is northwest and southeast.

of clock time for each simulation at this resolution). We do not allow the solver to take

time steps that are larger than ∆tmax = 300 s so that no wind measurements are skipped.

Simulated deposition of pollutants using both our method and the Gaussian plume model

used in [27] at the 9 receptors (pictured in Figure 4.2) are presented in Table 4.3 alongside

actual measurements of the depositions. We can see that both our model and the Gaussian

plume model over estimate the total deposition of the pollutants in all of the receptors.

Comparing the depositions at single receptors we realize that our results are not close to

the actual measurements. For example our model predicts maximum deposition in R1 and

R2 but actual deposition in R1 is a lot smaller than R2. Overall our model predicts less

variation between deposition in receptors that are positioned close to each other which is

due to the more amplified diffusive behavior of our model.

4.2.1 Comparison to Gaussian Plume Solution

Here we compare the results of our simulation to those of Stockie [27] where the Ermak

Gaussian plume solution has been utilized for estimation of ground depositions. Gaussian

plume solutions are widely utilized and are known to give acceptable results but they require

certain assumptions that do not always hold in our simulations. Some of these assumptions
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Deposition (mg)

R1 R2 R3 R4 R5 R6 R7 R8 R9 Total

Advection-diffusion 40.3 44.5 17.5 14.9 22.1 14.2 12.0 12.0 14.7 187.2

Gaussian plume [27] 28.2 80.5 16.6 9.2 25.1 12.9 4.3 5.0 9.5 191.7

Actual measurements 8.4 68.0 33.0 4.2 11.0 8.2 2.9 2.2 0.9 138.8

Table 4.3: Simulated and actual measurements of Zn at the 9 receptors for the period of
June 3-July 2, 2002 using the engineering estimates for source emission rates.

were discussed in Section 2.2.

From Table 4.2 we realize that the reference diffusion coefficient Kz(zr) is not small

compared to the wind velocities. Approximately 40% of the measurements have a wind

speed below 1 m/s, and for these time intervals the diffusive behavior of the problem can

be comparable to the advection. In such circumstances, one of the main assumptions of the

Gaussian plume solution no longer holds namely that the problem is advection dominated.

The Ermak solution that was used by Lushi and Stockie in [27] assumes that the solution

reaches steady state in each wind measurement interval (of length 600 s) and therefore does

not consider the transient behavior of the problem. Figure 4.4 shows an instant in our

simulations where the change in direction of the wind has resulted in mixing of the plume,

hence demonstrating that this assumption does not necessarily hold.

Looking at Table 4.3 we realize that the Gaussian plume solution predicts lower depo-

sition values compared to our model, and that our simulations give nearly twice the total

deposition. Figures 4.5 and 4.6 show contour plots of deposition over the Trail site as com-

puted by our model and the Gaussian plume model successively. We can see that the results

are qualitatively similar in the sense that both predictions have a higher deposition in the

direction of the prevailing winds (southeast and northwest). Apart from predicting less de-

position, the Gaussian plume simulations give less deposition away from the site, especially

in the southwest direction where the receptor R4 is located. We can also see that contours of

the Gaussian plume solution have more spikes while our model results in smoother contours.

This is partly due to the fact that our model captures the transient behavior of the plume

as pictured in Figure 4.4 and also a consequence of choosing a constant vertical diffusion

coefficient for the entire simulation. The main difference between the two results occurs at

the source locations where our simulations predict maximum deposition while the Gaussian
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Figure 4.4: An isosurface plot of the solution at t = 2137905s showing the transient behavior
of the solution. Red, green and blue isosurfaces correspond to concentrations of 1.7, 1.6 and
1.5mg/m3 respectively.
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plume solution predicts maximum deposition away from the sources.
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Figure 4.5: Contour plot of deposition as simulated by our advection-diffusion solver. The
model predicts a maximum deposition at the source locations.

4.2.2 Comparison to Estimated Emission Rates

In this section we perform another set of simulations using the source emission rates that

were estimated by solving the inverse problem in [27]. The predicted emission rates are
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Figure 4.6: Contour plot of deposition simulated by the Gaussian plume model of [27]. Note
that apart from giving less deposition overall, this model predicts that maximum deposition
occurs away from the sources.
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Q = [17, 60, 5, 5]× 103 kg/yr of zinc while all other parameter values are the same as in our

previous simulation. Table 4.4 shows simulated deposition values of this case and a contour

plot of this solution is presented in Figure 4.7 where, as expected, deposition levels are

lower over the whole domain. We can see that the results are closer to actual measurements

but our model still over-estimates the measurements. In other words, our model with the

given parameters needs smaller source emission rates to give results that are consistent with

the measurements. Also note that while the total deposition in all receptors is closer to

actual measurements, the difference at separate receptors is still quite large. For example,

we are severely over-estimating the deposition in receptors R6-R9 while our predictions are

close to measurements for R2 and R3. Note that actual measurements at the receptors are

very noisy due to large measurement errors and therefore the total deposition in all of the

receptors is in fact a better measure of the results.

Deposition (mg)

R1 R2 R3 R4 R5 R6 R7 R8 R9 Total

Advection-diffusion 27.4 26.9 17.2 15.2 16.6 14.3 12.2 12.3 10.2 152.7

Actual measurements 8.4 68.0 33.0 4.2 11.0 8.2 2.9 2.2 0.9 138.8

Table 4.4: Simulated and actual measurements of Zn at the 9 receptors for the period of
June 3-July 2, 2002 using source emission rates estimated by the inverse problem in [27].
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Figure 4.7: Contour plot of deposition values for source emission rates estimated by solution
of the inverse problem in [27].



Chapter 5

Adjoint Equations

In this chapter we present the basis for a promising scheme for solution of the inverse source

estimation problem which is the problem of finding the source emission rates given monthly

measurements of the depositions. This is not intimately related to the main topic of this

thesis and can be viewed as an idea for future work on this subject.

5.1 Introduction

The problem corresponding to estimating source emissions from ground deposition or point

measurements of pollutant concentration falls under the category of source inversion prob-

lems. This is a well studied area of research with extensive applications in tomography,

gravimetry and electrostatics. The reader is referred to the monograph by Isakov [19] for a

comprehensive study of the theory of source inversion problems. This problem is ill-posed

in the sense of Hadamard and often lacks uniqueness and stability. We assume that point

sources are represented as a finite number of delta distributions at known positions, which

reduces the ill-posedness of the problem since it imposes restrictions on the form of the

source term. Loosely speaking, the set of point sources over the domain of our problem is a

subset of all the possible sources and this narrows down our search for a possible solution.

With this knowledge we present a method that obtains the source emission rates via solu-

tion of the adjoint equation. It is noteworthy that the source inversion problem with these

assumptions will have a unique solution but as we will see later on, our approach can be

generalized for solution of the problem when less information is available.

Adjoint operators are a well known concept in functional analysis, theory of PDEs
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and inverse problems (see [23, 19]). Adjoint equations are extensively used in the control

and shape optimization literature for sensitivity analysis and computing the derivatives of

objective functionals with respect to a large number of parameters [5, 36]. A comprehensive

study of adjoint equations, their attributes, definitions and applications is presented in the

monographs by Marchuk et al. [29, 30].

We start with a brief definition. Consider two elements x, y ∈ H where H is a real

Hilbert space. Now let A : H → H be an operator acting on x. This is often a differential

operator that defines our PDE

Ax = f. (5.1.1)

Now the Hilbert adjoint of the operator A, denoted by A∗, is defined through the relationship

〈Ax, y〉 = 〈x,A∗y〉. (5.1.2)

where A∗ : H∗ → H∗. For simplicity, we assume that A∗ maps elements of H back to itself,

i.e. x and y belong to the same space. Then an equation of the form

A∗y = g, (5.1.3)

with proper choice of g is called the equation adjoint to (5.1.1). Proceeding informally, if

we take equations (5.1.1)–(5.1.3) together then we obtain

〈f, y〉 = 〈x, g〉. (5.1.4)

This equation allows us to evaluate a functional on the solution of (5.1.1) by evaluating a

functional on the solution of the adjoint equation. In the case of our problem, the functional

on x (the solution of the original equation) is a finite number of point measures (that is,

ground depositions or concentration measurements) and the source term f is the object we

would like to find which also has the form of a finite number of point measures. The perfect

setting for application of the adjoint equations is when the operator A is linear and hence

the adjoint equation is independent of the solution x. In this case, a single solution of the

adjoint equation (5.1.3) can be used to evaluate the functional on the right hand side of

(5.1.4) for a large number of source terms. This feature is very promising in areas such as

Bayesian inversion where one might need to sample the forward problem a large number of

times.

With this as motivation, we proceed to derive the adjoint equation for the pollutant

dispersion problem and consider how this idea can help with the solution of the source

inversion problem.
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5.2 Adjoint Formulation at Steady State

Let us start by considering the steady state advection-diffusion equation in 2D, that is

~u · ∇c−K∆c = f, c( ~X)→ 0 as
∣∣∣ ~X∣∣∣→ 0, (5.2.1)

where the velocity field and diffusion coefficients are assumed to be constant and independent

of space. We make use of the L2 inner product to derive the adjoint equation. Multiply

both sides of (5.2.1) by a function c∗ and integrate by parts to transfer all derivatives onto

c∗,

〈c,−~u · ∇c∗ −K∆c∗ = g〉 = 〈c, g〉, (5.2.2)

where we have also assumed that c∗( ~X)→ 0 as
∣∣∣ ~X∣∣∣→∞ to eliminate the boundary terms.

This tells us that the adjoint equation is

− ~u · ∇c∗ −K∆c∗ = g, c∗( ~X)→ 0 as
∣∣∣ ~X∣∣∣→ 0, (5.2.3)

which is the same advection-diffusion equation, except that the velocity field points in the

opposite direction. Note that the adjoint equation is independent of the source term that

appears in the original problem. The choice of g can be determined by considering the right

hand side of (5.2.2) as a measure that is imposed on the solution of the original problem.

We demonstrate with a simple example: consider a single point measurement of the

emissions from a point source at ~Xs at a receptor positioned at ~Xr. Then, the source terms

for the original and adjoint equations are given by

f = Qδ( ~X − ~Xs),

g = δ( ~X − ~Xr),
(5.2.4)

where Q is the emission rate. Substituting into (5.1.4), with c and c∗ as the main and

adjoint variables, we obtain

Qc∗( ~Xs) = c( ~Xr), (5.2.5)

which allows us to solve for Q given the solution of the adjoint equation and the measurement

c( ~Xr) at the receptor.

This framework is ideal for point sources but for more general integrable source terms,

equation (5.2.5) results in a moment condition∫
f( ~X)c∗( ~X)d ~X = c( ~Xr). (5.2.6)
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It is easy to see the lack of uniqueness in this setting. In general, for a finite number of

measurements Mi = c( ~Xri) at i = 1, 2, ...m receptors we can consider m adjoint equations for

adjoint variables c∗i for each measurement and get the finite dimensional moment problem∫
f( ~X)c∗i (

~X)d ~X = Mi. (5.2.7)

Going back to our discussions in section 3.4.3, this problem is solvable if f and c∗i are

elements of a separable space and c∗i are linearly independent. This setting is attractive for

solving many source inversion problems since we only need to compute the solution of the

adjoint equations once, and in some cases we can even solve the equations analytically.

5.3 Adjoint Formulation in Transient Case

Here we consider the adjoint formulation for time dependent problems. The theory for these

operators is, in essence, the same as what we discussed in the previous section, but in this

case the adjoint formulation gives information regarding the initial condition as well as the

source terms involved in the problem. Let us consider a PDE

ct +Ac = f, c( ~X, 0) = h( ~X), (5.3.1)

where A is some differential operator such as the advection-diffusion operator and the so-

lution c( ~X, t) exists for the domain {0 < t ≤ T, ~X ∈ RN}. We also prescribe the far field

boundary conditions u→ 0 as
∣∣∣ ~X∣∣∣→∞ so that boundary terms vanish.

Multiplying both sides of (5.3.1) by the adjoint variable c∗( ~X, t) and integrating by parts

over both time and space we get the adjoint equation

− c∗t +A∗c∗ = g, c∗( ~X, T ) = l( ~X), (5.3.2)

where the initial conditions and source terms are linked through the relationship∫
h( ~X)c∗( ~X, 0)dx+

∫ T

0

∫
f( ~X, τ)c∗( ~X, τ)dx dτ

=

∫
c( ~X, T )l( ~X)dx+

∫ T

0

∫
c( ~X, τ)g( ~X, τ)dx dτ.

(5.3.3)

Here we have assumed that all functions are sufficiently regular for us to be able to perform

integration by parts and possibly switch order of integration. Note that the adjoint equation

is solved backwards in time and so based on equation (5.3.3) we can think of the initial
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condition of the adjoint equation l(t) as a measure on the solution of the original problem

at the final time. The second term on the right hand side of (5.3.3) is also a measure on

the solution both in time and space, so we can think of this quantity as a measurement of

accumulated values of the solution. From this perspective, the right hand side of (5.3.3) is

the set of measurements from the forward problem or our data set.

In the case of the pollutant source inverse problem mentioned in this thesis, the accu-

mulated ground deposition measurement dr(t) at a receptor at ~Xr can be written as

dr(t) =

∫ t

0

∫
c( ~X, τ)δ( ~X − ~Xr)dx dτ, (5.3.4)

and the corresponding adjoint equation for this problem would be

− c∗t +A∗c∗ = δ( ~X − ~Xr), c∗( ~X, T ) = 0, (5.3.5)

where we assume that l( ~X) = 0, since we are only measuring the accumulated deposition of

pollutants and not their point values. Note that the adjoint equation is again independent

of the solution of the original problem and therefore this framework can be used to sample

the forward problem efficiently.



Chapter 6

Summary and Future Work

6.1 Summary

In this thesis we presented a numerical algorithm for solution of the advection-diffusion

equation in 3D. We used a first order operator splitting to solve the advection and diffusion

terms separately and also used dimensional splitting to decouple the spatial derivatives in

each term. Therefore, we ended up with a series of 1D tridiagonal linear solves in each

time step. This allowed us to perform sophisticated simulations in a reasonable time and

with acceptable resolution. We also set up our algorithm to be able to handle variable

advection and diffusion coefficients as well as various boundary conditions. Our code uses

the CLAWPACK software package for the advection solves, and is coupled to our own

diffusion solver that which utilizes LINPACK routines for better performance.

We were particularly interested in using our numerical algorithm to model dispersion

of pollutants in the atmosphere. We considered the problem of contaminant emission from

point sources and their deposition onto the ground. Some models for altitude-dependent

wind speed and diffusion coefficients were discussed and incorporated into our numerical

scheme.

One of the main goals of this project was to perform simulations of dispersion of zinc

on an actual industrial site in Trail, British Columbia, Canada. Actual measurements of

wind speed and monthly accumulative pollutant depositions in 9 dustfall jars were available

from the company along with engineering estimates of source emission rates. We used this

data to perform simulations and compared our results to those of a Gaussian plume model

developed by Lushi and Stockie [27]. We also used our solver to verify the results of the
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inverse emission estimation problem that was solved in [27].

Finally, we discussed the basis of a promising new approach for solution of the inverse

source estimation problem using the solution of adjoint equations. We presented a short

discussion on how this new approach will allow us to estimate source emission rates from

ground deposition measurements very efficiently.

6.2 Future Work

As we mentioned earlier in this thesis, there is great uncertainty underlying the parameters

used in our model. For example, the stability class and diffusion coefficients all vary based

on the meteorological data. Our sensitivity analysis in Chapter 3 raised some concerns

regarding how trustworthy our results may be if we are not sure what the stability class is.

Better estimation of the model parameters and perhaps enabling the model to automatically

change parameters throughout the simulations is a possible subject for future work. Such

a study can be accompanied by a rigorous sensitivity analysis to identify which parameters

are most important.

Even though our method is efficient enough to perform simulations at an acceptable

spatial resolution, there is still room for improvement in terms of efficiency and performance.

For example, to construct and factor the diffusion matrices in 3D at each time step is very

time consuming. A possible remedy for this issue is to use an iterative solver instead of the

current tridiagonal solves. Another possible approach is to use parallel implementations of

the solvers since our current code is only serial.

Our convergence results in Chapter 3 indicated that our current implementation of the

delta distribution is the main cause of reduction in convergence rate. This raises the question

of whether we can use a different approximation to the delta distribution in order to achieve

better accuracy.

The inverse source estimation problem is an extremely challenging and interesting prob-

lem. The cases of unknown number of sources or unknown source locations are both ex-

tremely ill-posed and difficult to solve. We are therefore interested in pursuing this path of

research in the future and applying the idea of adjoint equations to construct a scheme for

solution of these problems.

The problem of identifying the position of the sources is the perfect setting for application

of Bayesian inversion algorithms. In such problems we often want to obtain the posterior
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probability density of the unknown x, πpost(x), given a set of observations y and a prior

probability density, πpr(x). Here x can be any unknown parameter in our model such as

source emission rates or number of sources. By Theorem 3.1 from [22] (Bayes formula) we

have

πpost(x) =
πpr(x)π(y|x)

π(y)
, (6.2.1)

where π(y|x) is the probability of observing y given the input x and π(y) is the probability

of observing y. The prior probability distribution on the unknown is an assumption that we

impose on the model and we often take the observations to have a certain probability density

therefore the only unknown in (6.2.1) is π(y|x). A common technique for approximating this

probability distribution is a Markov Chain Monte Carlo (MCMC) algorithm which estimates

π(y|x) via sampling the probability space and in turn requires a solution of the forward

problem. By Proposition 3.11 from [22], accuracy of the MCMC algorithm improves as we

increase the number of samples. Solution of the adjoint equations is a promising approach to

be incorporated in this framework. We expect to achieve major performance improvements

since, for linear operators, the solution to the adjoint equation is independent of the source

term in the original problem–this allows us to sample the forward problem more efficiently.
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