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Abstract

There has been much recent interest in the study of out of equilibrium quantum systems due to ex-

perimental advances in trapped cold atomic gases that allow systematic studies of these effects. In

this work we study a quantum Ising model in the presence of transverse and longitudinal magnetic

fields. The model lacks an analytical solution in the most general case and has to be treated nu-

merically. We first investigate the static properties of the model, including the ground state energy

and the zero temperature phase diagram, using the Density Matrix Renormalization Group (DMRG)

method. We identify ordered and disordered phases separated by a quantum phase transition. We

then consider the time evolution of the system following an abrupt quench of the fields. We study

the response of the order parameter to the quenches within the ordered and disordered phases as

well as quenches between the phases using the time-dependent DMRG method. The results are in

qualitative agreement with experiments and the implemented numerical method in this work can be

extended to allow for more general interactions.
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Chapter 1

Introduction

Spin, the intrinsic angular momentum of quantum particles, was discovered by Stern and Gerlach in

1922 [1]. It was realized shortly afterwards [2] that the magnetic properties of materials involve the

co-operative interactions of electron spins in solids. This initiated the study of models of quantum

spins with the goal of describing magnetic materials. One of the very basic questions to answer is

how to relate the macroscopic magnetic properties of materials to interactions at the microscopic

scale. Hence, one strand of research in this field has involved the study of idealized models, each

describing a particular class of interactions, to further understanding of the macroscopic behaviour

from different microscopic interactions.

In 1925 the one dimensional Ising model was introduced [3] and found to exhibit no phase tran-

sition and hence no magnetic ordering at finite temperature. The two dimensional Ising model was

not solved exactly until 1944 [4] when it was shown to exhibit a magnetically ordered phase below

a critical temperature. An early important result was obtained in 1931 when Bethe introduced an

exact solution for finding the eigenvalues and eigenvectors of the spin 1
2 Heisenberg model on a

chain [5], which was used by Hulthen [6] to compute the ground state energy of the antiferromag-

netic spin 1
2 Heisenberg chain and was later extended to other models [7]. In 1961, Lieb et al. [8]

exactly solved the XY and Heisenberg-Ising models of antiferromagnetic chains by mapping the

spins in these problems to spinless fermions via the Jordan Wigner transformation, and investigated

the existence of long-range order in such models. Studies of the Ising model in a transverse field in

1960s [9] have had a strong contribution to the understanding of quantum phase transitions at zero

temperature, since this model exhibits a quantum phase transition and has an analytical solution

which allows for the exact calculation of observables (this will be discussed in Chapter 2).

1



CHAPTER 1. INTRODUCTION 2

In recent years, understanding the collective behaviour of quantum mechanical systems of many

particles has become an important topic of research, particularly with the prospect of applications

in quantum computing and quantum information. Quantum phase transitions between magnetically

ordered and disordered phases are one class of such phenomena. At zero temperature, interactions

can give rise to collective behaviours such as spontaneous alignment of all the spins in a particular

direction (spontaneous magnetization), i.e. indicating a transition from a magnetically disordered

to ordered phase. Quantum phase transitions are distinct from the classical ones in the nature of

the fluctuations that leads to the transition. Instead of thermal fluctuations at finite temperature in

classical phase transitions, at zero temperature quantum fluctuations give rise to a nonanalyticity in

the ground state energy of the system.

Figure 1.1: Two-dimensional optical lattice formed by superposition of two standing waves [10].

Experimental studies in this field in solid state systems can be challenging due to the macro-

scopic number of degrees of freedom, disorder, unknown interactions, and limitations on which

system parameters can be varied [11]. An experimental setting in which system parameters can be

controlled very well is trapped cold atoms (and also trapped ions), which provides exciting possi-

bilities for quantum simulations [12]. In cold atom experiments, neutral atoms can be cooled and

trapped in optical lattices due to the interaction between their induced dipole and the electric field

associated with the lattice [13]. Optical lattices, light-induced periodic potentials created by the

interference pattern of counter propagating laser beams (Figure 1.1) offer the possibility of tun-

ing system parameters, such as lattice depth and structure, dimensionality, and the interactions with

high precision. Therefore cold atom experiments in which quantum spins are simulated with neutral

bosonic atoms [14, 15, 16, 17] enable the possibility of tuning the system through quantum phase
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transitions and studying real time quantum dynamics. This powerful toolbox for experimentally

realizing quantum systems has enhanced the motivation for the study of different quantum models

near criticality.

However, there are still some drawbacks in simulating models in optical lattices. The existence

of the harmonic confining potential over which the optical lattice is built, puts the atoms (localized

in the minima of the optical trap) in a slightly different potential relative to each other and may

disturb the uniformity often assumed by theorists.

In this chapter we first review recent experiments that have demonstrated quantum spins realized

with cold atoms, and discuss the mapping that allows the identification of the bosons with spins. In

Sec. 1.2 we then review the resultant model, the transverse field Ising model. We discuss the

quantum phase transition of the model in the presence of an arbitrary field in Sec. 1.3. The study

of out of equilibrium dynamics in quantum systems will then be motivated and our approach for

studying out of equilibrium dynamics in this model will be briefly explained. This chapter concludes

with an outline of the thesis.

1.1 Quantum spins from ultracold atoms

In a recent experiment by Greiner et al. [16], a chain of interacting Ising spins was simulated using

a Mott insulator of spinless bosons in a tilted optical lattice. The lattice tilt E is ramped during the

experiment until it reaches the on-site interaction energy U , when it induces resonant tunnelling of

atoms to their neighbouring site. In the general case of M atoms per site, this produces a “dipole

excitation" with a pair of sites with M − 1 and M + 1 atoms. The resonance condition is only

met when adjacent sites contain equal numbers of atoms, which indicates that neighbouring links

can not both have dipoles. The on-site interaction U , and the tunnelling rate t are parameters in the

Bose-Hubbard model:

H = −t
∑
<i,j>

bi
†bj + bj

†bi +
U

2

∑
i

n̂i(n̂i − 1)− E
∑
i

in̂i, (1.1)

where < i, j > indicates that the sum is restricted to the nearest neighbours, bi† and bi are bosonic

creation and annihilation operators, n̂i = bi
†bi is the number operator on site i, t gives the hopping

amplitude to the neighbouring sites, and U is the strength of on-site interactions. When interactions

dominate the Hamiltonian, meaning that t/U � 1, the particles are localized on the lattice sites and
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the ground state is a Mott insulator.

Figure 1.2: Tilted Hubbard model and mapping to spin model [16].

In their experiment, Greiner et al. obtained results with M = 1 and mapped the Bose-Hubbard

model onto a dipole Hamiltonian by defining the dipole creation operator d†j =
bjb
†
j+1√

M(M+1)
, and

then onto the quantum Ising model (with the interaction parameter J) in the presence of transverse,

hx, and longitudinal, hz , magnetic fields. The Hamiltonian for this model will be discussed in

section 1.3. The mapping was achieved as follows: “spins" were defined through assigning two

states to the links between adjacent sites: 0) supporting a dipole excitation and 1) not supporting

a dipole excitation, corresponding to “down" and “up" spins respectively. The relation between

creation/annihilation of dipoles and the spin operators is as follows:

Sjz = 1
2 − d

†
jdj ,

Sjx = 1
2(d†j + dj),

Sjy = 1
2(d†j − dj).

(1.2)

One can be confident that Sjx, Sjy , and Sjz are the spin operators through checking the commu-

tation relations [Sα, Sβ] = iεαβγSγ . The constraint in the number of the neighbouring dipoles,

d†j+1dj+1d
†
jdj = 0, can be implemented by introducing a positive energy term Jd†j+1dj+1d

†
jdj to

the Hamiltonian, where J is a large coefficient (of order U ). This term is the origin of nearest-

neighbour spin-spin interaction in their mapping. The initial Mott insulator state maps to the para-

magnetic ground state: there is no tunnelling and atoms are localized in individual lattice sites. The

transverse field in the equivalent Ising model is responsible for mixing the states, hence arises from

tunnelling in the Bose-Hubbard model. The longitudinal field arises from the lattice tilt.
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The dimensionless parameters for the Ising model are given by

(h̃z, h̃x) = (1− ∆̄, 23/2t̄), (1.3)

where t̄ = t/J , ∆̄ = ∆/J = (E − U)/J , J ≈ U the constraint term, and ∆ the energy cost to

tunnel.

With increasing tilt strength, the atoms end up occupying the lattice sites as shown in Figure 1.2.c.

This corresponds to the opposite alignment of spins of the neighbouring sites in the mapping and

addresses the transition to an antiferromagnetic phase. The odd-occupation probability, ρodd, also

confirms (Figure 1.3) the transition from the “paramagnetic" (when all the sites have odd occupation

number) to the “antiferromagnetic" phase (when all the sites contain either zero or two atoms).

Figure 1.3: “Paramagnetic" to “antiferromagnetic" quantum phase transition in the model of Ref. [16]. The
paramagnetic phase in this experiment refers to the phase with no antiferromagnetic order.

This recent study has opened up the possibility of investigating the non-equilibrium dynamics

in the transverse field Ising model and has raised a number of questions about the details of the evo-

lution of observables. These questions include how observables generically relax to final stationary

values, and how these states depend on the initial states.

1.2 Transverse field Ising model

The Ising model with a transverse field (TFIM) is one of the simplest models that exhibits a quantum

phase transition. Simplicity, and the existence of an exact solution for this model (as discussed in
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Chapter 2), makes it a good place to study ideas involving quantum phase transitions and out of

equilibrium dynamics [18, 19, 20]. Since the early studies of this model in 1960s [9], it has been

applied to a variety of problems [8, 21, 22], e.g. atoms in some magnetic materials such as Ho ions

in LiHoF4 [23], and Co2+ ions in CoNb2O6 [24] which can acquire two spin states according to

their alignment along the crystalline axis and can be represented by two-state Ising spins. Placing

these materials in a sufficiently strong external magnetic field hx transverse to the crystalline axis

destroys the order and leaves a magnetically disordered (paramagnetic) phase.

The Hamiltonian takes the form:

H = −J
∑
<ij>

σ̂zi σ̂
z
j − hx

∑
i

σ̂xi , (1.4)

where J is an exchange constant which determines the strength of interactions between nearest-

neighbour spins on sites i and j, and hx is the transverse field. The operators σ̂z,xi are Pauli matrices

which act on the different spin states at each site i. A possible basis for spin i is the eigenstates of

σ̂zi : | ↑〉i and | ↓〉i, and when hx = 0, the Hamiltonian is diagonal in a basis composed of product

states of the form
∏
i |σzi 〉. In this case, the ground state is magnetically ordered and the sign of J

determines the nature of the ground state. For positive J the ground state is a ferromagnet: the free

energy is minimized at T = 0 by aligning all the spins in one direction (+z or −z). For negative J

the preference is the antiparallel alignment of the spins on opposite sublattices, which gives rise to

an antiferromagnetic phase.

However, since σ̂xi is off-diagonal in this basis, increasing hx will result in mixing the states of

the spins. If one continues increasing hx a phase transition from an ordered state to a disordered

state happens at hx = hcx (Figure 1.4). In the limit of hx/J → ∞, the ground state is a product

state of eigenstates of σ̂xi :

|ψ0〉 = | →〉1 ⊗ | →〉2 ⊗ ...⊗ | →〉N , (1.5)

where | →〉i = 1√
2
(| ↑〉+ | ↓〉)i. The quantum phase transition can be studied in detail as the model

is solvable analytically. The method of solution is to use a Jordan- Wigner transformation [8], which

maps the problem of interacting spins to one of non-interacting fermions. The Hamiltonian can then

be diagonalized through a Bogoliubov transformation as discussed further in Chapter 2.
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Figure 1.4: Finite temperature phase diagram of model (1.4) [18]. gc plays the role of hcx in our notation..

1.3 Ising model in a mixed longitudinal and transverse field

Adding a longitudinal component hz to the magnetic field in the Hamiltonian (1.4) allows for a

more general magnetic field.

H = −J
∑
<ij>

σ̂zi σ̂
z
j − hx

∑
i

σ̂xi − hz
∑
i

σ̂zi . (1.6)

This new term changes the phase diagram. For instance, the quantum phase transition in the ferro-

magnetic model disappears when hz 6= 0 [25]. In antiferromagnetic Ising chains however, the phase

transition remains for hz 6= 0 and there is a critical line dividing antiferromagnetic and paramagnetic

phases (Figure 1.5).

Although some analytical efforts have been devoted to solving this model in the limit of weak

fields (either hz/J � 1 or hx/J � 1) [25, 26], the exact solution for hz = 0 is not applicable to

the more general case. In this case one has to resort to numerical approaches, like the exact diag-

onalization method (see Chap. 3). However, the exponential growth of the Hilbert space with the

size of the system limits the maximum sizes one can achieve in numerical calculations. The largest

systems one can treat using the exact diagonalization method depends on the model, for example in

a Hubbard chain one may reach 10-20 sites using different variants of the method [27]. This issue

has led to the introduction of a series of numerical methods with additional approximations among

which the Density Matrix Renormalization Group (DMRG) is known to work very accurately for

1D systems [27].
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Figure 1.5: The ground state phase diagram of model (1.6) for J < 0 obtained from our finite-system
DMRG calculations. The critical line separates the antiferromagnetic and paramagnetic phases.

1.4 Out of Equilibrium Quantum Systems

The out of equilibrium dynamics of many-body systems is a long-standing problem, but in quantum

systems coupling to the environment and hence dissipation is almost unavoidable. The recent avail-

ability of systems that are very weakly coupled to the environment in experiments with cold atoms

in optical lattices [15, 16] or trapped ions [28, 29] has provided conditions for studying intrinsic out

of equilibrium dynamics of quantum systems for long time scales. Moreover, parameters in cold

atom systems can be tuned rapidly in time [15] in a way that is often not possible in condensed

matter systems.

A popular protocol for studying out of equilibrium dynamics is performing a quench in one

of the system parameters. Quantum quenches in the TFIM have been extensively studied and the

dynamics of the order parameter (the magnetization in the ferromagnetic systems, and the staggered

magnetization in the antiferromagnetic systems) and some other observables have been investigated:

in quenches starting in the paramagnetic phase (h0
x > hcx) to any final transverse field, no long-range

order has been found to develop [19]. P. Calabrese et al. studied the out of equilibrium dynamics of

the one-point and two-point functions of the order parameter in the TFIM analytically [30]. They
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Figure 1.6: Time evolution of 〈σx〉 in the modelH = −J
∑

<ij> σ̂
x
i σ̂

x
j −h

∑
i σ̂

z
i after a quench within the

ferromagnetic phase, with vmax = 2Jmin[h, 1]. Numerical data (obtained from cluster decomposition of the
two-point function of the order parameter, 〈σz

j+lσ
z
j 〉, at distance l = 180) are compared with the asymptotic

predictions from both determinants and form factors [30].

showed (Figure 1.6) that for quenches starting from the ferromagnetic phase, the order parameter

relaxes to zero exponentially in time (and distance for the two-point function). In quenches starting

in the paramagnetic (disordered) phase, the order parameter is zero for all times and the two-point

order parameter correlator exhibits oscillatory power-law decay at late times [31]. F. Igloi et al [32]

have identified different regimes in the nonequilibrium relaxation of the magnetization profiles of

this model. During the time evolution, they observed a decrease in the local magnetization followed

by a rapid increase in its value. They interpreted this in terms of quasi particles that are emitted

at t = 0 and can induce “relaxation" of the observable (ml(t)) when they arrive at the point l or

“reconstruction" of the observable by reflecting at the boundaries, passing through the same point,

and inducing quantum correlations in time.

The goal of the work here is to study the state after a quantum quench in an antiferromagnetic

spin chain in the presence of both transverse and longitudinal magnetic fields. To our knowledge,

this problem has not been considered previously. We study the dependence of the evolved observ-

ables on the initial state. In Chapter 2 we discuss the analytical solution and the quantum phase

transition in the transverse field Ising model. In Chapter 3 we introduce some numerical methods to

apply in solving the Ising model in the presence of a mixed field and give an introduction to DMRG.

Programming details of implementation of both ground state and time-dependent algorithms are ex-

plained and the results are presented in Chapter 4. Chapter 5 is devoted to the conclusions.



Chapter 2

Transverse Field Ising Model

Early studies of the transverse field Ising model (TFIM) date back to the 1960s [8, 9, 21]. The exact

solution and the derivation of the phase transition will be discussed in Section 2.1. Theoretical

works on the TFIM cover a broad range of research from equilibrium to the out of equilibrium

regime [19, 31, 33]. On the experimental side, the model has been realized both in solids [23, 24]

and in cold atom systems [16].

The Hamiltonian for an Ising chain of spins in a transverse field is given by

H = −J
N∑
i=1

σzi σ
z
i+1 − hx

N∑
i=1

σxi , (2.1)

where J is an exchange constant which sets the microscopic energy scale, and hx is the transverse

field. The quantum degrees of freedom are represented by the Pauli matrices σiz and σix residing

on the sites i. The Hamiltonian exhibits a Z2 symmetry,

σi
z → −σiz, σix → σi

x. (2.2)

For hx/J = 0 in a ferromagnetic system (J > 0), there are two degenerate ground states related by

the Z2 symmetry (Eq. 2.2):
| ↑1〉 ⊗ | ↑2〉 ⊗ ...⊗ | ↑N 〉 , and

| ↓1〉 ⊗ | ↓2〉 ⊗ ...⊗ | ↓N 〉,
(2.3)

where | ↑i〉 and | ↓i〉 are the eigenstates of σiz corresponding to eigenvalues +1/2 and −1/2

respectively. The system spontaneously selects one of these ground states. For hx/J > 1 on the

10
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other hand, the ground state is non-degenerate and as the magnetic field is increased, spins acquire

larger components along the x direction. This can be explained using the fact that σix is off diagonal

in the basis of the eigenstates of σiz . Hence turning on a transverse field hx induces quantum

mechanical tunnelling that changes the orientation of spins on a site. Such quantum fluctuations

eventually give rise to the transition to a phase where the spins are aligned randomly.

Therefore the model exhibits two phases at zero temperature separating at the critical value of

the transverse field, hxc = J : “ferromagnetic" phase when hx < hx
c and “paramagnetic" phase

when hx > hx
c. The order parameter describing this phase transition is the expectation value of the

total spin in the z direction, 〈ψ0|
∑

i σi
z|ψ0〉, which becomes zero in the paramagnetic phase.

2.1 The Analytical Solution

The TFIM can be solved exactly using a Jordan-Wigner transformation which maps spin operators

onto spinless fermions, represented by fermionic creation and annihilation operators, ci and ci†,

which satisty {
ci, c

†
j

}
= δij ,

{ci, cj} =
{
c†i , c

†
j

}
= 0.

(2.4)

The transformation is given by
ci = (

∏
j<i σ

z
j )σ

+
i ,

c†i = (
∏
j<i σ

z
j )σ
−
i .

(2.5)

where σ± = (σx± iσy). The Pauli spin operators, σix and σiz , are then transformed as follows [8].

σi
x = 1− 2ci

†ci,

σi
z = −

∏
j<i(1− 2cj

†cj)(ci
† + ci).

(2.6)

After writing the operators in the Hamiltonian (2.1) in terms of ci and ci
† and simplifying, the

Hamiltonian becomes

H = −J
N∑
i=1

[c†ici+1 + c†i+1ci + c†ic
†
i+1 + ci+1ci + g(1− 2c†ici)], (2.7)

where g = hx/J . Note that this form is a special case of the model that supports unpaired Majorana

fermions, considered by Kitaev [34] in which the hopping terms have a different coefficient from
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the ci+1ci and c†ic
†
i+1 terms.

Now the Hamiltonian is in a non-interacting form, and it is straightforward to diagonalize. One

can start with applying a Fourier transformation to the fermionic operators

ck =
1√
N

N∑
j=1

cje
−ikrj , (2.8)

and rewriting the Hamiltonian, Eq. (2.6), in momentum space:

H = J
∑
k

{
2[g − cos(k)ck

†ck − i sin(k)[c†−kck
† + c−kck]

}
, (2.9)

where the lattice spacing is set to unity. The final step in the diagonalization is the application of

the Bogoliubov transformation,

γk = ukck − ivkc†−k, (2.10)

where γk is a new fermionic operator and uk, vk are real numbers that obey the conditions u−k = uk,

v−k = vk, and uk2 + vk
2 = 1. The conditions for uk and vk are obtained using the fact that γk and

γk
†, like any fermionic operator, satisfy the anticommutation relations, Eq. (2.4).

Substituting the creation/annihilation operators with γk and γk† in the Hamiltonian (Eq. 2.8),

and demanding that the Hamiltonian only contains terms of the form γk
†γk (so that it would not

violate the conservation of the γ fermions), we end up in a constraint on the numbers uk and vk. If

we set uk = sin(θk) and vk = cos(θk) (which is valid since it is consistent with the pre-mentioned

conditions), then the constraint is given by

tan(θk) =
sin(k)

cos(k)− g
. (2.11)

Writing the Hamiltonian in terms of the new fermionic operators (or equivalently θk) and using the

above constraint, the Hamiltonian can be diagonalized:

H =
∑

k εk(γk
†γk − 1

2),

εk = 2J [1 + g2 − 2g cos(k)]
1/2
.

(2.12)

Eqs. (2.11) suggest that εk for all values of k is a finite number as long as g < 1. However for

g = 1, ε0 becomes zero at k = 0 indicating zero energy cost for a k = 0 excitation. Therefore the
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model exhibits a transition from a gapped phase when g < 1, to a gapless phase when g > 1.

2.2 Mixed Transverse and Longitudinal Field

The transverse field Ising model in spite of being simple and versatile, can not explain several

quantum phase transitions, namely, the ones in which an anisotropy of exchange interactions results

in a dependence of the magnetic properties on the direction of the applied magnetic field. This has

been observed in Cs2CoCl4 [35], proposed as a spin 1/2 one dimensional XY-like antiferromagnet,

where the exchange interaction has nonequal values in X,Y, and Z directions, and the magnetic field

has both transverse an longitudinal components. It is then important to study the properties of the

current quantum mechanical models in the presence of different magnetic fields.

We consider the one dimensional Ising model in mixed transverse and longitudinal fields given

by the Hamiltonian

H = −J
∑
<ij>

σ̂zi σ̂
z
j − hx

∑
i

σ̂xi − hz
∑
i

σ̂zi . (2.13)

There is no exact solution for this model. The Jordan-Wigner transformation applied to the spin

operators in the TFIM leaves the transformed Hamiltonian with strings of fermionic creation and

annihilation operators that can not be simplified further. The problem has been analytically studied

in the limit of weak fields for antiferromagnetic [25] and ferromagnetic [26] systems and the ground

state phase transition is found to disappear at hz 6= 0 in the ferromagnetic model. The ground

state phase diagram of the antiferromagnetic model was obtained by Ovchinnikov et al. [25] both

numerically and also through a classical approach (Figure 2.1).

In the classical approximation, Ovchinnikov et al. considered spins as three dimensional vec-

tors. The classical ground state configuration is then given by spin vectors lying in the XZ plane

with spins on odd and even sites pointing at angles φ1 and −φ2 respectively, with respect to X axis.

The ground state is found by minimizing the classical ground state energy,

E/N = −1

2
sin(φ1) sin(φ2)− hx

2
[cos(φ1) + cos(φ2)]− hz

2
[sin(φ1)− sin(φ2)], (2.14)

as a function of the angles φ1 and φ2. They characterized the antiferromagnetic phase by a nonzero

staggered magnetization which vanishes in the paramagnetic phase. Their calculations give the

expression for the transition line, dividing the antiferromagnetic and paramagnetic regions in the
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Figure 2.1: The ground state phase diagram of model (1.2) for J < 0 obtained in Ref. [25]. The critical line
between the antiferromagnetic and paramagnetic phases obtained from the DMRG calculation is shown by
thick line and that in the classical approximation by thin line. hx and hz are in units of J .

phase diagram, as

hz =

√
1− hx2/3(1 + hx

2/3), (2.15)

shown in Figure 2.1. The classical approach does not provide an accurate description of the phase

transition since the phase transition (for any nonzero transverse field) is determined by the quan-

tum fluctuations which in particular, shift the critical point at hz = 0 from hx = 1 to hx = 1
2 .

The addition of the transverse field to the one dimensional classical Ising model, induces quantum

fluctuations that can not be taken into account through treating spins as classical vectors. in the

Nevertheless, the existence of the two regions with zero and nonzero staggered magnetization in the

phase diagram is qualitatively correct and confirmed by numerical calculations using DMRG.

The original motivations for studying this model as discussed at the beginning of the Section,

together with the fact that it has not had the same level of attention as the TFIM with hz = 0 and

hence is less well known, make this model an interesting case of study for us.



Chapter 3

Numerical Methods

Many condensed matter systems can be reduced to systems of non-interacting particles or quasi

particles and hence be described in a single-particle context [36]. However, this mapping may not

be applicable to the case of strong correlations within a system with interactions where the full

many body problem has to be treated. One possibility to numerically investigate aN -body quantum

system is to map it onto a lattice [27] (if it does not naturally live on a lattice). In this case, the state

of the system in terms of the site-basis |αj〉 is

|ψ〉 =
∑
αj

ψα1α2...αN |α1α2...αN 〉, (3.1)

where |α1α2...αN 〉 = |α1〉⊗|α2〉⊗ ...⊗|αN 〉. Hence the dimension of the basis of the total system

is
∏N
i=1si (si being the number of states associated with each site i) which grows exponentially

with the size of the system. This is the main restriction in treating the full Hilbert space of a many

body quantum system.

A variety of numerical approaches have been introduced to study the low energy properties

of such systems. I will discuss some of these methods here, specifically exact diagonalization

(ED) and numerical renormalization group (NRG) methods and then introduce the density matrix

renormalization group (DMRG) method, which we use in the current work.

15
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3.1 Exact Diagonalization

“Exact Diagonalization" refers to a number of different approaches that produce numerically exact

results for a finite system through diagonalizing the system’s Hamiltonian in an appropriate basis.

The “appropriate" space can have i) either the same dimension as the Hamiltonian matrix itself, or

ii) can be smaller but wisely chosen to represent the correct values of the desired eigenvalues and

eigenstates of the Hamiltonian. This is the basic idea behind i) complete diagonalization and ii)

iterative diagonalization.

In complete diagonalization, the entire Hamiltonian matrix has to be stored and diagonalized.

Although this is the simplest version of ED and can be used to calculate all desired properties, it

is the most memory and time consuming approach. In an Ising spin system with N particles, the

dimension of the Hilbert space scales as 2N and the largest systems one can treat using complete

diagonalization, are far smaller than the thermodynamic limit. For example for a Hubbard chain

(where the Hilbert space scales faster than 2N ), one may reach less than about 10 sites on a super-

computer [27].

To achieve larger system sizes, a series of iterative diagonalization procedures have been intro-

duced. The common idea of such algorithms is to project the matrix on to a subspace (much smaller

than the actual Hilbert space) which is chosen so that the extremal eigenstates within the subspace

converge to the extremal eigenstates of the system. This reduces the amount of calculations and

memory required for diagonalizing the matrix to almost machine precision [37], but is limited to

finding the extremal eigenvalues (and the corresponding eigenvectors). One of the main iterative

diagonalization approaches used in physics is the Lanczos algorithm [38].

Lanczos Algorithm

In 1950 Lanczos proposed his algorithm (which he called the method of minimized iterations) for

solving the eigenvalue problem of linear differential and integral operators [38]. In his algorithm

the matrix A to be diagonalized is projected onto a smaller subspace in which the projected matrix

T is in a tridiagonal form and hence easier to diagonalize. Lanczos suggested a method to construct

this subspace so that the extremal eigenvalues of TM , the leading M × M part of T , are good

approximations to the extremal eigenvalues of A even for M � N (where N is the dimension of

A).

The algorithm is as follows:
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1- Choose an initial vector q0 to start constructing the aforementioned subspace onto which

the Hamiltonian is projected. q0 must have a nonzero overlap with the ground state of the

Hamiltonian to allow for the convergence towards the ground state.

2- Start from n = 0 and at the nth step generate the Lanczos basis qn+1 through the recursion

relation below. Normalize them before going to the next step.

|qn+1〉 = H|qn〉 − anH|qn〉 − bn−1H|qn−1〉, (3.2)

where an = 〈qn|H|qn〉, bn−1 = ‖qn−1‖, b0 ≡ 0, and |q−1〉 ≡ 0.

3- Check if convergence is achieved: bn < ε: if yes, move to step 4. Otherwise iterate until

n = M . In the latter case convergence might not be there at the end of the iterations, but

eventually it will be achieved through updating the iteration procedure as explained in step 5.

4- Construct the tridiagonal matrix TM using ai and bi found through iterations, and diago-

nalize it

TM =



a0 b1

b1 a1 b2 0
b2 a2

. . .

0 . . . . . . bM

bM aM


. (3.3)

5- Use the eigenvectors of TM , and Lanczos vectors to find the ground state of the Hamilto-

nian. Start from step 2 with the ground state as q0 [39]. Terminate if bM < ε.

The algorithm returns the ground state wavefunction and energy E0 = a0.

The number of Lanczos steps needed to converge to the actual ground state of the Hamiltonian

is usually much less than the size of the Hilbert space. The implementation of the Lanczos method

in this work has allowed us to obtain the ground state eigenvalue and eigenvector of systems with

up to N = 16 sites (corresponding to a 65536 × 65536 Hamiltonian matrix), after only about

M ' 20− 50 Lanczos steps. Going to larger N is restricted by the memory limitations.

This algorithm is much more memory efficient than complete diagonalization in finding the

ground state and low-lying excited states since it only stores the 3 vectors qn−1, qn, and qn+1 at

each step. Besides, since the Hamiltonian matrices for which Lanczos works the best are sparse, one
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Figure 3.1: Adding a site to the block: a change of basis and a successive truncation.[11].

could store only nonzero elements of the matrix rather than the whole Hamiltonian. This enhances

both the speed and memory usage of Lanczos algorithm. However, the largest system size one can

treat with any ED method remains limited due to the exponential growth of the Hilbert space with

system sizes.

3.2 Numerical Renormalization Group

When the size of the system under consideration gets too large, the computational resources required

to diagonalize the matrix are too much and an approximate treatment is required. One such approach

is the numerical renormalization group method introduced by Wilson [40] to study the ground state

(or low-lying excited states) of large quantum many-body systems. The basic idea in this method is

the successive truncation of the Hilbert space by neglecting the “unimportant" degrees of freedom

at each renormalization group step. If one is interested in finding the ground state of a system,

unimportant degrees of freedom refer to the eigenstates of the system’s Hamiltonian which have

the least contribution to the ground state wavefunction. The procedure starts from forming the

Hamiltonian HL for a “block" of the system with length L and gradually adding sites to it. At

each step the new Hamiltonian is transformed to a new basis formed by the m eigenvectors of HL

corresponding to the m lowest eigenvalues:

H̄L = O†LHLOL. (3.4)

Here OL is the transformation matrix whose columns are the m lowest eigenvectors of HL. Next,

a single site, with an associated D dimensional Hilbert space, is added to the current block to form

the new system’s Hamiltonian HL+1 (Figure 3.1). The whole procedure is restarted with HL+1.

In this method the dimension of Hilbert space of the Hamiltonian to be diagonalized, D × m, is

maintained constant which allows the method to be used to treat very large system sizes.
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However, this procedure does not work well for a number of lattice models including the one-

dimensional Heisenberg and Hubbard models and loses accuracy after a few iterations [27]. A

precise analysis of the origin of this inaccuracy is hard for many-body problems but it was identified

by Wilson using a toy model of a single particle on a tight-binding chain [41]. In this model due

to the simpler non-interacting nature of the problem, one can modify the NRG method to carry out

a more efficient diagonalization: since the dimension of the Hilbert space here grows much slower

than in an interacting system, instead of adding single sites at a time, two equal-sized blocks can

be put together at each step. In one iteration, when the length of the system grows from L to 2L,

a linear combination of the lowest few eigenstates of the L-site system is used to approximate the

wavefunction of the larger system. For the case of fixed boundary conditions the eigenfunctions

have the form

ψn
L(l) ∝ sin

(
nπl

L+ 1

)
, (3.5)

where n = 1, ..., L. Therefore, as can be seen in Figure 3.2, the combination of two ψnL(l) leads to

a “kink" at the boundary between blocks which clearly makes it a bad approximation to the ground

state of the larger system.

This is a simple example to show that treating the boundaries of the subsystem blocks in NRG

is an important issue. Several methods have been suggested to overcome this problem. Applying a

general set of boundary conditions to the subsystem blocks, and the “superblock method" are found

to be some of the most effective solutions [42].

Figure 3.2: The lowest-lying eigenstates of two initial blocks (dashed line) and a double-sized block (solid
line) for the problem of a single particle in a box [41].
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3.2.1 Superblock Method

The idea of the superblock method is that the individual blocks that are put together at each step

constitute part of a larger system: the “superblock". In this method, after putting two blocks of

length L together, a new basis will be formed for the Hamiltonian H2L. In order to do this, a

superblock is formed by putting together p > 2 blocks. After diagonalizing the Hamiltonian of

the superblock Hp
2L, the transformation matrix O2L is constructed to project the m lowest-lying

eigenstates of the superblock onto the coordinates of the first two blocks. The whole procedure is

then restarted with the two blocks in the transformed basis.

The idea of embedding the blocks in a larger superblock allows for considering the fluctuations

in the surrounding blocks and is effectively a substitute for applying general boundary conditions

[27]. In spite of successes in describing noninteracting systems using the superblock method, gen-

eralizing it to the case of interacting systems is not trivial. One state of the superblock can project

onto more than one state of the subsystem blocks since the total Hilbert space is not a direct sum

of those of the subsystems in the interacting problems. The “density matrix renormalization group"

method optimally carries out this projection.

3.3 Density Matrix Renormalization Group

The density matrix renormalization group (DMRG) was introduced by Steven White in 1992 [43]

as an extension of Wilson’s NRG. Since its introduction, it has found applications far from its origin

in condensed matter, to fields such as quantum chemistry of small molecules [44], physics of small

superconducting grains [45], and equilibrium and out of equilibrium problems in quantum statistical

mechanics (which will be discussed in Section 3.3.3).

The main feature of DMRG is its ability to treat large systems at high precision very close to

zero temperature. The remarkable accuracy of DMRG has been illustrated in several models, for

example the spin-1 Heisenberg chain, where a precision of 10−10 for the ground-state energy of

a system with hundreds of sites was obtained using DMRG [46]. DMRG is most powerful for

one-dimensional systems [41]. Nevertheless, interesting improvements to treat systems in higher

dimensions have also been made [47, 48].

To understand why large systems and high accuracy are accessible by DMRG, we have to go

back to the problem mentioned earlier: What is the optimal way to carry out the projection of the
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wave function of a system onto its subsystems?

3.3.1 Density Matrix Projection

The density matrix is the most general description of a quantum mechanical system. For a system

U in a pure state ψ, the state of the subsystem S is given through the reduced density matrix

ρS = TrE |ψ〉〈ψ|, (3.6)

where the trace is over the states of the other subsystem E. U , S, and E are traditionally chosen

to refer to the universe, system, and environment blocks. The expectation value of an observable Â

acting on the system block can be written in the density matrix eigenbasis |wi〉 (ρS |wi〉 = wi|wi〉)
as

〈ÂS〉 =
∑
i

wi〈wi|Â|wi〉. (3.7)

Now if the contribution of some eigenvectors of ρS to 〈ÂS〉 is negligible (meaning that they cor-

respond to negligible eigenvalues) one would make a small error by neglecting them in the above

equation and projecting the state onto the most dominant eigenvectors of the reduced density matrix.

This in fact forms the kernel of the DMRG method: systematic truncation of the Hilbert space by

keeping only the most probable states describing accurately the target state (here, the ground state).

The maximum number of states m that need to be kept in a DMRG algorithm for obtaining a

desirable accuracy varies in different models depending on how fast the density matrix eigenvalues

decay. Higher precision (when m is large) is traded for treating larger systems (when m is small).

A comparison of the resultant accuracy for different values of m will be presented shortly after the

introduction of DMRG algorithms and other control parameters.

3.3.2 DMRG algorithms

In Section 3.3.1 we introduced the idea of using the density matrix to truncate the Hilbert space

within the superblock method. In the density matrix renormalization group (DMRG) it is important

to specify how to grow the superblock and add degrees of freedom. Two possible suggestions are

either i) growing both blocks to reach larger systems at each step or ii) growing one block while

shrinking the other, to investigate a system with a finite length. These two different approaches

construct the two versions of DMRG algorithms: infinite-system and finite-system.
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Infinite System Algorithm

In the infinite system algorithm both the system and environment block grow by a single site at each

step. The superblock is then enlarged two sites at a time until the desired length is achieved. For an

infinite system the criterion for stopping iterations is the convergence of the energy and observables

to some final values.

This algorithm aims to find the ground state energy and wave function of the system and pro-

ceeds as follows:

1- Consider an initial system and environment block, each with length l, where l is small

enough to allow for exact diagonalization.

2- Form the new system block by adding a single site to it. Write the Hamiltonian for the

current block H l+1
S using H l

S and the added interactions between the single site and the old

block. Form the new environment block of length l′ = l + 1 in a similar way.

3- Construct the superblock Hamiltonian. Diagonalize it using a sparse-matrix-diagonalization

method like Lanczos to find the ground state eigenvalue and eigenvector ψ.

4- Find the reduced density matrix for the system block by tracing over the states of the

environment block:

ρii′ =
∑
j

ψ∗ijψi′j , (3.8)

where ψij = 〈i|〈j|ψ〉, and |i〉 and |j〉 are the basis of the system and environment blocks

respectively. Diagonalize it and sort its eigenvalues in descending order. Do the same with

the environment block.

5- If the dimension of Hilbert space of the system block exceeds the number of states to keep,

truncate it to a new truncated basis by acting with a transformation matrix TS on the Hamil-

tonian and all the observables: H ′S
l+1 = TS

†H l+1
S TS . TS is a rectangular matrix whose

columns are the m eigenvectors of the reduced density matrix with the largest eigenvalues.

Truncate the environment block similarly.

6- Start from step 2, with the l + 1-site system (environment) block as the old system (envi-

ronment) block.

Measuring the desired observables can also be included in the above procedure. The details of mea-
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surement will be discussed in the following section. In the infinite system algorithm, one could

choose the environment block to be a reflection of the system block to reduce the number of com-

putational steps. This is valid only for reflection symmetric systems. For systems that lack this

symmetry two subsystem blocks need to be treated separately.

However, the infinite system algorithm does not produce accurate results in some systems [41,

49]. This inaccuracy originates in the varying size of the system that is being diagonalized at each

step. For an infinite system, running DMRG with small blocks in the early steps can result in a poor

convergence or it may trap the system in a metastable state corresponding to a local minimum in the

energy of systems with small sizes [41]. This motivates the introduction of an algorithm that treats

the same size superblock at each step to avoid this problem.

Figure 3.3: Schematic illustration of the finite-size DMRG algorithm. During the sweeping iterations, one
block grows, and the other one shrinks. The shrinking block is retrieved from the blocks obtained in the
previous sweep in the opposite direction, which are stored in memory or disk [11].

Finite System Algorithm

In the finite system algorithm the size of the superblock, L, is kept constant. At each step the

system block grows by a single site at the expense of reducing the environment’s length by one.

This procedure continues until the environment block has been shrunk to a single site. Then the

growth direction is reversed: the environment block expands and the system block starts to shrink in
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a similar way. A "sweep" is completed at this point (Figure 3.3). At each step the Hamiltonian and

operators acting on the shrunk block are restored from the previous finite system sweep (or from the

infinite system algorithm for the first sweep). Truncation is performed only on the expanding block.

After a few sweeps the energy and wave functions of the L-site superblock will be obtained.

A finite system algorithm proceeds as follows:

1- Run the infinite system algorithm until the superblock reaches the desired length L. Store

the Hamiltonian and the required operators of the blocks at each step.

2- Carry out steps 2-6 of the infinite algorithm until l = L − 3. At this value of l, use the

stored value forH l′
E (l′ = L− l−2) instead of usingH l

E for building the current environment

block’s Hamiltonian. Store the current Hamiltonian for both blocks.

3- Similarly to step 2, expand and shrink the environment and system block respectively until

l = 1.

4- Repeat steps 2-3 until convergence is achieved.

Error in the finite system algorithm can be decreased to almost the truncation error, i.e. the error

in neglecting some of the eigenvectors of the reduced density matrix [41]. The accuracy of this

algorithm can be controlled by varying the maximum number of states to keep and the number of

sweeps (Figure 3.4).

While the accuracy of the finite system algorithm is considerably higher than the infinite system

algorithm, its running time is greater. The computational cost of the finite-system DMRG scales

as O(Nm3) [50] and in general, every sweep takes about four times the CPU time of the starting

infinite-system DMRG calculation. However one can decrease the running time for a finite system

DMRG program significantly without adversely affecting the accuracy. This can be achieved due to

the fact that the dependence of the accuracy on the number of states kept in the truncation procedure

is weak when there are a small number of sweeps [27]. Therefore one can start from a small number

of states and gradually increase it through sweeps.

Despite reliable results produced by finite system DMRG, there is still always a possibility of

being trapped in a local minimum state. To minimize this risk one needs to study the stability of the

final results over the course of successive iterations and perform a sufficient number of sweeps to

achieve convergence to the true minimum energy of the system.
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Figure 3.4: Difference between the ground state energy obtained from the finite system DMRG with different
number of sweeps and number of states kept m, and the exact energy calculated using Bethe Ansatz for a
32-site Hubbard model. [27].

Moreover, the powerful DMRG technique for one dimensional systems, does not work as well

for two dimensional problems. This arises from the relatively large boundary and hence large num-

ber of connections between the system and environment blocks which leads to attaining a given

accuracy with keeping many more states in the density matrix truncation [27].

3.3.3 Programming Details

Application of the DMRG method in different problems requires a deep understanding of the con-

structing elements of a DMRG algorithm. Other than the several steps listed earlier in the DMRG

algorithms, there are some other elements that are not part of the main body, but necessary to do

measurements using DMRG or to increase its efficiency.

3.3.3.1 Measurements

The wave function obtained by DMRG can be used to calculate the expectation value of operators.

In a transverse field Ising chain, as given in Eq. (1.1), some of the interesting observables to measure

are the expectation value of the magnetization 〈ψ0|
∑N

i=1 S
z
i |ψ0〉, or two-point correlation functions

〈ψ0|Szi Szj |ψ0〉. The operators of interest have to be presented in the current basis, hence they have

to be transformed at each step, similarly to the transformation of the left/right block Hamiltonian.
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The single-site expectation value of an operator O acting on site l (assume it belongs to the left

block) is given by

〈ψ|Ol|ψ〉 =
∑
i,i′,j

ψ∗ij [Ol]ii′ψi′j , (3.9)

where |i〉 and |i′〉 are in the left block basis and {|j〉} is the right block basis. The matrix represen-

tation [Ol]ij is first constructed when site l is added to the system, and then is transformed at each

step so that it is presented in the basis {|i〉}.
For expectation values of operators on multiple sites, their matrix representation and transfor-

mation depends on whether they operate on the same block or on different blocks. If Ol and Om act

on the single sites in the left and right block respectively,

〈ψ|OlOm|ψ〉 =
∑
i,i′,j,j′

ψ∗ij [Ol]ii′ [Om]jj′ψi′j′ . (3.10)

However, if sites l and m belong to the same block,

〈ψ|OlOm|ψ〉 =
∑
i,i′,j

ψ∗ij [OlOm]ii′ψi′j . (3.11)

In this case instead of calculating the individual single-site operators [Ol]ii′ and [Om]jj′ , one has to

calculate the composite product operator [OlOm]ii′ at the appropriate step and transform it succes-

sively during the DMRG sweeps.

3.3.3.2 Wave Function Transformations

The most time consuming part of the DMRG algorithm is the exact diagonalization of the su-

perblock Hamiltonian at each step. Hence improving this part of the algorithm can speed up the

total procedure significantly. One possibility is using an appropriate initial guess as the seed for

the exact diagonalization method. If the Lanczos procedure starts with a vector that is a good ap-

proximation to the desired wave function, many fewer iterations are required before convergence is

achieved. The wave function in the previous DMRG step seems to be a good approximation to the

wave function at the current step, but is presented in a different basis. Therefore an algorithm to

transform the wave function from one step to the next one is needed.

At step l, when the basis of the left block (containing sites 1, ..., l) is |αl〉, and the basis of the

right block (containing sites l+ 3, ..., L) is |βl+3〉, the wave function is calculated in the superblock
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basis,

|αlsl+1sl+2βl+3〉 ≡ |αl〉 ⊗ |sl+1〉 ⊗ |sl+2〉 ⊗ |βl+3〉, (3.12)

where |sl+1〉 and |sl+2〉 are the bases of the single sites l + 1 and l + 2.

At the next step (if we assume the sweep is left to right), the wave function will be in the basis

|αl+1sl+2sl+3βl+4〉, (3.13)

where |αl+1〉 and |βl+4〉 are the effective density matrix bases obtained at the end of the previous

step and can be written in terms of the original product bases via the following transformations [51]:

|αl+1〉 =
∑

sl+1,αl
(UL

†)αl+1,αlsl+1
|αl〉 ⊗ |sl+1〉,

|βl+3〉 =
∑

sl+3,βl+4
(UR)sl+3βl+4,βl+3

|sl+3〉 ⊗ |βl+4〉.
(3.14)

UL and UR contain the density matrix eigenvectors and are simple rearrangements of the matrix

elements of the transformation matrices TS for the left and right blocks used in transforming the

Hamiltonian of the blocks to the new basis [52].

By assuming
∑

αl+1
|αl+1〉〈αl+1| = 1 (which is an approximation since the Hilbert space is

truncated), the wave function in the new basis becomes

|ψ〉 =
∑

αlsl+1βl+3

(UL
†)αl+1,αlsl+1

(UR)sl+3βl+4,βl+3
〈αlsl+1sl+2βl+3|ψ〉|αl+1sl+2sl+3βl+4〉.

(3.15)

For the right to left half-sweeps a similar transformation is used.

Adding the above procedure (known as the “wave function prediction" introduced by White

[53]) to the main DMRG algorithm involves storing the transformation matrices at every step which

makes it a little expensive in the memory usage. However, it is still relatively inexpensive in CPU

time and memory compared to other steps of the DMRG procedure, and of course reduces the

calculations in the iterative digonalization at each single DMRG step.

Although the idea of using the old wave function at the current step was introduced as an op-

tional step in the DMRG algorithm, it is an inseparable part of the time-dependent DMRG algorithm

as will be discussed in the next section.



CHAPTER 3. NUMERICAL METHODS 28

3.3.4 Time Dependent DMRG

The study of nonequilibrium dynamics in quantum systems is motivated by a variety of physical

phenomena in the fields of spintronics, low dimensional correlated systems, quantum computing

[54], and recently cold atom experiments. Therefore the accurate calculation of time dependent

quantum observables in such systems has attracted considerable attention.

Some of the existing numerical methods for the investigation of strongly correlated quantum

systems are quantum Monte-Carlo (QMC) [55], exact diagonalization (ED) and DMRG. There have

been some attempts to calculate time-dependent quantities in quantum systems using these methods.

QMC has been extended to the time dependent regime [56, 57], however these calculations are

difficult to control [58]. Implementation of ED to account for time evolution on the other hand, can

easily allow one to calculate many desired quantities, but is limited to small systems as discussed

earlier.

Using DMRG to calculate time dependent observables is probably the best method for suffi-

ciently large one dimensional systems. The main issue in the study of time evolution with DMRG is

that the truncated subspace of the system’s Hilbert space that represents the initial state of the sys-

tem might not be appropriate to properly determine the state at later times. This reflects the fact that

there might be regions of the Hilbert space that are discarded in DMRG which the wave function

might explore in its subsequent evolution in time.

This problem was first pointed out by Luo et al. [59] in a comment on a "time-dependent

DMRG" (TdDMRG) method introduced by Cazalilla and Marston [60]. In the TdDMRG method

the time-dependent Schrodinger equation was numerically integrated in time in a fixed reduced

Hilbert space after applying a standard DMRG calculation. Luo et al. argued that by working within

a static reduced Hilbert space (in which the initial state is represented), the long time behaviour

becomes poor since the time evolution of the initial state evokes excited states in a nonequilibrium

system which might not be represented in the initial reduced Hilbert space. Their suggestion for

solving this problem was to include states at all time steps in the density matrix. They showed that

targeting the entire range of time enlarges the initial reduced Hilbert space and allows for retaining

the information on the relevant excited states. This method still uses a static Hilbert space but tries

to use a basis that includes all the states that the system explores in the course of time evolution

(Figure 3.5).

However, this method has the disadvantage of targeting states at all time steps which requires a
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Figure 3.5: The top figure illustrates the original idea of TdDMRG: The initial state is calculated and evolved
in time by numerically integrating the Schrodinger equation. The figure at the bottom shows Luo et al.’s idea
of targeting the states at every time-step, keeping track of the entire time-evolution of the wave function. [11].

large number of density matrix eigenstates to be kept and slows down the calculations.

A more efficient time-dependent DMRG is the so called adaptive tDMRG [61, 62]. In this method

instead of directly integrating the Schrodinger equation in a fixed space, the states kept in the re-

duced basis are adjusted at each step to represent the state of the system at the next step, hence the

basis changes dynamically as we proceed in time.

Suzuki-Trotter Approach

The implementation of the Suzuki-Trotter (S-T) decomposition of the time evolution operator in an

adaptive tDMRG algorithm was first formulated by White and Feiguin [62]. In this approach, due

to the change of the effective Hilbert space at each time step, the total evolution time is split into N

small intervals and the time evolution operator is successively performed on the state of the system

at each time step:

u(t) = e
−iHt

~ = (e
−iH∆t

~ )N (3.16)

To obtain the time evolved state |ψ(t+∆t)〉 = e
−iH∆t

~ |ψ(t)〉 S-T decomposition of the matrix expo-

nential e
−iH∆t

~ is used. To first order one has

e−
i
~H∆t ≈ e−

i
~HA∆te−

i
~HB∆t +O(∆t2), (3.17)

where HA contains the terms of the Hamiltonian for the even links, and HB for the odd links. Since

the individual link-terms e−
i
~Hj∆t (coupling sites j and j+ 1) within HA or HB commute, one can

write

e−
i
~HA∆t = e−

i
~H1∆te−

i
~H3∆t · · · . (3.18)
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This allows application of the bond time evolution operator e−
i
~Hj∆t on individual even links during

a DMRG half-sweep, and on individual odd links in the next half sweep. The bond evolution

operators have a very simple matrix representation which can be found easily by considering the

single site terms and the nearest-neighbour interactions in the Hamiltonian.

The error in this method is the Trotter error which can be controlled by using higher order

decompositions and hence doing more DMRG sweeps. For example, the second order Suzuki-

Trotter decomposition is

e−
i
~H∆t ≈ e−

i
~HA∆t/2e−

i
~HB∆te−

i
~HA∆t/2 +O(∆t3). (3.19)

The main advantages of the S-T method are: the simple form of the local evolution operators, the

small amount of calculations in multiplying small matrices by the wave function, and the control

over decreasing the error by simply doing some more sweeps along the system.

Time-Step Targeting

In spite of the efficiency and accuracy of the S-T method, it is limited to Hamiltonians with only

nearest neighbour interactions. To study a problem with longer range interactions one alternative is

to modify the original proposal of Luo et al. [59] to adapt the basis in a similar fashion as the S-T

approach, but possibly without keeping track of the entire history of the state. "Time-step targeting"

(TST) was the name originally used to refer to this method [51]. In this approach, at each time step

a basis is produced, targeting the states needed to represent one time step. Once the adaptation to

the new basis is complete, the time step is taken and the algorithm proceeds to the next time step.

Hence, similarly to Ref. [59] a number of wave functions at a sequence of times is used to form the

density matrix, but this happens at every single time step (Figure 3.6).

What intermediate states do we use in the density matrix? In the original proposal, the states at

times t, t+ τ/3, t+ 2τ/3, t+ τ appear in the density matrix at time t with the respective weights of

1/3, 1/6, 1/6, 1/3. The standard fourth-order Runge-Kutta (R-K) algorithm is applied to construct
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Figure 3.6: Time-step targeting idea: at every time step, target four intermediate states to optimize the basis
for the time evolution. [11].

the intermediate states by defining a set of four vectors

|k1〉 = τH̃(t)|ψ(t)〉,
|k2〉 = τH̃(t+τ/2)[|ψ(t)〉+ 1/2|k1〉,
|k3〉 = τH̃(t+τ/2)[|ψ(t)〉+ 1/2|k2〉,
|k4〉 = τH̃(t+τ)[|ψ(t)〉+ |k3〉,

(3.20)

where H̃(t) = H(t) − E0. The states are then obtained as follows [51]

|ψ(t+τ/3)〉 ≈ 1
162 [31|k1〉+ 14|k2〉+ 14|k3〉 − 5|k4〉] +O(τ4),

|ψ(t+2τ/3)〉 ≈ 1
81 [16|k1〉+ 20|k2〉+ 20|k3〉 − 2|k4〉] +O(τ4),

|ψ(t+τ)〉 ≈ 1
6 [|k1〉+ 2|k2〉+ 2|k3〉+ |k4〉] +O(τ5).

(3.21)

Comparing TST and Luo et al.’s method, TST requires less density matrix eigenstates to be kept

since it targets a narrower range of time. This leads to less computational cost and faster perfor-

mance time of TST. However, TST is not as efficient as the S-T method since it targets more than

one state at a time and needs to keep a larger number of states to achieve the same accuracy as

S-T [51]. This is of course the price TST pays in the exchange for the ability to treat longer-range

interactions which is not achievable by S-T (for an extensive analysis and comparison of errors in

these two methods see the original paper [51].)

The algorithm for implementing TST method proceeds as follows:
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1 Run ground-state DMRG to calculate the initial state.

2 Introduce a perturbation to the problem: such as a change in the Hamiltonian or the state.

3 Turn off the Lanczos: the state of the system is no longer obtained through ED, it is instead

transformed to the adapted basis from step to step.

4 Start the sweeping process:

1 Find the intermediate states through the R-K procedure, use them to form the density

matrix ρ =
∑

twt|ψt〉〈ψt| with the corresponding weights.

2 Increase the block size by adding a site, apply the same density matrix truncation as in

the ground-state algorithm.

3 Rotate all the operators to the new basis.

4 Rotate the wave function to the new basis by using the wave-function prediction ex-

plained in section 3.3.2.2.

5 Advance in time after the completion of one (or more, for producing a better basis for the time

step) half-sweeps. Start from step 4 with the new wave function until the desired number of

time steps has been taken.

Figure 3.7: Error at t=8 (in units of the Heisenberg exchange J) for the Haldane chain for different time steps
τ . a) Suzuki-Trotter method; b) TST method using Runge-Kutta. [11].
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The two fundamental sources of error in tDMRG are i) The truncation error, and ii) the error

introduced in taking the integration (R-K) or the time evolution using S-T method. The truncation

error, the error we make by throwing away some eigenstates of the density matrix, can be controlled

by keeping more states, and the error in the integration can be controlled by decreasing the time step

τ . In TST the error is almost dominated by the truncation error [11] and hence it accumulates with

the number of steps. Therefore although one would first expect to obtain smaller error with smaller

time steps (as in the S-T method), the greater the number of iterations needed to reach a desired

time with smaller τ , the larger accumulation of errors (Figure 3.7, 3.8).

Moreover, the truncation error typically grows in time for a sudden quench. This reflects the

fact that upon such a perturbation, the system is no longer in the ground state but in a superposition

of some excited states. If insufficient density matrix states are kept, the weight of such “unwanted"

states increases in time. Therefore, increasing the number of states m with time, is a solution for

maintaining the error small for larger times. The rate of changing m for an efficient simulation in

a sudden global quench is m(t) ∼ exp(t) [11]. Consequently the required number of states may

quickly grow to a point when it becomes unmanageable by the computer. At this point, continuing

the time evolution with a fixed m may lead to unreliable results. Attempts to extend the use of

tDMRG to longer time scales constitutes a major part of recent studies in the field [63, 64].
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Chapter 4

Results

In this Chapter we present the results obtained from our exact diagonalization (ED) and DMRG

simulations of the transverse field, and mixed fields Ising model (Eqs. 2.1 and 2.12). We first test the

results of our exact diagonalization and DMRG algorithms through a study of the order parameter

in the course of the quantum phase transition discussed in Chapter 2. The order parameters we

consider are the magnetization

M z =
1

N
〈ψ0|

N∑
i=1

Szi |ψ0〉, (4.1)

in ferromagnetic systems and the staggered magnetization

N z =
1

N
〈ψ0|

N∑
i=1

(−1)iSzi |ψ0〉, (4.2)

in antiferromagnetic systems, which we calculate using the ground state wave function ψ0. We then

present the results of our tDMRG simulation in which we have used ED and DMRG. We compare

our results for the TFIM with the literature and investigate the behaviour of the order parameter in

different quenches in the antiferromagnetic Ising chain given by Eq. 2.12.

4.1 Exact Diagonalization

In this section we present the results for numerically solving the TFIM with the Lanczos method.

The ground state eigenstate and energy are obtained for different values of the transverse field hx/J .

Using the ground state wave function of a ferromagnetic system with N spins, the magnetizations

34
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in the z direction, M z , and the x direction, Mx are obtained. M z and Mx in different systems are

shown as a function of the field hx/J in Figures 4.1 and 4.2. As discussed earlier in Chapter 2 the
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Figure 4.1: Mz for the ferromagnetic transverse field Ising model as a function of hx/J for different values
of system sizes N calculated by our Lanczos simulation.

ground state of a transverse field Ising chain exhibits an “ordered" and a “disordered" phase. The

two phases in ferromagnetic systems correspond to M z 6= 0 and M z = 0 respectively. In fact for

hx = 0 all the spins are aligned along the z axis and M z attains its maximum value while Mx = 0.

By increasing the field, Mx grows and above the critical value, hcx/J = 1/2, M z vanishes in the

thermodynamic limit and Mx continues growing so that as hx/J →∞ it saturates to its maximum

value of 1
2 . Note that the difference in the value of the critical field between our results and gc = 1

obtained in Chap. 2 comes from treating the spin operators, Sαi = ~
2σ

α
i , rather than the Pauli

matrices σαi .

For finite system sizes N , the magnetization vanishes as

〈
1

N

√√√√∣∣∣∣∣∑
i

Szi

∣∣∣∣∣
2〉
≈ 1

N

√
N =

1√
N
, (4.3)

which explains the nonzero values ofM z in the “disordered" phase for small systems in Figure 4.1.

However the largest systems we can treat in our exact diagonalization simulations have N ≈ 16

(Figure 4.3) if only the ground state energy and wave functions are calculated. For other observables

such asM z andMx the limit on the system size is even lower. For larger systems we use the DMRG
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method within which the Lanczos code is called to diagonalize the effective Hamiltonian at each

step.
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Figure 4.2: Mx for the ferromagnetic transverse field Ising model as a function of hx/J for different values
of system sizes N calculated by our Lanczos simulation.
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Figure 4.3: The ground state energy per site for a 16-site ferromagnetic transverse field Ising model as a
function of hx/J calculated by our Lanczos simulation

4.2 Density Matrix Renormalization Group

To simulate larger system sizes we implemented the density matrix renormalization group algo-

rithm. The phase transition is more clearly observed in the DMRG results since the systems to

be treated are larger than when we used ED, and hence the order parameter, M z in ferromagnetic
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systems and the staggered magnetization N z in antiferromagnetic systems, have very small values

in the disordered phase.
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Figure 4.4: Mz in the ferromagnetic Ising chain in a transverse field with N sites and 256 states kept in
the density matrix truncation, obtained from the infinite-system DMRG calculations. To have a more fair
comparison between the results for different N we need to keep more states for larger systems, but the
maximum number of states one can keep is restricted due to the limitations on the memory.

Ground State Properties

The result of the infinite-system DMRG simulation for the ground state magnetization M z in the

TFIM is shown in Figure 4.4. The infinite-system DMRG results can be improved by keeping more

states in the truncation procedure (Sec. 3.3.2). Our simulation results confirm a better convergence

(especially around the critical point, hx/J = 0.5) for a larger number of states kept (Figure 4.5).

However, to increase the accuracy and avoid the problems mentioned in Sec. 3.3.2, it is desirable

to carry on several finite-system sweeps along the system after the desired length is achieved with

the infinite system algorithm [27]. We have observed that by taking only a few sweeps, in spite of

keeping a very small number of states in the DMRG truncation, we can obtain more reliable results

(Figure 4.6).
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Figure 4.5: Comparison ofMz in a 50-site ferromagnetic Ising chain in a transverse field for different values
of the number of states kept in the infinite-system DMRG algorithm.

Higher accuracy with the DMRG method can then be achieved by tuning the control parameters

such as the number of states kept, the number of sweeps along the system, and iterations in the ED

part of the algorithm towards a better convergence.
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Figure 4.6: Mz in a 10-site ferromagnetic Ising chain in a transverse field. Comparison of the ED, inifinite-
system DMRG, and finite-system DMRG with 10 sweeps along the system and 256 states kept.

In antiferromagnetic systems, the maximum staggered magnetization, N z = 0.5, corresponds

to the state with all the spins aligned antiparallel to their nearest neighbour, indicating the “antifer-

romagnetic" phase (Figure 4.7). The phase transition from the gapped to the gapless phase, shown
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in Sec. 2.1, does not depend on the sign of J which means that the value for the critical field hcx in

antiferromagnetic and ferromagnetic systems is the same.
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Figure 4.7: The staggered magnetization, Nz as a function of hx, in a 100-site antiferromagnetic Ising chain
in a transverse field, keeping 256 states.

Now let’s consider an Ising chain in the presence of both transverse and longitudinal fields:

H = J
N∑
i=1

Si
zSi+1

z + hx

N∑
i=1

Si
x + hz

N∑
i=1

Si
z, (4.4)

This model was discussed in Sec. 2.2. The phase diagram revealing the antiferromagnetic and

paramagnetic phases for the ground state of model 4.4 obtained from our simulations is shown in

Figure 4.8, which is in very good agreement with Ref. [25] (see Figure 2.1).

4.3 Out of Equilibrium Dynamics

Our DMRG simulations so far have provided reasonable results and give us the confidence to extend

our work to the time dependent regime. In this section we present our tDMRG results where we use

time step targeting (Sec. 3.3.4) for the simulation of the time evolution of our system after a quench

in a system parameter. We measure time in units of ~/J , and this should be understood in all figures

in this chapter.
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Our calculations take the form of making a quench in the transverse or longitudinal field and

then studying the response of the order parameter to this change.
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Figure 4.8: The ground state phase diagram of an antiferromagnetic system in the presence of both longitu-
dinal and transverse fields (model 4.4). The results are obtained from a DMRG simulation of a 50-site system,
keeping 256 states. The dashed line shows the results obtained by Ovchinnikov et al. [25] as discussed in
Sec. 2.2

However, as discussed earlier the results of simulations for tDMRG algorithms becomes inaccu-

rate with increasing time (Sec. 3.3.4). Hence, we need to verify the range of the time within which

our results are reliable before taking data. A benchmark for the reliability of the results at time t is

the fidelity, F = |〈ψ0|ψt〉|, where ψt (ψ0) is the wave function at time t (zero).

It is easier to monitor the infidelity, I = 1 − F , which is shown in Figure 4.9 for a transverse

field Ising chain with hx/J = 0.2. In the calculation with hx/J = 0.2, there is no change in H

(unlike a quench) and so if we were able to get a good enough initial state ψ0, i.e. an eigenstate of

H , we should have I = 0. Therefore we need to consider the two cases i) when ψ0 is an eigenstate

of H , and ii) when ψ0 is not an eigenstate of H .

The state of the system at time t is obtained by acting the time evolution operator, U = e−
iHt
~ ,

with the initial state:

|ψt〉 = exp

[
−iHt
~

]
|ψ0〉. (4.5)
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The infidelity at time t for case i) can then be written as

I = 1−
∣∣∣∣〈ψ0| exp

[
−iHt
~

]
|ψ0〉

∣∣∣∣ = 1−
∣∣∣∣exp

[
−iE0t

~

]∣∣∣∣ = 0, (4.6)

hence zero at all times. However, if the initial state is not an eigenstate of H , the infidelity does not

remain zero. Consider the situation where the time evolution procedure starts from a wave function

that is slightly different from the ground state of the initial Hamiltonian

|ψ〉 = α|ψ0〉+ β|ψi〉, (4.7)

where 〈ψ0|ψi〉 = 0. In this case the infidelity in short times is given by

I = 1−
∣∣{α∗〈ψ0|+ β∗〈ψi|} exp

[−iHt
~
]
{α|ψ0〉+ β|ψi〉}

∣∣
= 1−

∣∣∣|α|2 exp
[−iE0t

~
]

+ |β|2〈ψi| exp
[−iHt

~
]
|ψi〉

∣∣∣
' 1−

∣∣∣|α|2 exp
[−iE0t

~
]

+ |β|2
[
1− it

~ 〈ψi|H|ψi〉
]∣∣∣+O(t2)

' 1− |α|2 − |β|2 +O(t2).

(4.8)

The above expression suggests that in case i), where α = 1 and β = 0, I = 0. Otherwise I grows

linearly in time for small enough t.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.01  0.1  1

In
fid

el
ity

Time

N=20
N=40
N=50

Figure 4.9: The infidelity as a function of time for ferromagnetic Ising chain in a transverse field at hx/J =
0.2, keeping 1024 states.

The origin of the presence of other states in the initial wavefunction is the truncation of the
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Hilbert space. As a result of truncation, the wave function found at the end of the DMRG sweeps

(before the time evolution) does not necessarily represent the ground state of the system, but it may

also include a superposition of some of the low-lying states which may have small overlap with the

ground state. The error arising from approximation of the wavefunction then leads to a nonzero

infidelity which grows rapidly in time as the truncation error dominates the total error (see Sec.

3.3.4).

Current efficient classical algorithms for computing dynamics of quantum systems are yet less

developed than for computing static properties. In a recent experiment in cold atoms it has been

shown that the experimental dynamics run for longer than present algorithms such as tDMRG [65].

Hence the growth of the infidelity in tDMRG calculations is one of the main challenges in the field.

For a fixed number of states kept (1024 states in Figure 4.9), the wave function in the truncated

Hilbert space is a better approximation to the actual ground state for smaller system sizes. When the

number of states kept is much smaller than 2N the low-lying excitations have larger contributions

in the approximation to the ground state wave function which leads to larger deviations during the

time evolution.
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Figure 4.10: The infidelity as a function of time for a 20-site ferromagnetic Ising chain in a transverse field
at hx/J = 0.2, keeping 1024 states, with different values of DMRG sweeps completed before the beginning
of the time evolution.

The infidelity can then be decreased by keeping a larger number of states or by doing more

finite-system DMRG sweeps before starting the time evolution, so that the initial wave function

becomes a better approximation to the actual ground state. We use a combination of these two

solutions to improve the results for different systems. The effect of the latter on the improvement of
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the results is shown in Figure 4.10.

From similar graphs such as Figures 4.9 and 4.10, we chose appropriate values for the control

parameters like the number of states and sweeps, for everyN and run the simulation for them within

the valid time range. We now present our results for the out of equilibrium dynamics in a transverse

field Ising chain.
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Figure 4.11: Mz in a 20-site ferromagnetic Ising chain in a transverse field after a quench from hx/J = 0.2
to different values of hx. There is no ordering in quenches from larger to smaller transverse field since there
is no bath to allow the system to exchange energy and go to the ground state of the Hamiltonian that it is
evolving with.
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Figure 4.12: Mz in a 20-site ferromagnetic Ising chain in a transverse field after a quench from hx/J = 0.8
to different values of hx

Figure 4.11 shows how the magnetization, M z , behaves after a quench in the transverse field
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from an initial value within the ferromagnetic phase (h0
x/J = 0.2) to different final values hx. The

decay, observed for all values of hx, was analytically predicted in Ref. [30]. The analytical ex-

pression for M z
(t) is derived for the asymptotic late-time regime which is not accessible by tDMRG,

However for a qualitative comparison of our simulation results with the analytical predictions, see

Figure 1.6. For quenches starting from the disordered phase (hx/J > 0.5) the magnetization is

expected to be zero at all times since the Z2 symmetry (given by Eq. 2.2) remains unbroken [30].

This is in agreement with our results (Figure 4.12).

Figure 4.13: Relaxation of the local magnetization in a L = 256 chain after a quench from hx/J = 0 to
hx/J = 0.25 [32]. The recurrence in ml(t) occurs at a time T = L/v, where v = v(h, h0) is the speed of
the quasiparticles.
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Figure 4.14: Local magnetization at site l as a function of time in a 50-site ferromagnetic transverse field
Ising chain after a quench from hx/J = 0.2 to hx/J = 0.3.
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The time evolution of local magnetization, ml(t) = 〈ψt|Szl |ψt〉, after a quench from h0 to h

in the TFIM, was studied analytically in Ref. [32]. The two “decay" and “reconstruction" regimes

(Figure 4.13) introduced in the nonequilibrium relaxation of the magnetization profiles agrees with

our tDMRG simulations (Figure 4.14). The reconstruction of the local observable ml(t) corre-

sponds to the case when the quasiparticles, which are emitted at t = 0 and arrive at a reference

point l in time t, originate from nearby regions in space. In the relaxation regime only incoherent

quasiparticles pass the reference point. However, this agreement is qualitative and one should not

regard all the details as quantitatively accurate since the time range illustrated in this plot is well

beyond the reliable range of our DMRG simulations.

In an antiferromagnetic Ising chain in the presence of both longitudinal and transverse fields

(model 4.4) we carry out quenches between different regions in the phase diagram (Figure 4.15).

While the possibility of experimentally investigating quenches of this sort has been recently pro-

vided in cold atom systems [16, 66], yet there has not been theoretical studies on what we consider

in this work.
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Figure 4.15: We consider quenches along the schematic lines shown in the phase diagram.

The response of the order parameter to quenches within the ordered phase, from the ordered to

disordered phase or vice versa, are shown in Figures 4.16, 4.17, and 4.18.
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Figure 4.16: Time evolution of the staggered magnetization Nz after a quench of the fields from
(h0z/J, h

0
x/J) to (hfinal

z /J, hfinal
x /J), corresponding to a quench of type (b) in Fig. 4.15, in a 20-site chain

with 1024 states kept.

According to our results in quenches of types a, b, and c, starting from the ordered phase the

antiferromagnetic order decays for any final values of the fields. The decay is faster for larger

quenches i.e. when hx and hz are further from the critical line. In quenches starting from the

disordered phase the order parameter Nz remains zero for all times.
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Figure 4.17: Time evolution of the staggered magnetization Nz after a quench of the fields from
(h0z/J, h

0
x/J) to (hfinal

z /J, hfinal
x /J), corresponding to a quench of type (c) in Fig. 4.15, in a 20-site chain

with 1024 states kept.
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Figure 4.18: Time evolution of the staggered magnetization Nz after a quench of the fields from
(h0z/J, h

0
x/J) to (hfinal

z /J, hfinal
x /J), corresponding to a quench of type (a) in Fig. 4.15, in a 20-site chain

with 1024 states kept.

Now it is worth taking a more precise look at the quenches close to the multicritical point at

(hz, hx) = (1, 0) since the neighbourhood of this point is the region in which the Bose-Hubbard

model was mapped onto the antiferromagnetic Ising spin chain in the cold atom experiment in Ref.

[16]. Their approximate experimental path lies along the red arrow in Figure 4.15. Although the

transition from the paramagnetic to antiferromagnetic phase was claimed to occur adiabatically in

the experiment, the possibility of simulating out of equilibrium processes in cold atoms [17, 65, 66]

motivates us to study the out of equilibrium dynamics of the system nearby this region.

We study the behaviour of Nz after quenches close to the multicritical point (Figure 4.19),

extracting a time scale t∗ to characterize the dynamics after the quench. Our results suggest a faster

relaxation of the order parameter for quenches further from the critical line, similar to what we

observed in the quenches of types a, b, and c.

We define the characteristic time, t∗ as the time in which the staggered magnetization drops to

2/e of its initial value after quenches of type (c) (in Figure 4.15) from the ordered to disordered

phase. The results, exhibited in Figure 4.20, suggest that in an antiferromagnetic Ising chain given

by Eq. 4.4, the characteristic time for the decay of the order parameter after a quench from the

ordered to disordered phase, exponentially decreases by moving away from the multicritical point.
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Figure 4.19: Time evolution of the staggered magnetization Nz after a quench in the fields from
(h0z/J, hx/J) to (hfinal

z /J, hx/J) close to the multicritical point in a 20-site chain with 1024 states kept.

However, the goal for investigating criticality through studying the behaviour of t∗ is not fulfilled

since we are limited by the growth of infidelity in the timescale we can simulate.

 1

 0.01  0.1

t*

hx / J

Figure 4.20: The time in which Nz drops to 2/e of its initial value after the quenches from (h0z = 0, hx)
to (hfinal

z = 2, hx) for different values of hx for 20-site chain with 1024 states. In this plot t∗ decreases as
t∗ ∼ h−0.078

x . The fit to the data has been found through the least-squares Marquardt-Levenberg algorithm
using Gnuplot, with an error of 0.015 in calculating the slope of the fitted line.
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4.4 Summary

In this chapter we studied the ground state phase diagram and out of equilibrium dynamics of

Ising spin chains in the presence of transverse and longitudinal magnetic fields. The presented

results from the exact diagonalization and DMRG calculations exhibit the previously studied [8, 25]

quantum phase transition at the critical values of the fields. Plots of the order parameters in different

systems imply that DMRG results can be enhanced by tuning the control parameters such as the kept

number of states and the number of sweeps in a finite-system algorithm. The results for the DMRG

simulations provide evidence that our code is reliable and capable of extending to out of equilibrium

regime.

Applying time evolution methods in DMRG is restricted to short times due to the exponential

growth of the truncation error in time. On one hand, the greater the system, the larger number

of states need to be kept to keep the truncation error small in a specific amount of time. On the

other hand, treating smaller systems causes our results to suffer from some finite size effects. This

limits the system sizes we can treat by tDMRG with a fixed number of states kept. The time range

within which our results are reliable is found by investigating the infidelity as a function of time.

The improvement of the fidelity with the number of finite-system sweeps before the time evolution

procedure is further illustrated.

For observing the out of equilibrium behaviour of different systems, we performed quenches of

the fields at t = 0 and observed the response of the order parameters within the valid time range. In

ferromagnetic Ising chains in a transverse field,M z decays in quenches starting in the ferromagnetic

phase and remains zero for quenches starting in the paramagnetic phase. Antiferromagnetic chains

in the presence of mixed fields have a richer phase diagram and are studied through quenches of

different types. In the cases studied here, the order parameter N z , exhibits a decay in quenches

starting in the ordered phase and persistent low-amplitude oscillations (Figure 4.16) around zero in

quenches starting in the disordered phase. Investigating quenches in the vicinity of the multicritical

point at hx = 0, hz = 1, we find indications of a very weak power law dependence of the relaxation

time for the order parameter as a function of hinitial
x .
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Conclusion

The quantum Ising chain with antiferromagnetic interactions and both transverse and longitudinal

magnetic fields has been studied much less extensively than the solvable TFIM. Here we studied

the out of equilibrium dynamics of this model under quantum quenches, which had not previously

been studied. This is particularly timely given recent cold atom experiments that realize this model

and allow for the study of such dynamics [16, 66]. In this thesis we have implemented exact diag-

onalization and density matrix renormalization group (DMRG) techniques to study numerically the

ground state properties of this model. We have obtained the ground state energy and wave function,

and illustrated the phase transition from a gapped to a gapless phase which happens at the critical

values of the fields as derived in previous studies of the model [25].

We then developed a time dependent DMRG code to study out of equilibrium dynamics in the

system. We have investigated the evolution of the order parameters after different types of quenches

of the magnetic fields for a variety of initial conditions. Our results in the ferromagnetic systems

are in qualitative agreement with analytical predictions [19, 31, 32]. In antiferromagnetic chains the

results from our tDMRG simulations suggest a decay of the order parameter in quenches starting

from the ordered phase. The limiting factors for the accuracy of our calculations were finite size

effects and the growth of infidelity with time.

The t-DMRG code that has been developed here has been written so as to be as flexible as pos-

sible for future applications. In particular, by using time step targeting for time evolution, we allow

for the possibility of treating spin chains with longer range interactions than just nearest neighbours.

The transverse field Ising chain with appropriate three spin interactions is found to exhibit topolog-

ically non-trivial phases with Majorana fermion states [67]. Future work could involve studying

50
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the out of equilibrium dynamics in quenches between these topologically non-trivial ground states.

Given the rapid pace of experimental developments, such models may be possible to be simulated

in the near future.

Another future direction involves the study of two-point correlation functions of the form

〈ψ|OlOm|ψ〉, which can be calculated using DMRG as discussed in Sec. 3.3.3.1. Ol and Om might

be spin operators acting on different sites at the same time, or operators acting on the same site at

different times (in a tDMRG simulation). Correlations between different spins or the autocorrelation

of individual spins are interesting quantities to look at in investigating the dynamics of a many-body

system and can provide helpful information about the equilibration of the system on a microscopic

level.



Bibliography

[1] W. Gerlach and O. Stern, Z. Phys. A 9, 353 (1922).

[2] G. E. Uhlenbeck and S. Goudsmit, Nature 117, 264 (1926).

[3] E. Ising, Z. Phys. A 31, 253 (1925).

[4] L. Onsager, Phys. Rev. 65, 117 (1944).

[5] H. Bethe, Z. Phys. 71, 205 (1931).

[6] L. Hulthen, Arkiv Mat. Astron. Fysik 26A, 11 (1938).

[7] E. H. Lieb and F. Wu, Phy. Rev. Lett. 20, 1445 (1968).

[8] E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. 16, 407 (1961).

[9] P. G. de Gennes, Sol. State Commun. 1, 132 (1963).

[10] I. Bloch, Nature 453, 1016 (2008).

[11] A. E. Feiguin, A. Avella, and F. Mancini, in Strongly Correlated Systems. Springer Series in
Solid-State Sciences, Vol. 176-Verlag Berlin Heidelberg (2013).

[12] O. Morsch and M. Oberthaler, Rev. Mod. Phys. 78, 179 (2006).

[13] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).

[14] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, Phys. Rev. Lett. 81, 3108
(1998).

[15] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

[16] J. Simon, W. S. Bakr, R. Ma, M. E. Tai, P. M. Preiss, and M. Greiner, Nature 472, 307 (2011).

[17] T. Kinoshita, T. Wenger, and D. S. Weiss, Nature 440, 900 (2006).

[18] S. Sachdev and A. Young, Phys. Rev. Lett. 78, 2220 (1997).

[19] K. Sengupta, S. Powell, and S. Sachdev, Phys. Rev. A 69, 053616 (2004).

[20] O. Viehmann, J. V. Delft, and F. Marquardt, Phys. Rev. Lett. 110, 030601 (2013).

52



BIBLIOGRAPHY 53

[21] Y. L. Wang and B. R. Cooper, Phys. Rev. 172, 539 (1968).

[22] P. Pfeuty and R. Elliott, J. Phys. C 4, 2370 (1971).

[23] D. Bitko, T. Rosenbaum, and G. Aeppli, Phys. Rev. Lett. 77, 940 (1996).

[24] R. Coldea, D. Tennant, E. Wheeler, E. Wawrzynska, D. Prabhakaran, M. Telling, K. Habicht,
P. Smeibidl, and K. Kiefer, Science 327, 177 (2010).

[25] A. A. Ovchinnikov, D. V. Dmitriev, V. Y. Krivnov, and V. O. Cheranovskii, Phys. Rev. B 68,
214406 (2003).

[26] H. C. Fogedby, J. Phys. C 11, 2801 (1978).

[27] R. M. Noack and S. R. White, in Density-Matrix Renormalization. Springer (1999).

[28] J. W. Britton, B. C. Sawyer, A. C. Keith, C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk,
and J. J. Bollinger, Nature 484, 489 (2012).

[29] K. Kim, M. S. Chang, S. Korenblit, R. Islam, E. E. Edwards, J. K. Freericks, G. D. Lin, L. M.
Duan, and C. Monroe, Nature 465, 590 (2010).

[30] P. Calabrese, F. H. Essler, and M. Fagotti, J. Stat. Mech. 2012, 07016 (2012).

[31] P. Calabrese, F. H. Essler, and M. Fagotti, Phys. Rev. Lett. 106, 227203 (2011).

[32] F. Iglói and H. Rieger, Phys. Rev. Lett. 106, 035701 (2011).

[33] F. Iglói and H. Rieger, Phys. Rev. Lett. 85, 3233 (2000).

[34] A. Yu Kitaev, Phys. Usp. 44, 131 (2001).

[35] M. Kenzelmann, R. Coldea, D. A. Tennant, D. Visser, M. Hofmann, P. Smeibidl, and Z. Tyl-
czynski, Phys. Rev. B 65, 144432 (2002).

[36] N. W. Ashcroft and N. D. Mermin, Solid State Physics. Brooks Cole: New York (1976).

[37] E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).

[38] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differen-
tial and integral operators. U.S. Governm. Press Office (1950).

[39] D. Calvetti, L. Reichel, and D. C. Sorensen, Electronic Transactions on Numerical Analysis
2, 21 (1994).

[40] K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975).

[41] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).

[42] S. R. White and R. M. Noack, Phys. Rev. Lett. 68, 3487 (1992).

[43] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).

[44] S. R. White and R. L. Martin, J. Chem. Phys. 110, 4127 (1999).



BIBLIOGRAPHY 54

[45] J. Dukelsky and G. Sierra, Phys. Rev. Lett. 83, 172 (1999).

[46] S. R. White and D. A. Huse, Phys. Rev. B 48, 3844 (1993).

[47] S. Liang and H. Pang, Phys. Rev. B 49, 9214 (1994).

[48] S. Moukouri and L. G. Caron, Phys. Rev. B 67, 092405 (2003).

[49] C. D. E. Boschi and F. Ortolani, Eur. Phys. J. B 41, 503 (2004).

[50] H. Fehske, R. Schneider, and A. Weiße, Computational Many-particle Physics. Springer
(2008).

[51] A. E. Feiguin and S. R. White, Phys. Rev. B 72, 020404 (2005).

[52] S. Östlund and S. Rommer, Phys. Rev. Lett. 75, 3537 (1995).

[53] S. R. White, Phys. Rev. Lett. 77, 3633 (1996).

[54] G. Alvarez, L. da Silva, E. Ponce, and E. Dagotto, Phys. Rev. E 84, 056706 (2011).

[55] J. Grotendorst, D. Marx, and A. Muramatsu, Quantum Simulations of Complex Many-Body
Systems: From Theory to Algorithms - Lecture Notes, J. Neumann Inst. Comp. Forschungszen-
trum, Jülich (2002).

[56] C. H. Mak, Phys. Rev. Lett., 68, 899 (1992).

[57] R. Egger and C. H. Mak, Phys. Rev. B 50, 15210 1994.

[58] S. R. Manmana, A. Muramatsu, and R. M. Noack, AIP Conf. Proc. 789 (2004).

[59] H. G. Luo, T. Xiang, and X. Wang, Phys. Rev. Lett. 91, 49701 (2003).

[60] M. A. Cazalilla and J. B. Marston, Phys. Rev. Lett. 88, 256403 (2002).

[61] G. Vidal, Phys. Rev. Lett. 91, 147902 (2003).

[62] S. R. White and A. E. Feiguin, Phys. Rev. Lett. 93, 076401 (2004).

[63] I. Peschel and V. Eisler, J. Phys. A 42, 504003 (2009).

[64] P. Calabrese and J. Cardy, J. Stat. Mech. 2007, 10004 (2007).

[65] S. Trotzky, Y. A. Chen, A. Flesch, I. P. McCulloch, U. Schollwöck, J. Eisert, and I. Bloch,
Nature Phys., 8, 325 (2012).

[66] F. Meinert, M. J. Mark, E. Kirilov, K. Lauber, P. Weinmann, A. J. Daley, and H. C. Nägerl,
Phys. Rev. Lett. 111, 053003 (2013).

[67] Y. Niu, S. B. Chung, C. H. Hsu, I. Mandal, S. Raghu, and S. Chakravarty, Phys. Rev. B 85,
035110 (2012).


	Approval
	Abstract
	Acknowledgments
	Contents
	List of Figures
	Introduction
	Quantum spins from ultracold atoms
	Transverse field Ising model
	Ising model in a mixed longitudinal and transverse field
	Out of Equilibrium Quantum Systems

	Transverse Field Ising Model
	The Analytical Solution
	Mixed Transverse and Longitudinal Field

	Numerical Methods
	Exact Diagonalization
	Numerical Renormalization Group
	Superblock Method

	Density Matrix Renormalization Group
	Density Matrix Projection
	DMRG algorithms
	Programming Details
	Time Dependent DMRG


	Results
	Exact Diagonalization
	Density Matrix Renormalization Group
	Out of Equilibrium Dynamics
	Summary

	Conclusion
	Bibliography

